

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 441 369

61 Int. Cl.:

C12N 15/82 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 07.07.2009 E 09794064 (7)

(97) Fecha y número de publicación de la concesión europea: 04.09.2013 EP 2313509

(54) Título: Plantas que producen polen 2n

(30) Prioridad:

08.07.2008 EP 08290672

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **04.02.2014**

73) Titular/es:

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (100.0%) Etablissement Public à Caractère Scientifique 147, rue de l'Université 75007 Paris, FR

(72) Inventor/es:

MERCIER, RAPHAEL; D'ERFURTH, ISABELLE y CROMER, LAURENCE

(74) Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Plantas que producen polen 2n

10

La invención hace referencia a plantas que producen polen 2n, y a su uso en la mejora vegetal.

La poliploidia es la condición de los organismos que tienen más de dos conjuntos de cromosomas. Ha jugado un papel dominante en la evolución, adaptación y especiación de diversos eucariotas, incluyendo hongos, insectos, anfibios, reptiles, peces y vertebrados (OTTO, Cell 131, 452-62, 2007).

La poliploidia es particularmente prominente en plantas; se calcula que un 95% de helechos son poliploides y que casi todos los angiospermas han experimentado al menos una serie de duplicación genética completa durante el transcurso de su evolución (CUI, et al. Genome Res 16, 738-49, 2006). Además, muchas plantas de cultivo importantes, tales como la patata, algodón, colza, alfalfa y trigo son actuales poliploides, mientras que otras, tales como el maíz, las habas de soja, y la col, mantienen los vestigios de eventos poliploides antiguos (GAUT & DOEBLEY, Proc Natl Acad Sci USA, 94, 6809-14, 1997; LYSAK et al., Genome Res 15, 516-25, 2005; SCHLUETER, et al. BMC Genomics, 8, 330, 2007). Incluso las plantas con genomas pequeños, tales como la *Arabidopsis thaliana*, han tenido el impacto de la poliploidia (BLANC et al., Plant Cell 12, 1093-101, 2000).

- Los mecanismos responsables para la formación de poliploides en plantas todavía no se entienden muy bien. Sin embargo, hoy en día se cree que los gametos 2n son la vía más importante para la formación de poliploidia y que hacen que el flujo de genes ocurra desde los progenitores diploides hasta las nuevas especies poliploides. (BRETAGNOLLE & THOMPSON, New Phytologist 129, 1-22, 1995; RAMSEY & SCHEMSKE, Annual Reviews of Ecology and Systematics 29, 467-50 1, 1998).
- Los gametos 2n (también conocidos como gametos no reducidos o diplogametos) son gametos que tienen el número cromosómico somático en lugar del número cromosómico gametofítico. Se ha mostrado que son útiles para la mejora genética de varios cultivos (para su revisión, cfr. por ejemplo RAMANNA & JACOBSEN, Euphytica 133, 3-18, 2003).
- Dada su tremenda importancia en la evolución y agronomía, los gametos 2n han focalizado una atención considerable. (VEILLEUX, Plant Breeding Reviews 3, 252-288, 1985) y BRETAGNOLLE & THOMPSON (1995, 25 citados anteriormente) han proporcionado un informe exhaustivo de las aberraciones meióticas que pueden generar diplogametos. Las anomalías citológicas mejor documentadas y descritas que conducen a la formación de gametos 2n, incluyen la citocinesis anómala, el salto de la primera o segunda división meiótica, o una geometría anómala del huso. La co-orientación de los husos de la segunda división (husos paralelos o husos fusionados) es quizás el más 30 común de los mecanismos responsable de la formación de las esporas 2n, y es el mecanismo principal de la formación del polen 2n, y es el principal mecanismo de la formación del polen 2n en la patata (CARPUTO et al. Genetics 163, 287-94, 2003). Además el modo de formación de gametos 2n tiene un impacto directo en su composición genética. Por ejemplo, los husos paralelos o fusionados conducen a gametos que son completamente heterocigotos hasta el primer entrecruzamiento en cada pareja de homólogos y que son por lo tanto genéticamente 35 equivalentes a aquellos que se obtienen como resultado de la ausencia de la primera división (aparte de la segregación de cromátidas recombinantes más allá del primer entrecruzamiento). Estos gametos son diferentes de aquellos que son el resultado de la citocinesis prematura o anómala que habitualmente contienen dos cromátidas hermanas de cada cromosoma, y que son por lo tanto genéticamente equivalentes a los gametos que se obtienen como resultado de la ausencia de la segunda división meiótica.
- Aunque los factores medioambientales pueden afectar a la frecuencia de los gametos 2n, la capacidad para producir gametos 2n es hereditaria y tiene por lo tanto una fuerte base genética (RAMSEY & SCHEMSKE, 1998, citado anteriormente). La determinación genética de la producción de polen 2n ha sido estudiada en detalle en diversas especies y habitualmente se ajustan a la segregación de un locus mayor en un fondo de variación poligénica. En la mayoría de los casos, se observó que la capacidad para formar gametos 2n estaba controlada por un alelo recesivo monogénico, mientras que la expresión de este fenotipo fue modulada por diversos locus diferentes (revisado en BRETAGNOLLE & THOMPSON, 1995 citado anteriormente), y el entorno externo.

Hasta ahora, ninguno de los genes que contribuyen a la producción de gametos 2n ha sido identificado y caracterizado a nivel molecular, y esta carencia de información ha dificultado un uso más amplio de estos gametos en programas de mejora vegetal asistida por el hombre.

Los inventores han caracterizado hoy en día en el modelo vegetal *Arabidopsis thaliana*, un gen implicado en la formación de gametos 2n en plantas. Este gen será denominado de aquí en adelante *AtPS1* (para los husos paralelos de Arabidopsis thaliana). Los inventores han observado que la inactivación de *AtPS1* genera esporas masculinas diploides, dando lugar a granos de polen diploides y a plantas triploides espontáneas en la progenie. La secuencia del gen *AtPS1* de *Arabidopsis thaliana*, está disponible en la base de datos TAIR bajo el número de

accesión AT1g34355. Este gen codifica una proteína de 1477 aa, cuya secuencia está representada en el listado de secuencias adjunto como SEQ ID NO: 1. El gen *AtPS1* se conserva en plantas de mayor altura. Una búsqueda en la base de datos de secuencias permitió identificar ortólogos del *AtPS1*, por ejemplo en Populus trichocarpa (SEQ ID NO:2), Oryza sativa (SEQ ID NO:3), Vitis vinifera (SEQ ID NO:4), Glycine max, (SEQ ID NO:5 y 6) Sorghum bicolour (SEQ ID NO:7), Zea mays (SEQ ID NO:8), (Solanum lycopersicum (SEQ ID NO:9), Medicago truncatula (SEQ ID NO:10), Solanum tuberosum (secuencia parcial representada como SEQ ID NO:11), Helianthus_argophyllus (secuencia parcial representada como SEQ ID NO:13),. y Triticum_aestivum (secuencia parcial representada como SEQ ID NO:14). Estas proteínas portan dos dominios, un dominio PINc (InterPro: IPR006596) el cual se predice que juega un papel en la unión a nucleótido, que se encuentra potencialmente en las RNasas, y un dominio FHA (asociado a Forkhead) (InterPro:IPR000253), un dominio de reconocimiento fosfopéptido presente en muchas proteínas reguladoras.

10

25

50

55

La invención por tanto proporciona un método para la obtención de una planta que produce polen 2n, en donde dicho método comprende la inhibición en dicha planta de una proteína denominada de aquí en adelante como proteína PS1, en donde dicha proteína:

- comprende dentro de su región N-terminal (preferiblemente dentro de sus 300 aminoácidos N-terminales, más preferiblemente dentro de sus 250 aminoácidos N-terminales, y aún más preferiblemente dentro de sus 200 aminoácidos N-terminales), un dominio que tiene al menos un 40%, y en orden creciente de preferencia, al menos 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 98% de identidad de secuencia, o al menos 60%, y por orden creciente de preferencia, al menos, 65, 70, 75, 80, 85, 90, 95 o 98% de similitud de secuencia con el dominio FHA de la proteína
 AtPS1 (aminoácidos 64-132 de SEQ ID NO: 1);
 - comprende dentro de su región C-terminal (preferiblemente dentro de sus 350 aminoácidos C-terminales, más preferiblemente dentro de sus 300 aminoácidos C-terminales, y todavía más preferiblemente dentro de sus 250 aminoácidos C-terminales), un dominio que tiene al menos un 40%, y por orden creciente de preferencia, al menos 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 98% de identidad de secuencia, o al menos 60%, y por orden creciente de preferencia, al menos, 65, 70, 75, 80, 85, 90, 95 o 98% de similitud de secuencia con el dominio PINc de la proteína AtPS1 (aminoácidos 1237-1389 de SEQ ID NO: 1).

A menos que se especifique de otro modo, los valores de similitud e identidad de la secuencia de proteínas proporcionada en la presente patente, se calculan utilizando el programa BLASTP aplicando parámetros por defecto. Los cálculos de similitud se llevan a cabo utilizando la matriz de puntuación BLOSUM62.

A modo de ejemplos no limitativos de proteínas PS1 representativas de varias familias de plantas, se puede citar, además del *AtPS1* de SEQ ID NO: 1, la proteína PS1 de Populus trichocarpa de SEQ ID NO: 2, la proteína PS1 de Oryza sativa de SEQ ID NO: 3, la proteína PS1 de Vitis vinifera PS1 de SEQ ID NO:4, las proteínas PS1 de Glycine max de SEQ ID NO:5 y 6, la proteína PS1 de Sorghum bicolour de SEQ ID NO:7, la proteína PS1 de Zea mays de SEQ ID NO:8, la proteína PS1 de Solanum lycopersicum de SEQ ID NO:9, la proteína PS1 de Medicago truncatula de SEQIDNO:10, la proteína PS1 de Solanum tuberosum (secuencia parcial SEQ ID NO:11), la proteína PS1 de Helianthus_argophyllus (secuencia parcial SEQ ID NO:12), la proteína PS1 de Malus x domestica (secuencia parcial SEQ ID NO:13), y la proteína PS1 de Triticum aestivum (secuencia parcial como SEQ ID NO:14).

La inhibición de una proteína PS1 puede ser obtenida bien suprimiendo, bloqueando, o disminuyendo su función, o de manera ventajosa, previniendo o reduciendo de forma regulada la expresión de su gen.

40 A modo de ejemplo, la inhibición de dicha proteína PS1 puede obtenerse mediante mutagénesis del gen correspondiente o de su promotor, y la selección de mutantes que han perdido parcial o totalmente la actividad de la proteína PS1. Por ejemplo, una mutación dentro de la secuencia de codificación puede inducir, dependiendo de la naturaleza de la mutación, la expresión de una proteína inactiva, o de una proteína con actividad impedida; de la misma manera, una mutación dentro de la secuencia promotora puede inducir una carencia de expresión de dicha proteína PS1, o disminuir la misma.

La mutagénesis puede ser realizada por ejemplo mediante la deleción dirigida del promotor o la secuencia de codificación de PS1, o de una parte del mismo, o mediante la inserción dirigida de una secuencia exógena dentro de dicha secuencia de codificación o dicho promotor. Puede ser también realizada incluyendo mutaciones aleatorias, por ejemplo a través de mutagénesis por EMS o mutagénesis de inserción aleatoria, seguida por el cribado de los mutantes dentro del gen de *PS1*. Los métodos para la mutagénesis y el cribado de alto rendimiento están disponibles en el arte. A modo de ejemplo, se puede mencionar TILLING (del inglés Targeting Induced Local Lesions IN Genomes, descrito by McCallum et al., 2000). Entre la progenie de mutantes que tienen una mutación dentro del gen de PS1, las plantas que son homocigotas para la mutación, tienen la capacidad de producir polen 2n; estas plantas pueden ser identificadas de entre la misma en base a sus características fenotípicas, por ejemplo la formación de al menos 5%, preferiblemente al menos 10%, y más preferiblemente al menos 20% de diadas como un producto de la meiosis masculina.

De manera ventajosa, la inhibición de dicha proteína PS1 se obtiene silenciando el correspondiente gen de PS1. Por ejemplo, puede mencionarse mediante inhibición antisentido o co-supresión, tal como se describe a modo de ejemplo en las patentes estadounidenses 5.190.065 y 5.283.323. También es posible utilizar ribozimas dirigidas al ARNm de dicha proteína PS1.

- Métodos preferentes son aquellos en donde el silenciamiento génico es inducido mediante la interferencia por ARN (ARNi), utilizando un ARN de silenciamiento que selecciona como diana el gen de PS1 para ser silenciado. Diversos métodos y constructos de ADN para la administración de los ARN de silenciamiento se encuentran disponibles en el arte
- Un "ARN de silenciamiento" se define en el presente documento como un ARN pequeño que puede silenciar un gen diana de manera específica a la secuencia mediante el apareamiento de bases con moléculas de ARNm complementario. Los ARN de silenciamiento incluyen en particular ARN pequeños de interferencia (ARNip) y micro ARN (miARN).
- Inicialmente, los ADN constructos para la administración de un ARN de silenciamiento en una planta incluían un fragmento de 300 pb o más (generalmente 300-800 bp), aunque secuencias más cortas pueden en ocasiones inducir un silenciamiento eficaz) del ADNc del gen diana, bajo el control transcripcional de un promotor activo en dicha planta. Actualmente, los constructos de ARN de silenciamiento más ampliamente utilizados son aquellos que pueden producir transcripciones del ARN en forma de horquilla (del inglés hairpin) (ARNhp). En estos constructos, el fragmento del gen diana se repite de manera inversa, generalmente con una región espaciadora entre las repeticiones (para su revisión, cf. WATSON et al., 2005). Se pueden utilizar además micro ARN artificiales (amiARN) dirigidos contra el gen de PS1 a ser silenciado (para revisión sobre el diseño y aplicaciones de los ARN de silenciamiento, que incluyen en particular amiARN, en plantas cfr. por ejemplo OSSOWSKI et al., (Plant J., 53, 674-90, 2008).

La presente invención proporciona constructos de ADN quimérico para el silenciamiento del gen de PS1, que incluyen en particular casetes de expresión para ARNhp, o amiARN que seleccionan como diana el gen de PS1.

- 25 Un casete de expresión de la invención comprende por ejemplo:
 - un promotor funcional en una célula vegetal;

30

40

45

- un constructo de ADN de 200 a 1000 pb, preferiblemente de 300 a 900 pb, que comprenden un fragmento de ADNc que codifica una proteína PS1, o de su complementario, o que tiene al menos un 95% de identidad, y por orden creciente de preferencia, al menos 96%, 97%, 98%, o 99 % de identidad con dicho fragmento, donde dicha secuencia de ADN se sitúa bajo el control transcripcional de dicho promotor.

De acuerdo a un modo de realización preferente de la presente invención, un casete de expresión para un ARNhp comprende

- un promotor funcional en una célula vegetal,
- un constructo de ADN que es capaz, cuando se transcribe, de formar un ARN hairpin (horquilla) que selecciona como diana el gen de PS1;

donde dicho constructo de ADN está situado bajo el control transcripcional de dicho promotor.

En general, dicho constructo de ARN hairpin comprende: i) una primera secuencia de ADN de 200 a 1000 pb, preferiblemente de 300 a 900 pb, que consiste en un fragmento de un ADNc que codifica una proteína PS1, o que tiene al menos un 95% de identidad con dicho fragmento; ii) una segunda secuencia de ADN que complementario a dicho primer ADN, donde dicha primera y segunda secuencia se encuentran en orientaciones opuestas y ii) una secuencia espaciadora que separa dicha primera y segunda secuencia, de tal manera que la primera y segunda secuencia de ADN sean capaces, cuando se transcriben, de formar una única molécula de ARN de doble cadena. El espaciador puede ser un fragmento de aleatorio de ADN. Sin embargo, de manera preferente, se podrá utilizar un intrón que se pueda cortar por la célula vegetal diana. Su tamaño es generalmente de 400 a 2000 nucleótidos de largo.

De acuerdo con otro modo de realización preferente de la invención, un casete de expresión para un amiARN que fija como diana el gen de PS1 comprende:

- un promotor funcional en una célula vegetal,

- un constructo de ADN que es capaz, cuando se transcribe, de formar un amiARN que fija como diana el gen de PS1;

donde dicho constructo se sitúa bajo el control transcripcional de dicho promotor.

10

25

30

Se encuentra disponible en el arte una gran selección de promotores adecuados para la expresión de genes heterólogos en plantas.

Pueden obtenerse por ejemplo a partir de plantas, virus vegetales, o bacterias tales como la *Agrobacterium*. Incluyen promotores constitutivos, es decir, promotores que son activos en la mayoría de los tejidos y células y bajo la mayoría de condiciones ambientales, además de promotores específicos de la célula o específicos del tejido que están activos o principalmente en ciertos tejidos o ciertos tipos de células, y promotores inducibles que se activan mediante estímulos físicos o químicos, tales como aquellos que son el resultado de infección por nematodos.

Ejemplos no limitativos de promotores constitutivos que se utilizan habitualmente en células vegetales son el promotor del virus del mosaico de la coliflor (CaMV) 35S, el promotor de la nopalina sintasa o promotor Nos, el promotor de la rubisco, el promotor del virus del mosaico de las nervaduras de la mandioca (CsVMV).

Los promotores específicos de tejidos u órganos que pueden ser utilizados en la presente invención incluyen en particular promotores capaces de conferir expresión asociada a meiosis, tal como el promotor *DMC1* (KLIMYUK & JONES, Plant J, 11, 1-14, 1997); también se puede utilizar el promotor endógeno de *PS1*.

Los constructos de ADN de la invención generalmente también incluyen un terminador transcripcional (por ejemplo el terminador transcripcional 35S, o el terminador transcripcional de la nopalina sintasa (Nos).

La invención también incluye vectores recombinantes que contienen un constructo de ADN quimérico de la invención. Habitualmente, dichos vectores recombinantes además incluyen uno o más gen marcador, lo que permite la selección de huéspedes transformados.

La selección de vectores adecuados y de los métodos para la inserción de constructos de ADN en los mismos, son bien conocidos para personas expertas en el arte. La elección del vector depende del huésped deseado y del método deseado de transformación de dicho huésped. Se encuentran disponibles en el arte una variedad de métodos de transformación genética de células vegetales o plantas para diversas especies vegetales, dicotiledóneas o monocotiledóneas. A modo de ejemplos no limitativos, se puede mencionar la transformación mediada por virus, transformación mediante micro-inyección, por electroporación, transformación mediada por microproyectiles (biolística), transformación mediada por *Agrobacterium*, y similares.

La invención también proporciona una célula hospedadora que comprende un constructo de ADN recombinante de la invención. Dicha célula hospedadora puede ser una célula procariota, por ejemplo una célula de Agrobacterium, o una célula eucariota, por ejemplo una célula vegetal genéticamente transformada por un constructo de ADN de la invención. El constructo puede ser expresado de manera transitoria; puede además ser incorporado a un replicón extracromosómico, o integrado en el cromosoma.

La invención también proporciona un método para producir una planta transgénica capaz de producir polen 2n, donde dicho método comprende las etapas que consisten en:

- transformar al menos una célula vegetal con un vector que contiene un constructo de ADN de la invención;
- cultivar dicha célula vegetal transformada para regenerar una planta que tenga en su genoma un transgén que contenga dicho constructo de ADN.

La invención también proporciona plantas genéticamente transformadas por un constructo de ADN de la invención.

De manera preferente, dichas plantas son plantas transgénicas, en donde dicho constructo está contenido en un transgén integrado en el genoma de la planta, de manera que se pasa a generaciones de plantas sucesivas. La expresión de dichos constructos de ADN quiméricos, que dan como resultado una reducción regulada de la proteína PS1, proporciona a dicha planta transgénica la capacidad para producir polen 2n.

La invención además abarca un método para producir polen 2n, en donde dicho método comprende la obtención de una planta que produce polen 2n mediante un método de la invención, cultivando dicha planta y recuperando el polen producido por dicha planta. Preferiblemente, dicho polen comprende al menos un 10%, más preferiblemente al menos un 20%, y por orden creciente de preferencia, al menos un 30%, 40%, 50%, o 60 % de granos de polen 2n viables.

El polen 2n producido por las plantas de la invención resulta útil en particular en la mejora vegetal, para la producción de plantas poliploides (por ejemplo, triploides estériles), o para permitir cruces entre plantas de diferente nivel de ploidía.

La presente invención se aplica a un amplio rango de plantas monocotiledóneas o dicotiledóneas de interés agronómico. A modo de ejemplos no limitativos, se puede mencionar la patata, el tomate, la alfalfa, azúcar de caña, boniato, mandioca, arándano, trébol, habas de soja, raigrás, plátano, melón, sandía o plantas ornamentales tales como rosas, lirios, tulipanes, narcisos.

Los anteriores y otros objetos y ventajas de la invención serán evidentes a partir de la siguiente descripción detallada y de los dibujos anexos. Debe entenderse, sin embargo, que esta descripción detallada anterior es sólo a modo de ejemplo y no es restrictiva de la invención.

Descripción de las figuras

10

20

25

35

Figura 1: estructura del gen AtPS1

Estructura intrón/exón del gen *AtPS1* y localización de las tres diferentes inserciones de ADN-T (triángulos). Los cebadores utilizados están indicados debajo del diagrama génico.

Figura 2: alineamiento de secuencias múltiples que representan segmentos de la mayor conservación de secuencias entre proteínas AtPS1 vegetales.

Proteínas AtPS1 de longitud completa de Arabidopsis thaliana (At: NP_564445) Populus trichocarpa (Pt: jgi_592219), Oryza sativa (Os:|NP_001065865), Vitis vinifera (Vv: CAN81434_mod), Glycine max (Gm: jgi_scaffold_143 y jgi_scaffold_131), Sorghum bicolour (Sb:jgi_5039668), y Zea mays (Zm:EST_10287.m000022), se alinearon y los segmentos de mayor conservación fueron identificados utilizando plotcon (paquete EMBOSS).

Las secuencias mostradas en este alineamiento se derivan de aquellas representadas en el listado de secuencias adjunto bajo SEQ ID NO: 1 a 8 mediante eliminación de los segmentos de secuencia no conservados del alineamiento. La longitud de estas regiones eliminadas está indicada con recuadros en la correspondiente posición del alineamiento. Las coincidencias de dominios basadas en una comparación contra la base de datos de dominios Interpro (PMID: 18428686) están indicadas por recuadros en gris sobre el alineamiento, y los indicadores de coincidencia están ampliados para incluir segmentos adyacentes de la conservación de secuencias y estructuras. Además, un motivo corto identificado como un elemento C repetido en Arabidopsis thaliana AtPS1, está marcado utilizando los recuadros en blanco.

Figura 3: análisis de los productos meióticos de mutantes Atps1 y de tipo silvestre.

A: fotos de productos meióticos de tipo silvestre y de mutantes Atps1. Escala gráfica=10 μm. B: cuantificación de productos meióticos en Ws-4 (n=92), Col-0 (n=212), Atps1-3 (n=436), Atps1-1 (n=1125), Atps1-2 (n=554), el Atps1-1/Atps1-3 F1 (n=283) y Atps1-1/Atps1-2 F1 (n=252).

Figura 4: propagaciones cromosómicas meióticas de tipo silvestre. A: paquiteno. B: metafase I. C: anafase I. D: metafase II. E: Anafase II F: telofase II. G-O Atps1-1 meiosis. G: paquiteno. H: metafase II: anafase I J-L: metafase II. MO: Anafase II. M: díada. N: triada. O: tétrada. Escala gráfica=10μm.

Figura 5: inmunotinción de husos de meiosis II en mutante de tipo silvestre y Atps1-1.

A, B, C: los husos de tipo silvestre en metafase II, anafase II y telofase II, respectivamente. D a L: meiocito *Atps1-1* en metafase II / anafase II. Los cromosomas se colorearon mediante yoduro de propidio o DAPI y microtúbulos mediante inmunolocalización. Escala gráfica=5µm.

40 Figura 6: propagaciones cromosómicas meióticas de *Atspo11-1* y de *Atps1-1/Atspo11-1* doble mutante.

A a F: propagaciones cromosómicas meióticas de *Atspo11-1*. A: metafase I. B y C: anafase I. D: metafase II. E: tétrada no equilibrada. F: políada. G a R: meiosis de *Atps1-1/Atspo11-1*. G: metafase I. H y I: anafase I. J: metafase II. K: Anafase II. L y M: díada equilibrada II. N y O: Tríada. P y Q: tétrada no equilibrada. R: Políada. Escala gráfica=10µm.

Figura 7: Genotipo de la progenie de *Atps1* mutantes

La progenie diploide y triploide del cruce *Atps1-1(Col-0) / Atps1-3(Ws-4) ♂* x Ler ♀ fue genotipado para diversos marcadores genéticos. Para cada marcador las plantas que portan el alelo Col-0 están en un gris medio, las plantas que portan solamente el alelo Ws-4 están en gris claro y las plantas que portan tanto el alelo Col-0 como el Ws-4 están en gris oscuro. Los alelos Ler están presentes en todas las plantas porque fue utilizado como el genitor femenino en el cruce. La posición de cada marcador y los centrómeros se indican a lo largo de los cromosomas.

Figura 8. Productos meióticos de tipo silvestre, atps1-1 mutante y planta RNAI35AtPS1#6.

Figura 9. Expresión de AtPS1 en tres plantas RNA/35AtPS1.

Ejemplos

15

20

25

30

35

Procedimientos experimentales

10 Material vegetal y condiciones de crecimiento.

Las referencias de material vegetal de tipo silvestre utilizado en este estudio fueron *A. thaliana* con accesión Columbia (Col-0) y Wassilewskija (Ws-4). Se utilizaron líneas mutantes de inserción del ADN-T N578818 (ALONSO et al., Science, 301, 653-7, 2003) (*Atps1-1*), N851945 (WOODY et al., J Plant Res 120, 157-65, 2007) (*Atps1-2*), N646172 (*Atspo11-1-3*: STACEY et al. Plant Journal 48, 206-216 2006), obtenidas del "European Arabidopsis stock center" (centro europeo de stock de Arabidopsis) (SCHOLL et al., Plant Physiol. 124, 1477-80, 2000) y EQM96 (Atps1-3) de la colección de Versailles de ADN-T (SAMSON et al., Nucleic Acids Res 30, 94-7, 2002).

Las plantas de *Arabidopsis* se cultivaron en un invernadero o cámara de crecimiento bajo las siguientes condiciones: fotoperiodo 16 h de día/8 h de noche; temperatura 2 °C de día y de noche; humedad 70%. Para el ensayo de germinación y los experimentos de citometría, se cultivó *Arabidopsis in vitro* en un medio *Arabidopsis* (ESTELLE et al., Mol. Gen. Genet. 206, 200-206, 1987) a 21 °C con un fotoperiodo de 16h de día/8h de noche, y 70% de higrometría.

Análisis genético

El genotipado de los mutantes de inserción de ADN-T se realizó mediante PCR (30 ciclos de 30s a 94 °C, 30s a 56°C y un minuto a 72°C) utilizando dos parejas de cebadores. Para cada línea la primera pareja designada es específica del locus de tipo silvestre y la segunda pareja es específica de la inserción de ADN-T.

Atps1-3: EQM96L (5'ACATCTCCCTTGTCGTAAC3': SEQIDNO:15) y EQM96U (5'ATCTCTCAATCGTTCGTTC3': SEQ ID NO:16); EQM96L y tag3 (5' CTGATACCAGACGTTGCCCGCATAA3': SEQ ID NO:17). Atps1-1: N578818U2 (5'TCGGAGTCACGAAGACTATG3': SEQ ID NO:18) y N578818L (5'CAGTCTCACTGATTATTCCTG 3': SEQ ID NO: 19); N578818U2 y LbSalk2 (5' GCTTTCTTCCCTTCCTTTCTC 3': SEQ ID NO:20). Atps1-2: N851945U (5'AAGGCTGATATTCTGATTCAT3': SEQ ID NO:21) y N851945L (5' CTCTTGTTGGTCCGTATCTTA3': SEQ ID NO: 22); N851945U y P745 (5'AACGTCCGCAATGTGTTATTAAGTTGTC3': SEQ ID NO:23). spo11-3: N646172U (5' AATCGGTGAGTCAGGTTTCAG3': SEQ ID NO:24) y N646172L (5' CCATGGATGAAAGCGATTTAG3': SEQ ID NO: 25); N646172L/ LbSalk2.

Se obtuvieron spo11/Atps1 mutantes dobles, tal como se describe en VIGNARD et al. (PLoS Genet, 3, 1894-906,2007).

Marcadores genéticos utilizados para genotipar plantas de Atps1-1/Atps1-3 x Ler F1 triploides y diploides

El microsatélite msat1.29450 (situado en el cromosoma I en la posición 29450001) fue amplificado (Tm=57°C) utilizando los cebadores 5'TCCTTTCATCTTAATATGC3' (SEQ ID NO:26) y 5'TCTGTCCACGAATTATTTA3' (SEQ ID NO:27). El microsatélite Msat4.35 (Tm=58°C) (localizado en el cromosoma 4 en la posición 7549125) fue amplificado utilizando los cebadores 5'CCCATGTCTCCGATGA3' (SEQ ID NO:28) y 5'GGCGTTTAATTTGCATTCT3' (SEQ ID NO:29). El microsatélite NGA151 (Tm=58°C) (localizado en el cromosoma 5 en la posición 4669932), fue amplificado utilizando los cebadores 5'GTTTTGGGAAGTTTTGCTGG3' (SEQ ID NO:30) y 5'CAGTCTAAAAGCGAGAGTATGATG3' (SEQ ID NO:31). Las 2 parejas de cebadores para los límites del ADN-T de *Atps1-1 y Atps1-3* se utilizaron como un marcador centromérico del cromosoma 1. Los marcadores CAPS Seqf16k23 (posición física: 14481813) y CAPSK4 51 (posición física: 5078201), se utilizaron como marcadores centroméricos para el cromosoma 1 y 4, respectivamente.

El CAPS Seqf16k23 es amplificado (Tm=60°C) utilizando cebadores 5'GAGGATACCTCTTGCTGATTC3' (SEQ ID NO:32) y 5'CCTGGCCTTAGGAACTTACTC3' (SEQ ID NO:33) y se observa tras la digestión con Taql.

El CAPS CAPSK4 51 se amplifica (Tm=60°C) utilizando los cebadores 5'CAATTTGTTACCAGTTTTGCAG3' (SEQ ID NO:34) y 5'TGAGTTTGGTTTTTTGTTATTAGC3' (SEQ ID NO:35) y se observa tras la digestión con Mnll.

Condiciones de la PCR: 40 ciclos de 20s a 94°C, 20s a Tm y 30s a 72°C.

RT-PCR

10

15

20

30

35

5 Se extrajo ARN total de Arabidopsis utilizando un kit QIAGEN RNA.

Se realizó transcripción inversa en 5µg de ARN total utilizando un oligo(dt) (ALTSCHUL et al., Nucleic Acids Res 25, 3389-402, 1997) como cebador. La enzima Transcriptasa inversa M-MuLV de RevertAid™ (FERMENTAS) se utilizó según las instrucciones del fabricante. Se realizó la RT-PCR en 1µg de ADNc utilizando los cebadores pAtpsF 5'GCCTTTTCAACCTCTACTTG3' (SEQ ID NO:36) y pAtpsR 5'ATGGTGATAGATGATGATGATAC3' (SEQ ID NO:37) bajo las siguientes condiciones: 30 ciclos de 30s a 94°C, 30s a 56°C y 1min a 72°C.

Citología y Citometría de flujo

Se observaron productos finales meióticos tal como se describe en AZUMI et al., (Embo J, 21, 3081-95., 2002) y se visualizaron con un microscopio óptico con un objetivo seco de 40X. Las propagaciones cromosómicas y las observaciones se llevaron a cabo utilizando la técnica descrita en MERCIER et al., (Biochimie, 83, 1023-28, 2001). La fluorescencia del ADN del núcleo espermático del polen fue cuantificada utilizando el software open LAB 4.0.4. Para cada núcleo se calculó el efecto fondo circundante y se sustrajo de la fluorescencia global del núcleo. Los husos meióticos se observaron de acuerdo al protocolo descrito en MERCIER et al., (Genes Dev, 15, 1859-71, 2001), excepto porque el ADN fue contra coloreado con DAPI. Se realizaron las observaciones utilizando un microscopio confocal leica SP2, Las imágenes se adquirieron con un objetivo húmedo de 63X en reconstrucciones xyz y se realizaron reconstrucciones en 3D utilizando un software de leica. Se muestran las proyecciones. Se representaron imágenes de las células en excitación a 488 nm y 405 nm con AlexaFluor488 y DAPI respectivamente. Se midieron los tamaños del genoma de *Arabidopsis* tal como se describió en MARIE & BROWN, (Biol Cell, 78, 41-51, 1993) utilizando tomate Lycopersicon esculentum variedad "Montfavet" como estándar. (2C=1.99 pg, %GC=40.0%).

25 Ejemplo 1: Identificación del gen AtPS1 de Arabidopsis y mutaciones de atps1

Como parte de un cribado para mutantes meióticos, se seleccionó el gen At1g34355 como un gen meiótico potencial según su perfil de expresión. Utilizando la herramienta Expression Angler (TOUFIGHI et al. Plant J 43, 153-63, 2005) con un conjunto de tejidos de AtGenExpress (SCHMID et al., Nat Genet 37, 501-6, 2005) se observó que este gen estaba co-regulado con genes que se conoce están implicados en la meiosis (*AtMER3*, *AtDMC1*, *SDS*, *AtMND1*, *AtHOP2*), con el nivel de expresión más elevado en brote apical y en nuevos brotes de flores.

Se amplificó el ADNc de *AtPS1* (EU839993) mediante RT-PCR en el ADNc del brote y la secuenciación confirmó que es idéntico al que se predecía en las bases de datos (NM_103158). El gen *AtPS1* contiene 7 exones y 6 intrones (Figura 1), y codifica una proteína de 1477 aminoácidos. Los análisis BlastP y Psi-Blast (ALTSCHUL et al., Nucleic Acids Res, 25, 3389-402, 1997) mostraron que la proteína AtPS1 se conserva por todo el reino vegetal y contiene dos regiones muy conservadas (Figura 2).

Se predijo un dominio FHA (dominio asociado a forkhead) en el N terminal mediante buscadores de secuencias codificantes (CDs) (MARCHLERBAUER & BRYANT, Nucleic Acids Res, 32, W327-31, 2004), mientras que la región conservada C terminal muestra similitud con un dominio PIN. Estos dominios están separados por una secuencia sesgada en su composición de longitud variable.

40 Un dominio FHA es un motivo de reconocimiento de fosfopéptidos implicados en las interacciones proteína-proteína, y se observa en diverso rango de proteínas implicadas en numerosos procesos que incluyen la transducción de señales intracelulares, control del ciclo celular, transcripción, reparación del ADN y degradación proteica (DUROCHER & JACKSON, FEBS Lett, 513, 58-66, 2002). Se predijo que el dominio PIN presenta propiedades de unión al ARN a menudo asociadas con la actividad de la ARNasa (CLISSOLD & PONTING, Curr Biol, 10, R888-90, 2000), y esta ha sido confirmada en la actualidad experimentalmente (GLAVAN et al., Embo J, 25, 5117-25, 2006). Por consiguiente, diversas proteínas que contienen el dominio PIN están implicadas en el ARNi, la maduración del ARN, o degradación del ARN. No se pudieron identificar proteínas no vegetales con similitud significativa con AtPS1 (aparte de los dominios FHA y PIN) o que pudieran contener tanto un dominio FHA como un dominio PIN.

Aunque habitualmente se encuentra un único AtPS1 representativo por especies, han tenido lugar eventos de duplicación de genes en linajes individuales tales como en *Glycine max*.

Se investigó el papel del gen *AtPS1* aislando y caracterizando una serie de mutantes alélicos, identificados en varias colecciones de líneas de inserción de ADN-T públicas collections(ALONSO et al., Science, 301, 653-7, 2003; SAMSON et al., Nucleic Acids Res, 30, 94-7, 2002; WOODY et al., J Plant Res, 120, 157-65, 2007). Las líneas de *Atps1-1* (SALK_078818) y *Atps1-2* (WiscDsLox342F09) fueron obtenidas del "European Arabidopsis stock centre" (SCHOLL et al., Plant Physiol, 124, 1477-80, 2000) y se encuentran en un fondo Columbia (Col-0). Las inserciones se encuentran en el cuarto exón y el primer intrón, respectivamente (Figura 1). La inserción de *Atps-1* (FLAG-456A09) es de la colección de ADN-T de Versailles collection(SAMSON et al., Nucleic Acids Res, 30, 94-7, 2002) y se encuentra en un fondo Wassilewskija (Ws-4), está localizada en el segundo exón (Figura 1). La RT-PCR se realizó utilizando los cebadores pAtpsF/pAtpsR (Figura 1) en el ARN de los *Atps1-3* y *Atps1-1* mutantes y no se amplificaron niveles detectables de la transcripción de *AtPS1*, lo que indica que estos dos alelos son nulos. Cuando los mismos cebadores se utilizaron en el ARN del *Atps1-2* mutante se observaron niveles normales de expresión de esta región de transcripción de *AtPS1* (datos no mostrados). Sin embargo, el análisis del fenotipo descrito a continuación sugiere rotundamente que este tercer alelo es también nulo.

Ejemplo 2: la meiosis en mutantes Atps1 genera díadas con elevada frecuencia

10

50

En la *A. Thaliana*, el producto de la meiosis masculina es un grupo de cuatro esporas, organizadas en un tetraedro, llamado tétrada. La observación de los productos meióticos masculinos en el tipo silvestre reveló casi exclusivamente tétradas (Figura 3). En ocasiones excepcionales, (13/304) se observaron también grupos de tres esporas y fueron el resultado con toda certeza de la superposición ocasional de esporas. En contraste, la observación de los productos meióticos de los tres mutantes independientes *Atps1* revelaron la presencia de díadas con elevada frecuencia, tríadas y otros productos meióticos impares (Figura 3A y 3B). Los *Atps1* y *Atps1-2* mutantes produjeron una mayoría de díadas (~65%). El fenotipo mutante *Atps1-3* se presentó como más débil y únicamente un 8% de sus productos meióticos fueron díadas. Los test de complementación realizados entre *Atps1-1* y *Atps1-2* y entre *Atps1-3* y *Atps1-1* mostró que estas mutaciones son alélicas (Figura 3B), y por tanto demostraron que la alteración del gen *Atps1* es responsable de las díadas observadas en esta serie de mutantes.

El *Atps1-3* mutante mostró un fenotipo más débil que los otros dos alelos, mientras que el análisis de expresión sugirió que este alelo también es nulo. Como este alelo estaba en un fondo genético diferente (Ws-4) al de los otros dos (Col-0), se sometió a prueba si esta diferencia podría estar influenciando la fuerza del fenotipo introduciendo la mutación Col-0 en el fondo Ws-4 y *viceversa*. Como era de esperar por efecto del fondo, la frecuencia de díadas aumentó con retrocruzamientos sucesivos cuando se introdujo *Atps1-3* en Col-0 (del 8% al 58% después de cuatro retrocruzamientos) y disminuyó cuando se introdujo *Atps1-1* en el fondo Ws-4 (del 64% al 13% después de cuatro retrocruzamientos). Estos resultados indican claramente que la formación de gametos diploides está influenciada por múltiples genes, con el *Atps1* actuando como un gen fundamental.

Ejemplo 3: los Atps1 mutantes producen granos de polen diploides viables

La viabilidad del grano de polen fue examinada por tinción de Alexander (ALEXANDER, Stain Technol, 44, 117-22, 1969) y mostró que en la mayoría de casos las díadas y tríadas producidas por los mutantes dan como resultado granos de polen viable (más del 95% en los diferentes *Atps1* mutantes: Col: 0 granos de polen sin actividad de 181; *Atps1-1:* 44 granos de polen sin actividad de 948; *Atps1-2:* 3 granos de polen sin actividad de 363). Observamos sin embargo que los granos de polen en las plantas mutantes variaban en tamaño (datos no mostrados). Entonces se valoró el nivel de ploidía de granos de polen de *Atps1-1* y *Atps1-2* cuantificando el ADN del núcleo espermático.

40 Ambos mutantes mostraron dos diferentes poblaciones de granos de polen, una correspondiente a granos de polen haploides viables (~40% se calculó por máxima similitud) y otro a granos de polen diploides viables (~60% calculado) (datos no mostrados). Estas proporciones son compatibles con la proporción de díadas, tríadas y tétradas observada en los mutantes. En resumen, los *Atps1-1* y *Atps1-2* mutantes producen una elevada frecuencia de granos de polen diploides viables.

45 Ejemplo 4: aparición de triploides espontáneos entre la progenie de atps1 mutantes diploides

Debido a que los *Atps1* mutantes producen granos de polen viables, se buscó en la progenie de los mutantes homocigotos diploides la presencia de plantas poliploides mediante citometría de flujo. Se observaron plantas diploides y triploides (30%), pero no plantas tatraploides, entre las progenies de los *Atps1-1* y *Atps1-2* mutantes (*Atps1-1*: 38 diploides de 130 plantas; *Atps1-2*: 30 triploides de 103 plantas). Se confirmaron los resultados de la citometría de flujo realizando el cariotipo de un subconjunto de 29 plantas, en las cuales se confirmó que eran todas triploides. Esto demostró que los gametos diploides producidos en los *Atps1* mutantes están implicados en la fertilización y producen plantas triploides viables. La aparición de triploides, pero no de tetraploides, sugiere que las mutaciones de *Atps1* únicamente afectan a la meiosis masculina.

Para confirmar que los gametos diploides se producen únicamente en la parte masculina en los *Atps1* mutantes, se realizaron cruces recíprocos entre *Atps2* mutantes y plantas de tipo silvestre. Tal como se esperaba por la ausencia de defecto meiótico femenino, nunca se aislaron las plantas triploides cuando los óvulos mutantes se fertilizaron con

granos de polen de tipo silvestre (0 triploides de 182 plantas). Cuando el polen mutante se utilizó para el cruce, se observó nuevamente que el 30% de la progenie fueron triploides (20 triploides de 56 plantas).

La frecuencia observada de las plantas triploide (30%) entre la progenie de *Atps1-1* y *Atps1-2* mutante es inferior a lo esperado de la frecuencia de granos de polen diploide producidos por estos mutantes (~60%). En paralelo, más del 50% de estas semillas obtenidas por autofecundación de los *Atps1-1* y *Atps1-2* mutantes, o retrocruzamiento de los mismos como masculinos, se encontraban coloreados de manera anómala y se formaron y germinaron a una tasa de ~55%. Por tanto una explicación potencial para la discrepancia entre la frecuencia de granos de polen diploides y la frecuencia de triploides en la progenie, es un desarrollo anómalo de las semillas, que se observa habitualmente durante los cruces entre especies de plantas con diferentes niveles de ploidía. Estos problemas están relacionados con el ratio paternal: maternal, lo que es muy importante para el desarrollo habitual de la albúmina (SCOTT et al., Development, 125, 3329-41, 1998). El ratio habitual maternal: paternal de la albúmina es 2:1, pero en nuestro caso cuando un núcleo de esperma diploide fertilizó los dos núcleos polares se obtuvo un ratio aberrante de 2:2. Sin embargo, parece que aproximadamente el 25% de los embriones triploides fueron capaces de superar esta limitación.

15 Ejemplo 5: los Atps1 mutantes se ven afectados en la orientación de los husos en la meiosis II

10

20

25

30

35

Para desentrañar los mecanismos responsables de la producción de díadas en *Atps1-1*, se investigó el comportamiento de los cromosomas en el *Atps1-1* mutante y en el tipo silvestre (Figura 4). Las propagaciones cromosómicas mostraron que la meiosis en el *Atps1-1* mutante progresa de manera habitual y no es distinguible del tipo silvestre hasta el final de la telofase I. La sinapsis se completó, el quiasma se formó (la manifestación citológica de los cruzamientos) y se observaron bivalentes (comparar la Figura 4G-I con la Figura 4 A-C, por ejemplo). En la metafase II, sin embargo, se observaron diferencias en comparación al tipo silvestre con los 10 cromosomas alineados en un mismo plano, generando figuras de aspecto anómalo, en lugar de dos placas de metafase II bien separadas que contengan cinco cromosomas cada una (comparar la Figura 4J-K con la Figura 4D). En casos excepcionales, la metafase II en *Atps1* resultó normal, sin embargo (Figura 4L). En la telofase II, se observaron díadas (dos grupos de 10 cromosomas, Figura 4M), tríadas (2 grupos de cinco cromosomas y un grupo de 10, Figura 4N) y tétradas normales (4 grupos de 5 cromosomas, Figura 4O). Estas observaciones son consistentes con las observaciones previas de que los productos mióticos de *Atps1* son una mezcla de díadas, tríadas y tétradas.

Estos resultados y de manera específica el alineamiento de 10 cromosomas en metafase II sugirieron que los husos meióticos en los *Atps1* mutantes son defectuosos en esta etapa. Por tanto se examinó la organización de husos mediante inmunolocalización con un anticuerpo alfa-tubulina (Figura 5). En plantas de tipo silvestre la mayoría de los husos en la metafase II fueron aproximadamente perpendiculares entre sí (Figura 5A), conduciendo a cuatro polos bien separados en la anafase II (Figura 5B) y a la formación de tétradas (Figura 5C). En el *Atps1* mutante, mientras los husos de la metafase II individual / anafase II se presentaron habituales en la mayoría de los casos, su orientación respectiva fue aberrante. La mayoría de las células presentaron husos paralelos (Figura 5D a 5G), husos fusionados (Figura 5H y 5I) o husos tripolares (Figura 5J y 5K). Este defecto en la orientación del huso explica la aparición de tríadas y díadas. Estas conformaciones causan cromátidas, que habían sido separadas en la meiosis I, para unirse en la anafase II. De manera ocasional, tres o cuatro conjuntos de cromosomas abarcados por un huso, se dispersaron en la célula en la metafase II (Figura 5L). Este tipo de defecto es probablemente la causa de productos meióticos observados en los *Atps1* mutantes.

40 El nombre *Atps1* para los *husos paralelos de Arabidopsis thaliana 1* fue elegido debido al alto porcentaje de husos paralelos producidos por los mutantes correspondientes.

Ejemplo 6: la producción de díadas en *Atps1* mutante es el resultado de la formación de husos paralelos en la metafase II.

La aparición de husos paralelos en la metafase II en los *Atps1* mutantes parece conducir a la formación de díadas.

Este mecanismo propuesto implica que la segregación de cromosomas no equilibrada en la meiosis I, no tendría impacto alguno en la distribución final de cromosomas en la díada resultante. Para probar esta hipótesis, se construyó un doble mutante *Atspo11-1/Atps1*.

El Atspo11-1 mutante (N646172 (Atspo11-1-3: STACEY et al., Plant Journal, 48, 206-16, 2006) obtenido del "European Arabidopsis stock centre" (SCHOLL et al., Plant Physiol, 124, 1477-80, 2000), muestra una ausencia de bivalentes en la meiosis (MERCIER et al., Biochimie, 83, 1023-28, 2001) (Figura 6A), lo que conduce a frecuentes primeras divisiones no equilibradas (Figura 6B) que pueden estar asociadas a cromosomas retrasados (Figura 6C). En la metafase II, se observan placas no equilibradas (Figura 6D), lo que conduce a tétradas (Figura 6E). Los cromosomas retrasados en la anafase II, conducen a múltiples placas de metafase II y entonces a políadas con más de cuatro núcleos (Figura 6F).

En el fondo *Atspo11-1/Atps1* la primera división fue idéntica al fenotipo único *Atspo11-1*. Se observaron 10 univalentes en la metafase I (Figura 6G), lo que conduce a la segregación anómala en anafase I, con dos conjuntos de cromosomas no equilibrados (Figura 6H) o tres conjuntos debido a los cromosomas retrasados (Figura 6J). En la metafase II, observamos habitualmente dos placas de metafase no equilibradas, que presentaban la tendencia a estar paralelas en lugar de perpendiculares (Figura 6J). Este hecho condujo a la formación de díadas que siempre estaban equilibradas (Figura 6K a 6L, n=44). También se observó tríadas con un conjunto de 10 cromosomas causados por una primera división no equilibrada seguida por la fusión de dos de los cuatro productos de la segunda división (Figura 6N), lo cual es altamente consistente con el mecanismo propuesto. También se observaron tétradas no equilibradas (Figura 6P), esperadas ya que la mutación de *Atps1* no es completamente penetrante, y políadas debido a los cromosomas retrasados en la primera división (Figura 6R).

Otra predicción del mecanismo propuesto es que la distribución del centrómero debería parecerse a la observada durante la mitosis, por ejemplo cualquier heterocigosidad en los centrómeros debería mantenerse en los gametos diploides. De hecho, en el Atps1, la primera división es idéntica al tipo silvestre, con la co-segregación de cromátidas hermanas y la separación de cromátidas homólogas. Por tanto, en el caso de que el genotipo heterocigoto, A/a, en el centrómero, a continuación de la primera división de los dos alelos A terminará en un polo, y los dos alelos a en el polo opuesto. En el tipo silvestre, la segunda división separa las dos hermanas conduciendo a cuatro esporas con una cromátida. En el Atps1, la segunda división reagruparía los productos de la primera división, agrupando de ese modo el alelo a y el A en cada célula, lo que conduce a la heterocigosis sistemática en el centrómero. Debido a la recombinación, los locus no similares a los centrómeros deberían segregarse aleatoriamente. Se sometió a prueba esta predicción tomando ventaja de los dos fondos genéticos de los Atps1-1 (Col-0) y Atps1-3 mutantes (Ws-4). Las plantas F1 que portan las dos mutaciones- por tanto el mutante para AtPS1 y el heterocigoto para cualquier polimorfismo Col-0/Ws-4 - fueron cruzadas como masculinas a un tercer fondo genético landsberg erecta (Ler). El cariptipado y genotipado de las plantas obtenidas para los marcadores moleculares trimórficos (ver métodos adicionales), proporcionó información directa en referencia a la constitución genética del grano de polen producido por el mutante (Figura 7). Todos los granos de polen diploides probados presentaron las características genéticas que se preveían. Fueron sistemáticamente heterocigotas en centrómeros y de segregación - debido a la recombinación - en otros locus. Estos resultados confirman que el defecto del "huso paralelo" es efectivamente la causa de al menos la gran mayoría de polen 2n en Atps1.

Conclusión:

10

15

20

25

Los resultados anteriores muestran que los mutantes en el gen *Atps1* producen granos de polen que son diploides hasta un 65% y dan lugar a numerosas plantas triploides en la siguiente generación. También se muestra que las mutaciones de *Atps1* solamente afectan a la meiosis masculina en la orientación anómala de husos en la meiosis II. Debido a que los efectos en los husos de la meiosis II son la principal fuente del polen 2n, el cual es ampliamente utilizado en muchos programas de mejora vegetal (por ejemplo en la patata, cfr. CARPUTO et al., Genetics, 163, 287-94, 2003), la identificación de un gen implicado en estos defectos tiene importantes aplicaciones en la mejora vegetal.

Ejemplo 7: extinción de *ATPS1* mediante fenocopias de ARNi de los *Atps1* mutantes.

Se realizó un constructo de ARN de interferencia (ARNi) tipo hairpin (horquilla) en base al fragmento 361-bp ADNc del gen *AtPS1*, representado como SEQ ID NO: 38.

40 El vector binario Prfb 18 se deriva del vector binario pfgc5941 (GenBank: AY310901.1) mediante adición de sitios de clonación GATEWAY® a ambos lados del intrón de chalcona sintasa bajo control del cebador 35S. El fragmento de ADNc SEQ ID NO: 38 y su complemento inverso se situaron en los sitios de clonación GATEWAY® del vector binario Prfb 18. El vector resultante comprende, aguas abajo del cebador 35S, el complemento inverso de SEQ ID NO: 38, seguido del intrón de chalcona sintasa, seguido del fragmento de ADNc SEQ ID NO: 38, y por la señal poli-A de la octopina sintasa. Este vector se utilizó para transformar las plantas de Arabidopsis Col-0 de tipo silvestre. Se observaron productos meióticos de 14 transformantes primarios. Los resultados se resumen en la tabla I a continuación.

Tabla I

Genotipo	% de díadas	% de tríadas	% de tétradas
Col-0	0	0	100
atps1-1	64	24	11
atps1-2	65	20	13
ARNi 35S AtP51 #1	17	32	49

(continuación)

Genotipo	% de díadas	% de tríadas	% de tétradas
ARNi 35S AtP51 #2	4	8	84
ARNi 35S AtP51 #3	17	27	52
ARNi 35S AtP51 #4	20	16	60
ARNi 35S AtP51 #5	15	21	60
ARNi 35S AtP51 #6	62	16	20
ARNi 35S AtP51 #7	0	0	100
ARNi 35S AtP51 #8	0	0	100
ARNi 35S AtP51 #9	0	0	100
ARNi 35S AtP51 #10	0	0	100
ARNi 35S AtP51 #11	0	0	100
ARNi 35S AtP51 #12	0	0	100
ARNi 35S AtP51 #13	0	0	100
ARNi 35S AtP51 #14	0	0	100

Estos resultados muestran que mientras el tipo silvestre produce únicamente tétradas de esporas, las líneas *Atps1* mutante y *ARNi 35SAtPS1* producen una elevada proporción de díadas.

Entre las líneas *ARNi 35SAtPS1*, seis produjeron díadas y tríadas con una frecuencia elevada en lugar de tétradas, un fenotipo idéntico al *Atps1* mutante. La Figura 8 muestra ejemplos de productos meióticos de una planta de tipo silvestre, un *atps1-1* mutante y una planta de la línea *ARNi 35S AtP51 #6*.

El nivel de expresión de *Atps1* en las plantas Col-0 de tipo silvestre se comparó con el nivel de expresión en tres líneas de *ARNi 35SAtPS1 (ARNi 35SAtPS1 #1, ARNi 35SAtPS1 #2, y ARNi 35SAtPS1 #6*), produciendo diferentes proporciones de díadas. Se llevó a cabo RT-PCR en brotes de flores con cebadores específicos de *ATPS1*:

- 5' CCATAGTGAGAGTTATGGAGC 3' (SEQ ID NO: 39), y
- 5' GGCGCCTTTTCAACCTCTACTTG 3' (SEQ ID NO: 40)
- o como control, con cebadores específicos del gen ubicuo APT.
- Los resultados se muestran en la Figura 9. Estos resultados muestran que la expresión de *AtPS1* se reduce en las tres líneas *ARNi 35SAtPS1* en comparación con el tipo silvestre (col).

Además, existe una correlación entre la eficacia de la reducción de la expresión de *AtPS1*, y la proporción de las díadas (cfr. Tabla I) producida por las líneas *ARNi 35SAtPS1*.

A continuación, se midió el nivel de ploidía de la progenie de las dos líneas *ARNi 35S AtPS1* mediante citometría de flujo (resultados no mostrados). Se observaron triploides entre la progenie de *ARNi 35S AtPS1 #1* y *ARNi 35S AtPS1 #6*. Esto demostró que, al igual que los *Atps1* mutantes, las líneas *ARNi 35S AtPS1* pueden producir gametos diploides masculinos funcionales.

Listado de secuencias

<110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE MERCIER, Raphael D'ERFURTH, Isabelle

<120> Plantas que producen polen 2n

<130> MJPhzF539/139-WO

5 <160> 40

<170> PatentIn version 3.3

<210> 1

<211> 1477

<212> PRT

10 <213> Arabidopsis thaliana

<400> 1

Met 1	Glu	Val	Lys	Glu 5	Glu	ГÀг	Leu	Met	Glu 10	Glu	Lys	Gln	Arg	Leu 15	Pro
Glu	Lys	Thr	Ile 20	Pro	Val	Phe	Thr	Val 25	Leu	Lys	Aşn	Gly	Ala 30	Ile	Leu
Lys	Asn	Ile 35	Phe	Val	Val	Asn	Ser 40	Arg	Asp	Phe	Ser	Ser 45	Pro	Glu	Arg
Asn	Gly 50	Ser	Thr	Val	Ser	Asp 55	Asp	Asp	Gly	Glu	Val 60	Glu	Gl u	Ile	Leu
Val 65	Val	Gly	Arg	His	Pro 70	Asp	Cys	Asp	Ile	Leu 75	Leu	Thr	His	Pro	Ser 80
Ile	Ser	Arg	Phe	His 85	Leu	Glu	Ile	Arg	Ser 90	Ile	Ser	Ser	Arg	Gln 95	Lys
Leu	Phe	Val	Thr 100	Asp	Leu	Ser	Ser	Val 105	His	Gly	Thr	Trp	Val 110	Arg	Asp
Leu	Arg	Ile 115	Glu	Pro	His	Gly	Cys 120	Val	Glu	Val	Glu	Glu 125	Gly	Asp	Thr
Ile	Arg 130	Ile	Gly	Gly	Ser	Thr 135	Arg	Ile	Tyr	Arg	Leu 140	His	Trp	Ile	Pro
Leu 145	Ser	Arg	Ala	Tyr	Asp 150	Leu	Asp	Asn	Pro	Phe 155	Val	Ser	Pro	Leu	Asp 160
Ala	Ser	Thr	Val	Leu 165	Glu	Gln	Glu	Glu	Glu 170	Asn	Arg	Met	Leu	Glu 175	Ala
Glu	Asn	Leu	Glu 180	Val	Ala	Gln	His	Gln 185	Ser	Leu	Glu	Asn	Thr 190	Thr	Ser
Gly	Asp	Glu 195	Gly	Val	Leu	His	Leu 200	Asp	Val	Thr	Ser	Glu 205	Gly	Thr	Gly
Ser	Ser 210	Val	Pro	Ser	Glu	Asp 215	Glu	Asp	Thr	Tyr	Val 220	Thr	Thr	Arg	Glu
Met 225	Ser	Met	Pro	Val	Ala 230	Ser	Pro	Ser	Val	Leu 235	Thr	Leu	Val	Arg	Asp 240
Ser	Val	Glu	Thr	Gln 245	Lys	Leu	Gln	Phe	Asn 250	Glu	Asp	Leu	Gln	Thr 255	Ser
Pro	Lys	Trp	Asp 260	Leu	Asp	Val	Ile	Glu 265	Ser	Val	Ala	Glu	Lys 270	Leu	Ser

Gly	Ser	Phe 275		Arg	Ser	Thr	Gln 280	Gln	Ser	Gly	Gly	Asp 285	Val	Glu	Gly
Leu	Gly 290	_	Ser	Glu	Leu	Phe 295		Ala	Ala	Glu	Ala 300	Asp	Glu	Cys	Asp
Val 305	Arg	Gly	Asp	Gly	Gly 310	Leu	His	Leu	Asn	Val 315	Ile	Ser	Glu	Lys	Met 320
Glu	Ser	Ser	Val	Pro 325	Asn	Met	Ile	Glu	Ala 330	Glu	Asn	Leu	Glu	Val 335	Ala
Gln	His	Gln	Ser 340	,Leu	Ala	Asn	Thr	Ala 345	Leu	Gly	Asp	Asp	Glu 350	Asp	Leu
His	Leu	Asp 355	Val	Thr	Ser	Glu	Gly 360	Thr	Gly	Ser	Ser	Val 365	Pro	Ser	Glu
Asp	Glu 370	Asp	Thr	Tyr	Ile	Thr 375	Thr	Met	Glu	Ile	Ser 380	Val	Pro	Leu	Ala
Ser 385	Pro	Asn	Val	Leu	Thr 390	Leu	Ala	Arg	Asp	Ser 395	Ile	Lys	Thr	Gln	Lys 400
Leu	Gln	Ser	Thr	Gln 405	Asp	Phe	Gln	Thr	Pro 410	Thr	Met	Trp	Asp	Leu 415	Asp
Val	Val	Glu	Ala 420	Ala	Ala	Glu	Lys	Pro 425	Ser	Ser	Ser	Cys	Val 430	Leu	Gly
Lys	Lys	Leu 435	Ser	Gly	Gly	Tyr	Val 440	Glu	Glu	Leu	Gly	Cys 445	Phe	Glu	Leu
Phe	Val 450	Ala	Ala	Glu	Ala	Asp 455	Lys	Суз	Asp	Val	Arg 460	Gly	Asp	Gly	Ser
Leu 465	His	Leu	Asn	Glu	Ile 470	Ser	Glu	Arg	Met	Glu 475	Ser	Ser	Met	Ser	Asn 480
Lys	Glu	Asp	Asp	Pro 485	Phe	Leu	Ala	Ala	Lys 490	Glu	Thr	Ser	Ser	Leu 495	Pro
Leu	Ser	Thr	Asp 500	Phe	Ile	Asn	Pro	Glu 505	Thr	Leu	Trp	Leu	Val 510	Glu	Asp
Val	Gln	Ala 515	Ser	Pro	Glu	Phe	Cys 520	Thr	Ser	Ser	Val	Lys 525	Ala	Asn	Ala
Glu	Asn 530	Pro	Ser	Ser	Gly	Cys 535	Ser	Pro	Ser	Thr	Glu 540	Gln	Ile	Asp	Gly
Cys 545	Phe	Glu	Thr	Ser	Gly 550	Cys	Ser	Ala	Phe	Asp 555	Leu	Ala	Ala		Val 560
Glu	ser	Leu	Ser	Leu 565	His	Gln	Glu	Val	Ser 570	Glu	Glu	Thr	Glu	Phe 575	Val
Thr	ГÀЗ	Glu	Val 580	Met	Gly	Val		Ser 585	Glu	Pro	Leu	Gly	Lys 590	Ala	Asp
Ile	Arg	Ser 595	His	Glu	Glu	Asn	Gly 600	Glu	Ser	Glu	Asp	Ser 605	Arg	Gln	Val

Ile	Glu 610	Val	Ser	Ala	Glu	Pro 615	Val	Ala	Lys	Ala	Asp 620	Ile	Gln	Ser	His
Glu 625	Glu	Asn	Gly	Glu	Thr 630	Glu	Gly	Ser	Arg	Gln 635	Val	Ile	Glu	Val	Ser 640
Pro	Lys	Ser	Phe	Ser 645	Glu	Ala	Glu	Pro	Thr 650	Ile	Glu	Ile	Leu	Thr 655	Gly
Glu	Ala	Gln	Gly 660		Ile	Gly	Ser	Glu 665	Phe	Pro	Ser	Glu	Leu 670	Ala	Val
Glu	Thr	Glu 675		Glu	Asn	Leu	Leu 680	His	Gln	Lys	Ser	Ile 685	Gly	Glu	Thr
Lys	Asn 690	Glu	Ile	Arg	Ser	His 695	Glu	Asp	Tyr	Gly	Glu 700	Thr	Glu	Asp	Tyr
Gly 705	Glu	Thr	Glu	Cys	Ser 710	Trp	Pro	Asp	Ile	Ala 715	Val	Ser	Pro	Ser	Ser 720
Val	Ser	Pro	Pro	Glu 725	Pro	Thr	Leu	Glu	Ile 730	Leu	Thr	Asp	Glu	Ala 735	Arg
Gly	Leu	Leu	Gly 740	Ser	Glu	Phe	Leu	Ser 745	Glu	Val	Thr	Val	Glu 750	Thr	Glu
Ile	Glu	Asn 755	Leu	Leu	His	Gln	Lys 760	Ser	Asn	Val	Glu	Thr 765	Lys	Ala	Asp
Ile	Leu 770	Ile	His	Glu	Asp	Tyr 775	Gly	Glu	Thr	Glu	Val 780	Ser	Arg	Gln	Ile
Ile 785	Thr	Val	Ser	Pro	Asn 790	Ser	Phe	Ser	Lys	Ala 795	Glu	Pro	Thr	Leu	Glu 800
Thr	Glu	Asp	Ser	Arg 805	Gln	Gln	Ala	Arg	Gly 810	Leu	Val	Gly	Ser	Asp 815	Ser
Glu	Phe	Gln	Ser 820	Glu	Val	Ala	Met	Lys 825	Thr	Glu	Cys	Glu	Asn 830	Leu	Leu
		835	Ī		-		840	•				845			
	Val 850					855					860				
Asn 865	Thr	Asp	Asp		Gln 870	Ser	Leu	Cys	Ser	Ser 875	Ser	Gln	Pro	Pro	Ser 880
Glu	Ser	Glu	Val	Asn 885	Pro	Ala	Thr	Asp	Gln 890	Asp	Gln	Glu	Ser	Gly 895	Ile
Ile	ser	Glu	Thr 900	Glu	Lys	Pro	Lys	Thr 905	Glu	Leu	Leu	Ile	Gly 910	Ser	Gly
Arg	Ser	Glu 915	Lys	Tyr	Tyr	Ser	Leu 920	Ser	Glu	Ile	Glu	Gly 925	Glu	Glu	Asn
Thr	Asp 930	Ile	Gly	Arg	Leu	Ser 935	Arg	Суз	Pro	Ile	Pro 940	Ser	Ala	Leu	Ala
Ala	ГÀг	Thr	Ser	Glu	Asp	Thr	Lys	Leu	Ile	Glu	Glu	Leu	Ser	Ser	Ser

945					950					95	5					96	60
Asp	Ser	Gly	Ser	Gln 965	Glu	Asn (Gln :	Thr	Pro 970		u T	hr H	is A	Ala	Va. 97		rg
Asp	Asp	Val	Leu 980	Cys	Asp	Met 1		Ser 985	Ser	Se	r T	hr C		Asn 990	Ile	э Ті	rp
Ser	Arg	Arg 995	Gly	Lys	Ala		Ser 1000	Val	Le	u L	ys		Arg 1005		hr i	Asn	Ly
Ser	Gln 1010		/ Lys	Gln	Lys	Gln 1015		Gl	уΑ	rg	Gln	Pro 102		s i	Asp	Lys	3
Leu	His 1025		l FÀS	Gln	Ala	Leu 1030		As	рЬ	ys	Ser	11e 103		er :	Leu	Thi	c
Ile	His 1040		Gly	Ala	Glu	Ile 1045		ı Gl	u P	ro	Glu	Ile 105		ie '	Thr	Pro)
Asp	Lys 1055		Asn	Leu	Thr	Pro 1060		: Se	r H	is	Met	Leu 106	-	7S 2	Arg	Let	1
Gln	Asp 1070		Gly	Asp	Val	Lys 1075		Se	r L	ys :	Ser	Ser 108		u :	Lys	Leu	1
Ser	Gly 1085		Ser	Cys	Ser	Ser 1090		ı Va	1 н	is	Ser	Ser 109		e z	Ala	Val	_
Leu	Ala 1100		Glu	Ala	Phe	Thr 1105		ı Pr	o G	lu :	Ile	Phe 111		r	Pro	Asp)
Lys	Glu 1115		Leu	Thr	Pro	Ser 1120		Hi.	s M	et :	Leu	Lys 112		g 1	Leu	Arg	ı
Glu	Phe 1130	_	Asp	Ile	Lys	Asp 1135		Lу	s G	ly s	Ser	Ser 1140		r l	ГЛS	Ala	ì
Thr	Arg 1145	_	Pro	Phe	Phe	Asp 1150		Ar	g Me	et (Glu	Glu 1155		n V	/al	Met	:
Val	Glu 1160		Glu	Pro	Glu	Asp 1165		Hi.	s S	er 1	Leu	Gly 1170		r I	Lys	Ser	•
Lys	Leu 1175	-	His	Glu	Pro	Leu 1180		Pr	o Ly	ys 1	Lys	Lys 1185		a (Glu	Arg	!
Ala	Pro 1190	Phe	Gln	Pro	Leu	Leu 1195		Ly	s Se	er S	Ser	Phe 1200		n S	Ser	Gln	L
Ser	Tyr 1205		Glu	Ala	Ser	Ser 1210		Ala	a Se	er P	Ala	Arg 1215		n F	Asn	Ile	
Ser	Arg 1220	Gly	Ile	Arg	Ser	Ser 1225		Ası	n Le	eu S	Ser	Asp 1230		a I	ys	Ser	
Lys	Met 1235	Lys	Trp	Thr	Ile	Val 1240		Ası	o Tì	r S	Ser	Ser 1245		u I	eu	Asp	
Lys	Glu 1250	Ser	Arg	Lys	Pro	Leu 1255		Let	ı Le	eu (Sln	Gly 1260		u I	ys	Gly	•
Thr	His 1265	Leu	Val	Val		Arg 1270		Va.	L L∈	eu A	_	Glu 1275		u P	Asn	Glu	

Val	Lys 1280		Ser	Arg	Ser	Phe 1285	Leu	Phe	Arg	Arg	Arg 1290	Thr	Glu	Ile
Ala	Ser 1295	Ser	Ala	Leu	Asp	Trp 1300	Ile	Glu	Glu	Cys	Lys 1305	Val	Asn	Ser
Lys	Trp 1310	Trp	Ile	Gln	Val	Gln 1315	Ser	Pro	Thr	Glu	Glu 1320	Tḥr	Lys	Ala
Ile	Ala 1325	Pro	Thr	Pro	Pro	Val 1330	Thr	Pro	Gln	Ser	Asn 1335	Gly	Ser	Ser
Ala	Phe 1340	Pro	Phe	Ser	Leu	His 1345	Trp	Asn	Asn	Tyr	Ala 1350	Pro	Glu	Ile
Asp	Ser 1355	Pro	Thr	Ser	Glu	Asp 1360	Gln	Val	Leu	Glu	Cys 1365	Ala	Leu	Leu
Tyr	Arg 1370		Arg	Asn	Arg	Asp 1375	Glu	Lys	Leu	Val	Leu 1380	Leu	Ser	Asn
Asp	Val 1385	Thr	Leu	Lys	Ile	Lys 1390	Ala	Met	Ala	Glu	Gly 1395	Val	Ile	Cys
Glu	Thr 1400	Pro	His	Glu	Phe	Tyr 1405	Glu	Ser	Leu	Val	Asn 1410	Pro	Phe	Ser
Glu	Arg 1415	Phe	Met	Trp	Thr	Glu 1420	Ser	Thr	Ala	Arg	Gly 1425	Arg	Thr	Trp
Ser	His 1430	Leu	Asp	Asn	Asp	Val 1 435	Leu	Arg	Glu	Arg	Tyr 1440	Asn	Asp	Arg
Ala	Cys 1445	Arg	Arg	Lys	Ser	Thr 1450	Tyr	Asn	Arg	Gly	Glu 1455	Ser	Gly	Ala
Ala	Ala 1460	Lys	Gly	Leu	Lys	Leu 1465	Ile	Leu	Leu	His	Asn 1470	Ser	His	Tyr
Gly	His 1475	Thr	His											

<210> 2

<211> 1079

<212> PRT

5 <213> Populus trichocarpa

<400> 2

- Met Ala Ser Asn Glu Glu Lys Lys Pro Glu Glu Glu Glu Glu Glu Glu Glu 15
- Arg Lys Ile Pro Val Phe Thr Val Leu Arg Asn Gly Ala Ile Leu Lys 20 25 30
- Asn Ile Phe Val Ile Asp Lys Ser Pro Leu Pro Ser Pro Thr Ser Ser 35 40 45
- Glu Pro Ser Ile Glu Asn Glu Glu Asn Pro Val Gln Glu Thr Glu Glu 50 55 60
- Ile Leu Ser Phe Gly Arg His Pro Asp Cys Ser Ile Val Leu Asn His 65 70 75 80
- Pro Ser Ile Ser Arg Phe His Leu Gln Ile Asn Ser Arg Pro Ser Ser

		•		85					90					95	
Gln	Lys	Leu	Phe 100		Thr	Asp	Leu	Ser 105	Ser	Val	His	Gly	Thr 110	Trp	Va]
Ser	Gly	Lys 115	Lys	Ile	Glu	Pro	Gly 120	Phe	Arg	Val	Glu	Leu 125	Asn	Glu	Gly
Asp	Thr 130		Arg	Val	Gly	Gly 135	Ser	Thr	Arg	Tyr	Tyr 140		Leu	His	Trp
Val 145		Leu	Ser	Arg	Ala 150	Tyr	Asp	Met	Glu	Thr 155		Phe	Ile	Ser	Pro
Leu	Asp	Met	Ala	Met 165	Ile	Glu	Glu	Lys	Arg 170		Glu	Asn	Pro	Val 175	Lev
Glu	Glu	Glu	Asn 180	Glu	Ala	Lys	Met	Ser 185	Gln	Asp	Glu	Asn	Leu 190	Val	Ala
Thr	Glu	Arg 195	Glu	Ser	Val	Glu	Glu 200	Lys	Gly	Ser	Leu	Glu 205	Val	Ala	Gly
Lys	Asp 210	Asp	Glu	Arg	Tyr	Gln 215	Ala	Met	Asp	Ser	Thr 220	Ser	Val	Glu	Asn
Arg 225	Glu	Thr	Lys	Ser	Leu 230	Asp	Leu	Ile	Leu	Gln 235	Asp	Val	Gly	Ser	Leu 240
Tyr	Cys	Glu	Glu	Ile 245	Cys	Glu	Ser	Ile	Ala 250	Lys	Lys	Glu	Ile	Leu 255	Ser
Ala	Ala	Leu	Val 260	Pro	Asp	Glu	Ser	Met 265	Asp	Ser	Leu	Phe	Tyr 270	Asp	Ala
Asn	Glu	Asp 275	Ile	Glu	Ile	Ser	Phe 280	Arg	Asn	Asp	His	Asn 285	Val	Lys	Asp
Ile	Leu 290	Ser	Pro	Thr	Thr	Val 295	Gln	Gly	Val	Ile	Ser 300	Glu	Thr	Lys	Cys
Arg 305	Gln	Tyr	Asp	Gly	His 310	Asn	Gln	Ser	Pro	Glu 315	Tyr	Phe	Ser	Val	Arg 320
Gln	Glu	Leu	Pro	Glu 325	Thr	Glu	Thr	Lys	Gly 330	Ser	Ser	Met	Ile	Arg 335	Glu
Ser	Asn	Ala	Val 340	Phe	Ser	Ser	Leu	Ser 345	Thr	Ala	Glu	Val	Glu 350	Ser	Gln
Ser	Ala	Ser 355	Glu	Met	Leu	Gly	Ala 360	Thr	Glu	Asn	Gly	Ser 365	Leu	Leu	Arg
Lys	Gly 370	His	Glu	Pro	Ile	Asn 375	Ile	Phe	Ser	His	Gly 380	Ile	Glu	Met	Val
Asn 385	Leu	Ser	Leu	Pro	Val 390	Lys	Asp	Leu	Ser	Glu 395	Asn	Asp	Ser	Lys	Lys 400
Val	Arg	Lys	Glu	Asn 405	Gln	Thr	Leu	Glu	His 410	Leu	Val	Ala	Leu	Glu 415	Pro
Thr	Tyr	Lys	Glu 420	Gly	Asn	Gln	Gly	Asn 425	Phe	Thr	Ala	Asn	Leu 430	Leu	Val

Asn	Leu	Asn 435	Ser	Ala	Cys	Ser	Asp 440	Asp	Gln	Ala	Val	Ser 445	Leu	Lys	Ser
Thr	Tyr 450		Glu	Gly	Asn	Gln 455	Glu	Lys	Phe	Thr	Ala 460	Asn	Leu	Leu	Glu
Asn 465	Leu	Asn	Ser	Ala	Cys 470	Ser	Gly	Asp	His	Ala 475	Val	Ala	Leu	Asp	Pro 480
Thr	Tyr	Glu	Glu	Gly 485	Thr	Arg	Glu	His	Phe 490	Thr	Ala	Asn	Leu	Leu 495	Glu
Asn	Leu	Asn	Thr 500	Ser	Ser	Cys	Ser	Asp 505	Asp	His	Ala	Val	Ala 510	Leu	Asp
Pro	Thr	Tyr 515	Glu	Glu	Gly	Thr	Gln 520	Glu	Asn	Phe	Thr	Thr 525	Asn	Leu	Leu
Glu	Asn 530	Leu	Asn	Ser	Ser	Cys 535	Ser	Asp	Asp	His	Ala 540	Ala	Asp	Asp	Met
Leu 545	Glu	Val	Glu	Asn	Gln 550	Asn	Leu	Ser	Arg	Asp 555	Asp	Hìs	Gly	Gln	Ser 560
Val	Tyr	Thr	Ser	Ile 565	Cys	Ser	Ala	Leu	Leu 570	Ala	Ala	Glu	Ser	Val 575	Ser
Ser	Ser	Phe	Pro 580	Val	Gly	Leu	Leu	Ser 585	Glu	Ile	Ile	Asp	Ser 590	Lys	Lys
Суз	Gln	Thr 595	Pro	Glu	Ser	Val	Leu 600	Ala	Ser	Ile	Glu	Asn 605	Gln	Glu	Asn
Leu	Gln 610	Ser	Ser	His	Val	Arg 615	Ser	Glu	Lys	Lys	Gln 620	Ser	Ser	Arg	Asn
Ile 625	Trp	Ser	Arg	Arg	Gly 630	Lys	Pro	Lys	Ala	Val 635	Leu	Gln	Leu	Gln	Thr 640
Ser	Arg	Ser	Arg	Glu 645	Lys	Asn	Arg	Gly	Asp 650	Asp	Val	Glu	Trp	Glu 655	
Gln	Glu	Asn	Ile 660	G1u	Asn	Arg	Ser	Ile 665	Ser	Lys	Thr	Ile	Phe 670	Pro	Gly
Ser	Glu	Ala 675	Ala	Glu	Glu	Val	Leu 680	Thr	Pro	Gly	Lys	Glu 685	Asn	Tyr	Ser
Pro	Asn 690	Thr	Leu	Leu	Leu	Lys 695	Ser	Leu	Lys	Lys	Lys 700	Gly	Lys	Arg	Glu
Glu 705	Thr	Gln	Leu	Ser	Asn 710	Ser	Arg	Arg	Ser	Thr 715	Ser	Ser	Lys	Ile	Ala 720
Phe	Ser	Pro	Tyr	Lys 725	Gln	Pro	Glu	Glu	Glu 730	Met	Ile	Ala	Ser	Pro 735	Asp
Lys	Glu	Asn	Gln 740	Thr	Pro	Lys	Val	Leu 745	Gln	Gln	Thr	Lys	Leu 750	Ala	Ile
Pro	Ala	Ser 755	Arg	Asn	Gln	Val	Lys 760	Phe	Lys	Gln	Glu	Met 765	Val	Leu	Glu

Glu Cys Lys Ala Glu Arg Val Pro Leu Gln Ser Leu Leu Val Asn Phe Ser Gly Asn Ser Asn Ser Glu Ala Ser Val Pro Asn Asp Ala Thr Arg 790 Ser Ser Ile Ser Val Asn Cys Ser Gln Ile Met Arg Lys Ser Asn Phe 805 810 Thr Gly Asp Gly Lys Arg Arg Trp Thr Met Val Ala Asp Thr Ala Ser 825 Leu Val Asp Lys Glu Ser Arg Lys Ser Leu Gln Leu Leu Gln Gly Leu Lys Gly Thr His Leu Val Ile Pro Lys Met Val Ile Arg Glu Leu Asp 855 Cys Leu Lys Arg Arg Ser Ser Leu Phe Arg Lys Lys Thr Glu Ala Ser Leu Val Leu Glu Trp Ile Glu Glu Cys Met Val Arg Thr Pro Trp Trp 885 890 Ile His Val Gln Ser Ser Met Glu Glu Gly Arg His Ile Ala Pro Thr Pro Pro Ala Ser Pro Gln Ser Arg Phe Ser Gln Gly Ser Glu Gly Phe 920 Pro Cys Gly Thr Gly Ser Ser Val Pro Phe Pro Ala His Gly Ser Phe Leu Glu Ile Val Ser Pro Thr Ala Glu Asp His Ile Leu Glu Tyr Ala 945 950 955 Leu Ser Tyr Arg Lys Met Asn Arg Asp Gly Gln Leu Ile Leu Leu Thr Asn Asp Val Thr Leu Lys Ile Lys Ala Met Ser Glu Gly Leu Ile Cys Glu Thr Ala Lys Glu Cys Arg Asp Ser Leu Val Asn Pro Phe Ser Glu 1000 Arg Phe Leu Trp Ala Asp Ser Ser Pro Arg Gly Gln Thr Trp Ser 1010 1015 1020 Val Ser Asp Asp Leu Val Leu Lys Glu Arg Tyr Tyr Gln Ser Pro 1030 Ser Lys Lys Ser Ser Lys Gly Glu Gly Ala Lys Gly Leu Lys Leu 1040 1045 ` Ile Leu Leu His Asn Ser Gln Tyr Gly Gln Ile Ser Arg Ser Glu 1060 Gln Cys Ser Leu Phe Arg Asn Arg Tyr Leu Phe

1075

1070

<210> 3

<211> 1112

<212> PRT

<213> Oryza sativa

5 <400> 3

	1et L	Ala	Ser	Ala	Ala 5	Ala	Glu	Gly	Glu	Glu 10	Ala	Pro	Ile	Ala	Ala 15	Phe
I	Ala	Val	Ser	Lys 20	Gly	Gly	Val	Val	Leu 25	Lys	Asn	Ile	Phe	Leu 30	Asn	Ala
F	Pro	Pro	Ser 35	Pro	Leu	Pro	Val	Glu 40	Glu	Ala	Ala	Arg	Gly 45	Arg	Gly	Gly
C	lu	Glu 50	Glu	Asp	Pro	Pro	Val 55	Met	Phe	Gly	Arg	His 60	Pro	Glu	Cys	His
	7al 55	Leu	Val	Asp	His	Pro 70	Ser	Val	Ser	Arg	Phe 75	His	Leu	Glu	Val	Arg 80
٤	Ser	Arg	Arg	Arg	Gln 85	Arg	Arg	Ile	Thr	Val 90	Thr	Asp	Leu	Ser	Ser 95	Val
H	lis	Gly	Thr	Trp 100		Ser	Gly	Arg	Arg 105	Ile	Pro	Pro	Asn	Thr 110	Pro	Val
G	Slu	Leu	Thr 115	Ala	Gly	Asp	Val	Leu 120	Arg	Leu	Gly	Ser	Ser 125	Arg	Arg	Glu
1	'yr	Arg 130	Leu	His	Trp	Leu	Ser 135	Leu	Pro	Glu	Ala	Phe 140	Asp	Met	Glu	Asp
	eu 45	Leu	Pro	Pro	Leu	Leu 150	Glu	Glu	Asp	Lys	Glu 155	Glu	Leu	Ser	Thr	Cys 160
G	ln	Glu	Ala	Ser	Lys 165	Gln	Leu	Glu	Pro	Asp 170	Gln	Lys	Glu	Ser	Ala 175	Asp
Т	'hr	Glu	Thr	His 180	Gln	Glu	Thr	Ser	Gln 185	Gln	Val	Val	Ser	Glu 190	Gln	Ile
Α	sp	Phe	His 195	Ala	Asn	Val	Ile	Pro 200	Ser	Ala	Pro	Pro	I l e 205	Pro	Glu	Phe
		210				Leu	215					220			-	_
	er 25	Arg	Glu	Gly	Arg	Ile 230	Glu	Gly	Asn	Leu	Ile 235	Glu	Glu	Asn	His	Val 240
Ι	le	Tyr	Ser	Val	Glu 245	Ser	Ser	Ile	Thr	Gln 250	Pro	Met	Leu	Ala	Thr 255	Val
				260		Ser			265					270		
			275			Leu		280					285			
		290				Arg	295			٠.		300				
3	05					Glu 310					315					320
G.	lu	Cys	Glu	Ala	Cys 325	Met	Val	Leu	Phe	Asn 330	Asn	Ser	Tyr	Val	Gly 335	Glu

Ala	Glu	Glu	Lys 340		Lys	Met	Asn	Ile 345		Asp	Arg	Ile	Met 350	Met	Glu
Glu	Asn	Gln 355	Glu	Gln	Thr	Asn	His 360	Leu	Gln	Ser	Lys	Glu 365		Val	His
Tyr	Val 370	Ala	Pro	Leu	Asn	Leu 375	Asp	Tyr	Glu	Thr	Phe 380		Asp	Asn	Glu
Asn 385	Cys	Val	Leu	Ser	Val 390	Ala	Lys	Glu	Thr	Glu 395	Hìs	Asn	Asp	Phe	Asn 400
Ser	۷al	Asn	Cys	Ile 405	Ser	·Gln	Asp	Ser	Val 410	Cys	Glu	Asn	Pro	Gln 415	Lys
Ile	Ser	Glu	Leu 420	Leu	His	Phe	Val	Ser 425	Pro	Leu	Val	Phe	Lys 430	Gly	Asp
Asp	Phe	Thr 435	Asp	Ser	Lys	Ile	Leu 440	Gln	Leu	Cys	Ala	Ser 445	Val	His	Lys
Glu	Leu 450	Ser	Gly	Pro	Ile	Leu 455	Glu	Asn	Pro	Phe	Met 460	Gln	Asp	Ile	Ser
Asp 465	Glu	Asn	Thr	Asn	Ser 470	Asn	Lys	Asp	Thr	Gly 475	His	Glu	Gly	Leu	Thr 480
Leu	Leu	Asn	Leu	Asp 485	Ala	Thr	Leu	Thr	Ser 490	Asn	Glu	Asn	Phe	Ala 495	Gln
Ser	Lys	Ile	Phe 500	Val	Ala	Pro	Glu	Asp 505	Ser	Glu	Ser	Glu	Gly 510	Thr	Ile
	•	515					Ser 520			-	-	525			
	530					535	Lys				540				
545					550		Ser			555					560
				565			Ser		570					575	
			580				Ser	585					590		
		595					Ala 600	-				605			
	610					615	Ser				620				
625				_	630		Ile			635					640
				645			Thr		650					655	
			660				Val	665					670		
Pro	Ile	Ile	Gly	Arg	Lys	Val	Leu	Gly	Pro	Arg	Val	Asp	Asn	Ser	Leu

		675		`			680					685			
Ser	Val 690		Cys	Thr	Ser	Lys 695	Arg	Arg	Ile	His	Arg 700	Gln	Glu	Pro	Asn
Glu 705	Leu	Ser	Ala	Lys	Ser 710	Lys	Val	Cys	His	Ala 715	Val	Asp	Asp	Asp	Val 720
Phe	Tyr	Ser	Asp	Lys 725	Glu	Asn	Leu	Thr	Pro 730	Ile	Ser	Ser	Gly	Gly 735	Ile
Lys	Ala	Arg	Arg 740	Cys	Leu	Pro	Lys	Ser 745	Leu	Thr	Val	Asp	Ala 750	Asp	Gln
Asp	Gln	Glu 755	Ala	Phe	Tyr	Ser	Asp 760	Lys	Glu	Asn	Leu	Thr 765	Pro	Val	Ser
Ser	Ala 770		Arg	Lys	Thr	Lys 775	Asp	Leu	Ser	Glu	Asn 780	Arg	Ala	Arg	Met
Glu 785	Ser	Thr	Ile	Thr	Lys 790	Lys	Arg	Val	Val	Asp 795	Arg	Leu	Pro	Phe	Gln 800
Thr	Leu	Leu	Ser	Asn 805	Ser	Pro	Leu	Arg	His 810	.Thr	Ser	Ser	Leu	Asp 815	Ser
Thr	Gln	Val	Asn 820	Pro	Arg	Ala	Val	Asp 825	Val	Ala	Met	Lys	Leu 830	Glu	Gly
Glu	Leu	Asn 835	Asn	Val	Pro	His	Lys 840	Gly	Gln	Glu	Ser	Glu 845	Lys	Thr	Lys
Glu	Gly 850	Met	Lys	Val	Trp	Thr 855	Met	Val	Thr	Asp	Met 860	Glu	Суз	Leu	Leu
Asp 865	Asp	Glu	Ser	Arg	Lys 870	Ser	Ile	Met	Leu	Leu 875	Arg	Gly	Leu	Lys	Gly 880
Thr	Gln	Leu	Val	Ile 885	Pro	Met	Ile	Val	Ile 890	Arg	Glu	Leu	Glu	Cys 895	Leu
Lys	Lys	Arg	Glu 900	Arg	Leu	Phe	Arg	Met 905	Leu	Ser	Lys	Ala	Thr 910	Ser	Met
Leu	Gln	Trp 915	Ile	Asn	Glu	Cys	Met 920	Glu	Lys	Glu	Ser	Trp 925	Trp	Ile	His
Va1	Gln 930	Ser	Ser	Thr	Glu	Met 935	Leu	Pro	Val	Ala	Pro 940	Thr	Pro	Pro	Ala
Thr 945	Pro	Thr	Ala	Leu	Cys 950	Asn	Asn	Gly	Glu	Arg 955	Glu	Ile	Ser	Ala	Gly 960
Thr	Phe	Asn	Pro	Ile 965	Ala	Leu	Phe	Ser	Pro 970	Arg	Ser	Phe	Ser	Asp 975	Ile
Val	Ser	Pro	Lys 980	Thr	Glu	Asp	Arg	Val 985	Leu	Asp	Cys	Ala	Leu 990	Leu	Phe
Asn	Lys	Leu 995	Lys	Gly	Asn	Gln	Asn 1000		· Val	. Ile	. Leu	Ser 100		n Se	r Val
Thr	Leu 1010		Ile	Lys	Ala	Met	_	a Gl	u Gl	y Ph		o C	ys G	Slu G	ly

Ala Lys Glu Phe Arg Glu Thr Leu Val Asn Pro Cys Ser Ser Arg 1025 1035 1030 Phe Met Trp Ala Ala Ser Ala Pro Arg Gly Ser Ala Trp Ser Cys 1040 1045 1050 Leu Asp Glu Thr Thr Leu Glu Glu Asn Tyr Tyr Asn Ser His His 1065 1055 1060 Gly Ala Arg Arg Ile Pro Arg Pro Met Glu Pro Ala Lys Gly 1070 1075 Leu Lys Leu Ile Leu Leu His Asn Ser His Tyr Gly Gln Ala Thr 1085 1090 1095 Asn Phe Val Glu Asn Arg Pro Leu Ala Pro Met Ala Ser Trp 1100 1105 1110

<210>4

<211> 869

5 <212> PRT

<213> Vitis vinifera

<400> 4

Met 1	Ala	Asp	GIu	Asn 5	GLu	гÀг	Lys	TTE	Pro 10	Val	Phe	Thr	Val	ьеи 15	тЛа
Asn	Asn	Ala	Ile 20	Leu	Lys	Asn	Ile	Phe 25	Val	Ile	Asp	Gln	Pro 30	Pro	Pro
Gly	Ile	Ser 35	Glu	Pro	Glu	Arg	Pro 40	Glu	His	Val	Leu	Glu 45	Glu	Ile	Leu
Met	Val 50	Gly	Arg	His	Pro	Asp 55	Cys	Asn	Ile	Met	Leu 60	Thr	His	Pro	Ser
Ile 65	Ser	Arg	Phe	His	Leu 70	Gln	Ile	Tyr	Ser	Asn 75	Pro	Thr	Leu	Gln	Lys 80
Leu	Ser	Val	Met	Asp 85	Leu	Ser	Ser	Val	His 90	Gly	Thr	Trp	Val	Ser 95	Glu
Lys	Lys	Ile	Gln 100	Pro	Arg	Ala	Arg	Val 105	Glu	Leu	Lys	Glu	Gly 110	Asp	Ile
Ile	Arg	Leu 115	Gly	Ser	Ser	Ser	Arg 120	Ile	Tyr	Arg	Leu	His 125	Trp	Val	Pro
Leu	Ser 130	Gln	Ala	Tyr	Asp	Leu 135	Glu	Asn	Pro	Phe	Val 140	Ser	Ala	Ser	Asp
Val 145	Leu	Met	Glu	Glu	Glu 150	Lys	Glu	Asp	Glu	Ile 155	Tyr	Gln	Asp	Val	Ser 160
Ser	Phe	Ser	Val	Asp 165	Ser	Lys	Glu	Ile	Gln 170	Ser	Gln	His	Pro	Val 175	Leu
Lys	Gly	Met	Glu 180	Ser	Val	Phe	Ser	Asp 185	Glu	Asn	Cys	Glu	Pro 190	Phe	Val
Glu	ГÀЗ	Pro 195	Ile	Pro	Ser	Ala	Pro 200	Pro	Glu	Pro	Glu	Asn 205	Met	Asn	Ser
Ser	Ala	Ser	Asp	Glu	Glu	Lys	Thr	Glu	Gly	Glu	Glv	Leu	Pro	Val	Val

	210					215					220				
Glu 225		Phe	Glu	Glu	Ile 230	Glu	Asn	Gln	Ser	Pro 235	Ser	Arg	Arg	Asp	Tyr 240
Glu	Gln	Thr	Glu	Ile 245	Leu	Gly	Ala	Val	Asn 250	Leu	Leu	Pro	Ser	Ala 255	Glu
Val	Leu	Leu	Glu 260	Thr	Arg	Asn	Glu	Gln 265	Leu	Asp	Glu	Glu	Ile 270	Lys	Ser
Pro	Gln	Pro 275	Leu	Phe	Val	Ser	Glu 280	Val	Phe	Ser	Gln	Gly 285	Glu	Thr	Pro
Val	Gly 290	Leu	Pro	Thr	Lys	Ser 295	Trp	Gln	Lys	Ser	Lys 300	Leu	Leu	Gly	Ser
Leu 305	Asp	Ser	Tyr	Val	Ala 310	Asp	Asp	Lys	Ile	Glu 315	Ile	Pro	Leu	Val	Ala 320
Glu	Val	Leu	Glu	Glu 325	Val	Glu	Asn	Gln	Ser 330	Pro	Pro	Arg	Lys	Gly 335	Tyr
Glu	Gln	Arg	Glu 340	Ala	Ser	Gly	Leu	His 345	Ser	Gly	Ala	Ile	Thr 350	Thr	Glu
Ser	Val	Asn 355	Ser	Ser	Val	Pro	Asp 360	Arg	Asn	Ile	Leu	Ser 365	Asp	Ile	Gly
Asn	Gln 370	Gln	Phe	Ser	Asn	Glu 375	Asn	Gln	Pro	Pro	Lys 380	Pro	Leu	Pro	Val
Thr 385	Leu	Gly	Leu	Ser	Asp 390	Asp	Glu	Asn	Pro	Glu 395	Ser	Pro	Pro	Val	Arg 400
Leu	Glu	Gln	Lys	Ser 405	Ser	Leu	Pro	Asn	Ile 410	Trp	Ser	Arg	Arg	Gly 415	Lys
Pro	Ala	Ser	Val 420	Leu	Gln	Ile	Gln	Thr 425	Gly	Arg	Ser	Thr	Arg 430	Lys	Cys
Ile	Gly	Asp 435	Gly	Asn	Gly	Ala	Lys 440	Ile	Arg	Lys	Pro	Lys 445	Gln	Glu	Asp
Leu	Glu 450	Asn	Lys	Pro	Ile	Ser 455	Arg	Ala	Leu	Phe	Pro 460	Met	Leu	Asp	Gly
Glu 465	Glu	Thr	Glu	Ile	Phe 470	Thr	Pro	Asn	Lys	Glu 475	Asn	Phe	Ser	Pro	Asn 480
Thr	Leu	Leu	Leu	Lys 485	Ser	Val	Asn	Lys	Lys 490	Lys	Gly	Ile	Leu	Glu 495	G1u
Thr	Lys	Gln	Ser 500	Thr	Leu	Cys	Arg	Ser 505	Ser	Ser	Ser	Lys	Phe 510	Ser	Thr
Gly	Pro	Asn 515	Lys	Cys	Ser	Glu	Glu 520	Asp	Thr	Ser	Thr	Phe 525	Ser	Asp	Lys
Glu	Asn 530	Gln	Thr	Pro	Gln	Val 535	Leu	Gln	Thr	Arg	Lys 540	Ser	Val	Arg	Pro
Ser 545	Pro	Glu	Asn	Ser	Ser 550	Arg	Asn	Arg	Gly	Lys 555	Leu	Glu	Lys	Glu	Ile 560

Met Val Met Lys Arg Gly Ala Glu Arg Val Pro Phe His Ser Leu Leu Glu Asn Ala Ala Cys Lys Ser Lys Ser Glu Val Ser Ile Leu Gly Ala Lys Thr Arg Ser Ser Asn Ser Val Asn Cys Thr Gly Thr Thr Gly Asn Ala Thr Asn Ser Ser Phe Asn Asn Ser Ala Gly Glu Gly Lys Arg Arg Trp Asn Met Val Val Asp Ala Thr Cys Leu Leu Asn Lys Glu Ser Arg 630 Lys Ser Leu Gln Leu Leu Gln Gly Leu Lys Gly Thr Gln Leu Ile Ile Pro Arg Met Val Ile Arg Glu Leu Asp Cys Leu Lys Arg Arg Gly Ser 665 Leu Phe Arg Arg Ile Ser Glu Val Ser Leu Val Leu Gln Trp Ile Glu 680 Glu Cys Met Val Lys Thr Lys Trp Trp Ile His Val Gln Ser Ser Ile 695 Glu Glu Gly Arg Pro Ile Ala Pro Thr Pro Pro Ala Ser Pro Pro Arg Phe Ser Glu Gly Ser Gly Gly Phe Ile Ser Gly Thr Thr Ser Ser Val Pro Phe Ser Ala Cys Gly Ser Leu Met Glu Ile Val Ser Pro Thr Ala 745 Glu Asp His Ile Leu Glu Cys Ala Leu Phe Phe Arg Arg Ile Lys Asn Asp Gly Gln Leu Val Leu Phe Thr Asn Asp Val Thr Leu Lys Ile Lys 775 Ala Met Ala Glu Gly Leu Asn Cys Glu Thr Val Glu Glu Phe Arg Glu Ser Leu Val Asn Pro Phe Ser Glu Arg Phe Met Trp Ser Asp Ser Ser 810 Pro Arg Gly Gln Thr Trp Ser Tyr Leu Asp Asp Val Val Leu Arg Glu 820 825 Lys Tyr Tyr Arg Cys Pro Leu Lys Lys Ala Ser Lys Gly Gly Glu Ser 840 Ala Lys Gly Leu Lys Leu Ile Leu Leu His Asn Ser His Tyr Gly Lys 850 855 860 Ile Gly Ser Ile Ser 865

```
<210> 5

<211> 1123

<212> PRT

<213> Glycine max

5 <220>

<221> misc_feature

<222> (700)..(700)

<223> Xaa puede ser cualquier aminoácido natural

<400> 5
```

10

Met 1	Ala	Glu	Lys	Lys 5	Asn	Pro	Glu	Gln	Glu 10	Glu	Gln	His	Arg	Phe 15	Pro
Val	Leu	Thr	Val 20	Leu	Lys	Asn	Asn	Ala 25	Ile	Leu	Lys	Asn	Ile 30	Phe	Il€
Val	Leu	Asp 35	Glu	His	Asp	Glu	Asp 40	Gln	Thr	Val	Leu	Ile 45	Gly	Arg	His
Pro	Asn 50	Cys	Asn	Ile	Val	Leu 55	Thr	His	Pro	Ser	Val 60	Ser	Arg	Phe	His
Leu 65	Arg	Ile	Arg	Ser	Asn 70	Pro	Ser	Ser	Arg	Thr 75	Leu	Ser	Leu	Val	Asp 80
Leu	Ala	Ser	Val	Gln 85	Gly	Thr	Trp	Val	Arg 90	Gly	Arg	Lys	Leu	Glu 95	Pro
Gly	Val	Ser	Val 100	Glu	Leu	Lys	Glu	Gly 105	Asp	Thr	Phe	Thr	Val 110	Gly	Ile
Ser	Thr	Arg 115	Ile	Tyr	Arg	Leu	Ser 120	Trp	Ala	Pro	Leu	Thr 125	Gln	Leu	Gly
Val	Val 130	Val	Pro	Gln	Gln	H is 135	Gln	Lys	Glu	Asp	Glu 140	Gln	Glu	Asn	Ile
Ile 145	Lys	Asp	Glu	Asn	Leu 150	Glu	His	Thr	Ala	Glu 155	Gln	Asp	Ile	Pro	Met 160
Ser	Glu	Asp	Ile	Val 165	Ser	Val	Cys	Cys	Asp 170	Glu	Glu	Arg	Lys	Ile 175	His
Ser	Glu	Asp	Glu 180	Ala	Leu	Gly	Val	Pro 185	Asn	Gly	Thr	Glu	Thr 190	Ser	Cys
Phe	Pro	Thr 195	Asn	Ser	Cys	Val	Glu 200	Asn	Ile	Ile	Суз	Asp 205	Cys	Gln	Leu
Ser	Pro 210	Pro	Tyr	Ile	Gln	Ser 215	Pro	Pro	Суз	Ala	Gln 220	Pro	Val	Asp	Glu
Leu 225	Asp	Asn	Thr	Lys	Lys 230	Ile	Glu	Ala	Arg	Leu 235	Glu	Val	Glu	Met	Pro 240
Gly	Glu	Thr	Asn	Leu 245	Leu	Cys	Thr	Leu	Arg 250	Glu	Tyr	Leu	Lys	His 255	Asn
Ile	Cys	Leu	Pro 260	Val	Val	Glu	Ala	Val 265	Gln	Gly	Thr	Lys	Met 270	Gln	Gln
Phe	Gln	Ala 275	Pro	His	Asp	Thr	Phe 280	Thr	Gly	Gln	Pro	Pro 285	Ser	Leu	Glu
Met	His 290	Trp	Ser	Ser	Phe	Gln 295	Ile	Asn	Ile	Asp	Pro	Ser	Ser	Phe	Asp

Glu 305		His	Ala	Ala	Ala 310		Pro	Val	Ile	Pro 315		Glu	Ser	Glu	Phe 320
Gly	Cys	Thr	His	Gly 325	_	Ile	Asp	Lys	Val 330		Gly	Ile	Leu	Thr 335	
Ala	Pro	Arg	Ser 340		. Asn	Ser	Glu	Asn 345		Cys	Leu	Ile	Val 350		Glu
Asp	Ile	Pro 355	_	Ser	Glu	Phe	His 360		Met	Glu	Val	Val 365	Glu	Glu	Val
Ser	Val 370	_	Ser	Val	Pro	Asp 375		Glu	Lys	Gln	Asp 380		Met	His	Gly
Ser 385		Ser	Pro	Thr	Asn 390	Leu	Asp	Pro	Ala	Phe 395		Asp	Glu	Lys	His 400
Val	Ala	Ala	Val	Ala 405		Ile	Pro	Thr	Glu 410		Glu	Phe	Gly	Cys 415	Thr
Tyr	Gly	Asp	Asn 420		Lys	Val	Glu	Asp 425		Leu	Thr	Thr	Gly 430	Ser	Arg
Thr	Phe	Asn 435	Ser	Glu	Asn	Thr	Cys 440	Leu	Ile	Val	Asp	Lys 445	Asp	Ile	Pro
Asp	Ser 450		Phe	His	Gln	Met 455	Glu	Val	Val	Glu	Glu 460	Ile	Ser	Val	Asp
Ser 465	Val	Pro	Asp	Glu	Glu 470	Lys	Gln	Asp	Glu	Cys 475	Asp	Glu	Glu	Asn	Leu 480
Asn	Gly	Lys	Ser	Cys 485	Arg	Glu	Glu	Gly	Tyr 490	Ser	Leu	Asp	Glu	Val 495	Val
Glu	Asp	Asn	Gly 500	Asn	ГÀЗ	Cys	Ile	Lys 505	Asn	Ile	Asp	Pro	Ala 510	Ser	Phe
Asp	Gly	Lys 515	Gly	Leu	Thr	Ala	Val 520	Thr	Val	Ile	Pro	Thr 525	Glu	Phe	Glu
Phe	Gly 530	Cys	Thr	Leu	Gly	Asp 535	Asn	Glu	Arg	Ile	Glu 540	Asp	Ile	Leu	Glu
Met 545	Glu	Ser	Arg	Thr	Ile 550	Asn	Ser	Glu	Asn	Thr 555	Ser	Leu	Leu	Asp	Glu 560
				565		-			570				Val	575	
			580					585					Asn 590		
		595					600					605	Leu		
Val	Thr 610	Val	Ile	Pro	Ser	Glu 615	Ser	Glu	Phe	Gly	Cys 620	Thr	Leu	Gly	Asp
Asn 625	Glu	Arg	Ile	Glu	Asp 630	Ile	Leu	Glu	Met	Glu 635	Ser	Arg	Thr	Ile	Asn 640
cor	Clu	Acn	Thr	C - w	T 011	T 011	7 cm	Clu	7 ~~	ת 1 ת	T1-	7.1.	77-7	mb ×	7

				645					650					655	
Phe	Gln	Val	Val 660		Ile	Val	Glu	Glu 665		Ala	Met	Asp	Ser 670		Ser
Asp	Gly	Asn 675	-	Cys	Ile	Lys	Asn 680	Ile	Asp	Pro	Ala	Ser 685		Asp	Gly
Lys	Gly 690		Ala	Ala	Val	Thr 695		Ile	Pro	Ser	Xaa 700		Lys	Cys	Gly
Lys 705	Glu	Leu	Glu	Ser	Lys 710	Leu	Pro	Ala	Ser	Leu 715		Ala	Lys	Ser	Cys 720
His	Glu	Gln	Gly	Lys 725		Val	Ala	Glu	Ile 730		Glu	Asp	Thr	Gly 735	Lys
Lys	Cys	Ala	Ser 740	Ser	Ile	Ser	Ser	Thr 745	Ser	Phe	Gln	Val	Glu 750	Ser	Pro
Asn	Ser	Ser 755	Met	Pro	Arg	Glu	Gln 760	Thr	Pro	Gln	Ser	Leu 765	Thr	Ala	Val
Thr	Arg 770	Cys	Ser	Gly	Gly	Glu 775	Phe	Leu	Glu	Asn	His 780	Val	Lys	Pro	Thr
Glu 785	Lys	Ser	Ser	Ala	Phe 790	Gly	Ser	Ile	Trp	Ser 795	Arg	Cys	Lys	Pro	Ala 800
Ser	Ala	Pro	Leu	Val 805	Gln	Ala	Arg	Lys	Ser 810	Arg	Phe	Met	Ser	Thr 815	Ala
Lys	Val	Gly	Thr 820	Glu	Val	Lys	Arg	Ser 825	Asn	Glu	Lys	Asn	Val 830	Val	Ile
Asn	Lys	Leu 835	Met	Pro	Lys	Asp	Leu 840	Ser	Ala	Val	Phe	Asp 845	Glu	Glu	Lys
Glu	Ala 850	Phe	Ile	Leu	Asn	Lys 855	Glu	Asn	Leu	Ser	Pro 860	Asn	Thr	Tyr	His
Leu 865	Gln	Phe	Met	Arg	Lys 870	Lys	Asp	Lys	Pro	Glu 875	Glu	Ile	Lys	His	Ser 880
Ile	Ser	Gln	Arg	Ser 885	Pro	Asn	Leu	Ser	Tyr 890	Phe	Ser	Pro	Arg	Ile 895	Tyr
Leu	Asp	Lys	Arg 900	Ile	Ser	Ser	Lys	Arg 905	Ser	Trp	Asp	Met	Val 910	Val	Asp
Thr	Ala	Ser 915	Leu	Leu	Asn	Lys	Glu 920	Ser	Arg	Lys	Ala	Leu 925	Gln	Leu	Leu
Gln	Gly 930	Leu	Lys	Gly	Thr	Arg 935	Leu	Ile	Ile	Pro	Ser 940	Leu	Val	Ile	Arg
Glu 945	Leu	Gly	Ser	Met	Lys 950	Gln	Lys	Phe	Arg	Ile 955	Phe	Arg	Thr	Thr	Ser 960
Glu	Ala	Ser	Leu	Ala 965	Leu	Glu	Trp	Ile	Glu 970	Glu	Cys	Leu	Glu	Lys 975	Thr
Arg	Trp	Trp	Ile	His	Ile	Gln	Ser	Ser	Met	Glu	Glu	Phe	Arg	Leu	Thr

Ala Leu Thr His His Ala Ser Pro Gln Thr Arg Phe Ile Glu Glu Ser 995 1000 1005

Trp Ala Phe Pro Gly Leu Asn Thr Leu Lys Lys Cys Ala Ser Pro 1010 1015 1020

Lys Val Glu Asp His Ile Leu Asp Ser Ala Leu Gln Tyr Gly Arg 1025 1030 1035

Lys Glu Asn Val Gly Gln Leu Val Leu Leu Ser Ser Asp Val Ser 1040 1045 1050

Leu Lys Ile Lys Ser Met Ala Lys Gly Leu Leu Cys Glu Thr Val 1055 1060 1065

Gln Gln Phe Arg Gln Ser Leu Val Asn Pro Phe Ser Glu Arg Phe 1070 1075 1080

Met Trp Pro Lys Ser Ser Pro Arg Gly Leu Thr Trp Ser Cys Gln 1085 1090 1095

Asp Asp Leu Val Leu Arg Glu Lys Tyr Cys Gly Leu Pro Ser Lys 1100 1105 1110

Ala Gly Leu Lys Leu Ile Thr Phe His Asp 1115 1120

<210> 6

<211> 1198

5 <212> PRT

<213> Glycine max

<400> 6

Met Gly Leu Glu Asn Gln Ser Lys Ala Glu Glu Glu Lys Glu Gly Glu Ile Pro Val Leu Thr Val Leu Lys Asn Asn Thr Val Leu Lys Asn Ile 25 20 30 Phe Ile Val Asn Lys Pro Thr Asp Gln Lys Gln Ser Ser Ala Asp His 40 Val Asn Val Leu Leu Val Gly Arg His Pro Asp Cys Asp Leu Met Leu 55 Thr His Pro Ser Ile Ser Arg Phe His Leu Gln Ile Arg Ser Asn Pro 70 Ser Ser Arg Thr Phe Ser Leu Leu Asp Leu Ser Ser Val His Gly Thr 85 90 Trp Val Ser Gly Arg Arg Ile Glu Pro Met Val Ser Val Glu Met Lys 105 Glu Gly Glu Thr Leu Arg Val Gly Val Ser Ser Arg Val Tyr Arg Leu 120 His Trp Ile Pro Val Ser Arg Ala Tyr Asp Leu Glu Asn Pro Phe Val 130 135 140 Ala Gln Leu Asp Ser Val Ala Glu Glu Glu Glu Glu Glu Lys Glu Glu 145 150 155 Glu Glu Glu Met Gln Asn Leu Ser Cys Cys Pro Ala Glu Met Glu Glu

				165					170					175	
Ile	Glu	Ser	Met 180	_	Ser	Ile	Val	Glu 185		Ile	Ser	Ser	Leu 190		Leu
Asp	Glu	Asn 195	Val	Glu	Leu	Thr	Val 200		Glu	Glu	Ile	Pro 205		Glu	Pro
Trp	Met 210		Glu	Asp	Met	Ile 215		Leu	Cys	Cys	Glu 220		Glu	Arg	Lys
Ser 225		Ser	Lys	Glu	Glu 230	Ala	Ile	Glu	Ile	Pro 235		Asp	Pro	Phe	Gly 240
Thr	Glu	Thr	Ser	Tyr 245	Leu	Pro	Thr	Ile	Ser 250	_	Gly	Glu	Asn	Asn 255	Leu
Cys	Asp	Ser	Val 260	Ser	Gln	Val	Leu	Ser 265	Pro	Thr	Tyr	Val	Glu 270	Ser	Leu
Val	Glu	Cys 275	Asp	Asp	Thr	Leu	Thr 280	Glu	Asn	Leu	Ser	Asp 285	Thr	Ser	Суз
Leu	Pro 290	Ala	Val	Glu	Ala	Val 295	Leu	Glu	Thr	Lys	Met 300	Leu	Gln	Phe	His
Thr 305	Pro	Pro	Asp	Ile	Phe 310	Thr	Ser	Pro	Leu	Pro 315	Ser	Gly	His	Glu	Asn 320
Leu	Phe	Glu	Lys	His 325	Tyr	Ser	Ser	Leu	Pro 330	Val	Asn	Thr	Ala	Pro 335	Ser
Ser	Leu	Gly	Glu 340	Lys	Ser	Ala	Pro	Glu 345	Ala	Val	Ile	Met	Pro 350	Glu	Glu
Thr	Glu	Cys 355	Glu	Ser	Glu	Asp	Asp 360	Glu	Ser	Ile	Ile	Asp 365	Ile	Phe	Thr
Val	Pro 370	Glu	Ser	Leu	His	Ala 375	Ala	Glu	Asp	Val	Ile 380	Thr	Thr	Asn	Glu
Ser 385	Glu	Ser	Glu	Cys	Thr 390	Leu	Arg	Asp	Asp	Gly 395	Ser	Val	Thr	Asp	Ala 400
Phe	Ile	Ala	Gly	Ala 405	Gly	Asn	Phe	Asn	Ser 410	Glu	Asp	Val	Phe	Leu 415	Pro
Val	Glu	Glu	Val 420	Met	Pro	Gly	Thr	Lys 425	Val	Glu	Gln	Ile	Lys 430	Ile	Val
Glu	Lys	Val 435	Ala	Met	Asp	Ser	Leu 440	Ser	Asp	Glu	Gly	Lys 445	Gln	His	Met
Tyr	Arg 450	Ser	Leu	Ser	Gln	Leu 455	Leu	Asn	Asp	Lys	Phe 460	Cys	His	Asp	Gln
Trp 465	His	Ser	Leu	Asn	Glu 470	Ile	Val	Gln	Asp	Val 475	Arg	Asn	Lys	His	Ala 480
Tyr	Ser	Ile	Ser	Pro 485	Thr	Pro	His	Gln	Ile 490	Glu	Ser	Val	Asn	Leu 495	Ser
Met	Pro	Gln	Glu 500	Val	Val	Leu	Asn	Ile 505	Met	Asn	Glu	Asp	Gln 510	Thr	Gln

His Ser Asp Met Glu Asn Leu Glu Ser Cys Ile Lys Ala Met Glu Lys Thr Ser Thr Asn Ile Trp Ser Arg Arg Gly Lys Ala Thr Ser Ala Pro Gln Val Arg Thr Ser Lys Ser Ile Leu Lys Asn Ala Ala Asn Val Glu 550 Val Ala Met Ser Asn Glu Lys Asp Ile Arg Asn Arg Thr Ile Ser Lys Asn Leu Ser Ser Val Leu Asp Gly Glu Val Glu Glu Asp Asp Glu Glu 585 Ile Tyr Thr Pro Asp Lys Glu Asn Ile Ser Pro Asn Thr Leu His Leu Arg Phe Leu Lys Lys Gly Lys Ile Glu Gly Ile Lys His Ser Lys Ser Gln Arg Ser Arg His Ile Leu Arg Asp Thr Phe Asn Cys Asp Ile Tyr 630 Pro Asn Glu Ser Ile Asp Pro Thr Leu Cys Asn Met Asn Lys Lys Asp 650 Leu Phe Ser Val Leu Asp Gly Glu Val Lys Glu Lys Glu Ile Phe Ile 660 665 Pro Glu Glu Glu Asn Leu Asn Pro Asn Ala Leu Gln Leu Arg Leu Leu Lys Lys Lys Gly Lys Val Glu Glu Ile Lys Arg Ser Lys Ser Arg Arg 695 Ser Pro Leu Ser Lys Gly Thr Phe Asn Pro Asp Met Tyr Pro Asn Glu Asn Ile Gly Ser Thr Leu Cys Asn Ile Asn Gln Lys Asp Ser Ile Asn 730 Arg Thr Ile Ser Arg Asp Leu Phe Ser Asp Leu Glu Glu Glu Glu Glu Glu Ile Phe Thr Pro Asp Lys Glu Asn Phe Ser Pro Asn Thr Leu His Leu Arg Leu Leu Lys Lys Gly Lys Val Glu Glu Ile Lys His Ser Lys Ser Gln Arg Ser Pro Leu Ser Lys Gly Thr Phe Asn Pro Asp Met Tyr Pro Asn Glu Ser Ile Gly Pro Ser Leu Arg Arg Met Asn Gln 810 Lys Asp Val Ile Asn Lys Thr Ile Ser Lys Asp Leu Leu Ser Asp Leu Asp Gly Glu Glu Glu Glu Glu Ile Phe Thr Pro Asp Lys Glu Asn 840 845

Phe Ser Pro Asn Thr Leu Arg Leu Gln Leu Leu Lys Lys Lys Asp Asn Phe Cys Pro Asn Leu Tyr Pro Asp Glu Asn Ile Ile Pro Thr Ser Asn Glu Glu Asn Gln Thr Leu Lys Gly Val Gln Asp Gln Lys Leu Gln Arg 890 885 Asn Pro Phe Ser Ser His Ile Lys Phe Ala Gln Glu Gln Asp Leu Lys 900 905 Asp Arg Val Glu Arg Ile Pro Phe Gln Ser Leu Arg Asn Ser Gly Asp 920 Lys Arg Arg Ser Gly Thr Cys Cys Pro Val Ser Ala Ser Lys Ser Leu 935 His Phe Ser Asn Cys Gly Gln Ile Leu Asp Gln Arg Phe Asn Pro Ser Asp Ile Ser Gly Val Pro Lys Lys Arg Ser Trp Asp Met Ile Val Asp 970 965 Thr Thr Ser Leu Val Asn Lys Glu Ser Arg Lys Ala Leu Gln Leu Leu Gln Gly Leu Lys Gly Thr Arg Leu Ile Ile Pro Arg Leu Val Ile Arg 1000 Glu Leu Asp Arg Met Lys Gln Gln Phe Thr Ile Phe Arg Arg Ile 1015 Ser Glu Ser Ser Leu Ala Leu Glu Trp Ile Glu Glu Cys Met Val 1030 Lys Ser Asn Trp Trp Ile His Ile Gln Ser Ser Val Asp Glu Gly 1045 Arg Leu Ile Ala Pro Thr Pro Pro Ala Ser Pro Leu Thr Gln Phe 1060 Ser Glu Glu Ser Trp Thr Ser Leu Ser Thr Gln Lys Phe Ser Met 1075 Glu Ile Ala Ser Pro Thr Val Glu Asp His Ile Leu Asp Phe Ala 1090 Leu Leu Tyr Arg Arg Asn Gln Asn Asp Gly Gln Leu Ile Leu Leu 1100 1105 Ser Glu Asp Val Thr Leu Lys Ile Lys Cys Met Ala Glu Gly Leu Leu Cys Glu Pro Val Gln Glu Phe Arg Glu Ser Leu Val Asn Pro 1130 1135 Phe Ser Glu Arg Phe Leu Trp Asp Lys Ser Ile Pro Arg Gly Gln 1150 Thr Trp Ser Cys Gln Asp Asp Val Val Leu Arg Glu Lys Phe Cys 1160 Arg Leu Arg Lys Pro Ser Lys Gly Val Ala Ser Gly Leu Lys Leu

1175 1180 1185

Ile Leu Leu His Asn Ser Gln Tyr Gly Leu 1190 1195

<210> 7

<211> 1092

5 <212> PRT

<213> Sorghum bicolor

<400> 7

Met 1	Ala	Ala	Ala	Ala 5	Ala	Asp	Gly	Asp	Ala 10	Pro	Ile	Ala	Ala	Phe 15	Ala
Val	Ala	Lys	Gly 20	Gly	Val	Val	Leu	Lys 25	His	Ile	Phe	Leu	Asn 30	Ala	Pro
Pro	Pro	Glu 35	Ala	Ala	Thr	Thr	Arg 40	Gly	Arg	Gly	Ala	Glu 45	Asp	Ser	Glu
Asp	Glu 50	Glu	Glu	Asp	Pro	Pro 55	Val	Met	Val	Gly	Arg 60	His	Pro	Asp	Cys
His 65	Val	Leu	Val	Asp	His 70	Pro	Ser	Val	Ser	Arg 75	Phe	His	Leu	Glu	Leu 80
Arg	Cys	Arg	Arg	Arg 85	Gln	Arg	Leu	Ile	Thr 90	Val	Thr	Asp	Leu	Cys 95	Ser
Val	His	Gly	Thr 100	Trp	Val	Ser	Gly	Arg 105	Arg	Ile	Pro	Pro	Asn 110	Thr	Pro
Val	Asp	Leu 115	Ala	Thr	Gly	Asp	Thr 120	Leu	Arg	Leu	Gly	Ala 125	Ser	Lys	Arg
Glu	Tyr 130	Arg	Leu	Leu	Trp	Leu 135	Ser	Leu	Arg	Glu	Ala 140	Phe	Glu	Met	Asp
Asp 145	Leu	Met	Tyr	Met	Pro 150	Ser	Leu	Pro	Glu	Glu 155	Asp	Lys	Glu	Glu	Arg 160
Glu	Pro	His	Ala	Tyr 165	Lys	Glu	Pro	Asn	Ser 170	Gln	Leu	Val	Pro	Gly 175	His
Arg	Asp	Ser	Val 180	Gly	Met	Glu	Thr	His 185	Gln	Asp	Thr	Ser	Glu 190	Gln	Ile
Val	Ser	Glu 195	Asp	Ile	Thr	Phe	Pro 200	Ala	Lys	Val	Ala	Pro 205	Ser	Ala	Pro
Pro	Leu 210	Ser	Asp	Phe	Val	His 215	Pro	Phe	Leu	Ala	Glu 220	Glu	Pro	Ser	Leu
Ser 225	Gln	Phe	His	Glu	Lys 230	Ile	Asp	Gly	Val	Thr 235	Glu	Glu	Lys	Leu	Val 240
Glu	Lys	Asn	Gln	Phe 245	Ser	Glu	Ser	Phe	Gly 250	Ser	Leu	Ile	Ile	Gln 255	Glu
Met	Pro	Gly	Thr 260	Leu	Thr	Asn	Ala	Gly 265	Lys	Ser	Ile	His	Ser 270	Asp	Lys
Lys	Asp	Ala 275	Ser	Asn	Lys	Met	Ser 280	Lys	Arg	Ser	ГÀЗ	Leu 28 5	Arg	Ser	Val

Lys Ser Leu Cys Val Asp Thr Gly Arg Ser Arg Asp Arg Ser Ser Thr Leu Ile His Ser Ile Arg Lys Gly Asp Gln Asn Glu Ile Leu Val Cys 310 315 Ser Gln Ser Cys Gly Thr Glu Cys Thr Ala Cys Ile Ala Leu Phe Gly Ile Ser Glu Val Glu Arg Ala Glu Glu Lys Glu Glu Leu Ile Ala Glu Asp Lys Val Asp Met Asn Pro Pro Ala Ser Met Ile Met Glu Gly Thr 360 Met Lys Glu Arg Lys Pro Glu Asn Tyr Ile Pro Gln Asp Pro Val Asp Ala Lys Leu Gln Lys Lys Val Gly Leu Leu Asp Ser Ala Leu Pro Leu His Phe Lys Asp Asp Ala Phe Thr Asp Lys Glu Ile Pro Glu Trp Asn Gly Ala Thr Ile Asp Thr Glu Ser Val Leu Val Ser Glu Asn Leu Ile Met Pro Glu Met Lys His Asp Gly Leu Asn His Leu Asn Leu Glu Gly 440 Asp Leu Ser Glu Asn Glu Asn Met Asp Pro Asn Asn Val Ala Glu Gly Pro Gly Asn Cys Asn Leu Glu Gly Thr Ile Cys Gly Asn Leu Phe Asp Asn Leu Asp Thr Glu Gly Ile Glu Glu Asp Glu Glu Ile Cys Pro Met Asp Lys Asp Glu Ile Thr Pro Asn Val Ser Gly Asn Ile Ile Met Glu Arg Ser His Ile Gly Leu Lys Pro Thr Ile Ser Gln Gln Leu Met Asp 520 Ser Ile Ser Pro Leu Asn Leu Asp His Asp Asp Phe Ser Glu Asn Glu 535 Asn Ser Lys Leu Tyr Thr Gly Asp Gln Met Lys Ser Asn Glu Pro Val Ser Glu Asn Leu Asn Pro Leu Met Pro Ile Ser His Leu Glu Phe Lys Asp Asp Ile Leu Leu Asp Met Glu Asn Ser Val Pro Ala Leu Glu Lys 585 Ser Glu Ala Met Ala Val Arg Gln Glu Asn Leu Phe Ser Glu Lys Glu Asn Val Thr Pro Ala Ser Lys Val Lys Thr Asn Val Arg Arg Val Leu 615 Gly Thr Arg Met Asp Asn Ser Met Ser Ala Ala Ala Asp Ser Asn Lys

625					630					635					640
Lys	Lys	Val	Leu	Gly 645	Ser	Arg	Val	Asp	Asn 650		Val	Ser	Thr	Glu 655	Asn
Ser	Ser	Asn	Lys 660		Gln	Cys	Ser	Glu 665		Ser	Ser	Lys	Ser 670	Glu	Lys
Phe	His	Thr 675	Val	Asp	Phe	Asp	Val 680	Phe	Tyr	Ser	Asp	Lys 685		Asn	Leu
Thr	Pro 690		Ala	Ser	Gly	Gly 695	Met	Lys	Ala	Arg	Lys 700		Phe	Pro	Asn
Asp 705		Ser	Val	Asp	Leu 710	Asp	Gln	Asp	Gln	G1u 715	Ala	Phe	Cys	Ser	Asp 720
Lys	Glu	Asn	Ĺeu	Thr 725	Pro	Leu	Ser	Ser	Ala 730	Ala	Arg	Lys	Thr	Arg 735	Asp
Met	Ser	Glu	Asn 740	Arg	Ala	Arg	Val	G1u 745	Ser	Ala	Ile	Thr	Lys 750	Lys	Arg
Val	Ala	Asp 755	Arg	Leu	Pro	Phe	Gln 760	Thr	Leu	Leu	Ser	Asn 765	Ser	Pro	Leu
Arg	Pro 770	Ala	Ser	Ser	His	Asp 775	Cys	Thr	Cys	Ala	Val 780	Ala	Gly	Pro	Thr
Asp 785	Ile	Thr	Ala	Gly	Asp 790	Leu	Val	Ile	Lys	Leu 795	Glu	Asp	Lys	Phe	Asn 800
Asn	Leu	Ser	Cys	Asn 805	Asn	Gln	Glu	Ser	Gly 810	Ser	Ala	Gly	Gln	Gly 815	Met
Lys	Thr	Trp	Thr 820	Met	Val	Ala	Asn	Thr 825	Asp	Ser	Leu	Leu	Asp 830	Asp	Glu
Ser	Arg	Lys 835	Ala	Ile	Met	Leu	Leu 840	Lys	Gly	Leu	Lys	Gly 845	Thr	Arg	Leu
Phe	Ile 850	Pro	Arg	Ile	Val	Ile 855	Arg	Glu	Leu	Asp	Ser 860	Met	Lys	Gln	Arg
Glu 865	Gly	Leu	Phe	Arg	Arg 870	Ser	Thr	Lys	Ala	Thr 875	Thr	Ile	Leu	Gln	Trp 880
Ile	Glu	Glu	Cys	Met 885	Ala	Thr	Glu	Ser	Trp 890	Trp	Ile	His	Val	Gln 895	Ser
Ser	Ala	Asp	Met 900	Phe	Pro	Val	Ala	Ala 905	Pro	Thr	Pro	Pro	Ala 910	Thr	Pro
Ser	Ala	Gln 915	Arg	Ile	Asp	Glu	Glu 920	Met	Glu	Ile	Ser	Ser 925	Ser	Ser	Ser
Thr	Phe 930	Asn	Pro	Met	Ala	Ser 935	Phe	Phe	Ser	Pro	Arg 940	Ser	Ser	Pro	Ala
Leu 945	Ala	Asp	Ile	Val	Ser 950	Pro	Arg	Pro	Glu	Asp 955	Arg	Val	Leu	Asp	Cys 960
Ala	Ile	Leu	Val	Ser 965	Arg	Leu	Arg	Arg	Ser	Gly	Glu	Lys	Val	Val	Val

Leu Ser His Ser Val Ser Leu Lys Ile Lys Ala Met Ala Glu Gly Leu 980 985 990

Pro Cys Glu Gly Ala Lys Glu Phe Arg Glu Ser Leu Met Asp Pro Ser 995 1000 1005

Ser Arg Arg Phe Met Trp Ala Ala Ser Ala Pro Arg Gly Ala Ala 1010 1015 1020

Cys Ser Cys Leu Asp Ala Ser Ala Leu Ala Glu Asn Tyr Tyr Asn 1025 1030 1035

Ser His His Ala Met Lys Arg Ser Gly Val Val Pro Ala Ala 1040 1045 1050

Ala Ala Arg Pro Ala Gln Ala Ala Lys Gly Leu Lys Leu Ile Leu 1055 1060 1065

Arg His Asn Ser Leu Tyr Ala Gln Ala Thr Thr Glu Thr Pro Pro 1070 1075 1080

Leu Leu Ala Ser Ala Leu Ala Ser Val 1085 1090

<210> 8

<211> 1096

5 <212> PRT

<213> Zea mays

<220>

<221> misc_feature

<222> (1033)..(1033)

10 <223> Xaa puede ser cualquier aminoácido natural

<400> 8

Met 1	Ala	Ala	Ala	Asp 5	Gly	Asp	Ala	Leu	Ile 10	Ala	Ala	Phe	Ala	Val 15	Ser
Lys	Gly	Gly	Ile 20	Val	Leu	Lys	His	Ile 25	Phe	Leu	Asn	Ala	Pro 30	Pro	Pro
Glu	Ala	Met 35	Cys	Gly	Ser	Gly	Gly 40	Arg	Glu	Val	Glu	Ser 45	Asp	Glu	Glu
Asp	Pro 50	Pro	Val	Met	Val	Gly 55	Arg	His	Pro	Asp	Cys 60	His	Val	Leu	Val
Asp 65	His	Pro	Ser	Val	Ser 70	Arg	Phe	His	Leu	Glu 75	Leu	Arg	Cys	Arg	Arg 80
Arg	Gln	Ser	Leu	Ile 85	Thr	Val	Thr	Asp	Leu 90	His	Ser	Val	His	Gly 95	Thr
Trp	Val	Ser	Gly 100	Arg	Arg	Ile	Pro	Pro 105	Asn	Thr	Pro	Val	Asp 110	Leu	Ala
Thr	Gly	Asp 115	Thr	Leu	Arg	Leu	Gly 120	Ala	Ser	Lys	Arg	Glu 125	Tyr	Lys	Leu
Leu	Trp 130	Leu	Ser	Leu	Arg	Glu 135	Ala	Phe	Glu	Met	Asp 140	Asp	Leu	Met	Tyr
Met 145	Pro	Ser	Leu	Pro	Glu 150	Glu	Asp	Lys	Glu	Glu 155	Pro	Tyr	Val	Lys	Glu 160

Pro	Ser	Ser	Lys	Leu 165	Leu	Pro	Gly	His	Arg 170	Asp	Ser	۷al	Asn	Met 175	Glu
Thr	His	Gln	Asp 180	Thr	Ser	Glu	Gln	Ile 185	Val	Ser	Glu	Asp	Ile 190	Ala	Phe
Pro	Ala	Lys 195	Val	Ala	Pro	Ser	Ala 200	Pro	Pro	Leu	Ser	Glu 205	Phe	Leu	Gln
Pro	Phe 210	Phe	Val	Glu	Glu	His 215	Ser	Leu	Ser	Gln	Phe 220	His	Glu	Lys	Arg
Asn 225	Gly	Val	Thr	Glu	Glu 230	Lys	Leu	Val	Asp	Lys 235	Asn	Gln	Ile	Ser	Glu 240
Ser	Phe	Gly	Ser	Leu 245	Ile	Ile	G l n	Glu	Met 250	Pro	Gly	Thr	Leu	Thr 255	Asn
Ala	Gly	Lys	Ser 260	Ile	Gln	Ser	Gly	Glu 265	Gln	Glu	Asp	Ala	Ser 270	Asn	Lys
Val	Ser	Lys 275	Arg	Ser	Lys	Leu	Lys 280	Ser	Val	Lys	Ser	Leu 285	Arg	Val	Asp
Thr	Gly 290	Arg	Ser	Ser	Glu	Arg 295	Ser	Ser	Thr	Leu	Ser 300	His	Ser	Phe	Gln
Lys 305	Gly	Asp	Gln	Asn	Asp 310	Ile	Val	Val	Cys	Ser 315	Gln	Ser	Cys	Gly	Thr 320
Glu	Cys	Ala	Va1	Cys 325	Ile	Ala	Leu	Phe	Gly 330	Ile	Ser	Glu	Ile	Glu 335	Lys
Ala	Glu	Glu	Lys 340	Glu	Glu	Leu	Ile	Ala 345	Glu	Asp	Asn	Val	Asp 350	Met	Asn
Pro	Pro	Ala 355	Ser	Met	Ile	Met	Glu 360	Gly	Asn	Met	Asn	Glu 365	Arg	Lys	Pro
Asp	Asn 370	Tyr	Ile	Pro	Gln	Asp 375	Pro	Ile	Gly	Ala	Lys 380	Leu	Gln	Lys	Lys
Leu 385	Gly	Leu	Leu	Asp	Ser 390	Ala	Leu	Pro	Leu	His 395	Phe	Lys	Asp	Asp	Val 400
Phe	Ala	Asp	Lys	Glu 405	Ile	Pro	Gln	Trp	Asn 410	Val	Ala	Ser	Val	His 415	Thr
Glu	Ser	Glu	Leu 420	Leu	Ser	Glu	Tyr	Leu 425	Ile	Ile	Pro	Glu	Val 430	Lys	His
Asp	Asp	Leu 435	Asn	His	Leu	Asn	Leu 440	Glu	Glu	Gly	Leu	Ser 445	Lys	Ser	Glu
Asn	Ile 450	Asn	Pro	Asn	_	Ile 455	Thr	Glu	Gly	Pro	Gly 460	Asn	Cys	Gln	Leu
Glu 465	Gly	Thr	Ile	Arg	Gly 470	Asn	Leu	Phe	Asp	Asn 475	Leu	Asp	Thr	Asp	Gly 480
Ile	Glu	Glu	Gly	Glu 485	Glu	Ile	Cys	Pro	Leu 490	Asp	Lys	Asp	Glu	Ile 495	Thr

Pro Asn Gly Ser Gly Asn Ile Ile Met Glu Arg Ser Asn Ile Val Leu Lys Pro Thr Ile Ser Gln Gln Leu Met Asp Ser Ile Ser Pro Leu Asn 520 Leu Asp His Gly Asp Phe Ser Glu Asn Glu Asn Ser Met Leu Asn Thr Gly Asp Gln Met Lys Leu Asn Glu Pro Val Ser Glu Asn Leu Asn Pro Leu Ile Pro Thr Asp Glu Lys Tyr Leu Lys Ser Gln Thr Glu Glu Cys Met Pro Ile Ser Tyr Leu Glu Phe Lys Asp Asp Ile Leu Leu Asp Arg Glu Asn Ser Val Leu Ala Pro Arg Lys Tyr Glu Ala Met Ser Pro Val Arg Gln Glu Asn Leu Phe Ser Asp Lys Glu Asn Val Thr Pro Ala Ser Lys Val Lys Thr Val Val Arg Gly Val Leu Gly Thr Arg Met Asp Asn Ser Val Ser Ala Ala Asn Ala Ser Asn Lys Asn Lys Val Leu Gly Ser 650 Arg Val Asp Asn Ser Val Ser Thr Glu Asn Ser Ser Asn Lys Lys Gln 665 Cys Glu Leu Ser Ser Lys Ser Lys Lys Val His Thr Val Asp Phe Asp Val Phe Tyr Ser Asp Lys Glu Asn Leu Thr Pro Ile Ser Ser Gly Gly 695 Met Lys Ala Arg Lys Cys Phe Pro Lys Asp Leu Ser Val Asp Leu Asp Gln Asp Gln Glu Ala Phe Cys Ser Asp Lys Glu Asn Leu Thr Pro Leu 730 Ser Ser Ala Ala Arg Lys Thr Arg Asp Met Ser Gly Asn Leu Thr Arg Val Glu Ser Ala Val Thr Lys Lys Arg Val Val Gly Arg Leu Pro Phe Gln Thr Leu Val Ser Asn Ser Pro Leu Arg Pro Ala Ser Ser His Asp 775 Cys Thr Cys Ala Val Ala Arg Pro Ala Gly Val Ala Ala Gly Asp Leu 790 Ala Ile Lys Leu Glu Asp Lys Leu Asn Asp Leu Ser Cys Asn Gly His Glu Ser Gly Ser Ala Gly Glu Gly Met Lys Thr Trp Thr Met Val Ala Asn Thr Asp Ser Leu Leu Asp Asp Glu Ser Arg Lys Ala Ile Met Leu

		835					840					845	5		
Leu	Lys 850	Gly	Leu	Lys	Gly	Thr 855	Arg	Leu	Phe	Ile	Pro 860	Arg	Ile	· Val	Ile
Arg 865	Glu	Leu	Asp	Ser	Met 870	Lys	Gln	Arg	Glu	Gly 875	Leu	Phe	Arg	Arg	Ser 880
Thr	Lys	Ala	Thr	Ser 885	Ile	Leu	Gln	Trp	Ile 890		Glu	Cys	Met	Ala 895	Arg
Glu	Ser	Trp	Trp 900	Ile	His	Val	Gln	Ser 905	Ser	Ala	Asp	Met	Phe 910		Val
Ala	Pro	Thr 915	Pro	Pro	Ala	Thr	Pro 920	Ser	Ala	Gln	Arg	Ile 925	_	Glu	Glu
Ile	Glu 930	Ile	Ser	Ser	Gly	Ser 935	Phe	Asn	Pro	Met	Met 940	Ala	Leu	Phe	Gly
Pro 945	Arg	Ser	Ser	Ala	Ala 950	Leu	Ala	Asp	Met	Ile 955	Ser	Pro	Arg	Pro	Glu 960
Asp	Arg	Val	Leu	Asp 965	Cys	Ala	Leu	Leu	Val 970	Ser	Arg	Val	Arg	Ser 975	
Glu	Lys	Val	Val 980	Val	Leu	Ser	Asn	Ser 985	Val	Thr	Leu	Lys	Ile 990	Lys	Ala
Met	Ala	Glu 995	Ġly	Leu	Pro	Суз	Glu 1000	_	y Ala	a Lys	s Glu	1 Ph 10		rg G	lu Ser
Leu	Val 1010	_	Pro	Ser	Ser	Arg		g Pl	ne M	et Tı		La 020	Ala	Ser	Ala
Pro	Arg 1025		Ser	Ala	Trp	Ser 103	_	s Le	eu Xa	aa Al		er)35	Ala	Leu	Ala
Glu	Asn 1040	_	Tyr	Asn	Ser	Arg		s Hi	ls A	la Me	_	/s)50	Arg	Arg	Val
Leu	Val 1055		Ala	Arg	Pro	Ser 106		.u Se	er G	lu Al		.a)65	Lys	Gly	Leu
Lys	Leu 1070		Leu	Arg	His	Asn 107		er Le	eu Ty	yr Al		.n . 180	Ala	Thr	Asp
Ala	Val 1085		Lys	Thr	Pro	Leu 109		ıl Se	er Le	eu Al		.a '	Val		

<210> 9

<211> 1226

<212> PRT

<213> Medicago truncatula

5 <400> 9

Met Ala Ser Ile Val Val Ser Asp Asp Asp Pro Asp Gln Gln Gln I 5 10 15

Ser Leu Ile Pro Val Leu Thr Val Phe Lys Asn Asn Ser Ile Leu Lys 20 25 30

Asp	Gln 50	Ile	Leu	Leu	Val	Gly 55	Arg	His	Pro	Asn	Cys 60	Asn	Ile	Val	Leu
Phe 65	His	Pro	Ser	Ile	Ser 70	Arg	Phe	His	Leu	Gln 75	Ile	Arg	Phe	Asn	Pro 80
Ser	Ser	Arg	Ser	Ile 85	Ser	Leu	Leu	Asp	Leu 90	Ser	Ser	Gly	Ile	Ser 95	Glu
Lys	Pro	Leu	Phe 100		Phe	Phe	Phe	Phe 105		Tyr	Ser	Phe	Phe 110		Ile
Суз	Tyr	Ser 115		Leu	Glu	Ser	Trp 120		Phe	Ile	Val	Cys 125		Thr	Val
His	Gly 130		Trp	Val	Cys	Gly 135	Arg	Lys	Leu	Glu	His 140		Va1	Ser	Val
Asp 145		Lys	Glu	Gly	Asp 150	Thr	Phe	Gln	Leu	Gly 155		Ser	Ser	Arg	Val 160
Tyr	Leu	Leu	Gln	Phe 165	Val	Met	Leu	Ser	Leu 170	Val	Phe	Val	Phe	Leu 175	Ser
Phe	Gly	Phe	Gly 180		Gln	Asn	Ile	Gly 185		Leu	Gly	Cys	Asp 190	Asp	Lys
Arg	Lys	Asp 195		Ser	Asn	Asp	Glu 200	Thr	Phe	Glu	Asp	Glu 205	Asn	Asp	Ser
Phe	Gly 210	Thr	Glu	Thr	Ser	Cys 215	Cys	Asn	Gly	Glu	Asn 220	Lys	Leu	Суз	Gly
Cys 225	His	Phe	Cys	Leu	Leu 230	Ser	Pro	Pro	Tyr	Thr 235	Gln	Ser	Val	Asp	Glu 240
Thr	Asp	Asn	Ile	Gln 245	Met	Gly	Glu	Ala	Cys 250	Pro	Glu	Val	Glu	Met 255	Pro
Gly	Glu	Thr	Asn 260	Leu	Phe	Cys	Thr	Leu 265	Arg	Glu	Cys	Phe	Gln 270	Gln	Asn
Ile	Cys	Ile 275	Pro	Val	Ala	Glu	Ala 280	Val	Gln	Gly	Ser	Lys 285	Leu	His	Gln
Gln	Ser 290	Ser	Ala	Glu	Lys	Gln 295	Leu	Ile	Asp	Pro	Glu 300	Ser	Ser	Phe	Gly
Glu 305	Lуs	Gly	Asp	Gly	Ala 310	Val	Asp	Glu	Val	Pro 315	Lys	Glu	Ser	Glu	Phe 320
Glu	Gly	Thr	Phe	Glu 325	Tyr	Ile	Val	Thr	Thr 330	Gly	Gly	Arg	Val	Phe 335	Asn
Ser	Glu	Asp	Met 340	Pro	Cys	Ser	Glu	Ser 345	His	Gln	Thr	Asn	Thr 350	Asn	Glu
Glu	Val	Ser 355	Val	Asp	Ser	Leu	Ser 360	Asp	Gly	Glu	Lys	Gln 365	Gly	Ser	Cys
Gly	Glu 370	Glu	Tyr	Glu	Ser	Glu 375	Leu	Gln	Asn	Leu	Asn 380	Ala	Asn	Ser	Суѕ
His	Lys	Gln	Gln	Tyr	Ser	Pro	Asp	Glu	Ile	Val	Glu	Asp	Ile	Gly	Lys

385					390					395					400
303					390					393					400
Gln	Суз	Ile	Glu	Asn 405		Asp	Pro	Ala	Ser 410		Glu	Glu	Asn	Gly 415	
Ala	Ala	Leu	Ser 420		Thr	Pro	Lys	Glu 425		Lys	Leu	Glu	Phe 430	Phe	Ser
Glu	Glu	Asn 435	-	Met	Ile	Asp	Asp 440		Leu	Ser	Ser	Val 445	Ala	Arg	Phe
Phe	Asn 450	Ser	Glu	Asn	Thr	Ser 455		Leu	Val	Lys	Glu 460		Ile	His	His
Val 465	Thr	Asn	Phe	Gln	Gln 470	Ile	Asn	Thr	Val	Glu 475		Val	Ala	Ala	Val 480
Asp	Ser	Leu	Ser	Asp 485	Glu	Glu	Lys	Glu	Asn 490	Lys	Суз	Asp	Val	Glu 495	Phe
Lys	Ala	Tyr	Leu 500	Asn	Ile	Lys	Pro	Cys 505	Asp	Glu	Glu	Gly	Asn 510	Ser	Leu
Val	Glu	Thr 515	Val	Glu	Glu	Thr	Val 520	Lys	Ser	Phe	Gln	Thr 525	Glu	Ser	Val
Asn	Pro 530	Leu	Ser	Val	Asn	Thr 535	Tyr	Ser	Leu	Val	Glu 540	Asp	Ser	Ile	Pro
Val 545	Thr	Asn	Phe	Gln	Leu 550	Ile	Asn	Ile	Val	Asp 555	Glu	Val	Ala	Thr	Val 560
Asp	Ser	Leu	Ser	Asp 565	Glu	Glu	Lys	Glu	Asn 570	Glu	Cys	Asp	Glu	Glu 575	Phe
Lys	Ala	Tyr	Leu 580	Tyr	Val	Lys	Pro	Cys 585	Asp	Glu	Gly	Ser	Ser 590	Leu	Asp
Glu	Thr	Val 595	Glu	Glu	Thr	Val	Lys 600	Ser	Phe	Gln	Thr	Glu 605	Ser	Leu	Asn
Pro	Ser 610	Ser	Gly	Asn	Thr	Ser 615	Ser	Leu	Val	Glu	Glu 620	Ala	Ile	Pro	Val
Thr 625	Asn	Phe	Gln	Leu	Ile 630	Asn	Ile	Val	Glu	Glu 635	Val	Ala	Thr	Val	Asp 640
Ser	Leu	Ser	Asn	Glu 645	Glu	Lys	Glu	Asn	Glu 650	Cys	Asp	Glu	Glu	Phe 655	Lys
Ala	Tyr	Leu	Tyr 660	Val	Lys	Pro	Cys	Asp 665	Glu	Glu	Gly	Asn	Ser 670	Leu	Asp
Glu	Thr	Val 675	Glu	Glu	Thr	Val	Lys 680	Ser	Phe	Gln	Thr	Glu 685	Ser	Leu	Asn
Pro	Ser 690	Val	Thr	Gln	Glu	Thr 695	Asp	Leu	Glu	Ile	Thr 700	Glu	Lys	Lys	Glu
Asn 705	Gln	Thr	Leu	Gln	Ser 710	Leu	Val	Ala	Val	Ala 715	Gly	Суз	Phe	Asp	Val 720
Lys	Phe	His	Glu	Asn 725	Суз	Val	Glu	Glu	Ser 730	Val	Glu	Gly	Ser	Leu 735	Thr

Leu Gly Ser Asp Ile Leu Ser Arg Arg Asp Lys Ala Ala Ser Ala Pro 740 745 Gln Asp Arg Thr Arg Lys Ser Arg Leu Leu Asn Thr Pro Asp Val Asp Thr Lys Phe Val Met Ser Asn Leu Lys Asp Ile Asn Ile Ile Asn Lys Pro Met Pro Gln Asn Ile Phe Ser Asp Leu Asp Glu Glu Met Phe 790 795 Thr Pro Asn Lys Glu Asn Ser Ser Pro Thr Asn Thr Phe His Ser Gln Phe Met Arg Lys Lys Gly Val Leu Glu Glu Ser Lys Ser Ser Lys Ser Gln Arg Ala His Asn Leu Lys Ala Ser Phe Ser Ser Ile Ile Tyr Ser 840 Ala Glu Arg Cys Thr Ser Ala Ile Ser Asn Lys Glu Asn Gln Thr Pro 855 Lys Ser Gln Arg Ala His Asn Leu Lys Ala Ser Phe Ser Pro Ile Ile Tyr Ser Ala Glu Arg Ser Thr Ser Ala Ile Ser Asn Lys Glu Asn Leu Thr Pro Arg Glu Ala Arg Glu Trp Lys Ser Gln Arg Ser His Asn Leu Arg Ala Ser Phe Ser Pro Ile Ile Tyr Ser Ala Glu Arg Ser Ala Ser 920 Ala Ile Ser Asn Lys Glu Asn Leu Thr Pro Lys Glu Ala Leu Glu Trp Met Ser Gly Arg Asn Pro Leu Glu Cys Arg Asn Thr Met Glu Leu Arg 950 955 Lys Lys Arg Val Glu Arg Met Pro Leu Gln Ser Leu Ile Ser Ser Gly Gly Asn His Asn Ser Asn Ser Ser Pro Phe Ser Ser Ser Pro Phe Ser 980 Ala Ala Lys Ser Ile Leu Gly Val Thr Val Arg Ser Ser Asn Cys Gly 1000 His Ile Ser Asp Lys His Ala Gln Pro Ser Val Arg Tyr His Lys 1010 1015 Ala Glu Arg Lys Arg Ser Trp Asp Leu Val Val Asp Thr Ser Ser 1025 1030 1035 Leu Leu Asn Lys Glu Ser Arg Lys Ala Leu Gln Leu Leu Gln Gly 1045 Leu Lys Arg Thr Arg Leu Ile Ile Pro Gln Ser Ser Val Ile Arg

1065

1060

Glu	Leu 1070	_	Ser	Met	Lys	Gln 1075		Ile	Gly	Ile	Phe 1080	_	Arg	Ile
Ser	Glu 1085	Ala	Ala	Leu	Ala	Leu 1090	Glu	Trp	Ile	Glu	Glu 1095	Суз	Ile	Gly
Lys	Thr 1100	Lys	Trp	Trp	Ile	His 1105	Ile	Gln	Ser	Ser	Met 1110	Glu	Asp	Glu
Phe	Arg 1115	Leu	Ile	Ala	Pro	Thr 1120	Pro	Pro	Thr	Gln	Phe 1125	Asn	Glu	Asp
Val	Leu 1130	Asp	Cys	Ala	Leu	Gln 1135	Tyr	Arg	Arg	Lys	Asp 1140	Asn	Val	Gly
Gln	Ile 1145	Val	Leu	Leu	Ser	Asp 1150	Asp	Val	Asn	Leu	Lys 1155	Ile	Lys	Ser
Met	Ala 1160	Lys	Lys	Lys	Leu	Leu 1165	Gln	Gly	Leu	Leu	Ser 1170	Glu	Thr	Val
Gln	Gln 1175	Phe	Arg	Gln	Ser	Leu 1180	Val	Asn [.]	Pro	Phe	Ser 1185	Glu	Arg	Phe
Met	Trp 1190	Ala	Asn	Ser	Ser	Pro 1195	Arg	Gly	Leu	Thr	Trp 1200	Ser	Cys	Arg
Asp	Asp 1205	Val	Val	Leu	Arg	Glu 1210	Lys	Tyr	Cys	Cys	Leu 1215	Pro	Ser	Lys
Ala	Gly 1220	Leu	Lys	Leu	Leu	Ala 1225	Thr							

<210> 10

<211> 878

5 <212> PRT

<213> Solanum lycopersicum

<400> 10

Met 1	Ala	Asp	Lys	Leu 5	Glu	Ile	Ser	Ser	Ile 10	Glu	Glu	Asp	Lys	Lys 15	Ile
Pro	Val	Phe	Thr 20	Val	Leu	Lys	Asn ·	Gly 25	Ala	Ile	Leu	Lys	Asn 30	Ile	Phe
Leu	Leu	Asp 35	Asn	Pro	Pro	Pro	Cys 40	Ser	Asn	Gln	Glu	Ser 45	Glu	Ile	Glu
Glu	Ile 50	Leu	Val	Val	Gly	Arg 55	His	Pro	Asp	Суз	Asn 60	Ile	Thr	Leu	Glu
His 65	Pro	Ser	Ile	Ser	Arg 70	Phe	His	Leu	Arg	Ile 75	His	Ser	Lys	Pro	Ser 80
Ser	Leu	Ser	Leu	Ser 85	Val	Thr	Asp	Leu	Ser 90	Ser	Glu	Ser	Ser	Tyr 95	Met
Val	Leu	Asp	His 100	His	Leu	Met	Ile	Trp 105	Gly	Ser	Lys	Ser	Ser 110	Asp	Leu
Leu	Ile	Cys 115	Ser	Gly	Lys	Val	Pro 120	Lys	Pro	Thr	Суз	Gly 125	Ile	Ser	Leu
Val	His 130	Gly	Thr	Trp	Ile	Ser 135	Gly	Lys	Ĺys	Leu	Glu 140	Ser	Gly	Val	Lys

Val 145		Leu	Lys	Glu	Gly 150	Asp	Arg	Met	Gln	Leu 155	Gly	Gly	Ser	Ser	Arg 160
Val	Tyr	Arg	Leu	His 165	Trp	Val	Pro	Ile	Ser 170		Ala	Tyr	Asp	Leu 175	Glu
Asn	Pro	Phe	Val 180		Thr	Leu	Суз	Glu 185	Ser	Glu	Pro	Glu	Glu 190	Ser	Thr
Gln	Glu	Glu 195		His	Gln	Asp	Glu 200	Ser	Gly	Phe	Ser	Leu 205	Gln	Asn	Asp
Gln	Ile 210	Gln	Lys	Glu	Asp	Tyr 215	Asp	Met	Val	Gln	Gly 220	Leu	Asp	Ser	Ser
Phe 225	Ser	Gly	Met	Ser	Ser 230	Leu	Pro	Arg	Leu	Arg 235	Ser	Leu	Thr	Pro	Pro 240
Ala	Pro	Pro	Met	Leu 245	Asp	Lys	Asn	Val	Ala 250	Ala	Asn	Glu	Asn	Leu 255	Pro
Gly	Asn	Ile	His 260	Glu	Glu	Gly	Glu	Ile 265	Ser	Leu	Arg	Gln	Pro 270	Ala	Tyr
Gln	Ala	Asp 275	Lys	Glu	Asn	Ser	Ile 280	Pro	Glu	Ala		Leu 285	Val	Pro	Gly
Gln	Ser 290	Pro	Asn	Glu	Asn	Ala 295	Asp	Gly	Thr	Pro	Pro 300	Arg	Ser	Gln	Gln
Arg 305	Cys	Ser	Ser	Ile	Trp 310	Ser	Arg	Arg	Gly	Lys 315	His	Ser	Asn	Val	Gln 320
Ile	Gln	Thr	Gly	Lys 325	Asp	Arg	Ala	Met	Asn 330	Glu	Asn	Ile	Asp	Met 335	Glu
Thr	Glu	Val	Glu 340	Ser	Ile	Asn	Arg	Glu 345	Ile	Glu	Gly	Thr	Ile 350	Ser	Val
Ser	Lys	Asp 355	Leu	Phe	Ala	Ser	Gly 360	Asn	Lys	Asp	Lys	Glu 365	Glu	Glu	Val
Phe	Thr 370	Pro	Asp	Lys	Glu	Asn 375	His	Thr	Pro	Ser	Ser 380	Leu	Phe	Leu	Gly
Ser 385	Met	Lys	Lys	Ser	Cys 390	Leu	Ser	Glu	Met	Thr 395	Asn	Arg	Ser	Gly	Arg 400
Lys	Ser	Val	Leu	Ser 405	Asn	Met	Asp	Glu	Thr 410	Asp	Glu	Glu	Thr	Phe 415	Thr
Pro	Asp	Lys	Glu 420	Asn	Met	Thr	Pro	Glu 425	Thr	Arg	Arg	Leu	Arg 430	Leu	Met
Lys	Lys	Ile 435	Gly	Ser	Gln	His	Gln 440	Ile	Lys	His	Pro	Lys 445	Leu	Phe	Lys
Ser	Ser 450	Ser	Leu	Lys	Leu	Val 455	Val	Glu	Pro	Arg	Ser 460	Asn	Gln	Ala	Ala
Gly 465	Суз	Val	Ser	His	Lys 470	Lys	Glu	Lys	Leu	Gly 475	Ser	Thr	Thr	Lys	Ser 480

Thr	Gln	Pro	Asn	Val 485	Asp	Glu	Asn	Asp	Glu 490	Glu	Ile	Phe	Thr	Pro 495	Asp
Lys	Glu	Asn	Met 500		Pro	Asp	Thr	Arg 505		Met	Arg	Ser	Met 510		Lys
Ile	Gly	Lys 515		Glu	Asp	Leu	Lys 520	Leu	Glu	Ser	Phe	Lys 525	Phe	Ser	Leu
Asp	Asn 530		Val	Asp	Pro	Ile 535		His	Gln	Asn	Gly 540	Thr	Pro	Phe	Ser
Ser 545	Glu	Lys	Asp	Asn	Leu 550	Asn	Asp	Lys	Val	Leu 555	Glu	Glu	Gln	Lys	Ser 560
Thr	Ile	Leu	Ala	Pro 565	Arg	Tyr	Pro	Ala	Arg 570	Leu	Glu	Val	Asn	Thr 575	Val
Lys	Asn	Arg	Met 580	Asp	Arg	Val	Pro	Leu 585	Gln	Ser	Leu	Leu	Val 590	Asn	Tyr
Pro	Val	Lys 595	Thr	Ser	Ser	Ile	Ser 600	Pro	Glu	Glu	Asn	Ile 605	Lys	Leu	Arg
Asp	Tyr 610	Pro	Ile	Gln	His	Pro 615	Glu	Thr	Met	Glu	Leu 620	Cys	Pro	Phe	Phe
Asn 625	Glu	Ser	Phe	Met	Glu 630	Lys	Lys	Arg	Trp	Thr 635	Ile	Val	Val	Asp	Thr 640
Gly	Ser	Leu	Leu	Asn 645	Lys	Glu	Ser	Arg	Lys 650	Ser	Leu	Gln	Leu	Leu 655	Gln
Gly	Leu	Arg	Arg 660	Thr	Tyr	Met	Ile	Ile 665	Pro	Arg	Thr	Val	Ile 670	Arg	Glu
Leu	Asp	Cys 675	Met	Lys	Arg	Arg	Ala 680	Ser	Leu	Phe	Arg	Arg 685	Thr	Thr	Glu
	690					695					Met 700				
Ala 705	Trp	Ile	His	Val	Gln 710	Ser	Cys	Ala	Glu	Glu 715	Thr	Arg	Ala	Val	Ala 720
Pro	Thr	Pro	Pro	Ala 725	Thr	Ala	Pro	Leu	Ser 730	Leu	Phe	Ser	Glu	Glu 735	Asn
Gly	Met	Phe	Pro 740	Val	Gly	Ser	His	Gln 745	Phe	Ser	Pro	His	Ser 750	Gly	Leu
Met	Asp	Phe 755	Ala	Ser	Pro	Thr	Ala 760	Glu	Asp	His	Ile	Leu 765	Glu	Tyr	Ala
Leu	Phe 770	Phe	Lys	Arg	Thr	Asn 775	Arg	Asn	Gly	Gln	Leu 780	Val	Leu	Leu	Ser
785					790					795	Glu				800
Glu	Thr	Ala	Glu	Glu 805	Phe	Arg	Glu	Ser	Leu 810	Val	Asn	Pro	Phe	Ser 815	Glu
Arg	Phe	Leu	${\tt Trp}$	Lys	Asp	Ser	Ser	Pro	Arg	Gly	Arg	Thr	Trp	Ser	Суѕ

830 820 825 Glu Asp Asp Phe Val Leu Arg Glu Thr Tyr Tyr His Gly Pro Pro Lys 835 840 Lys Pro Ser Met Ser Gly Glu Ala Ala Lys Gly Leu Lys Leu Ile Leu 855 Leu His Asn Ser His Phe Arg Cys His Ile Ser Thr Ala Ser 865 870 875 <210> 11 <211> 153 <212> PRT <213> Solanum tuberosum <400> 11 Phe Glu Glu Ile Leu Val Val Gly Leu His Pro Asp Cys Tyr Ile Val 5 15 Leu Glu His Pro Ser Ile Ser Arg Phe His Leu Thr Ile His Ser Asn 20 25 Pro Ser Ser His Ser Leu Ser Val Ile Asp Leu Ser Ser Val His Gly 40 Ser Trp Ile Ser Gly Asn Lys Ile Glu Pro Gly Val Arg Val Glu Leu 50 55 Lys Glu Gly Asp Lys Met Lys Leu Gly Gly Ser Arg Arg Glu Tyr Met Leu His Trp Ile Pro Ile Ser Arg Ala Tyr Asp Leu Glu Asn Pro Phe Val Ala Pro Leu Cys Glu Glu Glu Pro Phe Lys Glu Met Asp Glu Lys 100 105 110 Glu His His Asp Glu Asn Gly Phe Ala Leu His Asn Glu Gly Asp Asp 120 Leu Val Gln Asp Gln Asp Ser Ser Phe Ser Cys Pro Ser Leu Leu Pro 135 140

Tyr Ile Lys Cys Pro Thr Pro Ser Ala

150

145

<210> 12 <211> 132 <212> PRT <213> Helianthus argophyllus <400> 12 Pro Gln Ser Leu Lys Tyr Leu Lys Leu Leu Glu Asp Ile Glu Gly Thr 15 Gln Leu Phe Leu Thr Lys Thr Val Val Arg Glu Leu Met Asp Ile Glu 25 Ser Gln Asp Asn Phe Phe Asn Arg Ser Ser Lys Lys Ala Ser Leu Ala Leu Glu Trp Ile Asp Glu Cys Met Met Asn Thr Ser Gln Trp Ile His ' 50 55 Met Asp Asp Asp Asp Glu Thr Val Arg Arg Ser Ser Thr Val Leu 80 65 70 75 Glu Ile Ala Leu Arg Leu Arg Glu Glu Asp Ser Asp Gln Lys Ile Ile 90 Ile Leu Ser Asp Asn Leu Thr Leu Lys Ile Lys Ala Leu Ala Glu Gly 100 Ile Met Cys Glu Ala Ala Glu Glu Phe His Lys Ser Leu Val Asn Pro 120 125 Phe Ser Glu Arg 130 <210> 13 <211> 189

58

<212> PRT

<400> 13

<213> Malus domestica

Ile Arg Arg Ser Pro Met His Ala Leu Ile Asn Leu Val Gly Glu Gly
1 5 10 15

Lys Met Ser Trp Thr Met Val Ala Asp Ala Thr Thr Leu Leu Asp Lys 20 25 30

Glu Ser Arg Lys Ser Leu Gln Phe Leu Gln Gly Leu Lys Gly Thr Gln 35 40 45

Leu Ile Ile Pro Arg Met Val Ile Arg Glu Leu Asp Cys Leu Lys Gln 50 55 60

Arg Gly Ser Leu Phe Ile Lys Lys Thr Glu Ala Glu Leu Val Leu Glu 65 70 75 80

Trp Ile Lys Asp Cys Met Ile Lys Thr Asn Trp Trp Ile His Val Gln 85 90 95

Ser Ser Met Glu Asp Gly Arg Leu Ile Ala Pro Thr Pro Pro Ala Ser 100 105 110

Pro Gln Ser Leu Phe Asn Glu Lys Ser Trp Gly Phe Pro Ser Arg Thr 115 120 125

Thr Gly Ser Leu Thr Phe Ser Arg Cys Gly Ser Met Met Asp Leu Val 130 135 140

Ser Pro Ser Pro Glu Asp His Ile Leu Asp Cys Ala Leu Leu Cys Arg 145 150 155 160

Arg Met Lys Arg Asn Tyr Gly Gln Pro Val Leu Leu Ser Thr Asp Val 165 170 175

Ala Leu Lys Ile Lys Ala Met Glu Glu Gly Leu Leu Cys 180 185

<210> 14

<211> 200

<212> PRT

5 <213> Triticum aestivum

<400> 14

Lys Val Trp Thr Met Leu Ala Asp Thr Asp Cys Leu Leu Asp Asp Glu
1 5 10 15

Ser Arg Lys Ser Ile Met Leu Leu Lys Gly Ile Lys Gly Thr His Leu

			20					25					30		
Ile	Ile	Pro 35	Arg	Ile	Val	Met	Arg 40	Glu	Leu	Glu	Gly	Met 45	Lys	Gln	Arg
Glu	Gly 50	Met	Phe	Lys	Arg	Ser 55	Ser	Lys	Ala	Thr	Ser 60	Ile	Met	Gln	Trp
Ile 65	Glu	Asp	Cys	Met	Glu 70	Asn	Glu	Ser	Trp	Trp 75	Ile	Hìs	Val	Gln	Ser 80
Ser	Ser	Glu	Met	Leu 85	Pro	Val	Ala	Pro	Thr 90	Pro	Pro	Ala	Thr	Pro 95	Thr
Glu	Thr	Gln	Arg 100	Asn	Ser	Glu	Glu	Ser 105	Glu	Ala	Thr	Ala	Ala 110	Gly	Ala
Phe	Asn	Ser 115	Met	Leu	Ala	Leu	Phe 120	Ser	Pro	Arg	Ser	Phe 125	Thr	Gly	Ile
Phe	Ser 130	Pro	Arg	Ile	Leu	Ala 135	Asp	Ile	Asp	Ser	Pro 140	Lys	Thr	Glu	Asp
Arg 145	Val	Leu	Asp	Cys	Ala 150	Leu	Leu	Phe	Asn	Lys 155	Leu	Arg	Gly	Cys	Gly 160
Gln	Asn	Met	Val	Ile 165	Leu	Ser	Asn	Ser	Val 170	Asn	Leu	Lys	Ile	Lys 175	Ala
Met	Ser	Glu	Gly 180	Leu	Leu	Cys	Glu	Gly 185	Ala	Lys	Glu	Phe	Arg 190	Glu	Thr
Leu	Met	Asn 195	Pro	Cys	Ser	Glu	Arg 200								

<210> 15

<211> 19

5 <212> ADN

<213> Artificial

<220>

<223> cebador PCR

<400> 15

10 acateteect tgtegtaac 19

<210> 16

<211> 19

	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
5	<400> 16
	atctctcaat cgttcgttc 19
	<210> 17
	<211> 25
	<212> ADN
10	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 17
	ctgataccag acgttgcccg cataa 25
15	<210> 18
	<211> 20
	<212> ADN
	<213> Artificial
	<220>
20	<223> cebador PCR
	<400> 18
	tcggagtcac gaagactatg 20
	<210> 19
	<211> 21
25	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 19
30	cagteteact gattatteet g 21
	<210> 20

	<211> 21
	<212> ADN
	<213> Artificial
	<220>
5	<223> cebador PCR
	<400> 20
	getttettee etteetttet e 21
	<210> 21
	<211> 21
10	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 21
15	aaggetgata ttetgattea t 21
	<210> 22
	<211> 21
	<212> ADN
	<213> Artificial
20	<220>
	<223> cebador PCR
	<400> 22
	ctcttgttgg tccgtatctt a 21
	<210> 23
25	<211> 28
	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
30	<400> 23
	aacgtccgca atgtgttatt aagttgtc 28

	\Z10> Z4
	<211> 21
	<212> ADN
	<213> Artificial
5	<220>
	<223> cebador PCR
	<400> 24
	aatcggtgag tcaggtttca g 21
	<210> 25
10	<211> 21
	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
15	<400> 25
	ccatggatga aagcgattta g 21
	<210> 26
	<211> 19
	<212> ADN
20	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 26
	tcctttcatc ttaatatgc 19
25	<210> 27
	<211> 19
	<212> ADN
	<213> Artificial
	<220>
30	<223> cebador PCR
	<400> 27

<210> 24

	<210> 28
	<211> 16
	<212> ADN
5	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 28
	cccatgtctc cgatga 16
10	<210> 29
	<211> 19
	<212> ADN
	<213> Artificial
	<220>
15	<223> cebador PCR
	<400> 29
	ggcgtttaat ttgcattct 19
	<210> 30
	<211> 20
20	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 30
25	gttttgggaa gttttgctgg 20
	<210> 31
	<211> 24
	<212> ADN
	<213> Artificial
30	<220>
	<223> cebador PCR

tctgtccacg aattattta 19

	<400> 31
	cagtctaaaa gcgagagtat gatg 24
	<210> 32
	<211> 21
5	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 32
10	gaggatacct cttgctgatt c 21
	<400> 27
	tctgtccacg aattattta 19
	<210> 28
	<211> 16
15	<212> ADN
	<213> Artificial
	<220>
	<223> cebador PCR
	<400> 28
20	cccatgtctc cgatga 16
	<210> 29
	<211> 19
	<212> ADN
	<213> Artificial
25	<220>
	<223> cebador PCR
	<400> 29
	ggcgtttaat ttgcattct 19
	<210> 30
30	<211> 20

<212> ADN

```
<213> Artificial
     <220>
     <223> cebador PCR
     <400> 30
 5
     gttttgggaa gttttgctgg 20
     <210> 31
     <211> 24
     <212> ADN
     <213> Artificial
10
     <220>
     <223> cebador PCR
     <400> 31
     cagtctaaaa gcgagagtat gatg 24
     <210> 32
15
     <211> 21
     <212> ADN
     <213> Artificial
     <220>
     <223> cebador PCR
20
     <400> 32
     gaggatacct cttgctgatt c 21
     <213> Arabidopsis thaliana
     <400> 38
      gggaactaaa tgaggtgaag cgcagtcgca gttttctctt taqaaqaaga acagagattg
                                                                                        60
      cttcttcagc tctggactgg atcgaagaat gtaaggttaa ttcaaaatgg tggattcaag
                                                                                       120
      tocagagtoc aacagaagaa accaaagcaa ttgcaccaac cccaccagto actccccagt
                                                                                       180
      caaatggete ateggeatte ceetttteac tteaetggaa caactatgea ceagagattg
                                                                                       240
      attetecgae ateagaagat caagtteteg aatgtgetet tetttatega aacegtaace
                                                                                       300
      gtgacgaaaa actcgttctt cttagcaacg atgtaactct caagatcaaa gccatggcag
                                                                                       360
                                                                                       362
      ag
25
     <210> 39
     <211> 21
     <212> ADN
```

<213> Secuencia artificial
<220>
<223> cebador PCR
<400> 39

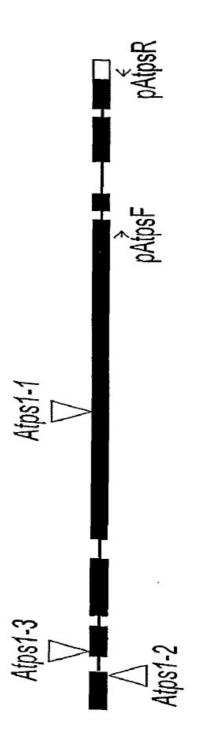
5 ccatagtgag agttatggag c 21
<210> 40
<211> 23
<212> ADN
<213> Secuencia artificial

10 <220>
<223> cebador PCR
<400> 40
ggcgcctttt caacctctac ttg 23

REIVINDICACIONES

- 1. Método para obtener una planta que produce polen 2n, en donde dicho método comprende la inhibición en dicha planta de una proteína de aquí en adelante denominada como proteína PS1, en donde dicha proteína:
 - comprende dentro de su región N-terminal (preferiblemente dentro de sus 300 aminoácidos N-terminales, más preferiblemente dentro de sus 250 aminoácidos N-terminales, y aún más preferiblemente dentro de sus 200 aminoácidos N-terminales), un dominio que tiene al menos un 40%, y por orden creciente de preferencia, al menos un 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 98% de identidad de secuencia, o al menos un 60%, y por orden creciente de preferencia, al menos, 65, 70, 75, 80, 85, 90, 95 o 98% de similitud de secuencia con el dominio FHA de la proteína AtPS1 (aminoácidos 64- 132 de SEQ ID NO: 1);
- comprende dentro de su región C-terminal (preferiblemente dentro de sus 350 aminoácidos C-terminales, más preferiblemente dentro de sus 300 aminoácidos C-terminales, y aún más preferiblemente dentro de sus 250 aminoácidos C-terminales), un dominio que tiene al menos un 40%, y por orden creciente de preferencia, al menos un 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 98% de identidad de secuencia, o al menos, y por orden creciente de preferencia, al menos, un 65, 70, 75, 80, 85, 90, 95 o 98% de similitud de secuencia con el dominio PINc de la proteína AtPS1 (aminoácidos 1237-1389 de SEQ ID NO:1).
 - 2. Método según la reivindicación 1, en donde la inhibición de dicha proteína se obtiene mediante mutagénesis del gen PS1 o de su promotor, y en donde se seleccionan los mutantes que han perdido parcial o totalmente la actividad de la proteína PS1.
- 3. Método según la reivindicación 1, en donde la inhibición de dicha proteína se obtiene mediante la expresión en dicha planta de un ARN de silenciamiento que selecciona como diana el gen que codifica dicha proteína.
 - 4. Casete de expresión que comprende:

5


25

30

- un promotor funcional en una célula vegetal;
- un constructo de ADN seleccionado entre:
 - a) un constructo de ADN de 200 a 1000 pb, preferiblemente de 300 a 900 pb, que comprende un fragmento de un ADNc que codifica la proetína PS1, o de su complementario, o que tiene al menos un 95% de identidad, y por orden creciente de preferencia, al menos un 96%, 97%, 98%, o 99 % de identidad con dicho fragmento;
 - b) un constructo de ADN que es capaz, cuando se transcribe, de formar un ARN hairpin que selecciona como diana el gen *PS1*;
 - c) un constructo de ADN que es capaz, cuando se transcribe, de formar un amiARN que selecciona como diana el gen *PS1*;

donde dicha secuencia está situada bajo control transcripcional de dicho promotor.

- 5. Vector recombinante que comprende un casete de expresión según la reivindicación 4.
- 6. Planta transgénica que produce polen 2n, en donde dicha planta contiene un transgén que comprende un casete de expresión según la reivindicación 4.
 - 7. Método para producir polen 2n, en donde dicho método comprende:
 - obtener una planta que produce polen 2n, mediante un método según cualquiera de las reivindicaciones 1 a 3;
 - cultivar dicha planta;
- recuperar el polen producido por dicha planta.

Figura 1

EVNEKAJZENGALPENTIPVTYANDILANITWYSERSERNOGTVEDDGG - PVEZLYVORNIED DOLLINESSI SEROALEVTOGTWICH WEDDALFRENDE FEBVERGE FEBVERGE TRAVOUSSNYTHANITYLENGTHYSERSER WESTALLINGSNYTH WE	### PROPERTY AND PROPERTY OF THE PROPERTY OF T	- Pedde sietaspetago vietaliaria de la companya de
HEVERTIZER (RAPERTITY TOTAL KRAILKHIEVVUSEDE SSPERJUGSTVEDDQ———————————————————————————————————	GTCC	LSTORETSETOVETSETOVETSETUTARRE HRDSELVIJESBYTTETARARSOVETHER LSTORETSETASETVEDRILLING STARA - OKROGLI ILSEDVELKITORARSOVETSENGE CSGPLEV OSPANJENGENET LSTALSTARA - OKROGLI ILSEDVELKITARARSOVETSEN KOSPANJE LSFLÄKTORSETARDBI LLSTALSTAR - RKIDGOVA LSTÖRVETARARDSEGALEST POR PRESTONTO SERVEDRI LUSALOYORK - ENVOQUALES STARARDA STARARDSEGARES PRESTONTO SERVEDRI LUSALOYORY - ROGGOTALIS STARARDA STARA
ALINP 56445 Gmijgī scaffold 143 Ptijgī 59219 WichRēj 43 mod Gmijgī scaffold 131 0.5 MP 001065865 Sbijgī 5039668 Zmigsī 10207, m000022 Mtimp 56444 Atimp 56444 Origi 503166 Sbijgī 5039668 Zmigsī 10207, m000022 Spijgī 5039668 Sbijgī 5039668 Sbijgī 5039668 Zmigsī 10207, m000022	At MP 564445 Cai Jai 59219 Pri 1541 59219 V/ CAR6144 and Gai J41 544 25219 Sh J51 503668 faics	Atimp 564445 Gmijdī scarfold 143 Phijdī 52215 WVCAMĒ434 mod Gmijdī scarfold 131 00118 00105865 Shijdī 5039668

Figura 2

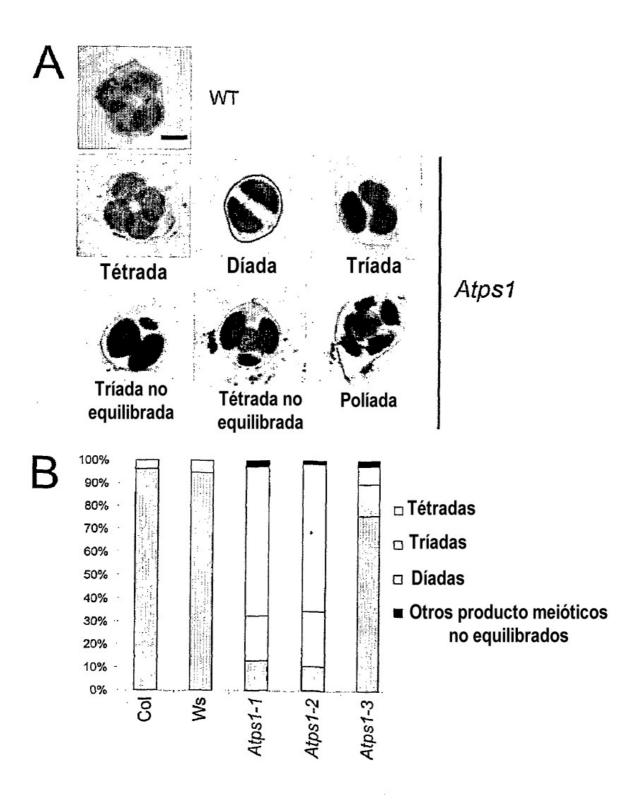


Figura 3

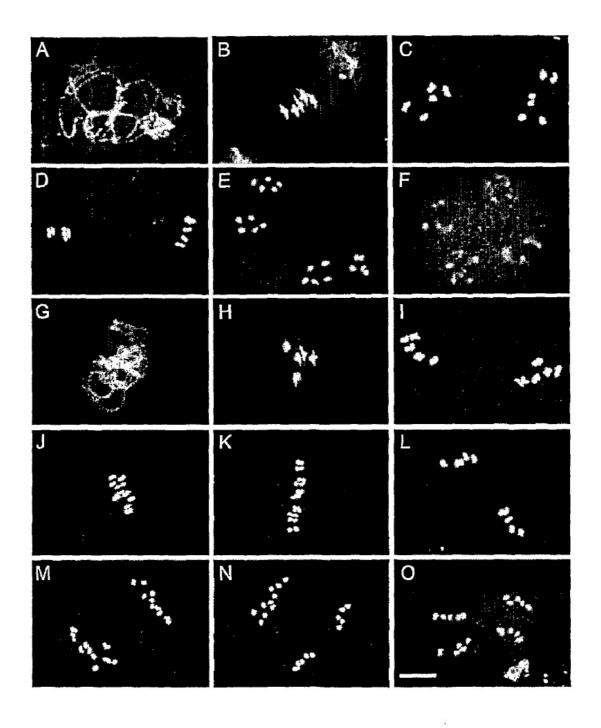


Figura 4

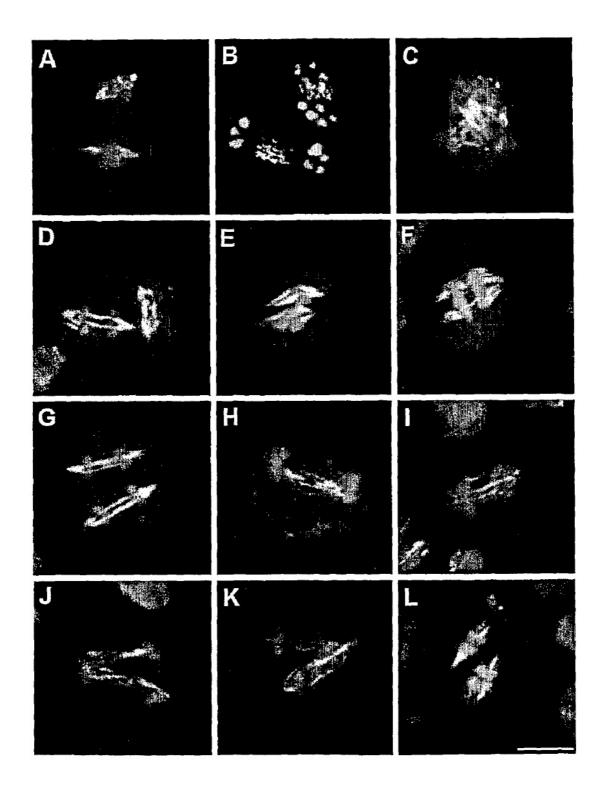


Figura 5

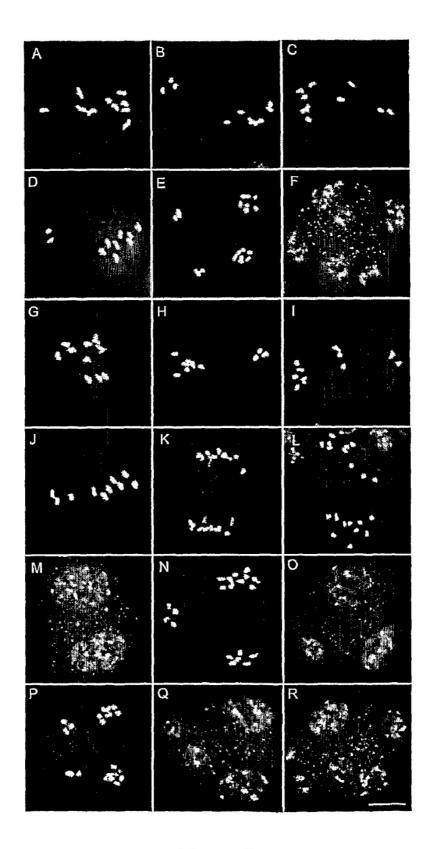


Figura 6

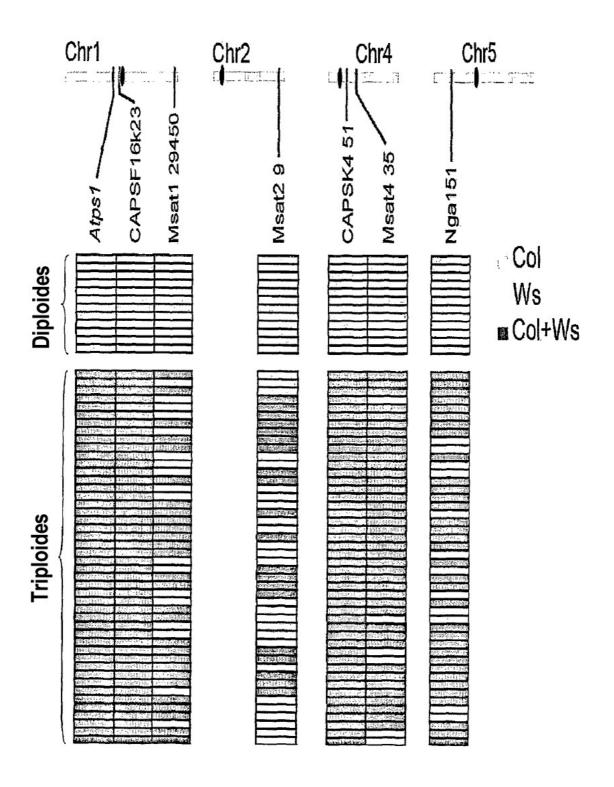


Figura 7

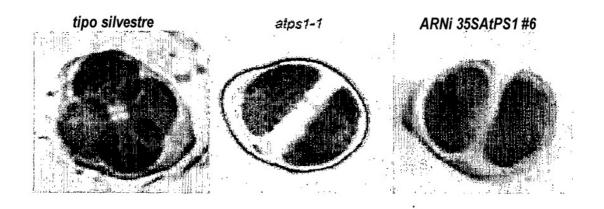


Figura 8

Figura 9