

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 440 951

61 Int. Cl.:

C07K 14/54 (2006.01) C07K 14/705 (2006.01) C12N 15/861 (2006.01) A61K 38/17 (2006.01) A61K 38/20 (2006.01) A61K 48/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 10.10.2003 E 03757951 (3) 97 Fecha y número de publicación de la concesión europea: 02.10.2013 EP 1556411

(54) Título: Vectores adenovirales que expresan la interleucina-12 de cadena sencilla y el ligando 4-1BB

(30) Prioridad:

11.10.2002 DE 10248141

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 31.01.2014

(73) Titular/es:

PROVECS MEDICAL GMBH (100.0%) Martinistrasse 52, c/o UKE N30 20246 Hamburg, DE

(72) Inventor/es:

WÄHLER, REINHARD y SCHNIEDERS, FRANK

74 Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Vectores adenovirales que expresan la interleucina-12 de cadena sencilla y el ligando 4-1BB.

- La presente invención se refiere a vectores adenovirales, que comprenden secuencias de ácido nucleico que codifican para interleucina (IL)-12 de cadena sencilla (IL-12 de cadena sencilla, "single chain IL-12" o scIL-12) y la proteína coestimuladora 4-1BB, así como la utilización de estos vectores para la terapia génica, en particular para el tratamiento de tumores.
- Las enfermedades cancerosas siguen representando una de las causas de muerte más frecuentes de los seres humanos en los países industrializados. El carcinoma hepatocelular (HCC) es, por ejemplo, una enfermedad cancerosa con un tiempo de supervivencia medio de 6 meses en caso del diagnóstico de uno o varios tumores grandes (Llovet J.M. *et al.*, Hepatology, 1999, 29:62-67). Si bien los enfoques terapéuticos utilizados en la actualidad, que comprenden ablación por radiofrecuencia, quimioterapia e inyección percutánea de etanol (PEI), presentan un cierto éxito en el caso de tumores pequeños, sin embargo demuestran ser insuficientes en la lucha contra tumores grandes.

Por tanto, en el estado de la técnica se propuso tratar HCC mediante terapia génica. Los procedimientos de tratamiento con terapia génica se basan en la administración de un ácido nucleico, que normalmente se absorbe en la célula tumoral y que presenta secuencias que destruyen la célula tumoral. A este respecto se desarrollaron un gran número de estrategias alternativas, por medio de las cuales las secuencias de ácido nucleico transferidas pueden provocar una destrucción de las células tumorales. Un resumen de las estrategias correspondientes para el tratamiento del HCC se encuentra en Ruiz et al. (Dig.Dis. 2001, 19: 324-332). En esta publicación se clasifican los ácidos nucleicos que se estudian hoy en día en ensayos clínicos para un tratamiento del HCC en el ser humano según la estrategia de tratamiento en uno de los 4 grupos siguientes:

(1) Transferencia de supresores tumorales:

Esta estrategia se basa en que el ácido nucleico utilizado para la terapia génica contiene un gen, cuyo producto génico inhibe el crecimiento del tumor o induce apoptosis en las células tumorales. La mayoría de los ensayos clínicos se basan en una transferencia del gen p53.

(2) Inmunoterapia génica:

30

40

50

60

Esta estrategia se basa en que el ácido nucleico utilizado para la terapia génica comprende secuencias, cuyos productos génicos activan el sistema inmunitario del paciente y desencadenan una reacción inmunitaria dirigida contra las células tumorales. La propia reacción inmunitaria conduce entonces a la destrucción del tumor. Se han propuesto numerosas citocinas, moléculas coestimuladoras y moléculas específicas de tumor para una inmunoterapia génica.

Lieschke et al. expresan interleucina-12 en células tumorales CMS-5.

(3) Terapia génica suicida:

En este modo de proceder el ácido nucleico utilizado para la terapia génica codifica para un producto génico, por ejemplo para una enzima, que transforma una sustancia activa no tóxica en un agente citotóxico para la célula tumoral.

(4) Transferencia de virus oncolíticos:

Para esta forma de terapia génica se utilizan vectores de ácido nucleico basados en secuencias virales. Los vectores con secuencias virales oncolíticas presentan un promotor específico de tumor, que controla la replicación del virus, de modo que se posibilita un crecimiento selectivo de los virus en las células tumorales.

Por tanto, en la inmunoterapia génica relevante para la presente solicitud (también denominada inmunoterapia) se administran ácidos nucleicos que comprenden secuencias que activan el sistema inmunitario y lo dirigen al tumor. Básicamente, el sistema inmunitario reconoce además de antígenos también estructuras específicas de tumor en células tumorales. Por tanto, la activación del sistema inmunitario puede conducir a una destrucción del tumor mediante los componentes del sistema inmunitario.

El documento WO 00/41508 describe una terapia de combinación de cáncer mediante activación de moléculas coestimuladoras de las células inmunitarias, por medio de dos vectores adenovirales que codifican o bien para las dos subunidades diferentes de IL-12 o bien para ligando 4-1BB.

65 En el estado de la técnica se conocen numerosas moléculas que estimulan el sistema inmunitario o modulan una reacción inmunitaria, en particular las citocinas. Ya hace tiempo se estableció que las citocinas también presentan

actividades antitumorales. Por ejemplo se informó que IL-12 es un estimulador de la inmunidad celular y presenta una fuerte actividad antitumoral (Brunda *et al*, J. Exp. Med. 1993, 178:1223-1230). Sin embargo, la administración de la propia proteína IL-12 recombinante como agente antitumoral fracasó porque la citocina presenta efectos secundarios tóxicos en la dosificación terapéutica (Lotze *et al.*, Ann.N.Y.Acad.Sci., 1997, 795:440-454; y Cohen J. Science, 1995, 270:908).

Por tanto, se propuso introducir en el tumor un ácido nucleico que codifica para una citocina y con ello posibilitar una activación local del sistema inmunitario. Hock *et al.* (Proc. Natl. Acad.Sci. USA, 1993, 90: 2774-2778) describen, por ejemplo, la transferencia del gen de interleucina-2 (IL-2), interleucina-4 (IL-4), interleucina-7 (IL-7), TNF o IFN-γ en líneas de células tumorales y la utilización de las líneas de células tumorales para la inducción de tumores en animales. Todas las líneas de células tumorales transgénicas generan una reacción de rechazo contra las células tumorales, estando implicadas, en función de la citocina utilizada, diferentes células del sistema inmunitario de los animales de ensayo en la reacción de rechazo (CD4⁺, CD3⁺).

10

25

30

40

45

50

60

65

También se estudiaron vectores que codifican para IL-12, para determinar su idoneidad para la inmunoterapia. La IL-12, que también se denomina CMLF ("cytotoxic lymphocyte maturation factor", factor de maduración de linfocitos citotóxicos) o NKSF ("natural killer cell stimulatory factor", factor estimulador de células citolíticas naturales), es una citocina heterodimérica que se forma de manera natural por linfocitos B periféricos tras su activación. La proteína consta de dos subunidades con pesos moleculares relativos de 40 y 35 kDa, que están unidas entre sí a través de puentes disulfuro. Los puentes disulfuro son esenciales para la actividad biológica. Tal como ya se indica mediante los diferentes nombres, la proteína estimula la proliferación de linfoblastos humanos activados y activa las células citolíticas naturales.

En Pützer *et al.* se expresaron interleucina-12 y B7-1 mediante un vector adenoviral en células tumorales. En Carrol *et al.* se utilizaron virus vaccinia para la expresión de B7-1 e interleucina-12.

Vectores que codifican para las diferentes subunidades de esta proteína, se utilizaron para el tratamiento de tumores (Barajas *et al.*, Hepatology, 2001, 33: 52-61; Mazzolini *et al.*, Cancer Gene Therapy, 1999, 6: 514-522). Además, estos vectores se utilizaron en combinación con otras secuencias para la terapia inmunitaria, en particular en combinación con secuencias para una proteína coestimuladora, que se encontraban en el mismo o en otro vector, para el tratamiento de tumores (Gyorffy *et al.*, J.Immunology, 2001, 166: 6212-6217; Martinet *et al.*, Gene Therapy, 2002, 9: 786-792; Martinet *et al.*, Journal of National Cancer Institute, 2000, 92: 931-936; Guinn *et al.*, J. Immunology, 1999, 162: 5003-5010; y Emtage *et al.*, J. Immunology, 1998, 160: 2531-2538).

35 Anderson et al. usaron virus adenoasociados que expresan en las células una proteína de fusión de interleucina-12 específica.

La IL-12 se ha expresado además ya como IL-12 de cadena sencilla con buena actividad, es decir como proteína en la que se unieron las diferentes subunidades para dar una proteína de fusión (Lieschke *et al.*, Nature Biotechnology, 1997, 15: 35-40). En un procedimiento terapéutico adicional se propuso extraer del paciente células tumorales y tratarlas *in vitro* con un plásmido, que codifica para IL-12 de cadena sencilla o IL-12 y un coestimulador (documento US2002/0018767). Tras este tratamiento *in vitro* las células tumorales deben reimplantarse. Por consiguiente, el procedimiento comprende varias intervenciones en el paciente y una reimplantación de células tumorales en los pacientes, lo que podría hacer que muchos pacientes se negaran a un tratamiento correspondiente.

Ninguno de los ácidos nucleicos utilizados hasta el momento ha podido imponerse para el tratamiento de mamíferos, preferentemente para el tratamiento del ser humano. Aunque, por ejemplo, los procedimientos de tratamiento descritos en la publicación de Ruiz *et al.* (citada anteriormente) parten de una dosificación muy alta del vector utilizado para el tratamiento (3x10⁹-2,5x10¹³ "plaque forming units", unidades formadoras de placa, UFP, por dosificación), se establece que o bien no se obtuvo ningún resultado o bien sólo se obtuvieron resultados negativos mediante los ensayos clínicos correspondientes. Sin embargo, precisamente la dosificación de los ácidos nucleicos es un factor crítico para la terapia génica, dado que en caso de una dosificación demasiado alta pueden esperarse efectos secundarios o una liberación del vector mediante la salida del vector fuera del tumor.

Por consiguiente, la presente invención se basaba en el objetivo de poner a disposición vectores que pueden utilizarse con una eficacia mejorada para la inmunoterapia.

Este objetivo se solucionó ahora sorprendentemente mediante vectores virales, que comprenden secuencias de ácido nucleico que codifican para IL-12 de cadena sencilla y la proteína coestimuladora 4-1BB, siendo el vector un vector adenoviral.

Por consiguiente, según la invención se estableció sorprendentemente que los vectores que codifican para IL-12 de cadena sencilla y la proteína coestimuladora 4-1BB son adecuados en un grado especial para el tratamiento de tumores en el marco de una inmunoterapia. Mediante la inmunoterapia se elimina no sólo el tumor primario sino también las metástasis. El efecto sinérgico de las proteínas codificadas mediante los constructos según la invención en la inmunoestimulación posibilita la utilización de los ácidos nucleicos en dosificaciones menores que lo que se

propuso en el estado de la técnica. La dosificación menor presenta menos efectos secundarios, tal como un riesgo menor de una enfermedad autoinmune para los pacientes, y al mismo tiempo una seguridad mejorada en caso de su utilización en la práctica clínica. La probabilidad de una propagación del virus es menor que en el caso de los vectores conocidos. La dosificación menor posibilita además tratar masas tumorales mayores o varios focos tumorales al mismo tiempo, sin generar efectos secundarios.

La utilización del gen de IL-12 de cadena sencilla ahora espacio en el vector para la expresión de los ácidos nucleicos en comparación con la utilización de genes que codifican para las dos subunidades de la IL-12. Por consiguiente, esta secuencia posibilita la utilización de vectores relativamente pequeños, tales como por ejemplo los vectores adenovirales, en los que a pesar de ello se encuentran dos o más genes foráneos, que potencien la inmunoterapia, además del gen para IL-12 de cadena sencilla.

10

15

20

25

30

35

55

60

65

Los vectores según la invención están destinados para el tratamiento de mamíferos, en particular para el tratamiento de seres humanos. Las siguientes referencias a determinadas secuencias génicas se refieren por consiguiente preferentemente a secuencias humanas. Sin embargo, las secuencias génicas pueden proceder también de otras especies o modificarse en el marco de los intervalos de homología indicados (que se determinaron para la presente solicitud por medio del software BLAST) con procedimientos conocidos en el estado de la técnica, siempre que la actividad de las proteínas (inmunoestimulante y/o unión a células T) permanezca en el intervalo de por lo menos el 50%, preferentemente por lo menos el 70% de la actividad correspondiente del producto génico humano. Los intervalos de homología indicados se refieren a la región que codifica en el gen nativo para la actividad biológica. Siempre que se empleen secuencias de ácido nucleico que codifican para proteínas de fusión, el intervalo de homología se refiere por consiguiente a la parte que codifica para dicha actividad biológica (IL-12, coestimulador 4-1BB). Están comprendidas las variaciones de la secuencia génica que conducen a una potenciación de la actividad de las proteínas.

En el marco de la presente invención se emplea la expresión "secuencias que codifican para una proteína coestimuladora" para denominar secuencias que en caso de expresión en células humanas generan proteínas, que se encuentran como proteínas de superficie celular y a las que se unen específicamente receptores de las células T. En el caso de la unión a una célula T, las proteínas coestimuladoras potencian la reacción inmunitaria. En el estado de la técnica se conocen las proteínas coestimuladoras correspondientes, por ejemplo ligando 4-1BB (4-1BBL), B7-1 (también denominada CD80) y B7-2.

Según una forma de realización preferida de la presente invención, el vector comprende secuencias que codifican para la proteína coestimuladora ligando 4-1BB, en particular secuencias con una homología de secuencia de por lo menos el 40%, preferentemente por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la secuencia mostrada en la figura 21, presentando la proteína codificada por la secuencia la capacidad de unirse específicamente a células T. En el estado de la técnica se conocen pruebas de actividad adicionales para 4-1BBL (Vinay DS, Kwon BS. Semin. Immunol., 1998, 10:481-9. Review; Kwon *et al.*, Mol Cells., 2000, 10:119-26).

40 En el marco de la presente invención, una proteína se denomina IL-12 de cadena sencilla, cuando la proteína consta de una secuencia de aminoácidos que comprende las dos subunidades de la IL-12 natural como proteína de fusión. Las secuencias de ácido nucleico que codifican para una IL-12 de cadena sencilla presentarán normalmente una homología de secuencia de por lo menos el 40%, preferentemente por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con las secuencias mostradas en las figuras 19 y 20. Las secuencias mostradas representan la 45 parte de IL-12 del gen de fusión. El experto en la técnica conoce secuencias que unen las subunidades y en caso de determinar la homología no se tienen en cuenta. La IL-12 de cadena sencilla presenta además una actividad inmunoestimulante, que no es esencialmente peor que la actividad correspondiente de la IL-12 natural en forma heterodimérica. Uno de los efectos de la IL-12 humana en la inmunoestimulación consiste en iniciar la liberación de interferón gamma. La actividad inmunoestimulante de la IL-12 de cadena sencilla asciende a por lo menos el 50%, 50 preferentemente por lo menos el 70% de la actividad correspondiente de la IL-12 natural. La actividad de las proteínas puede compararse mediante procedimientos de prueba in vitro conocidos (por ejemplo utilizando pruebas in vitro para una comparación de actividad de IL-12 en Lieschke et al., citado anteriormente). Según una forma de realización especialmente preferida de la invención, la actividad inmunoestimulante de la IL-12 de cadena sencilla es incluso mayor, o esencialmente mayor, que la actividad correspondiente de la IL-12 natural.

En una forma de realización adicional, la presente invención comprende además vectores que codifican para citocinas adicionales, para proteínas con actividad citocina y/o para proteínas coestimuladoras. Se denominan proteínas con actividad citocina, proteínas que presentan la actividad inmunoestimulante de una citocina, pero no presentan ninguna relación estructural con las citocinas. En el estado de la técnica se conocen agonistas de citocina correspondientes, por ejemplo anticuerpos frente a receptor de citocina agonistas.

Por consiguiente, además de dichas secuencias específicas que codifican para IL-12 de cadena sencilla y la proteína coestimuladora 4-1BB, los vectores según la invención pueden presentar secuencias que codifican para una o varias citocinas adicionales, que activan las células T y/o B, o una o varias proteínas coestimuladoras adicionales.

La invención se refiere en particular a vectores, que comprenden secuencias que codifican para IL-12 de cadena sencilla, ligando 4-1BB e IL-2. En el marco de la presente invención una proteína se denomina IL-2, cuando se codifica por una secuencia que presenta una homología de secuencia de por lo menos el 40%, preferentemente de por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la secuencia mostrada en la figura 22. Las secuencias que codifican para IL-2 utilizadas en el marco de la presente invención presentan además esencialmente la actividad inmunoestimulante de la IL-2 natural, es decir en el marco de la presente invención se utilizan secuencias que codifican para IL-2, que presentan *in vitro* una actividad inmunoestimulante, que corresponde por lo menos a aproximadamente el 70% de la actividad de la IL-2 natural. En el estado de la técnica se conocen procedimientos *in vitro* correspondientes para la determinación de la actividad IL-2. Preferentemente se utiliza el procedimiento descrito en Gillis *et al.* (J Immunol., 1978, 120 (6): 2027-32) para la determinación de la actividad.

10

15

20

25

40

45

55

60

65

En una forma de realización adicional, los vectores según la invención comprenden además de las secuencias que codifican para IL-12 de cadena sencilla, ligando 4-1BB e IL-2, además secuencias que codifican para la proteína coestimuladora B7-1 y/o B7-2.

En el marco de la presente invención una proteína coestimuladora se denomina B7-1 (o B7-2), cuando se codifica por un gen que presenta una homología de secuencia de por lo menos el 40%, preferentemente por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la secuencia mostrada en la figura 23A (o B).

Según una forma de realización de la presente invención, los vectores comprenden además secuencias que posibilitan la expresión de las secuencias codificantes. Por tanto, los vectores según la invención pueden comprender un promotor y uno o varios sitios de entrada de ribosoma internos (IRES). Los promotores pueden presentar especificidad de tumor, es decir sólo expresarse en el tumor, o no ser activos en todas las células.

En determinadas formas de realización de la invención se prefieren promotores no específicos, dado que los promotores correspondientes por regla general se expresan mejor y estos vectores pueden utilizarse para el tratamiento de diferentes tumores.

30 Según la invención, se obtuvo una expresión especialmente elevada de los genes inmunoestimuladores con vectores que son por lo menos tricistrónicos y se caracterizan además porque por casete de expresión sólo contienen un promotor y para cada cistrón, que no se encuentra directamente detrás del promotor, presentan una secuencia de IRES. Al utilizar varios promotores en un casete de expresión, se estableció concretamente que éstos podían inhibirse mutuamente. Una combinación de promotores y secuencias de IRES condujo a una mejor expresión. Al utilizar secuencias de IRES diferentes entre sí en un vector resulta la ventaja adicional de que puede minimizarse la frecuencia de recombinación entre estas secuencias.

Al utilizar vectores tetracistrónicos puede ser ventajoso repartir los cistrones en varios casetes de expresión (véanse los ejemplos). En este caso, preferentemente hay un promotor por casete de expresión. Mediante el reparto en dos casetes de expresión, que preferentemente presentan en el vector una distancia máxima entre sí, los promotores se separan espacialmente y por consiguiente se reduce la inhibición mutua.

Las secuencias descritas presentan la ventaja especial de que las proteínas pueden expresarse especialmente bien en células humanas. Por consiguiente, el efecto ventajoso de las secuencias descritas para la inmunoterapia se basa según esta forma de realización también en la elevada expresión de las secuencias codificantes.

En el marco de la presente invención, los vectores constan preferentemente de ADN.

En el marco de la presente invención, un vector se denomina "vector viral", cuando se trata de una secuencia de ácido nucleico que comprende las secuencias de origen adenoviral, que permiten el empaquetamiento del ácido nucleico en envueltas virales.

En función del origen viral de las secuencias, los vectores pueden encontrarse como vectores adenovirales, vectores adenoasociados, vectores lentivirales, vectores VHS, vectores retrovirales, vectores baculovirales o vectores de virus Semliki-Forrest. En el caso de los vectores adenovirales puede tratarse de vectores adenovirales de primera (deleciones en las regiones E1 y E3 del sistema de clonación AdEasy; que puede obtenerse por ejemplo de QBiogene GmbH, Heidelberg) o de segunda generación (deleciones en E1, E2, E3, E4, etc.) o vectores adenovirales dependientes de un auxiliar. En el estado de la técnica se conocen de manera amplia vectores correspondientes (Nicklin SA, Baker AH. Curr Gene Ther., 2002, 2:273-93; Mah et al., Clin Pharmacokinet., 2002, 41:901-11).

En una forma de realización especialmente preferida, la invención se refiere a un vector adenoviral, que comprende secuencias que codifican para IL-12 de cadena sencilla, ligando 4-1BB e IL-2. Los vectores adenovirales presentan la ventaja especial de que hay vectores correspondientes, que están autorizados para la utilización en la terapia génica del ser humano. Por consiguiente, los vectores son seguros para determinadas aplicaciones (por ejemplo tratamiento de tumores con administración local). Los vectores adenovirales pertenecen a los sistemas de vectores que se utilizan con mayor frecuencia en la práctica clínica y para los que existen la mayor cantidad de datos con

respecto a la seguridad de utilización.

Sin embargo, la cantidad de las secuencias foráneas de ácido nucleico que puede absorberse en vectores adenovirales es limitada. Por tanto, hasta el momento no era posible absorber más de dos genes que codifican para proteínas inmunoestimuladoras en un vector correspondiente. El desarrollo de vectores descrito en detalle a continuación soluciona este problema por primera vez y posibilita por consiguiente vectores adenovirales que, en comparación con los vectores conocidos, codifican para más proteínas inmunoestimuladoras. Por consiguiente, mediante la presente invención se ponen a disposición vectores de 3 genes adenovirales especialmente ventajosos, que también pueden denominarse vectores tricistrónicos. Además, por primera vez se ponen a disposición vectores adenovirales que expresan 4 genes, habiéndose repartido éstos en los ejemplos en dos casetes de expresión.

La presente invención se refiere además a partículas virales que comprenden los vectores según la invención. Se denominan partículas virales o viriones los ácidos nucleicos que están rodeados por las proteínas de envuelta de un virus

Según una forma de realización adicional, la presente invención se refiere a fármacos que comprenden las partículas virales o los vectores según la invención. Las partículas virales o vectores según la invención pueden administrarse simplemente mezclados con un vehículo o junto con adyuvantes adicionales. Las partículas virales o vectores según la invención pueden introducirse, por ejemplo, en liposomas o liposomas con adenovirus competentes para la replicación (RCA; véase Yoon et al., Curr Cancer Drug Targets, 2001, 1:85-107), encontrarse como adenovirus revestidos con polietilenglicol, como adenovirus enlazados a anticuerpos (es decir como virus que están unidos a un anticuerpo que presenta especificidad para el virus y un marcador celular, preferentemente un marcador celular tumoral), mezclados con RCA, como casete en un RCA o como RCA condicionante para la multiplicación en el tumor (RCA condicionante: RCA con la función E1 bajo la regulación de un promotor específico de tumor; van der Poel et al., J Urol., 2002, 168:266-72).

La dosificación exacta de la partícula viral depende de la enfermedad que vaya a tratarse, del tipo de la forma de aplicación y de la estructura del vector utilizado y puede determinarse en cada caso por el experto en la materia mediante procedimientos convencionales. Los ácidos nucleicos según la invención posibilitan una destrucción o reducción significativa del tumor ya con una dosificación especialmente reducida. El fármaco presenta preferentemente una concentración por unidad de dosificación de no más de 1x10¹¹, preferentemente no más de 1x10¹⁰, no más de 1x10⁹ o no más de 1x10⁷. Sin embargo, la dosificación puede encontrarse también claramente por debajo de dichos intervalos e incluso ascender a no más de 1x10⁶. Los datos de dosificación se refieren en este caso al número de partículas virales infecciosas. En un modelo de tumor de rata pudo demostrarse que todos los animales sobrevivían a la inyección de tumor durante un tiempo de más de un año en el caso de un tratamiento con una dosificación de 5x10⁶ partículas virales infecciosas sobrevivieron todavía aproximadamente el 90% de los animales. Por el contrario, todos los animales del grupo control murieron en los primeros 50 días tras la inyección de tumor. Estas dosificaciones se encuentran varios órdenes de magnitud por debajo de las dosificaciones que se propusieron en el estado de la técnica para tratamientos correspondientes.

El fármaco está formulado de manera que los vectores pueden suministrarse bien al tumor. Preferentemente, el fármaco se encuentra como disolución para inyección intratumoral. En el estado de la técnica se conoce la producción de disoluciones correspondientes. Alternativamente a esto, el fármaco puede estar formulado como material de soporte que libera el vector tras la implantación en el tumor a lo largo de un determinado periodo de tiempo. En el estado de la técnica se conocen materiales de vehículo correspondientes, tal como por ejemplo sulfato de celulosa o similar.

La presente invención se refiere finalmente a las partículas virales o vectores para el tratamiento de tumores, en particular para el tratamiento de tumores sólidos, tales como HCC, cáncer intestinal, cáncer de mama, etc. en el ser humano.

Según una forma de realización alternativa, la presente invención se refiere a la utilización de las partículas virales vectores para el tratamiento de enfermedades infecciosas o enfermedades por priones. Ya se ha propuesto una terapia inmunoestimulante, también en forma de una terapia génica, para el tratamiento de enfermedades infecciosas correspondientes (véase van der Meide *et al.*, Vaccine., 2002, 20:2296-302).

Por consiguiente, el efecto inmunoestimulante de las partículas virales y vectores según la invención presenta además potencial terapéutico para el tratamiento de enfermedades infecciosas, tal como por ejemplo para el tratamiento de infecciones por el virus de la inmunodeficiencia humana (VIH), por virus de la hepatitis tipo A, B, C (VHA, VHB, VHC), por citomegalovirus (CMV) y por virus de papiloma humano VPH, que pueden conducir entre otros a carcinomas de cuello uterino. Las partículas virales o vectores también pueden utilizarse ventajosamente para el tratamiento de enfermedades por priones, dado que en este caso la inmunoestimulación no específica ha conducido ya en un modelo animal a resultados satisfactorios de curación (Sethi *et al.*, Lancet, 2002, 360:229-30).

Para la utilización médica según la invención, el vector se encuentra en una concentración de no más de 1x10¹¹,

6

60

55

10

15

20

25

30

35

40

45

preferentemente no más de 1x10¹⁰, no más de 1x10⁹ o no más de 1x10⁷. Sin embargo, la dosificación puede encontrarse también claramente por debajo de dichos intervalos y ascender incluso a no más de 1x10⁶. Los datos de dosificación se refieren en este caso a su vez al número de partículas virales infecciosas.

Los siguientes ejemplos ilustran la invención. Pueden encontrarse datos más detallados con respecto a la producción y utilización de los vectores mencionados en los ejemplos además en la tesis doctoral de Reinhard Wähler con el tema "Adenovirale Immuntherapie solider Tumore am HCC-Modell der Ratte (*Rattus norvegicus*, Berkenhout 1769)" ("Inmunoterapia adenoviral de tumores sólidos en un modelo de HCC de rata") de la Facultad de Biología de la Universidad de Hamburgo.

Ejemplos

- I. Construcción de los vectores Ad-1, Ad-2, Ad-3 y su evaluación in vitro e in vivo
- II. Construcción del vector Ad-4
 - I. Construcción de los vectores Ad-1, Ad-2, Ad-3 y su evaluación in vitro e in vivo

1. Producción de los vectores

20

En primer lugar se clonaron los ADN murinos de scIL-12, 4-1BBL e IL-2 en el plásmido pTrident3 (figura 1). El resultado recibe el nombre de pT3-scIL12[IRES]4-1BBL[IRES]IL2 (sin ilustración). Antes se modificaron las regiones 5' de los marcos de lectura de los tres componentes y su distancia con respecto a los elementos IRES para la formación de un inicio de traducción optimizado.

25

30

Se clonó el casete de expresión tricistrónico así construido sin el promotor y las secuencias no traducidas 3' en el plásmido pShuttle-CMV del sistema AdEasy (QBiogene GmbH, Heidelberg). El resultado es el plásmido pShuttle-[CMV]sclL12[IRES]4-1BBL[IRES]IL2 (figura 2). Se comprobó completamente el casete [CMV]sclL12[IRES]4-1BBL[IRES]IL2 del plásmido mencionado en último lugar mediante secuenciación de ADN para determinar que fuera correcto.

Entonces se recombinó este constructo tras la cotransformación con el plásmido pAdEasyl en la cepa de *E. coli* Bj5183 para dar el plásmido pAd-3 (véase la figura), que contiene todo el ADN recombinante para Ad-3.

Partiendo de pShuttle-[CMV]scIL12[IRES]4-1BBL[IRES]IL2 se clonaron los plásmidos para Ad-2, pShuttle-[CMV]scIL12[IRES]4-1BBL (véase la figura) y para Ad-1, pShuttle-[CMV]scIL12 (véase la figura) y de manera análoga a la producción de pAd-3 se generaron los plásmidos pAd-2 y pAd-1.

Se transfectaron los adenovirus a partir de los precursores plasmídicos tras la liberación por medio de digestión con PacI en células HEK293 y se aislaron y multiplicaron las placas virales que se produjeron (es decir como partículas virales).

Visión general con respecto a los casetes de expresión: figura 1.

45 Pruebas de expresión

2.1. IL-12

Se infectaron células de hepatoma de rata, McA-RH7777, con los virus (partículas virales) Ad-1, Ad-2 y Ad-3 y se cuantificó la expresión de IL-12 tras tiempos diferentes en el sobrenadante de cultivo celular por medio de ELISA de IL-12 p70.

Visión general: figura 2.

55 <u>2.2 4-1BBL</u>

Se infectaron células de hepatoma de rata, McA-RH7777, con los virus (partículas virales) Ad-1, Ad-2 y Ad-3 y se comprobó la expresión de IL-12 tras tiempos diferentes por medio de citometría de flujo tras la tinción del 4-1BBL con el anticuerpo TKS-1 (BD Pharmingen, Heidelberg). Ad-1 servía en este caso como control, dado que no puede esperarse ninguna expresión de 4-1BBL.

Visión general: figura 3.

2.3 IL-2

65

60

Se infectaron células de hepatoma de rata, McA-RH7777, con los virus (partículas virales) Ad-1, Ad-2 y Ad-3 y se

cuantificó la expresión de IL-12 tras tiempos diferentes en el sobrenadante de cultivo celular por medio de ELISA de IL-2. Ad-1 y Ad-2 servían en este caso como controles, dado que no puede esperarse ninguna expresión de IL-2 (no mostrado).

5 Visión general: figura 4.

10

3. Evaluación in vivo

3.1 Ajuste a escala de la dosis 1

Se sometió a prueba el vector Ad-3 (figura 5a) en este modelo de rata para el carcinoma hepatocelular (HCC). Se utiliza la línea celular McA-RH7777 (carcinoma hepatocelular de rata), que es singénica con la rata parda, para el trasplante hepático subcapsular de tumores.

- 15 Se monitoriza el crecimiento tumoral tras la implantación de 1 millón de células por medio de tomografía de resonancia magnética (MRT) en colaboración con el Prof. Dr. Gerrit Krupski-Berdien de la clínica radiológica del UKE antes y después de la invección de la partícula viral. La figura 5b muestra la evolución de los volúmenes tumorales entre los días 3 y 12 tras la inyección del virus. El efecto muy claro en este breve periodo de tiempo del vector depende de la dosis y alcanza a la dosis máxima una reducción de los volúmenes tumorales de hasta el 27% 20 del tamaño en el momento de la inyección del virus. Este resultado se documenta en la figura 6 con imágenes de MRT seleccionadas de animales individuales, para ilustrar mejor el tamaño del tumor en relación con el tamaño del animal.
- Debido a estos datos se estableció la dosis para el tratamiento de larga duración de grupos de animales mayores con hasta 5 x 10⁷ partículas infecciosas por tumor. En estudios posteriores se determinó ahora el efecto de los 25 vectores individuales (Ad-1 a Ad-3) a esta dosis reducida. Tal como se muestra en el esquema en la figura 7, se implantaron los tumores, tras 14 días se trataron entonces 6 animales en los grupos A con el vector y se analizaron los parámetros de la respuesta inmunitaria antitumoral tras 2 semanas más. En cada caso 10 animales forman los grupos B (grupo de larga duración). A diferencia del estudio de ajuste a escala de la dosis (figuras 5 y 6) se 30 implantaron ahora dos tumores, de los que sólo uno se trató con el virus, para determinar los efectos distales de la inmunoestimulación. Los grupos B servían para el análisis de la cinética de larga duración de la reducción tumoral y de la tasa de supervivencia. Tras tres meses en este esquema en el caso de los animales supervivientes le sigue una implantación tumoral intrahepática adicional para evaluar la memoria inmunológica con respecto al reconocimiento de y la lucha contra recidivas de tumor. Durante tres meses más se determina la tasa de supervivencia. Nuestros datos muestran también a la dosis seleccionada de 5 x 10⁷ una contención del crecimiento 35 tumoral en el intervalo de los primeros 14 días. Se observaron los grupos B ya durante 100 días. Los resultados de la reducción tumoral mediante nuestro tratamiento se ilustran en forma de las imágenes de MRT en las figuras 8 a
- 40 Las figuras documentan que a la dosis seleccionada en el plazo de 7 semanas tras la administración del virus se consiguió una eliminación completa de los tumores hepáticos inyectados pero también los no inyectados. Es representativo el efecto adicional (véase fila Ad-2 en la figura 8-10), de que también se eliminaron completamente las metástasis en el hígado y en la cavidad abdominal (Ad-2, semana 3).
- 45 El desarrollo de los volúmenes tumorales determinados a partir de los datos de MRT se representa y explica en la figura 11. La evolución del estudio expresada como la tasa de supervivencia en % dentro de los grupos tratados se ilustra en la figura 12. En el marco de los experimentos con animales se comprobó la presencia de IL-12 en el suero de las ratas. Igualmente se determinó la presencia de interferón gamma, que se liberó tras la estimulación de IL-12 de células inmunitarias y es responsable de una gran parte de los efectos antitumorales. También podía 50 comprobarse claramente la presencia de interferón gamma. Adicionalmente a estas determinaciones se comprobó la presencia de células T dirigidas específicamente contra el tumor en una denominada prueba de citotoxicidad. Se caracterizó la respuesta de las células inmunitarias en ese momento también en preparaciones tisulares de los animales tratados. En el tejido tumoral tratado pudo comprobarse la presencia de células CD8+, células CD4+, macrófagos y células citolíticas naturales en una cantidad aumentada en comparación con el tejido tratado con 55

vector control.

3.2 Protocolo para la realización del estudio de larga duración:

Se implantaron dos tumores mediante la inyección de células McA-RH7777. Se inyectaron las células en dos lóbulos hepáticos diferentes. Para un tumor se utilizaron 1 millón de células. En este tumor del lado izquierdo se llevó a cabo 60 posteriormente la inyección de virus. Se implantó un tumor adicional en el lado derecho con 650.000 células. Este tumor servía como modelo de metástasis intrahepático. En este tumor se comprobó la eficacia de las células inmunitarias estimuladas en un foco tumoral distal. Los resultados se muestran en las figuras 9 a 12 y 28 a 30.

II. Construcción de Ad-4:

Con un sistema de inserción distinto al de la recombinación homóloga en células de E. coli se inserta un casete de expresión para B7-1 en la posición de la región E3 adenoviral. Esta región es funcionalmente inactiva, dado que partes grandes de esta región están delecionadas en los vectores empleados en este caso. El casete de expresión dispone de un promotor propio de la fosfoglicerato cinasa humana o un promotor de potencia similar.

La producción de los virus se realiza de manera equivalente a la del protocolo descrito anteriormente.

Breve descripción de las figuras 10

Figura 1 Representación de visión general de los vectores Ad-1 a Ad-3.

Figura 2 Determinación de la cantidad de interleucina en el sobrenadante de cultivo celular de células 15 McA-RH7777 tras la transfección con Ad-1, Ad-2 y Ad-3. Las cantidades de vector, que deben utilizarse para los experimentos con animales, se ajustaron con respecto a la expresión idéntica de interleucina-12. La figura 2 muestra la evolución en el tiempo de la expresión a lo largo de 3 días en las células de hepatoma de rata McA-RH7777. Procedimiento: se infectaron células McA-RH7777 a MOI de 10 con Ad-1, Ad-2 o Ad-3. Se acumularon los sobrenadantes en los días 0, 1, 2, y 3 tras la infección. Se determinaron las concentraciones de scIL-12 por medio de ELISA con un anticuerpo anti-IL-12p70 de ratón (Pharmingen). 20

Figura 3 Comprobación de la presencia de 4-1BBL en los cultivos de células McA-RH7777. Determinación por citometría de flujo de la expresión de 4-1BBL. Ad-2 y Ad-3 expresan 4-1BBL, Ad-1 no lo expresa. Procedimiento: se infectaron células McA-RH7777 con las concentraciones virales equiparadas a MOI 10 con Ad-1, Ad-2 o Ad-3. Se recogieron las células 24 h tras la infección y se incubaron con un anticuerpo monoclonal de rata anti-4-1BBL de ratón (TKS-1, Pharmingen) y para la comprobación se tiñeron con anticuerpo policional de cabra anti-lg de rata conjugado con R-PE (Pharmingen).

Figura 4 Expresión de IL-2 en los cultivos de células McA-RH7777 a lo largo de 3 días. Ad-3 expresa en moles 30 466 veces más IL-12 que IL-2 (calculado para el día 3). Procedimiento: se infectaron células McA-RH7777 con Ad-3 a MOI 10. Se acumularon los sobrenadantes en el día 0, 1, 2, 3. Se determinaron las concentraciones de IL-2 por medio de ELISA utilizando un anticuerpo anti-IL-2 de ratón (Pharmingen).

Figura 5 Estudio de ajuste a escala de la dosis. Variación del tamaño del tumor en el plazo de 9 días tras el 35 tratamiento con Ad3. Procedimiento: se midieron los volúmenes tumorales por medio de MRT en un intervalo de 9 días. El tamaño de referencia del 100% se refiere al tamaño del tumor en el día 3 tras la inyección del virus (1ª MRT), el tamaño final mostrado en este caso se midió en el día 12 tras la administración del virus (2ª MRT). Se infectó el vector Ad3 (a) en las dosis indicadas (i.p. = partículas infecciosas) en tumores con un tamaño de entre 40 7 y 11 mm de diámetro (b).

Figura 6 Imágenes de MRT del estudio de ajuste a escala de la dosis. Procedimiento: se examinaron tumores, que se habían tratado con de 10⁷ a 10⁹ partículas virales infecciosas Ad-3 o con 10⁹ partículas infecciosas Ad-GFP (control), en el día 3 y el día 12 tras la inyección por medio de MRT.

Figura 7 Representación esquemática del desarrollo de los ensayos con animales utilizando Ad-1, Ad-2 y Ad-3.

Figura 8 Imágenes de MRT de los tumores antes de la inyección de virus, semana 0.

50 Figura 9 Imágenes de MRT de los tumores después de la inyección de virus, semana 3.

Figura 10 Imágenes de MRT de los tumores después de la invección de virus, semana 7.

Figura 11 Representación de la evolución de los tamaños de tumor, calculados a partir de los datos de MRT. 55 Procedimiento: se monitorizaron los volúmenes tumorales totales mediante MRT: un día antes, así como 3 v 7 semanas después de la administración de virus se determinaron los tamaños. Grupo control Ad-GFP: 9 animales; grupos tratados de manera inmunitaria: en cada caso 10 animales en los grupos Ad-1, Ad-2 y Ad-3. En el grupo Ad-1 sólo una rata mostró un crecimiento tumoral progresivo. Todos los animales del grupo control murieron en el plazo de 7 semanas.

Figura 12 Tasa de supervivencia a largo plazo de los animales de ensayo hasta 100 días tras la inyección de virus.

Figura 13 Mapa del vector pTrident3.

Figura 14 Mapa del vector pShuttle-[CMV]IL12[IRES]4-1BBL[IRES]IL-2.

9

60

45

25

Figura 15 Mapa del vector pShuttle-[CMV]IL12[IRES]4-1BBL.

Figura 16 Mapa del vector pShuttle-[CMV]IL12.

Figura 17 Mapa del vector pAd-3.

5

10

20

25

30

50

<u>Figura 18</u> Secuencia del casete de expresión tricistrónico, que contiene ADN murinos, corresponde al inserto Ad-3 de la figura 1.

Figura 19 Secuencia codificante de la IL-12 humana de 40 kDa.

Figura 20 Secuencia codificante de la IL-12 humana de 35 kDa.

15 Figura 21 Secuencia codificante del 4-1BBL humano.

Figura 22 Secuencia codificante de la IL-2 humana.

Figura 23 Secuencia codificante de las B7-1 y B7-2 humanas.

Figuras 24 a 27 Secuencia de diferentes vectores

<u>Figura 28</u> Representación de la eficacia en un periodo de tiempo de observación de hasta un año. El gráfico muestra el porcentaje de ratas vivas en cada momento (tasa de supervivencia 1 = 100% de los animales de un grupo). Grupos de tratamiento: Ad-3, 5x10⁶ (n=12), Ad-3, 5x10⁷ (n=10). Grupo control: 5 x 10⁸ Ad-GFP (n=9). En este estudio de larga duración se implantaron dos tumores hepáticos en cada animal. 2 semanas más tarde (en el día 0 en la ilustración) se trató uno de los dos tumores una vez mediante una inyección de vector. El volumen tumoral se encontraba a aproximadamente 1 ml en ese momento. La figura muestra que los animales control (tratados con Ad-GFP) morían en el plazo de 47 días tras la inyección de vector. En el grupo tratado con 5 x 10⁶ i.u. ("unidad infecciosas" o partículas infecciosas) de Ad-3 un animal murió tras 90 días y en el grupo tratado con 5 x 10⁷ i.u. de Ad-3 sobrevivieron todos los animales. "Nueva exposición": en el grupo tratado con 5 x 10⁷ i.u. de Ad-3 se implantaron en todos los animales 92 días (13 semanas) tras la inyección de vector de nuevo tumores en el hígado. El implante celular tumoral desapareció sin tratamiento adicional en los 10 animales.

Figura 29 Representación de los efectos sobre el crecimiento tumoral tras el tratamiento con Ad-1 y Ad-3 en comparación con un vector control (Ad-GFP). A este respecto se aplicaron para Ad-1 y Ad-3 dos niveles de dosis diferentes y se determinaron los tamaños de tumor 2 semanas tras el tratamiento. Número de animales por grupo: n=3. La figura muestra la variación de los volúmenes tumorales a diferentes dosis de vector de Ad-1 y Ad-3. Se aplicaron 1 x 10⁶ células tumorales MH-7777A en el lóbulo hepático derecho y dos semanas después se inyectó el vector en el tumor izquierdo. Se llevaron a cabo exámenes de MRT un día antes y 13 días después de la aplicación de vector. A 5 x 10⁶ i.u. de Ad-1 el volumen tumoral medio aumenta claramente mientras que a 1 x 10⁷ i.u. de Ad-1 sólo aumenta mínimamente. Este aumento sólo mínimo puede establecerse para Ad-3 ya a una dosis de 5 x 10⁶ i.u., por el contrario a 1 x 10⁷ i.u. ya es evidente una reducción. Con ello se demuestra que Ad-3 es claramente más eficaz que Ad-1. Los valores para 1 x 10⁷ i.u. de Ad-3 se determinaron en el día 3 y el día 12 tras la inyección de vector. Los controles (Ad-GFP) aumentan mucho en el plazo del periodo de tiempo de observación de 2 semanas. No se tuvieron en cuenta para el cálculo las metástasis extrahepáticas en los animales en los que aparecieron.

Listado de secuencias

<110> Universitätsklinikum Hamburg-Eppendorf

<120> Ácidos nucleicos y su utilización para la terapia génica

55 <130> P61712

<140> documento DE 102 48 141.5 <141> 11-10-2002

60 <160> 11

<170> PatentIn versión 3.1

<210> 1 65 <211> 5252 <212> ADN

<213> Secuencia artificial

<220>

5

<223> Vector con casete de expresión tricistrónico como inserto

<400> 1

tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cqttacataa 60 cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 120 atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtqgag 180 tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 240 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 300 tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg 360 cggtttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 420 ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 480 aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag 540 gtotatataa gcaqaqotqq tttaqtgaac cgtcagatcc gctagagatc tqgatccgaa 600 ttcgccgcca ccatgggtcc tcagaagcta accatctcct ggtttgccat cgttttgctg 660 gtgtctccac tcatggccat gtgggagctg gagaaagacg tttatgttgt agaggtggac 720 780 tggactcccg atgcccctgg agaaacagtg aacctcacct gtgacacgcc tgaagaagat 840 gacatcacct ggacctcaga ccagagacat ggagtcatag gctctggaaa gaccctgacc atcactgtca aaqagtttct aqatqctggc cagtacacct gccacaaagg aggcgagact 900 etgageeact cacatetget getecacaag aaggaaaatg gaatttggte cactgaaatt 960 ttaaaaaaatt tcaaaaacaa gactttcctg aagtgtgaag caccaaatta ctccggacgg 1020 ttcacgtgct catggctggt gcaaagaaac atggacttga agttcaacat caagagcagt 1080 ageagticee etgacteteg ggeagtgaea tgtggaatgg egtetetgte tgeagagaag 1140 gtcacactqq accaaaqqqa ctatgagaag tattcagtgt cctgccagga ggatgtcacc 1200 tgcccaactg ccgaggagac cctgcccatt gaactggcgt tggaagcacg gcagcagaat 1260 aaatatqaqa actacaqcac caqcttcttc atcagggaca tcatcaaacc agacccgccc 1320 aagaactige agatgaagee titgaagaac teacaggigg aggicaqeig qqagtaceet 1380

gactcctgga	gcactcccca	troctactto	teceteaagt	tctttgttcg	aatccagcgc	1440
aagaaagaaa	agatgaagga	gacagaggag	gggtgtaacc	agaaaggtgc	gttcctcgta	1500
gagaagacat	ctaccgaagt	ccaatgcaaa	ggcgggaatg	tetgegtgea	agctcaggat	1560
cgctattaca	attcctcatg	cagcaagtgg	gcatgtgttc	cctgcagggt	ccgatccggt	1620
ggcggtggct	cgggcggtgg	tgggtcgggt	ggcggcggat	ctagggtcat	tccagtctct	1680
ggacctgcca	ggtgtcttag	ccagtcccga	aacctgctga	agaccacaga	tgacatggtg	1740
aagacggcca	gagaaaagct	gaaacattat	tcctgcactg	ctgaagacat	cgatcatgaa	1800
gacatcacac	gggaccaaac	cagcacattg	aagacctgtt	taccactgga	actacacaag	1860
aacgagagtt	gcctggctac	tagagagact	tcttccacaa	caagagggag	ctgcctgccc	1920
ccacagaaga	cgtctttgat	gatgaccctg	tgccttggta	gcatctatga	ggacttgaag	1980
atgtaccaga	cagagttcca	ggccatcaac	gcagcacttc	agaatcacaa	ccatcagcag	2040
atcattctag	acaagggcat	gctggtggcc	atcgatgagc	tgatgcagtc	tctgaatcat	2100
aatggcgaga	ctctgcgcca	gaaacctcct	gtgggagaag	cagaccctta	cagagtgaaa	2160
atgaagctct	gcatcctgct	tcacgccttc	agcacccgcg	togtgaccat	caacagggtg	2220
atgggctatc	tgagctccgc	ctgagaattg	atccggatta	gtccaatttg	ttaaagacag	2280
gatgaagctt	aaaacagctc	tggggttgta	cccaccccag	aggcccacgt	ggcggctagt	2340
actccggtat	tgcggtaccc	ttgtacgcct	gttttatact	cccttcccgt	aacttagacg	2400
cacaaaacca	agttcaatag	aagggggtac	aaaccagtac	caccacgaac	aagcacttct	2460
gtttccccgg	tgatgtcgta	tagactgctt	gcgtggttga	aagcgacgga	tccgttatcc	2520
gcttatgtac	ttcgagaagc	ccagtaccac	ctcggaatct	tcgatgcgtt	gcgctcagca	2580
ctcaacccca	gagtgtagct	taggctgatg	agtctggaca	tccctcaccg	gtgacggtgg	2640
tccaggctgc	gttggcggcc	tacctatggc	taacgccatg	ggacgctagt	tgtgaacaag	2700
gtgtgaagag	cctattgagc	tacataagaa	teeteeggee	cctgaatgcg	gctaatccca	2760
acctcggagc	aggtggtcac	aaaccagtga	ttggcctgtc	gtaacgcgca	agtccgtggc	2820
ggaaccgact	actttgggtg	teegtgttte	cttttatttt	attgtggctg	cttatggtga	2880
caatcacaga	ttgttatcat	aaagcgaatt	ggattgcggc	cgcgccacca	tggaccagca	2940
cacacttgat	gtggaggata	ccgcggatgc	cagacatcca	gcaggtactt	cgtgcccctc	3000
ggatgcggcg	ctcctcagag	ataccgggct	cctcgcggac	getgegetee	tctcagatac	3060
tgtgcgcccc	acaaatgccg	cgctccccac	ggatgctgcc	taccctgcgg	ttaatgttcg	3120
ggatcgcgag	geegegtgge	cgcctgcact	gaacttctgt	tecegecace	caaagctcta	3180
tggcctagtc	gctttggttt	tgctgcttct	gategeegee	tgtgttccta	tcttcacccg	.3240
caccgagcct	cggccagcgc	tcacaatcac	cacctcgccc	aacctgggta	cccgagagaa	3300
taatgcagac	caggtcaccc	ctgtttccca	cattggctgc	cccaacacta	cacaacaggg	3360
ctctcctgtg	ttcgccaagc	tactggctaa	aaaccaagca	tcgttgtgca	atacaactct	3420

gaactggcac agccaagatg	gagctgggag	ctcataccta	tctcaaggtc	tgaggtacga	3480
agaagacaaa aaggagttgg	tggtagacag	tcccgggctc	tactacgtat	ttttggaact	3540
gaageteagt ceaacattea	caaacacagg	ccacaaggtg	cagggctggg	tctctcttgt	3600
tttgcaagca aagcctcagg	tagatgactt	tgacaacttg	gccctgacag	tggaactgtt	3660
cccttgctcc atggagaaca	agttagtgga	ccgttcctgg	agtcaactgt	tgctcctgaa	3720
ggctggccac cgcctcagtg	tgggtctgag	ggcttatctg	catggagccc	aggatgcata	3780
cagagactgg gagctgtctt	atoccaacac	caccagcttt	ggactctttc	ttgtgaaacc	3840
cgacaaccca tgggaatgag	aactatcctt	cttgtgactg	gcgcgcctga	tcaatcgatg	3900
tttaaacgtt attttccacc	atattgccgt	cttttggcaa	tgtgagggcc	cggaaacctg	3960
gccctgtctt cttgacgagc	attcctaggg	gtettteece	tctcgccaaa	ggaatgcaag	4020
gtctgttgaa tgtcgtgaag	gaagcagttc	ctctggaagc	ttcttgaaga	caaacaacgt	4080
ctgtagcgac cctttgcagg	cagcggaacc	ccccacctgg	cgacaggtgc	ctctgcggcc	4140
aaaagccacg tgtataagat	acacctgcaa	aggcggcaca	accccagtgc	cacgttgtga	4200
gttggatagt tgtggaaaga	gtcaaatggc	totootcaag	cgtattcaac	aaggggctga	4260
aggatgecca gaaggtaecc	cattgtatgg	gatctgatct	ggggcctcgg	tgcacatgct	4320
ttacgtgtgt ttagtcgagg	ttaaaaaaaac	gtctaggccc	cccgaaccac	ggggacgtgg	4380
ttttcctttg aaaaacacga	ttctcgagac	tagtgccacc	atgtacagca	tgcagctcgc	4440
atcctgtgtc acattgacac	ttgtgctcct	tgtcaacagc	gcacccactt	caagctccac	4500
ttcaagctct acagcggaag	cacagcagca	gcagcagcag	cagcagcagc	agcagcagca	4560
cctggagcag ctgttgatgg	acctacagga	gctcctgagc	aggatggaga	attacaggaa	4620
cctgaaactc cccaggatgc	tcaccttcaa	attttacttg	cccaagcagg	ccacagaatt	4680
gaaagatett cagtgeetag	aagatgaact	tggacctctg	cggcatgttc	tggatttgac	4740
tcaaagcaaa agctttcaat	tggaagatgc	tgagaatttc	atcagcaata	tcagagtaac	4800
tgttgtaaaa ctaaagggct	ctgacaacac	atttgagtgc	caattcgatg	atgagtcagc	4860
aactgtggtg gactttctga	ggagatggat	agccttctgt	caaagcatca	tctcaacaag	4920
ccctcaataa ctatgtaacg	cgtgctagca	tggccggccg	cggccgcggc	cgctcgagcc	4980
taagcttcta gataagatat	ccgatccacc	ggatctagat	aactgatcat	aatcagccat	. 5040
accacatttg tagaggtttt	acttgcttta	aaaaacctcc	cacacctccc	cctgaacctg	5100
aaacataaaa tgaatgcaat	tgttgttgtt	aacttgttta	ttgcagctta	taatggttac	5160
aaataaagca atagcatcac	aaatttcaca	aataaagcat	ttttttcact	gcattctagt	5220
tgtggtttgt ccaaactcat	caatgtatct	ta			5252

<210> 2 <211> 987 <212> ADN <213> Homo sapiens

<400> 2

atgtgtcacc ageagttggt catctcttgg ttttccctgg tttttctggc atctccctc 60 gtggccatat gggaactgaa gaaagatgtt tatgtcgtag aattggattg gtatccggat 120 gcccctggag aaatggtggt cctcacctgt gacacccctg aagaagatgg tatcacctgg 180 accttggacc agagcagtga ggtcttaggc tctggcaaaa ccctgaccat ccaagtcaaa 240 gagtttggag atgctggcca gtacacctgt cacaaaggag gcgaggttct aagccattcg 300 ctcctgctgc ttcacaaaaa ggaagatgga atttggtcca ctgatatttt aaaggaccag 360 aaagaaccca aaaataagac ctttctaaga tgcgaggcca agaattattc tggacgtttc 420 acctgctggt ggctgacgac aatcagtact gatttgacat tcagtgtcaa aagcagcaga 480 ggetettetg acceecaagg ggtgacgtge ggagetgeta cactetetge agagagagte 540 agaggggaca acaaggagta tgagtactca gtggagtgcc aggaggacag tgcctgccca 600 getgetgagg agagtetgee cattgaggte atggtggatg eegtteacaa geteaagtat 660 720 gaaaactaca ccagcagett cttcatcagg gacatcatca aacctgaccc acccaagaac ttgcagetga agecattaaa gaattetegg eaggtggagg teagetggga gtaccetgae 780 acctggagta ctccacattc ctacttctcc ctgacattct gcgttcaggt ccagggcaag 840 ageaagaqag aaaagaaaga tagagtette aeggacaaga ceteageeae ggteatetge 900 cgcaaaaatg ccagcattag cgtgcgggcc caggaccgct actatagctc atcttggagc 960 987 gaatgggcat ctgtgccctg cagttag

5 <210> 3 <211> 762 <212> ADN

<213> Homo sapiens

10 <400> 3

atgtggcccc	ctgggtcagc	ctcccagcca	ccgccctcac	ctgcegcggc	cacaggtctg	6 (
catccagcgg	ctcgccctgt	gtccctgcag	tgccggctca	gcatgtgtcc	agegegeage	120		
ctcctccttg	tggctaccct	ggtcctcctg	gaccacctca	gtttggccag	aaacctcccc	180		
gtggccactc	cagacccagg	aatgttccca	tgccttcacc	actcccaaaa	cctgctgagg	240		
gccgtcagca	acatgctcca	gaaggccaga	caaactctag	aattttaccc	ttgcacttct	300		
gaagagattg	atcatgaaga	tatcacaaaa	gataaaacca	gcacagtgga	ggcctgttta	360		
ccattggaat	taaccaagaa	tgagagttgc	ctaaatt <i>c</i> ca	gagagacctc	tttcataact	420		
aatgggagtt	geetggeete	cagaaagacc	tcttttatga	tggccctgtg	ccttagtagt	480		
atttatgaag	acttgaagat	gtaccaggtg	gagttcaaga	ccatgaatgc	aaagcttctg	54(
atggatccta	agaggcagat	ctttctagat	caaaacatgc	tggcagttat	tgatgagctg	. 600		
atgcaggccc	tgaatttcaa	cagtgagact	gtgccacaaa	aatcctccct	tgaagaaccg	660		
gatttttata	aaactaaaat	caagctctgc	atacttcttc	atgctttcag	aattcgggca	720		
gtgactattg	atagagtgat	gagetatetg	aatgcttcct	aa [,]		762		
<210> 4 <211> 768 <212> ADN <213> Homo sa	piens							
<400> 4								
gtcatggaat	acgcctctga	cgcttcactg	gaccccgaag	ccccgtggcc	tecegegece	6 (
cgcgctcgcg	cctgccgcgt	actgccttgg	gccctggtcg	cggggctgct	gctgctgctg	126		
ctgctcgctg	ccgcctgcgc	cgtcttcctc	gcctgcccct	gggccgtgtc	cggggctcgc	180		
gaatagaaag	gctccgcggc	cagcccgaga	ctccgcgagg	gtcccgagct	ttcgcccgac	240		
gatecegeeg	gcctcttgga	cctgcggcag	ggcatgtttg	cgcagctggt	ggcccaaaat	300		
gttotgotga	togatgggco	cctgagctgg	tacagtgacc	caggcctggc	aggcgtgtcc	360		
ctgacggggg	gcctgagcta	caaagaggac	acgaaggagc	tggtggtggc	caaggctgga	420		
gtctactatg	tcttctttca	actagagetg	cggcgcgtgg	tggccggcga	gggctcaggc	480		
tccgtttcac	ttgcgctgca	cctgcagcca	ctgcgctctg	ctgctggggc	cgccgccctg	540		
gctttgaccg	tggacctgcc	accegectee	tccgaggctc	ggaactcggc	cttcggtttc	600		
cagggccgct	tgctgcacct	gagtgccggc	cagcgcctgg	gcgtccatct	tcacactgag	660		
gccagggcac	gccatgcctg	gcagcttacc	cagggcgcca	cagtcttggg	actcttccgg	720		
gtgacccccg	aaatcccagc	cggactccct	tcaccgaggt	cggaataa	•	768		
<210> 5 <211> 473 <212> ADN <213> Homo sapiens								

<400> 5

	atgtacagga	tgcaactcct	gtcttgcatt	gcactaattc	ttgcacttgt	cacaaacagt	60
	gcacctactt	caagttcgac	aaagaaaaca	aagaaaacac	agctacaact	ggagcattta	120
	ctgctggatt	tacagatgat	tttgaatgga	attaataatt	acaagaatcc	caaactcacc	180
	aggatgctca	catttaagtt	ttacatgccc	aagaaggcca	cagaactgaa	acagetteag	240
	tgtctagaag	aagaactcaa	acctctggag	gaagtgctga	atttagctca	aagcaaaaac	300
	tttcacttaa	gacccaggga	cttaatcagc	aatatcaacg	taatagttct	ggaactaaag	360
	ggatctgaaa	caacattcat	gtgtgaatat	gcagatgaga	cagcaaccat	tgtagaattt	420
	ctgaacagat	ggattacctt	ttgtcaaagc	atcatctcaa	cactaacttg	ata	473
5	<210> 6 <211> 865 <212> ADN <213> Homo say	piens					
	<400> 6						
	atgggccaca	cacggaggca	gggaacatca	ccatccaagt	gtccatacct	caatttcttt	60
	cagetettgg	tgctggctgg	tetttetcae	ttctgttcag	gtgttatcca	cgtgaccaag	120
10	gaagtgaaag	aagtggcaac	gctgtcctgt	ggtcacaatg	tttctgttga	agagctggca	180
	caaactcgca	tctactggca	aaaggagaag	aaaatggtgc	tgactatgat	gtctggggac	240
	atgaatatat	ggcccagtac	aagaaccgga	ccatctttga	tatcactaat	aacctctcca	300
	ttgtgatcct	ggctctgcgc	ccatctgacg	agggcacata	cgagtgtgtt	gttctgaagt	360
	atgaaaaaga	cgctttcaag	cgggaacacc	tggctgaagt	gacgttatca	gtcaaagctg	420
	acttccctac	acctagtata	tctgactttg	aaattccaac	ttctaatatt	agaaggataa	480
	tttgctcaac	ctctggaggt	tttccagagc	ctcacctctc	ctggttggaa	aatggagaag	540
	aattaaatgc	catcaacaca	acagtttccc	aagatootga	aactgagete	tatgctgtta	600
	gcagaaactg	gatttcaata	tgačaaccaa	ccacagette	atgtgtctca	tcaagtatgg	660
	acatttaaga	gtgaatcaga	ccttcaactg	gaatacaacc	aagcaagagc	attttcctga	720
	taacctgctc	ccatcctggg	ccattacctt	aatctcagta	aatggaattt	ttgtgatatg	780
	ctgcctgacc	tactgctttg	ccccaagatg	cagagagaga	aggaggaatg	agagattgag	840
	aagggaaagt	gtacgccctg	tataa		-		865
15	<210> 7 <211> 972 <212> ADN	oions					

<400> 7

```
atgggactga gtaacattct ctttgtgatg gccttcctgc tctctggtgc tgctcctctg
                                                                          60
aaqattcaag cttatttcaa tqagactgca gacctgccat gccaatttgc aaactctcaa
                                                                         120
aaccaaagcc tgagtgagct agtagtattt tggcaggacc aggaaaactt ggttctgaat
                                                                         180
gaqqtatact taqqcaaaga gaaatttgac agtgttcatt ccaagtatat qggccgcaca
                                                                         240
agtititgatt oggacagtig gaccotgaga citcacaato ticagatosa ggacaagggo
                                                                         300
ttgtatcaat gtatcatcca tcacaaaaag cccacaggaa tgattcqcat ccaccagatg
                                                                         360
aattotgaac tgtcagtget tgctaactto agtcaacctg aaataqtacc aatttctaat
                                                                         420
ataacagaaa atgtgtacat aaatttgacc tgctcatcta tacacggtta cccagaacct
                                                                         480
aagaagatga gtgttttgct aagaaccaag aattcaacta tcgagtatga tggtattatg
                                                                         540
cagaaatctc aagataatgt cacagaactg tacgacgttt ccatcagett gtctgtttca
                                                                         600
ttccctqatq ttacqaqcaa tatgaccatc ttctgtattc tggaaactga caagacgcgg
                                                                         660
cttttatctt cacctttctc tatagagett gaggaccctc agcctccccc agaccacatt
                                                                         720
ccttqqatta caqctqtact tccaacaqtt attatatgtg tqatqqtttt ctqtctaatt
                                                                         780
                                                                         840
ctatqqaaat qqaaqaaqaa qaagcggcct cgcaactctt ataaatqtgg aaccaacaca
atggagaqqq aagagagtga acagaccaag aaaagagaaa aaatccatat acctgaaaga
                                                                         900
totgatgaag cocagogtgt ttttaaaagt togaagacat ottoatgoga caaaagtgat
                                                                         960
                                                                         972
acatgttttt aa
<210>8
<211> 11746
<212> ADN
<213> Secuencia artificial
<220>
<223> Shuttle para Ad-3
<220>
<221> misc feature
<222> (1) .. (11746)
<223> "N" = "A", "G", "C" o "T"
<400> 8
```

5

10

aatgcgccgn nnnnnnnnn	unnimmunun	nnnttaatta	annntecett	ccagctctct	60
gccccttttg gattgaagcc	aatatgataa	tgagggggtg	gagtttgtga	cgtggcgcgg	120
ggcgtgggaa cggggcgggt	gacgtagtag	tgtggcggaa	gtgtgatgtt	gcaagtgtgg	180
cggaacacat gtaagcgacg	gatgtggcaa	aagtgacgtt	tttggtgtgc	gccggtgtac	240
acaggaagtg acaattttcg	cgcggtttta	ggcggatgtt	gtagtaaatt	tgggcgtaac	-300
cgagtaagat .ttggccattt	togogggaaa	actgaataag	aggaagtgaa	atctgaataa	360
ttttgtgtta ctcatagcgc	gtaannnnta	atagtaatca	attacggggt	cattagttca	420
tageceatat atggagttee	gcgttacata	acttacggta	aatggcccgc	ctggctgacc	480
gcccaacgac ccccgcccat	tgacgtcaat	aatgacgtat	gttcccatag	taacgccaat	540
agggactttc cattgacgtc	aatgggtgga	gtatttacgg	taaactgccc	acttggcagt	600
acatcaagtg tatcatatgc	caagtacgcc,	ccctattgac	gtcaatgacg	gtaaatggcc	660
cgcctggcat tatgcccagt	acatgacett	atgggacttt	cctacttggc	agtacatcta	720
cgtattagtc atcgctatta	ccatggtgat	gcggttttgg	cagtacatca	atgggcgtgg	780
atageggttt gacteaeggg	gatttccaag	tetecacece	attgacgtca	atgggagttt	840
gttttggcac caaaatcaac	gggactttcc	aaaatgtcgt	aacaactccg	ccccattgac	900
gcaaatgggc ggtaggcgtg	tacggtggga	ggtctatata	ageagagetg	gtttagtgaa	960
ccgtcagatc cgctagagat	ctggatccga	attegeegee	accatgggtc	ctcagaagct	1020
aaccatctcc tggtttgcca	tcgttttgct	ggtgtctcca	ctcatggcca	tgtgggagct	1080
ggagaaagac gtttatgttg	tagaggtgga	ctggactccc	gatgcccctg	gagaaacagt	1140
gaacctcacc tgtgacacgc	ctgaagaaga	tgacatcacc	tggacctcag	accagagaca	1200
tggagtcata ggctctggaa	agaccetgac	catcactgtc	aaagagtttc	tagatgctgg	1260
ccagtacacc tgccacaaag	gaggcgagac	totgagecac	tcacatctgc	tgctccacaa	1320
gaaggaaaat ggaatttggt	ccactgaaat	tttaaaaaat	ttcaaaaaca	agactttcct	1380
gaagtgtgaa gcaccaaatt	acteeggacg	gttcacgtgc	tcatggctgg	tgcaaagaaa	1440
catggacttg aagttcaaca	tcaagagcag	tagcagttcc	cctgactctc	gggcagtgac	1500
atgtggaalg gcgtctctgt	ctgcagagaa	ggtcacactg	gaccaaaggg	actatgagaa	1560

gtattcagtg	tectgccagg	aggatgtcac	ctgcccaact	gccgaggaga	ccctgcccat	1620
tgaactggcg	ttggaagcac	ggcagcagaa	taaatatgag	aactacagca	ccagcttctt	1680
catcagggac	atcatcaaac	cagacccgcc	caagaacttg	cagatgaagc	ctttgaagaa	1740
ctcacaggtg	gaggtcagct	gggagtaccc	tgactcctgg	agcactcccc	attcctactt	1800
ctccctcaag	ttctttgttc	gaatecageg	caagaaagaa	aagatgaagg	agacagagga	1860
ggggtgtaac	cagaaaggtg	agtteatagt	agagaagaca	tctaccgaag	tccaatgcaa	1920
aggcgggaat	gtctgcgtgc	aagctcagga	tcgctattac	aattcctcat	gcagcaagtg	1980
ggcatgtgtt	ccctgcaggg	teegateegg	tggcggtggc	tegggeggtg	gtgggtcggg	2040
tggcggcgga	tctagggtca	ttccagtctc	tggacctgcc	aggtgtctta	gccagtcccg	2100
aaacctgctg	aagaccacag	atgacatggt	gaagacggcc	agagaaaagc	tgaaacatta	2160
ttectgeact	gctgaagaca	tcgatcatga	agacatcaca	cgggaccaaa	ccagcacatt	2220
gaagacctgt	ttaccactgg	aactacacaa	gaacgagagt	tgcctggcta	ctagagagac	2280
ttcttccaca	acaagaggga	gctgcctgcc	cccacagaag	acgtctttga	tgatgaccct	2340
gtgccttggt	agcatctatg	aggacttgaa	gatgtaccag	acagagttcc	aggccatcaa	2400
cgcagcactt	cagaatcaca	accatcagca	gatcattcta	gacaagggca	tgctggtggc	2460
catcgatgag	ctgatgcagt	ctctgaatca	taatggcgag	actotgogoc	agaaacctcc	2520
tgtgggagaa	gcagaccett	acagagtgaa	aatgaagctc	tgcatcctgc	ttcacgcctt	2580
cagcacccgç	gtcgtgacca	tcaacagggt	gatgggctat	ctgageteeg	cctgagaatt	2640
gateeggatt	agtccaattt	gttaaagaca	ggatgaagct	taaaacagct	ctggggttgt	2700
acccacccca	gaggeceacg	tggcggctag	tactccggta	ttgcggtacc	cttgtacgcc	2760
tgttttatac	tecetteceg	taacttagac	gcacaaaacc	aagttcaata	gaagggggta	2820
caaaccagta	ccaccacgaa	caagcacttc	tgtttccccg	gtgatgtcgt	atagactgct	2880
tgcgtggttg	aaagcgacgg	atccgttatc	egettatgta	cttcgagaag	cccagtacca	2940
cctcggaatc	ttcgatgcgt	tgcgctcagc	actcaacccc	agagtgtagc	ttaggctgat	3000
gagtctggac	atccctcacc	ggtgacggtg	gtccaggctg	cgttggcggc	ctacctatgg	3060
ctaacgccat	gggacgctag	ttgtgaacaa	ggtgtgaaga	gcctattgag	ctacataaga	3120
atcctccggc	ccctgaatgc	ggctaatccc	aacctcggag	caggtggtca	caaaccagtg	3180
attggcctgt	cgtaacgcgc	aagtccgtgg	cggaaccgac	tactttgggt	gtccgtgttt	3240
ccttttattt	tattgtggct	gcttatggtg	acaatcacag	attgttatca	taaagcgaat	3300
tggattgcgg	ccgcgccacc	atggaccagc	acacacttga	tgtggaggat	accgcggatg	3360
ccagacatcc	agcaggtact	tegtgeccet	cggatgcggc	gctcctcaga	gataccgggc	3420
tcctcgcgga	cgctgcgctc	ctctcagata	ctgtgcgccc	cacaaatgcc	gegeteecea	3480
cggatgctgc	ctaccctgcg	gttaatgttc	gggatcgcga	ggccgcgtgg	ccgcctgcac	3540
tgaacttctg	ttcccgccac	ccaaagetet	atggcctagt	cgctttggtt	ttgctgcttc	3600

tgatcgccgc	ctgtgttcct	atcttcaccc	gcaccgagcc	teggecageg	ctcacaatca	3660
ccacctcgcc	caacctgggt	acccgagaga	ataatgcaga	ccaggtcacc	cctgtttccc	3720
acattggctg	ccccaacact	acacaacagg	gctctcctgt	gttcgccaag	ctactggcta	3780
aaaaccaagc	atcgttgtgc	aatacaactc	tgaactggca	cagccaagat	ggagctggga	3840
gctcatacct	atctcaaggt	ctgaggtacg	aagaagacaa	aaaggagttg	gtggtagaca	3900
gtcccgggct	ctactacgta	tttttggaac	tgaagctcag	tccaacatt <i>c</i>	acaaacacag	3960
gccacaaggt	gcagggctgg	gtctctcttg	ttttgcaagc	aaagcctcag	gtagatgact	4020
ttgacaactt	ggccctgaca	gtggaactgt	tcccttgctc	catggagaac	aagttagtgg	4080
accgttcctg	gagtcaactg	ttgčtcctga	aggetggeea	ccgcctcagt	gtgggtctga	4140
gggcttatct	gcatggagcc	caggatgcat	acagagactg	ggagctgtct	tatoccaaca	4200
ccaccagett	tggactcttt	cttgtgaaac	ccgacaaccc	atgggaatga	gaactatcct	4260
tcttgtgact	ggcgcgcctg	atcaatcgat	gtttaaacgt	tattttccac	catattgccg	4320
tcttttggca	atgtgagggc	ccggaaacct	ggccctgtct	tcttgacgag	cattcctagg	4380
ggtatttaca	ctctcgccaa	aggaatgcaa	ggtctgttga	atgtcgtgaa	ggaagcagtt	4440
cctctggaag	cttcttgaag	acaaacaacg	tctgtagcga	ccctttgcag	gcagcggaac	4500
ccccacctg	gcgacaggtg	cctctgcggc	caaaagccac	gtgtataaga	tacacctgca	4560
aaggcggcac	aaccccagtg	ccacgttgtg	agttggatag	ttgtggaaag	agtcaaatgg	4620
ctctcctcaa	gcgtattcaa	caaggggctg	aaggatgccc	agaaggtacc	ccattgtatg	4680
ggatetgate	tggggcatag	gtgcacatgc	tttacgtgtg	tttagtcgag	gttaaaaaaa	4740
cgtctaggcc	ccccgaacca	cggggacgtg	gttttccttt.	gaaaaacacg	attctcgaga	4800
ctagtgccac	catgtacagc	atgcagctcg	catcctgtgt	cacattgaca	cttgtgctcc	4860
ttgtcaacag	cgcacccact	tcaagctcca	cttcaagctc	tacagcggaa	gcacagcagc	4920
agcagcagca	gcagcagcag	cagcagcagc	acctggagca	gctgttgatg	gacctacagg	4980
agctcctgag	caggatggag	aattacagga	acctgaaact	ccccaggatg	ctcaccttca	5040
aattttactt	gcccaagcag	gccacagaat	tgaaagatct	tcagtgccta	gaagatgaac	5100
ttggacctct	gcggcatgtt	ctggatttga	ctcaaagcaa	aagctttcaa	ttggaagatg	5160
ctgagaattt	catcagcaat	atcagagtaa	ctgttgtaaa	actaaagggc	tctgacaaca	5220
catttgagtg	ccaattcgat	gatgagtcag	caactgtggt	ggactttctg	aggagatgga	5280
tagectterg	tcaaagcatc	atctcaacaa	gccctcaata	actatgtaac	gcgtgctagc	5340
atggccggcc	gcggccgcgg	cogetegage	ctaagcttct	agataagata	teegateeae	5400
cggatctaga	taactgatca	taatcagcca	taccacattt	gtagaggttt	tacttgcttt	5460
aaaaaacctc	ccacacctcc	ccctgaacct	gaaacataaa	atgaatgcaa	ttgttgttgt	5520
taacttgttt	attgcagctt	ataatggtta	caaataaagc	aatagcatca	caaatttcac	5580
aaataaagca	tttttttcac	tgcattctag	ttgtggtitg	tccaaactca	tcaatgtatc	5640

ttaacgcnnn	ntaagggtgg	gaaagaatat	ataaggtggg	ggtcttatgt	agttttgtat	5700
ctgttttgca	gcagccgccg	ccgccatgag	caccaactcg	tttgatggaa	gcattgtgag	5760
ctcatatttg	acaacgcgca	tgcccccatg	ggccggggtg	cgtcagaatg	tgatgggct <i>c</i>	5820
cagcattgat	ggtcgccccg	tcctgcccgc	aaactctact	accttgacct	acgagaccgt	5880
gtctggaacg	ccgttggaga	ctgcagcctc	cgccgccgct	teageegetg	cagccaccgc	5940
ccgcgggatt	gtgactgact	ttgctttcct	gagcçcgctt	gcaagcagtg	cagcttcccg	6000
ttcatccgcc	cgcgatgaca	agttgacggc	tcttttggca	caattggatt	ctttgacccg	6060
ggaacttaat	gtcgtttctc	agcagctgtt	ggatctgcgc	cagcaggttt	ctgccctgaa	6730
ggcttcctcc	cctcccaatg	cggtttaaaa	cataaataaa	aaaccagact	ctgtttggat	6180
ttggatcaag	caagtgtctt	gctgtcttta	tttaggggtt	ttgcgcgcgc	ggtaggcccg	6240
ggaccagcgg	teteggtegt	tgagggtcct	gtgtatttt	tccaggacgt	ggtaaaggtg	6300
actctggatg	ttcagataca	tgggcataag	cccgtctctg	gggtggaggt	agcaccactg	6360
cagagettea	tgctgcgggg	tggtgttgta	gatgatccag	tcgtagcagg	agcgctgggc	6420
gtggtgccta	aaaatgtctt	tcagtagcaa	gctgattgcc	aggggcaggc	ccttggtgta	6480
agtgtttaca	aagcggttaa	gctgggatgg	gtgcatacgt	ggggatatga	gatgcatctt	6540
ggactgtatt	tttaggttgg	ctatgttccc	agccatatcc	ctccggggat	tcatgttgtg	6600
cagaaccacc	agcacagtgt	atccggtgca	cttgggaaat	ttgtcatgta	gcttagaagg	6660
aaatgcgtgg	aagaacttgg	agacgccctt	gtgaceteca	agattttcca	tgcattcgtc	6720
cataatgatg	gcaatgggcc	cacgggcggc	ggcctgggcg	aagatatttc	tgggatcact	6780
aacgtcatag	ttgtgttcca	ggatgagatc	gtcataggcc	atttttacaa	agcgcgggcg	6840
gagggtgcca	gactgcggta	taatggttcc	atccggccca	ggggcgtagt	tacceteaca	6900
gatttgcatt	tcccacgctt	tgagttcaga	tggggggatc	atgtctacct	geggggegat	6960
gaagaaaacg	gtttccgggg	taggggagat	cagctgggaa	gaaagcaggt	tcctgagcag	7020
ctgcgactta	ccgcagccgg	tgggcccgta	aatcacacct	attaccgggt	gcaactggta	7080
gttaagagag	etgeagetge	cgtcatccct	gagcaggggg	gccacttcgt	taagcatgtc	7140
cctgactcgc	atgttttccc	tgaccaaatc	cgccagaagg	cgctcgccgc	ccagcgatag	7200
cagttcttgc	aaggaagcaa	agtttttcaa	cggtttgaga	cogtacgacg	taggcatigct	7260
tttgagcgtt	tgaccaagca	gttccaggcg	gtcccacagc	teggteacet	gctctacggc	7320
atctcgatcc	agcatatctc	ctcgtttcgc	gggttggggc	ggctttcgct	gtacggcagt	7380
agteggtget	cgtccagacg	ggccagggtc	atgtctttcc	acgggcgcag	ggtcctcgtc	7440
agcgtag t ct	gggtcacggt	gaaggggtgc	gctccgggct	gegegetgge	cagggtgcgc	7500
ttgaggctgg	tcctgctggt	gctgaagcgc	tgccggtctt	cgccctgcgc	gtcggccagg	7560
tagcatttga	ccatggtgtc	atagtccagc	cectecgegg	cgtggccctt	ggcgcgcagc	7620
ttgcccttgg	aggaggcgcc	gcacgagggg	cagtgcagac	ttttgagggc	gtagagcttg	7680

ggcgcgagaa	ataccgattc	cggggagtag	gcatccgcgc	cgcaggcccc	gcagacggtc	7740
togcattoca	cgagccaggt	gagetetgge	cgttcggggt	caaaaaccag	gtttccccca	7800
tgctttttga	tgcgtttctt	acctctggtt	tccatgagcc	ggtgtccacg	ctcggtgacg	7860
aaaaggctgt	ccgtgtcccc	gtatacagac	tnnngtttaa	acgaattcnn	natataaaat	7920
gcaaggtgct	gctcaaaaaa	tcaggcaaag	cctcgcgcaa	aaaagaaagc	acatcgtagt	7980
catgctcatg	cagataaagg	caggtaagct	ccggaaccac	cacagaaaaa	gacaccattt	8040
ttctctcaaa	catgtctgcg	ggtttctgca	taaacacaaa	ataaaataac	aaaaaacat	8100
ttaaacatta	gaagcctgtc	ttacaacagg	aaaaacaacc	cttataagca	taagacggac	8160
tacggccatg	ccggcgtgac	cgtaaaaaaa	ctggtcaccg	tgattaaaaa	gcaccaccga	8220
cagctcctcg	gtcatgtccg	gagtcataat	gtaagactcg	gtaaacacat	caggttgatt	8280
catcggtcag	tgctaaaaag	cgaccgaaat	agcccggggg	aatacatacc	cgcaggcgta	8340
gagacaacat	tacagecccc	ataggaggta	taacaaaatt	aataggagag	aaaaacacat	8400
aaacacctga	aaaaccctcc	tgcctaggca	aaatagcacc	ctcccgctcc	agaacaacat	8460
acagogotto	acagcggcag	cctaacagtc	agccttacca	gtaaaaaaga	aaacctatta	8520
aaaaaacacc	actogadacg	gcaccagetc	aatcagtcac	agtgtaaaaa	agggccaagt	8580
gcagagcgag	tatatatagg	actaaaaaat	gacgtaacgg	ttaaagtcca	caaaaaacac	8640
ccagaaaacc	gcacgcgaac	ctacgcccag	aaacgaaagc	caaaaaaccc	acaacttcct	8700
caaatcgtca	cttccgtttt	cccacgttac	gtaacttccc	attttaagaa	aactacaatt	8760
cccaacacat	acaagttact	ccgccctaaa	acctacgtca	cccgccccgt	teccaegece	8820
cgcgccacgt	cacaaactcc	accccctcat	tatcatattg	gcttcaatcc	aaaataaggt	8880
atattattga	tgatnnntta	attaaggatc	cnnncggtgt	gaaataccgc	acagatgcgt	8940
aaggagaaaa	taccgcatca	ggcgctcttc	cgcttcctcg	ctcactgact	cgctgcgctc	9000
ggtcgttcgg	ctgcggcgag	cggtatcagc	teacteaaag	gcggtaatac	ggttatccac	9060
agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	9120
ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	cgcccccctg	acgagcatca	9180
caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	9240
gtttccccct	ggaagctccc	tegtgegete	tcctgttccg	accetgeege	ttaccggata	9300
cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	catageteae	gctgtaggta	9360
tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	gtgcacgaac	cccccgttca	9420
gcccgaccgc	tgegeettat	ccggtaacta	tcgtcttgag	tccaacccgg	taagacacga	9480
cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	agagcgaggt	atgtaggcgg	9540
tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	actagaagga	cagtatttgg	9600
tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	gttggtagct	cttgatccgg	9660 .
caaacaaacc	accgctggta	geggtggttt	ttttgtttgc	aagcagcaga	ttacgcgcag	9720

aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	gggtctgacg	ctcagtggaa	9780
cgaaaactca	cgttaaggga	ttttggtcat	gagattatca	aaaaggatct	tcacctagat	9840
ccttttaaat	taaaaatgaa	gttttaaatc	aatctaaagt	atatatgagt	aaacttggtc	9900
tgacagttac	caatgcttaa	tcagtgaggc	acctatctca	gcgatctgtc	tatttcgttc	9960
atccatagtt	gcctgactcc	ccgtcgtgta	gataactacg	atacgggagg	gcttaccatc	10020
tggccccagt	gctgcaatga	taccgcgaga	cccacgctca	ccggctccag	atttatcago	10080
aataaaccag	ccagccggaa	gggccgagcg	cagaagtggt	cctgcaactt	tateegeete	10140
catccagtct	attaattgtt	gccgggaagc	tagagtaagt	agttegecag	ttaatagttt	10200
gcgcaacgtt	gttgnnnnaa	aaaggatctt	cacctagatc	cttttcacgt	agaaagccag	10260
tccgcagaaa	cggtgctgac	cccggatgaa	tgtcagctac	tgggctatct	ggacaaggga	10320
aaacgcaagc	gcaaagagaa	agcaggtagc	ttgcagtggg	cttacatggc	gatagctaga	10380
ctgggcggtt	ttatggacag	caagcgaacc	ggaattgcca	gctggggcgc	cctctggtaa	10440
ggttgggaag	ccctgcaaag	taaactggat	ggctttctcg	ccgccaagga	tctgatggcg	10500
caggggatca	agctctgatc	aagagacagg	atgaggatcg	tttcgcatga	ttgaacaaga	10560
tggattgcac	gcaggttctc	cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	10620
acaacagaca	atcggctgct	ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgccc	10680
ggttettttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcaag	acgaggcagc	10740
gcggctatcg	tggctggcca	cgacgggcgt	tccttgcgca	getgtgeteg	acgttgtcac	10800
tgaagcggga	agggactggc	tgctattggg	cgaagtgccg	gggcaggatc	tectgtcate	10860
tcaccttgct	cctgccgaga	aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	10920
gcttgatccg	gctacctgcc	cattcgacca	ccaagcgaaa	categeateg	agcgagcacg	10980
tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggct	11040
cgegccagcc	gaactgttcg	ccaggctcaa	ggcgagcatg	cccgacggcg	aggatetegt	11100
cgtgacccat	ggcgatgcct	gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	11160
attcatcgac	tgtggccggc	tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	11220
ccgtgatatt	gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	11280
tatcgccgct	cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	11340
aattttgtta	aaatttttgt	taaatcagct	cattttttaa	ccaataggcc	gaaatcggca	11400
acatccctta	taaatcaaaa	gaatagaccg	cgatagggtt	gagtgttgtt	ccagtttgga	11460
acaagagtcc	actattaaag	aacgtggact	ccaacgtcaa	agggcgaaaa	accgtctatc	11520
agggcgatgg	cccactacgt	gaaccatcac	ccaaatcaag	tttttgcgg	tcgaggtgcc	11580
gtaaagctct	aaatcggaac	cctaaaggga	gcccccgatt	tagagcttga	cggggaaagc	11640
cggcgaacgt	ggcgagaaag	gaagggaaga	aagcgaaagg	agegggeget	agggcgctgg	11700
caagtgtagc	ggtcacgctg	cgcgtaacca	ccacacccgc	gcgctt		11746

<211> 10633
<212> ADN
<213> Secuencia artificial
<220>
<223> Shuttle para Ad-2
<220>
<221> misc feature
<222> (1) .. (10633)

<223> "N" = "A", "C", "G" o "T"

<400>9

5

10

aatgegeegn nnnnnnnnn nnnnnnnnn nnnttaatta annnteeett ceagetetet 60 gccccttttg gattgaagcc aatatgataa tgagggggtg gagtttgtga cgtggcgcgg 120 ggcgtgggaa cggggcgggt gacgtagtag tgtggcggaa gtgtgatgtt gcaagtgtgg 180 eggaacacat gtaagegaeg gatgtggeaa aagtgaegtt tttggtgtgt geeggtgtae 240 acaggaagtg acaatttteg egeggtttta ggeggatgtt gtagtaaatt tgggegtaac 300 360 cgagtaagat ttggccattt tcgcgggaaa actgaataag aggaagtgaa atctgaataa 420 ttttgtgtta ctcatagcgc gtaannnnta atagtaatca attacggggt cattagttca 480 tageceatat atggagttee gegttaeata aettaeggta aatggeeege etggetgaee geocaacqae eccegeccat tgacqteaat aatgacqtat gtteecatag taacqeeaat 540 600 agggactttc cattgacgtc aatgggtgga gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc ccctattgac gtcaatgacg gtaaatggcc 660 egectggeat tatgeceagt acatgacett atgggaettt ectaettgge agtacateta 720 cgtattagtc atcgctatta ccatggtgat gcggttttgg cagtacatca atgggcgtgg 780 840 atagoggttt gactcacggg gatttccaag totccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc aaaatgtcgt aacaactccg ccccattgac 900 960 gcaaatgggc ggtaggcgtg tacggtggga ggtctatata agcagagctg gtttagtgaa ccgtcagatc cgctagagat ctggatccga attcgccgcc accatgggtc ctcagaagct 1020 aaccatctcc tggttttgcca tcgttttgct ggtgtctcca ctcatggcca tgtgggagct 1080 1140 ggagaaagac gtttatgttg tagaggtgga ctggactccc gatgcccctg gagaaacagt gaacctcacc tgtgacacgc ctgaagaaga tgacatcacc tggacctcag accagagaca 1200 tggagtcata ggetetggaa agaccetgae cateaetgte aaagagttte tagatgetgg 1260 ccagtacacc tgccacaaag gaggcgagac tctgagccac tcacatctgc tgctccacaa 1320 gaaggaaaat ggaatttggt ccactgaaat tttaaaaaaat ttcaaaaaaca agactttcct 1380 gaagtgtgaa gcaccaaatt actccggacg gttcacgtgc tcatggctgg tgcaaagaaa 1440 catggacttg aagttcaaca tcaagagcag tagcagttcc cctgactctc gggcagtgac 1500 atgtggaatg gcgtctctgt ctgcagagaa ggtcacactg gaccaaaggg actatgagaa 1560

gtattcagtg	tcctgccagg	aggatgtcac	ctgcccaact	gccgaggaga	ccctgcccat	1620
tgaactggcg	ttggaagcac	ggcagcagaa	taaatatgag	aactacagca	ccagettett	1680
catcagggac	atcatcaaac	cagacccgcc	caagaacttg	cagatgaagc	ctttgaagaa	1740
ctcacaggtg	gaggtcagct	gggagtaccc	tgactcctgg	agcactcccc	attectactt	1800
ctccctcaag	ttatitgtta	gaatccagcg	caagaaagaa	aagatgaagg	agacagagga	1860
ggggtgtaac	cagaaaggtg	cgttcctcgt	agagaagaca	tctaccgaag	tccaatgcaa	1920
aggcgggaat	gtctgcgtgc	aagctcagga	togotattac	aattcctcat	gcagcaagtg.	1980
ggcatgtgtt	ccctgcaggg	tccgatccgg	tggcggtggc	tegggeggtg	gtgggtcggg	2040
tggcggcgga	tctagggtca	ttcčagtctc	tggacctgcc	aggtgtctta	gccagtcccg	2100
aaacctgctg	aagaccacag	atgacatggt	gaagacggcc	agagaaaagc	tgaaacatta	2160
tteetgeact	gctgaagaca	togatoatga	agacatcaca	cgggaccaaa	ccagcacatt	2220
gaagacctgt	ttaccactgg	aactacacaa	gaacgagagt	tgcctggcta	ctagagagac	2280
ttcttccaca	acaagaggga	gatgaatgea	cccacagaag	acgtctttga	tgatgaccct	2340
gtgccttggt	agcatctatg	aggacttgaa	gatgtaccag	acagagtt <i>c</i> c	aggccatcaa	2400
cgcagcactt	cagaatcaca	accatcagca	gatcattcta	gacaagggca	tgctggtggc	2460
categatgag	ctgatgcagt	ctctgaatca	taatggcgag	actctgcgcc	agaaacctcc	2520
tgtgggagaa	gcagaccctt	acagagtgaa	aatgaagctc	tgcatcctgc	ttcacgcctt	2580
cagcacccgc	gtcgtgacca	tcaacagggt	gatgggctat	ctgagctccg	cctgagaatt	2640
gatccggatt	agtccaattt	gttaaagaca	ggatgaagct	taaaacagct	ctggggttgt	2700
acccacccca	gaggcccacg	tggcggctag	tactccggta	ttgcggtacc	cttgtacgec	2760
tgttttatac	teeetteeeg	taacttagac	gcacaaaacc	aagttcaata	gaagggggta	2820
caaaccagta	ccaccacgaa	caagcacttc	tgtttccccg	gtgatgtcgt	atagactgct	2880
tgcgtggttg	aaagcgacgg	atccgttatc	cgcttatgta	cttcgagaag	cccagtacca	2940
cctcggaatc	ttcgatgcgt	tgcgctcagc	actcaacccc	agagtgtagc	ttaggctgat	3000
gagtetggae	atccctcacc	ggtgacggtg	gtccaggctg	cgttggcggc	ctacctatgg	3060
ctaacgccat	gggacgctag	ttgtgaacaa	ggtgtgaaga	gcctattgag	ctacataaga	3120
atcctccggc	ccctgaatgc	ggctaatccc	aacctcggag	caggtggtca	caaaccagtg	3180
attggcctgt	cgtaacgcgc	aagtccgtgg	cggaaccgac	tactttgggt	gtccgtgttt	3240
ccttttattt	tattgtggct	gcttatggtg	acaatcacag	attgttatca	taaagcgaat	3300
tggattgcgg	ccgcgccacc	atggaccagc	acacacttga	tgtggaggat	accgcggatg	3360
ccagacatcc	agcaggtact	tegtgeeest	cggatgcggc	gctcctcaga	gataccgggc	3420
tcctcgcgga	cgctgcgctc	ctctcagata	ctgtgcgccc	cacaaatgcc	gogotococa	3480
cggatgctgc	ctaccctgcg	gttaatgttc	gggatcgcga	ggccgcgtgg	ccgcctgcac	3540
tgaacttctg	ttcccgccac	ccaaagctct	atggcctagt	cgctttggtt	ttgctgcttc	3600

tgatcgccgc	ctgtgttcct	atcttcaccc	gcaccgagcc	teggeeageg	ctcacaatca	3660
ccacctcgcc	caacctgggt	acccgagaga	ataatgcaga	ccaggtcacc	cctgtttccc	3720
acattggctg	ccccaacact	acacaacagg	geteteetgt	gttcgccaag	ctactggcta	3780
aaaaccaagc	atcgttgtgc	aatacaactc	tgaactggca	cagccaagat	ggagctggga	3840
gctcatacct	atctcaaggt	ctgaggtacg	aagaagacaa	aaaggagttg	gtggtagaca	3900
gtcccgggct	ctactacgta	tttttggaac	tgaagctcag	tccaacattc	acaaacacag	3960
gccacaaggt	gcagggctgg	gtctctcttg	ttttgcaagc	aaagcctcag	gtagatgact	4020
ttgacaactt	ggecetgaca	gtggaactgt	tcccttgctc	catggagaac	aagttagtgg	4080
accgttcctg	gagtcaactg	ttgctcctga	aggctggcca	ccgcctcagt	gtgggtctga	4140
gggcttatct	gcatggagcc	caggatgcat	acagagactg	ggagctgtct	tatcccaaca	4200
ccaccagett	tggactcttt	cttgtgaaac	ccgacaaccc	atgggaatga	gaactatcct	4260
tcttgtgact	ggcgcgatcc	gatccaccgg	atctagataa	ctgatcataa	tcagccatac	4320
cacatttgta	gaggttttac	ttgctttaaa	aaacctccca	cacctccccc	tgaacctgaa	4380
acataaaatg	aatgcaattg	ttgttgttaa	cttgtttatt	gcagcttata	atggttacaa	4440
ataaagcaat	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	4500
tggtttgtcc	aaactcatca	atgtatctta	acgcnnnnta	agggtgggaa	agaatatata	4560
aggtgggggt	cttatgtagt	tttgtatctg	ttttgcagca	geegeegeeg	ccatgagcac	4620
caactcgttt	gatggaagca	ttgtgagctc	atatttgaca	acgcgcatgc	ccccatgggc	4680
cggggtgcgt	cagaatgtga	tgggctccag	cattgatggt	cgccccgtcc	tgcccgcaaa	4740
ctctactacc	ttgacctacg	agaccgtgtc	tggaacgccg	ttggagactg	cagcitteege	4800
cgccgcttca	geegetgeag	ccaccgcccg	cgggattgtg	actgactttg	ctttcctgag	4860
cccgcttgca	agcagtgcag	cttcccgttc	atccgcccgc	gatgacaagt	tgacggctct	4920
tttggcacaa	ttggattött	tgacccggga	acttaatgtc	gtttctcagc	agctgttgga	4980
totgogocag	caggtttctg	ccctgaaggc	ttactacact	cccaatgcgg	tttaaaacat	5040
aaataaaaaa	ccagactctg	tttggatttg	gatcaagcaa	gigtettget	gtctttattt	5100
aggggttttg	cgcgcgcggt	aggcccggga	ccagcggtct	cggtcgttga	gggtcctgtg	5160
tattttttcc	aggacgtggt	aaaggtgact	ctggatgttc	agatacatgg	gcataagccc	5220
gtctctgggg	tggaggtagc	accactgcag	agcttcatgc	tgcggggtgg	tgttgtagat	5280
gatccagtcg	tagcaggagc	gctgggcgtg	gtgcctaaaa	atgtctttca	gtagcaagct	5340
gattgccagg	ggcaggccct	tggtgtaagt	gtttacaaag	cggttaagct	gggatgggtg	5400
catacgtggg	gatatgagat	gcatcttgga	ctgtattttt	aggttggcta	tgttcccagc	5460
catatecete	cggggattca	tgttgtgcag	aaccaccagc	acagtgtatc	cggtgcactt	5520
gggaaatttg	tcatgtagct	tagaaggaaa	tgcgtggaag	aacttggaga	cgcccttgtg	5580
acctccaaga	ttttccatgc	attegtecat	aatgatggca	atgggcccac	gggeggegge	5640

ctaaacaaaa	ataittctcg	gatcactaac	gtcatagttg	tattacada	tmamatcotc	5700
						5760
			ggtgccagac			
			ttgcatttcc			5820
			gaaaacggtt			5880
			cgacttaccg			5940
cacacctatt	accgggtgca	actggtagtt	aagagagctg	cagctgccgt	catccctgag	6000
caggggggcc	acttcgttaa	gcatgtccct	gactcgcatg	ttttccctga	ccaaatccgc	6060
cagaaggcgc	tegeegeeea	gcgatagcag	ttcttgcaag	gaagcaaagt	ttttcaacgg	6120
tttgagaccg	teegeegtag	gcatgctttt	gagcgtttga	ccaagcagtt	ccaggcggtc	6180
ccacageteg	gtcacctgct	ctacggcatc	tegatecage	atateteete	gtttcgcggg	6240
ttggggcggc	tttcgctgta	cggcagtagt	cggtgctcgt	ccagacgggç	cagggtcatg	6300
tctttccacg	ggcgcagggt	cctcgtcagc	gtagtctggg	tcacggtgaa	ggggtgcgct	6360
ccgggctgcg	cgctggccag	ggtgcgcttg	aggctggtcc	tgctggtgct	gaagcgctgc	6420
cggtcttcgc	cctgcgcgtc	ggccaggtag	catttgacca	tggtgtcata	gtccagcccc	6480
tacgaggagt	ggcccttggc	gogoagottg	cccttggagg	aggegeegea	cgaggggcag	6540
tgcagacttt	tgagggcgta	gagcttgggc	gcgagaaata	ccgattccgg	ggagtaggca	6600
taagagaaga	aggccccgca	gacggtctcg	cattccacga	gccaggtgag	ctctggccgt	6660
toggggtcaa	aaaccaggtt	tececeatge	tttttgatgc	gtttcttacc	tctggtttcc	6720
atgagccggt	gtccacgctc	ggtgacgaaa	aggctgtccg	tgtccccgta	tacagactnn	6780
ngtttaaacg	aattcnnnat	ataaaatgca	aggtgctgct	caaaaaatca	ggcaaagcct	6840
cgcgcaaaaa	agaaagcaca	tcgtagtcat	gctcatgcag	ataaaggcag	gtaagctccg	6900
gaaccaccac	agaaaaagac	accatttttc	tctcaaacat	gtctgcgggt	ttctgcataa	6960
acacaaaata	aaataacaaa	aaaacattta	aacattagaa	gcctgtctta	caacaggaaa	7020
aacaaccctt	ataagcataa	gacggactac	ggccatgccg	gcgtgaccgt	aaaaaaactg	7080
gtcaccgtga	ttaaaaagca	ccaccgacag	ctcctcggtc	atgtccggag	tcataatgta	7140
agactcggta	aacacatcag	gttgattcat	cggtcagtgc	taaaaagcga	ccgaaatagc	72,00
ccgggggaat	acataccege	aggcgtagag	acaacattac	agcccccata	ggaggtataa	7260
caaaattaat	aggagagaaa	aacacataaa	cacctgaaaa	accetectge	ctaggcaaaa	7320
tagcaccctc	cegetecaga	acaacataca	gcgcttcaca	gcggcagcct	aacagtcagc	7380
cttaccagta	aaaaagaaaa	cctattaaaa	aaacaccact	cgacacggca	ccagctcaat	7440
cagtcacagt	gtaaaaaagg	gccaagtgca	gagcgagtat	atataggact	aaaaaatgac	7500
gtaacggtta	aagtccacaa	aaaacaccca	gaaaaccgca	cgcgaaccta	cgcccagaaa	7560
cgaaagccaa	aaaacccaca	acttcctcaa	atcgtcactt	cegttttccc	acgttacgta	7620
acttcccatt	ttaagaaaac	tacaattccc	aacacataca	agttactccg	ccctaaaacc	7680

tacgtcaccc	gccccgttcc	cacgccccgc	gccacgtcac	aaactccacc	ccctcattat	7740
catattggct	tcaatccaaa	ataaggtata	ttattgatga	tnnnttaatt	aaggateenn	7800
ncggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gatatteega	7860
ttaatagata	actgactcgc	tgegeteggt	cgttcggctg	cggcgagcgg	tatcagctca	7920
ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	7980
agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	8040
taggeteege	ccccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	8100
cccgacagga	ctataaagat	accaggcgtt	tccccctgga	agctccctcg	tgcgctctcc	8160
tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	gaagcgtggc	8220
gctttctcat	agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	8280
gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccqctgc	gccttatccg	gtaactatcg	8340
tcttgagtcc	aacccggtaa	gacacgactt	ategecactg	gcagcagcca	ctggtaacag	8400
gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	8460
cggctacact	agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	8520
aaaaagagtt	ggtagctctt	gateeggeaa	acaaaccacc	gctggtagcg	gtggttttt	8580
tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	8640
ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgag	8700
attatcaaaa	aggatottca	cctagatcct	tttaaattaa	aaatgaagtt	ttaaatcaat	8760
ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	tgcttaatca	gtgaggcacc	8820
tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	tgactccccg	tcgtgtagat	8880
aactacgata	cgggagggct	taccatctgg	ccccagtgct	gcaatgatac	cgcgagaccc	8940
acgeteaccg	gctccagatt	tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	9000
aagtggtect	gcaactttat	cogoctocat	ccagtctatt	aattgttgcc	gggaagctag	9060
agtaagtagt	tcgccagtta	atagtttgcg	caacgttgtt	gnnnnaaaaa	ggatcttcac	9120
ctagatcctt	ttcacgtaga	aagccagtcc	gcagaaacgg	tgctgacccc	ggatgaatgt	9180
cagctactgg	gctatctgga	caagggaaaa	cgcaagcgca	aagagaaagc	aggtagcttg	9240
cagtgggctt	acatggcgat	agctagactg	ggcggtttta	tggacagcaa	gcgaaccgga	9300
attgccagct	ggggegeect	ctggtaaggt	tgggaagccc	tgcaaagtaa	actggatggc	9360
tttctcgccg	ccaaggatct	gatggcgcag	gggatcaagc	tctgatcaag	agacaggatg	9420
aggategttt	cgcatgattg	aacaagatgg	attgcacgca	ggtteteegg	ccgcttgggt	9480
ggagaggcta	ttcggctatg	actgggcaca	acagacaatc	ggctgctctg	atgccgccgt	9540
gttaaggatg	tcagcgcagg	ggcgcccggt	tctttttgtc	aagaccgacc	tgtccggtgc	9600
cctgaatgaa	ctgcaagacg	aggcagcgcg	gctatcgtgg	ctggccacga	cgggcgttcc	9660
ttgcgcagct	gtgctcgacg	ttgtcactga	agcgggaagg	gactggctgc	tattgggcga	9720

agtgccgggg	caggatctcc	tgtcatctca	ccttgctcct	gccgagaaag	tatccatcat	9780
ggctgatgca	atgeggegge	tgcatacgct	tgatecggct	acctgcccat	togaccacca	9840
agcgaaacat	cgcatcgagc	gagcacgtac	tcggatggaa	gccggtcttg	togatoagga	9900
tgatctggac	gaagagcatc	aggggctcgc	gccagccgaa	ctgttcgcca	ggeteaagge	9960
gagcatgccc	gacggcgagg	atctcgtcgt	gacccatggc	gatgcctgct	tgccgaatat	10020
catggtggaa	aatggccgct	tttctggatt	catcgactgt	ggccggctgg	gtgtggcgga	10080
ccgctatcag	gacatagcgt	tggctacccg	tgatattgct	gaagagcttg	gcggcgaatg	10140
ggctgaccgc	ttcctcgtgc	tttacggtat	agaagataaa	gattcgcagc	gcatcgcctt	10200
ctatcgcctt	cttgacgagt	tcttctgaat	tttgttaaaa	tttttgttaa	atcageteat	10260
tttttaacca	ataggccgaa	atcggcaaca	tcccttataa	atcaaaagaa	tagaccgcga	10320
tagggttgag	tgttgttcca	gtttggaaca	agagtccact	attaaagaac	gtggactcca	10380
acgtcaaagg	gcgaaaaacc	gtctatcagg	gcgatggccc	actacgtgaa	ccatcaccca	10440
aatcaagttt	tttgcggtcg	aggtgccgta	aagctctaaa	toggaaccct	aaagggagcc	10500
cccgatttag	agcttgacgg	ggaaagccgg	cgaacgtggc	gagaaaggaa	gggaagaaag	10560
cgaaaggagc	gggcgctagg	gcgctggcaa	gtgtagcggt	cacgctgcgc	gtaaccacca	10620
caccegegeg	ctt					10633
<210> 10 <211> 9049 <212> ADN <213> Secuenci	ia artificial					
<220> <223> Shuttle pa	ara Ad-1					
<220> <221> misc feat <222> (1) (904 <223> "N" = "A",	1 9)					
<400> 10						
aatgcgccgn	uuuuuuuuu	מתמממממממ	nnnttaatta	annntccctt	ccagctctct	60
gccccttttg	gattgaagcc	aatatgataa	tgagggggtg	gagtttgtga	cgtggcgcgg	120
ggcgtgggaa	cggggcgggt	gacgtagtag	tgtggcggaa	gtgtgatgtt	gcaagtgtgg	180
cggaacacat	gtaagcgacg	gatgtggcaa	aagtgacgtt	tttggtgtgc	gccggtgtac	240
acaggaagtg	acaattttcg	cgcggtttta	ggcggatgtt	gtagtaaatt	tgggcgtaac	300
cgagtaagat	ttggccattt	tcgcgggaaa	actgaataag	aggaagtgaa	atctgaataa	360
ttttgcgtta	ctcatagcgc	gtaannnnta	atagtaatca	attacggggt	cattagttca	420
tagcccatat	atggagttcc	gcgttacata	acttacggta	aatggcccgc	ctggctgacc	480
gcccaacgac	ccccgcccat	tgacgtcaat	aatgacgtat	gttcccatag	taacgccaat	540
agggactttc	cattgacgtc	aatgggtgga	gtatttacgg	taaactgccc	acttggcagt	600

acatcaagtg tatcatatg	c caagtacgcc	ccctattgac	gtcaatgacg	gtaaatggcc	660
cgcctggcat tatgcccag	t acatgacett	atgggacttt	cctacttggc	agtacatcta	720
cgtattagtc atcgctatt	a ccatggtgat	gcggttttgg	cagtacatca	atgggcgtgg	780
atagoggttt gactcacgg	g gatttccaag	totocacccc	attgacgtca	atgggagttt	840
gttttggcac caaaatcaa	c gggactttcc	aaaatgtcgt	aacaactccg	ccccattgac	900
gcaaatgggc ggtaggcgt	g tacggtggga	ggtctatata	agcagagctg	gtttagtgaa	960
ccgtcagatc cgctagaga	t ctggatccga	attogoogoo	accatgggtc	ctcagaagct	1020
aaccatctcc tggtttgcc	a tegttttget	ggtgtctcca	ctcatggcca	tgtgggagct	1080
ggagaaagac gtttatgtt	g tagaggtgga	ctggactccc	gatgcccctg	gagaaacagt	1140
gaacctcacc tgtgacacg	c ctgaagaaga	tgacatcacc	tggacctcag	accagagaca	1200
tggagtcata ggctctgga	a agaccctgac	catcactgtc	aaagagtttc	tagatgctgg	1260
ccagtacacc tgccacaaa	g gaggcgagac	tctgagccac	tcacatctgc	tgctccacaa	1320
gaaggaaaat ggaatttgg	t ccactgaaat	tttaaaaaat	ttcaaaaaca	agactttcct	1380
gaagigigaa gcaccaaat	t actccggacg	gttcacgtgc	tcatggctgg	tgcaaagaaa	1440
catggacttg aagttcaac	a tcaagagcag	tagcagttcc	cctgactctc	gggcagtgac	1500
atgtggaatg gcgtctctg	t ctgcagagaa	ggtcacactg	gaccaaaggg	actaigagaa	1560
gtattcagtg tcctgccag	g aggatgtcac	ctgcccaact	gccgaggaga	ccctgcccat	1620
tgaactggcg ttggaagca	c ggcagcagaa	taaatatgag	aactacagca	ccagcttctt	1680
catcagggac atcatcaaa	c cagacccgcc	caagaacttg	cagatgaagc	ctttgaagaa	1740
ctcacaggtg gaggtcagc	t gggagtaccc	tgactcctgg	agcactcccc	attcctactt	1800
ctccctcaag ttctttgtt	c gaatccagcg	caagaaagaa	aagatgaagg	agacagagga	1860
ggggtgtaac cagaaaggt	g cgttaatagt	agagaagaca	tctaccgaag	tccaatgcaa	1920
aggegggaat gtetgegtg	c aageteagga	tcgctattac	aattcctcat	gcagcaagtg	1980
ggcatgtgtt ccctgcagg	g tccgatccgg	tggcggtggc	tcgggcggtg	gtgggtcggg	2040
tggcggcgga tctagggtc	a ttccagtctc	tggacctgcc	aggtgtctta	gccagtcccg	2100
aaacctgctg aagaccaca	g atgacatggt	gaagacggcc	agagaaaagc	tgaaacatta	2160
tteetgeact getgaagae	a togatoatga	agacatcaca	cgggaccaaa	ccagcacatt	2220
gaagacctgt ttaccactg	g aactacacaa	gaacgagagt	tgcctggcta	ctagagagac	2280
ttettecaca acaagaggg	a gctgcctgcc	cccacagaag	acgtctttga	tgatgaccct	2340
gtgccttggt agcatctat	g aggacttgaa	gatgtaccag	acagagttcc	aggccatcaa	2400
egeageaett cagaateae	a accatcagca	gatcattcta	gacaagggca	tgctggtggc	2460
categatgag etgatgeag	t ctctgaatca	taatggcgag	actotgcgcc	agaaacctcc	2520
tgtgggagaa gcagaccct	t acagagtgaa	aatgaagete	tgcatcctgc	ttcacgectt	2580
cagcaccege gtegtgace	a tcaacagggt	gatgggctat	ctgagctccg	cctgagaatt	2640

	gateeggatt	agtccaattt	gttaaagaca	ggatgaagct	tctagataag	atatccgatc	2700
	caccggatct	agataactga	tcataatcag	ccataccaca	tttgtagagg	ttttacttgc	2760
	tttaaaaaac	ctcccacacc	tccccctgaa	cctgaaacat	aaaatgaatg	caattgttgt	2820
	tgttaacttg	tttattgcag	cttataatgg	ttacaaataa	agcaatagca	tcacaaattt	2880
	cacaaataaa	gcatttttt	cactgcattc	tagttgtggt	ttgtccaaac	tcatcaatgt	2940
	atcttaacgc	nnnntaaggg	tgggaaagaa	tatataaggt	gggggtctta	tgtagttttg	3000
	tatctgtttt	gcagcagccg	cegeegecat	gagcaccaac	tcgtttgatg	gaagcattgt	3060
	gagctcatat	ttgacaacgc	gcatgccccc	atgggccggg	gtgcgtcaga	atgtgatggg	3120
	ctccagcatt	gatggtcgcc	cogtcotgco	cgcaaactct	actaccttga	cctacgagac	3180
	cgtgtctgga	acgccgttgg	agactgcagc	ctccgccgcc	gcttcagccg	ctgcagccac	3240
	cgcccgcqgg	attgtgactg	actttgcttt	cctgagcccg	cttgcaagca	gtgcagcttc	3300
	ccgttcatcc	gcccgcgatg	acaagttgac	ggctcttttg	gcacaattgg	attctttgac	3360
	ccgggaactt	aatgtcgttt	ctcagcagct	gttggatctg	cgccagcagg	tttctgccct	3420
	gaaggcttcc	tecectecca	atgcggttta	aaacataaat	aaaaaaccag	actctgtttg	3480
	gatttggatc	aagcaagtgt	cttgctgtct	ttatttaggg	gttttgcgcg	cgcggtaggc	3540
	ccgggaccag	cggtctcggt	cgttgagggt	cctgtgtatt	ttttccagga	cgtggtaaag	3600
	gtgactctgg	atgttcagat	acatgggcat	aagcccgtct	ctggggtgga	ggtagcacca	3660
	ctgcagagct	tcatgctgcg	gggtggtgtt	gtagatgatc	cagtcgtagc	aggagcgctg	3720
	ggcgtggtgc	ctaaaaatgt	ctttcagtag	caagctgatt	gccaggggca	ggcccttggt	3780
	gtaagtgttt	acaaagcggt	taagctggga	tgggtgcata	cgtggggata	tgagatgcat	3840
	cttggactgt	atttttaggt	tggctatgtt	cccagccata	tccctccggg	gattcatgtt	3900
	gtgcagaacc	accagcacag	tgtatccggt	gcacttggga	aatttgtcat	gtagcttaga	3960
	aggaaatgcg	tggaagaact	tggagacgcc	cttgtgacct	ccaagatttt	ccatgcattc	4020
	gtccataatg	atggcaatgg	gcccacgggc	ggcggcctgg	gcgaagatat	ttctgggatc	4080
	actaacgtca	tagttgtgtt	ccaggatgag	atcgtcatag	gccattttta	caaagcgcgg	4140
	gcggagggtg	ccagactgcg	gtataatggt	tccatccggc	ccaggggcgt	agttaccctc	4200
	acagatttgc	atttcccacg	ctttgagttc	agatgggggg	atcatgtcta	cctgcggggc	4260
	gatgaagaaa	acggtttccg	gggtagggga	gatcagctgg	gaagaaagca	ggttcctgag	4320
	cagctgcgac	ttaccgcagc	cggtgggccc	gtaaatcaca	cctattaccg	ggtgcaactg	4380
	gtagttaaga	gagctgc ag c	tgccgtcatc	cctgagcagg	ggggccactt	cgttaagcat	4440
•	gtccctgact	cgcatgtttt	ccctgaccaa	atccgccaga	aggcgctcgc	cgcccagcga	4500
	tagcagttct	tgcaaggaag	caaagttttt	caacggtttg	agaccgtccg	ccgtaggcat	4560
	gcttttgagc	gtttgaccaa	gcagttccag	geggteeeac	agctcggtca	cetgetetae	4620
	ggcatctcga	tccagcatat	ctcctcgttt	cgcgggttgg	ggcggctttc	gctgtacggc	4680

agtagtcggt	gctcgtccag	`acgggccagg	gtcatgtctt	tecaegggeg	cagggtcctc	4740
gtcagcgtag	tctgggtcac	ggtgaagggg	tgcgctccgg	gatgagagat	ggccagggtg	4800
cgcttgaggc	tggtcctgct	ggtgctgaag	cgctgccggt	cttcgccctg	cgcgtcggcc	4860
aggtagcatt	tgaccatggt	gtcatagt <i>c</i> c	agecceteeg	cggcgtggcc	cttggcgcgc	4920
agcttgccct	tggaggaggc	gccgcacgag	gggcagtgca	gacttttgag	ggcgtagagc	4980
ttgggcgcga	gaaataccga	ttccggggag	taggcatccg	cgccgcaggc	cccgcagacg	5040
gtctcgcatt	ccacgagcca	ggtgagctct	ggccgttcgg	ggtcaaaaac	caggtttccc	5100
ccatgctttt	tgatgcgttt	cttacctctg	g:ttccatga	gccqgtgtcc	acgctcggtg	5160
acgaaaaggc	tgtccgtgtc	cccgtataca	gactnnngtt	taaacgaatt	cnnnatataa	5220
aatgcaaggt	gctgctcaaa	aaatcaggca	aagcctcgcg	caaaaaagaa	agcacatcgt	5280
agtcatgctc	atgcagataa	aggcaggtaa	gctccggaac	caccacagaa	aaagacacca	5340
tttttctctc	aaacatgtct	gegggtttct	gcataaacac	aaaataaaat	aacaaaaaa	5 4 0 0
catttaaaca	ttagaagcct	gtcttacaac	aggaaaaaca	accettataa	gcataagacg	5460
gactacggcc	atgccggcgt	gaccgtaaaa	aaactggtca	ccgtgattaa	aaagcaccac	5520
cgacagetee	toggtcatgt	ccggagtcat	aatgtaagac	tcggtaaaca	catcaggttg	5580
attcatcggt	cagtgctaaa	aagcgaccga	aatagcccgg	gggaatacat	acccgcaggc	5640
gtagagacaa	cattacagcc	cccataggag	gtataacaaa	attaatagga	gagaaaaaca	5700
cataaacacc	tgaaaaaccc	tectgeetag	gcaaaatagc	accetecege	tccagaacaa	5760
catacagege	ttcacagogg	cagcctaaca	gtcagcctta	ccagtaaaaa	agaaaaccta	5820
ttaaaaaaac	accactegac	acggcaccag	ctcaatcagt	cacagtgtaa	aaaagggcca	5880
agtgcagagc	gagtatatat	aggactaaaa	aatgacgtaa	cggttaaagt	ccacaaaaaa.	5940
cacccagaaa	accgcacgcg	aacctacgcc	cagaaacgaa	agccaaaaaa	cccacaactt	6000
cctcaaatcg	tcacttccgt	tttcccacgt	tacgtaactt	cccattttaa	gaaaactaca	6060
attcccaaca	catacaagtt	actccgccct	aaaacctacg	tcacccgccc	cgttcccacg	6120
ccccgcgcca	cgtcacaaac	tccaccccct	cattatcata	ttggcttcaa	tccaaaataa	6180
ggtatattat	tgatgatnnn	ttaattaagg	atconnnegg	tgtgaaatac	cgcacagatg	6240
cgtaaggaga	aaataccgca	tcaggcgctc	ttccgcttcc	tegeteactg	actegetgeg	6300
ctcggtcgtt	cggctgcggc	gageggtate	agctcactca	aaggcggtaa	tacggttatc	6360
cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	aaaaggccag	6420
gaaccgtaaa	aaggccgcgt.	tgctggcgtt	tttccatagg	ctccgccccc	ctgacgagca	6480
tcacaaaaat	cgacgctcaa	gtcagaggtg	gcgaaacccg	acaggactat	aaagatacca	6540
ggcgtttccc	cctggaagct	ccctcgtgcg	ctctcctgtt	ccgaccctgc	cgcttaccgg	6600
atacctgtcc	gcattictca	cttcgggaag	cgtggcgctt	tctcatagct	cacgctgtag	6660
gtateteagt	tcggtgtagg	tegttegete	caagctgggc	tgtgtgcacg	aaccccccgt	6720

tcagcccgac	cgctgcgcct	tatccggtaa	ctatcgtctt	gagtccaacc	cggtaagaca	6780
cgacttatcg	ccactggcag	cagccactgg	taacaggatt	agcagagcga	ggtatgtagg	6840
cggtgctaca	gagttcttga	agtggtggcc	taactacggc	tacactagaa	ggacagtatt	6900
tggtatctgc	gctctgctga	agccagttac	cttcggaaaa	agagttggta	gctcttgatc	6960
cggcaaacaa	accaccgctg	gtagoggtgg	tttttttgtt	tgcaagcagc	agattacgcg	7020
cagaaaaaaa	ggatctcaag	aagatccttt	gatcttttct	acggggtctg	acgctcagtg	7080
gaacgaaaac	tcacgttaag	ggattttggt	catgagatta	tcaaaaagga	tcttcaccta	7140
gatectttta	aattaaaaat	gaagttttaa	atcaatctaa	agtatatatq	agtaaacttg	7200
gtctgacagt	taccaatgct	taatcagtga	ggcacctatc	ccagcgatct	gtctatttcg	7260
ttcatccata	gttgcctgac	taccagtagt	gtagataact	acgatacggg	agggcttacc	7320
atctggcccc	agtgctgcaa	tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	7380
agcaataaac	cagccagccg	gaagggccga	gcgcagaagt	ggtcctgcaa	ctttatccgc	7440
ctccatccag	tctattaatt	gttgccggga	agctagagta	agtagttege	cagttaatag	7500
tttgcgcaac	gttgttgnnn	naaaaaggat	cttcacctag	atccttttca	cgtagaaagc	7560
cagteegeag	aaacggtgct	gaccccggat	gaatgtcagc	tactgggcta	tctggacaag	7620
ggaaaacgca	agcgcaaaga	gaaagcaggt	agcttgcagt	gggcttacat	ggcgatagct	7680
agactgggcg	gttttatgga	cagcaagega	accggaattg	ccagctgggg	cgccctctgg	7740
taaggttggg	aagccctgca	aagtaaactg	gatggctttc	togoogocaa	ggatctgatg	7800
gcgcagggga	tcaagctctg	atcaagagac	aggatgagga	togtttogca	tgattgaaca	7860
agatggattg	cacgcaggtt	ctccggccgc	ttgggtggag	aggctattcg	gctatgactg	7920
ggcacaacag	acaatcggct	gctctgatgc	cgccgtgttc	cggctgtcag	cgcaggggcg	7980
cccggttctt	tttgtcaaga	ccgacctgtc	eggtgeeetg	aatgaactgc	aagacgaggc	8040
agcgcggcta	tcgtggctgg	ccacgacggg	cgttccttgc	gcagctgtgc	tcgacgttgt	8100
cactgaagcg	ggaagggact	ggctgctatt	gggcgaagtg	ccggggcagg	atctcctgtc	8160
atctcacctt	gctcctgccg	agaaagtatc	catcatggct	gatgcaatgc	ggcggctgca	-8220
tacgettgat	ccggctacct	gcccattcga	ccaccaagcg	aaacatcgca	tegagegage	8280
acgtactcgg	atggaagccg	gtcttgtcga	tcaggatgat	ctggacgaag	agcatcaggg	8340
gctcgcgcca	gccgaactgt	tcgccaggct	caaggcgagc	atgcccgacg	gcgaggatct	8400
cgtcgtgacc	catggcgatg	cctgcttgcc	gaatatcatg	gtggaaaatg	gccgcttttc	8460
tggattcatc	gactgtggcc	ggctgggtgt	ggcggaccgc	tatcaggaca	tagcgttggc	8520
tacccgtgat	attgctgaag	agcttggcgg	cgaatgggct	gaccgcttcc	tegtgettta	8580
cggtatcgcc	gctcccgatt	cgcagcgcat	cgccttctat	egeettettg	acgagttctt	8640
	ttaaaatttt					8700
gcaacatccc	ttataaatca	aaagaataga	ccgcgatagg	gttgagtgtt	gttccagttt	8760

```
ggaacaagag tecaetatta aagaacgtgg actecaacgt caaagggega aaaacegtet
                                                                        8820
atcagggega tggcccacta cgtgaaccat cacccaaatc aagttttttg cggtcgaggt
                                                                        0888
gccgtaaagc tctaaatcgg aaccctaaag ggagcccccg atttagagct tgacggggaa
                                                                        8940
agccggcgaa cgtggcgaga aaggaaggga agaaagcgaa aggagcgggc gctagggcgc
                                                                       9000
tggcaagtgt agcggtcacg ctgcgcgtaa ccaccacac cgcgcgctt
                                                                        9049
<210> 11
<211> 38246
<212> ADN
<213> Secuencia artificial
<220>
<223> Plásmido, contiene todo el ADN para Ad-3
<220>
<221> misc feature
<222> (1) .. (38246)
<223> "N" = "A", "C", "G" o "T"
<400> 11
nnttaattaa ggatconnno ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg
                                                                         60
catcaggege tetteegett cetegeteae tgaetegetg egeteggteg tteggetgeg
                                                                         120
gegageggta teageteact caaaggeggt aataeggtta tecacagaat caggggataa
                                                                         180
cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc
                                                                        240
gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc
                                                                         300
aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag
                                                                         360
ctecetegtg egeteteetg tteegaceet geegettace ggatacetgt eegeetttet
                                                                        420
ccetteggga agegtggege ttteteatag etcaegetgt aggtatetea gtteggtgta
                                                                         480
ggtegttege tecaagetgg getgtgtgea egaaceeece gtteageeeg acegetgege
                                                                        540
                                                                         600
cttatccggt aactatcgte ttgagtccaa cccggtaaga cacgacttat cgccactggc
agcagocact ggtaacagga ttagcagago gaggtatgta ggcggtgcta cagagttott
                                                                         660
gaagtggtgg cotaactacg gotacactag aaggacagta tttggtatot gogototgot
                                                                         720
gaagecagtt accttcggaa aaagagttgg tagetettga teeggeaaac aaaccaeege
                                                                        780
tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca
                                                                         840
                                                                         900
agaagateet ttgatetttt etaeggggte tgaegeteag tggaaegaaa aeteaegtta
agggattitg gicatgagat tatcaaaaag gatcitcacc tagatccitt taaattaaaa
                                                                        960
atgaagttit aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg
                                                                        1020
cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg
                                                                        1080
actococgic gigitagataa ciacgatacg ggagggetta ccatciggee ecagigeige
                                                                        1140
                                                                       1200
aatgataceg egagacecae geteaeegge tecagattta teageaataa aeeageeage
```

10

15

1260

cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa

ttgttgccgg	gaagctagag	taagtagttc	gccagttaat	agtttgcgca	acgttgttgn	1320
nnnaaaaagg	atcttcacct	agateetttt	cacgtagaaa	gccagtccgc	agaaacggtg	1380
ctgaccccgg	atgaatgtca	gctactgggc	tatctggaca	agggaaaacg	caagcgcaaa	1440
gagaaagcag	gtagcttgca	gtgggcttac	atggcgatag	ctagactggg	cggttttatg	1500
gacagcaagc	gaaccggaat	tgccagctgg	ggcgccctct	ggtaaggttg	ggaagccctg	1560
caaagtaaac	tggatggctt	tatagaagaa	aaggatctga	tggcgcaggg	gatcaagctc	1620
tgatcaagag	acaggatgag	gatcgtttcg	catgattgaa	caagatggat	tgcacgcagg	1680
ttctccggcc	gcttgggtgg	agaggctatt	cggctatgac	tgggcacaac	agacaategg	1740
ctgctctgat	gccgccgtgt	tccggctgtc	agcgcagggg	egeseggtte	tttttgtcaa	1800
gaccgacctg	tccggtgccc	tgaatgaact	gcaagacgag	gcagcgcggc	tategtgget	1860
ggccacgacg	ggcgttcctt	gcgcagctgt	gctcgacgtt	gtcactgaag	cgggaaggga	1920
ctggctgcta	ttgggcgaag	tgccggggca	ggatctcctg	tcatctcacc	ttgctcctgc	1980
cgagaaagta	tccatcatgg	ctgatgcaat	gcggcggctg	catacgcttg	atccggctac	2040
ctgcccattc	gaccaccaag	cgaaacatcg	catcgagcga	gcacgtactc	ggatggaagc	2100
cggtcttgtc	gatcaggatg	atctggacga	agagcatcag	gggctcgcgc	cagccgaact	2160
gttcgccagg	ctcaaggcga	gcatgcccga	cggcgaggat	ctcgtcgtga	cccatggcga	2220
tgcctgcttg	ccgaatatca	tggtggaaaa	tggccgcttt	tctggattca	tegaetgtgg	2280
ccggctgggt	gtggcggacc	gctatcagga	catagcgttg	gctacccgtg	atattgctga	2340
agagcttggc	ggcgaatggg	ctgaccgctt	cctcgtgctt	tacggtatcg	ccgctcccga	2400
ttcgcagcgc	atcgccttct	atcgccttct	tgacgagttc	ttctgaattt	tgttaaaatt	2460
tttgttaaat	cagctcattt	tttaaccaat	aggccgaaat	cggcaacatc	ccttataaat	2520
caaaagaata	gaccgcgata	gggttgagtg	ttgttccagt	ttggaacaag	agtocactat	2580
taaagaacgt	ggactccaac	gtcaaagggc	gaaaaaccgt	ctatcagggc	gatggcccac	2640
tacgtgaacc	atcacccaaa	tcaagttttt	tgcggtcgag	gtgccgtaaa	gctctaaatc	2700
ggaaccctaa	agggagcccc	cgatttagag	cttgacgggg	aaagccggcg	aacgtggcga	2760
gaaaggaagg	gaagaaagcg	aaaggagcgg	gcgctagggc	gctggcaagt	gtagcggtca	2820
cgctgcgcgt	aaccaccaca	ccagagagat	taatgcgccg	nnnnnnnnn	nnnnnnnn	2880
nnnnttaatt	aannntccct	tccagctctc	tgcccctttt	ggattgaagc	caatatgata	2940
atgagggggt	ggagtttgtg	acgtggcgcg	gggcgtggga	acggggcggg	tgacgtagta	3000
gtgtggcgga	agtgtgatgt	tgcaagtgtg	gcggaacaca	tgtaagcgac	ggatgtggca	3060
aaagtgacgt	ttttggtgtg	cgccggtgta	cacaggaagt	gacaattttc	gcgcggtttt	3120
aggcggatgt	tgtagtaaat	ttgggcgtaa	ccgagtaaga	tttggccatt	ttcgcgggaa	3180
aactgaataa	gaggaagtga	aatctgaata	attttgtgtt	actcatagcg	cgtaannnnt	3240
aatagtaatc	aattacgggg	tcattagttc	atagcccata	tatggagttc	cgcgttacat	3300

aacttacggt	aaatggcccg	cctggctgac	cgcccaacga	ccccgccca	ttgacgtcaa	3360
taatgacgta	tgttcccata	gtaacgccaa	tagggacttt	ccattgacgt	caatgggtgg	3420
agtatttacg	gtaaactgcc	cacttggcag	tacatcaagt	gtatcatatg	ccaagtacgc	3480
cccctattga	cgtcaatgac	ggtaaatggc	ccgcctggca	ttatgcccag	tacatgacct	3540
tatgggactt	toctacttgg	cagtacatct	acgtattagt	categetatt	accatggtga	3600
tgcggttttg	gcagtacatc	aatgggcgtg	gatagcggtt	tgactcacgg	ggatttccaa	3660
gtctccaccc	cattgacgtc	aatgggagtt	tgttttggca	ccaaaatcaa	cgggactttc	3720
caaaatgtcg	taacaactcc	gccccattga	cgcaaatggg	cggtaggcgt	gtacggtggg	3780
aggtctatat	aagcagagct	ggtttagtga	accgtcagat	ccgctagaga	totggatoog	3840
aattcgccgc	caccatgggt	cctcagaagc	taaccatctc	ctggtttgcc	atcgttttgc	3900
tggtgtctcc	actcatggcc	atgtgggagc	tggagaaaga	cgtttatgtt	gtagaggtgg	3960
actggactcc	cgatgcccct	ggagaaacag	tgaacctcac	ctgtgacacg	cctgaagaag	4020
atgacatcac	ctggacctca	gaccagagac	atggagtcat	aggctctgga	aagaccctga	4080
ccatcactgt	caaagagttt	ctagatgctg	gccagtacac	ctgccacaaa	ggaggcgaga	4140
ctctgagcca	ctcacatctg	ctgctccaca	agaaggaaaa	tggaatttgg	tccactgaaa	4200
ttttaaaaaa	tttcaaaaac	aagactttcc	tgaagtgtga	agcaccaaat	tactccggac	4260
ggttcacgtg	ctcatggctg	gtgcaaagaa	acatggactt	gaagttcaac	atcaagagca	4320
gtagcagttc	ccctgactct	cgggcagtga	catgtggaat	ggcgtctctg	tctgcagaga	4380
aggtcacact	ggaccaaagg	gactatgaga	agtattcagt	gtcctgccag	gaggatgtca	4440
cctgcccaac	tgccgaggag	accetgecea	ttgaactggc	gttggaagça	cggcagcaga	4500
ataaatatga	gaactacagc	accagcttct	tcatcaggga	catcatcaaa	ccagacccgc	4560
ccaagaactt	gcagatgaag	cctttgaaga	actcacaggt	ggaggtcagc	tgggagtacc	4620
ctgactcctg	gageactecc	cattcctact	teteceteaa	gttctttgtt	cgaatccagc	4680
gcaagaaaga	aaagatgaag	gagacagagg	aggggtgtaa	ccagaaaggt	gcgttcctcg	4740
tagagaagac	atctaccgaa	gtccaatgca	aaggcgggaa	tgtctgcgtg	caagctcagg	4800
atogotatta	caattootca	tgcagcaagt	gggcatgtgt	tecetgeagg	gtccgatccg	4860
gtggcggtgg	ctcgggcggt	ggtgggtcgg	gtggcggcgg	atctagggtc	attccagtct	4920
ctggacctgc	caggtgtctt	agccagtccc	gaaacctgct	gaagaccaca	gatgacatgg	4980
tgaagacggc	cagagaaaaa	ctgaaacatt	attcctgcac	tgctgaagac	atcgatcatg	5040
aagacatcac	acgggaccaa	accagcacat	tgaagacets	tttaccactg	gaactacaca	2100
agaacgagag	ttgcctggct	actagagaga	cttcttccac	aacaagaggg	agetgeetge	5160
ccccacagaa	gacgtctttg	atgatgaccc	tgtgccttgg	tagcatctat	gaggacttga	5220
agatgtacca	gacagagttc	caggccatca	acgcagcact	tcagaatcac	aaccatcagc	5280
agatcattct	agacaagggc	atgctggtgg	ccatcgatga	gctgatgcag	tctctgaatc	5340

ataatggcga	gactotgogo	cagaaacctc	ctgtgggaga	agcagaccct	tacagagtga	5400
aaatgaagct	ctgcatcctg	cttcacgcct	tcagcacccg	cgtcgtgacc	atcaacaggg	5460
tgatgggcta	tetgagetee	gcctgagaat	tgatccggat	tagtccaatt	tgttaaagac	5520
aggatgaagc	ttttaaaaca	gctctggggt	tgtacccacc	ccagaggccc	acgtggcggc	5580
tagtactccg	gtattgcggt	accettgtac	gcctgtttta	tactcccttc	ccgtaactta	5640
gacgcacaaa	accaagttca	atagaagggg	gtacaaacca	gtaccaccac	gaacaagcac	5700
ttctgtttcc	ccggtgatgt	cgtatagact	gcttgcgtgg	ttgaaagcga	cggatccgtt	5760
atccgcttat	gtacttcgag	aagcccagta	ccacctcgga	atcttcgatg	cgttgcgctc	5820
agcactcaac	cccagagtgt	agettagget	gatgagtctg	gacatccctc	accggtgacg	5880
gtggtccagg	ctgcgttggc	ggcctaccta	tggctaacgc	catgggacgc	tagttgtgaa	5940
caaggtgtga	agagcctatt	gagctacata	agaatcctcc	ggcccctgaa	tgcggctaat	6000
cccaacctcg	gagcaggtgg	tcacaaacca	gtgattggcc	tgtcgtaacg	cgcaagtccg	6060
tggcggaacc	gactactttg	ggtgtccgtg	tttcctttta	ttttattgtg	gctgcttatg	6120
gtgacaatca	cagattgtta	tcataaagcg	aattggättg	cggccgcatg	atcgaccagc	6180
acacacttga	tgtggaggat	accgcggatg	ccagacatec	agcaggtact	tegtgeeect	6240
cggatgcggc	getecteaga	gataccgggc	tectegegga	cgctgcgctc	ctctcagata	6300
ctgtgcgccc	cacaaatgcc	gcgctcccca	cggatgctgc	ctaccctgcg	gttaatgttc	6360
gggatcgcga	ggccgcgtgg	ccgcctgcac	tgaacttctg	ttcccgccac	ccaaagctct	6420
atggcctag t	cgctttggtt	ttgctgcttc	tgatcgccgc	ctgtgttcct	atottoacco	6480
gcaccgagcc	teggeeageg	ctcacaatca	ccacctcgcc	caacctgggt	acccgagaga	6540
ataatgcaga	ccaggtcacd	cctgtttccc	acattggctg	ccccaacact	acacaacagg	6600
gatatactgt	gttegecaag	ctactggcta	aaaaccaagc	atcgttgtgc	aatacaac tc	6660
tgaactggca	cagccaagat	ggagctggga	gctcatacct	atctcaaggt	ctgaggtacg	6720
aagaagacaa	aaaggagttg	gtggtagaca	gtcccgggct	ctactacgta	tttttggaac	6780
tgaagctcag	tccaacattc	acaacacag	gccacaaggt	gcagggctgg	gtctctcttg	6840
ttttgcaagc	aaagcctcag	gtagatgact	ttgacaactt	ggccctgaca	gtggaactgt	6900
teecttgete	catggagaac	aagttagtgg	accgttcctg	gagtcaactg	ttgctcctga	696C
aggetggeea	ccgcctcagt	gtgggtctga	gggcttatct	gcatggagcc	caggatgcat	7020
acagagactg	ggagctgtct	tatcccaaca	ccaccagett	tggactcttt	cttgtgaaac	7080
ccgacaaccc	atgggaatga	gaactatcct	tcttgtgact	ggegegeetg	atcaatcgat	7140
gtttaaacgt	tattttccac	catattgccg	tcttttggca	atgtgagggc	ccggaaacct	7200
ggccctgtct	tcttgacgag	cattectagg	ggtettteec	ctctcgccaa	aggaatgcaa	7260
ggtctgttga	atgtcgtgaa	ggaagcagtt	cctctggaag	cttcttgaag	acaaacaacg	7320
tctgtagcga	ccctttgcag	gcagcggaac	cccccacctg	gcgacaggtg	cctctgcggc	7380

caaaagccac	gtgtataaga	tacacctgca	aaggeggeae	aaccccagtg	ccacgttgtg	7440
agttggatag	ttgtggaaag	agtcaaatgg	ctctcctcaa	gcgtattcaa	caaggggctg	7500
aaggatgccc	agaaggtacc	ccattgtatg	ggatctgatc	tggggcctcg	gtgcacatgc	7560
tttacgtgtg	tttagtcgag	gttaaaaaac	gtctaggccc	cccgaaccac	ggggacgtgg	7620
ttttcctttg	aaaaacacga	ttctcgagac	tagtgccacc	atgtacagca	tgcagctcgc	7680
atcctgtgtc	acattgacac	ttgtgctcct	tgtcaacagc	gcacccactt	caagctccac	7740
ttcaagctct	acageggaag	cacagcagca	gcagcagcag	cagcagcagc	agcagcagca	7800
cctggagcag	ctgttgatgg	acctacagga	gctcctgagc	aggatggaga	attacaggaa	7860
cctgaaactc	cccaggatgc	tcaccttcaa	attttacttg	cccaagcagg	ccacagaatt	7920
gaaagatctt	cagtgcctag	aagatgaact	tggacctctg	cggcatgttc	tggatttgac	7980
tcaaagcaaa	agctttcaat	tggaagatgc	tgagaatttc	atcagcaata	tcagagtaac	8040
tgttgtaaaa	ctaaagggct	ctgacaacac	atttgagtgc	caattcgatg	atgagtcagc	8100
aactgtggtg	gactttctga	ggagatggat	agccttctgt	caaagcatca	tctcaacaag	8160
ccctcaataa	ctatgtaacg	cgtgctagca	tggccggccg	cggccgcggc	cgctcgagcc	8220
taagcttcta	gataagatat	ccgatccacc	ggatctagat	aactgatcat	aatcagccat	8280
accacatttg	tagaggtttt	acttgcttta	aaaaacctcc	cacacctccc	cctgaacctg	8340
aaacataaaa	tgaatgcaat	tgttgttgtt	aacttgttta	ttgcagctta	taatggttac	8400
aaataaagca	atagcatcac	aaatttcaca	aataaagcat	ttttttcact	gcattctagt	8460
tgtggtttgt	ccaaactcat	caatgtatct	taacgcnnnn	taagggtggg	aaagaatata	8520
taaggtgggg	gtcttatgta	gttttgtatc	tgttttgcag	cagccgccgc	cgccatgagc	8580
accaactcgt	ttgatggaag	cattgtgagc	tcatatttga	caacgcgcat	gcccccatgg	8640
gccggggtgc	gtcagaatgt	gatgggctcc	agcattgatg	gtcgccccgt	cctgcccgca	8700
aactotacta	ccttgaccta	cgagaccgtg	tctggaacgc	cgttggagac	tgcagcctcc	8760
gccgccgctt	cagccgctgc	agccaccgcc	cgcgggattg	tgactgactt	tgettteetg	8820
agcccgcttg	caagcagtgc	agcttcccgt	tcatccgccc	gcgatgaçaa	gttgacggct	8880
cttttggcac	aattggattc	tttgacccgg	gaacttaatg	tcgtttctca	gcagctgttg	8940
gatctgcgcc	agcaggttic	tgccctgaag	gcttcctccc	ctcccaatgc	ggtttaaaac	9000
ataaataaaa	aaccagactc	tgtttggatt	tggatcaagc	aagtgtcttg	ctgtctttat	9060
ttaggggttt	tgcgcgcgcg	gtaggcccgg	gaccagcggt	ctcggtcgtt	gagggtcctg	9120
tgtattttt	ccaggacgtg	gtaaaggtga	ctctggatgt	tcagatacat	gggcataagc	9180
ccgtctctgg	ggtggaggta	gcaccactgc	agagcttcat	gctgcggggt	ggtgttgtag	9240
atgatccagt	cgtagcagga	gcgctgggcg	tggtgcctaa	aaatgtcttt	cagtagcaag	9300
ctgattgcca	ggggca gg cc	cttggtgtaa	gtgtttacaa	agcggttaag	ctgggatggg	9360
tgcatacgtg	gggatatgag	atgcatcttg	gactgtattt	ttaggttggc	tatgttccca	9420

gccatatccc	tccggggatt	catgttgtgc	agaaccacca	gcacagtgta	tccggtgcac	9480
ttgggaaatt	tgtcatgtag	cttagaagga	aatgcgtgga	agaacttgga	gacgcccttg	9540
tgacctccaa	gattttccat	gcattcgtcc	ataatgatgg	caatgggccc	acgggcggcg	9600
gcctgggcga	agatatttct	gggatcacta	acgtcatagt	tgtgttccag	gatgagatcg	9660
tcataggcca	tttttacaaa	gcgcgggcgg	agggtgccag	actgcggtat	aatggttcca	9720
teeggeeeag	gggcgtagtt	acceteacag	atttgcattt	cccacgcttt	gagttcagat	9780
ggggggatca	tgtctacctg	cggggcgatg	aagaaaacgg	tttccggggt	aggggagatc	9840
agctgggaag	aaagcaggtt	cctgagcagc	tgcgacttac	cgcagccggt	gggcccgtaa	9900
atcacaccta	ttaccgggtg	caactggtag	ttaagagagc	tgcagctgcc	gtcatccctg	9960
agcagggggg	ccacttcgtt	aagcatgtcc	ctgactcgca	tgttttccct	gaccaaatcc	10020
gccagaaggc	gatagaagad	cagcgatagc	agttcttgca	aggaagcaaa	gtttttcaac	10080
ggtttgag a c	egteegeegt	aggcatgctt	ttgagcgttt	gaccaagcag	ttccaggcgg	10140
toccacagot	cggtcacctg	ctctacggca	tctcgatcca	gcatatctcc	tegtttegeg	10200
ggttggggcg	gctttcgctg	tacggcagta	gtcggtgctc	gtccagacgg	gccagggtca	10260
tgtctttcca	cgggcgcagg	gtectegtea	gegtagtetg	ggtcacggtg	aaggggtgcg	10320
ctccgggctg	cgcgctggcc	agggtgeget	tgaggctggt	cctgctggtg	ctgaagcgct	10380
gccggtcttc	gccctgcgcg	teggeeaggt	agcatttgac	catggtgtca	tagtccagcc	10440
cctccgcggc	gtggcccttg	gegegeaget	tgcccttgga	ggaggcgccg	cacgaggggc	10500
agtgcagact	tttgagggcg	tagagcttgg	gcgcgagaaa	taccgattcc	ggggagtagg	10560
cateegegee	gcaggccccg	cagacggtct	cgcattccac	gagccaggtg	agctctggcc	10620
gttcggggtc	aaaaaccagg	tttcccccat	gctttttgat	gcgtttctta	cctctggttt	10680
ccatgagccg	gtgtccacgc	tcggtgacga	aaaggctgtc	cgtgtccccg	tatacagact	10740
tgagaggeet	gtcctcgagc	ggtgttccgc	ggtcctcctc	gtatagaaac	teggaceact	10800
ctgagacaaa	ggctcgcgtc	caggccagca	cgaaggaggc	taagtgggag	gggtageggt	10860
cgttgtccac	tagggggtcc	actcgctcca	gggtgtgaag	acacatgtcg	ccctcttcgg	10920
catcaaggaa	ggtgattggt	ttgtaggtgt	aggccacgtg	accgggtgtt	cctgaagggg	10980
ggctataaaa	aaaaafaaaa	gegegttegt	cctcactctc	ttccgcatcg	ctgtctgcga	11040
gggccagctg	ttggggtgag	tactccctct	gaaaagcggg	catgacttct	gcgctaagat	11100
tgtcagtttc	caaaaacgag	gaggatttga	tattcacctg	gcccgcggtg	atgcctttga	11160
gggtggccgc	atccatctgg	tcagaaaaga	caatcctttt	gttgtcaagc	ttggtggcaa	11220
acga cccgta	gagggcgttg	gacagcaact	tggcgatgga	gcgcagggtt	tggtttttgt	11280
cgcgatcggc	gegeteettg	gccgcgatgt	ttagctgcac	gtattcgcgc	gcaacgcacc	11340
gccattcggg	aaagacggtg	gtgcgctcgt	cgggcaccag	gtgcacgcgc	caaccgcggt	11400
tgtgcagggt	gacaaggtca	acgctggtgg	ctacctctcc	gcgtaggcgc	tcgttggtcc	11460

agcagaggcg	geegeeettg	cgcgagcaga	atggcggtag	ggggtctagc	tgcgtctcgt	11520
ccggggggtc	tgcgtccacg	gtaaagaccc	cgggcagcag	gagagagtag	aagtagtcta	11580
tcttgcatcc	ttgcaagtct	agcgcctgct	gccatgcgcg	ggcggcaagc	gegegetegt	11640
atgggttgag	tgggggaccc	catggcatgg	ggtgggtgag	cgcggaggcg	tacatgoogo	11700
aaatgtcgta	aacgtagagg	ggctctctga	gtattccaag	atatgtaggg	tagcatcttc	11760
cacegeggat	gctggcgcgc	acgtaatcgt	atagttcgtg	cgagggagcg	aggaggtcgg	11820
gaccgaggtt	gctacgggcg	ggctgctctg	ctcggaagac	tatotgootg	aagatggcat	11880
gtgag:tgga	tgatatggtt	ggacgctgga	agacgttgaa	gctggcgtct	gtgagaccta	11940
ccgcgtcacg	cacgaaggag	gcgŧaggagt	cgcgcagctt	gttgaccagc	teggeggtga	12000
cctgcacgtc	tagggcgcag	tagtccaggg	tttccttgat	gatgtcatac	ttatcctgtc	12060
ccttttttt	ccacagetcg	cggitgagga	caaactcttc	gcggtctttc	cagtactctt	12120
ggatcggaaa	cccgtcggcc	tccgaacggt	aagagcctag	catgtagaac	tggttgacgg	12180
cctggtaggc	gcagcatccc	ttttctacgg	gtagcgcgta	tgcctgcgcg	gccttccgga	12240
gcgaggtgtg	ggtgagcgca	aaggtgtccc	tgaccatgac	tttgaggtac	tggtatttga	12300
agtcagtgtc	gtcgcatccg	ccctgctccc	agagcaaaaa	gtccgtgcgc	tttttggaac	12360
gcggatttgg	cagggcgaag	gtgacatcgt	tgaagagtat	ettteeagag	cgaggcataa	12420
agttgcgtgt	gatgcggaag	ggtcccggca	cctcggaacg	gttgttaatt	acctgggcgg	12480
cgagcacgat	ctcgtcaaag	ccgttgatgt	tgtggcccac	aatgtaaagt	tccaagaagc	12540
gcgggatgcc	cttgatggaa	ggcaatttt	taagttcctc	gtaggtgagc	tcttcagggg	12600
agetgagece	gtgctctgaa	agggcccagt	ctgcaagatg	agggttggaa	gcgacgaatg	12660
agctccacag	gtcacgggcc	attagcattt	gcaggtggtc	gcgaaaggtc	ctaaactggc	12720
gacctatggc	cattttttct	ggggtgatgc	agtagaaggt	aagcgggtct	tgttcccagc	12780
ggtcccatcc	aaggttcgcg	gctaggtctc	gcgcggcagt	cactagaggc	tcatctccgc	12840
cgaacttcat	gaccagcatg	aagggcacga	getgetteec	aaaggccccc	atccaagtat	12900
aggtctctac	atcgtaggtg	acaaagagac	gctcggtgcg	aggatgcgag	ccgatcggga	12960
agaactggat	ctcccgccac	caattggagg	agtggctatt	gatgtggtga	aagtagaagt	13020
ccctgcgacg	ggccgaacac	tegtgetgge	ttttgtaaaa	acgtgcgcag	tactggcagc	13080
ggtgcacggg	ctgtacatcc	tgcacgaggt	tgacctgacg	accgegeaca	aggaagcaga	13140
gtgggaattt	gagecceteg	cctggcgggt	ttggctggtg	gtcttctact	taggatgatt	13200
gtccttgacc	gtetggetge	tcgaggggag	ttacggtgga	toggaccacc	acdecdeded	13260
agcccaaagt	ccagatgtcc	gcgcgcggcg	gtcggagctt	gatgacaaca	togogoagat	13320
gggagctgtc	catggtctgg	ageteeegeg	gcgtcaggtc	aggegggage	tcctgcaggt	13380
ttacctcgca	tagacgggtc	gagacacada	ctagatccag	gtgataccta	atttccaggg	13440
gctggttggt	ggeggegteg	atggcttgca	agaggccgca	teceegegge	gcgactacgg	13500

taccgcgcgg	cgggcggtgg	gccgcggggg	tgtccttgga	tgatgcatct	aaaagcggtg	13560
acgcgggcga	gcccccggag	gtaggggggg	ctccggaccc	gccgggagag	ggggcagggg	13620
cacgtcggcg	cegegegegg	gcaggagctg	gtgctgcgcg	cgtaggttgc	tggcgaacgc	13680
gacgacgcgg	cggttgatct	cctgaatctg	gogoctotgo	gtgaagacga	cgggcccggt	13740
gagcttgagc	ctgaaagaga	gttcgacaga	atcaatttcg	gtgtcgttga	cggcggcctg	13800
gcgcaaaatc	teetgeacgt	ctcctgagtt	gtcttgatag	gcgatctcgg	ccatgaactg	13860
ctcgatctct	tcctcctgga	gateteegeg	tccggctcgc	tccacggtgg	cggcgaggtc	13920
gttggaaatg	cgggccatga	gctgcgagaa	ggcgttgagg	cctccctcgt	tccagacgcg	13980
gctgtagacc	acgccccctt	cggcatcgcg	ggcgcgcatg	accacctgcg	cgagattgag	14040
ctccacgtgc	cgggcgaaga	cggcgtagtt	tcgcaggcgc	tgaaagaggt	agttgagggt	14100
ggtggcggtg	tgttctgcca	cgaagaagta	cataacccag	cgtcgcaacg	tggattcgtt	14160
gatatecece	aaggcctcaa	ggegeteeat	ggcctcgtag	aagtccacgg	cgaagttgaa	14220
aaactgggag	ttgcgcgccg	acacggttaa	ctcctcctcc	agaagacgga	tgagctcggc	14280
gacagtgtcg	cgcacctcgc	gctcaaaggc	tacaggggcc	tattattatt	cttcaatctc	14340
ctcttccata	agggcctccc	cttcttcttc	ttctggcggc	ggtgggggag	gggggacacg	14400
geggegaega	cggcgcaccg	ggaggcggtc	gacaaagege	tcgatcatct	ccccgcggcg	14460
acggcgcatg	gtctcggtga	cggcgcggcc	gttetegegg	gggcgcagtt	ggaagacgcc	14520
gcccgtcatg	teeeggttat	gggttggcgg	ggggctgcca	tgcggcaggg	atacggcgct	14580
aacgatgcat	ctcaacaatt	gttgtgtagg	tactccgccg	ccgagggacc	tgagcgagtc	14640
cgcatcgacc	ggatcggaaa	acctctcgag	aaaggegtet	aaccagtcac	agtegeaagg	14700
taggctgagc	accgtggcġg	geggeagegg	gcggcggtcg	gggttgtttc	tggcggaggt	14760
gctgctgatg	atgtaattaa	agtaggcggt	cttgagacgg	cggatggtcg	acagaagcac	14820
catgtccttg	ggtccggcct	gctgaatgcg	caggcggtcg	gccatgcccc	aggettegtt	14880
ttgacatcgg	cgcaggtctt	tgtagtagtc	ttgcatgagc	ctttctaccg	gcacttcttc	14940
ttctccttcc	tcttgtcctg	catctcttgc	atctatcgct	gcggcggcgg	cggagtttgg	15000
ccgtaggtgg	cgccctcttc	ctcccatgcg	tgtgaccccg	aagcccctca	tcggctgaag	15060
cagggctagg	toggogacaa	cgcgctcggc	taatatggcc	tgctgcacct	gcgtgagggt	15120
agactggaag	tcatccatgt	ccacaaagcg	gtggtatgcg	cccgtgttga	tggtgtaagt	15180
gcagttggcc	ataacggacc	agttaacggt	ctggtgaccc	ggctgcgaga	gctcggtgta	15240
cctgagacgc	gagtaagccc	tcgagtcaaa	tacgtagtcg	ttgcaagtcc	gcaccaggta	15300
ctggtatecc	accaaaaagt	gcggcggcgg	ctggcggtag	aggggccagc	gtagggtggc	15360
cggggctccg	ggggcgagat	cttccaacat	aaggcgatga	tatccgtaga	tgtacctgga	15420
catccaggtg	atgccggcgg	cggtggtgga	ggcgcgcgga	aagtcgcgga	cgcggttcca	15480
gatgttgcgc	agcggcaaaa	agtgctccat	ggtcgggacg	ctctggccgg	tcaggcgcgc	15540

gcaatcgttg	acgetetace	gtgcaaaagg	agagcctgta	agcgggcact	cttccgtggt	15600
ctggtggata	aattcgcaag	ggtatcatgg	cggacgacsg	gggttcgagc	cccgtatccg	15660
geegteegee	gtgatccatg	eggttacege	ccgcgtgtcg	aacccaggtg	tgcgacgtca	15720
gacaacgggg	gagtgctcct	tttggcttcc	ttccaggcgc	ggcggctgct	gcgctagctt	15780
ttttggccac	tggccgcgcg	cagcgtaagc	ggttaggetg	gaaagcgaaa	gcattaagtg	15840
gctcgctccc	tgtagccgga	gggttattit	ccaagggttg	agtcgcggga	ccccggttc	15900
gagtctcgga	ccggccggac	tgcggcgaac	gggggtttgc	ctccccgtca	tgcaagaccc	15960
cgcttgcaaa	ttcctccgga	aacagggacg	agcccctttt	ttgcttttcc	cagatgcatc	16020
cggtgctgcg	gcagatgcgc	acaeataata	agcagcggca	agagcaagag	cagoggcaga	16080
catgcagggc	accetecect	ccccctaccg	cgtcaggagg	ggcgacatcc	gcggttgacg	16140
cggcagcaga	tggtgattac	gaacccccgc	ggcgccgggc	deggeactae.	ctggacttgg	16200
aggagggcga	gggcctggcg	cggctaggag	cgccctctcc	tgagcggtac	ccaagggtgc	16260
agctgaagcg	tgatacgcgt	gaggcgtacg	tgccgcggca	gaacctgttt	cgcgaccgcg	16320
agggagagga	gcccgaggag	atgcgggatc	gaaagttcca	cgcagggcgc	gagctgcggc	16380
atggcctgaa	tcgcgagcgg	ttgctgcgcg	aggaggactt	tgagcccgac	gcgcgaaccg	16440
ggattagtcc	cgcgcgcgca	cacgtggcgg	ccgccgacct	ggtaaccgca	tacgagcaga	16500
cggtgaacca	ggagattaac	tttcaaaaaa	gctttaacaa	ccacgtgcgt	acgcttgtgg	16560
cgcgcgagga	ggtggctata	ggactgatgc	atctgtggga	ctttgtaagc	gcgctggagc	16620
aaaacccaaa	tagcaagccg	ctcatggcgc	agctgttcct	tatagtgcag	cacagcaggg	16680
acaacgaggc	attcagggat	gcgctgctaa	acatagtaga	gcccgagggc	cgctggctgc	16740
tcgatttgat	aaacatcctg	cagagcatag	tggtgcagga	gcgcagcttg	agcctggctg	16800
acaaggtggc	cgccatcaac	tattccatgc	ttagcctggg	caagttttac	gcccgcaaga	16860
tataccatac	cccttacgtt	cccatagaca	aggaggtaaa	gatcgagggg	ttctacatgc	16920
gcatggcgct	gaaggtgctt	accttgagcg	acgacctggg	cgtttatcgc	aacgagcgca	16980
tccacaaggc	cgtgagcgtg	agccggcggc	gcgagctcag	cgaccgcgag	ctgatgcaca	17040
gcctgcaaag	ggccctggct	ggcacgggca	gcggcgatag	agaggccgag	tectactttg	17100
acgcgggcgc	tgacctgcgc	tgggccccaa	gccgacgcgc	cctggaggca	gctggggccg	17160
gacctgggct	ggcggtggca	cccgcgcgcg	ctggcaacgt	eggeggegtg	gaggaatatg	17220
acgaggacga	tgagtacgag	ccagaggacg	gcgagtacta	agcggtgatg	tttctgatca	17280
gatgatgcaa	gacgcaacgg	acceggeggt	acaaacaaca	ctgcagagcc	agcogtoogg	17340
ccttaactcc	acggacgact	ggcgccaggt	catggaccgc	atcatgtcgc	tgactgcgcg	17400
caatcctgac	gegticegge	agcagccgca	ggccaaccgg	ctctccgcaa	ttctggaagc	17460
ggtggtcccg	gcgcgcgcaa	accccacgca	cgagaaggtg	ctggcgatcg	taaacgcgct	17520
ggccgaaaac	agggccatcc	ggcccgacga	ggeeggeetg	gtctacgacg	cgctgcttca	17580

gcgcgtggct cgttacaac	a geggeaaegt	gcagaccaac	ctggacegge	tggtggggga	17640
tgtgagagag gaagtggag	c agegtgageg	cgcgcagcag	cagggcaacc	tgggctccat	17700
ggttgcacta aacgccttc	c tgagtacaca	gcccgccaac	gtgccgcggg	gacaggagga	17760
ctacaccaac tttgtgage	g cactgegget	aatggtgact	gagacaccgc	aaagtgaggt	17820
gtaccagtct gggccagac	t attttttcca	gaccagtaga	caaggeetge	agaccgtaaa	17880
cctgagccag gctttcaaa	a acttgcaggg	gctgtggggg	gtgcgggctc	ccacaggcga	17940
ccgcgcgacc gtgtctagc	t tgctgacgcc	caactcgcgc	ctgttgctgc	tgctaatagc	18000
gcccttcacg gacagtggc	a gogtgtocog	ggacacatac	ctaggtcact	tgctgacact	18060
gtaccgcgag gccataggt	c aggegcatgt	ggacgagcat	actttccagg	agattacaag	18120
tgtcagccgc gcgctgggg	c aggaggacac	gggcagcctg	gaggcaaccc	taaactacct	18180
gotgaecaae eggeggeag	a agatcccctc	gttgcacagt	ttaaacagcg	aggaggagcg	18240
cattttgcgc tacgtgcag	c agagegtgag	ccttaacctg	atgcgcgacg	gggtaacgcc	18300
cagogtggog ctggacatg	a ccgcgcgcaa	catggaaccg	ggcatgtatg	cctcaaaccg	18360
geegtttate aacegeeta	a tggactactt	gcatcgcgcg	gccgccgtga	accccgagta	18420
tttcaccaat gccatcttg	a accegeactg	gctaccgccc	cctggtttct	acaccggggg	18480
attegaggtg cccgagggt	a acgatggatt	cctctgggac	gacatagacg	acagegtgtt	18540
ttccccgcaa ccgcagacc	c tgctagagtt	gcaacagcgc	gagcaggcag	aggcggcgct	18600
gegaaaggaa agetteege	a ggccaagcag	cttgtccgat	ctaggcgctg	cggccccgcg	18660
gtcagatgct agtagccca	t ttccaagctt	gatagggtct	cttaccagca	ctcgcaccac	18720
aagaaagaga atgatggga	g aggaggagta	cctaaacaac	tegetgetge	agccgcagcg	18780
cgaaaaaaac ctgcctccg	g catttcccaa	caacgggata	gagagcctag	tggacaagat	18840
gagtagatgg aagacgtac	g cgcaggagca	cagggacgtg	ccaggcccgc	gcccgcccac	18900
ccgtcgtcaa aggcacgac	c gtcagcgggg	tctggtgtgg	gaggacgatg	actcggcaga	18960
cgacagcagc gtcctggat	t tgggagggag	tggcaacccg	tttgcgcacc	ttegececag	19020
gctggggaga atgttttaa	a aaaaaaaag	catgatgcaa	aataaaaac	tcaccaaggc	19080
catggcaccg agcgttggt	t ttcttgtatt	ccccttagta	tgcggcgcgc	ggcgatgtat	19140
gaggaaggte ctectecet	c ctacgagagt	gtggtgagcg	cggcgccagt	ggcggcggcg	19200
ctgggttctc ccttcgatg	c tcccctggac	cegeegtttg	tgeeteegeg	gtacctgcgg	19260
cctaccgggg ggagaaaca	g catccgttac	tctgagttgg	cacccctatt	cgacaccacc	19320
cgtgtgtacc_tggtggaca	a caagtcaacg	gatgtggcat	ccctgaacta	ccagaacgac	19380
cacagcaact ttctgacca	c ggtcattcaa	aacaatgact	acageceggg	ggaggcaagc	19440
acacagacca tcaatcttg	a cgaccggtcg	cactggggcg	gcgacctgaa	aaccatcetg	19500
cataccaaca tgccaaatg	t gaacgagttc	atgtttacca	ataagtttaa	ggcgcgggtg	19560
atggtgtcgc gcttgccta	c taaggacaat	caggtggagc	tgaaatacga	gtgggtggag	19620

ttcacgctgc	ccgagggcaa	ctactccgag	accatgacca	tagaccttat	gaacaacgcg	19680
atcgtggagc	actacttgaa	agigggcaga	cagaacgggg	ttctggaaag	cgacatcggg	19740
gtaaagtttg	acacccgcaa	cttcagactg	gggtttgacc	ccgtcactgg	tcttgtcatg	19800
cctggggtat	atacaaacga	agccttccat	ccagacatca	ttttgctgcc	aggatgcggg	19860
gtggacttca	cccacagecg	cctgagcaac	ttgttgggca	teegeaageg	gcaacccttc	19920
caggagggct	ttaggatcac	ctacgatgat	ctggagggtg	gtaacattcc	cgcactgttg	19980
gatgtggacg	cctaccaggc	gagcttgaaa	gatgacaccg	aacagggcgg	gggtggcgca	20040
ggcggcagca	acagcagtgg	cageggegeg	gaagagaact	ccaacgcggc	agccgcggca	20100
atgcagccgg	tggaggacat	gaacgatcat	gccattcgcg	gcgacacctt	tgccacacgg	20160
gctgaggaga	agcgcgctga	ggccgaagca	gcggccgaag	ctgccgcccc	cgctgcgcaa	20220
cccgaggtcg	agaagcctca	gaagaaaccg	gtgatcaaac	ccctgacaga	ggacagcaag	20280
aaacgcagtt	acaacctaat	aagcaatgac	agcaccttca	cccagtaccg	cagctggtac	20340
cttgcataca	actacggcga	ccctcagacc	ggaatccgct	catggaccct	gctttgcact	20400
cctgacgtaa	cctgcggctc	ggagcaggtc	tactggtcgt	tgccagacat	gatgcaagac	20460
cccgtgacct	tccgctccac	gcgccagatc	agcaactttc	cggtggtggg	cgccgagctg	20520
ttgcccgtgc	actccaagag	cttctacaac	gaccaggccg	tctactccca	actcatccgc	20580
cagittacct	ctctgaccca	cgtgttcaat	cgctttcccg	agaaccagat	tttggcgcgc	20640
ccgccagccc	ccaccatcac	caccgtcagt	gaaaacgttc	ctgctctcac	agatcacggg	20700
acgctaccgc	tgcgcaacag	catcggagga	gtccagcgag	tgaccattac	tgacgccaga	20760
cgccgcacct	gcccctacgt	ttacaaggcc	ctgggcatag	tetegeegeg	cgtcctatcg	20820
agccgcactt	tttgagcaag	catgtccatc	cttatatcgc	ccagcaataa	cacaggctgg	20880
ggcctgcgct	tcccaagcaa	gatgtttggc	ggggccaaga	agegeteega	ccaacaccca	20940
gtgcgcgtgc	gegggcacta	ccgcgcgccc	tggggcgcgc	acaaacgcgg	cegeactggg	21000
cgcaccaccg	tcgatgacgc	catcgacgcg	gtggtggagg	aggcgcgcaa	ctacacgccc	21060
acgccgccac	cagtgtccac	agtggacgcg	gccattcaga	ccgtggtgcg	cggagcccgg	21120
cgctatgcta	aaatgaagag	acggcggagg	cgcgtagcac	gtegeeaceg	ccgccgaccc	21130
ggcactgccg	cccaacgcgc	ggeggeggee	ctgcttaacc	gcgcacgtcg	caccggccga	21240
cgggcggcca	tgcgggccgc	tcgaaggctg	gccgcgggta	ttgtcactgt	gccccccagg	21300
tccaggcgac	gageggeege	cgcagcagcc	gcggccatta	gtgctatgac	tcagggtcgc	21360
aggggcaacg	tgtattgggt	gegegaeteg	gttageggee	facacafacc	cgtgcgcacc	21420
agadadaaga	gcaactagat	tgcaagaaaa	aactacttag	actcgtactg	ttgtatgtat	21480
ccagcggcgg	cggcgcgcaa	cgaagctatg	tccaagcgca	aaatcaaaga	agagatgctc	21540
caggtcatcg	cgccggagat	ctatggcccc	ccgaagaagg	aagagcagga	ttacaagccc	21600
cgaaagctaa	agcgggtcaa	aaagaaaaag	aaagatgatg	atgatgaact	tgacgacgag	21660

gtggaactgc	tgcacgctac	cgcgcccagg	cgacgggtac	agtggaaagg	tcgacgcgta	21720
aaacgtgttt	tgcgacccgg	caccaccgta	gtctttacgc	ccggtgagcg	ctccacccgc	21780
acctacaagc	gcgtgtatga	tgaggtgtac	ggcgacgagg	acctgcttga	gcaggccaac	21840
gagegeeteg	gggagtttgc	ctacggaaag	cggcataagg	acatgctggc	gttgccgctg	21900
gacgagggca	acccaacacc	tagcctaaag	cccgtaacac	tgcagcaggt	getgeeegeg	21960
cttgcaccgt	ccgaagaaaa	gcgcggccta	aagcgcgagt	ctggtgactt	ggcacccacc	22020
gtgcagctga	tggtacccaa	gcgccagcga	ctggaagatg	tcttggaaaa	aatgaccgtg	22080
gaacctgggc	tggagcccga	ggtccgcgtg	cggccaatca	agcaggtggc	gccgggactg	22140
ggcgtgcaga	ccgtggacgt	tcagataccc	actaccagta	gcaccagtat	tgccaccgcc	22200
acagagggca	tggagacaca	aacgtccccg	gttgcctcag	cggtggcgga	tgccgcggtg	22250
caggcggtcg	ctgcggccgc	gtccaagacc	tctacggagg	tgcaaacgga	cccgtggatg	22320
tttcgcgttt	cagccccccg	gegeeegege	ggttcgagga	agtacggcgc	cgccagcgcg	22380
ctactgcccg	aatatgccct	acatccttcc	attgcgccta	ccccggcta	tegtggetae	22440
acctaccgcc	ccagaagacg	agcaactacc	cgacgccgaa	ccaccactgg	aacccgccgc	22500
cgccgtcgcc	gtegecagee	cgtgctggcc	ccgatttccg	tgcgcagggt	ggctcgcgaa	22560
ggaggcagga	ccctggtgct	gccaacagcg	cgctaccacc	ccagcatcgt	ttaaaagccg	22620
gtctttgtgg	ttcttgcaga	tatggccctc	acctgccgcc	tccgtttccc	ggtgccggga	22680
ttccgaggaa	gaatgcaccg	taggaggggc	atggccggcc	acggcctgac	gggcggcatg	22740
cgtcgtgcgc	accaccggcg	gcggcgcgcg	togcacogto	gdatgdgdgg	cggtatcctg	22800
cccctcctta	ttccactgat	cgccgcggcg	attggcgccg	tgcccggaat	tgcatccgtg	22860
gccttgcagg	cgcagagaca	ctgattaaaa	acaagttgca	tgtggaaaaa	tcaaaataaa	22920
aagtctggac	tctcacgctc	gcttggtcct	gtaactattt	tgtagaatgg	aagacatcaa	22980
ctttgcgtct	ctggaccaga	gacacggete	gcgcccgttc	atgggaaact	ggcaagatat	23040
cggcaccagc	aatatgagcg	gtggcgcctt	cagctggggc	tcgctgtgga	gcggcattaa	23100
aaatttcggt	tccaccgtta	agaactatgg	cagcaaggcc	tggaacagca	gcacaggcca	23160
gatgctgagg	gataagttga	aagagcaaaa	tttccaacaa	aaggtggtag	atggcctggc	23220
ctctggcatt	agcggggtgg	tggacctggc	caaccaggca	gtgcaaaata	agattaacag	23280
taagcttgat	ccccgccctc	ccgtagagga	gcctccaccg	gccgtggaga	cagtgtctcc	23340
agaggggcgt	ggcgaaaagc	gtccgcgccc	cgacagggaa	gaaactctgg	tgacgcaaat	23400
agacgagcct	ccctcgtacg	aggaggcact	aaagcaaggc	ctgcccacca	cccgtcccat	23460
egegeceatg	gctaccggag	tgctgggcca	gcacacaccc	gtaacgctgg	acctgcctcc	23520
ccccgccgac	acccagcaga	aacctgtgct	gccaggcccg	accgccgttg	ttgtaacccg	23580
tcctagccgc	gcgtccctgc	gccgcgccgc	cageggteeg	cgatcgttgc	ggcccgtagc	23640
cagtggcaac	tggcaaagca	cactgaacag	catcgtgggt	ctgggggtgc	aatccctgaa	23700

gcgccgacga	tgcttctgaa	tagctaacgt	gtcgtatgtg	tgtcatgtat	gcgtccatgt	23760
cgccgccaga	ggagetgetg	agccgccgcg	agacagattt	ccaagatggc	taccccttcg	23820
atgatgccgc	agtggtetta	catgcacatc	tegggeeagg	acgcctcgga	gtaccigago	23880
cccgggctgg	tgcagtttgc	ccgcgccacc	gagacgtact	tcagcctgaa	taacaagttt	23940
agaaacccca	cggtggcgcc	tacgcacgac	gtgaccacag	accggtccca	gcgtttgacg	24000
ctgcggttca	tccctgtgga	ccgtgaggat	actgcgtact	cgtacaaggc	gcggttcacc	24060
ctagctgtgg	gtgataaccg	tgtgctggac	atggcttcca	cgtactttga	catecgegge	24120
gtgctggaca	ggggccctac	ttttaagccc	tactctggca	ctgcctacaa	cgccctggct	24180
cccaagggtg	ccccaaatcc	ttgcgaatgg	gatgaagctg	ctactgctct	tgaaataaac	24240
ctagaagaag	aggacgatga	caacgaagac	gaagtagacg	agcaagctga	gcagcaaaaa	24300
actcacgtat	ttgggcaggc	gccttattct	ggtataaata	ttacaaagga	gggtattcaa	24360
ataggtgtcg	aaggicaaac	acctaaatat	gccgataaaa	catttcaacc	tgaacctcaa	24420
ataggagaat	ctcagtggta	cgaaactgaa	attaatcatg	cagctgggag	agtccttaaa	24480
aagactaccc	caatgaaacc	atgttacggt	tcatatgcaa	aacccacaaa	tgaaaatgga	24540
gggcaaggca	ttcttgtaaa	gcaacaaaat	ggaaagctag	aaagtcaagt	ggaaatgcaa	24600
tttttctcaa	ctactgaggc	gaccgcaggc	aatggtgata	acttgactcc	taaagtggta	24660
ttgtacagtg	aagatgtaga	tatagaaacc	ccagacactc	atatttctta	catgcccact	24720
attaaggaag	gtaactcacg	agaactaatg	ggccaacaat	ctatgcccaa	caggcctaat	24780
tacattgctt	ttagggacaa	ttttattggt	ctaatgtatt	acaacagcac	gggtaatatg	24840
ggtgttctgg	cgggccaagc	atcgcagttg	aatgctgttg	tagatttgca	agacagaaac	24900
acagagettt	cataccaget	tttgcttgat	tccattggtg	atagaaccag	gtacttttct	24960
atgtggaatc	aggctgttga	cagctatgat	ccagatgtta	gaattattga	aaatcatgga	25020
actgaagatg	aacttccaaa	ttactgcttt	ccactgggag	gtgtgattaa	tacagagact	25080
cttaccaagg	taaaacctaa	aacaggtcag	gaaaatggat	gggaaaaaga	tgctacagaa	25140
ttttcagata	aaaatgaaat	aagagttgga	aataattttg	ccatggaaat	caatctaaat	25200
gccaacctgt	ggagaaattt.	cctgtactcc	aacatagcgc	tgtatttgcc	cgacaagcta	25260
aagtacagtc	cttccaacgt	aaaaatttct	gataacccaa	acacctacga	ctacatgaac	25320
aagcgagtgg	tggctcccgg	gttagtggac	tgctacatta	accttggagc	acgetggtcc	25380
cttgactata	tggacaacgt	caacccattt	aaccaccacc	gcaatgctgg	cctgcgctac	25440
cgctcaatgt	tgctgggcaa	tggtcgctat	gtgcccttcc	acatccaggt	gcctcagaag	25500
ttctttgcca	ttaaaaacct	cettetectg	ccgggctcat	acacctacga	gtggaacttc	25560
	ttaacatggt					25620
gccagcatta	agtttgatag	catttgcctt	tacgccacct	tettececat	ggcccacaac	25680
accgcctcca	cgcttgaggc	catgcttaga	aacgacacca	acgaccagtc	ctttaacgac	25740

tatototocg	ccgccaacat	gctctaccct	ataccegeca	acgctaccaa	cgtgcccata	25800
tocatoccct	cccgcaactg	ggeggettte	cgcggctggg	ccttcacgcg	ccttaagact	25860
aaggaaaccc	catcactggg	ctcgggctac	gacccttatt	acacctactc	tggctctata	25920
ccctacctag	atggaacctt	ttacctcaac	cacaccttta	agaaggtggc	cattaccttt	25980
gactcttctg	tcagctggcc	tggcaatgac	cgcctgctta	cccccaacga	gtttgaaatt	26040
aagcgctcag	ttgacgggga	gggttacaac	gttgcccagt	gtaacatgac	caaagactgg	26100
ttectggtac	aaatgctagc	taactacaac	attggctacc	agggcttcta	tatcccagag	26160
agctacaagg	accgcatgta	ctccttcttt	agaaacttcc	agcccatgag	ccgtcaggtg	26220
gtggatgata	ctaaatacaa	ggactaccaa	caggtgggca	tcctacacca	acacaacaac	26280
tctggatttg	ttggctacct	tgcccccacc	atgcgcgaag	gacaggccta	ccctgctaac	26340
ttcccctatc	cgcttatagg	caagaccgca	gttgacagca	ttacccagaa	aaagtttctt	26400
tgcgatcgca	ccctttggcg	catcccattc	tccagtaact	ttatgtccat	gggegeacte	26460
acagacctgg	gccaaaacct	tctctacgcc	aactccgccc	acgcgctaga	catgactttt	.26520
gaggtggatc	ccatggacga	gcccaccctt	ctttatgttt	tgtttgaagt	ctttgacgtg	26580
gteegtgtge	accggccgca	cegeggegte	atcgaaaccg	tgtacctgcg	cacgcccttc	26640
teggeeggea	acgccacaac	ataaagaagc	aagcaacatc	aacaacagct	gccgccatgg	26700
gctccagtga	gcaggaactg	aaagccattg	tcaaagatct	tggttgtggg	ccatatttt	26760
tgggcaccta	tgacaagcgc	tttccaggct	ttgtttctcc	acacaagctc	gcctgcgcca	26820
tagtcaatac	ggccggtcgc	gagactgggg	gcgtacactg	gatggccttt	gcctggaacc	26880
cgcactcaaa	aacatgctac	ctctttgagc	cctttggctt	ttctgaccag	cgactcaagc	26940
aggtttacca	gtttgagtac	gagtcactcc	tgcgccgtag	cgccattgct	tetteccccg	27000
accgctgtat	aacgctggaa	aagtccaccc	aaagcgtaca	ggggcccaac	teggeegeet	27060
gtggactatt	ctgctgcatg	tttctccacg	cctttgccaa	ctggccccaa	actcccatgg	27120
atcacaaccc	caccatgaac	cttattaccg	gggtacccaa	ctccatgctc	aacagtcccc	27180
aggtacagcc	caccctgcgt	cgcaaccagg	aacagctcta	cagetteetg	gagegeeact	27240
cgccctactt	ccgcagccac	agtgcgcaga	ttaggagcgc	cacttctttt	tgtcacttga	27300
aaaacatgta	aaaataatgt	actagagaca	ctttcaataa	aggcaaatgc	ttttatttgt	27360
acactetegg	gtgattattt	acccccaccc	ttgccgtctg	cgccgtttaa	aaatcaaagg	27420
ggttctgccg	cgcatcgcta	tgcgccactg	gcagggacac	gttgcgatac	tggtgtttag	27480
tgctccactt	aaactcaggc	acaaccatcc	gcggcagctc	ggtgaagttt	tcactccaca	27540
ggctgcgcac	catcaccaac	gcgtttagca	ggtegggege	cgatatcttg	aagtcgcagt	27600
tggggcctcc	gccctgcgcg	cgcgagttgc	gatacacagg	gttgcagcac	tggaacacta	27660
tcagcgccgg	gtggtgcacg	ctggccagca	cgctcttgtc	ggagatcaga	teegegteea	27720
ggtcctccgc	gttgctcagg	gcgaacggag	tcaactttgg	tagetgeett	cccaaaaagg	27780

gcgcgtgccc	aggctttgag	ttgcactcgc	accgtagtgg	catcaaaagg	tgaccgtgcc	27840
cggtatggga	gttaggatac	agcgcctgca	taaaagcctt	gatetgetta	aaagccacct	27900
gagcctttgc	gccttcagag	aagaacatgc	cgcaagactt	gccggaaaac	tgattggccg	27960
gacaggccgc	gtcgtgcacg	cagcaccttg	cgtcggtgtt	ggagatetge	accacatttc	28020
ggccccaccg	gttcttcacg	atcttggcct	tgctagactg	ctccttcagc	gcgcgctgcc	28080
cgttttcgct	cgtcacatcc	atttcaatca	cgtgctcctt	atttatcata	atgetteegt	28140
gtagacactt	aagctcgcct	tcgatctcag	cgcagcggtg	cagccacaac	gcgcagcccg	28200
tgggctcgtg	atgcttgtag	gtcacctctg	caaacgactg	caggtacgcc	tgcaggaatc	28260
gccccatcat	cgtcacaaag	gtcttgttgc	tggtgaaggt	cagetgeaac	ccgcggtgct	28320
cctcgttcag	ccaggtcttg	catacggccg	ccagagcttc	cacttggtca	ggcagtagtt	28380
tgaagttcgc	ctttagatcg	ttatccacgt	ggtacttgtc	catcagegeg	cgcgcagcct	28440
ccatgccctt	ctcccacgca	gacacgatcg	gcacactcag	cgggttcatc	accgtaattt	28500
cactttccgc	ttcgctgggc	tetteetett	cctcttgcgt	ccgcatacca	cgcgccactg	28560
ggtcgtcttc	attcagccgc	cgcactgtgc	gcttacctcc	tttgccatgc	ttgattagca	28620
ccggtgggtt	gctgaaaccc	accatttgta	gcgccacatc	ttctctttct	tectegetgt	28680
ccacgattac	ctctggtgat	ggcgggcgct	cgggcttggg	agaagggcgc	ttctttttct	28740
tcttgggcgc	aatggccaaa	teegeegeeg	aggtcgatgg	ccgcgggctg	ggtgtgcgcg	28800
gcaccagege	gtcttgtgat	gagtcttcct	cgtcctcgga	ctcgatacgc	cgcctcatcc	28860
gcttttttgg	gggcgcccgg	ggaggcggcg	gcgacgggga	cggggacgac	acgtcctcca	28920
tggttggggg	acgtcgcgcc	gcaccgcgtc	cgcgctcggg	ggtggtttcg	agatgataat	28980
cttcccgact	ggccatttcc	ttctcctata	ggcagaaaaa	gatcatggag	tcagtcgaga	29040
agaaggacag	cctaaccgcc	ccctctgagt	togocaccac	cgcctccacc	gatgccgcca	29100
acgcgcctac	caccttcccc	gtcgaggcac	ccccgcttga	ggaggaggaa	gtgattatcg	29160
agcaggaccc	aggttttgta	agcgaagacg	acgaggaccg	ctcagtacca	acagaggata	29220
aaaagcaaga	ccaggacaac	gcagaggcaa	acgaggaaca	agtcgggcgg	ggggacgaaa	29280
ggcatggcga	ctacctagat	gtgggagacg	acgtgctgtt	gaagcatctg	cagegeeagt	29340
gcgccattat	ctgcgacgcg	ttgcaagagc	gcagcgatgt	gcccctcgcc	atagcggatg	29400
tcagccttgc	ctacgaacgc	cacctattct	caccgcgcgt	accccccaaa	cgccaagaaa	29460
acggcacatg	cgageccaac	ccgcgcctca	acttctaccc	cgtatttgcc	gtgccagagg	29520
tgcttgccac	ctatcacatc	tttttccaaa	actgcaagat	acccetatee	tgccgtgcca	29580
accgcagccg	agcggacaag	cagctggcct	tgcggcaggg	cgctgtcata	cctgatatcg	29640
cctcgctcaa	cgaagtgcca	aaaatctttg	agggtcttgg	acgegacgag	aagcgcgcgg	29700
caaacgctct	gcaacaggaa	aacagcgaaa	atgaaagtca	ctctggagtg	ttggtggaac.	29760
togagggtga	caacgcgcgc	ctagccgtac	taaaacgcag	categaggte	acccactttg	29820

cctaccegge actt	aaccta ccccccaag	g tcatgagcac	agtcatgagt	gagctgatcg	29880
tgcgccgtgc gcag	sccctg gagagggat	g caaatttgca	agaacaaaca	gaggagggcc	29940
taccegeagt tggc	gacgag cagetageg	getggettea	aacgcgcgag	cctgccgact	30000
tggaggagcg acgc	aaacta atgatggcc	g cagtgetegt	taccgtggag	cttgagtgca	30060
tgeageggtt ettt	getgae eeggagatg	agcgcaagct	agaggaaaca	ttgcactaca	30120
cctttcgaca gggc	tacgta cgccaggcc	gcaagatctc	caacgtggag	ctctgcaacc	30180
tggtctccta cctt	ggaatt ttgcacgaa	accgccttgg	gcaaaacgtg	cttcattcca	30240
cgctcaaggg cgag	ggegege egegaetae	g teegegaetg	cgtttactta	tttctatgct	30300
acacctggca gacg	gccatg ggcgtttgg	agcagtgctt	ggaggagtgc	aacctcaagg	30360
agctgcagaa actg	ctaaag caaaacttg	aggacctatg	gacggccttc	aacgagcgct	30420
ccgtggccgc gcac	ctggcg gacatcatt	tccccgaacg	cctgcttaaa	accctgcaac	30480
agggtctgcc agac	ttcacc agtcaaagc	a tgttgcagaa	ctttaggaac	tttatcctag	30540
agogotčagg aato	ttgccc gccacctgc	: gtgcacttcc	tagcgacttt	gtgcccatta	30600
agtaccgcga atgc	cctccg ccgctttgg	gccactgcta	ccttctgcag	ctagccaact	30660
accttgccta ccac	tctgac ataatggaag	, acgtgagcgg	tgacggtcta	ctggagtgtc	30720
actgtcgctg caac	ctatge acccegeace	: gctccctggt	ttgcaattcg	cagctgctta	30780
acgaaagtca aatt	ateggt acctttgage	tgcagggtcc	ctcgcctgac	gaaaagtccg	30840
eggeteeggg gttg	saactc actccgggg	: tgtggacgtc	ggcttacctt	cgcaaatttg	30900
taccigagga ctac	cacgcc cacgagatta	ggttctacga	agaccaatcc	cgcccgccaa	30960
atgeggaget tace	gootgo gtoattacco	agggccacat	tcttggccaa	ttgcaagcca	31020
tcaacaaagc ccgc	caagag tttctgctad	gaaagggacg	gggggtttac	ttggaccccc	31080
agtccggcga ggag	retease ceasteces	cgccgccgca	gccctatcag	cagcagccgc	31140
gggcccttgc ttcc	caggat ggcacccaaa	aagaagctgc	agctgccgcc	gccacccacg	31200
gacgaggagg aata	ıctggga cagtcaggca	ı gaggaggttt	tggacgagga	ggaggaggac	31260
atgatggaag actg	ggagag cctagacgag	gaagetteeg	aggtcgaaga	ggtgtcagac	31320
gaaacaccgt cacc	eteggt egeatteec	tegeeggege	cccagaaatc	ggcaaccggt	31380
tocageatgg ctac	aacete egeteeteag	l dedeedeedd	cactgcccgt	tegeegaeee	31440
aaccgtagat ggga	caccac tggaaccag	gccggtaagt	ccaagcagcc	gccgccgtta	31500
gcccaagagc aaca	acageg ceaaggetad	cgctcatggc	gcgggcacaa	gaacgccata	31560
grigcitger tgea	agactg tgggggcaad	: atctccttcg	cccgccgctt	tettetetae	31620
catcacggcg tggc	cttccc ccgtaacato	ctgcattact	accgtcatct	ctacagccca	31680
tactgcaccg gcgg	cagogg cagoggoago	aacagcagcg	gccacacaga	agcaaaggcg	31740
accggatago aaga	ictetga caaageecaa	gaaatccaca	gcggcggcag	cadcaddadd	31800
aggagegetg egte	tggcgc ccaacgaac	cgtatcgacc	cgcgagctta	gaaacaggat .	31860

ttttcccact	ctgtatgcta	tatttcaaca	gagcaggggc	caagaacaag	agctgaaaat	31920
aaaaaacagg	tctctgcgat	ccctcacccg	cagetgeetg	tatcacaaaa	gcgaagatca	31980
gcttcggcgc	acgctggaag	acgcggaggc	tctcttcagt	aaatactgcg	cgctgactct	32040
taaggactag	tttcgcgccc	tttctcaaat	ttaagcgcga	aaactacgtc	atctccagcg	32100
gccacacccg	gcgccagcac	ctgtcgtczg	cgccattatg	agcaaggaaa	ttcccacgcc	32160
ctacatgtgg	agttaccagc	cacaaatggg	acttgcggct	ggagetgecs	aagactactc	32220
aacccgaata	aactacatga	gcgcgggacc	ccacatgata	tcccgggtca	acggaatccg	32280
cgcccaccga	aaccgaattc	tcttggaaca	ggcggctatt	accaccacac	ctcgtaataa	32340
ccttaatccc	cgtagttggc	ccgetgccct	ggtgtaccag	gaaagtcccg	ctcccaccac	32400
tgtggtactt	cccagagacg	cccaggccga	agttcagatg	actaactcag	gggcgcagct	32460
tgcgggcggc	tttcgtcaca	gggtgcggtc	gcccgggcag	qqtataactc	acctgacaat	32520
cagagggcga	ggtattcagc	tcaacgacga	gtcggtgagc	tcctcgcttg	gtctccgtcc	32580
ggacgggaca	tttcagatcg	gcggcgccgg	ccgtccttca	ttcacgcctc	gtcaggcaat	32640
cctaactctg	cagacctcgt	cctctgagcc	gcgctctgga	ggcattggaa	ctctgcaatt	32700
tattgaggag	tttgtgccat	cggtctactt	taaccccttc	tegggaeete	ceggecacta	32760
tccggatcaa	tttattccta	actttgacgc	ggtaaaggac	tcggcggacg	gctacgactg	32820
aatgttaagt	ggagaggcag	agcaactgcg	cctgaaacac	ctggtccact	gtcgccgcca	32880
caagigettt	gcccgcgact	ccgctgagtt	ttgctacttt	gaattgcccg	aggatcatat	32940
cgagggcccg	gcgcacggcg	tccggcttac	cgcccaggga	gagettgece	gtagcctgat	33000
tcgggagttt	acccagcgcc	ccctgctagt	tgagcgggac	aggggaccct	gtgttctcac	33060
tgtgatttgc	aactgtccta	accttggatt	acatcaagat	cctctagtta	taactagagt	33120
acccggggat	cttattccct	ttaactaata	aaaaaaata	ataaagcatc	acttacttaa	33180
aatcagttag	caaatttctg	tccagtttat	tcagcagcac	ctccttgccc	tcctcccagc	.33240
tctggtattg	cagcitecte	ctggctgcaa	actttctcca	caatctaaat	ggaatgtcag	33300
tttcctcctg	ttcctgtcca	teegeaccea	ctatcttcat	gttgttgcag	atgaagcgcg	33360
caagaccgtc	tgaagatacc	ttcaaccccg	tgtatccata	tgacacggaa	accggtcctc	33420
caactgtgcc	ttttcttact	cctccctttg	tatcccccaa	tgggtttcaa	gagagtcccc	33480
ctggggtact	ctatttgaga	ctatccgaac	ctctagttac	ctccaatggc	atgcttgcgc	33540
tcaaaatggg	caacggcete	tctctggacg	aggccggcaa	ccttacctcc	caaaatgtaa	33600
ccactgtgag	cccacctctc	aaaaaacca	agtcaaacat	aaacctggaa	atatctgcac	33660
ccctcacagt	tacctcagaa	gccctaactg	tggctgccgc	cgcacctcta	atggtcgcgg	33720
gcaacacact	caccatgcaa	tcacaggccc	cgctaaccgt	gcacgactcc	aaacttagca	33780
tigccaccca	aggacccccc	acagtgtcag	aaggaaagct	agccctgcaa	acatcaggcc	33840
ccctcaccac	caccgatagc	agtaccctta	ctatcactgc	ctcaccccct	ctaactactg	33900

	ccactggtag	cttgggcatt	gacttgaaag	agcccattta	tacacaaaat	ggaaaactag	33960
	gactaaagta	cggggctcct	ttgcatgtaa	cagacgacct	aaacactttg	accgtagcaa	34020
	ctggtccagg	tgtgactatt	aataatactt	ccttgcaaac	taaagttact	ggagccttgg	34080
	gttttgattc	acaaggcaat	atgcaactta	atgtagcagg	aggactaagg	attgattctc	34140
	aaaacagacg	ccttatactt	gatgttagtt	atccgtttga	tgctcaaaac	caactaaatc	34200
	taagactagg	acagggccct	ctttttataa	acteagecea	caacttggat	attaactaca	34260
	acaaaggcct	ttacttgttt	acagcttcaa	acaattccaa	aaagcttgag	gttaacctaa	34320
	gcactgccaa	ggggttgatg	tttgacgcta	cagccatagc	cattaatgca	ggagatgggc	34380
	ttgaatttgg	ttcacctaat	gcaccaaaca	caaatcccct	caaaacaaaa	attggccatg	34440
	gcctagaatt	tgattcaaac	aaggctatgg	ttcctaaact	aggaactggc	cttagttttg	34500
	acagcacagg	tgccattaca	gtaggaaaca	aaaataatga	taagctaact	ttgtggacca	34560
	caccagetec	atctcctaac	tgtagactaa	atgcagagaa	agatgctaaa	ctcactttgg	34620
	tcttaacaaa	atgtggcagt	caaatacttg	ctacagtttc	agttttggct	gttaaaggca	34680
	gtttggctcc	aatatctgga	acagttcaaa	gtgctcatct	tattataaga	tttgacgaaa	34740
,	atggagtgct	actaaacaat	teetteetgg	acccagaata	ttggaacttt	agaaatggag	34800
	atcttactga	aggcacagcc	tatacaaacg	ctgttggatt	tatgcctaac	ctatcagett	34860
	atccaaaatc	tcacggtaaa	actgccaaaa	gtaacattgt.	cagtcaagtt	tacttaaacg	34920
	gagacaaaac	taaacctgta	acactaacca	ttacactaaa	cggtacacag	gaaacaggag	34980
	acacaactcc	aagtgcatac	tctatgtcat	tttcatggga	ctggtctggc	cacaactaca	35040
	ttaatgaaat	atttgccaca	tcctcttaca	ctttttcata	cattgcccaa	gaataaagaa	35100
	tcgtttgtgt	tatgtttcaa	cgtgtttatt	tttcaattgc	agaaaatttc	aagtcatttt	35160
	tcattcagta	gtatagcccc	accaccacat	agcttataca	gatcaccgta	ccttaatcaa	35220
	actcacagaa	ccctagtatt	caacctgcca	cctccctccc	aacacacaga	gtacacagtc	35280
	ctttctcccc	ggctggcctt	aaaaagcatc	atatcatggg	taacagacat	attcttaggt	35340
	gttatattcc	acacggtttc	ctgtcgagcc	aaacgctcat	cagtgatatt	aataaactcc	35400
	ccgggcagct	cacttaagtt	catgtcgctg	tccagctgct	gagccacagg	ctgctgtcca	35460
	acttgcggtt	gcttaacggg	cggcgaagga	gaagtccacg	cctacatggg	ggtagagtca	35520
	taatcgtgca	tcaggatagg	gcggtggtgc	tgcagcagcg	cgcgaataaa	ctgctgccgc	35580
	cgccgctccg	tcctgcagga	atacaacatg	gcagtggtct	cctcagcgat	gattcgcacc	35640
	gcccgcagca	taaggcgcct	tgtcctccgg	gcacagcagc	gcaccctgat	ctcacttaaa	35700
	tcagcacagt	aactgcagca	cagcaccaca	atattgttca	aaatcccaca	gtgcaaggcg	35760
	ctgtatccaa	agctcatggc	ggggaccaca	gaacccacgt	ggccatcata	ccacaagcgc	35820
	aggtagatta	agtggcgacc	cetcataaac	acgetggaca	taaacattac	ctcttttggc	35880
	atgttgtaat	tcaccacctc	ccggtaccat	ataaacctct	gattaaacat	ggcgccatcc	35940

accaccatcc	taaaccagct	ggccaaaacc	tgcccgccgg	ctatacactg	cagggaaccg	36000
ggactggaac	aatgacagtg	gagagcccag	gactcgtaac	catggatcat	catgctcgtc	36060
atgatatcaa	tgttggcaca	acacaggcac	acgtgcatac	acttcctcag	gattacaagc	36120
tactacagag	ttagaaccat	atcccaggga	acaacccatt	cctgaatcag	cgtaaatccc	36180
acactgcagg	gaagacctcg	cacgtaactc	acgttgtgca	ttgtcaaagt	gttacattcg	36240
ggcagcagcg	gatgatcctc	cagtatggta	gcgcgggttt	ctgtctcaaa	aggaggtaga	36300
cgatccctac	tgtacggagt	gcgccgagac	aaccgagatc	gtgttggtcg	tagtgtcatg	36360
ccaaatggaa	cgccggacgt	agtcatattt	cctgaagcaa	aaccaggtgc	gggcgtgaca	36420
aacagatctg	cgtctccggt	ctcgccgctt	agategetet	gtgtagtagt	tgtagtatat	36480
ccactctctc	aaagcatcca	ggcgccccct	ggcttcgggt	tctatgtaaa	ctccttcatg	36540
cgccgctgcc	ctgataacat	ccaccaccgc	agaataagcc	acacccagec	aacctacaca	36600
ttcgttctgc	gagtcacaca	cgggaggagc	gggaagagct	ggaagaacca	tgttttttt	36660
tttattccaa	aagattatcc	aaaacctcaa	aatgaagatc	tattaagtga	acgegeteec	36720
ctccggtggc	gtggtcaaac	tctacagcca	aagaacagat	aatggcattt	gtaagatgtt	36780
gcacaatggc	ttccaaaagg	caaacggccc	tcacgtccaa	gtggacgtaa	aggetaaacc	36840
cttcagggtg	aatctcctct	ataaacattc	cagcaccttc	aaccatgccc	aaataattct	36900
catctcgcca	ccttctcaat	atatctctaa	gcaaatcccg	aatattaagt	ccggccattg	36960
taaaaatctg	ctccagageg	ccctccacct	tcagcctcaa	gcagcgaatc	atgattgcaa	37020
aaattcaggt	tcctcacaga	cctgtataag	attcaaaagc	ggaacattaa	caaaaatacc	37080
gegatecegt	aggteectte	geagggeeag	ctgaacataa	tcgtgcaggt	ctgcacggac	37140
cagegeggee	acttccccgc	caggaacett	gacaaaagaa	cccacactga	ttatgacacg	37200
catactcgga	gctatgctaa	ccagcgtagc	cccgatgtaa	gctttgttgc	atgggcggcg	37260
atataaaatg	caaggtgctg	ctcaaaaaat	caggcaaagc	ctcgcgcaaa	aaagaaagca	37320
categtagte	atgctcatgc	agataaaggc	aggtaagctc	cggaaccacc	acagaaaaag	37380
acaccatttt	tctctcaaac	atgtctgcgg	gtttctgcat	aaacacaaaa	taaaataaca	37440
aaaaaacatt	taaacattag	aagcctgtct	tacaacagga	aaaacaaccc	ttataagcat	37500
aagacggact	acggccatgc	cggcgtgacc	gtaaaaaaac	tggtcaccgt	gattaaaaag	37560
caccaccgac	agctcctcgg	tcatgtccgg	agtcataatg	taagactcgg	taaacacatc	37620
aggttgattc	atcggtcagt	gctaaaaagc	gaccgaaata	gcccggggga	atacataccc	37680
gcaggcgtag	agacaacatt	acagececca	taggaggtat	aacaaaatta	ataggagaga	37740
aaaacacata	aacacctgaa	aaaccctcct	gcctaggcaa	aatagcaccc	tcccgctcca	37800
gaacaacata	cagcgcttca	cagcggcagc	ctaacagtca	gccttaccag	taaaaaagaa	37860
aacctattaa	aaaaacacca	cccgacacgg	caccagetca	atcagtcaca	gtgtaaaaaa	37920
gggccaagtg	cagagcgagt	atatatagga	ctaaaaaatg	acgtaacggt	taaagtccac	37980

aaaaaacacc	cagaaaaccg	cacgcgaacc	tacgcccaga	aacgaaagcc	aaaaaccca	38040
caacttcctc	aaatcgtcac	ttccgttttc	ccacgttacg	taacttccca	ttttaagaaa	38100
actacaattc	ccaacacata	caagttactc	cgccctaaaa	cctacgtcac	ccgccccgtt	38160
cccacgcccc	gcgccacgtc	acaaactcca	ccccctcatt	atcatattgg	cttcaatcca	38220
aaataaqqta	tattattgat	gatnnn				38246

REIVINDICACIONES

1. Vector adenoviral, que comprende secuencias de ácido nucleico que codifican para interleucina (IL)-12 de cadena sencilla y la proteína coestimuladora ligando 4-1BB.

5

10

25

30

35

45

50

55

- 2. Vector según la reivindicación 1, caracterizado porque la expresión de la secuencia que codifica para la proteína coestimuladora ligando 4-1BB en una célula humana provoca que la proteína coestimuladora ligando 4-1BB se encuentre en la superficie de la célula y que puedan unirse específicamente a la misma receptores existentes en la superficie de células T.
- 3. Vector según la reivindicación 1 ó 2, caracterizado porque la proteína coestimuladora ligando 4-1BB presenta una homología de secuencia de por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la SEC ID NO. 4, y presenta la capacidad de unirse específicamente a células T y de potenciar la reacción inmunitaria.
- 4. Vector según una de las reivindicaciones 1 a 3, caracterizado porque la IL-12 de cadena sencilla presenta una homología de secuencia de por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la SEC ID NO. 2 y SEC ID NO. 3, y presenta una actividad inmunoestimulante.
- 5. Vector según una de las reivindicaciones 1 a 4, caracterizado porque el ácido nucleico comprende además unas secuencias, que codifican para citocinas, para proteínas con actividad citocina y/o para proteínas coestimuladoras.
 - 6. Vector según una de las reivindicaciones 1 a 5, caracterizado porque el ácido nucleico comprende además una secuencia que codifica para IL-2, presentando esta secuencia una homología de secuencia de por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la SEC ID NO. 5, y presentando la proteína codificada por la secuencia una actividad inmunoestimulante.
 - 7. Vector según una de las reivindicaciones 1 a 6, caracterizado porque el ácido nucleico comprende además unas secuencias, que codifican para una o varias proteínas coestimuladoras, presentando esta secuencia una homología de secuencia de por lo menos el 70%, por lo menos el 80% o por lo menos el 90% con la SEC ID NO. 6 (B7-1) o SEC ID NO. 7 (B7-2), y presentando la proteína codificada por la secuencia la capacidad de unirse específicamente a células T y de potenciar la reacción inmunitaria.
 - 8. Vector según una de las reivindicaciones 1 a 7, caracterizado porque el ácido nucleico comprende unas secuencias, que presentan una homología de secuencia de por lo menos el 90% con la secuencia mostrada en la SEC ID NO. 2 y 3 (IL-12), en la SEC ID NO. 4 (ligando 4-1BB), en la SEC ID NO. 5 (IL-2) y una de las mostradas en la SEC ID NO. 6 (B7-1) o 7 (B7-2) y codifican, respectivamente, para una proteína, que presenta la actividad de la proteína natural correspondiente.
- 9. Vector según una de las reivindicaciones 1 a 8, caracterizado porque el ácido nucleico comprende además uno o varios promotores y uno o varios sitios de entrada de ribosoma.
 - 10. Vector según una de las reivindicaciones 1 a 9, caracterizado porque en el caso del vector adenoviral se trata de un vector adenoviral de primera o segunda generación (deleción en E1, E2, E3, E4, etc.) o de un vector adenoviral dependiente de un auxiliar.
 - 11. Vector según la reivindicación 6, caracterizado porque el vector contiene secuencias de ácido nucleico que presentan una homología de secuencia de por lo menos el 90% con la SEC ID NO. 2 y 3, SEC ID NO. 4, SEC. ID NO. 5 y dado el caso SEC ID NO. 6 o 7 y codifican, respectivamente, para una proteína que presenta la actividad de la proteína natural correspondiente.
 - 12. Vector según la reivindicación 11, caracterizado además porque comprende las siguientes características:
 - (a) el vector presenta un promotor no específico de tumor, que provoca la expresión de todas las secuencias génicas que codifican para proteínas inmunoestimuladoras; y
 - (b) el vector presenta antes de cada secuencia génica, que no se encuentra directamente detrás del promotor mencionado en (a), una secuencia IRES.
- 13. Partícula viral, caracterizada porque la partícula viral comprende vectores según una de las reivindicaciones 1 a 60 12.
 - 14. Fármaco, caracterizado porque comprende vectores según una de las reivindicaciones 1 a 12 o partículas virales según la reivindicación 13.
- 15. Fármaco según la reivindicación 14, caracterizado porque el vector se encuentra en una concentración de no más de 1 x 10¹¹, preferentemente no más de 1 x 10¹⁰, no más de 1 x 10⁹, 1 x 10⁷ o 1 x 10⁶, por unidad de

dosificación.

5

- 16. Fármaco según la reivindicación 14 o 15, caracterizado porque el fármaco está formulado como disolución para inyección intratumoral o como material de soporte, que libera el vector tras la implantación en el tumor a lo largo de un determinado periodo de tiempo.
- 17. Fármaco, caracterizado porque comprende vectores según una de las reivindicaciones 1 a 12 o partículas virales según la reivindicación 13, para el tratamiento de enfermedades infecciosas o enfermedades por priones.
- 10 18. Fármaco según la reivindicación 17 para el tratamiento según la reivindicación 17, caracterizado porque la infección está provocada por el virus de la inmunodeficiencia humana (VIH), por el virus de la hepatitis tipo A, B o C (VHA, VHB, VHC), por el citomegalovirus (CMV) o por virus de papiloma humano VPH.

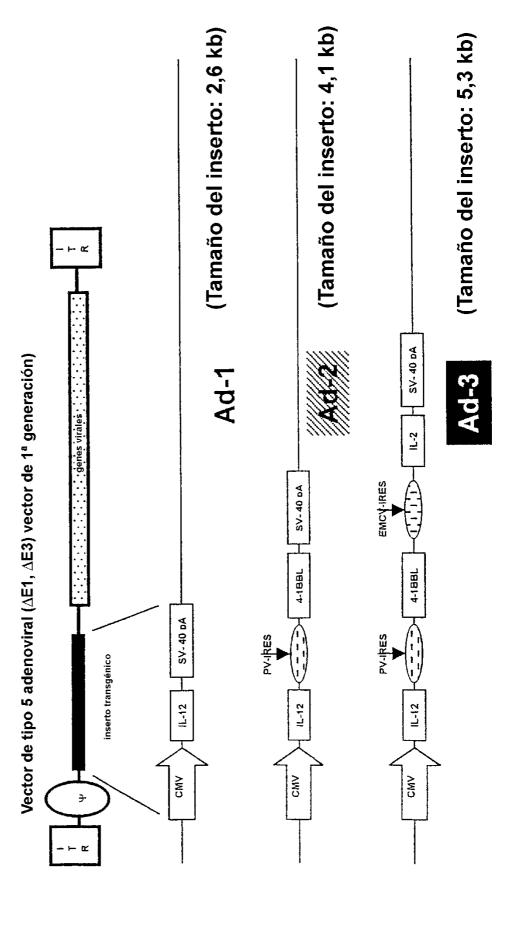
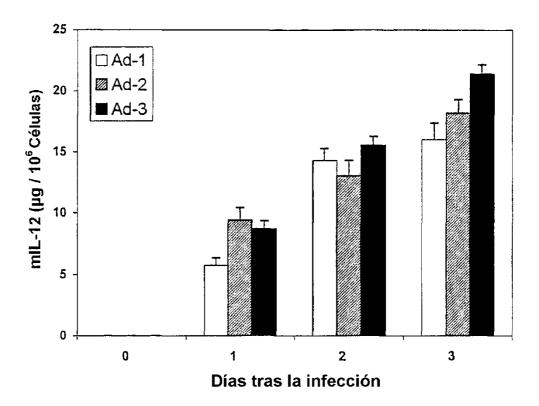
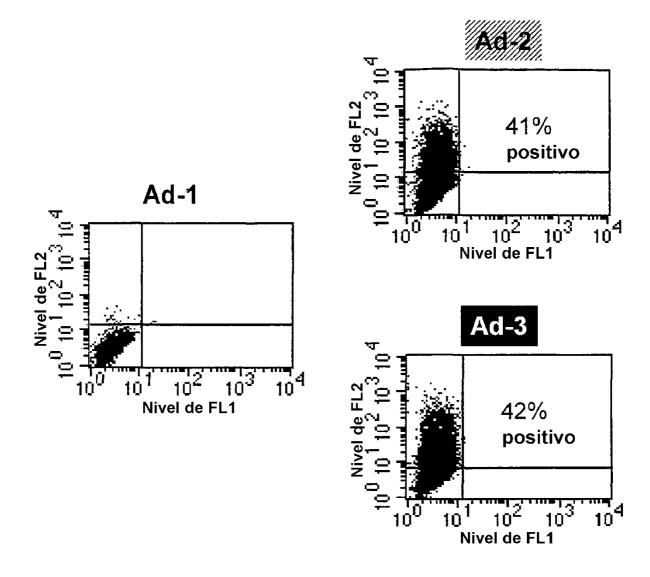



Fig. 1:

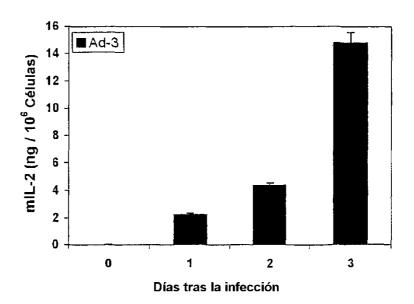
Fig. 2: Determinación de la presencia de interleucina en sobrenadantes de cultivo celular


Nivel de IL-12 expresado por Ad-1, Ad-2, Ad-3 tras la equiparación.

Las cantidades de vector, que deben utilizarse para los experimentos con animales, se ajustaron con respecto a la expresión idéntica de interleucina-12.

La figura muestra la evolución en el tiempo de la expresión a lo largo de 3 días en las células de hepatoma de rata McA-RH7777.

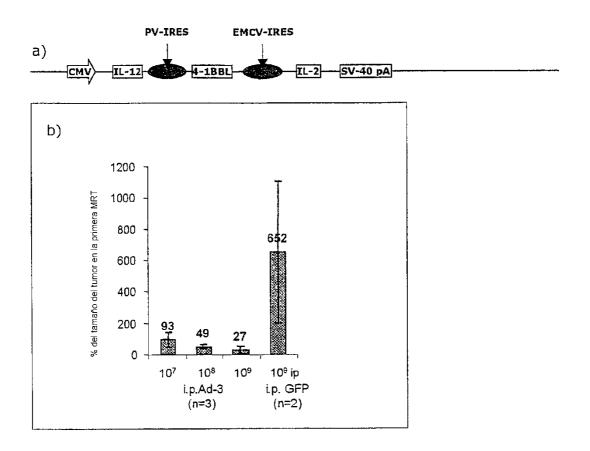
Procedimiento: se infectaron células McA-RH7777 a una "multiplicidad de infección" (MOI) de 10 con Ad-1, Ad-2 o Ad-3. Se acumularon los sobrenadantes en los días 0, 1, 2, y 3 tras la infección. Se determinaron las concentraciones de scIL-12 por medio de ELISA con un anticuerpo anti-IL-12p70 de ratón (Pharmingen).


Fig. 3: Comprobación de la presencia de 4-1BBL en el cultivo celular:

Determinación por citometría de flujo de la expresión de 4-1BBL. Ad-2 y Ad-3 expresan 4-1BBL, Ad-1 no lo expresa.

Procedimiento: se infectaron células McA-RH7777 con las concentraciones virales equiparadas a MOI 10 con Ad-1, Ad-2 o Ad-3. Se recogieron las células 24 h tras la infección y se incubaron con un anticuerpo monoclonal de rata anti-4-1BBL de ratón (TKS-1, Pharmingen) y se tiñeron con anticuerpo policional de cabra anti-lg de rata conjugado con R-PE (Pharmingen).

Fig. 4: Expresión de interleucina 2 en el cultivo celular



Expresión de IL-2 in vitro en células McA-RH7777 a lo largo de 3 días.

Ad-3 expresa en moles 466 veces más IL-12 que IL-2 (calculado para el día 3).

Procedimiento: se infectaron células McA-RH7777 con Ad-3 a MOI 10. Se acumularon los sobrenadantes en el día 0, 1, 2, 3. Se determinaron las concentraciones de IL-2 por medio de ELISA utilizando un anticuerpo anti-IL-2 de ratón (Pharmingen).

Fig. 5: Estudio de ajuste a escala de la dosis

Variación del tamaño del tumor en el plazo de 9 días tras el tratamiento con Ad3.

Se midieron los volúmenes tumorales por medio de MRT en un intervalo de 9 días. El tamaño de referencia del 100% se refiere al tamaño del tumor en el día 3 tras la inyección del virus (1ª MRT), el tamaño final mostrado en este caso se midió en el día 12 tras la administración del virus (2ª MRT). Se infectó el vector Ad3 (a) en las dosis indicadas (i.p. = partículas infecciosas) en tumores con un tamaño de entre 7 y 11 mm de diámetro (b).

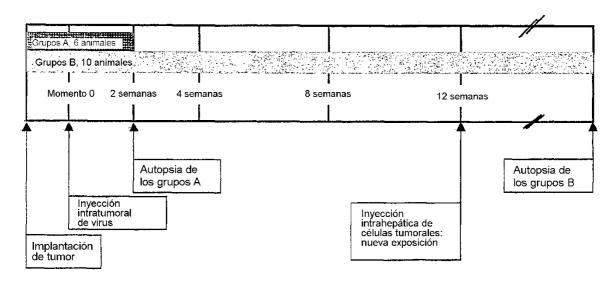

10⁷ Ad-3 93% 10⁸ Ad-3 49% 109 Ad-3 27% 10° Ad-GFP Día 3 tras la inyección Día 12 tras la inyección

Fig. 6: Imágenes de MRT del estudio de ajuste a escala de la dosis

Examen de MRT para la determinación no invasiva de los tamaños de los tumores.

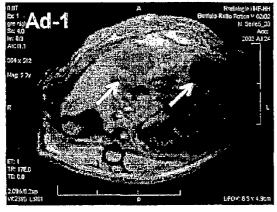
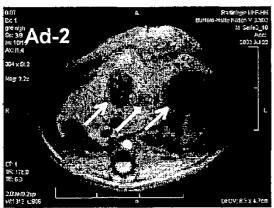
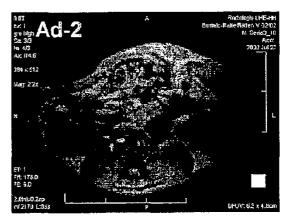
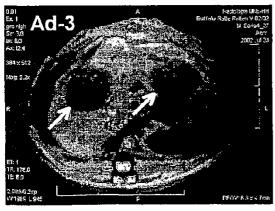
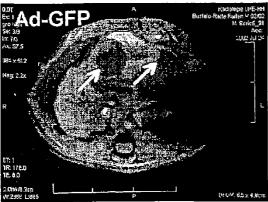
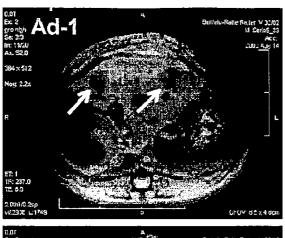
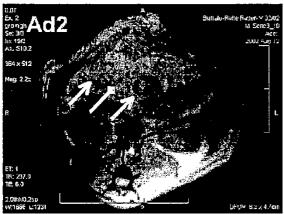
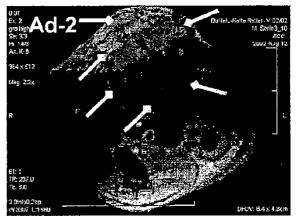

Se examinaron tumores, que se habían tratado con de 10^7 a 10^9 partículas virales infecciosas Ad-3 o con 10^9 partículas infecciosas Ad-GFP (control), en el día 3 y el día 12 tras la inyección.

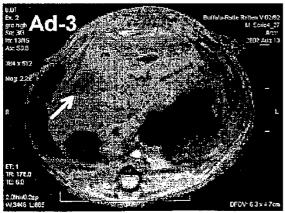
Fig. 7

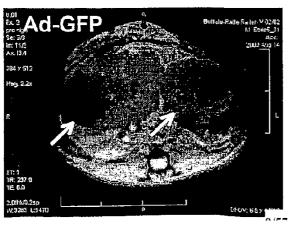


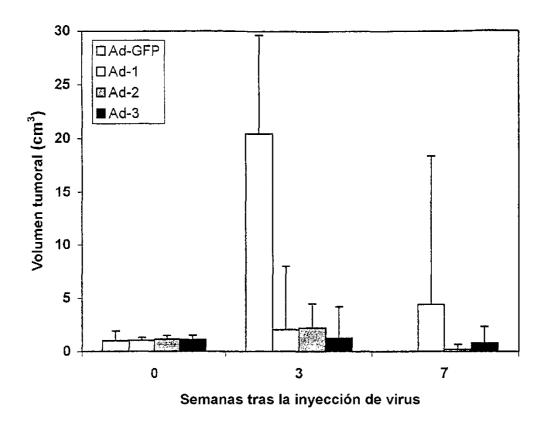

Desarrollo esquemático en el tiempo de la evaluación de Ad1, Ad2, Ad3.


Fig. 8: Tumores antes de la inyección de virus, semana 0


Fig. 9: Tumores después de la inyección de virus, semana 3



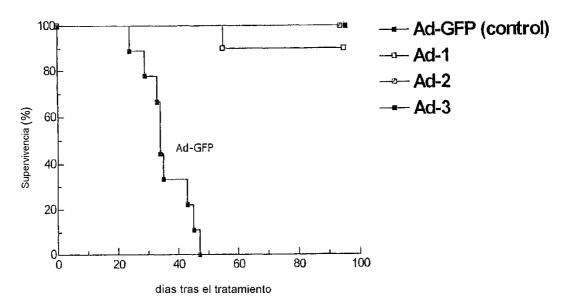


Ad-1 Tumor trasplantado Metástasis tejido libre de tumor DFOW: 65×4.8cm Ad-2 Ad-GFP Metastasen in der Lunge

Fig. 10: Tumores después de la inyección de virus, semana 7

DFOV: 4.8 x 6.4cm

Fig. 11



Evolución en 7 semanas de los tamaños de tumor, calculados a partir de los datos de MRT.

Procedimientos: se monitorizaron los volúmenes tumorales totales mediante MRT: un día antes, así como 3 y 7 semanas después de la administración de virus se determinaron los tamaños. Grupo control Ad-GFP: 9 animales; grupos tratados de manera inmunitaria: en cada caso 10 animales en los grupos Ad-1, Ad-2 y Ad-3.

En el grupo Ad-1 sólo una rata mostró un crecimiento tumoral progresivo. Todos los animales del grupo control murieron en el plazo de 7 semanas.

Fig. 12:

Tasas de supervivencia a largo plazo en los grupos tratados hasta 100 días tras la inyección de virus:

Todos los animales del grupo control (Ad-GFP) murieron en el plazo de 7 semanas.

Fig. 13: pTrident3:

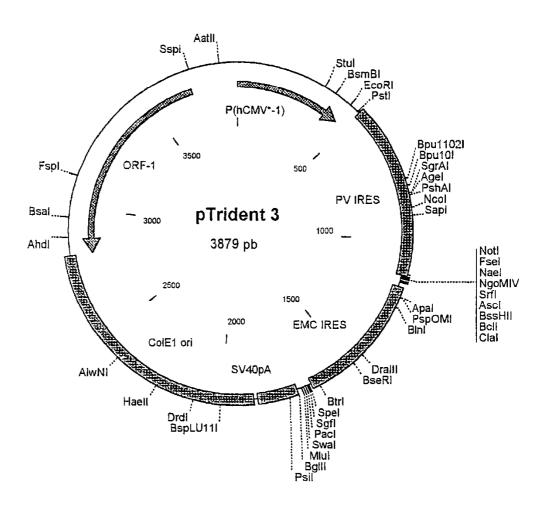


Fig. 14: pShuttle [CMV]IL:12[IRES]4-1BBL[IRES]IL-2

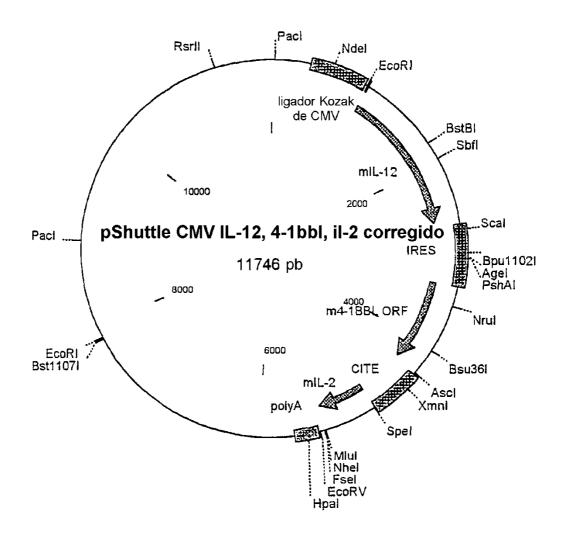


Fig. 15: pShuttle [CMV]IL12[IRES]4-1BBL

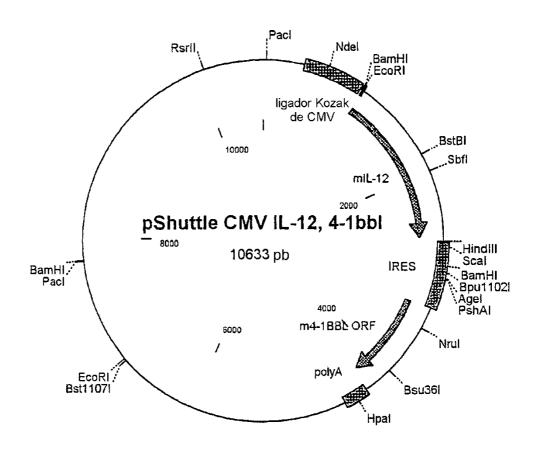


Fig. 16: pshuttle [CMV]IL12

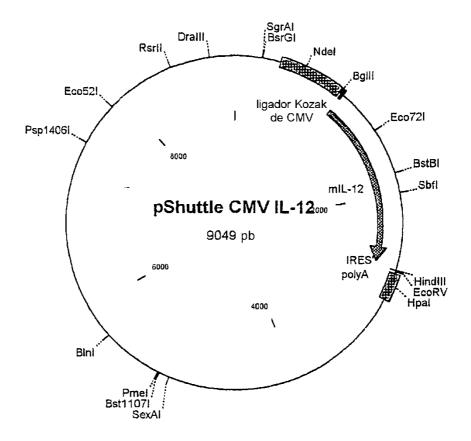


Fig. 17 Mapa del plásmido pAd-3

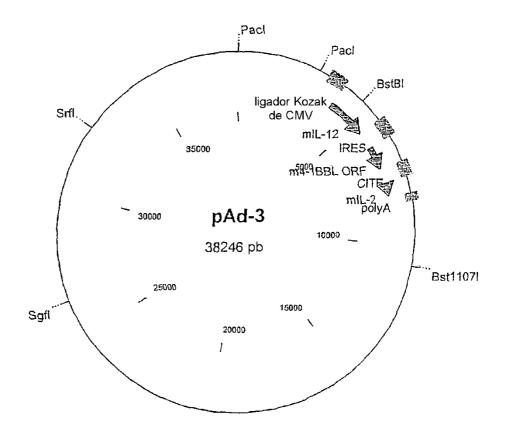


Fig. 18

Secuencia del casete de expresión tricistrónicos (con los ADN murinos), corresponde al inserto de Ad-3 de la figura 1.

TAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATA ATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAG TATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCC CCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTA TGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATG CGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGT CTCCACCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCA AAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAG GTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGAGATCTGGATCCGAA TTCGCCGCCACCATGGGTCCTCAGAAGCTAACCATCTCCTGGTTTGCCATCGTTTTGCTG GTGTCTCCACTCATGGCCATGTGGGAGCTGGAGAAAGACGTTTATGTTGTAGAGGTGGAC TGGACTCCCGATGCCCCTGGAGAAACAGTGAACCTCACCTGTGACACGCCTGAAGAAGAT GACATCACCTGGACCTCAGACCAGAGACATGGAGTCATAGGCTCTGGAAAGACCCTGACC ATCACTGTCAAAGAGTTTCTAGATGCTGGCCAGTACACCTGCCACAAAGGAGGCGAGACT CTGAGCCACTCACATCTGCTGCTCCACAAGAAGGAAAATGGAATTTGGTCCACTGAAATT TTAAAAAATTTCAAAAACAAGACTTTCCTGAAGTGTGAAGCACCAAATTACTCCGGACGG TTCACGTGCTCATGGCTGCAAAGAACATGGACTTGAAGTTCAACATCAAGAGCAGT GTCACACTGGACCAAAGGGACTATGAGAAGTATTCAGTGTCCTGCCAGGAGGATGTCACC TGCCCAACTGCCGAGGAGACCCTGCCCATTGAACTGGCGTTGGAAGCACGGCAGCAGAAT AAATATGAGAACTACAGCACCAGCTTCTTCATCAGGGACATCATCAAACCAGACCCGCCC AAGAACTTGCAGATGAAGCCTTTGAAGAACTCACAGGTGGAGGTCAGCTGGGAGTACCCT GACTCCTGGAGCACTCCCCATTCCTACTTCTCCCTCAAGTTCTTTGTTCGAATCCAGCGC AAGAAAGAAAAGATGAAGGAGACAGAGGGGGGTGTAACCAGAAAGGTGCGTTCCTCGTA GAGAAGACATCTACCGAAGTCCAATGCAAAGGCGGGAATGTCTGCGTGCAAGCTCAGGAT CGCTATTACAATTCCTCATGCAGCAAGTGGGCATGTGTTCCCTGCAGGGTCCGATCCGGT GGCGGTGGCTCGGCGGTGGTGGGTGGGTGGCGGCGGATCTAGGGTCATTCCAGTCTCT GGACCTGCCAGGTGTCTTAGCCAGTCCCGAAACCTGCTGAAGACCACAGATGACATGGTG AAGACGGCCAGAGAAAAGCTGAAACATTATTCCTGCACTGCTGAAGACATCGATCATGAA GACATCACACGGGACCAAACCAGCACATTGAAGACCTGTTTACCACTGGAACTACACAAG CCACAGAAGACGTCTTTGATGATGACCCTGTGCCTTGGTAGCATCTATGAGGACTTGAAG **ATGTACCAGACAGAGTTCCA**

GGCCATCAACGCAGCACTTCAGAATCACAACCATCAGCAGATCATTCTAGACAAGGGCAT GCTGGTGGCCATCGATGAGCTGATGCAGTCTCTGAATCATAATGGCGAGACTCTGCGCCA GAAACCTCCTGTGGGAGAAGCAGACCCTTACAGAGTGAAAATGAAGCTCTGCATCCTGCT TCACGCCTTCAGCACCCGCGTCGTGACCATCAACAGGGTGATGGGCTATCTGAGCTCCGC CTGAGAATTGATCCGGATTAGTCCAATTTGTTAAAGACAGGATGAAGCTTAAAACAGCTC TGGGGTTGTACCCACCCCAGAGGCCCACGTGCCGGCTAGTACTCCGGTATTGCGGTACCC TTGTACGCCTGTTTTATACTCCCTTCCCGTAACTTAGACGCACAAAACCAAGTTCAATAG AAGGGGGTACAAACCAGTACCACCACGAACAAGCACTTCTGTTTCCCCGGTGATGTCGTA TAGACTGCTTGCGTGGAAAGCGACGGATCCGTTATCCGCTTATGTACTTCGAGAAGC CCAGTACCACCTCGGAATCTTCGATGCGTTGCGCTCAGCACTCAACCCCAGAGTGTAGCT TAGGCTGATGAGTCTGGACATCCCTCACCGGTGACGGTGCTCCAGGCTGCGTTGGCGGCC TACCTATGGCTAACGCCATGGGACGCTAGTTGTGAACAAGGTGTGAAGAGCCTATTGAGC TACATAAGAATCCTCCGGCCCCTGAATGCGGCTAATCCCAACCTCGGAGCAGGTGGTCAC AAACCAGTGATTGGCCTGTCGTAACGCGCAAGTCCGTGGCGGAACCGACTACTTTGGGTG TCCGTGTTTCCTTTTATTTTTTTTGTGGCTGCTTATGGTGACAATCACAGATTGTTATCAT AAAGCGAATTGGATTGCGGCCGCCACCATGGACCAGCACACATTGATGTGGAGGATA CCGCGGATGCCAGACATCCAGCAGGTACTTCGTGCCCCTCGGATGCGGCGCTCCTCAGAG ATACCGGGCTCCTCGCGGACGCTGCGCTCCTCAGATACTGTGCGCCCCACAAATGCCG CGCTCCCCACGGATGCTGCCTACCCTGCGGTTAATGTTCGGGATCGCGAGGCCGCGTGGC CGCCTGCACTGAACTTCTGTTCCCGCCACCCAAAGCTCTATGGCCTAGTCGCTTTGGTTT TGCTGCTTCTGATCGCCGCCTGTGTTCCTATCTTCACCCGCACCGAGCCTCGGCCAGCGC TCACAATCACCACCTCGCCCAACCTGGGTACCCGAGAGAATAATGCAGACCAGGTCACCC CTGTTTCCCACATTGGCTGCCCCAACACTACACAACAGGGCTCTCCTGTGTTCGCCAAGC TACTGGCTAAAAACCAAGCATCGTTGTGCAATACAACTCTGAACTGGCACAGCCAAGATG GAGCTGGGAGCTCATACCTATCTCAAGGTCTGAGGTACGAAGAAGACAAAAAGGAGTTGG TGGTAGACAGTCCCGGGCTCTACTACGTATTTTTGGAACTGAAGCTCAGTCCAACATTCA TAGATGACTTTGACAACTTGGCCCTGACAGTGGAACTGTTCCCTTGCTCCATGGAGAACA AGTTAGTGGACCGTTCCTGGAGTCAACTGTTGCTCCTGAAGGCTGGCCACCGCCTCAGTG TGGGTCTGAGGGCTTATCTGCATGGAGCCCAGGATGCATACAGAGACTGGGAGCTGTCTT ATCCCAACACCACCAGCTTTGGACTCTTTCTTGTGAAACCCGACAACCCATGGGAATGAG AACTATCCTTCTTGTGACTGGCGCGCCCTGATCAATCGATGTTTAAACGTTATTTTCCACC ATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGC ATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAG GAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAACAACGTCTGTAGCGACCCTTTGCAGG CAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGAT ACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGA GTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCC CATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACGTGTGTTTAGTCGAGG TTAAAAAAACGTCTAGGCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACACA TTCTCGAGACTAGTGCCACCATGTACAGCATGCAGCTCGCATCCTGTGTCACATTGACAC TTGTGCTCCTTGTCAACAGCGCACCCACTTCAAGCTCCACTTCAAGCTCTACAGCGGAAG CACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCACCTGGAGCAGCTGTTGATGG ACCTACAGGAGCTCCTGAGCAGGATGGAGAATTACAGGAACCTGAAACTCCCCAGGATGC TCACCTTCAAATTTTACTTGCCCAAGCAGGCCACAGAATTGAAAGATCTTCAGTGCCTAG

Fig. 19 Secuencia codificante de la IL-12 p40 humana (40 kDa):

Fig. 20 Secuencia codificante de la IL-12 p35 humana (35 kDa):

Fig. 21 Secuencia codificante del 4-1BBL humano:

Fig. 22 Secuencia codificante de la IL-2 humana:

atgtacaggatgcaactcctgtcttgcattgcactaattcttgcacttgtcacaaacagtgcacctacttcaagt tcgacaaagaaaacaaagaaaacacagctacaactggagcatttactgctggatttacagatgattttgaatgga attaataattacaagaatcccaaactcaccaggatgctcacatttaagttttacatgcccaagaaggccacagaa ctgaaacagcttcagtgtctagaagaagaactcaaacctctggaggaagtgctgaatttagctcaaagcaaaaac tttcacttaagacccagggacttaatcagcaatatcaacgtaatagttctggaactaaagggatctgaaacaaca ttcatgtgtgaatatgcagatgagacagcaaccattgtagaatttctgaacagatggattaccttttgtcaaagc atcatctcaacactaacttgata

Fig. 23A Secuencia codificante de la B7-1 humana (CD80)

atggg ccacacacgg aggcagggaa catcaccatc caagtgtca tacctcaatt tottlcaget citigtgetg getggtcttt ctcacttotg ttcaggtgtt atcacegtga ccaaggaagt gaaagaagtg gcaacgetgt cctgtggtca caatgttot gitgaagagc tggcacaaac tcgcatctac tggcaaaagg agaagaaaat ggtgctgact atgatgtctg gggacatgaa tatatggccc agtacaaga accggaccat cfflgafafc actaafaacc tctccattgt gatcctggct ctgcgcccat ctgacgaggg cacatacgag tgfgttgttc tgaagtaga aaaagacgct ttcaagcggg aacacetggc tgaagtgacg ttatcagtca aagctgactt ccctacacct agtafatctg actitgaaat tccaacttct aatattagaa ggataatttg ctcaacctct ggaggtttlc cagaggctca cctcfcctgg ttggaaaafg gagaagaaft aaafgccafc aacacaacag ttfcccaaga tcctgaaact gagctctatg ctgttagcag aaactggat ttcaatatga caaccaacca cagcttcatg tgtctcatca agtafggaca ttfaagagtg aatcagacct tcaactggaa tacaaccaag caagagcatt ttcctgafaa cctgctccca tcctgggcca ttaccttaat clcagtaaat ggaattttg tgatafgctg cctgacctac tgcttfgccc caagafgcag aggaagaagg aggaatgaga gattgagaag ggaaagtgfa cgccctgtat aa

Fig. 23B Secuencia codificante de la B7-2 humana (CD86)

atg ggactgagta acattetett tgtgatggee tteetgetet etggtgetge teetetgaag atteaagett attteaatga gaetgeagae etgeeatgee aatttgeaaa eteteaaaae eaaageetga gtgagetagt agtattitgg eaggaceagg aaaaettggt tetgaatgag gtataettag geaaagagaa atttgaeagt gtteatteea agtatatggg eegeaeaagt tttgattegg acagttggae eetgagaett eacaalette agateaagga eaagggettg tateaatgta teateeatea eaaaaageee acaggaatga ttegeateea eeagatgaat tetgaaetgt eagtgettge taaetteagt eaacetgaaa tagtaeeaat ttetaatata acagaaaatg tgtaeataaa tttgaeetge teatetatae acggttaeee agaaeetaag aagatgaggt tittgetaag aaceaagaat teaaetateg agtatgatgg tattatgeag aaateteaag ataatgteae agaaeetgae gaegttteea teagettgte tgtteeatte eetgatgta egageaatat gaeeatette tgtattetgg aaaeetgaeaa gaegeggett ttatetteae etttetetat agagettgag gaeeeteage eteeeeaga eeacatteet tggattaeag etgtaettee aacagttatt atatgtgga tggtttteig tetaatteta tggaaatgga agaagaagaa geggeetege aaetettata aatgtggaae eaacacaatg gagagggaag agagtgaaea gaeeaagaaa agagaaaaaa teeatataee tgaaagatet gatgaageee agegtgtttt taaaagtteg aagaeatett eatgegaeaa aagtgataea tgttittaa

Fig. 24, Secuencia de pShuttle [CMV] IL12 [IRES] 4-1BBL [IRES] IL-2

AATGCGCCGNNNNNNNNNNNNNNNNNNNNNNNNTTAATTAANNNTCCCTTCCAGCTCTCT GCCCCTTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGG GGCGTGGGAACGGGCGGTGACGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGG CGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTTTTGGTGTGCGCCGGTGTAC ACAGGAAGTGACAATTTTCGCGCGGTTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAAC CGAGTAAGATTTGGCCATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGAATAA TTTTGTGTTACTCATAGCGCGTAANNNTAATAGTAATCAATTACGGGGTCATTAGTTCA TAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC GCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAAT AGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGT ACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCC CGCCTGGCATTATGCCCAGTACATĞACCTTATGGGACTTTCCTACTTGGCAGTACATCTA CGTATTAGTCATCGCTATTACCATGGTGÄTGCGGTTTTGGCAGTACATCAATGGCGTGG ATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTT GTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGAC GCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAA CCGTCAGATCCGCTAGAGATCTGGATCCGAATTCGCCGCCACCATGGGTCCTCAGAAGCT AACCATCTCCTGGTTTGCCATCGTTTTGCTGGTGTCTCCACTCATGGCCATGTGGGAGCT GGAGAAAGACGTTTATGTTGTAGAGGTGGACTGGACTCCCGATGCCCCTGGAGAAACAGT GAACCTCACCTGTGACACGCCTGAAGAAGATGACATCACCTGGACCTCAGACCAGAGACA TGGAGTCATAGGCTCTGGAAAGACCCTGACCATCACTGTCAAAGAGTTTCTAGATGCTGG CCAGTACACCTGCCACAAAGGAGGCGAGACTCTGAGCCACTCACATCTGCTGCTCCACAA GAAGGAAAATGGAATTTGGTCCACTGAAATTTTAAAAAATTTCAAAAACAAGACTTTCCT GAAGTGTGAAGCACCAAATTACTCCGGACGGTTCACGTGCTCATGGCTGGTGCAAAGAAA CATGGACTTGAAGTTCAACATCAAGAGCAGTAGCAGTTCCCCTGACTCTCGGGCAGTGAC ATGTGGAATGCGTCTCTGTCTGCAGAGAAGGTCACACTGGACCAAAGGGACTATGAGAA GTATTCAGTGTCCTGCCAGGAGGATGTCACCTGCCAACTGCCGAGGAGACCCTGCCCAT TGAACTGGCGTTGGAAGCACGGCAGCAGAATAAATATGAGAACTACAGCACCAGCTTCTT CATCAGGGACATCATCAAACCAGACCCGCCCAAGAACTTGCAGATGAAGCCTTTGAAGAA CTCACAGGTGGAGGTCAGCTGGGAGTACCCTGACTCCTGGAGCACTCCCCATTCCTACTT GGGGTGTAACCAGAAGGTGCGTTCCTCGTAGAGAGACATCTACCGAAGTCCAATGCAA AGGCGGGAATGTCTGCGTGCAAGCTCAGGATCGCTATTACAATTCCTCATGCAGCAAGTG GGCATGTTCCCTGCAGGGTCCGATCCGGTGGCGGTGGCTCGGGCGGTGGTCGGT TGGCGGCGGATCTAGGGTCATTCCAGTCTCTGGACCTGCCAGGTGTCTTAGCCAGTCCCG KAACCTGCTGAAGACCACAGATGACATGGTGAAGACGCCCAGAGAAAAGCTGAAACATTA TTCCTGCACTGCTGAAGACATCGATCATGAAGACATCACACGGGACCAAACCAGCACATT GAAGACCTGTTTACCACTGGAACTACACAAGAACGAGAGTTGCCTGGCTACTAGAGAGAC TTCTTCCACAACAAGAGGGAGCTGCCTGCCCCCACAGAAGACGTCTTTGATGATGACCCT

CGCAGCACTTCAGAATCACCATCAGCAGATCATTCTAGACAAGGGCATGCTGGTGGC CATCGATGAGCTGATGCAGTCTCTGAATCATAATGGCGAGACTCTGCGCCAGAAACCTCC TGTGGGAGAAGCAGACCCTTACAGAGTGAAAATGAAGCTCTGCATCCTGCTTCACGCCTT CAGCACCCGCGTCGTGACCATCAACAGGGTGATGGGCTATCTGAGCTCCGCCTGAGAATT GATCCGGÀTTAGTCCAATTTGTTAAAGACAGGATGAAGCTTAAAACAGCTCTGGGGTTGT ACCCACCCAGAGGCCCACGTGGCGGCTAGTACTCCGGTATTGCGGTACCCTTGTACGCC TGTTTTATACTCCCTTCCCGTAACTTAGACGCACAAAACCAAGTTCAATAGAAGGGGGTA CAAACCAGTACCACCACGAACAAGCACTTCTGTTTCCCCGGTGATGTCGTATAGACTGCT TGCGTGGTTGAAAGCGACGGATCCGTTATCCGCTTATGTACTTCGAGAAGCCCAGTACCA CCTCGGAATCTTCGATGCGTTGCGCTCAGCACTCAACCCCAGAGTGTAGCTTAGGCTGAT CTAACGCCATGGGACGCTAGTTGTGAACAAGGTGTGAAGAGCCTATTGAGCTACATAAGA ATCCTCCGGCCCCTGAATGCGGCTAATCCCAACCTCGGAGCAGGTGGTCACAAACCAGTG ATTGGCCTGTCGTAACGCGCAAGTCCGTGGCGGAACCGACTACTTTGGGTGTCCGTGTTT CCTTTTATTTTTTTGTGGCTGCTTATGGTGACAATCACAGATTGTTATCATAAAGCGAAT TGGATTGCGGCCGCCACCATGGACCAGCACACATTGATGTGGAGGATACCGCGGATG CCAGACATCCAGCAGGTACTTCGTGCCCCTCGGATGCGGCGCTCCTCAGAGATACCGGGC TCCTCGCGGACGCTGCGCTCTCAGATACTGTGCGCCCACAAATGCCGCGCTCCCCA CGGATGCTGCCTACCCTGCGGTTAATGTTCGGGATCGCGAGGCCGCGTGGCCGCCTGCAC TGAACTTCTGTTCCCGCCACCCAAAGCTCTATGGCCTAGTCGCTTTGGTTTTGCTGCTTC TGATCGCCGCCTGTGTTCCTATCTTCACCCGCACCGAGCCTCGGCCAGCGCTCACAATCA CCACCTCGCCCAACCTGGGTACCCGAGAGAATAATGCAGACCAGGTCACCCCTGTTTCCC ACATTGGCTGCCCCAACACACACACAGGGCTCTCCTGTGTTCGCCAAGCTACTGGCTA AAAACCAAGCATCGTTGTGCAATACAACTCTGAACTGGCACAGCCAAGATGGAGCTGGGA GCTCATACCTATCTCAAGGTCTGAGGTACGAAGAAGACAAAAAGGAGTTGGTGGTAGACA GTCCCGGGCTCTACTACGTATTTTTGGAACTGAAGCTCAGTCCAACATTCACAAACACAG TTGACAACTTGGCCCTGACAGTGGAACTGTTCCCTTGCTCCATGGAGAACAAGTTAGTGG ACCGTTCCTGGAGTCAACTGTTGCTCCTGAAGGCTGGCCACCGCCTCAGTGTGGGTCTGA GGGCTTATCTGCATGGAGCCCAGGATGCATACAGAGACTGGGAGCTGTCTTATCCCAACA CCACCAGCTTTGGACTCTTTCTTGTGAAACCCGACAACCCATGGGAATGAGAACTATCCT TCTTGTGACTGGCGCGCCTGATCAATCGATGTTTAAACGTTATTTTCCACCATATTGCCG TCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGG CCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCA AAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGG CTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATG GGATCTGATCTGGGGCCTCGGTGCACATGCTTTACGTGTGTTTAGTCGAGGTTAAAAAAA CGTCTAGGCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATTCTCGAGA CTAGTGCCACCATGTACAGCATGCAGCTCGCATCCTGTGTCACATTGACACTTGTGCTCC TTGTCAACAGCGCACCCACTTCAAGCTCCACTTCAAGCTCTACAGCGGAAGCACAGCAGC

AGCAGCAGCAGCAGCAGCAGCAGCACCCTGGAGCAGCTGTTGATGGACCTACAGG AGCTCCTGAGCAGGATGGAGAATTACAGGAACCTGAAACTCCCCAGGATGCTCACCTTCA AATTTTACTTGCCCAAGCAGGCCACAGAATTGAAAGATCTTCAGTGCCTAGAAGATGAAC TTGGACCTCTGCGCCATGTTCTCGATTTGACTCAAAGCAAAAGCTTTCAATTGGAAGATG CTGAGAATTTCATCAGCAATATCAGAGTAACTGTTGTAAAACTAAAGGGCTCTGACAACA CATTTGAGTGCCAATTCGATGATGAGTCAGCAACTGTGGTGGACTTTCTGAGGAGATGGA TAGCCTTCTGTCAAAGCATCATCTCAACAAGCCCTCAATAACTATGTAACGCGTGCTAGC ATGGCCGGCCGCCGCCGCCCTCGAGCCTAAGCTTCTAGATAAGATATCCGATCCAC CGGATCTAGATAACTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTT TAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCAC AAATAAAGCATTTTTTCACTGCATTCTAGTTGTGTTGTCCAAACTCATCAATGTATC TTA A CCONNNITA AGGGTGGGA A AGA A TATATA A GGTGGGGGT CTTATGTAGTTTTGTAT CTGTTTTGCAGCAGCCGCCGCCGCCATGAGCACCCAACTCGTTTGATGGAAGCATTGTGAG CTCATATTTGACAACGCGCATGCCCCCATGGGCCGGGGTGCGTCAGAATGTGATGGGCTC CAGCATTGATGGTCGCCCGTCCTGCCCGCAAACTCTACTACCTTGACCTACGAGACCGT GTCTGGAACGCCGTTGGAGACTGCAGCCTCCGCCGCCGCTTCAGCCGCTGCAGCCACCGC CCGCGGGATTGTGACTTGCTTTCCTGAGCCCGCTTGCAAGCAGTGCAGCTTCCCG TTCATCCGCCCGCGATGACAAGTTGACGGCTCTTTTGGCACAATTGGATTCTTTGACCCG GGAACTTAATGTCGTTTCTCAGCAGCTGTTGGATCTGCGCCAGCAGGTTTCTGCCCTGAA GGCTTCCTCCCCAATGCGGTTTAAAACATAAATAAAAACCAGACTCTGTTTGGAT GGACCAGCGGTCTCGGTCGTTGAGGGTCCTGTGTATTTTTCCAGGACGTGGTAAAGGTG ACTCTGGATGTTCAGATACATGGCCATAAGCCCGTCTCTGGGGTGGAGGTAGCACCACTG GTGGTGCCTAAAAATGTCTTTCAGTAGCAAGCTGATTGCCAGGGGCAGGCCCTTGGTGTA AGTGTTTACAAAGCGGTTLAGCTGGGATGGGTGCATACGTGGGGATATGAGATGCATCTT GGACTGTATTTTTAGGTTGGCTATGTTCCCAGCCATATCCCTCCGGGGATTCATGTTGTG CAGAACCACCAGCAGTGTATCCGGTGCACTTGGGAAATTTGTCATGTAGCTTAGAAGG AAATGCGTGGAAGAACTTGGAGACGCCCTTGTGACCTCCAAGATTTTCCATGCATTCGTC CATAATGATGCCAATGGGCCCACGGGCGGGGGGCGTGGGCGAAGATATTTCTGGGATCACT **AACGTCATAGTTGTGTTCCAGGATGAGATCGTCATAGGCCCATTTTTACAAAGCGCGGGCG** GAGGGTGCCAGACTGCGGTATAATGGTTCCATCCGGCCCAGGGGCGTAGTTACCCTCACA GATTTGCATTTCCCACGCTTTGAGTTCAGATGGGGGGATCATGTCTACCTGCGGGGCGAT GAAGAAACGGTTTCCGGGGTAGGGGAGATCAGCTGGGAAGAAAGCAGGTTCCTGAGCAG CTGCGACTTACCGCAGCCGGTGGGCCCGTAAATCACACCTATTACCGGGTGCAACTGGTA GTTAAGAGAGCTGCCGTCCTCATCCCTGAGCAGGGGGCCACTTCGTTAAGCATGTC CCTGACTCGCATGTTTTCCCTGACCAAATCCGCCAGAAGGCGCTCGCCGCCCAGCGATAG CAGTTCTTGCAAGGAAGCAAAGTTTTTCAACGGTTTGAGACCGTCCGCCGTAGGCATGCT TTTGAGCGTTTGACCAAGCAGTTCCAGGCGGTCCCACAGCTCGGTCACCTGCTCTACGGC ATCTCGATCCAGCATATCTCCTCGTTTCGCGGGTTGGGGCGGCTTTCGCTGTACGGCAGT AGTCGGTGCTCGTCCAGACGGGCCAGGGTCATGTCTTTCCACGGGCGCAGGGTCCTCGTC

AGCGTAGTCTGGGTCACGGTGAAGGGGTGCGCTCCGGGCTGCGCGCTGGCCAGGGTGCGC TTGAGGCTGCTGCTGGTGCTGAAGCGCTGCCGGTCTTCGCCCTGCGCGTCGGCCAGG TAGCATTTGACCATGGTGTCATAGTCCAGCCCCTCCGCGCCTCGGCCCTTGGCGCGCAGC TTGCCCTTGGAGGAGGCGCCGCACGAGGGGCAGTGCAGACTTTTGAGGGCGTAGAGCTTG GGCGCGAGAAATACCGATTCCGGGGAGTAGGCATCCGCGCCGCAGGCCCCGCAGACGGTC TCGCATTCCACGAGCCAGGTGAGCTCTGGCCGTTCGGGGTCAAAAACCAGGTTTCCCCCA TGCTTTTGATGCGTTTCTTACCTCTGGTTTCCATGAGCCGGTGTCCACGCTCGGTGACG AAAAGGCTGTCCCTGTCCCCGTATACAGACTNNNGTTTAAACGAATTCNNNATATAAAAT GCAAGGTGCTCAAAAAATCAGGCAAAGCCTCGCGCAAAAAAGCACACATCGTAGT CATGCTCATGCAGATAAAGGCAGGTAAGCTCCGGAACCACCACAGAAAAAGACACCATTT TTAAACATTAGAAGCCTGTCTTACAACAGGAAAAACAACCCTTATAAGCATAAGACGGAC TACGGCCATGCCGGCGTGACCGTAAAAAAACTGGTCACCGTGATTAAAAAGCACCACCGA CAGCTCCTCGGTCATGTCCGGAGTCATAATGTAAGACTCGGTAAACACATCAGGTTGATT GAGACAACATTACAGCCCCCATAGGAGGTATAACAAAATTAATAGGAGAAAAAACACAT AAACACCTGAAAAACCCTCCTGCCTAGGCAAAATAGCACCCTCCCGCTCCAGAACAACAT ACAGCGCTTCACAGCGGCAGCCTAACAGTCAGCCTTACCAGTAAAAAGAAAACCTATTA AAAAAACACCACTCGACACGGCACCAGCTCAATCAGTCACAGTGTAAAAAAGGGCCAAGT GCAGAGCGAGTATATAGGACTAAAAAATGACGTAACGGTTAAAGTCCACAAAAAACAC CCAGAAAACCGCACGCGAACCTACGCCCAGAAACGCAAAAAACCCACAACTTCCT CAAATCGTCACTTCCGTTTTCCCACGTTACGTAACTTCCCATTTTAAGAAAACTACAATT CCCAACACATACAAGTTACTCCGCCCTAAAACCTACGTCACCCGCCCCGTTCCCACGCCC CGCGCCACGTCACAAACTCCACCCCTCATTATCATATTGGCTTCAATCCAAAATAAGGT ATATTATTGATGATNNNTTAATTAAGGATCCNNNCGGTGTGAAATACCGCACAGATGCGT AAGGAGAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC GGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCAC AGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAA CCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCA CAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGC GTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATA CCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTA TCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCA GCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGA CTTATCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGG TGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGG TATCTGCGCTCTGCAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGG CAAACAACCACCGCTGGTAGCGGTGGTTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAG <u>AAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAA</u> CGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGAT CCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTC TGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTC

ATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATC TGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGC AATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTC GCGCAACGTTGTTGNNNNAAAAAGGATCTTCACCTAGATCCTTTTCACGTAGAAAGCCAG TCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAGGGA AAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCTAGA CTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAA GGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTCGCCGCCAAGGATCTGATGGCG CAGGGGATCAAGCTCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGA TGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGC ACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCC GCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCAC TGAAGCGGGAAGGGACTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATC TCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATAC TACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCT CGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTCGT $\tt CGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGG$ ATTCATCGACTGTGGCCGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTAC CCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGG TATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTG AATTTTGTTAAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCA ACATCCCTTATAAATCAAAAGAATAGACCGCGATAGGGTTGAGTGTTGCTCCAGTTTGGA ACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATC AGGGCGATGGCCCACTACGTGAACCATCACCCAAATCAAGTTTTTTGCGGTCGAGGTGCC GTAAAGCTCTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGC CGGCGAACGTGGCGAGAAGGAAGGGAAGAAGCGAAAGGAGCGGCGCTAGGGCGCTGG

Fig. 25 Secuencia de pShuttle[CMV] IL12 [IRES] 4-1BBL

AATGCGCCGNNNNNNNNNNNNNNNNNNNNNNNTTAATTAANNTCCCTTCCAGCTCTCT GCCCCTTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCG GGCGTGGGAACGGGGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGG CGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTAC ACAGGAAGTGACAATTTTCGCGCGGGTTTTAGGCCGATGTTGTAGTAAATTTGGGCGTAAC CGAGTAAGATTTGGCCATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGAATAA TTTTGTGTTACTCATAGCGCGTAANNNNTAATAGTAATCAATTACGGGGTCATTAGTTCA TAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC GCCCAACGACCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAAT AGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGT ACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCC CGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTA CGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGG ATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTT GTTTTGGCACCAAAATCAACGGGACTTTCCAAAAATGTCGTAACAACTCCGCCCCATTGAC GCAAATGGGCGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAA CCGTCAGATCCGCTAGAGATCTGGATCCGAATTCGCCGCCACCATGGGTCCTCAGAAGCT AACCATCTCCTGGTTTGCCATCGTTTTGCTGGTGTCTCCACTCATGGCCATGTGGGAGCT GGAGAAAGACGTTTATGTTGTAGAGGTGGACTCGCCGATGCCCCTGGAGAAACAGT GAACCTCACCTGTGACACGCCTGAAGAAGATGACATCACCTGGACCTCAGACCAGAGACA TGGAGTCATAGGCTCTGGAAAGACCCTGACCATCACTGTCAAAGAGTTTCTAGATGCTGG CCAGTACACCTGCCACAAAGGAGGCGAGACTCTGAGCCACTCACATCTGCTGCTCCACAA GAAGGAAAATGGAATTTGGTCCACTGAAATTTTAAAAAATTTCAAAAACAAGACTTTCCT GAAGTGTGAAGCACCAAATTACTCCGGACGGTTCACGTGCTCATGGCTGGTGCAAAGAAA CATGGACTTGAACTTCAACATCAAGAGCAGTAGCAGTTCCCCTGACTCTCGGGCAGTGAC ATGTGGAATGGCGTCTCTGTCTGCAGAGAAGGTCACACTGGACCAAAGGGACTATGAGAA GTATTCAGTGTCCTGCCAGGAGGATGTCACCTGCCCAACTGCCGAGGAGACCCTGCCCAT TGAACTGGCGTTGGAAGCACGGCAGCAGCAATAAATATGAGAACTACAGCACCAGCTTCTT CATCAGGGACATCATCAAACCAGACCCGCCCAAGAACTTGCAGATGAAGCCTTTGAAGAA CTCACAGGTGGAGGTCAGCTGGGAGTACCCTGACTCCTGGAGCACTCCCCATTCCTACTT GGGGTGTAACCAGAAGGTGCGTTCCTCGTAGAGAAGACATCTACCGAAGTCCAATGCAA AGGCGGGAATGTCTGCGTGCAAGCTCAGGATCGCTATTACAATTCCTCATGCAGCAAGTG GGCATGTGTTCCCTGCAGGGTCCGATCCGGTGGCGGTGGCTCGGGCGGTGGTCGGG TGGCGGCGGATCTAGGGTCATTCCAGTCTCTGGACCTGCCAGGTGTCTTAGCCAGTCCCG AAACCTGCTGAAGACCACAGATGACATGGTGAAGACGGCCAGAGAAAAGCTGAAACATTA TTCCTGCACTGCTGAAGACATCGATCATGAAGACATCACACGGGACCAAACCAGCACATT GAAGACCTGTTTACCACTGGAACTACACAAGAACGAGAGTTGCCTGGCTACTAGAGAGAC TTCTTCCACACAAGAGGGAGCTGCCTGCCCCCACAGAAGACGTCTTTGATGATGACCCT

CGCAGCACTTCAGAATCACAACCATCAGCAGATCATTCTAGACAAGGGCATGCTGGTGGC CATCGATGAGCTGATGCAGTCTCTCAAATCATAATGGCGAGACTCTCCGCCAGAAACCTCC TGTGGGAGAGCAGACCCTTACAGAGTGAAAATGAAGCTCTGCATCCTGCTTCACGCCTT CAGCACCCGCGTCGTGACCATCAACAGGGTGATGGGCTATCTGAGCTCCGCCTGAGAATT GATCCGGATTAGTCCAATTTGTTAAAGACAGGATGAAGCTTAAAACAGCTCTGGGGTTGT ${\tt ACCCACCCCAGAGGCCCACGTGGCGGCTAGTACTCCGGTATTGCGGTACCCTTGTACGCC}$ TGTTTTATACTCCCTTCCCGTAACTTAGACGCACAAAACCAAGTTCAATAGAAGGGGGTA CAAACCAGTACCACCACGAACAAGCACTTCTGTTTCCCCGGTGATGTCGTATAGACTGCT TGCGTGGTTGAAAGCGACGGACCGGTTATCCGCTTATGTACTTCGAGAAGCCCAGTACCA CCTCGGAATCTTCGATGCGTTGCGCTCAGCACTCAACCCCAGAGTGTAGCTTAGGCTGAT CTAACGCCATGGGACGCTAGTTGTGAACAAGGTGTGAAGAGCCTATTGAGCTACATAAGA ATCCTCCGGCCCTGAATGCGGCTAATCCCAACCTCGGAGCAGGTGGTCACAAACCAGTG ATTGGCCTGTCGTAACGCGCAAGTCCGTGGCGGAACCGACTACTTTGGGTGTCCGTGTTT CCTTTTATTTTTTTGTGGCTGCTTATGGTGACAATCACAGATTGTTATCATAAAGCGAAT TGGATTGCGGCCGCCACCATGGACCAGCACACTTGATGTGGAGGATACCGCGGATG CCAGACATCCAGCAGGTACTTCGTGCCCCTCGGATGCGGCGCTCCTCAGAGATACCGGGCCGGATGCTGCCTGCGGTTAATGTTCGGGATCGCGAGGCCGCGTGGCCGCCTGCAC TGAACTTCTGTTCCCGCCACCCAAAGCTCTATGGCCTAGTCGCTTTGGTTTTGCTGCTTC TGATCGCCGCCTGTGTTCCTATCTTCACCCGCCACCGAGCCTCGGCCAGCGCTCACAATCA CCACCTCGCCCAACCTGGGTACCCGAGAGAATAATGCAGACCAGGTCACCCCTGTTTCCC ACATTGGCTGCCCCAACACTACACACAGGGCTCTCCTGTGTTCGCCAAGCTACTGGCTA AAAACCAAGCATCGTTGTGCAATACAACTCTGAACTGGCACAGCCAAGATGGAGCTGGGA GCTCATACCTATCTCAAGGTCTGAGGTACGAAGAAGACAAAAAGGAGTTGGTGGTAGACA GTCCCGGGCTCTACTACGTATTTTTGGAACTGAAGCTCAGTCCAACATTCACAAACACAG GCCACAAGGTGCAGGGTCTCTCTTGTTTTGCAAGCAAAGCCTCAGGTAGATGACT TTGACAACTTGGCCCTGACAGTGGAACTGTTCCCTTGCTCCATGGAGAACAAGTTAGTGG ACCGTTCCTGGGGTCAACTGTTGCTCCTGAAGGCTGGCCACCGCCTCAGTGTGGGTCTGA GGGCTTATCTGCATGGAGCCCAGGATGCATACAGAGACTGGGAGCTGTCTTATCCCAACA CCACCAGCTTTGGACTCTTTCTTGTGAAACCCGACAACCCATGGGAATGAGAACTATCCT TCTTGTGACTGGCGCGATCCGATCCACCGGATCTAGATAACTGATCATAATCAGCCATAC CACATTTGTAGAGGTTTTACTTGCTTTAAAAAAACCTCCCACACCTCCCCCTGAACCTGAA ACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAA ATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTCACTGCATTCTAGTTG TGGTTTGTCCAAACTCATCAATGTATCTTAACGCNNNNTAAGGGTGGGAAAGAATATATA AGGTGGGGGTCTTATGTAGTTTTGTATCTGTTTTGCAGCAGCCGCCGCCGCCATGAGCAC CAACTCGTTTGATGGAAGCATTGTGAGCTCATATTTGACAACGCGCATGCCCCCATGGGC CGGGGTGCGTCAGAATGTGATGGGCTCCAGCATTGATGGTCGCCCCGTCCTGCCCGCAAA CTCTACTACCTTGACCTACGAGACCGTGTCTGGAACGCCGTTGGAGACTGCAGCCTCCGC

TCTGCGCCAGCAGGTTTCTGCCCTGAAGGCTTCCTCCCCTCCCAATGCGGTTTAAAACAT AGGGTTTTGCGCGCGCGGTAGGCCCGGGACCAGCGGTCTCGGTCGTTGAGGGTCCTGTG TATTTTTCCAGGACGTGGTAAAGGTGACTCTGGATGTTCAGATACATGGGCATAAGCCC GTCTCTGGGGTGGAGGTAGCACCACTGCAGAGCTTCATGCTGCGGGGTGGTGTTGTAGAT GATCCAGTCGTAGCAGGAGCGCTGGGCGTGGTGCCTAAAAATGTCTTTCAGTAGCAAGCT GATTGCCAGGGCCAGGCCCTTGGTGTAAGTGTTTACAAAGCGGTTAAGCTGGGATGGGTG CATACGTGGGGATATGAGATGCATCTTGGACTGTATTTTTAGGTTGGCTATGTTCCCAGC CATATCCCTCCGGGGATTCATGTTGTGCAGAACCACCAGCACAGTGTATCCGGTGCACTT GGGAAATTTGTCATGTAGCTTAGAAGGAAATGCGTGGAAGAACTTGGAGACGCCCTTGTG ACCTCCAAGATTTTCCATGCATTCGTCCATAATGATGGCAATGGGCCCACGGGCGGCGGC CTGGGCGAAGATATTTCTGGGATCACTAACGTCATAGTTGTGTTCCAGGATGAGATCGTC ATAGGCCATTTTTACAAAGCGCGGGCGGAGGGTGCCAGACTGCGGTATAATGGTTCCATC CGGCCCAGGGGCGTAGTTACCCTCACAGATTTGCATTTCCCACGCTTTGAGTTCAGATGG GGGGATCATGTCTACCTGCGGGGCGATGAAGAAAACGGTTTCCGGGGTAGGGGAGATCAG CTGGGAAGAAGCAGGTTCCTGAGCAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAAAT CACACCTATTACCGGGTGCAACTGGTAGTTAAGAGAGCTGCAGCTGCCGTCATCCCTGAG CAGGGGGCCACTTCGTTAAGCATGTCCCTGACTCGCATGTTTTCCCTGACCAAATCCGC TTTGAGACCGTCCGCCGTAGGCATGCTTTTGAGCGTTTGACCAAGCAGTTCCAGGCGGTC CCACAGCTCGGTCACCTGCTCTACGGCATCTCGATCCAGCATATCTCCTCGTTTCGCGGG TTGGGGCCGCTTTTCGCTGTACGGCAGTAGTCGGTGCTCCTCCAGACGGCCAGGGCCATG TCTTTCCACGGGCGCAGGGTCCTCGTCAGCGTAGTCTGGGTCACGGTGAAGGGGTGCGCT CCGGGCTGCCGCTGGCCAGGGTGCGCTTGAGGCTGGTCCTGCTGCTGAAGCGCTGC CGGTCTTCGCCCTGCGCCTCGCCCAGGTAGCATTTGACCATGGTGTCATAGTCCAGCCCC TCCGCGCGTGGCCTTGGCGCGCAGCTTGCCCTTGGAGGAGGCGCCGCACGAGGGGCAG TGCAGACTTTTGAGGGCGTAGAGCTTGGGCGCGAGAAATACCGATTCCGGGGAGTAGGCA TCCGCGCCGCAGGCCCCGCAGACGGTCTCGCATTCCACGAGCCAGGTGAGCTCTGGCCGT TCGGGGTCAAAAACCAGGTTTCCCCCCATGCTTTTTGATGCGTTTCTTACCTCTGGTTTCC ATGAGCCGGTGTCCACGCTCGGTGACGAAAAGGCTGTCCGTGTCCCCGTATACAGACTNN NGTTTA A CGA ATTCNNNA TATA A A ATGCA AGGTGCTGCTCA A A A A ATCAGGCA A AGCCT CGCGCAAAAAAGAAGCACATCGTAGTCATGCTCATGCAGATAAAGGCAGGTAAGCTCCG GAACCACCAGAAAAAGACACCATTTTTCTCTCAAACATGTCTGCGGGTTTCTGCATAA ACACAAAATAAATAACAAAAAAACATTTAAACATTAGAAGCCTGTCTTACAACAGGAAA AACAACCCTTATAAGCATAAGACGGACTACGGCCATGCCGGCGTGACCGTAAAAAAACTG GTCACCGTGATTAAAAAGCACCACCGACAĞCTCCTCGGTCATGTCCGGAGTCATAATGTA AGACTCGGTAAACACATCAGGTTGATTCATCGGTCAGTGCTAAAAAGCGACCGAAATAGC CCGGGGGAATACATACCCGCAGGCGTAGAGACAACATTACAGCCCCCATAGGAGGTATAA CAAAATTAATAGGAGAGAAAACACATAAACACCTGAAAAACCCTCCTGCCTAGGCAAAA TAGCACCCTCCCGCTCCAGAACAACATACAGCGCTTCACAGCGGCAGCCTAACAGTCAGC CTTACCAGTAAAAAAGAAAACCTATTAAAAAAACACCACTCGACACGGCACCAGCTCAAT

GTAACGGTTAAAGTCCACAAAAAACACCCAGAAAACCGCACGCGAACCTACGCCCAGAAA CGAAAGCCAAAAAACCCACAACTTCCTCAAATCGTCACTTCCGTTTTCCCACGTTACGTA ACTTCCCATTTTAAGAAAACTACAATTCCCAACACATACAAGTTACTCCGCCCTAAAACC TACGTCACCCGCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCCACCCCCTCATTAT CATATTGGCTTCAATCCAAAATAAGGTATATTATTGATGATNNNTTAATTAAGGATCCNN NCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGC TTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCA CTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTG AGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAAGGCCGCGTTGCTGGCGTTTTTCCA TAGGCTCCGCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGC GCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCT GGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCCACCCCTGGTAACAG GATTAGCAGAGCGAGGTA'I'GTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTA CGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGG AAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGCTAGCGGTGGTTTTTT TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTT TTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAG ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAAATGAAGTTTTAAATCAAT CTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACC TATCTCAGCGATCTGTCTATTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGAT AACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCC AAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAG AGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGNNNNAAAAAGGATCTTCAC CTAGATCCTTTTCACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGT CAGCTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTG CAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGA ATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGC TTTCTCGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGCTCTGATCAAGAGACAGGATG AGGATCGTTTCGCATGAITGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGT GGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGT TTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGA AGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCAT GGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCA AGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGA TGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGC

Fig. 26 Secuencia de pShuttle [CMV] IL12

AATGCGCCGNNWMNNNNNNNNNNNNNNNNNNNNTTAATTAANNNTCCCTTCCAGCTCTCT GCCCCTTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGG GGCGTGGGAACGGGCGGCTGACGTAGTGTGCCGGAAGTGTGATGTTGCAAGTGTGG CGGAACACATGTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTAC ACAGGAAGTGACAATTTTCGCGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAAC CGAGTAAGATTTGGCCATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGAATAA TTTTGTGTTACTCATAGCGCGTAANNNNTAATAGTAATCAATTACGGGGTCATTAGTTCA TAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC GCCCAACGACCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAAT AGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGT ACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCC CGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTA CGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGCGTGG ATAGCGGTTT JACTCACGGGGATTTCCAAGTCTC(ACCCCATTGACGTCAA...GGGAGTTT GCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAA CCGTCAGATCUGCTAGAGATCTGGATCCGAATTCGCCGCCACCATGGGTCCTCAGAAGCT AACCATCTCCTGGTTTGCCATCGTTTTGCTGGTGTCTCCACTCATGGCCATGTGGGAGCT GGAGAAAGAC ITTTATGTTGTAGAGGTGGACTGGACTCCCGATGCCCCTGGAGAAACAGT GAACCTCACCTGTGACACGCCTGAAGAAGATGACA\(\)'CACCTGGACCTCAGACCAGAGACA TGGAGTCATA-GCTCTGGAAAGACCCTGACCATCACTGTCAAAGAGTTTCTAGATGCTGG CCAGTACACCTGCCACAAAGGAGGCGAGACTCTGAGCCACTCACATCTGCTGCTCCACAA GAAGGAAAATGGAATTTGGTCCACTGAAATTTTAAAAAATTTCAAAAACAAGACTTTCCT GAAGTGTGAAGCACCAAATTACTCCGGACGGTTCACGTGCTCATGGCTGGTGCAAAGAAA CATGGACTTGAAGTTCAACATCAAGAGCAGTAGCAGTTCCCCTGACTCTCGGGCAGTGAC ATGTGGAATGGCGTCTCTGTCTGCAGAGAAGGTCACACTGGACCAAAGGGACTATGAGAA GTATTCAGTGTCCTGCCAGGAGGATGTCACCTGCCCAACTGCCGAGGAGACCCTGCCCAT TGAACTGGCCTTGGAAGCACGGCAGCAGAATAAATATGAGAACTACAGCACCAGCTTCTT CATCAGGGACATCAAACCAGACCCGCCCAAGAACTTGCAGATGAAGCCTTTGAAGAA $\tt CTCACAGGTGGAGTCAGCTGGGAGTACCCTGACTCCTGGAGCACTCCCCATTCCTACTT$ GGGGTGTAACCAGAAAGGTGCGTTCCTCGTAGAGAAGACATCTACCGAAGTCCAATGCAA AGGCGGGAATGTCTGCGTGCAAGCTCAGGATCGCTATTACAATTCCTCATGCAGCAAGTG GCCATGTGTTCCCTGCAGGGTCCGATCCGGTGGCGGTGGCTCGGGCGGTGGTGGGT TGGCGGCGGATCTAGGGTCATTCCAGTCTCTGGACCTGCCAGGTGTCTTAGCCAGTCCCG AAACCTGCTGAAGACCACAGATGACATGGTGAAGACGGCCAGAGAAAAGCTGAAACATTA TTCCTGCACTGCTGAAGACATCGATCATGAAGACATCACACGGGACCAAACCAGCACATT GAAGACCTGTTTACCACTGGAACTACACAAGAACGAGAGTTGCCTGGCTACTAGAGAGAC TTCTTCCACAACAGAGGGAGCTGCCTGCCCCCACAGAAGACGTCTTTGATGATGACCCT

CGCAGCACTTCAGAATCACAACCATCAGCAGATCATTCTAGACAAGGGCATGCTGGTGGC CATGGATGAGCTGATGCAGTCTCTGAATCATAATGGCGAGACTCTGCGCCAGAAACCTCC TGTGGGAGAAGCAGACCCTTACAGAGTGAAAATGAAGCTCTGCATCCTGCTTCACGCCTT CAGCACCGGGTGGTGACCATCAACAGGGTGATGGGCTATCTGAGCTCCGCCTGAGAATT GATCCGGATTAGTCCAATTTGTTAAAGACAGGATGAAGCTTCTAGATAAGATATCCGATC CACCGGATCTAGATAACTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGC TGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT CACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGT ATCTTAACGCNNNNTAAGGGTGGGAAAGAATATATAAGGTGGGGGTCTTATGTAGTTTTG TATCTGTTTTGCAGCAGCCGCCGCCGCCATGAGCACCCAACTCGTTTGATGGAAGCATTGT GAGCTCATATTTGACAACGCGCATGCCCCCATGGGCCGGGGTGCGTCAGAATGTGATGGG CTCCAGCATTGATGGTCGCCCGTCCTGCCCGCAAACTCTACTACCTTGACCTACGAGAC CGTGTCTGGAACGCCGTTGGAGACTGCAGCCTCCGCCGCCGCTTCAGCCGCTGCAGCCAC CGCCGCGGGATTGTGACTGACTTTGCTTTCCTGAGCCCGCTTGCAAGCAGTGCAGCTTC CCGTTCATCCGCCCGCGATGACAGTTGACGGCTCTTTTGGCACAATTGGATTCTTTGAC ${\tt CCGGGAACTTAATGTCGITTCTCAGCAGCTGTTGGATCTGCGCCAGCAGGTTTCTGCCCT}$ GATTTGGATCAAGCAAGT FTCTTGCTGTCTTTATTTAGGGGTTTTGCGCGCGCGGTAGGC CCGGGACCAGCGGTCTCG TCGTTGAGGGTCCTGTGTATTTTTTCCAGGACGTGGTAAAG GTGACTCTGGATGTTCAG. TACATGGGCATAAGCCCGTCTCTGGGGTGGAGGTAGCACCA CTGCAGAGCTTCATGCTGCGGGGTGGTGTTGTAGATGATCCAGTCGTAGCAGGAGCGCTG egcetgetgcctaaaaat@tctttcagtagcaagctgattgccagggcaggcccttggt GTAACTGTTTACAAAGCGGTTAAGCTGGGATGGGTGCATACGTGGGGATATGAGATGCAT CTTGGACTGTATTTTTAGCTTGGCTATGTTCCCAGCCATATCCCTCCGGGGATTCATGTT GTGCAGAACCACCAGCACAGTGTATCCGGTGCACTTGGGAAATTTGTCATGTAGCTTAGA AGGA A A TGCGTGGA AGA AC TTGGA GA CGCCCTTGTGA CCTCCA A GATTTTCCA TGCA TTC GTCCATAATGATGGCAAT@GCCCACGGCCGGCCGGCCGAGGAGATATTTCTGGGATC ACTAACGTCATAGTTGTGTTCCAGGATGAGATCGTCATAGGCCATTTTTACAAAGCGCGG GCGGAGGGTGCCAGACTGCGGTATAATGGTTCCATCCGGCCCAGGGGCGTAGTTACCCTC ACAGATTTGCATTTCCCACCCTTTGAGTTCAGATGGGGGGATCATGTCTACCTGCGGGGC GATGAAGAAAACGGTTTCCGGGGTAGGGGAGATCAGCTGGGAAGAAAGCAGGTTCCTGAG CAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAAATCACACCTATTACCGGGTGCAACTG GTAGTTAAGAGAGCTGCAG TTGCCGTCATCCCTGAGCAGGGGGGCCCACTTCGTTAAGCAT GTCCCTGACTCGCATGTTTTCCCTGACCAAATCCGCCAGAAGGCGCTCGCCGCCCAGCGA TAGCAGTTCTTGCAAGGAAGCAAAGTTTTTCAACGGTTTGAGACCGTCCGCCGTAGGCAT GCTTTTGAGCGTTTGACCAAGCAGTTCCAGGCGGTCCCACAGCTCGGTCACCTGCTCTAC GGCATCTCGATCCAGCATATCTCCTCGTTTCGCGGGTTGGGGGGGCTTTCGCTGTACGGC AGTAGTCGGTGCTCCAGACGGGCCAGGGTCATGTCTTTCCACGGGCGCAGGGTCCTC GTCAGCGTAGTCTGGGTCACGGTGAAGGGGTGCGCTCCGGGCTGCCCGCGCTGGCCAGGGTG CGCTTGAGGCTGGTCCTGGTGCTGAAGCGCTGCCGGTCTTCGCCCTGCGCGTCGGCC AGGTAGCATTTGACCATGGTGTCATAGTCCAGCCCCTCCGCGCGTGGCCCTTGGCGCGC

AGCTTGCCCTTGGAGGAGGCGCCGCACGAGGGGCAGTGCAGACTTTTGAGGGCGTAGAGC TTGGGCGCGAGAATACCGATTCCGGGGAGTAGGCATCCGCGCGCAGGCCCCGCAGACG GTCTCGCATTCCACGAGCCAGGTGAGCTCTGGCCGTTCGGGGTCAAAAACCAGGTTTCCC $\verb|CCATGCTTTTTGATGCGTTTCTTACCTCTGGTTTCCATGAGCCGGTGTCCACGCTCGGTG|\\$ ACGAAAAGGCTGTCCGTGTCCCCGTATACAGACTNNNGTTTAAACGAATTCNNNATATAA AGTCATGCTCATGCAGATAAAGGCAGGTAAGCTCCGGAACCACCACAGAAAAAGACACCA CATTTAAACATTAGAAGCCTGTCTTACAACAGGAAAAACAACCCTTATAAGCATAAGACG GACTACGGCCATGCCGGCGTGACCGTAAAAAAACTGGTCACCGTGATTAAAAAAGCACCAC CGACAGCTCCTCGGTCATGTCCGGAGTCATAATGTAAGACTCGGTAAACACATCAGGTTG GTAGAGACAACATTACAGCCCCCATAGGAGGTATAACAAAATTAATAGGAGAAAAAACA CATAAACACCTGAAAAACCCTCCTGCCTAGGCAAAATAGCACCCTCCCGCTCCAGAACAA TTAAAAAAACACCACTCGACACGGCACCAGCTCAATCAGTCACAGTGTAAAAAAAGGGCCA AGTGCAGAGCGAGTATATATAGGACTAAAAAATGACGTAACGGTTAAAGTCCACAAAAAA CACCCAGAAAACCGCACGCGAACCTACGCCCAGAAACGAAAGCCAAAAAACCCACAACTT CCTCAAATCGTCACTTCCGTTTTCCCACGTTACGTAACTTCCCATTTTAAGAAAACTACA ATTCCCAACACATACAAGTTACTCCGCCCTAAAACCTACGTCACCCGCCCCGTTCCCACG CCCGCGCCACGTCACAAACTCCACCCCTCATTATCATATTGGCTTCAATCCAAAATAA GGTATATTATTGATGATNNNTTAATTAAGGATCCNNNCGGTGTGAAATACCGCACAGATG CGTAAGGAGAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCC CTCGGTCGTTCGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATC CACAGAATCAGGGGATAACGCAGGAAAGACATGTGAGCAAAAGGCCAGCAAAAGGCCAG GAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCA TCACAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCA GGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGG ATACCTGTCCGCCTTCCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAG GTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGT TCAGCCCGACCGCTCCCCTTATCCGCTAACTATCGTCTTGAGTCCAACCCGCTAAGACA CGACTTATCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGG CGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATT TGGTATCTGCGCTCTGCAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATC CAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTCTACGGGGTCTGACGCTCAGTG GAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTA GATCCTTTTAAATTAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTG GTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCG TTCATCCATAGTTGCCTGACTCCCGGTCGTGTAGATAACTACGATACGGGAGGGCTTACC ATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATC AGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGC

TTTGCGCAACGTTGTTGNNNNAAAAAGGATCTTCACCTAGATCCTTTTCACGTAGAAAGC CAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAG GGAAAACGCAAGCGCAAAGAGAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCT AGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGG TAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTCGCCGCCAAGGATCTGATG GCGCAGGGGATCAAGCTCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACA AGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTG GGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCG AGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGT CACTGAAGCGGGAAGGGACTGCCTGTTTTGGGCGAAGTGCCGGGGCAGGATCTCCTGTC ATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCA ACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGG GCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCT CGTCGTGACCCATGGCGATGCCTGCTGCCGAATATCATGGTGGAAAATGGCCGCTTTTC TGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGC TACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTA CGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTT CTGAATTTTGTTAAAATTTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCG GCAACATCCCTTATAAATCAAAAGAATAGACCGCGATAGGGTTGAGTGTTGTTCCAGTTT GGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCT ATCAGGGCGATGGCCCACTACGTGAACCATCACCCAAATCAAGTTTTTTGCGGTCGAGGT GCCGTAAAGCTCTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAA AGCCGGCGAACGTGGCGAGAAGGAAGGGAAGAAGCGAAAGGAGCGGGCGCTAGGGCGC TGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACACACCCGCGCGCTT

Fig. 27 Secuencia de pAd-3

NNTTAATTAAGGATCCNNNCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCG GCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAA CGCAGGAAAGACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGC GTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTC AAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAG CTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCT CCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTA GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGC CTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTT GAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCT GAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAACCACCGC TGGTAGCGGTGGTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCA AGAAGATCCTTTGATCTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTA AGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAA ATGAAGTTTTAAATCAATCTAAAGTATATGTGGTAAACTTGGTCTGACAGTTACCAATG CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTG ACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGC TTGTTGCCGGGAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGN NNNAAAAGGATCTTCACCTAGATCCTTTTCACGTAGAAAGCCAGTCCGCAGAAACGGTG $CTG\Delta CCCCGG\Delta TGA\Delta TGTC\Delta GCTACTGGGCT\Delta TCTGGACA\Delta GGGG\Delta\Delta\Delta\Delta CGCAAGCGCAAA$ GAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATG GACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTG CAAAGTAAACTGGATGGCTTTCTCGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGCTC TGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGG TTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGG CTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTGTCAA GACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGCAGCGCGGCTATCGTGGCT GGCCACGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGA CTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGC CGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTAC CGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGGCTCGCGCCAGCCGAACT GTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGA TGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGG CCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGA

AGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGA TTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATTTTGTTAAAATT TTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAACATCCCTTATAAAT CAAAAGAATAGACCGCGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTAT TAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCAC TACGTGAACCATCACCCAAATCAAGTTTTTTGCGGTCGAGGTGCCGTAAAGCTCTAAATC GGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGA GAAAGGAAGGAAGAAAGCGAAAGGAGCGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCA NNNNTTAATTAANNNTCCCTTCCAGCTCTCTGCCCCTTTTGGATTGAAGCCAATATGATA ATGAGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGGGCGCGTGACGTAGTA GTGTGGCGGAAGTGTGTTGCAAGTGTGGCGAACACATGTAAGCGACGGATGTGGCA ${\tt AAAGTGACGTTTTGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCGCGCGGGTTTT}$ AGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAA AACTGAATAAGAGGAAGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAANNNNT AATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACAT AACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAA TAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGG AGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGC CCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGA TGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAA GTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTTGGCACCAAAATCAACGGGACTTTC CAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGTAGGCGTGTACGGTGGG AGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGAGATCTGGATCCG AATTCGCCGCCACCATGGGTCCTCAGAAGCTAACCATCTCCTGGTTTGCCATCGTTTTGC TGGTGTCTCCACTCATGGCCATGTGGGAGCTGGAGAAAGACGTTTATGTTGTAGAGGTGG ACTGGACTCCCGATGCCCCTGGAGAAACAGTGAACCTCACCTGTGACACGCCTGAAGAAG ATGACATCACCTGGACCTCAGACCAGAGACATGGAGTCATAGGCTCTGGAAAGACCCTGA CCATCACTGTCAAAGAGTTTCTAGATGCTGGCCAGTACACCTGCCACAAAGGAGGCGAGA CTCTGAGCCACTCACATCTGCTGCTCCACAAGAAGGAAAATGGAATTTGGTCCACTGAAA TTTTAAAAAATTTCAAAAACAAGACTTTCCTGAAGTGTGAAGCACCAAATTACTCCGGAC GGTTCACGTGCTCATGGCTGCTGCAAAGAAACATGGACTTGAAGTTCAACATCAAGAGCA AGGTCACACTGGACCAAAGGGACTATGAGAAGTATTCAGTGTCCTGCCAGGAGGATGTCA CCTGCCCAACTGCCGAGGAGACCCTGCCCATTGAACTGCCGTTGGAAGCACGGCAGCAGA ATAAATATGAGAACTACAGCACCAGCTTCTTCATCAGGGACATCATCAAACCAGACCCGC CCAAGAACTTGCAGATGAAGCCTTTGAAGAACTCACAGGTGGAGGTCAGCTGGGAGTACC CTGACTCCTGGAGCACTCCCCATTCCTACTTCTCCCTCAAGTTCTTTGTTCGAATCCAGC GCAAGAAAGAAAGATGAAGGAGAGAGGAGGGGGTGTAACCAGAAAGGTGCGTTCCTCG TAGAGAAGACATCTACCGAAGTCCAATGCAAAGGCGGGAATGTCTGCGTGCAAGCTCAGG ATCGCTATTACAATTCCTCATGCAGCAAGTGGGCATGTGTTCCCTGCAGGGTCCGATCCG

GTGGCGTGGCTCGGCGGTGGTGGTCGGTCGCGCGGATCTAGGGTCAlTCCAGTCT CTGGACCTGCCAGGTGTCTTAGCCAGTCCCGAAACCTGCTGAAGACCACAGATGACATGG TGAAGACGCCAGAGAAAAACTGAAACATTATTCCTGCACTGCTGAAGACATCGATCATG AAGACATCACACGGGACCAAACCAGCACATTGAAGACCTGTTTACCACTGGAACTACACA CCCCACAGAGACGTCTTTGATGATGACCCTGTGCCTTTGGTAGCATCTATGAGGACTTGAAGATCATTCTAGACAAGGGCATGCTGGTGGCCATCGATGAGCTGATGCAGTCTCTGAATC ATAATGGCGAGACTCTGCGCCAGAAACCTCCTGTGGGAGAAGCAGACCCTTACAGAGTGA AAATGAAGCTCTGCATCCTGCTTCACGCCTTCAGCACCCGCGTCGTGACCATCAACAGGG TGATGGGCTATCTGAGCTCCGCCTGAGAATTGATCCGGATTAGTCCAATTTGTTAAAGAC TAGTACTCCGGTATTGCGGTACCCTTGTACGCCTGTTTTATACTCCCTTCCCGTAACTTA GACGCACAAACCAAGTTCAATAGAAGGGGGTACAAACCAGTACCACCACGAACAAGCAC TTCTGTTTCCCCGGTGATGTCGTATAGACTGCTTGCGTGGTTGAAAGCGACGGATCCGTT ATCCCCTTATGTACTTCGAGAAGCCCAGTACCACCTCGGAATCTTCGATGCGTTGCGCTC AGCACTCAACCCCAGAGTGTAGCTTAGGCTGATGAGTCTGGACATCCCTCACCGGTGACG GTGGTCCAGGCTGCGTTGGCGGCCTACCTATGGCTAACGCCATGGGACGCTAGTTGTGAA CAAGGTGTGAAGAGCCTATTGAGCTACATAAGAATCCTCCGGCCCCTGAATGCGGCTAAT CCCAACCTCGGAGCAGGTGGTCACAAACCAGTGATTGGCCTGTCGTAACGCGCAAGTCCG TGGCGGAACCGACTACTTTGGGTGTCCGTGTTTCCTTTTATTTTATTGTGGCTGCTTATG GTGACAATCACAGATTGTTATCATAAAGCGAATTGGATTGCGGCCGCATGATCGACCAGC ACACACTTGATGTGGAGGATACCGCGGATGCCAGACATCCAGCAGGTACTTCGTGCCCCT CGGATGCGGCGCTCCTCAGAGATACCGGGCTCCTCGCGGACGCTGCGCTCCTCAGATA CTGTGCGCCCCACAAATGCCGCGCTCCCCACGGATGCTGCCTACCCTGCGGTTAATGTTC GGGATCGCGAGGCCGCGTGGCCGCCTGCACTGAACTTCTGTTCCCGCCACCCAAAGCTCT ATGGCCTAGTCGCTTTGGTTTTGCTGCTTCTGATCGCCGCCTGTGTTCCTATCTTCACCC GCACCGAGCCTCGCCCAGCCTCACAATCACCACCTCGCCCAACCTGGGTACCCGAGAGA ATAATGCAGACCAGGTCACCCCTGTTTCCCACATTGGCTGCCCCAACACTACACAACAGG GCTCTCCTGTGTTCGCCAAGCTACTGGCTAAAAACCAAGCATCGTTGTGCAATACAACTC TGAACTGGCACAGCCAAGATGGAGCTGGGAGCTCATACCTATCTCAAGGTCTGAGGTACG AAGAAGACAAAAAGGAGTTGGTGGTAGACAGTCCCGGGCTCTACTACGTATTTTTGGAAC TGAAGCTCAGTCCAACATTCACAAACACAGGCCACAAGGTGCAGGGCTGGGTCTCTCTTG TTTTGCAAGCAAAGCCTCAGGTAGATGACTTTGACAACTTGGCCCTGACAGTGGAACTGT TCCCTTGCTCCATGGGGACAGTTAGTGGACCGTTCCTGGAGTCAACTGTTGCTCCTGA AGGCTGGCCACCGCCTCAGTGTGGGGTCTGAGGGCCTTATCTGCATGGAGCCCAGGATGCAT ACAGAGACTGGGAGCTGTCTTATCCCAACACCACCÁGCTTTGGACTCTTTCTTGTGAAAC CCGACAACCCATGGGAATGAGAACTATCCTTCTTGTGACTGGCGCGCCTGATCAATCGAT GTTTAAACGTTATTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCT GGCCCTGTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAA TCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGC

CAAAAGCCACGTGTATÄAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTG AGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTG AAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGC TTTACGTGTGTTTAGTCGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGG TTTTCCTTTGAAAAACACGATTCTCGAGACTAGTGCCACCATGTACAGCATGCAGCTCGC ATCCTGTGTCACATTGACACTTGTGCTCCTTGTCAACAGCGCACCCACTTCAAGCTCCAC CCTGGAGCAGCTGTTGATGGACCTACAGGAGCTCCTGAGCAGGATGGAGAATTACAGGAA CCTGAAACTCCCCAGGATGCTCACCTTCAAATTTTACTTGCCCAAGCAGGCCACAGAATT GAAGATCTTCAGTGCCTAGAAGATGAACTTGGACCTCTGCGGCATGTTCTGGATTTGAC TCAAAGCAAAAGCTTTCAATTGGAAGATGCTGAGAATTTCATCAGCAATATCAGAGTAAC TCTTCTAAAACTAAAGCCCTCTCACAACACATTTCACTCCCAATTCGATGATGACTCAGC AACTGTGGTGGACTTTCTGAGGAGATGGATAGCCTTCTGTCAAAGCATCATCTCAACAAG TAAGCTTCTAGATAAGATATCCGATCCACCGGATCTAGATAACTGATCATAATCAGCCAT ACCACATTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTG AAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTAC AAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTCACTGCATTCTAGT TGTGGTŤTGTCCAAACŤCATCAATGTATCTTAACGCNNNNTAAGGGTGGGAAAGAATATA TAAGGTGGGGGTCTTATGTAGTTTTGTATCTGTTTTTGCAGCAGCCGCCGCCGCCATGAGC ACCAACTCGTTTGATGGAAGCATTGTGAGCTCATATTTGACAACGCGCATGCCCCCCATGG GCCGGGTGCGTCAGAATGTGATGGGCTCCAGCATTGATGGTCGCCCCGTCCTGCCCGCA AACTCTACTACCTTGACCTACGAGACCGTGTCTGGAACGCCGTTGGAGACTGCAGCCTCC CTTTTGGCACAATTGGATTCTTTGACCCGGGAACTTAATGTCGTTTCTCAGCAGCTGTTG GATCTGCGCCAGCAGGTTTCTGCCCTGAAGGCTTCCTCCCCAATGCGGTTTAAAAC TTAGGGGTTTTGCGCGCGCGGTAGGCCCGGGACCAGCGGTCTCGGTCGTTGAGGGTCCTG TGTATTTTTCCAGGACGTGGTAAAGGTGACTCTGGATGTTCAGATACATGGGCATAAGC CCGTCTCTGGGGTGGAGGTAGCACCACTGCAGAGCTTCATGCTGCGGGGTGGTGTTGTAG ATGATCCAGTCGTAGCAGGAGCGCTGGGCGTGGTGCCTAAAAATGTCTTTCAGTAGCAAG CTGATTGCCAGGGGCAGGCCCTTGGTGTAAGTGTTTACAAAGCGGTTAAGCTGGGATGGG TGCATACGTGGGCATATGAGATGCATCTTGGACTGTATTTTTAGGTTGGCTATGTTCCCA GCCATATCCCTCCGGGGATTCATGTTGTGCAGAACCACCAGCACAGTGTATCCGGTGCAC TTGGGÄAATTTGTCATGTAGCTTAGAAGGAAATGCGTGGAAGAACTTGGAGACGCCCTTG TGACCTCCAAGATTTTCCATGCATTCGTCCATAATGATGGCAATGGGCCCACGGGCGGCG GCCTGGGCGAAGATATTTCTGGGATCACTAACGTCATAGTTGTGTTCCAGGATGAGATCG TCATAGGCCATTTTTACAAAGCGCGGGGGGGGGGGGGGCGAGACTGCGGTATAATGGTTCCA TCCGGCCCAGGGGCGTAGTTACCCTCACAGATTTGCATTTCCCACGCTTTGAGTTCAGAT GGGGGATCATGTCTACCTGCGGGCGATGAAGAAAACGGTTTCCGGGGTAGGGGAGATC AGCTGGGAAGAAGCAGGTTCCTGAGCAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAA

ATCACACCTATTACCGGGTGCAACTGGTAGTTAAGAGAGCTGCAGCTGCCGTCATCCCTG AGCAGGGGGCCACTTCGTTAAGCATGTCCCTGACTCGCATGTTTTCCCTGACCAAATCC GCCAGAAGGCGCTCGCCGCCCAGCGATAGCAGTTCTTGCAAGGAAGCAAAGTTTTTCAAC GGTTTGAGACCGTCCGCCGTAGGCATGCTTTTGAGCGTTTGACCAAGCAGTTCCAGGCGG TCCCACAGCTCGGTCACCTGCTCTACGGCATCTCGATCCAGCATATCTCCTCGTTTCGCG GGTTGGGGCGGCTTTCGCTGTACGGCAGTAGTCGGTGCTCCAGACGGGCCAGGGTCA TGTCTTTCCACGGGCGCAGGGTCCTCGTCAGCGTAGTCTGGGTCACGGTGAAGGGGTGCG CTCCGGGCTGCGCCAGGGTGCGCTTGAGGCTGGTCCTGCTGGTGCTGAAGCGCT GCCGGTCTTCGCCCTGCGCCAGGTAGCATTTGACCATGGTGTCATAGTCCAGCC CCTCCGCGGCGTGGCCCTTGGCGCGCACGAGGGCC AGTGCAGACTTTTGAGGGCGTAGAGCTTGGGCGCGAGAAATACCGATTCCGGGGAGTAGG CATCCGCGCCGCAGGCCCCGCAGACGGTCTCGCATTCCACGAGCCAGGTGAGCTCTGGCC GTTCGGGGTCAAAAACCAGGTTTCCCCCATGCTTTTTGATGCGTTTCTTACCTCTGGTTT CCATGAGCCGGTGTCCACGCTCGGTGACGAAAAGGCTGTCCGTGTCCCCGTATACAGACT TGAGAGGCCTGTCCTCGAGCGGTGTTCCGCGGTCCTCCTCGTATAGAAACTCGGACCACT CTGAGACAAAGGCTCGCGTCCAGGCCAGCACGAAGGAGGCTAAGTGGGAGGGGTAGCGGT CGTTGTCCACTAGGGGGTCCACTCGCTCCAGGGTGTGAAGACACATGTCGCCCTCTTCGG CATCAAGGAAGGTGATTGGTTTGTAGGTGTAGGCCACGTGACCGGGTGTTCCTGAAGGGG GGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTCCGCATCGCTGTCTGCGA GGGCCAGCTGTTGGGGTGAGTACTCCCTCTGAAAAGCGGGCATGACTTCTGCGCTAAGAT TGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGA GGGTGGCCGCATCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGGTGGCAA ACGACCCGTAGAGGGCGTTGGACAGCAACTTGGCGATGGAGCGCAGGGTTTGGTTTTTGT CGCGATCGCGCGCTCCTTGGCCGCGATGTTTAGCTGCACGTATTCGCGCGCAACGCACC GCCATTCGGGAAAGACGCTGCTGCCCTCGTCGGCCACCAGGTGCACGCGCCAACCGCGCT TGTGCAGGGTGACAAGGTCAACGCTGGTGGCTACCTCTCCGCGTAGGCGCTCGTTGGTCC AGCAGAGGCGGCCCCTTGCGCGAGCAGAATGGCGGTAGGGGGTCTAGCTGCGTCTCGT CCGGGGGGTCTGCGTCCACGGTAAAGACCCCGGGCAGCAGGCGCGCGTCGAAGTAGTCTA ATGGGTTGAGTGGGGGACCCCATGGCATGGGGTGGGTGAGCGCGGAGGCGTACATGCCGC AAATGTCGTAAACGTAGAGGGGCTCTCTGAGTATTCCAAGATATGTAGGGTAGCATCTTC CACCGCGGATGCTGGCGCGCACGTAATCGTATAGTTCGTGCGAGGAGCGAGGAGGTCGG GACCGAGGTTGCTACGGGCGGGCTGCTCTGCTCGGAAGACTATCTGCCTGAAGATGGCAT GTGAGTTGGATGATATGGTTGGACGCTGGAAGACGTTGAAGCTGGCGTCTGTGAGACCTA CCGCGTCACGCACGAAGGAGGCGTAGGAGTCGCGCAGCTTGTTGACCAGCTCGGCGGTGA CCTGCACGTCTAGGGCGCAGTAGTCCAGGGTTTCCTTGATGATGTCATACTTATCCTGTC CCTTTTTTTCCACAGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTŤCCAGTACTCTT GGATCGGAACCCGTCGGCCTCCGAACGGTAAGAGCCTAGCATGTAGAACTGGTTGACGG CCTGGTAGGCGCAGCATCCCTTTCTACGGGTAGCGCGTATGCCTGCGCGGCCTTCCGGA GCGAGGTGTGGGTGAGCGCAAAGGTGTCCCTGACCATGACTTTGAGGTACTGGTATTTGA AGTCAGTGTCGTCGCATCCGCCCTGCTCCCAGAGCAAAAAGTCCGTGCGCTTTTTGGAAC GCGGATTTGGCAGGGCGAAGGTGACATCGTTGAAGAGTATCTTTCCCGCGCGAGGCATAA

AGITGCGTGTGATGCGGAAGGGTCCCGGCACCTCGGAACGGTTGTTAATTACCTGGGCGG CGAGCACGATCTCGTCAAAGCCGTTGATGTTGTGGCCCACAATGTAAAGTTCCAAGAAGC GCGGGATGCCCTTGATGGAAGGCAATTTTTTAAGTTCCTCGTAGGTGAGCTCTTCAGGGG AGCTGAGCCCGTGCTCTGAAAGGGCCCAGTCTGCAAGATGAGGGTTGGAAGCGACGAATG AGCTCCACAGGTCACGGGCCATTAGCATTTGCAGGTGGTCGCGAAAGGTCCTAAACTGGC GACCTATGCCCATTTTTTCTGGGGTGATGCAGTAGAGGTAAGCGGGTCTTGTTCCCAGC GGTCCCATCCAAGGTTCGCGGCTAGGTCTCGCGCGGCAGTCACTAGAGGCTCATCTCCGC CGAACTTCATGACCAGCATGAAGGGCACGAGCTGCTTCCCAAAGGCCCCCATCCAAGTAT AGGTCTCTACATCGTAGGTGACAAAGACGCTCGGTGCGAGGATGCGAGCCGATCGGGA AGAACTGGATCTCCCGCCACCAATTGGAGGAGTGGCTATTGATGTGGTGAAAGTAGAAGT CCCTGCGACGGCCGAACACTCGTGCTGGCTTTTGTAAAAACGTGCGCAGTACTGGCAGC GGTGCACGGGCTGTACATCCTGCACGAGGTTGACCTGACGACCGCGCACAAGGAAGCAGA GTGGGAATTTGAGCCCCTCGCCTGGCGGGTTTGGCTGGTGGTCTTCTACTTCGGCTGCTT GTCCTTGACCGTCTGGCTGCTCGAGGGGAGTTACGGTGGATCGGACCACCACGCCGCGCG AGCCCAAAGTCCAGATGTCCGCGCGCGGCGGTCGGAGCTTGATGACAACATCGCGCAGAT GGGAGCTGTCCATGGTCTGGAGCTCCCGCGGCGTCAGGTCAGGCGGGAGCTCCTGCAGGT TTACCTCGCATAGACGGGTCAGGGCGGGCTAGATCCAGGTGATACCTAATTTCCAGGG TACCGCGCGCGGCGGTGGCCCGCGGGGTGTCCTTGGATGATGCATCTAAAAGCGGTG ACCCGGCGAGCCCCCGGAGCTAGGGGGGCTCCGGACCCGCCGGGAGAGGGGCAGGGG CACGTCGGCGCGCGCGGGGCAGGAGCTGGTGCTGCGCGCGTAGGTTGCTGGCGAACGC GACGACGCGGCGGTTGATCTCCTGAATCTGGCGCCTCTGCGTGAAGACGACGGCCCGGT GAGCTTGAGCCTGAAAGAGAGTTCGACAGAATCAATTTCGGTGTCGTTGACGGCGGCCTG GCGCAAAATCTCCTGCACGTCTCCTGAGTTGTCTTGATAGGCGATCTCGGCCATGAACTG CTCGATCTCCTCCTGGAGATCTCCGCGTCCGGCTCGCTCCACGGTGGCGGCGAGGTC GCTGTAGACCACGCCCCTTCGGCATCGCGGGCGCGCATGACCACCTGCGCGAGATTGAG GGTGGCGGTGTGTTCTGCCACGAAGAAGTACATAACCCAGCGTCGCAACGTGGATTCGTT GATATCCCCCAAGGCCTCAAGGCGCTCCATGGCCTCGTAGAAGTCCACGGCGAAGTTGAA AAACTGGGAGTTGCGCCCGACACGGTTAACTCCTCCTCCAGAAGACGGATGAGCTCGGC GACAGTGTCGCGCACCTCGCGCTCAAAGGCTACAGGGGCCTCTTCTTCTTCTTCAATCTC GCGGCGACGACGCGCACCGGGAGGCGCTCGACAAAGCGCTCGATCATCTCCCCGCGGCG ACGCCCATGGTCTCGGTGACGCGCGCCCGTTCTCGCGGGGGCGCAGTTGGAAGACGCC GCCCGTCATGTCCCGGTTATGGGTTGGCGGGGGGCTGCCATGCGGCAGGGATACGGCGCT AACGATGCATCTCAACAATTGTTGTGTAGGTACTCCGCCGCCGAGGGACCTGAGCGAGTC CGCATCGACCGGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAGG TAGGCTGAGCACCGTGGCGGGCGGCGGCGGCGGCGGTTGTTTCTGGCGGAGGT GCTGCTGATGATGTAATTAAAGTAGGCGGTCTTGAGACGGCGGATGGTCGACAGAAGCAC CATGTCCTTGGGTCCGGCCTGCTGAATGCGCAGGCGGTCGGCCATGCCCCAGGCTTCGTT TTGACATCGGCGCAGGTCTTTGTAGTAGTCTTGCATGAGCCTTTCTACCGGCACTTCTTC

TTCTCCTTCCTCTGCATCTCTTGCATCTATCGCTGCGCGGCGGCGGGGGTTTGG CAGGGCTAGGTCGCCGACAACGCGCTCGGCTAATATGGCCTGCTGCACCTGCGTGAGGGT AGACTGGAAGTCATCCATGTCCACAAAGCGGTGGTATGCGCCCGTGTTGATGGTGTAAGT GCAGTTGGCCATAACGGACCAGTTAACGGTCTGGTGACCCGGCTGCGAGAGCTCGGTGTA CCTGAGACGCGAGTAAGCCCTCGAGTCAAATACGTAGTCGTTGCAAGTCCGCACCAGGTA CTGGTATCCCACCAAAAAGTGCGGCGGCGGCTGGCGGTAGAGGGGCCAGCGTAGGGTGGC CGGGGCTCCGGGGGCGACATCTTCCAACATAAGGCGATGATATCCGTAGATGTACCTGGA CATCCAGGTGATGCCGCGGCGGTGGTGGAGGCGCGGGAAAGTCGCGGACGCGGTTCCA GATGTTGCGCAGCGCAAAAAGTGCTCCATGGTCGGACGCTCTGGCCGGTCAGGCGCGC GCAATCGTTGACGCTCTACCGTGCAAAAGGAGAGCCTGTAAGCGGGCACTCTTCCGTGGT CTGGTGGATAAATTCGCAAGGGTATCATGGCGGACGGCGCTTCGAGCCCCGTATCCG GCCGTCCGCCGTGATCCATGCGGTTACCGCCCGCGTGTCGAACCCAGGTGTGCGACGTCA GACAACCGGGGGGTGCTCCTTTTGGCTTCCTTCCAGGCGGCGGCTGCTGCGCTAGCTT TTTTGGCCACTGGCGCGCGCGCGTAAGCGTTAGGCTGGAAAGCGAAAGCATTAAGTG GCTCGCTCCCTGTAGCCGGAGGGTTATTTTCCAAGGGTTGAGTCGCGGGACCCCCGGTTC GAGTCTCGGACCGGCCGGACTGCGCGAACGGGGGTTTGCCTCCCCGTCATGCAAGACCC CGCTTGCAAATTCCTCCGGAAACAGGGACGAGCCCCTTTTTTGCTTTTTCCCAGATGCATC CGGTGCTGCGGCAGATGCGCCCCCCTCCTCAGCAGCGGCAAGAGCAAGAGCAGCGGCAGA CATGCAGGGCACCCTCCCTCCTCCTACCGCGTCAGGAGGGGCGACATCCGCGGTTGACG CGGCAGCAGATGGTGATTACGAACCCCCGCGGCGCCCGGGCCCGGCACTACCTGGACTTGG AGGAGGGCGAGGCCTGCGCGCGCTAGGAGCCCCTCTCCTGAGCGGTACCCAAGGGTGC AGCTGAAGCGTGATACGCGTGAGGCGTACGTGCCGCGGCAGAACCTGTTTCGCGACCGCG AGGGAGAGGAGCCCGAGGAGATGCGGGATCGAAAGTTCCACGCAGGGCGCGAGCTGCGGC ATGGCCTGAATCGCGAGCGGTTGCTGCGCGAGGAGGACTTTGAGCCCGACGCGCAACCG GGATTAGTCCCGCGCGCGCACACGTGGCGGCCGCCGACCTGGTAACCGCATACGAGCAGA CGGTGAACCAGGAGATTAACTTTCAAAAAAGCTTTAACAACCACGTGCGTACGCTTGTGG CGCGCGAGGAGGTGGCTATAGGACTGATGCATCTGTGGGACTTTGTAAGCGCGCTGGAGC AAAACCAAATAGCAAGCCGCTCATGGCGCAGCTGTTCCTTATAGTGCAGCACAGCAGGG TCGATTTGATAAACATCCTGCAGAGCATAGTGGTGCAGGAGCGCAGCTTGAGCCTGGCTG ACAAGGTGGCCGCCATCAACTATTCCATGCTTAGCCTGGGCAAGTTTTACGCCCGCAAGA TATACCATACCCTTACGTTCCCATAGACAAGGAGGTAAAGATCGAGGGGTTCTACATGC GCATGCCCTGAAGGTGCTTACCTTGAGCGACCTGGGCGTTTATCGCAACGAGCGCA TCCACAAGGCCGTGAGCGTGAGCCGGCGCGCGCGAGCTCAGCGACCGCGAGCTGATGCACA GCCTGCAAAGGGCCCTGGCTGGCACGGCGAGCGGCGATAGAGAGGCCGAGTCCTACTTTG ACCCGGCCCTGACCTGCGCTGGGCCCCAAGCCGACGCCCCTGGAGGCAGCTGGGGCCC ACGAGGACGATGAGTACGAGCCAGAGGACGCGAGTACTAAGCGGTGATGTTTCTGATCA CCTTAACTCCACGGACGACTGGCGCCAGGTCATGGACCGCATCATGTCGCTGACTGCGCG CAATCCTGACGCGTTCCGGCAGCAGCCGCAGCCAACCGGCTCTCCGCAATTCTGGAAGC

GGTGGTCCCGGCGCGCAAACCCCACGCACGAGAAGGTGCTGGCGATCGTAAACGCGCT GGCCGAAAACAGGGCCATCCGGCCCGACGAGGCCGGCCTGGTCTACGACGCGCTGCTTCA GCGCGTGGCTCGTTACAACAGCGGCAACGTGCAGACCAACCTGGACCGGCTGGTGGGGGA TGTGCGCGAGGCCGTGGCGCAGCGTGAGCGCGCAGCAGCAGCAGCCAACCTGGGCTCCAT GGTTGCACTAAACGCCTTCCTGAGTACACAGCCCGCCAACGTGCCGCGGGGACAGGAGGA CTACACCAACTTTGTGAGCGCACTGCGGCTAATGGTGACTGAGACACCGCAAAGTGAGGT GTACCAGTCTGGGCCAGACTATTTTTCCAGACCAGTAGACAAGGCCTGCAGACCGTAAA CCTGAGCCAGGCTTTCAAAAACTTGCAGGGGCTGTGGGGGGGTGCGGGCTCCCACAGGCGA CCGCGCGACCGTGTCTAGCTTGCTGACGCCCAACTCGCGCCTGTTGCTGCTAATAGC GCCCTTCACGGACAGTGGCAGCGTGTCCCGGGACACATACCTAGGTCACTTGCTGACACT GTACCGCGAGGCCATAGGTCAGGCGCATGTGGACGAGCATACTTTCCAGGAGATTACAAG TGTCAGCCGCGCGCTGGGGCAGGAGGACACGGGCAGCCTGGAGGCAACCCTAAACTACCT GCTGACCAACCGGCGGCAGAAGATCCCCTCGTTGCACAGTTTAAACAGCGAGGAGGAGCG CATTTTGCGCTACGTGCAGCAGAGCGTGAGCCTTAACCTGATGCGCGACGGGGTAACGCC CAGCGTGGCGCTGGACATGACCGCGCGCAACATGGAACCGGGCATGTATGCCTCAAACCG GCCGTTTATCAACCGCCTAATGGACTACTTGCATCGCGCGGCCGCCGTGAACCCCGAGTA TTTCACCAATGCCATCTTGAACCCGCACTGGCTACCGCCCCTGGTTTCTACACCGGGGG ATTCGAGGTGCCCGAGGGTAACGATGGATTCCTCTGGGACGACATAGACGACAGCGTGTT GCGAAAGGAAAGCTTCCGCAGGCCAAGCAGCTTGTCCGATCTAGGCGCTGCGGCCCCGCG GTCAGATGCTAGTAGCCCATTTCCAAGCTTGATAGGGTCTCTTACCAGCACTCGCACCAC CCGCCCGCGCCTGCTGGGGGAGGAGGAGGAGTACCTAAACAACTCGCTGCTGCAGCCGCAGCGCGAAAAAACCTGCCTCCGGCATTTCCCAACAACGGGATAGAGAGCCTAGTGGACAAGAT CCGTCGTCAAAGGCACGACCGTCAGCGGGGTCTGGTGTGGGAGGACGATGACTCGGCAGA CGACAGCAGCGTCCTGGATTTTGGGAGGGAGTGGCAACCCTTTCCGCACCTTCGCCCCAGGCTGGGGAGAATGTTTTAAAAAAAAAAAAGCATGATGCAAAATAAAAAACTCACCAAGGC GAGGAGGTCCTCCTCCTACGAGAGTGTGGTGAGCGCGGCGCCAGTGGCGGCGGCG CTGGGTTCTCCCTTCGATGCTCCCCTGGACCCGCCGTTTGTGCCTCCGCGGTACCTGCGG CCTACCGGGGGAGAAACAGCATCCGTTACTCTGAGTTGGCACCCCTATTCGACACCACC CGTGTGTACCTGGTGGACAACAAGTCAACGGATGTGGCATCCCTGAACTACCAGAACGAC CACAGCAACTTTCTGACCACGGTCATTCAAAACAATGACTACAGCCCGGGGGAGGCAAGC ACACAGACCATCAATCTTGACGACCGGTCGCACTGGGGCGGCGACCTGAAAACCATCCTG CATACCAACATGCCAAATGTGAACGAGTTCATGTTTACCAATAAGTTTAAGGCGCGGGTG TTCACGCTGCCCGAGGGCAACTACTCCGAGACCATGACCATAGACCTTATGAACAACGCG ATCGTGGAGCACTACTTGAAAGTGGGCAGACAGAACGGGGTTCTGGAAAGCGACATCGGG GTAAAGTTTGACACCCGCAACTTCAGACTGGGGTTTGACCCCGTCACTGGTCTTGTCATG CCTGGGGTATATACAAACGAAGCCTTCCATCCAGACATCATTTTGCTGCCAGGATGCGGG GTGGACTTCACCCACAGCCGCCTGAGCAACTTGTTGGGCATCCGCAAGCGGCAACCCTTC CAGGAGGGCTTTAGGATCACCTACGATGATCTGGAGGGTGGTAACATTCCCGCACTGTTG

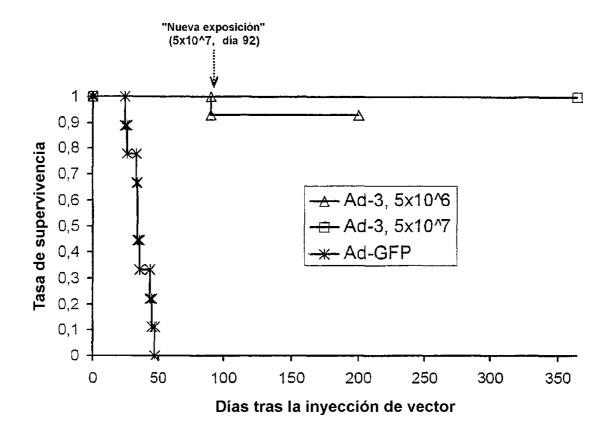
GATGTGGACGCCTACCAGGCGAGCTTGAAAGATGACACCGAACAGGGCGGGGGTGGCGCA GGCGGCAGCAACAGCAGTGGCAGCGGCGGCAGAGAAACTCCAACGCGGCAGCCGCGGCA ATGCAGCCGGTGGAGGACATGAACGATCATGCCATTCGCGGCGACACCTTTGCCACACGG GCTGAGGAGAAGCGCGCTGAGGCCGAAGCAGCCGAAGCTGCCGCCCCCCCTGCGCAA CCCGAGGTCGAGAAGCCTCAGAAGAACCGGTGATCAAACCCCTGACAGAGGACAGCAAG ÄAACGCAGTTACAACCTAATAAGCAATGACAGCACCTTCACCCAGTACCGCAGCTGGTAC CTTGCATACAACTACGGCGACCCTCAGACCGGAATCCGCTCATGGACCCTGCTTTGCACT CCTGACGTAACCTGCGGCTCGGAGCAGGTCTACTGGTCGTTGCCAGACATGATGCAAGAC CCCGTGACCTTCCGCTCCACGCGCCAGATCAGCAACTTTCCGGTGGTGGCCGCCGAGCTG TTGCCCGTGCACTCCAAGAGCTTCTACAACGACCAGGCCGTCTACTCCCAACTCATCCGC CAGTTTACCTCTGACCCACGTGTTCAATCGCTTTCCCGAGAACCAGATTTTGGCGCGC CCGCCAGCCCCACCATCACCGTCAGTGAAAACGTTCCTGCTCTCACAGATCACGGG ACGCTACCGCTGCGCAACAGCATCGGAGGAGTCCACCGAGTGACCATTACTGACGCCAGA AGCCGCACTTTTTGÄGCAAGCATGTCCATCCTTATATCGCCCAGCAATAACACAGGCTGG GGCCTGCGCTTCCCAAGCAAGATGTTTGGCGGGGCCAAGAAGCGCTCCGACCAACACCCA GTGCGCGTGCGCGGCACTACCGCGCGCCCTGGGGCGCGCACAAACGCGGCCGCACTGGG CGCACCACCGTCGATGACGCCATCGACGCGGTGGTGGAGGAGGCGCGCAACTACACGCCC ACGCCGCCACCACTGTCCACAGTGGACGCGGCCATTCAGACCGTGGTGCGCGGAGCCCGG CGCTATGCTAAAATGAAGAGACGGCGGAGGCGCGTAGCACGTCGCCACCGCCGCCGACCC GGCACTGCCGCCCAACGCGGGGGGGGCCTGCTTAACCGCGCACGTCGCACCGGCCGA CGGGCGGCCATGCGGGCCGCTCGAAGGCTGGCCGCGGGTATTGTCACTGTGCCCCCCAGG ${\tt TCCAGGCGACGAGCGGCGGCGCGCGCCATTAGTGCTATGACTCAGGGTCGC}$ AGGGGCAACGTGTATTGGGTGCGCGACTCGGTTAGCGGCCTGCGCGTGCCCCACC CCAGCGGCGCGCGCAACGAAGCTATGTCCAAGCGCAAAATCAAAGAAGAGATGCTC CAGGTCATCGCGCGGAGATCTATGGCCCCCGAAGAAGAAGAAGAGCAGGATTACAAGCCC CGAAAGCTAAAGCGGTCAAAAAGAAAAGAAAGATGATGATGATGACTTGACGACGAG GTGGAACTGCTGCACGCTACCGCGCCCAGGCGACGGGTACAGTGGAAAGGTCGACGCGTA AAACGTGTTTTGCGACCGGCACCACCGTAGTCTTTACGCCCGGTGAGCGCTCCACCCGC ACCTACAAGCGCGTGTATGATGAGGTGTACGGCGACGAGGACCTGCTTGAGCAGGCCAAC GAGCGCCTCGGGGAGTTTGCCTACGGAAAGCGGCATAAGGACATGCTGGCGTTGCCGCTG GACGAGGGCAACCCAACACCTAGCCTAAAGCCCGTAACACTGCAGCAGGTGCTGCCCGCG GTGCAGCTGATGGTACCCAAGCGCCAGCGACTGGAAGATGTCTTGGAAAAAATGACCGTG GAACCTGGGCTGGAGCCCGAGGTCCGCGTGCGCCAATCAAGCAGGTGGCGCCGGGACTG GCCTGCAGACCGTGGACCTTCAGATACCCACTACCAGTAGCACCAGTATTGCCACCGCC ACAGAGGGCATGGAGACACAAACGTCCCCGGTTGCCTCAGCGGTGGCGGATGCCGCGGTG CAGGCGGTCGCTGCGCCGCCCAAGACCTCTACGGAGGTGCAAACGGACCCGTGGATG TTTCGCGTTTCAGCCCCCGGCGCCCGCGCGCGTTCGAGGAAGTACGGCGCCGCCAGCGC CTACTGCCGGATATGCCCTACATCCTTCCATTGCGCCTACCCCGGCTATCGTGGCTAC ACCTACCGCCCAGAAGACGAGCAACTACCCGACGCCGAACCACCACTGGAACCCGCCGC

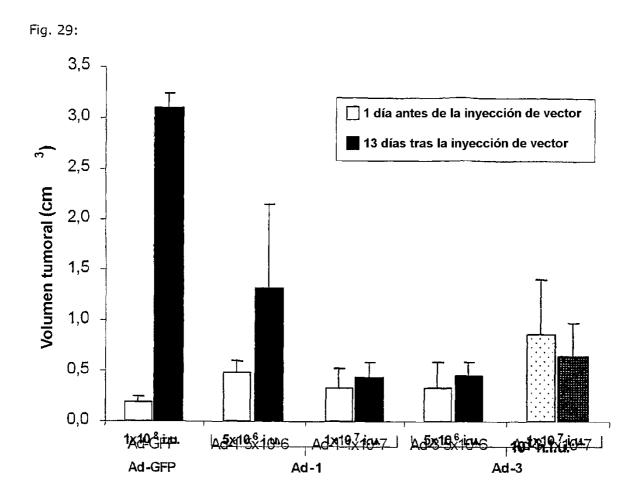
 $\tt CGCCGTCGCCAGCCCGTGCTGCCCCGATTTCCGTGCGCAGGGTGGCTCGCGAA$ GGAGGCAGGACCCTGGTGCCGACACAGCGCGCTACCACCCCAGCATCGTTTAAAAGCCG GTCTTTGTGGTTCTTGCAGATATGGCCCTCACCTGCCGCCTCCGTTTCCCGGTGCCGGGA CCCCTCCTTATTCCACTGATCGCCGCGGCGATTGCGCCCGGAATTGCATCCGTG GCCTTGCAGGCGCAGAGACACTGATTAAAAACAAGTTGCATGTGGAAAAATCAAAATAAA AAGTCTGGACTCTCACGCTCGCTTGGTCCTGTAACTATTTTGTAGAATGGAAGACATCAA CTTTGCGTCTCTGGCCCCGCGACACGCTCGCGCCCGTTCATGGGAAACTGGCAAGATAT CGGCACCAGCAATATGAGCGGTGGCGCCTTCAGCTGGGGCTCGCTGTGGAGCGGCATTAA AAATTTCGGTTCCACCGTTAAGAACTATGGCAGCCAGGCCTGGAACAGCAGCACAGGCCA GATGCTGAGGGATAAGTTGAAAGAGCAAAATTTCCAACAAAAGGTGGTAGATGGCCTGGC $\tt CTCTGGCATTAGCGGGGTGGTGGACCTGGCCAACCAGGCAGTGCAAAATAAGATTAACAG$ TAAGCTTGATCCCCGCCCTCCCGTAGAGGAGCCTCCACCGGCCGTGGAGACAGTGTCTCC AGAGGGGCGTGGCGAAAAGCGTCCGCGCCCGACAGGGAAGAAACTCTGGTGACGCAAAT AGACGAGCCTCCCTCGTACGAGGAGGCACTAAAGCAAGGCCTGCCCACCCCGTCCCAT CGCGCCCATGGCTACCGGAGTGCTGGGCCAGCACACCCCGTAACGCTGGACCTGCCTCC CCCGCCGACACCAGCAGAAACCTGTGCTGCCAGGCCCGACCGCCGTTGTTGTAACCCG TCCTAGCCGCGCGTCCCTGCGCCGCCGCCAGCGGTCCGCGATCGTTGCGGCCCGTAGC CAGTGGCAACTGGCAAAGCACACTGAACAGCATCGTGGGTCTGGGGGTGCAATCCCTGAA GCGCCGACGATGCTTCTGAATAGCTAACGTGTCGTATGTGTCATGTATGCGTCCATGT $\tt CGCCGCCAGAGGAGCTGCTGAGCCGCCGCGCGCCCGCTTTCCAAGATGGCTACCCCTTCG$ ATGATGCCGCAGTGGTCTTACATGCACATCTCGGGCCAGGACGCCTCGGAGTACCTGAGC CCCGGGCTGCTGCAGTTTGCCCGCGCGCCACCGAGACGTACTTCAGCCTGAATAACAAGTTT AGAAACCCCACGGTGGCGCCTACGCACGTGACCACAGACCGGTCCCAGCGTTTGACG $\mathtt{CTGCGGTTCATCCCTGTGGACCGTGAGGATACTGCGTACTGTACAAGGCGCGGTTCACCCTGCTTCACCCTGCGTTCACCCTGCTTCACCCTGCGTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCCTGCTTCACCTTCACC$ CTAGCTGTGGGTGATAACCGTGTGCTGGACATGGCTTCCACGTACTTTGACATCCGCGGC GTGCTGGACAGGGCCCTACTTTTAAGCCCTACTCTGGCACTGCCTACAACGCCCTGGCT CCCAGGGTGCCCCAAATCCTTGCGAATGGGATGAAGCTGCTACTGCTCTTGAAATAAAC ACTCACGTATTTGGGCAGGCGCCTTATTCTGGTATAAATATTACAAAGGAGGGTATTCAA ATAGGTGTCGAAGGTCAAACACCTAAATATGCCGATAAAACATTTCAACCTGAACCTCAA ATAGGAGAATCTCAGTGGTACGAAACTGAAATTAATCATGCAGCTGGGAGAGTCCTTAAA AAGACTACCCCAATGAAACCATGTTACGGTTCATATGCAAAACCCCACAAATGAAAATGGA GGGCAAGGCATTCTTGTAAAGCAACAAAATGGAAAGCTAGAAAGTCAAGTGGAAATGCAA $\tt TTTTCTCAACTACTGAGGCGACCGCAGGCAATGGTGATAACTTGACTCCTAAAGTGGTA$ TTGTACAGTGAAGATGTAGATATAGAAACCCCAGACACTCATATTTCTTACATGCCCACT ATTAAGGAAGGTAACTCACGAGAACTAATGGGCCAACAATCTATGCCCAACAGGCCTAAT TACATTGCTTTTAGGGACAATTTTATTGGTCTAATGTATTACAACAGCACGGGTAATATG GGTGTTCTGGCGGGCCAAGCATCGCAGTTGAATGCTGTTGTAGATTTGCAAGACAGAAAC ACAGAGCTTTCATACCAGCTTTTGCTTGATTCCATTGGTGATAGAACCAGGTACTTTTCT ATGTGGAATCAGGCTGTTGACAGCTATGATCCAGATGTTAGAATTATTGAAAATCATGGA

ACTGAAGATGAACTTCCAAATTACTGCTTTCCACTGGGAGGTGTGATTAATACAGAGACT GCCAACCTGTGGAGAAATTTCCTGTACTCCAACATAGCGCTGTATTTGCCCGACAAGCTA AAGTACAGTCCTTCCAACGTAAAAATTTCTGATAACCCAAACACCTACGACTACATGAAC AAGCGAGTGGTGCCCCGGGTTAGTGGACTGCTACATTAACCTTGGAGCACGCTGGTCC CTTGACTATATGGACAACGTCAACCCATTTAACCACCACCGCAATGCTGGCCTGCGCTAC CGCTCAATGTTGCTGGGCAATGGTCGCTATGTGCCCTTCCACATCCAGGTGCCTCAGAAG TTCTTTGCCATTAAAAACCTCCTTCTCCTGCCGGGCTCATACACCTACGAGTGGAACTTC AGGAAGGATGTTAACATGGTTCTGCAGAGCTCCCTAGGAAATGACCTAAGGGTTGACGGA GCCAGCATTAAGTTTGATAGCATTTGCCTTTACGCCACCTTCTTCCCCATGGCCCACAC ACCGCCTCCACGCTTGAGGCCATGCTTAGAAACGACACCAACGACCAGTCCTTTAACGAC TATCTCTCCGCCGCCAACATGCTCTACCCTATACCCGCCAACGCTACCAACGTGCCCATA TCCATCCCCTCCCGCAACTGGGCGGCTTTCCGCGGCCTTCGCGCCCTTAAGACT AAGGAAACCCCATCACTGGGCTCGGGCTACGACCCTATTACACCTACTCTGGCTCTATA CCCTACCTAGATGGAACCTTTTACCTCAACCACACCTTTAAGAAGGTGGCCATTACCTTT GACTCTTCTGTCAGCTGGCCTGGCAATGACCGCCTGCTTACCCCCAACGAGTTTGAAATT AAGCGCTCAGTTGACGGGGAGGGTTACAACGTTGCCCAGTGTAACATGACCAAAGACTGG TTCCTGGTACAAATGCTAGCTAACTACAACATTGGCTACCAGGGCTTCTATATCCCAGAG AGCTACAAGGACCGCATGTACTCCTTCTTTAGAAACTTCCAGCCCATGAGCCGTCAGGTG GTGGATGATACTAAATACAAGGACTACCAACAGGTGGGCATCCTACACCAACACAACAAC TCTGGATTTGTTGGCTACCTTGCCCCCACCATGCGCGAAGGACAGGCCTACCCTGCTAAC TTCCCCTATCCGCTTATAGGCAAGACCGCAGTTGACAGCATTACCCAGAAAAAGTTTCTT TGCGATCGCACCCTTTGGCGCATCCCATTCTCCAGTAACTTTATGTCCATGGGCGCACTC ACAGACCTGGGCCAAAACCTTCTCTACGCCAACTCCGCCCACGCGCTAGACATGACTTTT GAGGTGGATCCCATGGACGACCCCCTCTTTATGTTTTGTTTTGAAGTCTTTGACGTG GTCCGTGTGCACCGCCGCCGCGCGTCATCGAAACCGTGTACCTGCGCACGCCCTTC TCGGCCGGCAACGCCACAACATAAAGAAGCAACATCAACAACAGCTGCCGCCATGG GCTCCAGTGAGCAGGAACTGAAAGCCATTGTCAAAGATCTTGGTTGTGGGCCATATTTTT TGGGCACCTATGACAAGCGCTTTCCAGGCTTTGTTTCTCCACACAAGCTCGCCTGCGCCA TAGTCAATACGGCCGGTCGCGGGACTGGGGGCGTACACTGGATGGCCTTTGCCTGGAACC CGCACTCAAAAACATGCTACCTCTTTGAGCCCTTTGGCTTTTCTGACCAGCGACTCAAGC AGGTTTACCAGTTTGAGTACGAGTCACTCCTGCGCCGTAGCGCCATTGCTTCTTCCCCCG ACCGCTGTATAACGCTGGAAAAGTCCACCCAAAGCGTACAGGGGCCCAACTCGGCCGCCT GTGGACTATTCTGCTGCATGTTTCTCCACGCCTTTGCCAACTGGCCCCAAACTCCCATGG ATCACAACCCCACCATGAACCTTATTACCGGGGTACCCAACTCCATGCTCAACAGTCCCC AGGTACAGCCCACCCTGCGTCGCAACCAGGAACAGCTCTACAGCTTCCTGGAGCGCCACT CGCCCTACTTCCGCAGCCACAGTGCGCAGATTAGGAGCGCCACTTCTTTTTGTCACTTGA AAAACATGTAAAAATAATGTACTAGAGACACTTTCAATAAAGGCAAATGCTTTTATTTGT ACACTCTCGGGTGATTATTTACCCCCACCTTGCCGTCTGCGCCGTTTAAAAATCAAAGG GGTTCTGCCGCGCATCGCTATGCGCCACTGGCAGGACACGTTGCGATACTGGTGTTTAG TGCTCCACTTAAACTCAGGCACAACCATCCGCGGCAGCTCGGTGAAGTTTTCACTCCACA

GGCTGCGCACCATCACCAACGCGTTTAGCAGGTCGGGCGCCGATATCTTGAAGTCGCAGT TGGGGCCTCCGCCCTGCGCGCGAGTTGCGATACACAGGGTTGCAGCACTGGAACACTA TCAGCGCCGGGTGGTGCACGCTGGCCAGCACGCTCTTGTCGGAGATCAGATCCGCGTCCA GGTCCTCCGCGTTGCTCAGGGCGAACGGAGTCAACTTTGGTAGCTGCCTTCCCAAAAAGG GCGCGTGCCCAGGCTTTGAGTTGCACTCGCACCGTAGTGGCATCAAAAGGTGACCGTGCC CGGTCTGGGCGTTAGGATACAGCGCCTGCATAAAAGCCTTGATCTGCTTAAAAGCCACCT GAGCCTTTGCGCCTTCAGAGAAGACATGCCGCAAGACTTGCCGGAAAACTGATTGGCCG GACAGGCCGCGTCGTGCACGCAGCACCTTGCGTCGTGTTTGGAGATCTGCACCACATTTC GTAGACACTTAAGCTCGCCTTCGATCTCAGCGCAGCGCGCAGCCACAACGCGCAGCCAGA TGGGCTCGTGATGCTTGTAGGTCACCTCTGCAAACGACTGCAGGTACGCCTGCAGGAATC GCCCCATCATCGTCACAAAGGTCTTGTTGCTGGTGAAGGTCAGCTGCAACCCGCGGTGCT CCTCGTTCAGCCAGGTCTTGCATACGGCCGCCAGAGCTTCCACTTGGTCAGGCAGTAGTT CCATGCCCTTCTCCCACGCAGACACGATCGGCACACTCAGCGGGTTCATCACCGTAATTT CACTTTCCGCTTCGCTGGGCTCTTCCTCTTCCTCTTTGCGTCCGCATACCACGCGCCACTG GGTCGTCTTCATTCAGCCGCCGCACTGTGCGCTTACCTCCTTTGCCATGCTTGATTAGCA CCGGTGGGTTGCTGAAACCCACCATTTGTAGCGCCACATCTTCTTTTTTTCTTCCTCGCTGT CCACGATTACCTCTGGTGATGGCGGCGCTCGGGCTTGGGAGAAGGGCGCTTCTTTTCT TCTTGGGCGCAATGGCCAAATCCGCCGCGGGGTCGATGGCCGCGGGCTGGGTGTGCGCG GCACCAGCGCGTCTTGTGATGAGTCTTCCTCGTCCTCGGACTCGATACGCCGCCTCATCC GCTTTTTTGGGGGCCCCGGGGAGGCGGCGCGGCGACGGGACGGGACACACCTCCTCCA AGAAGGACAGCCTAACCGCCCCTCTGAGTTCGCCACCACCGCCTCCACCGATGCCGCCA ACGCGCCTACCACCTTCCCCGTCGAGGCACCCCCGCTTGAGGAGGAGGAAGTGATTATCG AGCAGGACCCAGGTTTTGTAAGCGAAGACGACGAGGACCGCTCAGTACCAACAGAGGATA GGCATGGCGACTACCTAGATGTGGGAGACGACGTGCTGTTGAAGCATCTGCAGCGCCAGT GCGCCATTATCTGCGACGCGTTGCAAGAGCGCAGCGATGTGCCCCTCGCCATAGCGGATG TCAGCCTTGCCTACGAACGCCACCTATTCTCACCGCGCGTACCCCCCAAACGCCAAGAAA ACGGCACATGCGAGCCCAACCCGCGCCTCAACTTCTACCCCGTATTTGCCGTGCCAGAGG TGCTTGCCACCTATCACATCTTTTTCCAAAACTGCAAGATACCCCTATCCTGCCGTGCCA ACCGCAGCCGAGCGGACAAGCAGCTGGCCTTGCGGCAGGGCGCTGTCATACCTGATATCG CCTCGCTCAACGAAGTGCCAAAAATCTTTGAGGGTCTTGGACGCGACGAGAAGCGCGCGG CAAACGCTCTGCAACAGGAAAACAGCGAAAATGAAAGTCACTCTGGAGTGTTGGTGGAAC TCGAGGGTGACAACGCGCGCCTAGCCGTACTAAAACGCAGCATCGAGGTCACCCACTTTG TACCCGCAGTTGGCGACCAGCTAGCGCGCTGGCTTCAAACGCGCGAGCCTGCCGACT TGGAGGAGCGACGCAAACTAATGATGGCCGCAGTGCTCGTTACCGTGGAGCTTGAGTGCA

TGCAGCGGTTCTTTGCTGACCCGGAGATGCAGCGCAAGCTAGAGGAAACATTGCACTACA CCTTTCGACAGGGCTACGTACGCCAGGCCTGCAAGATCTCCAACGTGGAGCTCTGCAACC TGGTCTCCTACCTTGGAATTTTGCACGAAAACCGCCTTGGGCAAAACGTGCTTCATTCCA CGCTCAAGGGCGAGGCGCCGCGACTACGTCCGCGACTGCGTTTACTTATTTCTATGCT ACACCTGGCAGACGGCCATGGGCGTTTGGCAGCAGTGCTTGGAGGAGTGCAACCTCAAGG AGCTGCAGAAACTGCTAAAGCAAAACTTGAAGGACCTATGGACGGCCTTCAACGAGCGCT CCGTGGCCGCGCACCTGCGGACATCATTTTCCCCGAACGCCTGCTTAAAACCCTGCAAC AGGGTCTGCCAGACTTCACCAGTCAAAGCATGTTGCAGAACTTTAGGAACTTTATCCTAG AGCGCTCAGGAATCTTGCCCGCCACCTGCTGTGCACTTCCTAGCGACTTTGTGCCCATTA AGTACCGCGAATGCCCTCCGCCGCTTTGGGGCCACTGCTACCTTCTGCAGCTAGCCAACT ACCTTGCCTACCACTCTGACATAATGGAAGACGTGAGCGGTGACGGTCTACTGGAGTGTC ACTGTCGCTGCAACCTATGCACCCCGCACCGCTCCCTGGTTTGCAATTCGCAGCTGCTTA ACGAAAGTCAAATTATCGGTACCTTTGAGCTGCAGGGTCCCTCGCCTGACGAAAAGTCCG CGGCTCCGGGGTTGAAACTCACTCCGGGGCTGTGGACGTCGGCTTACCTTCGCAAATTTG TACCTGAGGACTACCACGCCCACGAGATTAGGTTCTACGAGACCAATCCCGCCCCCAA ATGCGGAGCTTACCGCCTGCGTCATTACCCAGGGCCACATTCTTGGCCAATTGCAAGCCA $\mathsf{TCAACAAAGCCCGCCAAGAGTTTCTGCTACGAAAGGGACGGGGGGTTTACTTGGACCCCC$ AGTCCGGCGAGGAGCTCAACCCAATCCCCCCGCCGCCGCAGCCCTATCAGCAGCAGCCGC GACGAGGAGGATACTGGGACAGTCAGGCAGAGGAGGTTTTGGACGAGGAGGAGGAGGAC ATGATGGAAGACTGGGAGAGCCTAGACGAGGAAGCTTCCGAGGTCGAAGAGGTGTCAGAC GAAACACCGTCACCCTCGGTCGCATTCCCCTCGCCGGCGCCCCAGAAATCGGCAACCGGT TCCAGCATGCCTACAACCTCCGCTCCTCAGGCGCCGCCGGCACTGCCCGTTCGCCGACCC AACCGTAGATGGGACACCACTGGAACCAGGGCCGGTAAGTCCAAGCAGCCGCCGCCGTTA GCCCAAGAGCACAACAGCGCCAAGGCTACCGCTCATGGCGCGGGCACAAGAACGCCATA CATCACGGCGTGGCCTTCCCCCGTAACATCCTGCATTACTACCGTCATCTCTACAGCCCA TACTGCACCGGCGGCAGCGGCAGCGGCAGCAGCAGCAGCACACAGAAGCAAAAGGCG ACCGGATAGCAAGACTCTGACAAAGCCCAAGAAATCCACAGCGGCGGCAGCAGCAGGAGG AGGAGCGCTGCGCCCCAACGAACCCGTATCGACCGCGAGCTTAGAAACAGGAT TTTTCCCACTCTGTATGCTATATTTCAACAGAGCAGGGGCCAAGAACAAGAGCTGAAAAT AAAAAACAGGTCTCTGCGATCCCTCACCCGCAGCTGCCTGTATCACAAAAGCGAAGATCA GCTTCGGCGCACGCTGGAAGACGCGGAGGCTCTCTTCAGTAAATACTGCGCGCTGACTCT TAAGGACTAGTTTCGCGCCCTTTCTCAAATTTAAGCGCGAAAACTACGTCATCTCCAGCG GCCACACCCGGCGCCAGCACCTGTCGTCAGCGCCATTATGAGCAAGGAAATTCCCACGCC CTACATGTGGAGTTACCAGCCACAAATGGGACTTGCGGCTGGAGCTGCCCAAGACTACTC AACCCGAATAAACTACATGAGCGCGGGACCCCACATGATATCCCGGGTCAACGGAATCCG CGCCCACCGAAACCGAATTCTCTTGGAACAGGCGGCTATTACCACCACACCTCGTAATAA CCTTAATCCCCGTAGTTGGCCCGCTGCCCTGGTGTACCAGGAAAGTCCCGCTCCCACCAC TGTGGTACTTCCCAGAGACGCCCAGGCCGAAGTTCAGATGACTAACTCAGGGGCGCAGCT TGCGGGCGGCTTTCGTCACAGGGTGCGGTCGCCCGGGCAGGGTATAACTCACCTGACAAT CAGAGGGCGAGGTATTCAGCTCAACGACGAGTCGGTGAGCTCCTCGCTTGGTCTCCGTCC


CCTAACTCTGCAGACCTCGTCCTCTGAGCCGCGCTCTGGAGGCATTGGAACTCTGCAATT TATTGAGGAGTTTGTGCCATCGGTCTACTTTAACCCCTTCTCGGGACCTCCCGGCCACTA TCCGGATCAATTTATTCCTAACTTTGACGCGGTAAAGGACTCGGCGGACGGCTACGACTG AATGTTAAGTGGAGAGGCAGAGCAACTGCGCCTGAAACACCTGGTCCACTGTCGCCGCCA CAAGTGCTTTGCCCGCGACTCCGGTGAGTTTTGCTACTTTGAATTGCCCGAGGATCATAT CGAGGGCCCGGCGCACGGCTCCGGCTTACCGCCCAGGGAGAGCTTGCCCGTAGCCTGAT TGTGATTTGCAACTGTCCTAACCTTGGATTACATCAAGATCCTCTAGTTATAACTAGAGT AATCAGTTAGCAAATTTCTGTCCAGTTTATTCAGCAGCACCTCCTTGCCCTCCTCCCAGC TCTGGTATTGCAGCTTCCTCGTGCAAACTTTCTCCACAATCTAAATGGAATGTCAG CAAGACCGTCTGAAGATACCTTCAACCCCGTGTATCCATATGACACGGAAACCGGTCCTC CAACTGTGCCTTTCTTACTCCTCCCTTTGTATCCCCCAATGGGTTTCAAGAGAGTCCCC CTGGGGTACTCTTTTGCGCCTATCCGAACCTCTAGTTACCTCCAATGGCATGCTTGCGC TCAAAATGGGCAACGCCTCTCTCTCGGACGAGGCCGGCAACCTTACCTCCCAAAATGTAA CCACTGTGAGCCCACCTCTCAAAAAAACCAAGTCAAACATAAACCTGGAAATATCTGCAC CCCTCACAGTTACCTCAGAAGCCCTAACTGTGGCTGCCGCCGCACCTCTAATGGTCGCGG GCAACACTCACCATGCAATCACAGGCCCCGCTAACCGTGCACGACTCCAAACTTAGCA TTGCCACCCAAGGACCCCTCACAGTGTCAGAAGGAAAGCTAGCCCTGCAAACATCAGGCC CCCTCACCACCACCATAGCAGTACCCTTACTATCACTGCCTCACCCCCTCTAACTACTG CCACTGGTAGCTTGGGCATTGACTTGAAACAGCCCATTTATACACAAAATGGAAAACTAG GACTAAAGTACGGGGCTCCTTTGCATGTAACAGACGACCTAAACACTTTGACCGTAGCAA CTGGTCCAGGTGTGACTATTAATAATACTTCCTTGCAAACTAAAGTTACTGGAGCCTTGG AAAACAGACGCCTTATACTTGATGTTAGTTATCCGTTTGATGCTCAAAACCAACTAAATC TAAGACTAGGACAGGGCCCCCCTCTTTTATAAACTCAGCCCACAACTTGGATATTAACTACA ACAAAGGCCTTTACTTGTTTACAGCTTCAAACAATTCCAAAAAGCTTGAGGTTAACCTAA GCACTGCCAAGGGGTTGATGTTTGACGCTACAGCCATAGCCATTAATGCAGGAGATGGGC TTGAATTTGGTTCACCTAATGCACCAAACAAAATCCCCTCAAAACAAAATTGGCCATG GCCTAGAATTTGATTCAAACAAGGCTATGGTTCCTAAACTAGGAACTGGCCTTAGTTTTG ACAGCAGGTGCCATTACAGTAGGAAACAAAAATAATGATAAGCTAACTTTGTGGACCA CACCAGCTCCATCTCCTAACTGTAGACTAAATGCAGAGAAAGATGCTAAACTCACTTTGG TCTTAACAAATGTGGCAGTCAAATACTTGCTACAGTTTCAGTTTTTGGCTGTTAAAGGCA GTTTGGCTCCAATATCTGGAACAGTTCAAAGTGCTCATCTTATTATAAGATTTGACGAAA ATGGAGTGCTACTAAACAATTCCTTCCTGGACCCAGAATATTGGAACTTTAGAAATGGAG ATCTTACTGAAGGCACAGCCTATACAAACGCTGTTGGATTTATGCCTAACCTATCAGCTT GAGACAAAACTAAACCTGTAACACTAACCATTACACTAAACGGTACACAGGAAACAGGAG ACACAACTCCAAGTGCATACTCTATGTCATTTTCATGGGACTGGTCTGGCCACAACTACA TTAATGAAATATTTGCCACATCCTCTTACACTTTTTCATACATTGCCCAAGAATAAAGAA


TCGTTTGTGTTATGTTTCAACGTGTTTATTTTTCAATTGCAGAAAATTTCAAGTCATTTT TCATTCAGTAGTATAGCCCCACCACCACATAGCTTATACAGATCACCGTACCTTAATCAA ACTCACAGAACCCTAGTATTCAACCTGCCACCTCCCTACCAACACAGAGTACACAGTC CTTTCTCCCCGGCTGGCCTTAAAAAGCATCATATCATGGGTAACAGACATATTCTTAGGT GTTATATTCCACACGGTTTCCTGTCGAGCCAAACGCTCATCAGTGATATTAATAAACTCC CCGGGCAGCTCACTTAAGTTCATGTCGCTGTCCAGCTGCTGAGCCACAGGCTGCTGTCCA ACTTGCGGTTGCTTAACGGGCGGAGGAGGAGAGTCCACGCCTACATGGGGGTAGAGTCA TAATCGTGCATCAGGATAGGGCGGTGGTGCTGCAGCAGCGCGCGAATAAACTGCTGCCGC CGCCGCTCCGTCCTGCAGGAATACAACATGGCAGTGGTCTCCTCAGCGATGATTCGCACC GCCCGCAGCATAAGGCGCCTTGTCCTCCGGGCACAGCAGCGCACCCTGATCTCACTTAAA TCAGCACAGTAACTGCAGCACAGCACCACAATATTGTTCAAAATCCCACAGTGCAAGGCG CTGTATCCAAAGCTCATGGCGGGGACCACAGAACCCACGTGGCCATCATACCACAAGCGC AGGTAGATTAAGTGGCGACCCCTCATAAACACGCTGGACATAAACATTACCTCTTTTGGC ATGTTGTAATTCACCACCTCCCGGTACCATATAAACCTCTGATTAAACATGGCGCCATCC ACCACCATCCTAAACCAGCTGGCCAAAACCTGCCCGCCGGCTATACACTGCAGGGAACCG GGACTGGAACAATGACAGTGGAGAGCCCAGGACTCGTAACCATGGATCATCATGCTCGTC ATGATATCAATGTTGGCACAACACAGGCACACGTGCATACACTTCCTCAGGATTACAAGC TCCTCCCGCGTTAGAACCATATCCCAGGGAACAACCCATTCCTGAATCAGCGTAAATCCC ACACTGCAGGGAAGACCTCGCACGTAACTCACGTTGTCGCATTGTCAAAGTGTTACATTCG GGCAGCAGCGGATGATCCTCCAGTATGCTAGCGCGGGTTTCTGTCTCAAAAGGAGGTAGA CGATCCTACTGTACGGAGTGCGCCGAGACAACCGAGATCGTGTTGGTCGTAGTGTCATG CCAAATGGAACGCCGGACGTAGTCATATTTCCTGAAGCAAAACCAGGTGCGGGCGTGACA AACAGATCTGCGTCTCCGGTCTCGCCGCTTAGATCGCTCTGTAGTAGTAGTATATAT CCACTCTCAAAGCATCCAGGCGCCCCCTGGCTTCGGGTTCTATGTAAACTCCTTCATG CGCCGCTGCCCTGATAACATCCACCACCGCAGAATAAGCCACACCCAGCCAACCTACACA TTTATTCCAAAAGATTATCCAAAACCTCAAAATGAAGATCTATTAAGTGAACGCGCTCCC CTCCGGTGGCGTGGTCAAACTCTACAGCCAAAGAACAGATAATGGCATTTGTAAGATGTT GCACAATGGCTTCCAAAAGGCAAACGGCCCTCACGTCCAAGTGGACGTAAAGGCTAAACC CTTCAGGGTGAATCTCCTCTATAAACATTCCAGCACCTTCAACCATGCCCAAATAATTCT CATCTCGCCACCTTCTCAATATATCTCTAAGCAAATCCCGAATATTAAGTCCGGCCATTG TAAAAATCTGCTCCAGAGCGCCCTCCACCTTCAGCCTCAAGCAGCGAATCATGATTGCAA AAATTCAGGTTCCTCACAGACCTGTATAAGATTCAAAAGCGGAACATTAACAAAAATACC GCGATCCCGTAGGTCCCTTCGCAGGGCCAGCTGAACATAATCGTGCAGGTCTGCACGGAC CAGCGCGCCACTTCCCCGCCAGGAACCTTGACAAAAGAACCCACACTGATTATGACACG CATACTCGGAGCTATGCTAACCAGCGTAGCCCCGATGTAAGCTTTGTTGCATGGGCGGCG CATCGTAGTCATGCTCATGCAGATAAAGGCAGGTAAGCTCCGGAACCACCACAGAAAAAG ACACCÁTTTTCTCTCAAACATGTCTGCGGGTTTCTGCATAAACACAAAATAAAATAACA AAAAAACATTTAAACATTAGAAGCCTGTCTTACAACAGGAAAAACAACCCTTATAAGCAT AAGACGGACTACGGCCATGCCGGCGTGACCGTAAAAAAACTGGTCACCGTGATTAAAAAG CACCACCGACAGCTCCTCGGTCATGTCCGGAGTCATAATGTAAGACTCGGTAAACACATC

Comentario:

Siempre que estas secuencias contengan N como base indefinida de la construcción o secuenciación, estas anotaciones se llevaron a cabo por el grupo de Bert Vogelstein, Universidad Johns-Hopkins, Baltimore, ML, EE.UU., que puso a disposición el sistema.

Fig. 28:

