

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 441 719

(51) Int. CI.:

C12N 15/11 (2006.01) C07H 21/00 (2006.01) C07K 14/22 (2006.01) C12N 9/12 (2006.01) C07K 14/195 (2006.01) C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 16.03.2006 E 06743586 (7) (97) Fecha y número de publicación de la concesión europea: 16.10.2013 EP 1858918

(54) Título: Fragmentos de ácidos nucleicos y método de detección específico por identificación molecular de diferentes especies de bacterias del género acinetobacter

(30) Prioridad:

17.03.2005 FR 0502630

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 06.02.2014

(73) Titular/es:

UNIVERSITÉ D'AIX-MARSEILLE (50.0%) Jardin du Pharo, 58 boulevard Charles Livon 13284 Marseille Cedex 07, FR y **CENTRE NATIONAL DE LA RECHERCHE** SCIENTIFIQUE (CNRS) (50.0%)

(72) Inventor/es:

LA SCOLA, BERNARD y **RAOULT, DIDIER**

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Fragmentos de ácidos nucleicos y método de detección específico por identificación molecular de diferentes especies de bacterias del género *acinetobacter*.

La presente invención se refiere al campo del diagnóstico. Más precisamente, la invención se refiere a un método para la identificación molecular de las bacterias del género *Acinetobacter* mediante las técnicas de amplificación y secuenciación de ácidos nucleicos con la ayuda de cebadores oligonucleotídicos.

Las bacterias del género *Acinetobacter* son unas bacterias que aparecen en forma de cocobacilos Gram negativos, de crecimiento aerobio. Se reconocen actualmente aproximadamente 60 especies y 2 subespecies.

5

15

25

30

35

40

55

Estas bacterias son esencialmente, pero no únicamente, unos agentes de infecciones nosocomiales. Su espectro comprende desde la simple colonización hasta infecciones que ponen en juego el pronóstico vital, en particular las neumonías, infecciones urinarias, bacteriemias y meningitis (van Dessel *et al.*, 2004). Su excelente capacidad de supervivencia en el entorno exterior del hospital y su capacidad para desarrollar rápidamente resistencias a la mayoría de los antibióticos son los principales factores de su emergencia como agentes de infecciones nosocomiales, en particular en las unidades de cuidado intensivo (Bergogne-Berezin y Towner, 1996; Towner, 1997).

Aunque la mayoría de las especies sean responsables de infecciones en el ser humano, sólo algunas especies han sido aisladas en el medio ambiente (Nemec *et al.*, 2001, 2003; Carr *et al.*, 2003).

Mientras que, en el género Acinetobacter, se han propuesto 32 especies (van Dessel et al., 2004), son reconocidas 24 especies genómicas ("genomic species" según la nomenclatura en vigor y abreviados a continuación "geno species" o "g.sp.") y sólo 17 especies tienen un nombre validado (Nemec et al., 2003; Carr et al., 2003). Desafortunadamente, los miembros de este género tienen una variabilidad fenotípica intra-específica muy amplia, y no son por lo tanto diferenciables en el plano fenotípico. El aumento del número de infecciones relacionadas con estos agentes ha estimulado la búsqueda de métodos de análisis para la identificación y la taxonomía de estas bacterias. Se ha demostrado también que los métodos de identificación basados en los caracteres fenotípicos y la secuenciación del gen del ARN 16S ribosómico por comparación con la hibridación ADN-ADN no eran válidos. Así, la búsqueda de métodos de identificación rápida de estas bacterias está aún de actualidad (Gerner-Smidt et al., 1991; Ibrahim et al., 1997; Rainey et al., 1994). En particular, las técnicas moleculares basadas en la secuenciación del gen de ARN 16S ribosómico no permiten distinguir las especies más próximas, en particular debido a una falta de polimorfismo de este gen en este género, (Yamamoto y Harayama, 1998; Ochman y Wilson, 1987; Stackebrandt y Goebel, 1994). Además, debido a esta falta de polimorfismo, existe la necesidad de determinar la secuencia completa del gen 16S ARNr si se desea poder identificar una especie. Esto impone secuenciar la totalidad del gen que es aproximadamente de 1600 pares de bases. La consecuencia práctica es que la secuenciación debe apoyarse en un mínimo de 6 reacciones de secuenciación además de la reacción de amplificación para obtener un resultado evaluable. Se hicieron unos intentos de filogenias utilizando la comparación de los genes gyrB (Yamamoto y Harayama, 1996; Yamamoto et al., 1999) y recA (Krawczyk et al., 2002) en alternativa al gen del ARN 16S ribosómico (Ibrahim et al., 1997). Desafortunadamente, las secuencias de estos genes no se determinaron sobre las 10 especies más recientes (Nemec et al., 2001, 2003; Carr et al., 2003).

Por lo tanto existe todavía una demanda de una herramienta de identificación molecular de las bacterias de las especies del género *Acinetobacter*, utilizable rutinariamente en laboratorio de bacteriología, en particular con un gen suficientemente polimórfico, tal que la determinación de una secuencia corta (menos de 500 pares de bases) con sólo 1 reacción de amplificación y dos reacciones de secuencias sea identificable, es decir amplificable y secuenciable por la utilización de un solo juego de cebadores.

- 50 Se ha demostrado descubierto y demostrado según la presente invención que
 - el gen rpoB y las secuencias no codificantes que lo acotan, a saber
 - las secuencias no codificantes en 5' entre las secuencias de los genes rp/L y rpoB (a continuación denominadas "spacer rplL-rpoB" o "fragmento intergénico rp/L-rpoB"), y
 - las secuencias no codificantes en 3' entre las secuencias de los genes rpoC y rpoB (a continuación denominadas "spacer rpoB-rpoC" o "fragmento intergénico rpoB-rpoC",

constituyen un marcador genético que permite la detección y la identificación específica de la bacteria de cada especie del género *Acinetobacter* y, en particular, las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. jnnii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. scbindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*.

Las especies genómicas 1 a 16 ("genomic species") corresponden a cepas referenciadas en GENEBANK, a algunas (nº 3, 6, 9, 10, 13 y 16) no se les han atribuido todavía ningún nombre.

Se han descubierto algunas zonas hipervariables entre las diferentes especies y, por lo tanto, específicas de cada especie, flanqueadas por unas secuencias conservadas entre las diferentes especies, que permiten aplicar un método de identificación molecular de las diferentes especies de bacterias Acinetobacter por amplificación, con la ayuda de cebadores seleccionados en las secuencias conservadas e hibridación y/o secuenciación de las secuencias específicas así amplificadas.

10

35

50

55

60

65

- Más particularmente, la presente invención se refiere a secuencias de ácidos nucleicos específicas de cada especie del género *Acinetobacter* citado anteriormente cuya secuencia nucleotídica es extraída del gen *rpo*B de dichas bacterias.
- Según Lazcano *et al.* [J. Mol. Evol. (1988) 27:365-376], las ARN polimerasas están divididas en dos grupos según su origen, uno constituido por las ARN polimerasas virales ARN- o ADN-dependientes, y el otro constituido por las ARN polimerasas ADN-dependientes de origen eucariota o procariota (archaebacterias y eubacterias). Las ARN polimerasas ADN-dependientes eubacterianas están caracterizadas por una constitución multimérica simple y conservada denominadas "core enzyme", representada por αββ', u "holoenzima", representada por αββ'σ [Yura e lshihama, Ann. Rev. Genet. (1979) 13:59-97]. Numerosos trabajos han puesto en evidencia el papel funcional, dentro del complejo enzimático multimérico, de la sub-unidad β de la ARN polimerasa eubacteriana. Las ARN polimerasas archaebacteriana y eucariota presentan, por su parte, una estructura más compleja que puede alcanzar una decena, incluso una treintena, de subunidades [Pühlet *et al.* Proc . Natl. Acad. Sci. USA (1989) 86:4569-4573].
- Los genes que codifican las diferentes subunidades αββ'σ de la ARN polimerasa ADN-dependiente en las eubacterias, respectivamente los genes *rpo*A, *rpo*B, *rpo*C y *rpo*D, están clasificados en diferentes grupos que comprenden los genes que codifican para las proteínas constitutivas de las subunidades ribosómicas o para las enzimas implicadas en la replicación y la reparación del genoma [Yura y Yshihma, Ann. Rev. Genet. (1979) 13:59-97]. Algunos autores han mostrado que las secuencias de los genes *rpo*B y *rpo*C podían ser utilizados a fin de construir unos árboles filogenéticos [Rowland *et al.* Biochem. Soc. Trans. (1992) 21:40S] que permiten separar las diferentes ramificaciones y sub-ramificaciones entre los reinos vivientes.

Antes de exponer con mayor detalle la invención, se definen a continuación diferentes términos, utilizados en la descripción y las reivindicaciones:

- por "ácido nucleico extraído de bacterias" se entiende en la presente memoria bien el ácido nucleico total, o bien el ADN genómico, o bien los ARN mensajeros, o bien incluso el ADN obtenido a partir de la transcripción inversa de los ARN mensajeros;
- un "fragmento nucleotídico" o un "oligonucleótido" son dos términos sinónimos que designan una cadena de motivos nucleotídicos caracterizada por una secuencia informacional de los ácidos nucleicos naturales (o eventualmente modificados) y susceptibles de hibridarse, como los ácidos nucleicos naturales, con un fragmento nucleotídico complementario o sustancialmente complementario, en condiciones predeterminadas de astringencia estricta. La cadena puede contener unos motivos nucleotídicos de estructura diferente de la de los ácidos nucleicos naturales. Un fragmento nucleotídico (u oligonucleótido) puede contener por ejemplo hasta 100 motivos nucleotídicos. Contiene generalmente por lo menos 10, preferentemente de 18 a 35, motivos nucleotídicos y se puede obtener a partir de una molécula de ácido nucleico natural y/o por recombinación genética y/o por síntesis química,
 - una unidad nucleotídica está derivada de un monómero que puede ser un nucleótido natural de ácido nucleico cuyos elementos constitutivos son un azúcar, un grupo fosfato y una base nitrogenada seleccionada de entre la adenina (A), la guanina (G), el uracilo (U), la citosina (C), la timina (T); o bien el monómero es un nucleótido modificado en uno por lo menos de los tres elementos constitutivos anteriores; a título de ejemplo, la modificación puede intervenir bien a nivel de las bases, con unas bases modificadas tales como la inosina, que puede hibridarse con cualquier base A, T, U, C o G, la metil-5-desoxicitidina, la desoxiuridina, la dimetilamino-5-desoxiuridina o cualquier otra base modificada capaz de hibridación, o bien a nivel del azúcar, por ejemplo el reemplazo de por lo menos un desoxirribosa por una poliamida [Nielsen PE et al., Science (1991) 254:1497-1500], bien incluso a nivel del grupo fosfato, por ejemplo por reemplazo mediante ésteres seleccionados en particular entre los difosfatos, los alquilfosfonatos y los fosforotioatos,
 - por "hibridación" se entiende el proceso durante el cual, en condiciones apropiadas, dos fragmentos nucleotídicos que tienen secuencias suficientemente complementarias son susceptibles de asociarse por enlaces hidrógeno estables y específicos, para formar una doble hebra. Las condiciones de hibridación son determinadas por la "astringencia", es decir el rigor de las condiciones de realización. La hibridación es tanto más específica cuanto mayor es la astringencia a la que se efectúa. La astringencia es función en particular de la composición en bases de un dúplex sonda/diana, así como por el grado de discordancia entre dos

ácidos nucleicos. La astringencia puede también ser función de los parámetros de la reacción de hibridación, tales como la concentración y el tipo de especies iónicas presentes en la solución de hibridación, la naturaleza y la concentración de agentes desnaturalizantes y/o la temperatura de hibridación. La astringencia de las condiciones en las que una reacción de hibridación debe ser realizada depende en particular de las sondas utilizadas. Todos estos datos son bien conocidos y las condiciones apropiadas pueden ser eventualmente determinadas en cada caso mediante experimentos de rutina. En general, según la longitud de las sondas utilizadas, la temperatura para la reacción de hibridación está comprendida entre aproximadamente 20 y 65°C, en particular entre 35 y 65°C en una solución salina con una concentración de aproximadamente 0,8 a 1 M.

10

15

5

- una "sonda" es un fragmento nucleotídico que posee una especificidad de hibridación en unas condiciones determinadas para formar un complejo de hibridación con un ácido nucleico que tiene, en el presente caso, una secuencia nucleotídica comprendida bien en un ARN mensajero, o bien en un ADN obtenido por transcripción inversa de dicho ARN mensajero, producto de la transcripción; se puede utilizar una sonda con fines de diagnóstico (en particular sondas de captura o de detección) o con fines terapéuticos,

 una sonda puede ser inmovilizada o inmovilizable sobre un soporte sólido mediante cualquier medio apropiado, por ejemplo por covalencia, por adsorción, o por síntesis directa sobre un sólido. Unos ejemplos de soportes comprenden las placas de microtitulación y los chips de ADN,

20

- una "sonda" está en general marcada mediante un agente marcador seleccionado por ejemplo entre los isótopos radioactivos, las enzimas, en particular las enzimas susceptibles de actuar sobre un sustrato cromógeno, fluorígeno o luminiscente (en particular una peroxidasa o una fosfatasa alcalina), los compuestos químicos cromóforos, los compuestos cromógenos, fluorígenos o luminiscentes, los análogos de las bases nucleotídicas. Este marcado puede ser directo entre el ADN y dicho marcador, o indirecto, es decir por medio de ligandos tales como la biotina u otra molécula apta para enlazarse a los agentes de marcado,

25

 una "sonda de especie" es una sonda que permite la identificación específica de la especie de una bacteria de un género dado, en este caso acinetobacter,

30

- una "sonda de género" es una sonda que permite la identificación específica del género de la bacteria, cualquiera que sea la especie de la bacteria de dicho género en ciertas condiciones de hibridación,

35

- un "cebador" es una sonda que comprende por ejemplo de 10 a 100 motivos nucleotídicos y que posee una especificidad de hibridación en unas condiciones determinadas para las reacciones de amplificación enzimática.

40

- por "cebador de género", se entiende un juego de cebadores que permite la amplificación específica de cualquier bacteria de un mismo género dado, sin distinción de la especie, en algunas condiciones de hibridación y de amplificación (los "cebadores de género" son también denominados "cebadores consenso" o "cebadores universales" en la presente solicitud)

45

 por "reacción de amplificación" se entiende una reacción de polimerización enzimática, por ejemplo en una técnica de amplificación tal como la PCR, iniciada por unos oligonucleótidos cebadores y que utiliza un ADN polimerasa,

- por "reacción de secuenciación" se entiende una reacción que conduce a la determinación de la secuencia de un fragmento de ácido nucleico o de un gen completo mediante un procedimiento de polimerización abortiva a partir de cebadores oligonucleotídicos y que utilizan dichos didesoxinucleótidos (Sanger F, Coulson AR (1975), J. Mol. Biol. 94:441) o por hibridaciones múltiples con unas sondas múltiples fijadas sobre soporte sólido tales como las utilizadas en los chips ADN por ejemplo, u otras técnicas conocidas por el experto en la técnica.

50

Se han determinado las secuencias completas de los genes *rpo*B y de las secuencias no codificantes flanqueantes que los acotan y los separan de los genes *rp/L* y *rpoC* ("fragmento intergénico *rp/L-rpoB*" y "fragmento intergénico *rpoB-rpoC*") de 24 especies del género *Acinetobacter*. *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. jobnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*.

65

Para lograr determinar dichas secuencias completas de rpoB y sus secuencias flanqueantes de la totalidad de las especies de bacterias *Acinetobacter*, se ha tenido que, después de un gran número de ensayos infructuosos, determinar en primer lugar 51 cebadores (tabla 2) a partir de la única secuencia rpoB y de las zonas no codificantes que la acotan de las bacterias del género *Acinetobacter* de las secuencias correspondientes de bacterias que son

identificadas como próximas disponibles en GENBANK, a saber *Acinetobacter* sp. ADP1 (GeneBank accession number NC_005966), *Pseudomonas syringae* pv. tomato str.DC3000 (GeneBank accession number NC 004578) y *P. putida* KT2440 (GeneBank accession number NC 006347).

5 La cepa Acinetobacter spADP1 es una cepa que no se había caracterizado antes de la invención, y que no corresponde a ninguna de las cepas patógenas descritas en la presente solicitud de patente y listadas a continuación.

La presente invención tiene por lo tanto por objeto un gen completo *rpo*B de una bacteria del género *Acinetobacter* seleccionada de entre las 23 especies siguientes: *A. calcoaceticus* (especie genómica 1), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia comprende, y más particularmente consiste en, una secuencia seleccionada de entre las secuencias tal como se han descrito en las secuencias SEC ID nº 9 y 11 a 32 respectivamente, y las secuencias que presentan por lo menos el 98% de identidad, así como sus secuencias complementarias.

La presente invención tiene igualmente por objeto los fragmentos de ácido nucleico que comprenden, y más particularmente que consiste en, un fragmento no codificante que encuadra el gen rpoB de una bacteria del género *Acinetobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia comprende, y más particularmente consiste en, una secuencia seleccionada de entre las secuencias tales como se han descrito en las secuencias SEC ID nº 121 a 144 respectivamente, y las secuencias SEC ID nº 165 a 188 respectivamente, y las secuencias que presentan por lo menos el 98% de identidad y sus secuencias complementarias.

Dichas secuencias que presentan unos porcentajes de identidad (también denominados porcentajes de similitud) de por lo menos el 98% con dichas secuencias SEC ID 9 a 32, 121 a 144 y 165 a 188 corresponden a las variaciones posibles entre las diferentes cepas de una misma especie que corresponde eventualmente a unas sub-especies. Así, las secuencias SEC ID nº 145 a 164 y 189 a 208 corresponden a diversas cepas de *A. baumannii* que presentan por lo menos el 98% de homología con, respectivamente, las secuencias SEC ID nº 122 y 166.

Se entiende en la presente memoria por "porcentaje de identidad (o porcentaje de similitud)" o "porcentaje de homología", un porcentaje de identidad de las secuencias, es decir un porcentaje de nucleótidos de la secuencia que son idénticos a la misma posición con respecto a otra secuencia,

Las secuencias SEC ID nº 121 a 144 corresponden a las secuencias flanqueantes en 5' que representan el fragmento intergénico *rpl*L-*rpo*B completo que acota el gen *rpo*B entre los genes *rp/*L y *rpo*B, de una longitud comprendida entre 301 y 310 pb, para cada especie de la bacteria de género *Acinetobacter*, para las 24 especies mencionadas antes.

Las secuencias SEC ID $\rm n^{\circ}$ 165 a 188 corresponden a las secuencias flanqueantes en 3' que representan el fragmento intergénico $\rm rpoB$ - $\rm rpoC$ completo que acota el gen $\rm rpoB$ entre los genes $\rm rpoB$ y $\rm rpoC$, de una longitud comprendida entre 86 y 177 pb, para cada especie de la bacteria del género $\rm \it Acinetobacter$, para las 24 especies mencionadas antes.

Los fragmentos intergénicos *rpoB-rpo*C y rp/L-rpoB que acotan el gen *rpo*B y la secuencia completa del gen *rpo*B pueden ser utilizadas para identificar la bacteria, no sólo a título de sonda y/o por el estudio de su secuencia primaria, sino también por el estudio de las estructuras secundaria y terciaria del ARN mensajero que proviene de la transcripción de la secuencia completa de ADN.

En estos genes *rpo*B y las secuencias no codificantes que los acotan (fragmento intergénico *rpl*L-*rpo*B y fragmento intergénico *rpo*B-*rpo*C) de *Acinetobacter*, los inventores han puesto en evidencia unas secuencias consenso SEC ID n° 1, 2, 3, 4, 5, 6, 7, y 8 (tabla 3) que son unas secuencias conservadas entre todas las bacterias del género *Acinetobacter*, es decir que pueden ser utilizadas como cebadores que permiten amplificar la misma porción del gen *rpo*B y las zonas no codificantes que la acotan (fragmento intergénico *rpl*L-*rpo*B y fragmento intergénico *rpo*B-*rpo*C) de todas dichas bacterias *acinetobacter*, a saber:

- SEC ID nº 1 y 2, para una primera zona del gen rpoB,
- SEC ID n° 3 y 4, para una segunda zona del gen rpoB,
- SEC ID nº 5 y 6, para el fragmento intergénico *rpl*L-*rpo*B, y
- SEC ID nº 7 y 8, para el fragmento intergénico rpoB-rpoC,

5

60

65

55

30

35

40

45

50

- SEC ID nº 1 a 4 y 6-7 están en el interior del gen rpoB, con:
- SEC ID n° 8 y 6 están cerca de los extremos 5' de los genes rpoB, y respectivamente rpoC.
- SEC ID nº 7 y 5 están cerca de los extremos 3' de los genes rp/L y respectivamente rpoB.
- La presente invención proporciona por lo tanto unos oligonucleótidos que presentan unas secuencias conservadas de una bacteria Acitenobacter seleccionada de entre dichas 24 especies que comprenden una secuencia de por lo menos 12, preferentemente por lo menos 18 motivos nucleotídicos consecutivos incluidos en una de las secuencias seleccionada de entre las secuencias tales como las descritas en las secuencias SEC ID nº 1 a 8 siguientes, sus secuencias complementarias, preferentemente que consisten en dichas secuencias:

10

15

25

30

35

40

- SEC ID nº 1: 5'-TAYCGYAAAGAYTTGAAAGAAG-3',
- SEC ID n° 2: 5'-CMACACCYTTGTTMCCRTGA-3',
- SEC ID n° 3: 5'-GTGATAARATGGCBGGTCGT-3',
- SEC ID nº 4: 5'-CGBGCRTGCATYTTGTCRT-3'.
- SEC ID nº 5 :5'-GAAGARCTTAAGAMDAARCTTG-3'
- SEC ID n° 6: 5'-CGTTTCTTTTCGGTATATGAGT-3',
- SEC ID nº 7: 5'-GTTCTTTAGGTATCAACATTGAA-3',
- SEC ID n° 8: 5'-GACGCAAGACCAATACGRAT-3',
- 20 en las que:
 - D representa A, G o T,
 - Y representa C o T,
 - B representa C, G o T,
 - R representa A o G, y
 - M representa A o C.

En la posición que corresponde a un nucleótido D, Y, B, M o R en las secuencias SEC ID nº 1, 2, 3, 4, 5, y 8 se encuentran unos nucleótidos variables en las secuencias dianas complementarias en función de la especie de la bacteria considerada, pero todos los demás nucleótidos están conservados en todas las especies de las bacterias del género *Acinetobacter*.

Las secuencias SEC ID n° 1, 3, 5 y 7 son utilizadas a título de cebadores sobre la hebra directa y las secuencias SEC ID n° 2, 4, 6 y 8 son utilizadas a título de cebador sobre la hebra indirecta. Las secuencias SEC ID n° 2, 4, 6 y 8 corresponden por lo tanto a unas secuencias complementarias de las de la hebra directa.

Para ser utilizados a título de cebadores consensuales, se utilizan por lo tanto estos oligonucleótidos de secuencias SEC ID nº 1, 2, 3, 4, 5, y 8, de hecho, en forma de mezclas equimolares de oligonucleótidos de secuencias diferentes, respondiendo dichos oligonucleótidos de secuencias diferentes para cada secuencia SEC ID nº 1 a 8 a las diversas definiciones posibles de las secuencias nº 1, 2, 3, 4, 5 y 8 respectivamente.

Estas mezclas equimolares de oligonucleótidos son obtenidas utilizando, durante la síntesis oligonucleotídica, unas mezclas equimolares de los diferentes nucleótidos referidos, respectivamente:

- 45
- A, G y T para D,
- C y T para Y,
- C, G y T para B,
- A y G para R,
- Ay C para M.

50

55

60

65

Las mezclas de oligonucleótidos, que responden a los nucleótidos de definición de las secuencias SEC ID nº 1, 2, 3, 4, 5 y 8, pueden por lo tanto hibridarse con las diferentes secuencias dianas complementarias incluidas en los genes *rpoB* y en los extremos de los genes *rpoL* y *rpoC* que encuadran las zonas no codificantes que los acotan (fragmento intergénico *rpoL-rpoB* y fragmento intergénico *rpoB-rpoC*) de todas las especies de bacterias del género *Acinetobacter* y, más particularmente, las 24 especies citadas antes.

La capacidad de estos cebadores para amplificar unos fragmentos de genes rpoB y unas zonas no codificantes que los acotan (fragmento intergénico *rplL-rpoB* y fragmento intergénico *rpoB-rpoC*), de todas las especies de *Acinetobacter* permite considerar que estos cebadores serán eficaces para la identificación de especies de *Acinetobacter* adicionales que serían descritas en el futuro.

La presente invención tiene por lo tanto también por objeto una mezcla de oligonucleótidos caracterizada porque comprende una mezcla equimolar de oligonucleótidos de secuencias diferentes que comprenden por lo menos 12, preferentemente por lo menos 18 motivos nucleotídicos consecutivos incluidos en una de las secuencias SEC ID nº 1 a 5 y 8, o los oligonucleótidos de secuencias complementarias.

Más particularmente, la presente invención tiene por objeto las mezclas de oligonucleótidos siguientes:

una mezcla equimolar de 8 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº
1, o unos oligonucleótidos de secuencias complementarias.

5

- una mezcla equimolar de 16 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 2 o unos oligonucleótidos de secuencias complementarias.

una mezcla equimolar de 6 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº
 3 o unos oligonucleótidos de secuencias complementarias.

- una mezcla equimolar de 24 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 4 o unos oligonucleótidos de secuencias complementarias.
- una mezcla equimolar de 24 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID
 nº 5 o unos oligonucleótidos de secuencias complementarias.
 - oligonucleótido de secuencia que consiste en la secuencia SEC ID nº 6 o secuencia complementaria.
 - oligonucleótido de secuencia que consiste en la secuencia SEC ID nº 7 o secuencia complementaria.
 - una mezcla equimolar de 2 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 8 o unos oligonucleótidos de secuencias complementarias.
- Los oligonucleótidos o mezclas de oligonucleótidos que comprenden una secuencia incluida en una de las secuencias SEC ID nº 1 a 8, según la invención, pueden ser utilizados como cebadores de género de las bacterias del género acinetobacter.
- Como se mencionó anteriormente, además, las secuencias consenso SEC ID nº 1, 2, 3, 4, 5 y 8, así definidas, encuadran unas secuencias hipervariables cuya secuencia es específica para cada especie de bacterias del género *Acinetobacter*.

Se ha podido así poner en evidencia unas secuencias específicas de especies para cada una de las 24 especies de bacterias mencionadas anteriormente, que corresponden a las secuencias:

35

20

- SEC ID nº 33 a 56, encuadradas por las secuencias consensos SEC ID nº 1 y 2 (a continuación "zona 1 de rpoB");
- SEC ID n° 77 a 100, encuadradas por las secuencias consensos SEC ID n° 3 y 4 (a continuación "zona 2 de rpoB");
 - SEC ID nº 121 a 144, encuadradas por las secuencias consensos SEC ID nº 5 y 6 (a continuación "fragmento intergénico rpo/L-rpoB"); y
- SEC ID nº 165 a 188, encuadradas por las secuencias consensos SEC ID nº 7 y 8 (a continuación "fragmento intergénico rpoB-rpoC");

Los oligonucleótidos de secuencias encuadradas por las SEC ID nº 1, 2, 3, 4, 5, 6, 7 y 8, pueden por lo tanto ser utilizados a título de sonda de especie de las bacterias el género *Acinetobacter*.

50

55

Dichas secuencias hipervariables específicas SEC ID nº 33 a 56 encuadradas por las secuencias SEC ID nº 1 y 2, representan un fragmento del gen *rpo*B de una longitud de 350 pb con menos del 96% de identidad entre las diferentes especies (tabla 7) con la excepción de los pares *A. baylii*/geno. species 11 y *A. grimontii*/*A. junii*, de manera que constituyan una secuencia específica diana corta, para identificar específicamente cada especie de la bacteria del género *Acinetobacter*, más precisamente para las 24 especies mencionadas antes, con la excepción de los pares *A. baylii*/geno. species 11 y *A. grimontii*/*A. junii*.

Dichas secuencias hipervariables específicas SEC ID nº 77 a 100 encuadradas por las secuencias SEC ID nº 3 y 4, representan un fragmento del gen *rpo*B de una longitud de 450 pb con menos del 96% de identidad entre las diferentes especies (tabla 8) con la excepción de los pares *A. baylii*/geno. species 11 y *A. grimontii*/*A. junii*, de manera que constituyan una segunda secuencia específica diana corta, para identificar específicamente cada especie de la bacteria de género *Acinetobacter*, más precisamente para las 24 especies mencionadas antes, con la excepción de los pares *A. baylii*/geno. species 11 y *A. grimontii*/*A. junii*.

Dichas secuencias hipervariables específicas SEC ID nº 121 a 164 encuadradas por las secuencias SEC ID nº 5 y 6, representan el fragmento intergénico *rpl*L-*rpo*B que acota el gen *rpo*B de una longitud comprendida entre 301 y 310

pb con menos del 97% de identidad entre las diferentes especies (véase la tabla 5 a continuación) con la excepción de los pares *A. baylii*/geno. species 11 y *A. grimontii*/*A. junii*, y *A. lwoffi*/geno. species 9, de manera que constituyan una tercera secuencia específica diana corta para identificar específicamente cada especie de la bacteria del género *Acinetobacter*, más precisamente para las 24 especies mencionadas antes, con la excepción de los pares *A. baylii*/geno. species 11 y *A. grimontii*/*A. junii*, y *A. lwoffi*/geno. species 9.

5

10

15

20

25

30

35

40

45

50

55

60

65

Finalmente, dichas secuencias hipervariables específicas SEC ID nº 165 a 188 encuadradas por las secuencias SEC ID nº 7 y 8, representan el fragmento intergénico *rpoB-rpo*C que acotan el gen *rpo*B de una longitud comprendida entre 86 y 177 pb con menos del 97% de identidad entre las diferentes especies (véase la tabla 6 a continuación) con la excepción de los pares *A. grimontiilA. junii* y de las especies Acb (*A. beumannii*, *A. calcoaceticus* y genospecies 3), de manera que constituyen una cuarta secuencia corta específica diana, para identificar específicamente cada especie de la bacteria del género *Acinetobacter*, más precisamente para las 24 especies mencionadas anteriormente, con la excepción de los pares *A. grimontiilA. junii* y de las especies Acb (*A. beumannii*, *A. calcoaceticus* y genospecies 3).

Otro objeto de la presente invención es por lo tanto un fragmento del gen *rpo*B de una bacteria del género *Acinetobacter* seleccionada de entre las 24 especies: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. scbindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia consiste en una secuencia seleccionada de entre las secuencias tales como las descritas en las secuencias SEC ID nº 33 a 56 respectivamente, y las secuencias SEC ID nº 77 a 100 respectivamente, y las secuencias que presentan por lo menos el 98% de identidad y sus secuencias complementarias.

La presente invención tiene asimismo por objeto un fragmento de gen *rpo*B de una bacteria del género *Acinetobacter* seleccionado entre las 23 especies: *A. calcoaceticus* (especie genómica 1), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia comprende una secuencia seleccionada de entre las secuencias tales como las descritas en las secuencias SEC ID nº 33 y 35 a 56 respectivamente, y las secuencias SEC ID nº 77 y 79 a 100 respectivamente, y las secuencias que presentan por lo menos el 98% de identidad y sus secuencias complementarias.

Dichas secuencias que presentan unos porcentajes de identidad de por lo menos el 98% con dichas secuencias SEC ID nº 33 a 56 y 77 a 100 corresponden a las variaciones posibles entre las diferentes cepas de una misma especie que corresponde eventualmente y más particularmente a unas sub-especies. Así, las secuencias SEC ID nº 57 a 76 y 101 a 120 corresponden a diversas cepas de *A. baumannii* que presentan por lo menos el 98% de homología con, respectivamente, SEC ID nº 34 y 78.

La presente invención tiene por lo tanto también por objeto la utilización a título de sonda de especie de un fragmento de gen rpoB, rp/l o rpoC según la invención, o de un oligonucleótido de secuencias específicas de una de dicha especie de bacteria *Acinetobacter* según la invención.

Más particularmente, la presente invención proporciona un procedimiento de detección por identificación molecular de una bacteria de una de las especies del género *Acinetobacter* caracterizado porque se utiliza:

- el gen rpoB completo de dicha bacteria según la invención, que comprende una dicha secuencia SEC ID nº 9
 a 32, o preferentemente que consiste en una dicha secuencia SEC ID nº 9 a 32, o las secuencias
 complementarias, o secuencias que presentan por lo menos el 98% de identidad,
 - un fragmento del gen rpoB de dicha bacteria según la invención, que comprende una dicha secuencia SEC ID nº 33 a 56 o 77 a 100, o que consiste en una dicha secuencia SEC ID nº 33 a 56 o 77 a 100, las secuencias complementarias, o secuencias que presentan por lo menos el 98% de identidad,
 - un fragmento del gen *rpoB* de dicha bacteria según la invención, que comprende una dicha secuencia SEC ID nº 77 a 100 o, preferentemente, que consiste en una dicha secuencia SEC ID nº 77 a 100, o secuencias complementarias, o secuencias que presentan por lo menos el 98% de identidad,
 - un fragmento del gen que comprende un fragmento intergénico *rpl*L-*rpo*B o *rpo*B-*rpo*C completo de dicha bacteria según la invención, que comprende una dicha secuencia SEC ID nº 121 a 144 o 165 a 188, o preferentemente que consiste en una dicha secuencia SEC ID nº 121 a 144 o 165 a 188, las secuencias complementarias o secuencias que presentan por lo menos el 98% de identidad.

un oligonucleótido que presenta una secuencia específica de una bacteria Acitenobacter seleccionada de entre las 24 especies anteriores de por lo menos 18, preferentemente de 18 a 35, motivos nucleotídicos consecutivos incluidos en una de las secuencias seleccionadas de entre las secuencias tales como las descritas en las secuencias:

5

- SEC ID nº 33 a 56 respectivamente,
- SEC ID n° 77 a 100 respectivamente.

10

SEC ID nº 121 a 144 respectivamente,

SEC ID nº 165 a 188 respectivamente, y

15

un oligonucleótido o mezcla equimolar de oligonucleótidos según la invención que comprende una secuencia de por lo menos 12, preferentemente 18 nucleótidos consecutivos incluidos en una de las secuencias SEC ID

las secuencias que presentan por lo menos el 98% de identidad y sus secuencias complementarias; o

nº 1, 2, 3, 4, 5, 6, 7 y 8 o las secuencias complementarias, o preferentemente que consiste en una de dicha secuencias SEC ID n° 1, 2, 3, 4, 5, 6, 7 y 8.

20

En una primera forma de realización de un procedimiento de detección de una bacteria según la invención, se busca detectar específicamente una especie dada de una bacteria Acitenobacter seleccionada de entre las 24 especies siguientes: A. calcoaceticus (especie genómica 1), A. baumannii (especie genómica 2), especie genómica 3, A. haemolyticus (especie genómica 4), A. junii (especie genómica 5), especie genómica 6, A. johnsonii (especie genómica 7), A. Iwoffii (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, A. radioresistens (especie genómica 12), especie genómica 13, especie genómica 16, A. schindleri, A. ursingii, A. baylyi, A. bouvetii, A. gerneri, A. grimontii, A. tandoii, A. tjernbergiae, A. towneri, A. parvus, procedimiento en el que:

25

1- se pone en contacto una muestra que contiene o es susceptible de contener unos ácidos nucleicos de por lo menos tal bacteria, con por lo menos una sonda de especie que consiste en un oligonucleótido o un fragmento de gen según la invención, preferentemente un fragmento de gen que consiste respectivamente en una de dichas secuencias seleccionada entre:

30

SEC ID nº 33 a 56 respectivamente,

35

- SEC ID n° 77 a 100 respectivamente.
- SEC ID nº 121 a 144 respectivamente,

40

- SEC ID nº 165 a 188 respectivamente, y
- las secuencias que presentan por lo menos el 98% de identidad y sus secuencias complementarias, y

45

se determina la formación o la ausencia de un complejo de hibridación entre dicha sonda y los ácidos nucleicos de la muestra, y se determina así la presencia de dicha especie de Acinetobacter en la muestra si hay formación de un complejo de hibridación.

50

En una segunda forma de realización de un procedimiento de detección de una bacteria del género Acinetobacter de una especie específica, se realizan las etapas en las que:

1- se ponen en contacto los cebadores de amplificación que comprenden dichas mezclas de oligonucleótidos según la invención, con una muestra que contiene o que es susceptible de contener unos ácidos nucleicos de por lo menos tal bacteria del género Acinetobacter, y se realiza una amplificación de los ácidos nucleicos por reacción de polimerización enzimática que comprende:

55

como cebador 5', por lo menos un oligonucleótido o una mezcla de oligonucleótidos según la invención, que comprende una secuencia incluida en una de las secuencias SEC ID nº 1, 3, 5 y 7, preferentemente que consiste en dicha secuencia SEC ID nº 1, 3, 5 y 7 completa o las secuencias complementarias, y

60

como cebador 3', por lo menos un oligonucleótido o mezcla de oligonucleótidos según la invención que comprende unas secuencias incluidas en una de las secuencias SEC ID nº 2, 4, 6, y 8 respectivamente, preferentemente que consiste en dicha secuencia SEC ID nº 2, 4, 6, y 8 completa o respectivamente una secuencia complementaria.

65

2- se determina la aparición o la ausencia de un producto de amplificación, y se determina así la presencia o la ausencia de dicha bacteria en la muestra si un producto de amplificación ha aparecido o no, respectivamente.

Más particularmente, se busca detectar una especie dada de una bacteria *Acitenobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus.*, y, en la etapa 2 siguiente, se determina la presencia o la ausencia de la especie dada de una dicha bacteria efectuando las etapas en las que:

10

5

- a) se realiza una reacción de secuenciación de un fragmento de gen amplificado con dichos cebadores, y
- b) se compara la secuencia de dicho fragmento amplificado obtenido con la secuencia de un fragmento de gen de dicha bacteria que comprende respectivamente:

15

 dichas secuencias SEC ID nº 33 a 56, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 1 y 2 respectivamente

20

25

- dichas secuencias SEC ID nº 77 a 100, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 3 y 4 respectivamente, y
- dichas secuencias SEC ID nº 121 a 144, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 5 y 6 respectivamente, y
- dichas secuencias SEC ID nº 165 a 188, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 7 y 8 respectivamente.

En otra variante de dicha segunda forma de realización de un procedimiento de detección de una bacteria del género *Acinetobacter* de una especie específica, en el que se busca detectar una especie dada de una bacteria 30 *Acitenobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, en la etapa 2 anterior, se determina la presencia o la ausencia de la especie dada de una dicha bacteria efectuando las etapas en las que:

40

a- se pone en contacto una muestra que contiene o que es susceptible de contener unos ácidos nucleicos amplificado de por lo menos tal bacteria, con por lo menos una sonda de especie que consiste en un fragmento de gen *rpo*B o un oligonucleótido específico según la invención, preferentemente un fragmento que consiste respectivamente en una de dichas secuencias seleccionada entre:

45

 SEC ID n° 33 a 56 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 1 y 2 respectivamente

--

SEC ID nº 77 a 100 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 3 y 4 respectivamente, y

SEC ID nº 121 a 144 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de

50

- SEC ID nº 165 a 188 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 7 y 8 respectivamente, y

55

b- se determina la formación o la ausencia de un complejo de hibridación entre dicha sonda y los ácidos nucleicos amplificado de la muestra, y se determina así la presencia o la ausencia de dicha especie de *Acinetobacter* en la muestra si hay formación o no de un complejo de hibridación.

60

En una forma de realización preferida de un procedimiento según la invención, se realizan las etapas que comprenden:

secuencias incluidas en las secuencias SEC ID nº 5 y 6 respectivamente, y

65

1- una primera amplificación del ácido nucleico de dicha muestra con un par de cebadores 5' y 3' seleccionado entre dichas mezclas de oligonucleótidos según la invención, que comprende unas secuencias incluidas respectivamente en las secuencias SEC ID nº 1 y SEC ID nº 2, preferentemente que consiste en dichas secuencias SEC ID nº 1 y SEC ID nº 2, o las secuencias complementarias, y

- 2- una primera determinación de la aparición o la ausencia de un producto de amplificación que comprende unos ácidos nucleicos de por lo menos una dicha bacteria, por hibridación, o llegado el caso, secuenciación y comparación de los amplificados obtenidos en la etapa 1 con los fragmentos que consisten respectivamente en una de dichas secuencias seleccionadas de entre SEC ID nº 33 a 56 y 34 a 76 respectivamente, y
 - si en esta etapa 2 se determina la presencia de las especies A. grimontii o A. junii, se realiza además:
 - 3a-una secunda reacción de amplificación con unos cebadores 5' y 3' seleccionados entre dichas mezclas de oligonucleótidos según la invención, que comprende unas secuencias incluidas respectivamente en las secuencias SEC ID nº 3 y SEC ID nº 4, preferentemente que consisten en dichas secuencias SEC ID nº 3 y SEC ID nº 4, o las secuencias complementarias, y
 - 4a-una determinación de la aparición o de la ausencia de un producto de amplificación que comprende unos ácidos nucleicos de por lo menos una dicha bacteria, por hibridación o, llegado el caso, secuenciación y comparación de los amplificados obtenidos en la etapa 3a con los fragmentos que consisten respectivamente en una de dichas secuencias seleccionadas de entre SEC ID nº 77 a 100 respectivamente. o
 - si en la primera etapa 2 se determina la presencia de las especies A. baylii o A. specie genómica 11, se realiza además:
 - 3b-una segunda reacción de amplificación con unos cebadores 5' y 3' seleccionados entre dichas mezclas de oligonucleótidos según la invención que comprenden unas secuencias incluidas respectivamente en las secuencias SEC ID nº 7 y SEC ID nº 8, preferentemente que consisten en dichas secuencias SEC ID nº 7 y SEC ID nº 8, o las secuencias complementarias, y
 - 4b-una determinación de la aparición o de la ausencia de un producto de amplificación que comprende unos ácidos nucleicos de por lo menos una dicha bacteria, por hibridación o, llegado el caso, secuenciación y comparación de los amplificados obtenidos en la etapa 3b con los fragmentos que consisten respectivamente en una de dichas secuencias seleccionadas de entre SEC ID nº 165 a 188 respectivamente.

Las secuencias SEC ID nº 1 a 208 pueden ser preparadas por ingeniería genética y/o por síntesis automática o síntesis química utilizando las técnicas bien conocidas por el experto en la materia.

Las sondas según la invención pueden ser utilizadas, con fines de diagnóstico, como se mencionó anteriormente, por la determinación de la formación o de la ausencia de formación de un complejo de hibridación entre la sonda y un ácido nucleico diana en una muestra, según todas las técnicas de hibridación conocidas y en particular las técnicas de depósito puntual sobre un filtro, denominadas "DOT-BLOT" [Maniatis et al. (1982) Molecular Cloning, Cold Spring Harbor], las técnicas de transferencia de ADN denominadas "SOUTHERN BLOT" [Southern E.M., J. Mol. Biol. (1975) 98:503], las técnicas de transferencia de ARN denominadas "NORTHERN BLOT", o las técnicas denominadas "sandwich", en particular con una sonda de captura y/o una sonda de detección, siendo dichas sondas capaces de hibridarse con dos regiones diferentes del ácido nucleico diana, y siendo una por lo menos de dichas sondas (generalmente la sonda de detección), capaz de hibridarse con una región de la diana que es específica de la especie, entendiéndose que la sonda de captura y la sonda de detección deben tener unas secuencias nucleotídicas por lo menos parcialmente diferentes.

El ácido nucleico que se debe detectar (diana) puede ser el ADN o el ARN (el primero obtenido después de la amplificación por PCR). En el caso de la detección de una diana de tipo ácido nucleico de doble hebra, conviene proceder a la desnaturalización de este último antes de la realización del procedimiento de detección. El ácido nucleico diana puede ser obtenido por extracción según los métodos conocidos de los ácidos nucleicos de una muestra a examinar. La desnaturalización de un ácido nucleico de doble hebra se puede efectuar mediante los métodos conocidos de desnaturalización química, física o enzimática, y en particular por calentamiento a una temperatura apropiada, superior a 80°C.

Para aplicar las técnicas de hibridación antes citadas, y en particular las técnicas "sandwich", una sonda de la invención, denominada sonda de captura, es inmovilizada sobre un soporte sólido, y otra sonda de la invención, denominada sonda de detección, está marcada con un agente marcador. Los ejemplos de soporte y de agente marcador son tales como los definidos anteriormente.

De manera ventajosa, una sonda de especie está inmovilizada sobre un soporte sólido, y otra sonda de especie está marcada por un agente marcador.

Otra aplicación de dicha mezcla de oligonucleótidos de la invención es su utilización como cebador nucleotídico que comprende un oligonucleótido monocatenario seleccionado entre los oligonucleótidos que tienen una secuencia de por lo menos 12 motivos nucleotídicos incluidos en una de las secuencias SEC ID nº 1 a 8, que es utilizable en la

10

15

20

25

30

35

40

45

50

55

65

60

síntesis de un ácido nucleico en presencia de una polimerisasa por un procedimiento conocido en sí, en particular en métodos de amplificación que utilizan tal síntesis en presencia de una polimerasa (PCR, RT-PCR, etc.). En particular, un cebador de la invención puede ser utilizado para la transcripción inversa específica de una secuencia de ARN mensajero de bacteria de una especie del género *Acinetobacter* para obtener una secuencia de ADN complementaria correspondiente. Tal transcripción inversa puede constituir el primer estado de la técnica RT-PCR, siendo el estado siguiente la amplificación por PCR del ADN complementario obtenido.

Según un caso particular, dicho cebador que comprende un oligonucleótido de la invención comprende además la secuencia sentido o anti-sentido de un promotor reconocido por una ARN polimerasa (promotores T7, T3, SP6 por ejemplo [Studier FW, BA Moffatt (1986) J. Mol. Biol. 189:113]: tales cebadores son utilizables en procedimientos de amplificación de ácido nucleico que hace intervenir una etapa de transcripción, tales como, por ejemplo, las técnicas NASBA o 3SR [Van Gemen B. et al. Abstract MA 1091, 7th International Conférence on AIDS (1991) Florencia, Italia].

- Otro objeto de la invención es un cebador nucleotídico que comprende una mezcla de oligonucleótidos monocatenarios seleccionados entre los oligonucleótidos que tienen unas secuencias que comprenden una de las secuencias SEC ID nº 1 a 8 o, preferentemente, que consisten en una de las secuencias SEC ID nº 1 a 8 que es utilizable para la secuenciación total o parcial del gen *rpoB* o del fragmento intergénico *rpl*L-*rpoB* o del fragmento intergénico *rplB-rpoC* de cualquier especie del género *Acinetobacter*.
- 20 La secuenciación del gen *rpo*B parcial o completa o del fragmento intergénico *rpl*L-*rpo*B o del fragmento intergénico *rpl*B-*rpo*C en toda bacteria del género *Acinetobacter* permite la identificación de cualquier bacteria *Acinetobacter* por análisis bioinformático de esta secuencia y el reconocimiento de nuevas especies de bacterias *Acinetobacter* desconocidas.
- Preferentemente, en una utilización como cebador o para la secuenciación de los genes *rpo*B o del fragmento intergénico *rpo*B-*rpo*C se utilizan dichas mezclas de oligonucleótidos de secuencia SEC ID nº 1 y 2.
- La presente invención tiene asimismo por objeto un kit de diagnóstico útil en un procedimiento según la invención, que comprende por lo menos un dicho fragmento de gen *rpo*B o del fragmento intergénico *rpl*L-*rpo*B o del fragmento intergénico *rpo*B-*rpo*C según la invención, que comprende o que consiste en una de las secuencias SEC ID nº 9 a 188, o un oligonucleótido o dicha mezcla de oligonucleótidos equimolares según la invención, que comprende unas secuencias incluidas en las secuencias SEC ID nº 1 a 8, y los oligonucleótidos y fragmentos de genes *rpo*B o del fragmento intergénico *rpl*L-*rpo*B o del fragmento intergénico *rpo*B-*rpo*C de secuencias complementarias, tales como las definidas anteriormente, así como, preferentemente, unos agentes reactivos útiles en las reacciones de hibridaciones o reacciones de amplificación o secuenciación, llegado el caso.
 - Como se ha mencionado en las definiciones, un oligonucleótido o fragmento de ácido nucleico según la invención puede estar en forma de un ácido desoxirribonucleico (ADN) o de un ácido ribonucleico (ARN) para los cuales en este caso T está sustituido por U.

Finalmente, un último objeto de la invención es una sonda de terapia génica para tratar las infecciones provocadas por una cepa que pertenece a una especie del género *Acinetobacter*, comprendiendo dicha sonda un oligonucleótido tal como el definido anteriormente. Esta sonda de terapia génica, capaz de hibridarse sobre el ARN mensajero y/o sobre el ADN genómico de dichas bacterias, puede bloquear los fenómenos de traducción y/o de transcripción y/o de replicación.

El principio de los métodos de terapia génica se conoce y se basa en particular en la utilización de una sonda que corresponde a una hebra anti-sentido: la formación de un híbrido entre la sonda y la hebra sentido es capaz de perturbar por lo menos una de las etapas de descifrado de la información genética. Las sondas de terapia génica son por lo tanto utilizables como medicamentos antibacterianos, que permiten luchar contra las infecciones causadas por las bacterias de las especies del género *Acinetobacter*.

Otras características y ventajas de la presente invención aparecerán y la invención se entenderá mejor con la ayuda de la descripción siguiente, que se refiere a los experimentos efectuados y a los resultados obtenidos con el objetivo de realizar la invención, y que son dados a título puramente ilustrativo.

La tabla 1 siguiente recoge la lista de las especies de *Acinetobacter* para las cuales se han determinado unas secuencias *rpoB* y el fragmento intergénico *rplL-rpoB* y el fragmento intergénico *rpoB-rpoC*, las cepas mencionadas provienen de la Collection del Institut Pasteur (CIP), las secuencias SEC ID nº 1 a 208 son descritas en el listado de secuencias anexo a la descripción.

En la tabla 2, se presentan los diferentes cebadores utilizados para la amplificación y la secuenciación de los genes *rpo*B.

65

60

40

45

50

10

En la tabla 2, cuando se presentan unas secuencias que comprenden unos nucleótidos W, H, Y, V, R, B, M, K, S o D, estos tienen los significados conocidos por el experto en la materia y, de manera también convencional, estos cebadores son utilizados en realidad en forma de mezcla equimolar de oligonucleótidos de secuencias diferentes en el sitio de dichos nucleótidos, como se explica anteriormente.

5

La tabla 3 presenta unas comparaciones de similitudes de las secuencias de los genes 16S ARNr y *rpo*B entre las dos subespecies *C. affermentans* y entre los 11 pares de especies consideradas como próximas, para las cuales las similitudes entre secuencias de genes 16S ARNr son superiores o iguales al 98,5%, con comparación estadística de las medias de similitud obtenidas.

10

La figura 1 es una representación gráfica del porcentaje de variabilidad (range site variability: RSV (eje de las Y)) de las secuencias de los genes *rpo*B y secuencias flanqueantes de las diferentes especies del género *Acinetobacter* estudiadas por ventanas de 50 nucleótidos (eje de las X). se encuadran las regiones hipervariables, bordeadas por regiones conservadas, utilizada para la identificación de la especie con la ayuda de los cebadores consenso.

15

La figura 2 es un dendograma que representa las relaciones filogénicas de las diferentes especies de *A. cinetobacter* mediante el método del "neighbour-joining". El árbol se ha construido por la alineación de las secuencias del gen *rpoB*. Los valores de muestreo de "bootstrap" (probabilidad de exactitud de los nudos en porcentaje) calculados en base a una muestra de 1000 árboles, son indicados en cada nudo, sólo se han indicado los valores superiores o iguales al 75%.

20

25

La figura 3 es un dendograma que representa las relaciones filogénicas de las diferentes especies de *A. cinetobacter* mediante el método "neighbour-joining". El árbol se ha construido por la alineación de las secuencias hipervariable (zona 1 y zona 2) del gen *rpo*B. Los valores de "bootstrap" (probabilidad de exactitud de los nudos en porcentaje) calculados en base a una muestra de 1000 árboles, son indicados en cada nudo.

30

La figura 4 es un dendograma que representa las relaciones filogénicas de las diferentes especies de *A. cinetobacter* mediante el método del "neighbour-joining". Los 4 árboles se han construido por la alineación de las secuencias de los genes *rpoB*, 16SRNA, *rpoB*, *gyrB*, *recA*. Los valores de muestreo de "bootstrap" (probabilidad de exactitud de los nudos en porcentaje) calculados en base a una muestra de 1000 árboles, son indicados en cada nudo, sólo se indican los valores superiores o iguales al 75%.

1- Materiales y métodos.

35 1.1- Cepas bacterianas.

Las cepas bacterianas utilizadas son listadas en la tabla 1. Todas las cepas se han cultivado sobre gelosas Columbia al 5% de sangre de oveja y han sido incubadas durante 48h a 37°C en condición de aerobia.

40 1.2- amplificación y secuenciación del gen *rpoB* y de los fragmentos intergénicos *rplL-rpoB* y *rpoB-rpoC*.

La secuencia del gen *rpo*B y de los fragmentos intergénicos que lo bordean de las especies más próximas, se han alineados a fin de producir una secuencia consenso. Las secuencias seleccionadas eran las de *Acinetobacter* sp ADP1 (GeneBank accession number NC_005966), *Pseudomonas syringae* pv.tomato str.DC3000 (GeneBank accession number NC 004578) y *P. putida* KT2440 (GeneBank accession number NC 006347). La secuencia consenso ha permitido determinar los cebadores utilizados después para las PCR, la técnica de marcha sobre el genoma ("genome walking") y para la secuenciación. Ciertos cebadores han sido determinados ulteriormente al análisis de los resultados obtenidos. Los cebadores son presentados en la tabla 2 siguiente.

50

55

60

65

45

El ADN bacteriano se ha extraído de suspensiones de las cepas por QIAamp blood kit (Qiagen, Hilden, Germany) según las recomendaciones del fabricante. Todas las mezclas de reacción de PCR comprendían 2,5 X 10-2 U de polimerasa Taq por µl, 1X de tampón Taq, 1,8 mM MgCl₂ (Gibco BRL, Life Technologies, Cergy Pontoise, France), 200 μM de dATP, dCTP, dTTP y dGTP (Boehringer Manheim GmbH, Hilden, Germany), y 0.2 μM de cada cebador (Eurogentec, Seraing, Bélgica). Las mezclas de reacción de PCR se sometieron a 35 ciclos de desnaturalización a 94°C durante 30 s, una hibridación de los cebadores durante 30s, y una extensión a 72°C durante 2 min. Cada programa de amplificación empezaba por una etapa de desnaturalización a 95°C durante 2 minutos, y terminaba por una etapa de elongación a 72°C durante 10 minutos. La determinación de la secuencia de los extremos de los genes se ha realizado mediante la utilización del Universal GenomeWalker Kit (Clontech Laboratories, Palo Alto, CA). Brevemente, el ADN genómico era digerido por Eco RV, Dra I, Pvu II, Stu I y Sca I. Los fragmentos de ADN se unen con el GenomeWalker adaptor. La PCR se ha realizado incorporando el cebador "adaptor primer" proporcionado por el fabricante y los cebadores específicos. Para la amplificación, se utilizan 1,5 U de enzima ELONGASE (Boehringer Manheim) con 10 pmol de cada cebador, 20 mM de cada dNTP, 10 mM Tris-HCl, 50 mM KCl, 1,6 mM MgCl₂ y 5 µl de ADN digerido para un volumen final de 50 µl. Los amplicones se purificaron con la ayuda del "QIAquick spin PCR purification kit " (Qiagen). Las reacciones de secuencia se realizaron con la ayuda de los reactivos del secuenciador ABI Prism 3100 ADN séquencer (dRhod.Terminator RR Mix, Perkin Elmer Applied Biosystems).

Estas condiciones de extracción del ADN y amplificación PCR y secuenciación se describen en Khamis et al. 2003.

1.3- Determinación de las secuencias parciales discriminantes en el gen *rpoB*.

A fin de detectar las porciones de secuencia con una alta variabilidad rodeadas de regiones conservadas, se ha utilizado el programa SVARAP (para Sequence VARiability Analysis Program, Hypertext link "descarga" en la página URL: http://ifr48.free.fr/recherche/jeu_cadre/jeu_rickettsie.html). Una vez realizado este análisis, las zonas más polimórficas del gen *rpo*R se determinan y se designan unos cebadores universales, seleccionados en las zonas bordeantes conservadas, después de diferentes ensayos infructuosos. Las condiciones de PCR que incorporaban los cebadores universales son las mismas que las mencionadas anteriormente. Estos cebadores se utilizan para la amplificación y la secuenciación de las 4 zonas hipervariables para todas las cepas estudiadas.

Estos cebadores son presentados en la tabla 3 siguiente y en la figura 1.

15 1.4- Análisis de las secuencias rpoB y unos fragmentos intergénicos que lo bordean.

Los fragmentos de secuencias de los genes *rpoB* y de los fragmentos intergénicos que lo bordean obtenidos en este estudio, se analizaron con la ayuda de "Sequence Analysis Software" (Applied Biosystems), y las secuencias parciales se combinaron en una sola secuencia consenso con la ayuda del "Sequence Assembler Software" (Applied Biosystems). Todas las referencias de depósito de las cepas a la Colección del Instituto Pasteur («CIP») (Francia, Paris) están listadas en la tabla 1. Las alineaciones múltiples y los porcentajes de similitud entre los genes de diferentes especies se realizaron mediante CLUSTAL W en el servidor EMBL-EBI (http://www.ebi.ac.uk/clustalw/) (Thompson *et al.*1994). Unos árboles filogénicos se realizaron a partir de las secuencias mediante el método de "neighbor-joining"(Felsenstein *et al.*1989). Los "bootstraps" se realizaron para evaluar la solidez de los nudos utilizando SEQBOOT en el programa PHYLIP.

2- Resultados

20

25

30

35

40

45

50

55

60

a. Secuencias completas de los genes rpoB de las diferentes especies de Acinetobacter

Los cebadores designados han permitido amplificar las regiones ensayos de todas las cepas del trabajo; el tamaño del gen completo es de 4089 pb para todas las especies. Los porcentajes de similitud entre las cepas varían del 83 al 94%, salvo 2 pares de especies (tabla 4). En efecto, 2 pares de especies, *A. junii/A. grimontii* y *A. baylyi/*especie genómica 11 tienen unas similitudes del 99%. Las otras especies tienen menos del 95% de similitud entre sí.

b. Identificación de las diferentes especies de Acinetobacter basadas en las secuencias parciales del gen rpoB.

El programa SVARAP ha permitido la identificación de 2 zonas variables bordeadas por unas zonas conservadas que han permitido generar unos cebadores universales:

- zona 1: entre las posiciones 2900 y 3250, y

- zona 2: entre las posiciones 3250 y 3700 pb (figura 1).

Estas zonas son amplificadas con la ayuda de los cebadores suscitados en todas las especies de *Acinetobacter* y todas las cepas de *A. baumannii*. El tamaño de la zona 1 es de 350 pb y la zona 2 es de 450 pb. El porcentaje de similitud entre las diferentes especies de la zona 1 varía del 78,6 al 95,4% para todas las especies excepto 2 pares. En efecto, como para la secuencia completa, *A. baylyil* especie genómica 11 y *A. juniil/A. grimontii* tienen los valores de similitud más elevados, respectivamente el 98 y el 99,1%, mientras que las otras especies tienen menos del 96%. El porcentaje de similitud de la zona 2 es entre el 75,8 y el 95,3% para todas las especies salvo, ahí también, las especies *A. juniil/A. grimontii* y *A. baylyil* especie genómica 11 que tienen similitudes más altas, respectivamente el 98,8 y el 99,6%, mientras que las otras especies tienen menos del 96% entre sí.

La similitud intraespecífica de las diferentes cepas de *A. baumannii* para la zona 1 varía del 98,3 al 100% con la excepción de la cepa CIP 103655. En efecto, esta cepa posee sólo entre el 94,9 y el 95,7% con las otras cepas. De la misma manera, la zona 2 varía del 98,7 al 100% para todas las cepas de *A. Baumanii* con la excepción de la cepa CIP 103655. Esta cepa tiene unas similitudes comprendidas entre el 93,6 y el 94,4% con las otras cepas de la especie. Las especies más próximas de *A. baumannii* son especie genómica 3 para la zona 1 y *A. calcoaceticus* para la zona 2 con similitudes respectivas del 95,1% y del 93,6%. Son valores claramente inferiores a la variabilidad intraespecífica con la excepción de la cepa CIP 103655, para la cual la cepa de *A. baumannii* más alejada posee el 94,9% y el 93,6% de similitud, respectivamente en las zonas 1 y 2.

En total, la variabilidad de secuencia es del 0,4 al 24,2% para las secuencias parciales contra el 0,8 al 16,9% para las secuencias completas de rpoB. Las 2 secuencias parciales permiten por lo tanto una identificación no ambigua de las 24 especies.

65

c. Análisis de las zonas flanqueantes del gen rpoB (fragmento intergénico *rpl*L-*rpo*B y fragmento intergénico *rpo*B-*rpo*C).

El tamaño de los 2 fragmentos intergénicos es variable en función de las especies. El tamaño del fragmento intergénico entre *rpl*L y *rpo*B varia de 301 a 310 pb (tabla 1). Entre las especies, el porcentaje de similitud de este fragmento intergénico *rpl*L-*rpo*B varía del 80,8 al 96,9%, salvo que el fragmento intergénico es idéntico entre *A. junnii* y *A. grimontii*, y los pares de especies como *A. baylyi*-especie genómica 11 y *A. lowffii*-especie genómica 9 tienen unos porcentaje de similitud comprendidos entre el 98,4 y el 99,7%.

El tamaño del fragmento intergénico entre *rpo*B y *rpo*C varía de 86 a 177 pb (tabla 19 con unos porcentaje de similitud entre las especies comprendidos entre el 70,2 y el 96,5%, salvo para *A. junniil/A. grimontii* que tienen una similitud elevada del 99,5%, y dentro del complejo Acb (*.A. calcoaceticus*, *A. baumannii* y especie genómica 3) cuyos porcentajes de similitud están comprendidos entre el 98,5 y el 99,0% para el fragmento intergénico *rpo*B-*rpo*C. Sin embargo, con respecto al fragmento intergénico *rpl*L-*rpo*B, *A. baylyi*-especie genómica 11 y *A. lwoffii*-especie genómica 9 sólo tienen el 83,8 y el 87,9% respectivamente de porcentaje de similitud para el fragmento intergénico *rpo*B-*rpo*C.

Dentro de la especie *A. baumannii*, el tamaño del fragmento intergénico *rpl*L-*rpo*B es de 305 pb para todas las cepas con la excepción de la cepa CIP 103655 para la cual el tamaño es de 304 pb. El fragmento intergénico *rpo*B-*rpo*C tiene un tamaño de 86 pb para todas las cepas. Todavía en esta especie, el porcentaje de similitud en el fragmento intergénico *rpl*L-*rpo*B varía del 99 al 100% para todas las cepas con la excepción de la cepa CIP 103655. Esta cepa posee entre el 96,1 y el 96,4% de similitud con las otras cepas. El otro fragmento intergénico *rpo*B-*rpo*C es 100% similar para todas las cepas, con la excepción de la cepa CIP 103655, que es del 97,7 al 98,8% similar a las otras cepas. La especie más próxima de *A. baumannii* es especie genómica 3 para el fragmento intergénico *rpl*L-*rpo*UB y *A. calcoaceticus* para el fragmento intergénico *rpo*B-*rpo*C con similitudes respectivas del 95,9% y el 98,5%. Son valores claramente superiores a la similitud intra-específica, con la excepción de la cepa CIP 103655 para la cual las especies de *A. baumannii* tienen similitudes del 96,1% y del 97,7% respectivamente para los fragmentos intergénicos *rpl*L-*rpo*H y *rpo*B-*rpo*Q.

De hecho, como se destaca de las posiciones de los cebadores de las secuencias SEC ID nº 5, 6, 7 y 8, los fragmentos que corresponden a los amplificados obtenidos con la ayuda de estos cebadores tienen unas secuencias que superan las de los fragmentos intergénicos propiamente dichos en los extremos 5' y 3', pero las secuencias SEC ID nº 121 a 144 y 165 a 188 dadas en el listado de secuencias anexo a la presente descripción, corresponden a los fragmentos intergénicos completos y no desbordan en los genes rplL, rpoB y rpoC respectivamente.

d. Análisis filogénico de las especies de Acinetobacter.

El árbol filogénico construido con las secuencias completas del gen *rpo*B construido mediante la técnica del "neighbour-joining" está soportado por valores muy altos de bootstrap (figura 2). El número de valores de bootstratp ≥ 75% es de 17/22 utilizando el gen *rpo*B completo mientras que es de sólo 7/22 por la utilización del gen 16S rRNA (p<0,01). Todas las especies están bien separadas en diferentes grupos. El árbol basado en el gen *rpo*B parcial (zona 1 y zona 2 concatenadas) muestra un grupo homogéneo de las cepas de *A. baumannii*. La cepa CIP 103655 aparece en el mismo grupo pero está claramente separada de los otros aislados de *A. baumannii*. Este agrupamiento está soportado por un valor de bootstrap del 85%.

2.4- Discusión

5

35

40

45

50

55

60

65

Con la excepción del gen 16S rRNA, no existe actualmente ninguna secuencia de gen de mantenimiento realizado sobre todas las especies de *Acinetobacter*. Las secuencias de los genes gyrB y recA no están disponibles para las 10 especies descritas más recientemente. En efecto, Yamamoto *et al.* (1996, 1999) y Krawczyk *et al.* (2002) han secuenciado los genes *gyr*B y *rec*A de 14 especies y han comparado esta técnica con la hibridación ADN-ADN (Bouvet y Jeanjean, 1989; Bouvet y Grimont, 1986; Tjernberg y Ursing, 1989). Mediante la construcción de un árbol basado en el gen *rpo*B que incorpora 14 especies, no se observa ninguna congruencia entre las diferentes especies. Sin embargo, el árbol basado en el gen *rpo*B tiene de manera significativa más valores de bootstrap ≥ 75% (11/12) que el basado en el gen 16S rRNA (4/12), *gyr*B (5/12) y *rec*A (6/12) (p < 0,01, p = 0,01 y p = 0,02 respectivamente) (figura 4). Esto demuestra la solidez del árbol basado en el gen *rpo*B. *A. lwoffi* y *Acinetobacter* especie genómica 9 son 100% idénticos en el gen *gyr*B, pero están separados en la secuencia de *gyr*D y *rec*A (Yamamoto *et al.*, 1999; Krawczyk *et al.* (2002). Las especies mal delimitadas por el gen *rpo*B son los pares *A. grimontiil A. junii* y A. baylii/especie genómica 9. Desafortunadamente, es imposible compararlos en *gyr*B y *rec*A, no estando disponibles las secuencias de *A. grimontii* y *A. baylii*.

Para la identificación molecular rutinaria de *Acinetobacter*, puede ser utilizada cada una de las secuencias parciales del gen rpoB y de los 2 fragmentos intergénicos que la bordean, debido a su poder discriminante y a su longitud. El inconveniente de la utilización de una sola de estas secuencias es la ausencia de buena discriminación entre los pares *A. grimontii/A. junii* y *A. baylii/*especie genómica 9 (Tabla 4 a 11). Sin embargo, este inconveniente puede ser reducido combinando la secuencia de por lo menos 2 de estas secuencias hipervariables. Debido a su tamaño, se

cree que es preferible empezar por la secuencia de la zona 1, ya que permite identificar perfectamente 20 especies sobre 24. Si las secuencias obtenidas son las de *A. grimontiil/A. junii*, es mejor realizar a continuación la secuencia de la zona 2 que diferencia mejor estas 2 especies. Si la secuencia obtenida es más próxima de *A. bayliil*/especie genómica 9, será preferible determinar la secuencia del fragmento intergénico *rpoB-rpoC* que discrimina mejor estas 2 especies.

5

10

La variabilidad intraespecífica de los fragmentos cortos observados dentro de la especie *A. baumannii* muestra que, a excepción de la cepa CIP 103655, todos los aislados tienen similitudes claramente inferiores a las que se pueden observar entre *A. baumannii* y las especies que le son más próximas. Sin embargo, las similitudes débiles observadas entre la cepa de *A. baumannii* CIP 103655 y los otros aislados de la especie muestran que la identificación de ciertos aislados de esta especie puede quedar ambigua. La especie *A. baumannii* es la especie la más frecuente en afección en el ser humano. Los resultados muestran que la cepa CIP 103655 es una cepa diferente de las 24 especies catalogadas y no es probablemente una cepa de especie *A. baumannii*.

En conclusión, los resultados obtenidos por la utilización de las secuencias parciales del gen *rpoB* y los fragmentos intergénicos *rplL-rpoB* y *rpoB-rpoC* muestran que estas herramientas son eficaces para la identificación molecular rutinaria de las cepas de *Acinetobacter*. Sin embargo, debido a la fuerte similitud entre ciertas especies, serán necesarios unos trabajos complementarios que estudian las similitudes intraespecíficas en varias especies. Asimismo, el estatuto de ciertas cepas como la cepa de *A. baumannii* CIP 103655 y de ciertas especies como *A. grimontii* y *A. baylii*, deberá ser estudiado por hibridación ADN-ADN y secuencias de otros genes de mantenimiento (*recA* y *gyrB*).

Tabla 1. Cepas de *Acinetobacter* estudiadas.

Especie	Сера	SEC ID	SEC ID	SEC ID	fragme	entos inter	génicos com	
	-	<i>rpo</i> B	rpoB zona	rpoB zona	rpIL - i		rpoB -	· rpoC
		completada	1	2	SEC ID n°	Tamaño	SEC ID n°	Tamaño
especie genómica 1, <i>A. calcoaceticus</i>	CIP 81.8 ¹	9	33	77	121	305	165	86
especie genómica 2, <i>baumannii</i>	CIP 70.34 ¹	10	34	78	122	305	166	86
	1072.1 (ref)		57	101	144	305	189	86
	CIP 53.77		58	102	145	305	190	86
	CIP 53.79		59	103	146	305	191	86
	CIP 54.97		60	104	147	305	192	86
	CIP 54.147		61	105	148	305	193	86
	CIP 64.1		62	106	149	305	194	86
	CIP 68.38		63	107	150	305	195	86
	CIP 70.8		64	108	151	305	196	86
	CIP 70.9		65	109	152	305	197	86
	CIP 70.10		66	110	153	305	198	86
	CIP 70.21		67	111	154	305	199	86
	CIP 70.22		68	112	155	305	200	86
	CIP 70.24		69	113	156	305	201	86
	CIP 70.28		70	114	157	305	202	86
	CIP 70.32		71	115	158	305	203	86
	CIP 70.33		72	116	159	305	204	86
	CIP 70.35		73	117	160	305	205	86
	CIP 103572		74	118	161	305	206	86
	CIP 103655		75	119	162	304	207	86
	CIP 105742		76	120	163	304	208	86
especie genómica 3	CIP 70.15	11	35	79	123	305	167	86
especie genómica 4, <i>A. haemolyticus</i>	CIP 64.3 ¹	12	36	80	124	308	168	172
especie genómica 5, <i>A. junii</i>	CIP 64.5 ¹	13	37	81	125	308	169	149
especie genómica 6	CIP Al65	14	38	82	126	308	170	170
especie genómica 7, <i>A. johnsonii</i>	CIP 64.6 ¹	15	39	83	127	301	171	141
especie genómica 8, <i>A. Iwoffii</i>	CIP 64.KF	16	40	84	128	308	172	177
especie genómica	CIP 64.7	17	41	85	129	306	173	150

Especie	Сера	SEC ID	SEC ID	SEC ID	fragme	entos inter	génicos con	pletos
		rpoB	<i>rpo</i> B zona	rpoB zona	rpIL - r	роВ	rpoB -	· rpoC
		completada	1	2	SEC ID n°	Tamaño	SEC ID n°	Tamaño
9								
especie genómica 10	CIP 70.12	18	42	86	130	307	174	144
especie genómica 11	CIP 63.46	19	43	87	131	304	175	154
especie genómica 12, A. radioresistens	CIP 103788 ¹	20	44	88	132	304	176	89
especie genómica 13	CIP 70.18	21	45	89	133	309	177	154
especie genómica 16	CIP 64.2	22	46	90	134,	309	178	153
A schindleri	CIP 107287 ¹	23	47	91	135	310	179	159
A. ursingii	CIP 107286 ¹	24	48	92	136	308	180	136
A. baylyi	CIP 107474 ¹	25	49	93	137	304	181	88
A. bouvetii	CIP 107468T	26	50	94	138	305	182	156
A. gerneri	CIP 107464 ¹	27	51	95	139	309	183	170
A. gimontii	CIP 107470 ¹	28	52	96	140	308	184	150
A. tandoii	CIP 107469 ¹	29	53	97	141	306	185	156
A. tjernbergiae	CIP 107465 ¹	30	54	98	142	307	186	143
A. towneri	CIP 107472 ¹	31	55	99	143	307	187	157
A. parvus	CIP 108168 ¹	32	56	100	144	308	188	143

Tabla 2: Cebadores utilizadas para amplificar el gen rpoB y sus zonas flanqueantes

n°	Cebador	secuencia (5'-3')	Posición	Tm (°C)
1.	AcintF ^a	GGTAAAGTDACRCCTAAAGGT		60°C
2.	AcintR ^a	GTATGAACGTGGGDCAGATT		58°C
3.	Ac28F ^a	GTDGGTACVGGYATGGAA		52°C
4.	Ac1754R ^a	GAACGYGCRTGCATYTTGTCA		60°C
5.	Ac822F	CGYAAAGAYTTGAAAGAAGA		54°C
6.	Ac840R	CTTCTTTCAARTCTTTRCGRT		60°C
7.	Ac660F	GAYGTDAAAGAYTCATCTTTA		54°C
8.	Ac1720R	GAACGYGCRTGCATYTTGT		60°C
9.	Ac660R	CGTAAAGATGARTCTTTHAC		54°C
10.	Ac1700F	GACAARATGCAYGCRCGTT		60°C
11.	Ac696F*	TAYCGYAAAGAYTTGAAAGAAG		60°C
12.	Ac1093R*	CMACACCYTTGTTMCCRTGA		60°C
13.	Ac1055F*	GTGATAARATGGCBGGTCGT		60°C
14.	Ac1598R*	CGB GCRTGCATYTTGTCRT		58°C
15.	AcintlF ^b	AAGAAGCWGGYGCTAMAG	-	55°C
16.	Acint2F ^D	CTKGGYCTKAAAGAAGCYAA	-	58°C
17.	Acint3F ^b	CTGCTGCYGYTGTTGAAGA	-	58°C
18.	AcintlR ^b	GGTAGTTRATGGTTTCMGG	+	56°C
19.	Acint2R ^b	GTTRATGGTITCMGGCTTYTT	+	59°C
20.	Acint3R ^b	GGTTTCMGGCTTYTTAACTT	+	56°C
21.	Ac1F ^a	ATGGCWTACTCAYATACYGA	1	57°C
22.	Ac4F ^a	GCWTACTCATAYACYGARAA	4	56°C
23.	Ac8F ^a	ACTCATAYACYGARAARAAAC	8	56°C
24.	Ac361F	GARCAAGAAGTMTACATGGG	361	58°C
25.	Ac1215F	GTTCAACCGYCGTWTSGGT	1215	59°C
26.	Acl503F	GATCAACGCCAAGCCDGT	1503	57°C
27.	Ac2071F	GGYTCRAACATGCAGCGT	2071	56°C
28.	Ac2267F	GYGTVGAYATCTACAACCT	2267	55°C
29.	Ac3684F	TGAYGGHCGTACDGGYG	3684	56°C
30.	Ac3753F	CCAYTTRGTDGAYGACAAAAT	3753	56°C
31.	Ac3850F	TTCGGTGGTCAGCGYTTC	3850	57°C
32.	Ac28R	GTTTYTTYTCRGTRTATGAGT	28	56°C
33.	Ac55R	GCAAYTTRCYAAARTYCTT	55	59°C
34.	Ac211R	CAGCATTGCCRGARTARCT	211	57°C

n°	Cebador	secuencia (5'-3')	Posición	T <i>m</i> (°C)
35.	Ac380R	CCCATGTAKACTTCTTGYTC	380	58°C
36.	Ac1221R	GTTGAACTTCATVCGDCCWA	1221	55°C
37.	Ac1523R	GCHACHGGCTTGGCGTT	1523	56°C
38.	Ac2093R	GCCTGACGCTGCATGTT	2093	55°C
39.	Ac2314R ^a	TGTTCTGGTTBGAACGVGT	2314	56°C
40.	Ac2928R ^a	GHGCHGCTTCTTCRAAGA	2928	55°C
41.	Ac2936R ^a	CGYTCACGHGCHGCTTCT	2936	55°C
42.	Ac1170F	GCTTCCATYTGGCGHACRT	1170	58°C
43.	Ac1705F	GTACGTCACGBACYTCRAA	1705	58°C
44.	Ac1804F	TCCATRAACTGDGAYAAYTG	1804	56°C
45.	Ac2231F	GTATCACGYGCDACACAHGA	2231	60°C
46.	Ac2348F	GTCATGAAYGCDACRCGCA	2348	58°C
47.	Ac1379R	CGGTTACCYAARTGRTCRAT	1379	58°C
48.	Ac1391R	GAACGNACRCGVCGGTTA	1391	58°C
49.	Ac2325R	GTTRATACADGTRTTYTGGTT	2325	56°C
50.	Ac2439R	GAACGCRACRCGCATGTT	2439	56°C
51.	Ac2442R	CATGAACGCRACRCGCAT	2442	56°C

Tabla 3: Cebadores utilizados para amplificar y secuenciar la zona 1 y la zona 2 del gen *rpo*B así como los fragmentos intergénicos que la flanquean de las especies de *A. cinetobacter* del presente estudio.

cebadores	SEC ID n°	secuencia (5'-3')	Posición*	Tm (°C)	Diana
Ac696F	1	TAYCGYAAAGAYTTGAAAGAAG	+2916	60°C	rpoB zona 1
Ac1093R	2	CMACACCYTTGTTMCCRTGA	+3267	60°C	rpoB zona 1
Ac1055F	3	GTGATAARATGGCBGGTCGT	+3263	60°C	rpoB zona 2
Ac1598R	4	CGBGCRTGCATYTTGTCRT	+3773	58°C	rpoB zona 2
AcintLBF	5	GAAGARCTTAAGAMDAARCTTG	-361	60°C	Espaciador rplL-rpoB
AcintLBR	6	CGTTTCTTTTCGGTATATGAGT	+29	60°C	Espaciador rplL-rpoB
AcintBCF	7	GTTCTTTAGGTATCAACATTGAA	+4048	60°C	Espaciador rpoB- rpoC
AcintBCR	8	GACGCAAGACCAATACGRAT	+4207	59°C	Espaciador rpoB- rpoC
* se trata de	la composi	ción del primer nucleótido de la secu	encia ceba	dor con r	respecto al gen rpoB

Tabla 4: Comparación del porcentaje de similitud (%) del gen rpoB (4089 pb) entre las diferentes especies de Acinetobacter

	~	7	က	4	2	9	7	8	9	1,	12	13	10 11 12 13 14 15 16 17 18 19	15	16	17	18	19	20	21	22	23
[1] A. calcoaceticus																						
[2] A. genospecies 3	93,9																					
[3] A. baumannii	92,093,8	33,8																				
[4] A. genospecies 16	88,688,789,4	38,78	89,4																			
[5] A. parvus	87,98	38,38	87,988,389,093,9	93,9																		
[6] A. genospecies 13	89,48	39,56	90,06	89,489,590,094,493,7	33,7																	
[7] A. tjerubergiae	89,48	39,08	89,4	91,95	89,489,089,491,991,693,3	6,0																
[8] A. grimonti	87,78	37,98	88,6	91,86	87,787,988,691,891,792190,1	219	0,1															
[9] A. <i>junii</i>	87,58	37,88	88,6	91,69	87,587,888,691,691,892,090,099,2	2,09	90,0	9,5														
[10] A. baemolyticus	88,0	38,38	89,1	92,56	31,89	2,19	0,49	88,088,389,192,591,892,190,491,791,9	<u>۔</u> ق													
[11] A. genospecies 6	87,88	37,88	87,5	90,18	39,59	0,48	9,89(87,887,887,590,189,590,489,890,190,190,6	0,190	ō,												
[12] A. bouvetii	84,88	35,28	85,68	85,88	35,48	6,18	5,48	84,885,285,685,885,486,185,484,384,485,384,8	1,485	,384	ω											
[13] A. johnsonii	86,68	36,88	87,28	87,88	37,78	8,48	7,68	86,686,887,287,887,788,487,686,886,787,386,688,6	3,787	,386	,688,	9										
[14] A. genospecies 9	85,58	36,38	86,2	86,58	36,18	6,28	5,28	85,586,386,286,586,186,285,285,185,085,985,187,688,4	5,085	,985	,187,	688,	4									
[15] A. <i>Iwoffi</i>	85,78	36,48	85,9	86,88	35,98	6,98	5,78	85,786,485,986,885,986,985,785,285,086,185,486,988,493,3	5,086	,185	,486,	988,	493,3	~								
[16] A. schindleri	86,08	36,78	86,98	87,28	36,88	7,48	6,48	86,086,786,987,286,887,486,485,985,786,385,788,488,790,790,5	5,786	,385	,788,	488,	790,7	790,	10							
[17] A. towneri	85,18	35,28	85,7	86,28	36,08	6,58	5,58	85,185,285,786,286,086,585,586,486,586,586,086,088,087,386,787,0	3,586	,586	,086,	088,	087,3	386,	787,(_						
[18] A. tandoii	86,48	37,08	86,7	87,58	37,48	8,08	7,28	86,487,086,787,587,488,087,287,387,487,987,186,487,986,486,887,487,	7,487	,987	,186,	487,	986,	186,8	387,4	187,1						
[19] A. baylyi	86,58	36,68	87,2	87,48	36,78	7,68	6,68	86,586,687,287,486,787,686,686,787,286,386,287,086,986,986,786,086,7	3,787	,286	,386,	287,	086,5	386,9	386,7	786,0	7,980					
[20] A. genospecies 11 86,686,987,387,687,087,986,986,886,987,486,586,387,387,187,286,986,186,899,2	86,68	36,98	87,3	87,68	37,08	7,98	6,98	6,886	3,987	,486	,586,	387,	387,	187,	286,5	386,1	86,8	99,2				
[21] A. genospecies 10 86,686,987,387,487,788,287,687,287,586,986,487,486,686,787,485,587,492,392,5	86,68	36,98	87,3	87,48	37,78	8,28	7,68	7,287	7,287	,586	,986,	487,	486,6	386,7	787,4	185,5	87,4	92,3	92,5			
[22] A. gerneri	86,58	36,78	87,6	86,98	36,98	7,78	7,48	86,586,787,686,986,987,787,487,387,387,586,986,887,786,386,486,787,087,688,788,989,0	7,387	,586	,986,	887,	786,3	386,4	186,7	787,0	9,78	88,7	88,9	89,0		
[23] A. ursingii	85,78	36,08	85,6	85,48	35,78	5,98	6,38	85,786,085,685,485,785,986,385,385,386,286,584,385,585,184,985,285,386,585,385,585,386,1	5,386	,286	,584,	385,	585,	184,9	385,2	285,3	386,5	85,3	85,5	85,3	36,1	
[24] A. radioresistense	84,284,584,984,684,484,484,184,484,284,484,283,183,284,684,384,984,683,984,184,083,784,385,2	34,58	84,9	84,68	34,48	4,48	4,18	4,48	1,284	,484	,283,	183,	284,6	384,	384,5	384,6	83,9	84,1	84,0	83,7	34,38	35,2
																						j

Tabla 5: Comparación de los porcentaje de similitud (%) de las secuencias (301-310 pb) fragmentos intergénicos rp/L-rpoB de las diferentes especies Acinetobacter.

23																						90,3
22																					86,5	
21																				ω	86,5	ω
20																			92,8	∞	83,3	2
19																		26,7	Ŋ	ις	83,0	7
18																	34,9	Ŋ	ဖ	_	84,9	Ŋ
17																90,3					86,5	
16															87,4	တ	က	9	∞	2	84,9	2
15														36,5							86,2	
14													91,5								85,8	
13												95,9									86,2	
12											98,4										86,8	
11										82,8											85,2	
10									91,2												86,8	
6								93,4													87,7	
∞							0,00	93,4													87,7	
7						93,1	•														86,8	
9					94,0	91,2	91,2	92,1	ဖ												86,2	
2				93,4	93,7	93,4	93,4														87,4	
4			93,4	6,96		91,5			91,2						_	84,0	4	81,8	က			85,2
က		86,5	∞			88,4			86,2										84,9			85,5
2	i i		87,4																			84,9
_	92,8	90,6 84,0																			86,2	82,8
	3				~	~	~	~	9		~	~	~	~	~	~	~					
	A. calcoaceticus especie genómica	A. baumanıı especie genómica 13	especie genómica 16		giae			lyticus	11] especie genómica	12] especie genómica 9		eri	:=	Ξ	_			[20] especie genómica 11	[21] especie genómica 10		[23] A. radioresistense	
	A. calcoaceticus especie genómic	aumar ³cie ge	scie ge	A. parvus	A. tjernbergiae	ΞĒ	rimonti	haemo	ecie g	ecie g	\woffii	4] A. schindleri	15] A. bouvetii	osuuo	owner	A. tandoii	baylyi	ecie g	ecie g	gerner	radiore	ursingi
	[1] A. ca [2] espe	[3] A. baumanıı [4] especie ger	[2] esbe	[6] A. pa	7] A. tje	[8] A. junii	[9] A. grimontii	[10] A. haemolyticus	11] esp	12] esp	13] A. Iwoffii	14] A. t	15] A. I	[16] A. johnsonii	17] A. 1	18] A. t	19] A. baylyi	20] esp	21] esp	[22] A. gerneri	23] A. ı	[24] A. ursingii
I	ا کا ت	<u></u>	. 2	<u> </u>	ت	~	<u>~</u>	ù	·	<u> </u>	ù	<u> </u>	ù	ù	<u> </u>	ٺ	<u> </u>	Ľ	Ľ	Ľ	Ľ	二

Tabla 6: Porcentaje de similitud (%) de las secuencias (301-310 pb) fragmentos intergénico rpoB-rpoC (86-177 pb) de las diferentes especies de Acinetobacter.

	_	0	ď	4	ĸ	G	7	α	σ	10	11	12	73	14	15	16	17	2,	19	20	21	22	23
[1] especie genómica 6	-	ı	,		,	,		,	,	2			2		2				2	ì			ì
[2] A. haemolyticus	92,4																						
[3] A. junii	90,4	89,4																					
[4] A. grimontii	6,06	6,68	99,5																				
[5] A. calcoaceticus	90,4	6,68	91,4	91,4																			
[6] especie genómica 3	6'06	6,68	91,9	91,9	0,66																		
[7] A. baumaniii	90,4	89,9	91,4	91,4	98,5	98,5																	
[8] especie genómica 13	76,3	75,3	78,8	79,3	92,9	93,4	92,9																
[9] especie genómica 16	75,3	75,3	77,8	78,3	91,9	92,4		96,5															
[10] A. parvus	79,3	79,3	79,8	80,3	91,4	91,4		86,4	85,9														
[11] A. tjerubergiae	80,3	80,8	81,3	81,8	93,4	93,4		86,4		91,4													
[12] A. tandoii	74,2	77,8	75,8	76,3	90,4	91,4		79,8			8,67												
[13] A. towneri	74,2	77,3	78,8	79,3	88,4	89,4		8,97				85,4											
[14] A. baylyi	82,8	81,8	80,3	80,8	88,4	87,9		84,8					82,8										
[15] especie genómica 11	78,3	79,8	77,3	77,8	88,9	89,9		77,3						83,8									
[16] especie genómica 10	75,3	77,3	77,3	76,8	88,4	88,4		79,3							30,8								
[17] A. gerueri	78,3	78,8	80,3	80,8	89,4	90,4		74,7								7,4,7							
[18] A. bouvetii	70,7	73,7	74,7	75,3	89,9	6'06		89,4									4,2						
[19] A. schindleri	70,2	73,7	72,7	73,2	6,06	91,9		88,9										92,6					
[20] A. johnsonii	75,3	77,8	74,2	73,7	89,4	89,4		73,2											7,8				
[21] especie genómica 9	76,8	79,8	80,8	81,3	90,4	91,4	90,4	80,3	82,3	79,3	81,3	81,8	82,8	82,3	78,8 7	77,3 7	76,3 8	84,8	84,8	8,08			
[22] A. Iwoffii	74,7	77,3	78,8	79,3	90,4	91,4		82,3													87,9		
[23] A. radioresistense	86,4	86,4	85,4	85,4	94,9	94,9		88,4												86,4	86,98	87,4	
[24] A. ursingii	77,3	75,3	79,8	79,3	6,06	91,4		81,3															88,4

Tabla 7: Comparación de los porcentajes de similitud (%) de las secuencias (350 pb) de las secuencias parciales de la zona 1 de rpoB de las diferentes especies de

		•			•			•	Acinet	Acinetobacter.	Ž.		·				•						
	~	2	က	4	2	9	7	8	6	10	7	12	13	41	15	16	17	18	19	20	21	22	23
[1] A. baumannii																							
[2] especie genómica 3	95,1																						
[3] A. calcoaceticus	88,3	90'6																					
[4] A. griwonti	87,1	86,6	88,0																				
[5] A. junii	6,98	86,3	87,1	99,1																			
[6] especie genómica 16	86,0	84,3	84,6	90,3	89,4																		
[7] A. parvus	87,1	85,7	84,0	91,4	90'6	95,4																	
[8] especie genómica 13	87,4	86,9	85,7	90,06	89,7	93,4	93,1																
[9] A. johnsonii	85,1	84,3	84,6	90,0	89,4	89,4		91,7															
[10] A. tjernbergiae	87,1	86,3	85,4	90,06	89,7	92,3			93,1														
[11] especie genómica 6	83,7	82,9	82,9	87,4	87,1	89,4	88,3	87,1	87,7	87,7													
[12] A. baemolyticus	7,78	85,4	85,1	87,7	87,4	92,0					90,3												
[13] A. schindleri	84,6	84,0	82,9	89,1	88,6	87,7						36,3											
[14] A. baylyi	85,1	84,0	82,6	85,1	84,9	86,0							34,9										
[15] especie genómica 11	85,1	84,3	82,9	85,1	84,9	85,7				85,4	85,7	85,7 8	85,7	98,0									
[16] A. bouvetii	84,6	84,6	81,1	85,4	85,7	84,9									39,4								
[17] especie genómica 10	82,9	82,6	90,8	84,6	83,7	84,9										5,1							
[18] A. gerueri	84,9	85,7	82,3	89,1	88,9	85,4											6,0						
[19] especie genómica 9	85,4	84,3	82,3	83,7	84,0	86,0								86,0 8	86,98	86,38	85,18	9,9					
[20] A. Iwoffii	83,7	85,1	83,1	83,4	83,7	85,7													13,7				
[21] A. towneri	81,7	80,9	4,18	85,1	85,4	84,9														0,4			
[22] A. ursingii	82,6	82,0	82,0	84,9	84,6	82,9															2,0		
[23] A. tandoii	83,4	82,6	82,0	88,6	88,3	89,4												87,4 8	85,18	85,7 8	84,98	83,7	
[24] A. radioresistense	79,7	78,9	78,6	82,0	81,1	82,0																	83,4

Tabla 8: Comparación de los porcentajes de similitud (%) de las secuencias (450 pb) de las secuencias parciales de la zona 2 de rpoB de las diferentes especies de

								•	Acinet	Acinetobacter .	۲.												
	~	2	က	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23
[1] A. calcoaceticus																							
[2] especie genómica 3	94,2																						
[3] A. baumannii	93,6	91,8																					
[4] especie genómica 13	89,3	90,0	88,4	4																			
[5] A. tjernbergiae	90,0	90,7	, 89,1																				
[6] especie genómica 16	88,2				93,1																		
[7] A. parvus	88,4	88,7																					
[8] A baylyi	84,7						86,2																
[9] especie genómica 11	84,2						86,2	96,6															
[10] especie genómica 10	84,0						86,9	94,9	95,3														
[11] A. bouvetii	86,2						84,9	87,3	87,3	88,0													
[12] A. schindleri	82,9						84,7	87,1	87,1	87,3	6,06												
[13] A. johnsonii	84,7						86,2	87,1	87,1	86,4	86,8	88,7											
[14] especie genómica 9	83,6						86,0	86,0	86,0	82,8	86,4		86,0										
[15] A. Iwoffii	83,6	85,6	83,3	3 84,4	84,0	82,8	84,2	86,4	86,4	82,8	86,4	88,0	86,7	95,1									
[16] A. gerneri	81,8						81,6	87,3	87,3	86,7	84,0			82,2	82,4								
[17] A. tandoii	82,2						83,1	82,9	82,9	82,2	83,1			6,08		83,1							
[18] A. towneri	83,6						83,3	83,3	83,3	83,8	84,0			85,1			88,7						
[19] A. haemolyticus	83,3						82,0	84,7	84,7	83,8	81,8			83,8	82,2	85,1	84,7	86,7					
[20] especie genómica 6	82,0	8					82,2	81,8	81,8	81,8	81,3			81,3					87,3				
[21] A. ursingii	81,8	81,3	80,7				79,8	80,0	9,6/	78,2	79,1			78,9					81,6	82,8			
[22] A. grimonti	80,9	81,6	81,6				83,1	80,2	80,2	81,6	78,2			82,7				84,7	84,9	82,8	81,6		
[23] A. junii	80,4	80,9	81,6	81,6	8,	82,4	82,9	80,4	80,4	81,3	78,4			6,08					85,6	86,0	80,9	98,0	
[24] A. radioresistense	75,8	76,0	. 77,	1 77,1	76,9	78,0	77,8	78,7	78,2	78,7	77,1			80,7					80,4	81,8	81,6	83,6	82,4
																							Ī

Tabla 9: Comparación de los porcentaje de similitud (%) de las secuencias (350 pb) de las secuencias parciales de la zona 1 de rpoB de las diferentes cepas de A.

									baumannii	iiuu										
epas	_	2	3	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20
64.1																				
6.07	100,0																			
70.33	100,0	100,0																		
105742	100,0	100,0	100,0																	
[5] 53.79	100,0	100,0	100,0	100,0																
70.8	99,4	99,4	99,4	99,4	99,4															
54.97	99,4	99,4	99,4	99,4	99,4															
70.32	98,3	98,3	98,3	98,3	98,3	98,9	98,9													
70.34	98,3	98,3	98,3	98,3	98,3	6,86	6,86	100,0												
] 68.38	98,3	98,3	98,3	98,3	98,3	6,86	98,9	99,4	99,4											
] 70.24	98'6	98'6	98,6	98,6	98,6	99,1	99,1	2,66	266	2,66										
53.77	99,1	99,1	99,1	99,1	99,1	2,66	2,66	99,1	99,1	99,1	99,4									
54.147	99,1	99,1	99,1	99,1	99,1	2,66	2,66	99,1	99,1	99,1	99,4	100,0								
70.10	99,1	99,1	99,1	99,1	99,1	2,66	2,66	98'6	98,6	98,6		99,4	99,4							
1072.1	98,9	98,9	6,86	6,86	98,9	99,4	99,4	98,3	98,3	98,3		99,1	99,1	2,66						
] 70.21	99,1	99,1	99,1	99,1	99,1	2,66	2,66	98'6	98,6	98,6		99,4	99,4	100,0	2,66					
] 70.28	98,9	98,9	6,86	98,9	98,9	99,4	99,4	98,3	98,3	98,3		99,1	99,1	2,66	99,4	2,66				
] 70.35	98,9	98,9	6,86	6'86	98,9	99,4	99,4	98,3	98,3	98,3		99,1	99,1	2,66	99,4	2,66	100,0			
] 70.22	99,1	99,1	99,1	99,1	99,1	2,66	2,66	98'6	98,6	98,6		99,4	99,4	99,4	99,1	99,4	2,66	2,66		
103572	6,86	98,9	6,86	98,9	6,86	99,4	99,4	98,3	98,3	98,3		99,1	99,1	99,1	98,9	99,1	99,4	99,4	2,66	
] 103655	95,4	95,4	95,4	95,4	95,4	95,4	95,4	94,9	94,9	94,9		95,1	95,1	95,1	94,9	95,1	95,4	95,4	95,7	95,4

94,4 Tabla 10: Comparación de los porcentajes de similitud (%) de las secuencias (450 pb) de las secuencias parciales de la zona 2 de rpoB de diferentes cepas de 20 99,6 94,0 9 99,6 99,6 94,0 99,6 99,1 93,6 99,6 99,6 99,6 93,6 99,0 99,0 99,0 99,0 8,0 8,0 100,0 99,6 99,1 99,6 99,1 100,0 100,0 99,6 99,1 99,6 99,6 99,6 99,8 100,0 100,0 100,0 99,6 99,6 99,6 8,8 8,8 9 0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0 $\begin{matrix} 000 \\ 00$ $\begin{matrix} 0.000 \\ 0.$ [1] 70.10 [2] 70.21 [3] 1072.1 [4] 103572 [5] 53.77 [6] 70.22 [7] 70.32 [8] 70.34 [9] (38.38 [10] 54.147 [11] 53.79 [12] 70.9 [13] 64.1 [14] 70.33 [15] 105742 [16] 54.97 [17] 70.8 [18] 70.24 [19] 70.35 [19] 70.35 baumannii

Tabla 11: Comparación de los porcentajes de similitud (%) de las secuencias del fragmento intergénico rp/L-rpoB de diferentes cepas de A. baumannii

	20																					96,4
	19																				99,3	96.7
	18																			100,0	99,3	26.7
	17																		100,0	100,0	99,3	2.96
	16																	100,0	100,0	100,0	99,3	96.7
	15																100,0	100,0	100,0	100,0	99,3	96.7
 - -	14															100,0	100,0	100,0	100,0	100,0	99,3	96.7
-	13														100,0	100,0	100,0	100,0	100,0	100,0	99,3	96.7
,	12													100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	2.96
,	11												100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	2.96
	10											100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	2.96
	6										100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	96.7
	ω									100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	96.7
	7								100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	96.7
	9							100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	296.7
,	2						100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	96.7
<u>-</u>	4					100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	2.96
	က				100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	96.7
_	2			2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	2,66	0,66	96.4
	_		2,66	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	99,3	2.96
	cepas	[1] 70.8	[2] 70.33	[3] 68.38	[4] 105742	[5] 64.1	[6] 103572	[7] 54.147	[8] 70.35	[9] 70.32	[10] 70.28	[11] 70.24	[12] 70.22	[13] 70.21	[14] 70.10	[15] 54.97	116] 53.79	[17] 53.77	[18] 70.9	[19] 70.34	[20] 1072.1	[21] 103655

20 86 Tabla 12. Comparación de los porcentajes de similitud (%) de las secuencias (301-310 pb) del fragmento intergénico rpoB-rpoC de diferentes cepas de A. baumannii 100,0 98,8 19 100,0 100,0 98,8 18 100,0 100,0 100,0 98,8 100,0 100,0 100,0 98,8 16 100,0 100,0 100,0 100,0 98,8 15 100,0 100,0 100,0 100,0 100,0 98,8 100,0 100,0 100,0 100,0 100,0 8,8 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 10 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 6 98,8 900,0 100 98.8 9.8 9.8 9.8 9.8 9.8 [1] 54.97 [2] 103655 [3] 70.10 [4] 70.24 [5] 70.33 [6] 70.34 [7] 70.35 [8] 1072.1 [9] 103572 [10] 105742 [11] 70.22 [12] 70.28 [13] 70.22 [14] 70.21 [15] 70.8 [16] 70.8 [17] 68.38 [18] 64.1 [19] 54.147 [20] 53.79

Referencias bibliográficas

10

25

50

60

- 1. Bouvet PJ, Jeanjean S. Delineation of new proteolytic especie genómica in the genus Acinetobacter. Res Microbiol. Mayo-junio de 1989;140(4-5):291-9.
 - 2. Bouvet, P.J.M., and Grimont, P.A.D. Taxonomy of the genus Acinetobacter with the récognition of *Acinetobacter baumannii* sp. nov., *Acinetobacter baemolyticus* sp. nov., *Acinetobacter johnsonii* sp. nov., and *Acinetobacter junii* sp. nov. and emended descriptions of *Acinetobacter calcoaceticns* and *Acinetobacter Iwoffii*. Int. J. Syst. Bacteriol., 1986, 36, 228-240.
 - 3. Carr EL, Kampfer P, Patel BK, Gurtler V, Seviour RJ. Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol. Julio de 2003;53(Pt 4):953-63.
- 15 4. Felseinstein 1989 1989. PHYLIPphylogeny inference package (versión 3.2). Cladistics 5:164-166.
 - 5. Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. febrero de 1991; 29(2): 277-82.
- 20 6. Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol. Octubre de 1992; 30(10):2680-5.
 - 7. Ibrahim A, Gerner-Smidt P, Liesack W. Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol. Julio de 1997; 47(3):837-41.
 - 8. Khamis A, Colson P, Raoult D, Scola BL. Usefulness of *rpoB* gene sequencing for identification of *Afipia* and *Bosea* species, including a strategy for choosing discriminative partial sequences. Appl Environ Microbiol. Noviembre de 2003; 69(11):6740-9.
- Krawczyk B, Lewandowski K, Kur J. Comparative studies of the *Acinetobacter* genus and the species identification method based on the *recA* sequences. Mol Cell Probes. Febrero de 2002; 16(1):1-11.
- 10. Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, van der Reijden TJ, Dijkshoorn L. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol. Septiembre de 2001; 51(Pt 5):1891-9.
- 11. Nemec A, Dijkshoorn L, Cleenwerck I, De Baere T, Janssens D, Van Der Reijden TJ, Jezek P, Vaneechoutte M. *Acinetobacter parvus* sp. nov., a small-colony-forming species isolated from human clinical specimens. Int J Syst Evol Microbiol. Septiembre de 2003; 53(Pt 5): 1563-7.
 - 12. Ochman y Wilson AC. R Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74-86.
- 13. Stackebrandt, E., y B. M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species définition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849.
 - 14. Rainey, F. A., E. Lang, y E. Stackebrandt. 1994. The phylogenetic structure of the genus *Acinetobacter*. FEMS Microbiol. Lett. 124:349-353.
 - 15. Tjernberg I, Ursing J.Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS. Julio de 1989; 97(7):595-605.
- 16. Towner KJ. Clinical importance and antibiotic résistance of *Acinetobacter* spp. Proceedings of a symposium held on 4-5 November 1996 at Eilat, Israël. J Med Microbiol. Septiembre de 1997; 46(9):721-46.
 - 17. Van Dessel H, Dijkshoorn L, Van Der Reijden T, Bakker N, Paauw A, Van Den Broek P, Verhoef J, Brisse S. Identification of a new geographically widespread multiresistant *Acinetobacter baumannii* clone from European hospitals. Res Microbiol. Marzo de 2004; 155(2):105-12.
 - 18. Thompson, J. D., D. G. Higgins, y T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22:4673-4680.
- 19. Yamamoto, S., y S. Harayama. 1996. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int. J. Syst. Bacteriol. 46:506-511.

- 20. Yamamoto, S., y S. Harayama. 1998. Phylogenetic relationships of *Pseudomonas putida* strains deduced from the nucleotide sequences of gyrB, rpoT) and 16S rRNA genes. Int. J. Syst. Bacteriol. 48:813-819.
- 5 21. Yamamoto, S., P. J. Bouvet, y S. Harayama. 1999. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. Int. J. Syst. Bacteriol. 49:87-95.

Listado de secuencias

- 10 <110> Université de la méditerranée (Aix-Marseille II) Centre National de la Recherche Scientifique (CNRS)
 - <120> Fragmentos de ácidos nucleicos y método de detección específica por identificación molecular de diferentes especies de bacterias del género *acinetobacter*
- 15 <130> H52 437 cas 14 FR <160> 208 <170> PatentIn versión 3.1 20 <210> 1 <211> 22 <212> ADN
- <213> secuencia artificial 25
 - <223> Secuencias conservadas del gen rpoB de las diferentes especies de bacterias del género *acinetobacter*
- <400> 1 30

taycgyaaag ayttgaaaga ag 22

- <210> 2 <211> 20
- 35 <212> ADN
 - <213> secuencia artificial
 - <220>
 - <223> Secuencias conservadas del gen rpoB de las diferentes especies de bacterias del género acinetobacter
- 40 <400> 2

cmacaccytt gttmccrtga 20

- 45 <210> 3
 - <211> 20
 - <212> ADN
 - <213> secuencia artificial
- 50 <220>
 - <223> Secuencias conservadas del gen rpoB de las diferentes especies de bacterias del género acinetobacter
 - <400>3
- 55 gtgataarat ggcbggtcgt 20
 - <210>4
 - <211> 19
 - <212> ADN
- 60 <213> secuencia artificial
 - <220>
 - <223> Secuencias conservadas del gen rpoB de las diferentes especies de bacterias del género acinetobacter
- 65 <400> 4

```
cgbgcrtgca tyttgtcrt 19
      <210> 5
      <211> 22
 5
      <212> ADN
      <213> secuencia artificial
      <223> Secuencias conservadas que rodean el spacer rp/L-rpoB de las diferentes especies de bacterias del género
10
             acinetobacter
      <400> 5
      gaagarctta agamdaarct tg 22
15
      <210> 6
      <211> 22
      <212> ADN
      <213> secuencia artificial
20
      <223> Secuencias conservadas que rodean el spacer rp/L-rpoB de las diferentes especies de bacterias del género
             acinetobacter
25
      <400>6
      cgtttctttt cggtatatga gt 22
      <210>7
30
      <211> 23
      <212> ADN
      <213> secuencia artificial
35
      <223> Secuencias conservadas que rodean el spacer rpoB-rpoC de las diferentes especies de bacterias del género
             acinetobacter
      <400> 7
40
      gttctttagg tatcaacatt gaa 23
      <210>8
      <211> 20
      <212> ADN
45
      <213> secuencia artificial
      <220>
      <223> secuencias conservadas que rodean el spacer rpoB-rpoC de las diferentes especies de bacterias del género
             acinetobacter
50
      <400>8
      gacgcaagac caatacgrat 20
55
      <210>9
      <211> 4089
      <212> ADN
      <213> Acinetobacter calcoaceticus
60
      <400> 9
```

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60
gtaatggaag	caccgtactt	actttcgatc	caggtcgatt	cgtatagaac	gttcttgcaa	120
ggtggcaaat	ctccaaaaaa	ccgcgaagat	atcggtctcc	aagccgcatt	tcgttcagtt	180
ttccctatag	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagccttggt	240
aagcctgagt	ttgatgtgcg	tgaatgtatt	ttacgtggtt	cgacttatgc	ggcaccaatg	300
cgcgtaaaaa	ttcgtttgat	tattaaagat	cgcgaaacta	aatctattaa	agacgtacgt	360
gaacaagaag	tctacatggg	tgaaatgcca	ctcatgacag	ataatggtac	ctttgtgatc	420
				•		
		cgtatctcaa				480
		ttcaagtggt				540
taccgtggtt	catggttaga	ttttgaattt	gatgcaaaag	atttagttta	tgtacgtatt	600
gaccgtcgtc	gtaaattatt	agcaactgtt	gtgttgcgcg	cattgggtta	taacaatgaa	660
caaattttga	atttgttcta	tgaaaaagtg	cctgtatatc	ttgatatggg	tagctatcaa	720
attgacctcg	ttecagateg	tetgegtgge	gaaatggcgc	aatttgatat	tgcagacaat	780
gacggtaaaa	tcattgttga	gcaaggtaaa	cgtattaatg	cacgtcacgt	acgtcaaatg	840
gaagcttctg	gtttagctaa	gctatcagtt	cctgatgagt	acctgtatga	gcgtatcact	900
gccgaagata	ttactttacg	taatggtgat	gtgattgctg	caaatacatt	gttaagccat	960
gaagttatgg	tgaaactggc	agaaggcggt	gttaaacagt	tcaatatctt	gtttacgaac	1020
gatattgacc	gtggttcatt	tgttgctgac	tcattacgtg	ctgacacaac	atctggtcgt	1080
gaagaagcat	tagttgaaat	ctataaagta	atgegeecag	gcgagccacc	aacaaaagaa	1140
gctgctgaaa	acttatttaa	taacttattc	ttctcttctg	aacgttatga	cttatctcca	1200
gtaggtcgta	tgaaattcaa	ccgtcgtttg	ggtcgcccat	acgaagttgg'	tactgaccag	1260
aagtcacgtg	aagtagaagg	tattttatcg	cacgaagata	tcatcgatgt	attacgtaca	1320
ttagttgaaa	teegtaacgg	taaaggtgaa	gtcgatgata	togatoactt	gggtaaccgt	1380
cgtgtacgtt	ctgttggtga	aatgactgaa	aaccaattcc	gtgttggttt	ggttegtgtt	1440
gaacgtgctg	ttaaagaacg	tttaagccaa	gcagaaacag	ataatttatc	tccgcaagat	1500
ctcattaacg	caaaaccagt	tgcagctgcg	atcaaagaat	totttggttc	aagccaattg	1560
tctcagttta	tggatcaaaa	caacccatta	totgagatta	cacataageg	tegtgtatea	1620
gcgctt ggac	ctggtggttt	aacacgtgaa	cgtgcgggct	ttgaagtacg	tgacgtacat	1680
caaactcact	atggtcgtgt	atgtccaatt	gaaacgccgg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgttta	tgcaaaagca	aatgattttg	gtttcttgga	aacaccttac	1800
cgtaaagtgg	tagatggccg	agtaactgat	gctgttgaat	acctttctgc	tattgaagaa	1860
gtaggtactg	ttattgcaca	ggccgattct	gcgatagata	aagatggtaa	cttaacagaa	1920
gattttgttt	ctgttcgtca	ccaaggtgac	tttgtacgta	tgccacctga	aaaagtgacg	1980
catatggatg	tatctgcaca	gcaggttgta	tetgtagetg	catcgcttat	tccattcctt	2040
gaacacgatg	acgegaaceg	tgcattgatg	ggttcaaaca	tgcaacgtca	ggcggttcct	2100
actctacgtg	cggataaacc	gcttgtaggt	acaggtatgg	aagcgaacgt	tgcacgtgac	2160
tegggegtat	gtgtgatcgc	aaaccgtggt	ggtgcgattg	aatatgtaga	tgcttctcgt	2220
		agatgaaatg				2280
		ttctaaccaa				2340
		tegeggtgae				2400
ggtgagcttg	-					2460
	٠. در د			J: -J+35		

```
2520
tacgaagact cgattttatt atctgagegt gtacttcaag aagacegttt aacttctatt
catattcaag aattatcatg tgtagcgcgt gatactaagt taggtgcaga agaaattact
                                                                    2580
                                                                    2640
geogatatto ctaacgtagg tgaagetgea etttetaaae ttgatgaate tggtategtt
tatattggtg cggaagttac tgctggtgac atccttgttg gtaaagtaac gcctaaaggt
                                                                    2700
gaaactcagt taactcctga agaaaaattg cttcgtgcaa tctttggtga gaaagcggct
                                                                    2760
gacgitaaag actoatotti acgigitoca toiggiacta aaggiacagi taicgaigit
                                                                    2820
caagtottoa cgcgtgatgg ottagagaaa gatgaccgtg cgatggcaat tgaaaaagca
                                                                    2880
caacttgacg cttaccgtaa agacttgaaa gaagaataca agatctttga agaagcagct
                                                                    2940
cgtgagcgtg taattegttt gettaacgge caagagteta acggtggtgg ttegactaaa
                                                                    3000
cgtggcgaca agctcgttga cggtatgttg tctggtttag agcttgttga cttacttgaa
                                                                    3060
                                                                    3120
atccaaccta cagatgaago aattgotgaa ogtttatoto aaattcaagt gttottgaaa
gagaagageg cagaaattga tgagaagttt geagagaaga aaegtaaget ttegaetggt
                                                                    3180
                                                                    3240
gatgagttaa caacaggtgt tetgaaagtt gttaaagttt acctagcagt taaacgtegt
attcagcctg gtgataaaat ggctggtcgt cacggtaaca aaggtgttgt atctaacatt
                                                                    3300
ttacctgttg aagacatgcc acacgatgct aacggtgtgc cggtagatat cgtattgaac
                                                                    3360
ccattgggtg taccatctcg tatgaacgtg ggtcagattc ttgagactca cttgggtatg
                                                                    3420
gcagctaaag ggcttggtga taaaatcgaa aaaatgttga aagaacagcg cacagtttta
                                                                    3480
gaacttcgcg aattcttaga caagatttat aacaaagtcg gcggcgagca agaagatctt
                                                                    3540
gatagettaa etgatgetga agtettagea ettteaggea aettaegtge tggtgtgeet
                                                                    3600
ttagetacte etgtatttga tggtgetgaa gaaagteaaa ttaaagaett aettgaatta
                                                                    3660
                                                                    3720
gctgatattt cgcgtactgg tcaaacagta ttgtttgatg gtcgtacggg tgaacagttt
gategteetg taactgtagg ttacatgtat atgeteaaat tgaaccaett ggttgatgae
                                                                    3780
aaaatgcatg cgcgttcaac aggttcttac tcacttgtta ctcaacaacc gcttggtggt
                                                                    3840
aaagcacaat toggtggtoa gogtttoggt gagatggagg totgggoact ogaagettac
                                                                    3900
ggegeageat atacaettea agagatgtta actgttaagt eggatgaegt tgaaggtegt
                                                                    3960
acacgcatch ataagaatat tgtagatggt aaccattata tggatccggg tatgcctgaa
                                                                    4020
togttoaacg tattgaccaa agagatoogt totttaggta toaacattga actgaaaaat
                                                                    4080
ggtgactaa
                                                                    4089
```

<210> 10

<211> 4089

5 <212> ADN

<213> Acinetobacter baumannii

<400> 10

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60
gtaatggatg	caccgtactt	attatcgatt	caggtcgatt	cgtacagaac	attcttgcaa	120
gatggcaaat	caccaaaaaa	ccgcgaagat	atcggtctcc	aagccgcatt	tcgttcagtt	180
tttcctatcg	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagccttggt	240
aaacctgagt	tegatgtacg	cgaatgtatt	cttcgtggct	cgacttatgc	ggcaccaatg	300
cgcgttaaaa	ttcgtttgat	tattaaagat	cgcgaaacta	aatcaattaa	agacgtacgc	360
gaacaagaag	tctatatggg	tgaaattccg	ctcatgactg	aaaatggtac	ctttgttatc	420
aacggtactg	agcgtgtaat	cgtatctcaa	ttacaccgtt	cgccaggcgt	attctttgac	480
catgataaag	gtaagaccca	ctcaagtggt	aaagtgttgt	atteageacg	tatcattcct	540
taccgtggtt	catggttaga	cttcgaattt	gatgcaaaag	acttagttta	cgtacgtatc	600
gaccgtcgtc	gtaaattact	tgctacagtt	gtgttacgtg	cactaggtta	taacaatgaa	660
cagatettga	atttgttcta	tgaaaaagta	cctgtgtatc	ttgacatggg	tagctatcaa	720
attgaccttg	tacctgagcg	tttacgtggt	gaaatggctc	aatttgatat	tactgacaat	780
gaaggtaaag	tcattgttga	gcaaggtaaa	cgtattaatg	ctcgtcacgt	acgtcaaatg	840
gaagctgcag	gtttaactaa	gctttcagtt	cctgatgaat	acttatatga	gcgtatcact	900
gctgaagata	ttactttacg	tgatggtgaa	gtaattgctg	caaatactct	gttaagccat	960
gaagtaatgg	tgaagttggc	agaaggeggt	gttaagcaat	ttaatatctt	gttcactaac	1020
gatattgacc	gtggttcatt	cgtagctgat	acattacgtg	ctgacttgac	gcgtgatcgt	1080
gaagaagcat	tagtagaaat	ctacaaagta	atgegtecag	gcgagccacc	aacaaaagaa	1140
gctgctgaaa	acttattcaa	taacttgttc	ttctcttctg	aacgctatga	cttatctcca	1200
gtaggtcgta	tgaagttcaa	ccgtcgttta	ggtegteett	acgaagttgg	tactgatcag	1260
aagtcacgcg	aagttgaagg	tattttatcg	cacgaagata	ttatcgatgt	attacgtaca	1320
ttggttgaaa	tccgtaacgg	taaaggtgaa	gtcgacgata	tcgaccactt	aggtaaccgt	1380
cgtgtacgtt	ctgttggtga	aatgacagag	aaccaattcc	gtgtaggttt	agttcgtgtt	1440
gagcgtgctg	ttaaagagcg	tttaagccaa	gcagaaacag	ataacttgtc	tccacaagat	1500
ttgattaatg	caaaaccagt	tgctgctgca	atcaaagaat	tctttggttc	aagccagtta	1560
tctcagttta	tggaccaaaa	caacccatta	tctgagatta	cacataaacg	tcgtgtatct	1620
gcgcttggtc	ctggtggttt	aacacgtgaa	cgtgcaggct	tcgaagtacg	tgacgtacac	1680
Caaactcact	atggtcgtgt	ttgtccaatt	gaaactcctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgtata	cgcaaaagcg	aatgacttcg	gtttcttgga	aacaccatac	1800
cgcaaagttg	tagatggt cg	tgtaactgat	gatgttgaat	atttatctgc	aattgaagaa	1860
gtaggtactg	ttattgcaca	ggecgaetet	gcagtagata	aagatggcaa	cttaacagaa	1920
gaattcgttt	ctgttcgtca	tcaaggtgaa	ttçgta c gta	tgccgcctga	aaaagtaacg	1980
catatggacg	tttctgcaca	gcaggtagta	tetgttgetg	catcacttat	tccattcctt	2040

```
gaacacgatg acgcaaaccg tgcgctcatg ggttcaaaca tgcaacgtca ggcagttcct
                                                                     2100
actttacgtg cggataaacc gcttgtaggt acaggtatgg aagcgaacgt tgcacgtgac
                                                                     2160
totggtgtgt gtgtaatcgc aaaccgtggc ggtgtaattg aatatgtaga tgcttctcgt
                                                                     2220
atcgttattc gtgtaaacga agatgaaatg gttgcaggtg aggcgggtgt agatatctat
                                                                     2280
aacctcatca aatatacgcg ttcaaaccaa aatacttgta ttaaccaaaa tgttatcgtg
                                                                     2340
aacttgggcg acaaagttgc tcgtggtgac atcttggcag acggtccgtc aacagacatg
                                                                     2400
ggtgaacttg cgcttggtca aaacatgcgt gtagcgttca tgacatggaa tggttacaac
                                                                     2460
tacgaagact cgatcttgtt atctgagcgt gtacttcaag aagaccgttt aacctctatt
                                                                     2520
cacattcaag aattgtcatg tgtagcacgt gatactaagt taggtgcaga agaaattact
                                                                     2580
gccgatatto ctaacgtagg tgaagetgeg etttetaaae ttgatgaate aggtategtt
                                                                     2640
tatatoggtg otgaagttac tgotggtgac atottagttg gtaaagtaac gootaaaggt
                                                                     2700
gaaactcagt taactcetga agaaaaactg ettegtgeaa tttttggtga gaaageaget
                                                                     2760
gacgttaaag actcatcttt acgtgttcca tctggtacta aaggtacagt tattgacgtt
                                                                     2820
caagtottca ctcgtgatgg cttagagaaa gatgaccgtg ctttagcaat tgaaaaagca
                                                                     2880
cagcttgatt cttaccgtaa agacttgaaa gaagaataca agatcttcga agaagcggct
                                                                     2940
cgtgagcgtg taattcgttt gcttaaaggc caagagtcta atggcggtgg ttcaactaaa
                                                                     3000
ogtggtgata aactttotga agatttatta totggtttag agottgttga tttacttgaa
                                                                     3060
attcaaccag cagatgaagc aatcgctgag cgtttaactc aaattcaagt gttcttgaaa
                                                                     3120
gagaagageg cagaaatega tgagaaatte getgagaaga aacgtaaget tgecacaggt
                                                                     3180
gatgaattaa cgactggcgt attaaaagtt gttaaggttt acttagctgt taaacgtcgt
                                                                     3240
atteageetg gtgataagat ggetggtegt caeggtaaca agggtgttgt atetaacate
                                                                     3300
ttacctgttg aagacatgcc acatgatgct aacggtgtgc cggtagatat cgtattgaac
                                                                     3360
cogctgggtg taccatctcg tatgaacgtg ggtcagattc tagagactca cttgggtatg
                                                                     3420
gcggctaaag ggcttggtga caaaatcgaa aaaatgttga aagaacaacg tacagtttta
                                                                     3480
gaactgcgcg aattettaga caagatttat aacaaagtcg gcggtgagca agaagatett
                                                                     3540
gatagettga etgatgaaga aattetageg ettgeaggta aettgegtge gggtgtgeet
                                                                     3600
ttagctactc ctgtatttga tggtgctgaa gaaagtcaaa ttaaagactt acttgaattg
                                                                     3660
gctgacattt cacgtacggg tcaaacagta ttgtttgacg gacgtacagg tgaacagttt
                                                                     3720
gaccgtccag taactgttgg ttacatgtac atgcttaaat tgaaccactt ggttgatgac
                                                                     3780
aagatgcatg egegtteaac tggttettac teacttgtta cadaacaacc gettggtggt
                                                                     3840
aaagcacaat toggtggtca gogtttoggt gagatggaag tgtgggcact tgaagcatac
                                                                     3900
ggtgcagcat atacactcca agaaatgctt acagtgaagt cggatgatgt tgaaggccgt
                                                                     3960
actogoatot ataagaatat tgtagatggt aaccattata tggatcoggg tatgootgaa
                                                                     4020
tcgttcaacg tattgaccaa agagatccgt tctttaggta tcaacattga actaaaaaat
                                                                     4080
                                                                    4089
ggtgactaa
```

<210> 11

<211> 4089

<212> ADN

<213> Acinetobacter sp.

<400> 11

atggcatact o	catatacega	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60
gtaatggatg o	caccgtactt	actatcgatt	caggtcgatt	cgtacagaac	attcttgcaa	120
gatggcaaaa c	ctccaaaaaa	ccgcgaagat	atcggtctcc	aagccgcatt	tegttcagtt	180
tttcctatcg a	aagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagccttggt	240
aaacctgagt t	cgatgtacg	cgaatgtatt	cttcgtggtt	cgacttatgc	ggcaccaatg	300
cgcgttaaaa t	tegtttgat	tattaaagat	cgcgaaacta	aatcaattaa	agacgtacga	360
gaacaagaag t	ctatatggg	tgaaattcca	ctcatgactg	aaaacggtac	attcgtcatt	420
aatggtactg a	agcgtgtaat	cgtatctcaa	ttacatcgtt	caccaggcgt	tttctttgat	480
cacgataaag g	gtaaaaccca	ctcaagtggt	aaagtgttgt	attcagcacg	tatcattcct	540
taccgtggtt o	catggttaga	cttcgaattt	gatgcaaaag	acttagttta	cgtacgtatt	600
gacegtegte g	gtaaattact	tgctactgtt	gtgttacgtg	cactaggtta	taacaacgaa	660
caaatcttga a	atttgttcta	tgaaaaagta	cctgtgtatc	ttgacatggg	cagttaccag	720
attgacctag t	acctgaacg	tttacgtggg	gaaatggctc	aatttgatat	tgctgacaat	780
gacggtaaag t	tattgttga	gcaaggtaaa	cgtattaatg	ctcgtcatgt	acgtcaaatg	840
gaagetgetg g	gtttaacaaa	actttcagtt	cctgatgaat	acttatatga	gcgtatcact	900
gctgaaaata t	tactttgcg	tgatggtgaa	gtaattgctg	cgaatacttt	gttaagccat	960
gaagttatgg t	gaagttggc	agaaggtggt	gttaaacagt	tcaatatctt	gtttacgaac	1020
gatattgacc g	gtggttegtt	tgttgctgac	acattacgtg	cagatacaac	agetggeegt	1080
gaagaagcat t	agttgaaat	ttataaagta	atgcgtccag	gcgagccgcc	aacaaaagaa	1140
gctgctgaaa a	acttattcaa	taacttattc	ttctcttctg	agcgttatga	cttatctcca	1200
gtaggtcgta t	gaagttcaa	ccgtcgtttg	ggtcgtccat	acgaagttgg	tactgaccag	1260
aagtcacgtg a	agtagaagg	tattttatcg	cacgaagata	tcattgatgt	attacgtaca	1320
ttagttgaaa t	ccgtaacgg	taaaggtgaa	gtcgacgata	tegateactt	gggtaaccgt	1380
cgtgtacgtt c	etgttggtga	aatgactgaa	aaccaattcc	gtgttggttt	ggtacgtgtt	1440
gaacgtgctg t	taaagaacg	tttaagccaa	gcagaaacag	ataacttgtc	tccacaagat	1500
ctaattaacg c	taaaccagt	tgcagctgca	atcaaagaat	tetttggtte	aagccaatta	1560
totcagttca t	ggaccaaaa	caacccatta	tctgagatta	cgcataagcg	tcgtgtatca	1620

gcgcttgggc ctggtggttt aacacgtgaa cgtgcgggct ttgaagtacg tgacgtacat	1680
caaactcact atggtcgtgt atgtccaatt gaaacgccgg aaggtccaaa cattggtttg	1740
atcaactcgc tttctgtata tgcaaaagca aatgacttcg gtttcttgga aacaccttac	1800
cgtaaagtag tagatggteg agtaactgat geagttgaat acetttetge gattgaagaa	1860
graggtactg ttattgcaca ggccgattet gcagtagata aagatggcaa cctaacagaa	1920
gagtttgttt ctgttcgtca tcaaggtgaa ttcgtacgta tgccacctga aaaagtgacg	1980
catatggacg tttctgctca gcaagttgta tctgttgctg catcacttat tccattcctt	2040
gaacacgatg acgcgaaccg tgcgcttatg ggttcaaaca tgcaacgtca ggcagttcct	2100
actotacgtg cggataaacc gottgtaggt acaggtatgg aagcgaacgt tgcacgtgac	2160
toaggtgtgt gtgtgatege aaaccgtggt ggtgcaattg aatacgtaga tgcttctegt	2220
atcgttattc gtgtaaacga agatgaaatg atcgctggtg aggcgggtgt agatatctac	2280
aacctcatta aatatacgeg ttctaaccag aacacttgta tcaaccaaaa tattatcgtg	2340
aatttgggcg acaaagttgc tcgcggtgat atcttggcag acggtccgtc tacagatatg	2400
ggtgagettg egettggtea aaacatgege gttgegttea tgaettggaa tggttacaac	2460
tatgaagact cgatcttatt atctgagcgc gtacttcaag aagaccgttt aacttctatt	2520
catattcaag aattatcttg tgtagcgcgt gatactaagt taggtgcaga agaaattact	2580
geogatatte etaacgitigg igaagetigea etitietaaac itigatgagie aggitategit	2640
tatateggtg etgaagttae ageaggtgae atcettgttg gtaaagtaae geetaaaggt	2700
gaaactcagt taactcctga agaaaaattg cttcgtgcaa tctttggtga gaaagcagct	2760
gaegttaaag atteatettt aegtgtteea tetggtaeaa aaggtaeagt tategatgtt	2820
caagtottoa etegtgatgg ettagagaaa gatgacegtg cattggegat egaaaaagea	2880
caacttgatg cttaccgtaa agacttgaaa gaagaataca agatctttga agaagcagct	2940
cgtgagcgtg taattcgttt gcttaaaggc caagagtcta atggcggtgg ttcaactaaa	3000
cgtggtgaca aactcgttga agaagtgtta tctggtttag agcttgttga tttacttgaa	3060
attcaaccgg cagatgaagc aatcgctgag cgtttaactc aaattcaagt gttcttaaaa	3120
gaaaagagcg cagaaattga tgagaaattc gctgagaaga aacgtaagct tgcaacaggt	3180
gatgaattaa caactggegt attgaaagtt gttaaagttt acttagetgt taaacgtegt	3240
atteageetg gtgataagat ggetggtegt caeggtaaca agggtgttgt atetaacate	3300
ttacetgttg aagacatgcc acacgatgct aacggtgtac cagtagatat cgtattgaac	3360
ccgttgggcg taccatctcg tatgaacgtg ggtcagattc ttgagactca cttaggtatg	3420
gcggctaaag ggcttggtga taaaatcgag aaaatgttga aagaacagcg tacagtttta	3480
gaactgcgtg aattettaga caagatttat aacaaagtcg gtggtgagca agaagatett	3540
gatagettaa etgatgetga agtettggea ettteaggea aettaegtge tggtgtaeet	3600
ttggctacte etgtattega tggtgetgaa gaaagecaaa ttaaagaett gettgagtta	3660
getggtatet etegtacagg teaaacagta ttgtttgatg geegtactgg tgaacagttt	3720
gatcqtcctg taactgtggg ttacatgtac atgctcaaat tgaaccactt ggttgatgac	3780
aagatgoatg egegtteaac tggttettac tetettgtta cacageaace gettggtggt	3840
aaagcacaat toggtggtca gogtttoggt gagatggagg totgggcact ogaagcttac	3900
ggcgcagcat atacteteca agagatgtta actgttaagt eggatgacgt tgaaggtegt	3960
acacgcatct ataagaatat tgtagatggt aaccattata tggacccggg tatgcctgaa	4020
togttcaacg tattgaccaa agagatcogt totttaggta tcaacattga actgaaaaat	4080
ggtgactaa	4089
22 T 244 C C C C C C C C C C C C C C C C C C	4003

<212> ADN <213> Acinetobacter haemolyticus

<400> 12

atggcatact catataccga aaagaaacgg attcgtaaga attttggtaa attgccccac 60 120 ggtggcaaaa ctccaaaaaa tcgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttcctattg aaagttattc tggcaatgct gctttagaat ttgttgagta tagtcttggt 240 aaaccagagt ttgacgtacg tgaatgtatt ttacgtggtt caacttatgc ggcaccaatg 300 cgcgtaaaaa ttcgtttgat cattaaagat cgcgaaacca aatcaattaa agacgttcgt 360 gaacaagaag tttacatggg tgaaatgcca ctcatgaccg ataacggtac attcgttatt 420 aacggtactg agcgtgtaat cgtatctcaa ttacaccgtt cgccaggcgt attctttgat 480 catgacaagg gtaagaccca ctcaageggt aaagtgttgt attcagcacg tattatccct 540 tacogtggtt catggttaga tttcgaattt gatgctaaag atttagtatt cgtacgtatt 600 gaccgtcgtc gtaaattatt ggcgactgtg attttacgtg ctttaaatta taccaatgag 660 caaateetga atttgtteta egaaaaagta eetgtetatt tagatatggg eagetateaa 720 attgatctcg ttccagatcg cctacgtggt gagatggcgc aatttgatat cttagataac 780 840 gaagcagcga acttagcgaa gctttcagta cctgatgaat acttgtatga gcgtattaca 900 gctgaagata tcacattgaa agatggtgat gtaattcctg caaatacggt gcttagccat 960 gaagtgatgg tgaaaatcgc tgaaggcggc gtgaaacagt ttaatattct gttcaccaac 1020 gatatogato gtggtocttt ogttgoggat actttacgtg cagatacaac aacaggtogt 1080 gaagaagcac ttgttgaaat ctataaagtc atgcgtccag gtgagccgcc aacgaaagaa 1140 getgetgaaa aettatttaa taaettgtte ttetettetg agegttatga eetgteteea 1200

5

gtgggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tactgatcag	1260
aagtetegtg	aagttgaagg	tattttatca	cacgacgata	tcattgatgt	acttcgtaca	1320
ttggtggaaa	tecgtaacgg	taaaggtgaa	gtcgatgata	tegateaett	aggtaaccgg	1380
cgtgtacgtt	ctgttggcga	aatgacagaa	aaccaattcc	gtgttggttt	agtgcgtgtt	1440
gaacgtgctg	ttaaagagcg	tttaagccaa	gcagaaactg	ataacttgtc	tecacaagat	1500
ttaatcaacg	cgaaaccagt	tgctgctgca	atcaaagagt	tetttggtte	aagccagtta	1560
tctcagttca	tggaccaaaa	caacccattg	tctgagatta	cacacaaacg	tegtgtatet	1620
gcacttggtc	ctgggggttt	gacacgtgaa	cgcgcgggct	tcgaagtacg	tgacgtacat	1680
caaactcact	atggtcgtgt	ttgtccgatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgttta	tgcaaaagca	aatgacttcg	gtttcttgga	aacaccatac	1800
cgtaaagttg	tegatggteg	tgtaactgat	gatgttgaat	atttatctgc	aattgaagaa	1860
gtagggactg	tcattgcaca	agccgactct	gcagttgata	aagatggtaa	tttaactgaa	1920
gaaatggttt	ctgtgcgtca	tcaaggtgaa	ttcgtacgta	tgtcgcctga	acgcgtaacg	1980
catatggacg	tttctgcaca	gcaggtagta	tcagttgcgg	catcattgat	tccattcctt	2040
gaacacgatg	atgcgaaccg	tgcattgatg	ggttegaaca	tgcaacgtca	ggctgttcct	2100
acattacgtg	ctgacaagec	gcttgttggt	acaggtatgg	aagcgaacgt	agegegegae	2160
togggtgtgt	gtgtgatcgc	aaaccgtggt	ggtgcgattg	agtatgtaga	tgcatctcgt	2220
atcgttattc	gtgtcaacga	agatgaaatg	attgcgggtg	aagcaggtgt	agatatetat	2280
aacctgatca	aatatacacg	ttcaaaccag	aacacatgta	ttaaccagaa	tgtcatcgtg	2340
aacttgggcg	acaaagttgc	tegtggtgat	atcttggctg	acggtccttc	gactgacatg	2400
ggtgaacttg	cgctgggtca	aaacatgege	gtcgcgttca	tgacatggaa	cggttataac	2460
tatgaagact	cgattttact	ttctgagcgt	gttcttcaag	aagatcgttt	aacgtcgatt	2520
cacattcaag	aattgtcatg	tgtagcacgt	gatactaagt	taggtgcaga	agaaattact	2580
gccgatattc	ctaacgttgg	tgaagcagca	ctgtctaaat	tggatgagtc	aggtattgtt	2640
tatatcggtg	ctgaagtgac	tgcgggtgat	atcctagttg	gtaaggtaac	gcctaaaggt	2700
gaaactcagt	taacacctga	agaaaaatta	cttcgcgcaa	tctttggtga	aaaagcggca	2760
gacgtaaaag	attcatcttt	gcgtgttccg	tetggtaeca	aaggaacagt	gattgacgtt	2820
caagtettea	cacgtgatgg	tttagaaaag	gacgagcgtg	cgcaagcaat	tgagaaagct	2880
caacttgatg	cataccgtaa	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	2940
cgtgaacgta	ttgttcgctt	gttgaaaggt	caagagtcaa	atggtggcgg	tacaactaag	3000
cgcggcgata	aactctcaga	agatgtattg	tctggtttag	agcttgttga	tttacttgaa	3060
atccaaccag	ctgatgaagc	gattgctgaa	cgtttaacgc	aaattcaagt	gttcttgaaa	3120
gagaagagca	tcgaaatcga	tgagaaattt	gcagagaaga	agcgtaagct	ttctacaggt	3180
gatgaattaa	caacgggtgt	attaaaagtt	gttaaggttt	accttgcggt	taagcgtcgt	3240

```
3300
attragectg gtgataagat ggcgggtcgt cacggtaaca agggtgtggt atcaaatatc
ttacctgtag aagacatgcc gcatgatatt cacggtgtgc cagttgatat cgtattgaac
                                                                    3360
ccattgggtg taccatcacg tatgaacgtg ggtcagattc ttgaaactca cttgggtatg
                                                                    3420
gcggcaaaag gtctgggtga gcaaattgat aagatgctcc aacagcaacg tacgattgct
                                                                    3480
gaattgegtg egtteetega caagatttae aacaaagttg gtggegaaca agaagatett
                                                                    3540
                                                                    3600
gatagottaa oogacgaaga agttttaaaa ottgoaggta acctgogtgo aggtgtgoot
ttggcgacac cagtatttga tggtgctgaa gaaagtcaaa ttaaagagtt acttgagctt
                                                                    3660
gctgaattgc cacgtactgg tcaaaccgta ttgtttgatg gtcgtactgg tgaacagttt
                                                                    3720
gategteetg taactgtegg ttatatgtac atgeteaaat tgaaccactt ggttgatgac
                                                                    3780
aagatgcatg cgcgttcaac tggttcttac tcactagtga cacaacagcc gcttggtggt
                                                                    3840
aaagcacaat teggtggtea gegttteggt gagatggaag tatgggcact tgaagcatae
                                                                    3900
ggtgcagcat atacgcttca agaaatgctt actgtgaagt cggatgacgt tgaaggtcgt
                                                                    3960
acacgcatct ataagaatat tgtagatggt aaccattata tggatccggg tatgcctgaa
                                                                    4020
togttcaacg tattgaccaa agagatccgt totttaggta toaacattga actgaaaaat
                                                                    4080
                                                                    4089
ggtgactaa
```

<210> 13 <211> 4089 5 <212> ADN

<213> Acinetobacter junii

<400> 13

60 atggcatact catataccqa aaaqaaacqq atccgtaaga attttgqtaa attqccccac gtaatggaag caccgtactt actttcgatt caggtcgatt cgtatcgtac attcttacaa 120 ggtggtaaaa ctccaaaaaa tcgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttcctattg aaagttattc tggcaatgct gctttagaat ttgttgagta tagccttggt 240 aaacccgagt ttgacgtgcg tgaatgtatt ttacgtggtt cgacttatgc ggcaccaatg 300 cgtgtaaaaa ttcgtttgat cattaaagat cgcgaaacga aatcaatcaa agatgttcgt 360 gaacaagaag tgtacatggg cgaaatgccg ctcatgaccg acaacggtac tttcgttatt 420 aacggtactg aacgtgtaat cgtatctcaa ttacaccgtt caccaggcgt attctttgat 480 catgataagg gtaaaacaca ctcaagcggt aaagtgttgt attcagcacg tatcattcct 540 taccgtggtt catggttaga ttttgaattc gatgcaaaag atttagtttt cgtacgtatt 600 gaccgtcgtc gtaaattgtt ggcgactgtg atcttacgtg ctttaaatta tagcaatgaa 660 caaatcttga atttgttcta tgaaaaagta cctgtatatc ttgatatggg tagctatcaa 720 attgaccteg ttecagateg ettacgtggt gaaatggege aatttgatat ettggacaat 780

gatggtaaag	caatcgttga	acaaggtaag	cgtattaatg	cacgtcatgt	acgccaaatg	840
gaagcagcta	acttagctaa	gctttctgta	cctgatgaat	atttatatga	acgtattaca	900
gctgaagata	tcacactgaa	aagtggtgat	gtgattcctg	caaataccgt	acttagccat	960
gaaattatgg	tgaaattggc	tgaaggtggt	gttaaacaat	ttaacatcct	attcactaat	1020
gacatcgatc	gtggttcgtt	cattgcagat	acattacgtg	cagatacaac	aacaggtcgt	1080
gaagaagcgc	ttgttgaaat	ctataaagta	atgcgtccag	gtgaaccacc	gacaaaagaa	1140
gcagcagaga	acttatttaa	taacttattc	ttctcttctg	aacgttatga	cctttctcca	1200
gtaggtcgta	tgaagtttaa	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tactgatcag	1260
aagtcacgtg	aagttgaagg	tattttatcg	catgacgata	tcattgatgt	acttcgtaca	1320
ttggtggaga	teegeaatgg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1380
cgcgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	ggttcgtgtt	1440
gaacgtgctg	tgaaagagcg	tttaagccaa	gctgaaactg	ataacttgtc	tccacaagat	1500
ttaatcaacg	cgaaaccagt	tgctgcggca	atcaaagaat	tctttggttc	aagccagtta	1560
tctcagttca	tggaccaaaa	caacccatta	tctgagatta	cacataaacg	tegtgtgtet	1620
gcgcttggtc	ctggtggttt	gacacgtgaa	egegeagget	tcgaagtgcg	tgacgtacat	1680
caaactcact	atggtcgtgt	ttgtccaatt	gaaacacctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgtcta	tgcaaaag cg	aatgacttcg	gtttcttgga	aacaccatac	1800
cgtaaggttg	tagacggtcg	tgtgacagat	gaagttgaat	atttatetge	aattgaagaa	1860
gtaggcactg	tcattgcaca	agccgactca	gcagtggata	aagatggcaa	cttgactgaa	1920
gaaatggttt	ctgtacgtca	tcaaggtgaa	ttcgtacgta	tgtcgcctga	gcgcgtaaca	1980
catatggacg	tttctgcaca	gcaggttgtt	tetgttgcag	cgtcattaat	tecatteett	2040
gaacacgatg	acgcaaaccg	tgcattgatg	ggttcgaaca	tgcaacgtca	ggctgttcct	2100
acacttcgtg	ctgacaaacc	acttgtcggt	acgggtatgg	aagcaaacgt	agcacgegae	2160
tcaggtgtat	gtgtgatege	gggtcgtggt	ggtgtaattg	aatatgttga	tgcatctcgt	2220
atcgttattc	gtgtgaacga	agatgaaatg	attgcaggtg	aagcaggtgt	agatatttac	2280
aacctgatca	aatatacacg	ttcaaaccaa	aatacatgta	ttaaccaaaa	tgtcatcgta	2340
aacttgggcg	acaaagttgc	tegtggcgat	attttggctg	acggtccatc	gactgacatg	2400
ggtgaacttg	cgctaggtca	aaacatgege	gtcgcgttca	tgacatggaa	cggttataac	2460
tatgaagact	cgatcttact	ttctgagcgt	gtgcttcaag	aagaccgttt	aacgtcgatt	2520
catattcaag	aattgtcatg	tgtagcgcgt	gatactaagt	taggtgcaga	agaaattact	2580
gctgatattc	ctaacgtcgg	tgaagctgca	ctgtctaaac	ttgatgagtc	aggtattgtt	2640
tatatcggtg	ctgaagttac	tgcaggtgat	attetggttg	gtaaggtaac	acctaaaggt	2700
gaaactcagt	taacacctga	agaaaaacta	cttcgtgcaa	tctttggtga	aaaagcggct	2760
gacgtaaaag	attcatcttt	acgtgttccg	teaggeaeta	aaggtacagt	gattgacgtt	2820

caagtettea	cacgtgatgg	tttagaaaaa	gatgaacgtg	cgcaagcaat	tgagaaagct	2880
cagcttgatg	cataccgtaa	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	2940
cgtgagcgta	ttgttcgttt	gttgaaaggt	caagaatcta	acggtggtgg	ttcgactaaa	3000
cgtggtgaga	agctttcaga	agatatgttg	tctggtctag	agttagttga	tetaettgaa	3060
atccaaccaa	cagatgaagc	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	3120
gaaaagagee	atgaaattga	tgaaaaattt	gctgagaaga	aacgtaaact	ttctacaggg	3180
gatgagttaa	caactggtgt	attgaaagtt	gttaaggttt	acctagcagt	taaacgtcga	3240
atccaacctg	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	3300
ttaccagttg	aagatatgcc	acatgatgcc	aatggtgtgc	cagttgatat	cgtattgaac	3360
ccactcggtg	taccatcgcg	tatgaacgtg	ggtcagattc	ttgaaactca	cttaggtatg	3420
gcagcaaaag	gtttgggtga	gcagattgat	aaaatgctca	aacaacaacg	tacaattgcc	3480
gagttacgtt	cattccttga	caagatttat	aataaagtgg	gtggtgagca	agaacagctt	3540
gacacactaa	ctgacgaaga	gatctttaag	cttgcaggta	atttacgtgc	tggtgtgcct	3600
ttggcaactc	cagtatttga	tggtgctgaa	gagtcacaaa	tcaaagagtt	acttgagctt	3660
gcagagttac	cacgttctgg	tcaacaaatc	ttgtttgatg	gacgtacagg	tgaacagttt	3720
gategtecag	taactgtcgg	ttacatgtac	atgcttaagt	tgaaccactt	ggttgacgat	3780
aagatgcatg	cacgttcaac	tggttcttac	tcacttgtga	cacaacaacc	gcttggtggt	3840
aaagcacaat	tcggtggtca	gcgtttcggt	gagatggaag	tatgggcact	tgaagcatat	3900
ggtgcagcat	ataccctcca	agaaatgete	actgtgaagt	cggatgacgt	cgaaggtcgt	3960
acacgcatct	ataagaacat	tgtagatgga	aaccattata	tggatccggg	tatgcctgaa	4020
togttcaacg	tattgaccaa	agagateegt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 14

<211> 4089

<212> ADN

<213> Acinetobacter sp. CIP-A165

<400> 14

gagcaagaag	tgtacatggg	tgaaatgcca	ctcatgaccg	ataacggtac	tttcgttatc	420	
aatggtactg	agcgtgtgat	cgtatctcag	ttacaccgtt	cgccaggtgt	gttctttgac	480	
catgacaagg	gtaaaactca	ctcaagtggt	aaagtgttgt	attcagcacg	tattateect	540	
taccgtggtt	catggttaga	ctttgaattt	gacgcaaaag	atcttgtgtt	tgtacgtatt	600	
gaccgtcgtc	gtaaattgtt	ggcgactgtg	attttacgtg	ctttaaatta	tagcaatgcg	660	
caaattttga	atttgttcta	cgaaaaagta	cctgtatatc	ttgatatggg	tagctatcaa	720	
attgacctca	ttccagatcg	cttgcgtgga	gazatggcgc	agtttgatat	tgctgacaat	780	
gacggtaaag	tgattgtaga	gcaaggtaaa	cgtattaatg	cgcgtcacgt	acgtcaaatg	840	
gaagcggcta	acttagccaa	gctttctgta	cctgatgaat	acttgtatga	gegtateace	900	
gctgaagata	teccattaaa	agatggtgag	gtgattgctg	casatacctt	gttaagccat	960	
gaagtgatgg	tgaagttagc	tgaaggcggt	gttaagcaat	ttaacatcct	atttactaac	102 0	
gatatcgacc	gtggttcttt	tattgctgac	accttacgtg	cagatactac	aacggggcgt	1080	
gaagaagcac	tcgttgaaat	ctacaaagta	atgcgtccag	gtgagccacc	gacgaaagaa	1140	
gctgcagata	atttatttaa	taacttattc	ttetettetg	agcgttatga	cttgtcgcct	1200	
gttggtcgta	tgaagtttaa	ccgtcgcttg	ggtcgtccat	acgaagtcgg	tactgatcaa	1260	
aagtctcgtg	aagttgaagg	tattttatcg	cacgacgata	tcattgatgt	acttcgtaca	1320	
ttggttgaaa	tccgtaacgg	taaaggtgaa	gtcgacgata	tegaceaett	gggtaaccgt	1380	
cgcgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	agtacgtgtt	1440	
gagcgtgctg	ttaaagagcg	tttaagccaa	gctgaagcgg	ataacctgtc	tccacaggat	1500	
ttgattaacg	caaaaccagt	tgctgctgcg	attaaagaat	tctttggttc	aagccaattg	156 0	
tctcagttca	tggatcaaaa	caacccatta	tctgaaatta	cacacaaacg	tcgtgtatca	1620	
gcgcttgggc	ctggtggttt	gacacgtgaa	cgtgcgggct	ttgaggttcg	tgacgtacat	1680	
caaacgcatt	atggtcgtgt	ttgtccaatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740	
atcaactcgc	tttctgttta	tgcaaaaacg	aacaactttg	gtttcttaga	aacaccttac	1800	
cgtaaagttg	tagatggtcg	tgttactgat	gcggttgagt	atttatctgc	gattgaagaa	1860	
gtaggtactg	ttattgcaca	ggccgattca	gcaattgata	aagaaggtac	tttgactgaa	1920	
gaaatggttt	ctgtacgtca	tcagggtgat	ttcgttcgta	tgtcacctga	gcgtgtcact	1980	
catatggatg	tatctgcaca	gcaggttgtt	tctgttgcag	cgtcattgat	teegtteett	2040	
gaacacgatg	atgcgaaccg	tgcattgatg	ggttcaaaca	tgcagcgtca	ggcagttcca	2100	
acgttacgtg	ctgacaagcc	gcttgttggt	acgggtatgg	aagcaaacgt	agcgcgtgac	2160	
tctggtgtgt	gtgtgatcgc	aaaccgtggt	ggtgcgattg	agtatgttga	tgcctcacgt	2220	
attgttattc	gtgtaaacga	agatgaaatg	attgctggtg	aagcaggtgt	agatatctac	2280	
aacctgatca	aatatacccg	ttcgaaccaa	aacacctgta	tcaaccaaaa	tgttatcgta	2340	
aacatgggcg	acaaagttgc	gcgtggtgat	atcttggctg	atggtccatc	gacggatatg	2400	

```
qgtgagcttg cgcttggtca aaacatgcgc gtcgcgttca tgacatqgaa cqqttataac
                                                                    2460
tacgaagact cgatcttact ttcagagcgt gtgcttcaag aagaccgttt aacttcgatt
                                                                    2520
catatecaag agttgteatg tgtegeaegt gataccaagt taggtgeaga agaaateaet
                                                                    2580
gccgatattc ctaacgttgg tgaagcagcg ctttctaagt tggatgagtc tggtattgtt
                                                                    2640
tatatoggtg otgaagttac agcaggtgac atcottgttg gtaaagtaac acctaaaggt
                                                                    2700
gaaacacagt taacacctga agaaaaatta cttcgtgcta tctttggcga aaaagcagct
                                                                    2760
gatgtaaaag atteatettt aegegtteea tetggtaeea aaggtaeagt gategatgtt
                                                                    2820
caagtettea egegtgatgg tttggaaaaa gatgategtg cacaagegat tqaaaaagea
                                                                    2880
cagettgatg ettacegtaa agatttgaaa gaagaataca aaatetttga agaagcagca
                                                                    2940
cgtgaacgta ttgttcgctt gttgaaaggt aaagagtcta atggtggcgg tacaacgaag
                                                                    3000
cgcggcgata aacttgcaga agatatgttg tctggtttag agctggttga tttgttagaa
                                                                    3060
atccaaccaa cagatgaagc aatcgctgaa cgtttaactc aaattcaggt attcttgaaa
                                                                    3120
gagaagagta togagattga tgagaaattt gotgagaaga aacgcaaact ototacaggt
                                                                    3180
gatgaattaa caacgggtgt attaaaagtt gttaaggttt accttgcagt gaaacgtcgt
                                                                    3240
atecaaeegg gtgataagat ggegggtegt caegggaaca agggtgttgt etetaaeate
                                                                    3300
ttacctgttg aagatatgcc acatgatgcc aatggtgtac ctgttgacat cgtattgaac
                                                                    3360
ccattgggtg taccgtcgcg tatgaacgtg ggtcagattc ttgaaaccca tttgggcttg
                                                                    3420
geggeaaaag gtttgggtga geagategat aagatgetge aacaacaaeg tacegttget
                                                                    3480
gaacttogtt tgttoottga taagatttac aacaaagttg gtggegagca agaagatott
                                                                    3540
gatagottaa otgatgaaga agtgttgaag ottgoaggta acttacgtgo aggtgttoot
                                                                    3600
ttggcaacac cagtgtttga tggtgctgaa gaaagccaaa ttaaagaatt acttgaactt
                                                                    3660
getgaattge egegttetgg teaacagact ttgtttgatg geegtacagg tgaacagttt
                                                                    3720
gaccgtcctg taactgttgg ttacatgtat atgctcaaat tgaaccactt ggttgatgac
                                                                    3780
                                                                    3840
aaaatgcacg cgcgttcaac tggttcttac tcgcttgtga cacagcagcc gcttggtggt
aaagcacaat tcggtggtca gcgttttggt gagatggaag tatgggcact tgaagcatat
                                                                    3900
ggtgeageat atacecteca agaaatgete actgtgaagt eggatgaegt egaaggtegt
                                                                    3960
acacgcatct ataagaacat tgtagatgga aaccattata tggatccggg tatgcctgaa
                                                                    4020
togttcaacg tattgaccaa agagateegt tetttaggta teaacattga actgaaaaat
                                                                    4080
ggtgactaa
                                                                    4089
```

<210> 15

<211> 4089

<212> ADN

5

<213> Acinetobacter johnsonii

<400> 15

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgcctagt	60
gttatggatg	ctccgtactt	gctcgcgatt	caagtcgact	cgtacagaac	atttttacaa	120
gatggcaaat	caccaaaaaa	ccgcgaagat	atcggtctgc	aagccgcgtt	tegttcagtt	180
tttcctatag	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagtcttggt	240
aagcctgagt	ttgatgtacg	cgaatgtatt	cttcgtggct	caacttatgc	agcaccaatg	300
cgcgtaaaaa	ttcgtttgat	cttaaaagat	cgcgaaacta	aatcaattaa	agacgtgcgc	360
gagcaagaag	tgtacatggg	tgaaatgcca	ctcatgaccg	ataacggtac	attcgttatt	420
aatggtactg	agcgtgtaat	cgtatctcaa	ttacaccgtt	caccaggcgt	gttctttgac	480
cacgataaag	gcaaaaccca	ctctagtggt	aaagtgcttt	attctgcgcg	tattattcct	540
taccgtggtt	catggttaga	cttcgaattt	gacgcaaaag	accttgtatt	tgtgcgtatt	600
gaccgtcgtc	gtaaattact	cgcgactgtg	gttcttcgtg	ctttgggtta	taacaatgcg	660
aaaatcttag	acttgttcta	tgaaaaagtg	cctgtatacc	tagacatggg	tagctaccag	720
attgaccttg	ttccagaacg	cttacgtggc	gaaatggcac	aatttgacat	cgtagataat	780
gatggcaaaa	ccattgttga	gcaaggcaag	cgtatcaacg	cgcgtcatgt	gcgtcaaatg	840
gaagetgetg	gcctagaaaa	actttctgtg	ccagatgagt	acttgtacga	gcgcattact	900
gcagaagaca	tcccacttaa	agatggtgat	gtgattgcag	ctaatacctt	gttaagccat	960
gaagtgatgg	tgaaattggc	tgaagggggt	gttaaacaat	ttaacattct	attcaccaat	1020
gacatcgacc	gtggttcatt	cgttgcagat	actttacgtg	cagacaccac	gacaggtcgt	1080
gaagaagcat	tggtagaaat	ctacaaagta	atgcgtccag	gcgagccacc	aacgaaagaa	1140
gcggctgaaa	atttattcaa	taacttgttc	ttctcttcag	aacgttatga	cctctctcca	1200
gtgggtcgta	tgaagttcaa	ccgtcgttta	ggtcgtcctt	acgaagtggg	tacggatcag	1260
aagtctcgtg	aagttgaagg	tattttgtcg	aacgaagata	tcactgatgt	attaaaaaca	1320
ttggttgaaa	teegtaaegg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1380
cgcgtgcgtt	cagtaggcga	aatgac tgaa	aaccaattcc	gtgttggtct	agttcgtgta	1440
gaacgtgctg	ttaaagaacg	tttaagccaa	gctgaaacag	ataacttgtc	teegeaagat	1500
ttgatcaatg	cgaaaccagt	ggctgctgca	atcaaagaat	tctttggttc	aagccagtta	1560
tctcagttca	tggaccaaaa	caacccattg	tctgagatta	cgcacaaacg	tegtgtateg	1620
gegettggte	ccggtggttt	gacacgtgaa	cgtgcgggct	ttgaggtacg	tgacgtacac	1680
caaactcact	acggtcgtgt	atgtccaatt	gaaacgccgg	aaggtccaaa	cattggtttg	1740
ateaactege	tttctgttta	tgcgaaatgt	aacaatttcg	gtttcttaga	aacaccatac	1800
cgtaaagtgc	ttgatggtcg	tgtaacggat	gaagttgagt	atttatctgc	aattgaagaa	1860
gtaggtactg	tgattgcaca	ggccgattct	ggcgtagata	aagacggtaa	cttaacagaa	1920
gaatttgttt	ctgtacgtca	ccaaggtgat	ttcgtacgta	tgccgcctga	aaaagtgacg	1980

```
catatggaeg titetgeaca geaggitgit tetgitgetg cateacteat tecatteett
                                                                     2040
gaacacgatg acgccaaccg tgcattgatg ggttcaaaca tgcagcgtca agctgtgcct
                                                                    2100
acattgattg ctgacaaacc gcttgtaggt acaggcatgg aagcaaatgt agcgcatgac
                                                                    2160
                                                                    2220
totggtgtgt gtgtgattgc gggtcgtggt ggtcgtatcg aattcgtcga tgcttcacgt
                                                                    2280
gttgtgattc gtgtcaatga agatgaaatg gttgcaggcg aggcaggtgt agatatctat
aacctgatca aatatacacg ttcgaaccaa aacacttgta ttaaccaaaa agttcttgtg
                                                                    2340
aaacttggtg ataaagtggg tcgtggcgat gtattggctg atggtccatc aacagatggt
                                                                    2400
                                                                    2460
ggtgagettg egetaggtea aaacatgege gttgegttea tgacgtggaa tggttacaac
tatgaagact cgatcttact ttcagagcgc gtacttcaag aagaccgttt aacctcgatt
                                                                    2520
cacattcaag aattatcatg tgttgcacgt gatacgaaat tgggtgcgga agagatcaca
                                                                     2580
geggatatec egaatgtggg tgaagetgea etgtetaage ttgatgaate aggtategta
                                                                    2640
                                                                    2700
tatatoggtg otgaagtgac tgotggtgat atcottgtag gtaaagtaac gootaaaggt
                                                                    2760
gaaacgcagt taacaccaga agaaaaattg cttcgtgcaa tcttcggtga aaaagcagct
gacgtaaaag actcatcttt acgtgttcca tcaggtacca aaggtacagt gattgacgtt
                                                                     2820
caagtgttta cacgtgacgg tottgagaaa gacgaacgtg cgcaagcaat tgaaaaaagct
                                                                    2880
cagottgatt catatogtaa agaottgaaa gaagaataca aaatottoga agaagcagca
                                                                    2940
cgtgaacgta ttgttcgttt gttgacaggt caagagtcta acggtggtgg tacaaccaag
                                                                    3000
cgtggcgata agctttctgt agacgtattg tctggtttag agttggttga tttacttgaa
                                                                     3060
atccaaccga ctgatgaagc tattgcagag cgtttaactc aaattcaagt gttcttgaaa
                                                                    3120
gagaagagct ttgaaattga tgagaagttt gcagagaaaa aacgcaaact ttctacaggt
                                                                    3180
gatgaattaa caacaggtgt attgaaagtt gttaaggttt acttggctgt taaacgtcgc
                                                                    3240
atccaaccgg gtgataagat ggcgggtcgt cacggtaaca agggtgttgt ttctaacatc
                                                                    3300
ttgcctgttg aagacatgcc gcacgatgcc aatggtgttc cagtcgacat cgtattgaac
                                                                    3360
ccactgggtg taccgtcacg tatgaacgtg ggtcagattc tagagactca cttaggtatg
                                                                    3420
gcagcgasag gtcttggcga agaaatcgac aagatqttaa aagcgcaacg tactqtactt
                                                                    3480
gagettegtg gattettaga caagatttat aacaaagttg gtggegagea agaagatett
                                                                    3540
gatagettaa etgatgatga aattitggig ettiegggia aettgegige gggigtieet
                                                                    3600
cttgcaacgc cagtattcga tggtgctgaa gaatctcaaa ttaaagactt gttagagctt
                                                                    3660
gegaacattt caegtactgg teaaacagta ttgtatgatg gtegtacagg tgaacagttt
                                                                    3720
gaccgtcctg taactgtagg ttacatgtac atgttgaaac tgaaccactt ggtagacgac
                                                                    3780
aagatgcacg cacgttctac tggttcttac tcattagtaa ctcaacagcc gcttggtggt
                                                                    3840
aaagcacaat teggtggtca gegttteggt gagatggaag tetgggeget tgaagcatat
                                                                    3900
ggcgcagett acaegettca agaaatgett actgttaagt cggatgaegt tgaaggtegt
                                                                    3960
accogtatot ataagaacat tgtagatggt aaccattata tggacccagg tatgcctgaa
                                                                    4020
tegtteaaeg tattgaceaa agagateegt tetttaggta teaacattga actgaaaaat
                                                                     4080
ggtgactaa
                                                                     4089
```

```
<210> 16
5 <211> 4089
<212> ADN
```

<213> Acinetobacter Iwoffii

<400> 16

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgcctagc	60
gttatggatg	ctccgtacct	gctcgcgatt	caagtcgact	cgtacagaac	gttettacaa	120
gatggcaaat	caccaaaaaa	ccgcgaagat	atcggtctcc	aagccgcatt	tcgttcagtt	180
tttcctatag	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagtcttggt	240
aagcctgagt	ttgatgtacg	cgaatgtatt	cttcgtggct	caacttatgc	agcaccaatg	300
cgtgtaaaaa	ttcgtttgat	cctgaaagat	cgtgaaacga	agtcaattaa	agacgtac gt	360
gaacaagaag	tctatatggg	cgaaatgcca	ttgatgacgg	ataacgggac	ctttgtaatt	420
aatggtaccg	agcgtgtaat	cgtatctcaa	ttacaccgtt	caccaggcgt	attetttgae	480
cacgataaag	gtaagactca	ctcaagtggt	aaagtccttt	attcagcgcg	tatcattcct	540
taccgtggtt	catggttaga	ttttgaattc	gatgccaaag	acctagtcta	tgtacgtatt	600
gaccgtcgtc	gtaaattact	tgcgactgtg	gtgctgcgtg	cgctgggtta	tagcaacgaa	660
aacattotca	acatgttcta	cgagaaagtc	cctgtgtatc	ttgacatggg	tagctatcaa	720
attgacttgg	tgccggaacg	tetgegegge	gaaatggcac	aatttgacat	cttggataaa	780
gatggcaagg	caatcgttga	acaaggtaaa	cgtattaacg	cgcgtcatgt	acgtcaaatg	840
gaagcttcag	gtcttgaaaa	acttgcagtg	cctgatgagt	atttgtatga	gcgtatcacg	900
gctgaagaca	tegeattaaa	agatggcgac	gtgattgctg	caaataccgt	attgagccat	960
gaagtcatgg	tgaaaattgc	agaaggcggc	gtgaagcagt	ttaatgttct	gttcaccaat	1020
gatatogaco	gtggttcatt	cgttgcagat	tetetacgtg	cagatactac	gaccactcgt	1080
gaagaagcat	tagtagaaat	ctacaaagtc	atgcgtccgg	gcgagccacc	aaccaaagaa	1140
gcagctgaga	acctgttcaa	taacctgttc	ttetettetg	agcgttatga	cttgtctcca	1200
gtcggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	atgaagtggg	tacagaccag	1260
aagtcgcgtg	aagttgaagg	tattctctcg	aacgaagata	tcactgatgt	attgaaaaca	1320
ttagttgaaa	tccgtaacgg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1380
cgtgttcgtt	ctgtgggcga	aatgacagaa	aaccaattcc	gtgtcggtct	ggttegtgta	1440
gaacgtgctg	ttaaagaacg	tttatctcaa	gctgaaacag	acaacctgtc	tccgcaagat	1500
ctaatcaatg	cgaagcetgt	tgctgctgca	atcaaagaat	tctttggttc	aagccagttg	1560

tctcagttca	tggatcaaaa	caacccgttg	tctgaaatca	cgcacaagcg	tcgtgtatca	1620
gcacttggtc	ccggtggttt	gacgcgtgaa	cgtgcgggct	ttgaagtacg	tgacgtacat	1680
caaacgcatt	acggtcgtgt	atgtccaatt	gaaacgccgg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgtata	tgctaaagcg	aacaactteg	gtttcctgga	aacgccttac	1800
cgtaaagtag	ttgatggccg	tgtaaccatg	gacattgaat	acctgtctgc	gattgaagaa	1860
gtgggtactg	tgattgcaca	ggccgattct	gcagtagatg	ctgatggtaa	tttattagaa	1920
gaagttgtat	ctgtacgtca	ccaaggtgac	ttcgtacgca	tgccgccgga	aaaagtaacg	1980
catatggatg	tatetgetea	gcaggttgta	tetgtggetg	cgtcactgat	teegtteett	2040
gaacacgatg	atgccaaccg	tgcattgatg	ggttcaaaca	tgcaacgtca	ggctgttcct	2100
acgttaatcg	ctgacaaacc	actcgtaggt	acgggtatgg	aagcgaacgt	agcacatgac	2160
tctggtgtat	gtgtgatcgc	tcagcgtggt	ggtcgtatcg	agtttgttga	tgcatctcgt	2220
gtcgtgattc	gtgtgaacga	agaagagatg	atcgcaggtg	aggcaggtgt	agatatctat	2280
aacctgatca	aatacacccg	ttcaaaccaa	aacacctgta	tcaaccagaa	agttctggtg	2340
aacctgggcg	ataaagtggg	tcgtggtgac	gtattagctg	atggtccatc	gactgatggc	2400
ggtgagctag	cgcttggtca	aaacatgcgc	gtcgcattca	tgacctggaa	cggttacaac	2460
tacgaagact	cgatcttact	ttcagagegt	gtacttcaag	aagaccgttt	aacctcgatt	2520
catatccagg	aattgtcatg	tgtcgcacgt	gatactaagc	ttggtgctga	agaaatcacg	2580
geegatatee	cgaatgtggg	tgaagcagcg	ctttctaaac	ttgatgaatc	aggtattgtt	2640
tacatcggtg	ctgaagtaac	agcaggtgat	attcttgttg	gtaaagtgac	gcctaaaggt	2700
gaaacgcagc	taacgccgga	agaaaaattg	cttcgtgcaa	tottoggtga	aaaagcagct	2 7 60
gacgttaaag	attcatcttt	acgcgttcca	tctggtacca	aaggtactgt	gattgatgtt	2820
caagtgttta	cacgtgatgg	tcttgaaaaa	gacgaacgtg	ctcaagcaat	tgaaaaagct	2880
cagcttgatg	cttaccgtaa	agacttgaaa	gaagagttca	agatetttga	agaagcagca	2940
cgtgaacgtg	taattcgttt	gttgaacggt	caagagtcga	atggtggcgg	taccactaaa	3000
cgtggcgaca	aactgtctga	agacgtgttg	tctggtttag	agcttgttga	tcttcttgaa	3060
attcaaccgg	ttgatgaagc	aatcgctgaa	cgtctaacgc	aaattcaagt	gttcttgaaa	3120
gagaagagct	tcgaaattga	cgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggc	3180
gatgagetga	ccactggcgt	attgaaagta	gttaaagttt	atcttgcggt	aaaacgtcgc	3240
atccagccgg	gtgataagat	ggccggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	3300
ttgccggtag	aagacatgcc	acacgatgcc	aatggtgtac	ctgttgatat	cgtactgaac	3360
cegetgggeg	taccatcgcg	tatgaacgtg	ggtcagattc	ttgaaactca	cttaggtatg	3420
gctgccaaag	gtcttggcga	tcaaatcgac	aagatgatga	aagaacagcg	tactgtactt	3480
gagettegtg	atttcctgga	caagatttat	aacaaagttg	gtggcgagca	agaagatctt	3540
gacagcttga	ctgatgaag a	aatcttgaaa	ctttctggta	acttgcgtgc	tggtgtgcct	3600
ttggcaacac	ctgtattcga	tggtgctgaa	gaaggtcaga	tcaaagaatt	gttacaactt	3660
gcaggtctat	caagtactgg	tcagacagta	ttatatgatg	gtegtaetgg	tgagcgtttc	3720
gaccgtccag	taactgtagg	ttatatgtac	atgctgaaac	tgaaccactt	agttgatgac	3780
aagatgcatg	cgcgttcaac	tggttcttat	tctctagtca	cgcaacagco	gctgggtggt	3840
aaagcacaat	teggtggtca	gegttteggt	gagatggaag	tctgggcact	agaagettae	3900
ggtgcagcat	atacgctaca	agaaatgctg	actgtgaaat	cggatgacgt	tgaaggccgt	3960
accegtatet	acaagaatat	tgtagatggt	aaccattata	tggacccggg	tatgcctgaa	4020
tcgttcaacg	tattgaccaa	agagatccgt	tetttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 17 <211> 4089 <212> ADN <213> Acinetobacter sp.

<400> 17

5

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgcctagc 60 gtcatggatg ctccgtactt gctcgcgatt caagtcgact cgtacagaac attcttacaa 120 gatggcaaat caccaaaaaa ccgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttcctattg aaagttattc tggcaatgct gctttagaat ttgttgagta tagtcttggt 240 aagootgagt ttgatgtacg cgaatgtate ettegtgget caacttatge agcaccaatg 300 cgtgtaaaaa ttcgtttgat cctgaaagat cgtgaaacga agtcaattaa agacgtacgt 360 420 gaacaagaag totatatggg cgaaatgeca ttgatgacgg ataacggtac ctttgtaatt aacggtaccg agcgtgtgat cgtgtcacaa ttacaccgtt caccaggcgt attctttgac 480 cacgataaag gcaagactca ctcaagtggt aaagtccttt attcagcacg tatcattcct 540 600 taccqtqgtt catggttaga ctttgaattc gatgccaaag acctcgtcta tgtacgtatt gaccgtcgtc gtaaattgct tgcgactgtg gtactccgtg ccttgggtta tagcaacgaa 660 aacattotog acatgitota ogagaaagta cotgiqtato tiqacatqqq tagotaccag 720 attgacctgg tgcctgaacg tttgcgtggc gaaatggcac aatttgacat tctggacaag 780 gatqqcaagg caattgttga gcaaggtaaa cgtatcaatg cgcgtcatgt acgtcaaatg 840 gaagetteag gtettgaaaa acttgeagtg ceagatgagt acetatatga gegtateact 900 getgaagaca tecagttaaa agatggegat gtgattgeag ecaataetgt attaageeat 960 gaaatcatgg tgaaaattgc agaaggcggc gtgaagcagt tcaatattct gttcaccaat 1020 gatatcgacc geggttcatt tgttgcagat tctctacgtg cagatacaac gagcaatcgt 1080 qaaqaagcat tggtagaaat ctacaaagtg atgcgtccgg gcgaaccacc aaccaaagaa 1140

gctgctgaaa	acttattcaa	caacttgttc	ttctcttctg	aacgttatga	cttgtctcca	1200
gttggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	atgaagtggg	tacagaccag	1260
aagtcacgtg	aggttgaagg	catteteteg	aacgaagata	tcactgatgt	attaaaaaca	1320
ttagttgaaa	teegtaaegg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1380
cgtgttcgtt	ctgtgggtga	aatgacagaa	aaccaattcc	gtgtaggtct	ggttegtgta	1440
gaacgtgctg	ttaaagaacg	totatotoaa	gctgaaactg	acaacctgtc	tccgcaagat	1500
ttgatcaatg	cgaaacctgt	tgctgctgca	atcaaagaat	totttggttc	aagccagttg	1560
tctcagttta	tggatcaaaa	caacccgtta	tctgagatta	cgcacaaacg	togtgtttct	1620
gcacttggtd	ctggcggttt	gacgcgtgaa	egtgeagget	ttgaagtacg	tgacgtacat	1680
caaactcact	acggtcgtgt	atgtccaatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgttta	tgcgaaatgt	aacaactttg	gttttctgga	aaccccatac	1800
cgtaaggttg	ttgatggtcg	tgtaacagat	gaagttgaat	acctgtctgc	gattgaagaa	1860
gtaggtactg	tcattgcaca	ggccgattct	gcaatggata	aagacggtaa	cttaacagaa	1920
gagtttgtat	ctgttcgtca	tcagggtgac	ttcgtacgta	ttcctcctga	aaaagtaacg	1980
catatggatg	tatctgctca	gcaggtcgta	tctgtagcag	cgtcactgat	tccattccta	2040
gaacacgatg	acgccaaccg	tgcgttaatg	ggttcgaaca	tgcaacgtca	ggcagttccg	2100
acgttgatcg	ctgacaagcc	gcttgttggt	accggtatgg	aagcgaacgt	agcacatgac	2160
tcaggtgtat	gtgtgatcgc	tcagcgtggt	ggtcgtatcg	agtttgttga	tgcgtctcgt	2220
gtggttattc	gtgtgaatga	agacgaaatg	atcgcaggtg	aagcaggtgt	agatatctac	2280
aacctgatca	agtacacccg	ttegaaccag	aacacttgta	tcaaccagaa	agttcttgtg	2340
aacctgggcg	ataaagtggg	tcgtggtgat	gtcctggctg	atggtccatc	gactgatggc	2400
ggtgagctgg	cactgggtca	aaacatgcgc	gttgcgttca	tgacctggaa	tggttacaac	2460
tacgaagact	cgatcttact	ttctgagcgt	gttcttcaag	aagaccgttt	aacgtctatt	2520
catatccagg	aattatcatg	tgtcgcacgt	gataccaaac	tgggtgcgga	agaaatcact	2580
gctgatattc	cgaacgtagg	tgaagetget	ctgtctaaac	tggacgagtc	aggtategtt	2640
tacateggtg	ctgaagtaac	tgctggcgat	atectggttg	gtaaagtaac	ccctaaaggt	2700
gaaacacaac	ttactccgga	agaaaaattg	ctacgtgcaa	tcttcggtga	aaaagcagct	2760
gacgtaaaag	actcatcttt	acgcgttcca	tcaggtacta	aaggtacagt	cattgacgtt	2820
caagtgttta	cacgtgacgg	tcttgaaaaa	gacgaacgtg	ctcaagcaat	tgaaaaagcg	2880
caattggatg	catacegtaa	agacttgaaa	gaagaattca	aaatcttcga	agaagctgca	2940
cgtgaacgtg	taatccgtct	actgaatggc	caagagtcga	atggtggcgg	tacaactaaa	3000
cgtggcgaca	aactgtctga	agacgtgttg	tctggtttag	agcttgttga	tcttcttgaa	3060
attcaaccag	ttgatgaagc	aattgctgaa	cgtttaactc	aaattcaagt	gttcttgaaa	3120
gagaagagct	togaaattga	cgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggc	3180

```
gatgaactga ccactggcgt tttaaaaagtt gttaaggttt atcttgctgt aaaacgtcgc
                                                                    3240
atccaaccgg gtgataagat ggcgggtcgt cacggtaaca aaggtgttgt atcaaacatc
                                                                    3300
ttgccggtag aagacatgcc acatgatgcc aacggtgtac ctgttgatat cgtattgaac
                                                                    3360
cogettggcg taccateacg tatgaacgtg ggtcagatte ttgaaactca ettgggtatg
                                                                    3420
gcggcgaaag gtcttggcga tcaaatcgac aagatgatga aagagcaacg tactgtactt
                                                                    3480
gagettegtg attteetgga caagatttae aataaagttg gtggegagea agaagatett
                                                                    3540
gatagettga etgatgaaga aatettgaaa etttetggea aettgegtge tggtgtgeet
                                                                    3600
ttggctactc ctgtattcga tggtgctgaa gaaggtcaga tcaaagagtt gttacaactt
                                                                    3660
gcaggcctat ctagtactgg tcagaccgta ttatatgatg gtcgtactgg tgaacgtttc
                                                                    3720
gatcgtecgg taactgttgg ttatatgtac atgctgaaac tgaaccattt ggttgatgac
                                                                    3780
aagatgcatg cgcgttcaac tggctcttat tctctggtaa cgcaacagcc gctgggtggt
                                                                    3840
                                                                    3900
aaagcacaat teggtggtea gegttteggt gagatggaag tetgggeact agaagettae
ggtgcagcat atacgctaca agaaatgctg actgtgaaat cggatgacgt tgaaggccgt
                                                                    3960
acceptatet acaagaacat tgtggatgge aaccattata tggacceggg catgeetgaa
                                                                    4020
togttoaacg tattgaccaa agagatoogt totttaggta toaacattga actgaaaaat
                                                                    4080
ggtgactaa
                                                                    4089
```

<210> 18 <211> 4089

<212> ADN

5

<213> Acinetobacter sp.

<400> 18

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60
gtcatgcatg	ctccgtactt	gctcgcgatt	caagtcgact	cgtacagaac	attcttgcaa	120
gatggcaaaa	ctccaaaaaa	togogaagat	atcggtctcc	aagctgcatt	togttcagtt	180
tttcctattg	aaagttattc	gggcaatgct	gctttagaat	tcgttgagta	tagtottggt	240
aaaccagagt	ttgatgttcg	cgagtgtatt	cttcgcggtt	caacctttgc	ggcaccaatg	300
cgcgttaaaa	ttcgtttgat	catcaaagat	cgtgaaacga	aatctatcaa	agacgtacgt	36 0
gaacaagaag	tgtacatggg	tgaaatgcca	ctcatgactg	agaatggtac	ttttgtaatc	420
aatggtactg	agcgtgtaat	cgtatctcaa	ttacaccgtt	ctccgggcgt	cttctttgat	480
cacgataagg	gtaaaactca	ttcaagtggt	aaagtgcttt	attcagcacg	tatcattcct	540
taccgtgggt	catggttgga	ttttgaattt	gatgctaaag	acttagtatt	tgttcgtatt	600
gaccgtcgtc (gtaaattgtt	ggcgactgtt	attctacgtg	cattgaacta	tagcaatgaa	660
caaattctca a	atatgttcta	tgagaaagta	cctgtatatc	ttgatatggg	tagctatcag	720

attgaccttg	ttccagaacg	cettegeggt	gaaatggcgc	agttcgatat	tgcagacaat	780
gacggtaaag	tgattgttga	acaaggtaaa	cgtatcaatg	cacgtcatgt	gcgtcaaatg	840
gaagctgcgg	gtttaactaa	actttctgtt	cctgatgaat	acttgtatga	gcgtattaca	900
gctgaagata	ttactttacg	tgatggtgaa	gtgattgctg	ctaataccat	tttaagccat	960
gaagtattgg	ttaaaatcgc	tgaaggtggt	gttaaacaat	ttaacatctt	gttcaccaat	1020
gatatcgatc	gtggttcgtt	tgttgcagat	acactacgtg	cagatacgac	aacaggtcgt	1080
gaagaagcac	ttgtagaaat	ctacaaagtc	atgcgtccag	gtgagccacc	aacaaaagaa	1140
gcggctgaaa	acttattcaa	taacttattc	ttctctacag	agcgttatga	cttgtctcct	1200
gtaggtcgta	tgaagtttaa	tcgtcgtttg	ggtcgtcctt	atgaagtcgg	tacagatcag	1260
aagtctcgtg	aagtagaagg	tattetttet	aacgatgaca	tcattgatgt	attgaaaaca	1320
ttggtagaaa	tccgtaacgg	taaaggtgaa	gtcgacgata	tcgatcactt	aggtaaccgt	1380
cgtgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggtct	agttcgtgtt	1440
gaacgtgctg	taaaagagcg	tttaaaccaa	gctgaaacag	ataacttgtc	tccacaagat	1500
ttgatcaatg	cgaaaccagt	tgcagctgca	atcaaagaat	tetttggtte	aagccaattg	1560
tctcagttta	tggatcaaaa	caatccattg	totgaaatta	cgcacaaacg	tcgtgtttca	1620
gcgcttggtc	ctggtggttt	gacacgtgaa	cgcgcaggct	t tgag gt a cg	tgacgtacat	1680
caaactcact	atggtcgtgt	gtgtccaatt	gagacacctg	aaggtccaaa	cattggtttg	1740
atcaactcac	tttctgtata	tgcaaaagcc	aacaacttcg	gtttcttgga	aacaccatac	1800
cgtaaagtgg	ttgatggtcg	tgtaacggat	gatgttgagt	atttatctgc	gattgaagaa	1860
gtaggcactg	taattgcaca	agccgattct	ggtgtagata	aagacggtca	cttgactgaa	1920
gaattcgttt	ctgtacgtca	tcaaggtgaa	ttcgttcgta	tgcctcctga	aaaagtgacg	1980
catatggatg	tatetgetea	gcaggttgtt	tetgttgetg	catcacttat	tecattectt	2040
gaacacgatg	atgcgaaccg	tgcattaatg	ggttcaaaca	tgcaacgtca	ggctgttcct	2100
acattgcttg	ctgacaagcc	acttgttggt	acaggtatgg	aagcaaacgt	agegeatgae	2160
tetggegtgt	gtgtaatcgc	aaaacgtggc	ggacgtattg	agttegttga	tgettetegt	2220
gttgttattc	gtgtgaacga	agatgaaatg	atcgcggg t g	aagcaggtgt	agacatetae	2280
aacttgatca	aatacacacg	ttcaaaccaa	aacacttgta	tcaaccaaaa	agttcttgtg	2340
agettgggeg	ataaagtagg	tegtggtgae	gttcttgctg	atggtccatc	gactgacggt	2400
ggtgaattag	cgcttggtca	aaacatgcgt	gtcgcgttca	tgacgtggaa	cggttataac	2460
tacgaagact	cgatcttatt	atctgagcgt	gtacttcaag	aagaccgttt	gacttcgatt	2520
cacatccaag	agttgtcatg	tgtagcgcgt	gataccaagt	taggtgcaga	agaaattact	2580
gcagatattc	ctaacgtggg	tgaagcagct	ttatctaaac	ttgatgaatc	aggtattgtt	2640
tatatcggtg	ctgaagtttc	agcaggtgac	atccttgttg	gtaaggtaac	gcctaaaggt	2700
gaaacacaat	taacacctga	agaaaaatta	cttcgtgcaa	ttttcggtga	aaaagctgcg	2760

gatgtaaaag	actettett	acgtgtttct	tcaagcgtaa	aaggtacagt	gattgacgtt	2820
caagtgttta	cacgtgacgg	tatcgagaaa	gatgagcgtg	ctcaagcaat	tgaaaaagcg	2880
caacttgatg	cttaccgtaa	agacttgaaa	gaagagttca	aaatcttcga	agaagctgct	2940
cgtgaacgta	ttgtgcgttt	attgaaaggt	caagagtcaa	atggtggtgg	tacaacgaaa	3000
cgtggtgaca	agctaactga	agacgtattg	tctaacttag	agcttgttga	tetgttagaa	3060
gttcaaccag	cagacgaagg	tattgctgag	cgtttaacgc	agattcaagt	gttcttgaaa	3120
gagaagagcc	acgagatcga	tgagaagttt	gctgagaaaa	aacgtaaact	ttcaacgggt	3180
gatgaactga	caactggtgt	gttgaaagtt	gttaaagttt	atcttgctgt	taaacgtcgt	3240
atccagcctg	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	3300
ttaccagttg	aagatatgcc	gcatgacatc	catggtgttc	cagtggatgt	ggtacttaac	3360
ccactcggtg	taccatcacg	tatgaacgtg	ggtcagattc	ttgaaactca	cttgggtatg	3420
gcagcgaaag	gtcttggcga	taagatcgac	aagatgatga	aagagcaacg	tactgttctt	3480
gaacttcgtg	aattettaga	caagatttat	aacaaagttg	gtggcgagca	agaagatett	3 540
gatagettga	ctgatgaaga	aatcttggtg	ttatcaggta	acttgcgtaa	aggtgttcct	3600
ttagctacac	cagtatttga	tggtgcagaa	gaaggacaaa	tcaaagagtt	acttgaactt	3660
ggtggtatet	cacgtacagg	tcaaacagta	ttgtatgatg	gacgtacagg	tgagcgtttt	3720
gaccgcccag	taacagtagg	ttatatgtac	atgctcaagt	tgaaccactt	ggttgacgac	3780
aagatgcatg	cacgttctac	tggttcttac	tcactggtga	ctcaacaacc	gcttggtggt	3840
aaagcacaat	toggtggtca	gcgtttcggt	gagatggaag	tttgggcact	tgaggcttat	3900
ggtgctgctt	atacacttca	agaaatgtta	actgtgaaat	cggatgacgt	tgaaggtcgt	3960
actogeatet	ataagaacat	tgtagatggt	aaccattata	tggatecggg	tatgcctgaa	4020
tegttcaacg	tattgaccaa	agagatccgt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 19

<211> 4089

<212> ADN

<213> Acinetobacter sp.

<400> 19

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgccccaa 60
gtcatgcatg ctccgtacct gctctcgatt caagtcgact cgtacagaac attcttgcaa 120
gacggcaaaa caccaaaaaa tcgcgaagat atcggtctcc aagctgcatt tcgttcagtt 180
tttcctattg aaagttattc gggcaatgct gctttagaat tcgttgagta tagtcttggt 240
aaaccagagt ttgatgttcg cgaatgtatt cttcgtggct caacctttgc ggcaccaatg 300

cgcgttaaaa	ttcgtttgat	catcaaagat	cgtgaaacga	aatctattaa	agacgtacgt	360
gaacaagaag	tgtacatggg	tgaaatgcca	ctcatgactg	agaatggtac	ctttgtcatc	420
aatggtactg	agcgtgtaat	cgtateteaa	ttacaccgtt	caccaggegt	attctttgac	480
catgataaag	gtaaaacgca	ttcaagcggt	aaagtgcttt	attcagcacg	tattattcct	540
tatogtggtt	catggttaga	ttttgagttt	gatgctaaag	atttagtctt	tgtacgtatt	600
gaccgtcgtc	gtaaattgct	tgcgactgtt	gtgttgcgtg	cattgagcta	tagcaatgaa	660
caaattctga	atatgttcta	cgaaaaagta	cctgtatatc	ttgatatggg	tagctatcag	720
attgaccttg	tgcctgaa cg	tettegtggt	gaaatggctc	aatttgatat	cgtggacaat	780
gatggtaaag	ccattgttga	acaaggtaaa	cgtattaatg	ctcgccatgt	acgtcaaatg	840
gaagetgetg	gtttaactaa	acttccagtt	ccagatgaat	atttgtatga	gcgtattact	900
gctgaagata	tcgtacttaa	agacggtgaa	gtaattactg	ctaacactgt	attaagtcat	960
gagattttgg	tcagaattgc	tgaaggtggt	attaaacaat	ttaatatcct	gttcaccaat	1020
gacatcgatc	gtggttcttt	tgttgctgac	accttacgtg	cagatacaac	atctggtcgt	1080
gaagaagcac	ttgtagaaat	ctacaaagtg	atgcgtccag	gtgagccacc	aacgaaagaa	1140
geggetgaaa	acttattcaa	taacttattc	ttctctacag	agcgttatga	tttatcgcct	1200
gtgggtcgta	tgaagtttaa	ccgtcgtttg	ggtcgtcctt	acgaagtagg	tacagatcag	1260
aagtctcgtg	aagtagaagg	tattctttct	aacgatgaca	tcattgatgt	actgaaaaca	1320
ctggtagaaa	ttcgtaacgg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1390
cgcgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	agttcgtgtt	1440
gaacgtgctg	ttaaagagcg	tttaaaccaa	gctgaaacag	ataacttgtc	tccacaagat	1500
ttgatcaatg	cgaaaccagt	tgctgctgca	atcaaagaat	tctttggttc	aagccaattg	1560
tcacagttta	tggatcaaaa	caacccattg	tcagaaatta	cacacaaacg	tegtgtatet	1620
gegettggge	ctggtggttt	gacacgtgaa	cgtgcgggct	ttgaagtacg	tgacgtacat	1680
caaactcact	atggtcgtgt	atgtccaatt	gaaacacctg	aaggaccaaa	cattggtttg	1740
atcaactcgc	tttctgttta	tgcaaaagcg	aacaacttcg	gtttcttgga	aacaccatac	1800
cgtcgcgttg	ttgatggtcg	tgtaacagat	gatgttgaat	atttatctgc	aattgaagaa	1860
gtaggtactg	ttattgcaca	ggccgattct	gcattggata	aagatggaca	tttaacagaa	1920
gacttcgttt	cagtacgtca	ccaaggtgac	ttcgttcgta	tgccacctga	aaaagtgacg	1980
catatggatg	tatctgctca	acaggttgta	tetgtegetg	catcacttat	tccattcctt	2040
gaacacgatg	atgccaaccg	tgcattgatg	ggttcaaaca	tgcaacgtca	ggctgttcct	2100
acattgcttg	ctgataaacc	acttgtgggt	accggcatgg	aagcaaacgt	agcgcacgac	2160
tctggtgtat	gtgtgatcgc	gaaacgtggc	ggaegcattg	agtttgtaga	tgcatcacgt	2220
gtggttattc	gtgtcaacga	agatgaaatg	atcgcgggtg	aagcaggtgt	agatatotac	2280
aacttgatca	aatacacgcg	ttcaaaccaa	aacacatgta	ttaaccaaaa	agtgcttgtg	2340

```
2400
ageatgggeg ataaagtegg ceqtqgtgae gttettgetg atggteeate aactgatggt
                                                                     2460
ggtgaattag cattgggtca gaacatgcgt gtcgcgttca tgacttggaa cggttataac
tacgaagact cgattttatt atctgaacgt gttcttcaag aagatcgttt aacttcaatt
                                                                     2520
catattcaag aattatcatg tgttgcgcgt gatacgaagt taggtgcgga agaaatcact
                                                                     2580
geogatatte ctaacgtagg tgaagcageg ttatctaaae ttgatgaate aggtattgtt
                                                                     2640
                                                                     2700
tatateggtg etgaagttge agegggtgat attettgttg gtaaagtgae geetaaaggt
gaaacacaat taacccctga agaaaaatta cttcgtgcaa tctttggtga gaaagcggca
                                                                     2760
gacgitaaag attcatcitt acgiqtitict tcaagcgita aaggiacagi catcgacgit
                                                                     2820
caagtgttta cacgtgacgg tatcgagaaa gatgaacgtg ctcaagcgat tgagaaagcg
                                                                     2880
cagcttgatg cttaccgtaa agacttgaaa gaagaattca aaatcttcga agaagcagct
                                                                     2940
cgtgaacgta ttatccgttt gttaaaagge caagagtega atggeggegg tactactaag
                                                                     3000
cgcggtgata agctatctga agatgtattg tctggtttag agcttgttga tcttttagaa
                                                                     3060
gttcaaccaa cagatgaagg catcgctgaa cgcttaactc aaattcaagt gttcttgaaa
                                                                     3120
gagaagaget acgagattga tgagaaattt getgagaaaa aacgeaaact ttetacaggt
                                                                     3180
gatgagetta caacaggtgt ettgaaagtt gttaaagttt atttagetgt aaaacgtegt
                                                                     3240
atccagcctg gtgataagat ggcgggtcgt cacggtaaca aaggtgttgt atcaaacatc
                                                                     3300
ttgcctgttg aagacatgcc gcatgacatc catggtgttc cagttgatgt cgtacttaac
                                                                     3360
ccattgggtg taccatcacg tatgaacgtg ggtcagattc ttgaaactca cttaggtatg
                                                                     3420
gctgcaaaag gtcttggcga taagatcgac aagatgatga aagagcaacg taccgttctt
                                                                     3480
gagettegtg atttettaga caagatttat aacaaagttg gtggcgagca agaagatett
                                                                     3540
gatagettaa etgatgaaga aatettggtg ttateaggta aettgegtaa aggtgtteet
                                                                     3600
ttagctacgc cagtatttga tggtgcagaa gaaagtcaga tcaaagagtt acttgagctt
                                                                     3660
ggtggtatet cacgtacagg tcaaacagta ttgtatgacg gacgtacagg tgagcgtttt
                                                                     3720
                                                                     37B0
gaccgcccag taactgttgg ttatatgtac atgebeaagt tgaaccattt ggttgatgac
asgatgeatg caegitetac tqqttettat teaettqtaa eteaagaace qettqqtqqt
                                                                     3840
aaagcacaat toggtggtca gogtttoggt gagatggaag totgggcact agaagcttat
                                                                     3900
ggtgctgctt atacacttca agaaatgctt actgtgaagt cggatgacgt tgaaggtcgt
                                                                     3960
actogoatot ataagaacat ogtagatggt aaccattata tggatcoggg tatgootgaa
                                                                     4020
tegtttaacg tattgaccaa agagateegt tetttaggta teaacattga actgaaaaat
                                                                     4080
ggtgactaa
                                                                     4089
```

<210> 20

<211> 4089

<212> ADN

5

<213> Acinetobacter radioresistens

<400> 20

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60	
gtcatggaag	caccgtacet	gttgtctatt	caagtcgact	cgtaccgtac	tttcctgcaa	120	
gacggcaaaa	ctccaaaaaa	ccgcgaagat	ateggtetee	aagccgcatt	togttcagtt	180	
tttcctatag	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagccttggt	240	
aaacccgagt	ttgatgtccg	cgaatgtatt	cttcgtggct	caacctatgc	ggcaccaatg	300	
cgcgtaaaga	ttcgtctgat	cattaaagat	cgcgaaacga	aatcaatcaa	agatgttegt	360	
gaacaagaag	tctatatggg	tgaaattcca	ctcatgactg	aaaatggtac	ctttgtcatc	420	
aatggtaccg	agcgtgtaat	cgtatctcag	ttacatcgtt	caccgggtgt	attctttgac	480	
catgacaaag	gtaaaaccca	ctcaagcggt	aaagtgttgt	attcagcacg	tattattcct	540	
taccgtggtt	catggcttga	tt ttg agttt	gatgccaaag	acctggtata	tgtacgtatc	600	
gaccgtcgtc	gtaaattact	tgctactgta	gttatgcgtg	cactgggcta	taacaatgaa	660	
cagattctgg	atctgttcta	tgagaaagtc	cctgtgtatc	tggatatggg	cagttatcag	720	
attgatctcg	tgcctgaacg	cctgcgtggt	gaaatggcgc	agttcgatat	tgctgacaat	780	
gatggcaaag	tgattgttga	gcagggtaaa	cgtatcaatg	cacgtcatgt	acgtcaaatg	840	
gaagettetg	gcctgactaa	actgccagtt	cctgatgagt	acctgtacga	acggattact	900	
gctgaagata	ttagcctgaa	atcaggcgat	gtaattgctg	cgaatacctt	gctgagccat	9 60	
gaaatcatgg	tgaagattgc	tgaaggtggc	gtgaagcagt	ttaatatctt	gtataccaat	1020	
gatattgacc	gtggttcatt	cgtggcagat	accttacgtg	cagatacaac	aagtggccgt	1080	
gaagaagccc	tggttgagat	ctataaggta	atgegtecag	gegageegee	aacaaaagaa	1140	
gctgctgaga	acctgttcaa	taacctgttc	ttetettetg	agcgttatga	cctgtcacct	1200	
g tt ggtcgta	tgaagttcaa	ccgtcgttta	ggtcgcccat	acgaagtagg	aactgaccag	1260	
aagtcacgtg	aagttgaagg	tatteteteg	aatgaagata	tcatcgatgt	attacgtact	1320	
ttagttgaaa	ttcgtaacgg	taagggtgag	gtcgatgata	ttgaccattt	gggtaaccgt	1380	
cgtgtccgtt	ctgtaggtga	aatgactgag	aaccagttcc	gtgtaggtct	ggtccgtgtt	1440	
gaacgtgcag	ttaaagagcg	tctgtcacag	gcagaaactg	acaacctgtc	tccacaggac	1500	
ctgatcaatg	ctaaaccggt	agctgctg ca	atcaaagaat	tctttggttc	aagccagttg	1560	
tcccagttta	tggatcagaa	taacccgcta	tctgaaatta	cacataagcg	tcgtgtatcg	1620	
gcacttggac	caggcggttt	gaccegtgag	egegeagget	ttgaggtgcg	tgacgtacac	1680	
cagacccact	atggtcgtgt	gtgtccgatt	gaaacccctg	aaggaccaaa	categgtetg	1740	
attaactcgc	tgtctgtata	cgcaaaaacc	aatgaatttg	gtttcttgga	aacgccttac	1800	
cgtaaagtgg	tagatggccg	tgtaacagat	gaagttgaat	atctgtctgc	aattgaagaa	1860	
gtaggaactg	tgattgctca	ggecgaetet	gcactcgata	aagatggtta	tttaaccgaa	1920	

```
1980
gagetggttt etgtaegtta ecagggegaa tttgtgegta tggeteeaga gegtattaeg
catatggatg tttctgcaca gcaggtagtt tctgtagcgg catctctgat tccattcctt
                                                                     2040
gagcacgatg atgccaaccg tgcattgatg ggttcaaaca tgcagcgtca ggctgtaccg
                                                                     2100
acactgattg cggacaaacc gctagtaggg acaggtatgg aagcgaatgt tgcacgtgac
                                                                     2160
tcaggtgtat gtgtaattgc aaaacgtggc ggtaccattg aattcgtaga tgcgtcacgt
                                                                     2220
                                                                     2280
gtagttattc gtgttaacga agacgagatg attgcgggtg aagcgggtgt agatatctat
aacctgatea aatacacacg ttcaaaccag aatacctgta ttaaccagaa agttctggtg
                                                                     2340
aatotgggtg ataaagttgg togtggtgat gtactggotg atggcocgtc tacggatggt
                                                                     2400
ggtgaattag cacttggtca gaacatgcgt gttgcattca tgacttggaa tggttacaac
                                                                     2460
tacgaagact caatcctgct ttctgaacgt gtacttcagg aagaccgttt aacttctatt
                                                                     2520
cacatteagg aattgteatg tgtageaegt gataceaaac tgggtgeaga agaaattact
                                                                     2580
geggatatte caaacgtagg tgaagetgeg etttetaaac tggatgaate eggtattgtt
                                                                     2640
                                                                     2700
tatateggtg cagaagtaac ggetggegat attetggttg gtaaagtgac acctaaaggt
gaaacteage teacacetga agaaaaactg ettegegeta tetteggtga gaaageaget
                                                                     2760
gatgtaaaag attcatcttt acgtgttcca tcaggtacca aaggtacggt aattgacgtc
                                                                     2820
caggtgttta cacgtgatgg tetggaaaaa gatgaccgtg cactggcgat tgagaaagca
                                                                     2880
caacttgacg cttatcgtaa agatttgaaa gaagaatata aaatctttga agaagcggct
                                                                     2940
cgtgaacgta tigtacgtit gctgaaagat caggtgtcta acggcggtgg aaatactaaa
                                                                     3000
cgtggtgaga aactgtctga agaattgcta tctggccttg aactgattga tctgctcgaa
                                                                     3060
atccagccaa gcgatgaagc gattgctgaa cgtttaaccc agatccaggt gttcttgaaa
                                                                     3120
gagaaaagca eegagattga egagaagttt geegagaaga aacgeaaget ttetaegggt
                                                                     3180
gatgagctga ctcatggcgt attgaaagtt gtgaaggttt atctagcagt taaacgtcgt
                                                                     3240
atccagccgg gtgataaaat ggcgggtcgt cacgggaaca agggtgtggt atcacaaatc
                                                                     3300
ctgcctgtag aagacatgcc acatgatgcc aatggtgttc cggttgatgt ggtattaaac
                                                                     3360
ccgctaggtg taccatcacg tatgaacgtg ggacagattc tggaaacaca tttgggtctt
                                                                     3420
gctgcaaaag gtttaggtga gcagatcgac aagatgctta aacagcagcg tgctattgtt
                                                                     3480
gaactgcgtg attttcttga taagatttac aataaagtcg gtggtgagca agaacagctt
                                                                     3540
gatacactga ctgatgatga aatcttgaaa cttgcaggaa acctcagcaa gggtgtgcca
                                                                     3600
ctggcaactc cagtatttga tggtgccgaa gaaggccaga tcaaagagtt acttgaactt
                                                                     3660
gragaartgr cargttrigg cragragate etgittgatg gargtaragg cgaaragttt
                                                                     3720
gaccgtccgg taactgtagg ttacatgtat atgcttaaac tcaaccactt ggtggatgac
                                                                     3780
aagatgcatg cgcgttctac cggttcttac tctcttgtaa cgcaacagcc gcttggtggt
                                                                     3840
aaagcacaat toggtggtca gogtttoggt gagatggaag totgggcact tgaagcttac
                                                                     3900
ggtgeagcat atactettea agagatgetg accgtgaagt eggatgaegt tgaaggeegt
                                                                     3960
 accegcatet ataagaatat tgtagatgga aaccattata tggateeggg catgeetgaa
                                                                     4020
                                                                     4080
 togtteaacg tattgaccaa agagatcogt totttaggta toaacattga actgaaaaat
                                                                     4089
 ggtgactaa
```

<210> 21 5 <211> 4089 <212> ADN <213> Acinetobacter sp.

<400> 21

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccac	60
gtaatggaag	caccgtactt	actttcgatt	caggtcgatt	egtacegtae	attottacaa	120
ggcggtaaaa	ctccaaaaaa	tcgcgaagat	atcggtctcc	aagccgcatt	tegttcagtt	180
tttcctattg	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagtcttggt	240
aagcctgagt	ttgacgtacg	tgaatgtatt	ttacgtggtt	caacttatgo	agcaccaatg	300
cgcgtaaaaa	ttcgtttgat	cattaaagat	cgtgaaacga	aatcaattaa	agacgttcgt	360
gaacaagaag	tttacatggg	tgaaatgcca	ctcatgaccg	ataacggtac	tttcgttatc	420
aacggtacag	agcgtgtaat	cgtatctcaa	ttacaccgtt	caccaggcgt	attctttgac	480
catgataagg	gtaaaaccca	ctcaagcggt	aaagtgttgt	attcagcacg	tattattcct	540
taccgtggtt	catggttaga	ctttgaattt	gatgctaaag	atttagtctt	tgtacgtatt	600
gaccgtcgtc	gtaaattatt	ggcaacggtg	gttttacgtg	ccttaaatta	cagcaatgaa	660
cagatettga	atttgttcta	cgaaaaagtg	cctgtatatc	ttgatatggg	tagctatcag	720
attgaccttg	ttccagatcg	cttacgtggt	gaaatggcgc	aatttgatat	cttggacaat	780
gatggtaaag	cgatcgttga	acaaggtaag	cgtattaatg	cacgtcacgt	acgtcaaatg	840
gaagctgcta	acttagcgaa	gctttctgta	cctgatgaat	atttatatga	gegtattaca	900
gctgaagaca	ttccattgaa	aaatggcgat	gtgattgctg	cgaatacagt	gettagecat	960
gaaatettgg	tgaaattggc	tgaaggtggt	gttaaacaat	ttaacatcct	gttcaccaat	1020
gacatogaco	gtggttcttt	cgttgcagat	acattacgtg	cagatacgac	aacaggccgt	1080
gaagaagcgc	ttgttgaaat	ctataaagta	atgegteeag	gegagecace	aacaaaagaa	1140
gctgctgaaa	acttattcaa	caacttgttc	ttetettetg	agcgttatga	cctttctcca	1200
gtgggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tacagatcag	1260
aagtcgcgtg	aagttgaagg	tattttatcg	cacgaagata	ttattgatgt	actgcgtaca	1320
ttggttgaaa	tccgtaacgg	taaaggtgaa	gtcgatgata	tegateactt	gggtaaccgt	1380
cgtgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	agtccgtgtt	1440
gaacgtgctg	ttaaagagcg	tttaagccaa	gcagaaacag	ataacttgtc	tccgcaagat	1500

	ttgatcaatg	caaaaccagt	tgctgctgca	atcaaagaat	tctttggttc	aagccagttg	1560
	tctcagttca	tggatcaa aa	caacccattg	tctgagatta	cacataaacg	tcgtgtatct	1620
	gcgcttggtc	ctggtggttt	gacacgtgaa	egtgeggget	ttgaagtacg	tgacgtacat	1680
	caaactcact	atggtcgtgt	ttgtccaatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740
	atcaactcgc	tttctgttta	tgcaaaagca	aacgatttcg	gtttcttgga	aacaccttac	1800
	cgtaaagttg	ttgatggccg	tgtaactgat	gatgttgaat	atttatctgc	aattgaagaa	1860
	gtagggactg	tcattgcaca	ggccgattct	getgttgata	aagatggtca	cctgactgaa	1920
	gaaatggttt	ctgtacgtca	tcaaggtgaa	ttcgtacgta	tgtcgcctga	gcgcgtaaca	1980
	catatggacg	tttctgcaca	gcaggttgtt	tetgttgeag	catcattgat	tccattcctt	2040
	gaacacgatg	atgcgaaccg	tgcattgatg	ggttcgaaca	tgcaacgtca	ggctgttcct	2100
	accttacgtg	ctgacaagcc	gcttgttggt	acgggtatgg	aagcaaacgt	agcacgtgac	2160
	tctggcgtgt	gtgtgattgc	tgaccgtggt	ggtgcgattg	aatatgtaga	tgcatctcgt	2220
	atcgtgattc	gtgtaaacga	agatgaaatg	atcgcgggtg	aagcgggtgt	agatatctac	2280
	aacctgatca	aatacacacg	ttcaaaccaa	aatacatgta	tcaaccaaaa	cgttatcgta	2340
	aacttgggtg	acaaagttgc	tcgtggcgat	atcttggctg	atggtccatc	gactgatatg	2400
	ggtgaacttg	cgcttggtca	aaacatgege	gtcgcgttca	tgacatggaa	cggttataac	2460
	tacgaagact	cgatcttact	ttctgagcgt	gtacttcaag	aagaccgttt	aacctcgatt	2520
	cacattcaag	aattgtcatg	tgtagcgcgt	gatactaagt	taggtgcaga	agaaattact	2580
	gccgatattc	ctaacgttgg	tgaggctgca	ctgtctaagt	tggatgagtc	tggtattgtt	2640
	tatatcggtg	ctgaagtaac	tgctggtgac	atccttgttg	gtaaggtaac	gcctaaaggt	2700
	gaaactcagt	taacacctga	agaaaaacta	cttcgcgcaa	tctttggtga	aaaagctgct	2760
	gatgttaaag	actettett	acgtgttcca	tetggcacta	aaggtactgt	gattgacgtt	2820
	caagtettea	cacgtgatgg	tttggaaaaa	gatgaacgtg	ctcaagcaat	tgagaaagct	2880
	cagcttgatg	cataccgtaa	agacttgaaa	gaagagtaca	aaatcttcga	agaagcagca	2940
	cgtgaacgta	ttgttcgttt	gttgaaaggt	caagagtcta	acggtggcgg	ttcaactaaa	3000
	cgc gg tga t a	aacttgetga	agacgtattg	tctggtttag	agcttgttga	tttacttgaa	3060
	atccaaccga	ctgatgaggc	aattgcagag	cgtctaactc	aaattcaagt	gttcttgaaa	3120
•	gagaagagct	atgaaattga	tgagaagttt	gcagagaaga	agcgtaaact	ttctacaggt	3180
•	gatgaattaa	ccactggcgt	attgaaagtt	gttaaggttt	accttgcggt	taaacgtcgt	3240
•	atccagcctg	gtgataaaat	ggcgggtc gt	cacggtaaca	aaggtgttgt	gtcaaacatc	3300
1	ttgectgttg	aagacatgee	acacgatgcg	aatggtgtac	cagtcgatat	cgtattgaac	3360
•	ccattgggtg	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttaggtatg	3420
9	gcggccaaag	gtettggega	taaacttgaa	aaaatgttga	aagaacaacg	tacagtgtta	3480
•		_			gtggtgagca		3540
						tggtgttcca	3600
	ttagcaacac	ctgtatttga	tggtgctgaa	gaaagccaga	a tcaaagactt	acttgaatta	3660
	gcagacatct	cacgtacagg	tcaaacggta	ttgtttgaco	g gacgtacagg	tgagcagttt	3720
	gatcgtcctg	taactgtagg	ttacatgtac	atgctcaaat	tgaaccactt	ggttgatgac	3780
	aagatgcatg	cgcgttcaac	aggttettae	tcacttgtta	a cacaacagco	gattggtggt	3840
	aaagcacaat	teggtggtca	gegttteggt	gagatggaag	g tatgggcact	tgaagcatac	3900
	ggtgcagcat	atacacteca	agaaatgete	actgtgaagt	. cggatgacgt	cgaaggtcgt	3960
	acacgcatct	ataagaatat	tgtagatggt	aaccattata	a tggatccggg	tatgcctgaa	4020
	tegtteaaeg	tattgaccaa	agagateegt	tetttaggta	a tcaacattga	. actgaaaaat	4080
	ggtgactaa						4089

<210> 22 <211> 4089 <212> ADN

5 <213> Acinetobacter sp.

<400> 22

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgccccac 60 120 ggeggtaaaa caccaaaaaa tegegaagat ateggtetee aageegeatt tegtteagtt 160 240 tttcctattg aaagttattc tggcaatgct gctttagaat ttgttgagta tagccttggt aagoetgagt ttgaegtaeg tgaatgtatt ttaegtggtt caacttatge ggeaceaatg 300 360 cgcgtaaaaa ttcgtttgat catcaaagat cgtgaaacga aatcaattaa agacgttcgt gaacaagaag tttacatggg tgaaatgcca ctcatgaceg ataacggtac attegttatt 420 aacggtactg agcgtgtaat cgtatctcaa ttacaccgtt caccaggcgt attctttgac 480 catgacaagg gtaaaaccca ctcaagcggt aaagtgttgt attcagcacg tattattcct 540 taccgtggtt catggttaga ctttgaattt gatgccaaag atttagtctt tgtacgtatt 600 gaccgtcgtc gtaagttgct tgcaacggtg attttacgtg ccttgaatta tagcaatgaa 660 caaatettga atttgtteta tgaaaaagta eetgtatate ttgatatggg tagetateaa 720 attgacctgg ttccagatcg cttacgtggc gagatggcgc aatttgatat cttggataac 780 840 gaageggcta acttagecaa getttetgta eetgatgagt acttgtatga gegtattaeg 900 gotgaagaca ttaccttgaa aagtggtgat gtgattcctg ccaataccgt acttagccat 960 gaaattatgg tgaagttggc tgaaggtggt gtgaagcagt ttaacatcct gttcaccaat 1020 gacatogato giggitotti ogtigoagat accitigogog cagatacaac gacaggoogo 1080

gaagaagcgc	ttgtcgaaat	ctataaagtg	atgcgtccag	gtgagccacc	aacgaaagaa	1140
gctgctgaaa	acttattcaa	taacttgttc	ttetettetg	agcgttatga	cctgtctcca	1200
gtcggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tactgatcag	1260
aagtcacgtg	aagttgaagg	tattttatcg	caegaegata	tcatcgatgt	attgcgtaca	1320
ttggttgaga	ttcgtaacgg	taaaggtgaa	gtcgatgata	togatcactt	gggtaaccgt	1360
cgtgtacgtt	ctgtaggega	aatgacagaa	aaccaattcc	gtgttggttt	agtccgtgtt	1440
gaacgtgctg	ttaaagaacg	tttaagccaa	gcagaaacag	ataacttgtc	tecacaagat	1500
ttgatcaatg	caaaaccagt	tgctgctgca	atcaaagagt	tctttggctc	gagccagttg	1560
tctcagttca	tggaccaaaa	caacccattg	totgagatta	cacacaaacg	tegegtatet	1620
gcgcttggtc	ctggtggttt	aacacgtgaa	cgcgcgggct	togaagtaog	tgacgtacat	1680
caaactcact	atggtcgtgt	ttgtccaatt	gaaacacctg	aaggtecaaa	cattggtttg	1740
atcaattcgc	tttctgtcta	tgctaaagcg	aatgacttcg	gtttcttgga	aacaccttac	1800
cgtaaagttg	ttgatggccg	tgtgactgat	gaagttgaat	acttatctgc	aattgaagaa	1860
gtaggtactg	tcattgcaca	ggccgattct	gcagttgata	aagatggtat	gttgactgaa	1920
gagatggttt	ctgtacgtca	tcaaggtgac	ttcgttcgta	tgtcgcctga	gegegtaade	1980
catatggacg	tttctgcgca	acaggtcgta	tetgtegeag	cgtcattgat	tecatteett	2040
gaacacgatg	atgcgaaccg	tgcattgatg	ggttcaaaca	tgcaacgtca	ggctgttcct	2100
accttacgtg	ctgacaagcc	gcttgttggt	acaggtatgg	aagcaaacgt	agcacgcgac	2160
tctggtgtgt	gtgtgatcgc	aaaccgtggt	ggtgcgattg	aatatgttga	tgcatctcgt	2220
atcgttattc	gtgtcaacga	agatgaaatg	attgcgggtg	aagcaggtgt	agatatetat	2280
aacctgatca	aatatacacg	ttcaaaccag	aatacatgta	ttaaccagaa	tgtcatcgtg	2340
aacttgggcg	acaaagttgc	tcgtggtgat	atcttggctg	acggtccatc	gacagatatg	2400
ggtgaacttg	c gctgggt ca	aaacatgcgc	gtcgcgttca	tgacctggaa	tggttataac	2460
tatgaagact	cgatcttact	ttctgagcgt	gtacttcaag	aagaccgttt	aacctcgatt	2520
cacattcagg	aattgtcatg	tgtagcacgt	gataccaagt	taggcgcaga	agaaattact	2580
gccgatattc	ctaacgtcgg	tgaagctgca	ctgtctaaac	tggatgagtc	tggtattgtt	2640
tacatcggtg	ctgaagtaac	tgcgggtgac	atccttgttg	gtaaggtaac	gcctaaaggt	2700
gaaactcagt	tgacacctga	agaaaaatta	ctgcgcgcaa	tctttggtga	aaaagcggct	2760
gacgtaaaag	attcatcttt	acgtgttccg	tctggtacta	aaggtacggt	tatcgacgtt	2820
caagtettea	cacgtgatgg	cttggagaaa	gatgaacgtg	cacaagcaat	tgaaaaagct	2880
cagettgatg	cataccgtaa	agacttgaaa	gaagaataca	aaatottoga	agaagcagca	2940
cg tgaacgta	ttgttcgttt	gttgaaaggt	caagaatcta	acggtggcgg	ttcaaccaaa	3000
cgcggcgata	aactttcaga	agatgtattg	tctggcttag	agcttgttga	tttacttgaa	3060
atccagccaa	atgatgaagc	aattgctgaa	egtttaactc	agattcaagt	gttettgaaa	3120

gagaagaget	acgagattga	cgagaagttt	getgagaaga	agcgtaaact	ttetacaggt	3180
gatgaattaa	caacgggcgt	attgaaagtt	gttaaggttt	accttgcggt	gaaacgtcgt	3240
atccagcctg	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	3300
ttaccggttg	aagacatgcc	acatgatgcg	aatggcgtac	cagtcgacat	cgtattgaac	3360
ccactgggtg	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	3420
gcagcgaaag	gtcttggcga	taaaatcgaa	aaaatgttga	aagaacaacg	tacagtgatt	3480
gaactgcgtg	aattcttaga	caagatttat	aacaaggttg	gcggtgagca	ggaagagctt	3540
gatagcttga	ctgatgcaga	aatcttggcg	ctttcaggta	acttacgtgc	tggtgttcca	3600
ttggcaacac	ctgtatttga	tggtgctgaa	gaaagccaga	tcaaagacct	acttgaactt	3660
gctgatatct	cacgtactgg	tcaaacggta	ttgtttgacg	gacgtacagg	tgaacagttt	3720
gaccgtcctg	taactgtagg	ttacatgtac	atgeteaaat	tgaaccactt	ggttgatgac	3780
aagatgcatg	cgcgttcaac	gggttettae	tcacttgtga	ctcaacagcc	gcttggtggt	3840
aaagcacaat	teggtggtea	gcgtttcggt	gagatggaag	tatgggcact	tgaagcatac	3900
ggtgctgcat	atacgeteca	agaaatgctt	actgtgaagt	cggatgacgt	cgaaggccgt	3960
acacgcatct	acaagaacat	tgtagatggt	aaccattata	tggatccggg	tatgcctgaa	4020
togttcaacg	tattgaccaa	agagatccgt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 23 <211> 4089 <212> ADN

<213> acinetobacter schindleri

<400> 23

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgcctagc 60 gttatggatg ctccgtactt gctttcgatt caagtcgact cgtacagaac attcttacaa 120 gatggcaaat caccaaaaaa ccgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttcctattg aaagttattc tggcaatgct gctttagaat ttgttgagta tagtcttggt 240 aagcctgagt ttgatgtacg cgaatgtatt cttcgtggct caacttatgc agcaccaatg 300 cgtgtgaaga ttcgtttgat cctgaaagat cgtgaaacga aatcgatcaa agacgtacgt 360 gaacaagaag totatatggg cgaaatgcca ttgatgacgg ataacggtac tttcgtaatt 420 aacggtaccg agcgtgtaat cgtatctcaa ttacaccgtt caccaggcgt attctttgac 480 cacgataaag gtaaaactca ctcaagtggt aaagteettt attetgegeg tateatteet 540 taccgtggtt catggttaga ctttgaattc gatgccaaag acctagtcta tgtacgtatt 600 gaccgtcgtc gtaaattgct tgcgactgtg gtacttcgtg cattgggtta taacaacgaa 660

caaattctga	acatgttcta	tgagaaagtg	cctgtatatc	ttgatatggg	tagctatcag	720
attgaccttg	ttccagaacg	cctgcgtggt	gaaatggcac	aatttgatat	tgctgacaaa	780
gacggcaaga	tcattgttga	gcaaggtaaa	cgtattaacg	cacgtcacgt	acgtcaaatg	840
gaagcttcag	gtcttgaaaa	acttgcagtg	cctgatgaat	acctgtacga	acgtatcact	900
gctgaagaca	tccagttaaa	agatggcgat	gtgatcgcgg	ccaatactgt	attaagccat	960
gaaatcatgg	tgaagattgc	agaaggcggc	gtgaagcaat	teaacttact	gttcacaaat	1020
gatatogaco	gtggttcatt	catcgcggat	acattacgtg	ccgatacgac	gacaggtcgt	1080
gaagaagcac	tagtagaaat	ctacaaagta	atgcgtccag	gtgagccacc	aacaaaagaa	1140
gctgctgaaa	acctgttcaa	caacctgttc	ttctcttctg	agcgttatga	cttgtcgcca	1200
gtcggccgta	tgaa gttca a	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tacagaccag	1260
aagtcacgtg	aagttgaagg	tatecteteg	aacgacgata	tcactgatgt	attgaaaaca	1320
ttagttgaaa	ttcgtaacgg	taagggtgaa	gtcgatgata	tegaccactt	gggtaaccgt	1380
cgtgttcgtt	cagttggtga	aatgactgaa	aaccaattcc	gtgtcggtct	ggttcgtgta	1440
gagcgtgcgg	ttaaagaacg	tctatcacag	gctgaaactg	ataacctgtc	teegeaagat	1500
ttaatcaatg	cgaagccagt	ggctgctgca	atcaaggaat	tetttggtte	aagccagtta	1560
tctcagttca	tggaccaaaa	caacccattg	tctgaaatca	cccacaagcg	tcgtgtatca	1620
gcgcttgggc	ctggtggttt	gacgcgtgaa	cgtgctggct	tegaagtaeg	tgacgtacat	1680
caaactcact	acggtcgtgt	ttgtccaatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgtata	tgcaaaatgt	aacaactttg	gtttcttaga	aacgccttac	1800
cgtaaagttg	ttgatggtcg	tgtaacggat	gaagttgaat	acctgtctgc	aatcgaagaa	1860
gtaggtactg	ttatcgcaca	ggccgactct	gcaatcgata	aagatggcaa	cctgactgaa	1920
gaattcgtat	ctgtacgtca	ccaaggtgaa	ttcgtacgta	ttccaccaga	aaaagtgacg	1980
catatggatg	tatctgctca	gcaggtggta	tetgtegetg	catcactgat	teegtteett	2040
gaacacgatg	atgcgaaccg	tgcattgatg	ggttcaaaca	tgcaacgtca	ggcagttcct	2100
acgttaatcg	ctgacaagcc	actggttggt	accggtatgg	aagcgaacgt	agcacatgac	2160
tctggtgtat	gt gtgat c gc	gaaacgtggt	ggccgtattg	aatatgtaga	cgcttctcgt	2220
gtcgtgattc	gtgtcaacga	agacgaaatg	gtggcgggcg	aagcaggtgt	agatatctac	2280
aacctgatca	aatacacacg	ttctaaccag	aacacttgta	tcaaccagaa	agttcttgtg	2340
aacatgggcg	ataaagtggg	tegeggtgae	gttcttgctg	atggtccatc	gactgatggc	2400
ggtgaactgg	cactgggtca	aaacatgcgc	gtagcattca	tgacctggaa	cggttacaac	2460
tatgaagact	cgatcttgtt	atctgagcgt	gtacttcagg	aagaccgttt	aacgtctatc	2520
cacatccagg	aactttcatg	tgttgcacgt	gatactaaac	tgggtgctga	agaaattact	2580
gccgatatcc	cgaacgtggg	tgaagetgea	ctttctaaac	tggatgagtc	tggtatcgtt	2640
tatatcggtg	ctgaagtgac	tgctggtgac	atcctggtag	gtaaagtaac	acctaaaggt	2700

gaaactcagt	taacacctga	agaaaaactg	cttcgcgcaa	ttttcggtga	aaaagcagct	2760
gacgtaaagg	actcttcttt	acgtgttcca	tcgggtacta	aaggtaccgt	gattgacgtt	2820
caagtgttta	cacgtgatgg	tcttgaaaaa	gacgaacgtg	ctcaagcaat	tgaaaaagct	2880
cagcttgatg	cttaccgtaa	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	2940
cgtgaacgta	ttattcgtct	gttgaaaggt	caggaatcta	acggtggtgg	cacaactaaa	3000
cgcggtgaca	aactgtctga	agatgttctg	tctgg tttag	agcttgttga	tetgttagac	3060
atccaaccag	tagatgaagc	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	3120
gagaagagcc	ttgaaattga	tgaaaagttt	gctgagaaga	aacgcaaatt	atctacaggc	3180
gatgaactta	caactggcgt	actgaaagtt	gttaaggttt	atctagcggt	taaacgtcgt	3240
atccagcctg	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atctaacatc	3300
ttgccggtag	aagacatgcc	acacgatgcc	aacggtgtac	ctgttgatat	cgttcttaac	3360
ccgctaggtg	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	3420
gccgccaaag	gtcttggcga	caaaatcgac	aagatgcttc	aagagcaacg	tacggtgctt	3480
gagettegtg	aattcttaga	caagatttac	aacaaagttg	gtggtgagca	agaagatett	3540
gatagcctga	ctgatgatga	aatcttggca	ttgtctggta	acttgcgtaa	aggtgttcct	3600
ttggcaactc	cagtattcga	cggtgctgaa	gaatcgcaaa	tcaaagaatt	gttagagctt	3660
ggtggcattt	cacgtactgg	tcaaacagta	ttgtatgatg	gccgtactgg	tgaacgtttc	3720
gaccgtccgg	taactgtagg	ttacatgtac	atgctgaaac	tgaaccactt	ggttgacgac	3780
aagatgcatg	cgcgttctac	tggttettae	tctctagtaa	cgcaacagcc	gattggtggt	3840
aaagcacaat	teggtggtea	gcgtttcggt	gagatggaag	tatgggcact	ggaagcatac	3900
ggtgcagcat	atacactcca	ggaaatgctt	actgtgaaat	cggatgacgt	tgaaggtegt	3960
accegtatet	ataagaatat	tgtagatggt	aaccattaca	tggacccagg	tatgcctgaa	4020
togttcaacg	tattgaccaa	agagatccgt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 24

<211> 4089

<212> ADN

<213> acinetobacter ursingii

<400> 24

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgcctagc 60 gtcatggacg ctccgtactt gctttcgatt caggtcgatt cgtacagaac gtttttacaa 120 gatggcaaaa caccgaaaaa ccgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttcctatag aaagttattc tggcaatgct gctttagaat ttgttgagta tagtcttggt 240

aaaccagagt	ttgatgtacg	cgagtgtatt	cttcgcggat	caacttatgc	ggcaccaatg	300
cgcgtaaaaa	ttcgtttgat	cattaaagat	cgtgaaacga	aatcaattaa	agatgttcgc	360
gaacaagaag	tgtatatggg	tgaaatgcca	ctcatgactg	agaacggaac	atttgtgatt	420
aacggtactg	agcgtgtcat	cgtatctcag	ttacaccgtt	caccaggtgt	gttcttcgat	480
catgataaag	gtaaaactca	ttcaagcggt	aaagtgctgt	attcagcacg	tattattcct	540
taccgtggtt	catggttaga	ctttgaattt	gatgccaaag	atttggttta	cgtgcgtatt	60 0
gaccgtcgtc	gtaagctatt	ggctacggtt	attctacgtg	cactgggtta	taacaatgag	660
caaatccttg	atttgttcta	tgaaaaagta	cctgtgtatc	tggacatggg	cagctaccaa	720
attgatettg	tgcctgaacg	tttacgcggt	gaaatggege	agtttgatat	tactgataat	780
gacggtaaag	tcattgtaga	acaaggcaaa	cgtattaatg	cgcgtcatgt	tcgtcaaatg	840
gaagcgtctg	gtctaagcaa	gctttcagtg	cctgatgagt	atctgtatga	gcgtatcact	900
getgaagata	ttacactaaa	agatggtgat	atcattcctg	ccaacacttt	gctcagccat	960
gaagtcatgg	tcaagctagc	tgaaggcggc	gtaaagcagt	ttaatatcct	gtataccaac	1020
gatategate	atggtccgtt	tattgcggat	actttacgtg	ctgataccac	atcaggtcgt	1080
gaagaagcac	tggttgaaat	ctacaaggta	atgcgtccag	gtgagccacc	aacgaaagaa	1140
gcggctgaaa	acttgtttaa	taacttgttc	ttetettetg	aacgttatga	tttgtcacct	1200
gttggtcgta	tgaagtttaa	cegtegtttg	ggtcgtcctt	acgaagttgg	tacagatcaa	1260
aaatcacgtg	aagttgaagg	tatcctctct	aatgaggata	tcactgatgt	attacgtaca	1320
ttggttgaga	ttcgtaacgg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1380
cgtgtccgtt	cagttggtga	aatgacagag	aaccagttcc	gtgtgggtct	ggtgcgtgtt	1440
gaacgtgctg	ttaaagagcg	tttaagccaa	gctgaaaccg	ataacttgtc	tccacaagac	1500
ttgatcaatg	cgaaacctgt	tgetgeegeg	atcaaagaat	tatttggtta	aagccaattg	1560
totcagttca	tggatcaaaa	caacccattg	tctgaaatta	cacacaaacg	tcgtgtatca	1620
gegettggge	caggtggttt	gacacgtgaa	cgtgcaggct	ttgaggtacg	tgacgtacat	1680
caaactcact	atggtcgtgt	gtgtccgatt	gaaacgcctg	aaggtecaaa	cattggtttg	1740
atcaactcgc	tatctgttta	tgcaaaagcc	aacgatttcg	gtttcttgga	aacgccttat	1800
cgtaaggtag	tegatggteg	tgtaacggac	gatgttgaat	atctttctgc	gattgaagaa	1860
gtggggactg	tgattgcaca	ggccgactct	ggtgttgatg	cagagggtaa	cctcgttgaa	1920
gaaatggttt	cagtccgtca	tcagggcgaa	tttgtacgta	tgcctcctga	aaaagtgacg	1980
catatggatg	tttctgcgca	gcaagttgtt	tctgtagcag	catcattgat	tccattccta	2040
gaacacgatg	atgcgaaccg	tgccttaatg	ggttcgaaca	tgcaacgtca	ggcagtgcca	2100
accttacttg	cggataaacc	gcttgtgggt	acgggtatgg	aagcgaccgt	tgcacgtgac	2160
tcaggcgtat	gtgtaattgc	aaaacgtggt	ggtgtgattg	agtttgttga	tgcatcacgt	2220
gtggtcattc	gtgttcatga	aaatgaaatg	atcgcgggtg	aagcaggtgt	tgatatttat	2280

```
aacctgatca aatacacccg ttctaaccaa aatacttgta ttaaccagaa agttcttgtg
                                                                    2340
aatotgggog ataaagttgg togtggtgat gtattggotg atggtootto tacogatggt
                                                                    2400
ggtgagttgg cattgggtca aaacatgege gtegegttca tgaegtggaa tggttataac
                                                                    2460
tacgaagact caatcttgtt atctgagcga gttttgcagg aagatcgttt aacttcaatt
                                                                    2520
cacatteagg aattateatg tgttgeaegt gatactaaat tgggtgeaga agaaattaet
                                                                    2580
gccgatattc cgaatgtagg tgaagctgct ctatccaagc tagatgaatc tggtattgtt
                                                                    2640
tatatoggtg oggaagtgac tgogggtgat attotggtag gtaaagttac gootaaaggt
                                                                    2700
gaaactcaac ttacgccaga agaaaaattg cttcgtgcga tcttcggtga aaaagcggct
                                                                    2760
gatgtgaaag attcatcttt acgtgtteeg tetggtaega aaggtaetgt categatgta
                                                                    2820
caagtottoa cacgtgatgg tottgagaaa gatgatogtg cacttgcgat tgaaaaagcg
                                                                    2880
caattggatt cgtaccgtaa agatttgaaa gaagaataca aaatctttga agaagcagca
                                                                    2940
cgtgaacgta ttgtgcgctt attaaaaggt caggattcta acggtggtgg cacgactaaa
                                                                    3000
cgtggtgaca aactgactga agatttattg tctggtcttg agctggtcga tttacttgaa
                                                                    3060
atteaaceaa gtgatgaagg categetgag egtttaagte aaatteaagt attettgaaa
                                                                    3120
gagaagagtg ctgaaattga tgagaaattt gctgagaaaa aacgcaaatt agcgacgggt
                                                                    3180
gatgagttaa egaegggtgt ettgaaagte gttaaagtet acettgeagt taaaegtegt
                                                                    3240
atccagccag gtgataaaat ggcgggtcgt cacgggaaca aaggtgttgt ttctaacatc
                                                                     3300
ttgcctgtag aagacatgcc acatgatgcc aatggtgtac ctgtcgatat cgtcttgaac
                                                                    3360
ccattaggtg taccategeg tatgaaegtg ggteagatte tggagaeaea tetaggattg
                                                                    3420
gcagccaaag gtctgggtga acaaatcgat aagatgttgc aacaacagcg taccattgcc
                                                                    3480
gaacttegta tetteettga taagatttae aacaaggteg gtggtgagea agaagateta
                                                                    3540
aacagtetga etgatgatga agtettggta ttggetggea aettgegtaa aggtgtacea
                                                                    3600
Ctagcaactc ctgtatttga tggtgctgaa gaaagtcaaa ttaaagagtt acttgagttg
                                                                    3660
getgaattge cacgtactgg tcaacagatt ttgtttgatg gacgtacagg tgaacagttt
                                                                    3720
                                                                     3780
gaccgtcctg taaccgtagg ttatatgtac atgttgaaac tgaaccactt ggtggatgac
aagatgcatg cgcgttcaac aggttcatat tctctggtaa cgcaacaacc attgggtggt
                                                                    3840
aaageteaat teggtggtea gegttteggt gagatggaag tetgggeact ggaagettat
                                                                     3900
ggcgcagcat ataccettca ggaaatgetc actgtgaagt cggatgacgt tgaaggtegt
                                                                     3960
acaegeatet ataagaacat tgtagatggt aaccattata tggateeggg tatgeetgaa
                                                                     4020
tcattcaacg tattgaccaa agagatccgt tctttaggta tcaacattga actgaaaaat
                                                                     4080
ggtgactaa
                                                                    4089
```

<210> 25 <211> 4089 <212> ADN

<213> acinetobacter baylyi

<400> 25

5

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60
gtcatgcatg	ctccgtacct	gctctcgatt	caagtcgact	cgtacagaac	attettgcaa	120
gacggcaaaa	caccaaaaaa	tcgcgaagat	atcggtctcc	aagctgcatt	togttcagtt	180
tttcctattg	aaagttattc	gggcaatgct	gctttagaat	tegttgagta	tagtcttggt	240
aaaccagagt	ttgatgttcg	cgaatgtatt	cttcgtggct	caacctttgc	ggcaccaatg	300
cgcgttaaaa	ttcgtttgat	catcaaagat	cgtgaaacga	aatctattaa	agacgtacgt	360
gaacaagaag	tgtacatggg	tgaaatgcca	ctcatgactg	agaatggtac	ctttgtgatc	420
aatggtactg	agegtgtaat	cgtatctcaa	ttacaccgtt	caccaggcgt	attctttgac	480
catgataaag	gtaaaacgca	ttcaagcggt	aaagtgcttt	attcagcacg	tatcattcct	540
taccgtggtt	catggttaga	ttttgagttt	gatgctaaag	atttagtctt	tgtacgtatt	600
gaccgtcgtc	gtaaattgct	tgcgactgtt	gtgttacgtg	cattgagcta	tagcaatgaa	660
caaattctga	atatgttcta	cgaaaaagta	cctgtatatc	ttgatatggg	tagctatcag	720
attgaccttg	tgcctgaacg	tettegtggt	gaaatggctc	aatttgatat	cgtggacaat	780
gatggtaaag	ccattgttga	acaaggtaaa	cgtattaatg	ctcgccatgt	acgtcaaatg	840
gaagctgctg	gtttaactaa	acttccagtt	ccagatgaat	atttgtatga	gcgtattact	900
gctgaagata	tegtaettaa	agacggtgaa	gtaattactg	ctaacactgt	attaagtcat	960
gagattttgg	tcagaattgc	tgaaggtggt	attaaacaat	ttaatateet	gttcaccaat	1020
gacatcgatc	gtggttettt	tgttgctgac	accttacgtg	cagatacaac	atctggtcgt	1080
gaagaagcgc	ttgtagaaat	ctacaaagtg	atgegtecag	gtgagccacc	aacgaaagaa	1140
gcggctgaaa	acttattcaa	taacttattc	ttctctacag	agcgctatga	tttatcgcct	1200
gtgggtcgta	tgaagtttaa	ccgtcgtttg	ggtcgccctt	acgaagtagg	tacagatcag	1260
aagtctcgtg	aagtagaagg	tattctttct	aacgatgaca	tcatcgatgt	actgaaaaca	1320
ctggtagaaa	ttcgtaacgg	taaaggtgaa	gtcgatgata	tcgatcactt	gggtaaccgt	1380
cgcgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	agttcgtgtt	1440
gaacgtgctg	ttaaagagcg	tttaaaccaa	gctgaaacag	ataacttgtc	tccacaagat	1500
ttgatcaatg	cgaaaccagt	tgctgctgca	atcaaagaat	tctttggttc	aagccaattg	1560
tcacagttta	tggatcaaaa	caacccattg	tcagaaatta	cacacaaacg	tegtgtatea	1620
gcattgggac	caggtggttt	gacacgtgaa	cgtgcaggct	ttgaagtgcg	tgacgtacat	1680
caaactcact	atggtcgtgt	atgtccaatt	gaaactcctg	aaggaccaaa	cattggtttg	1740
atcaactcgc	tttctgttta	tgcaaaagcg	aacaacttcg	gtttcttgga	aacaccatac	1800
cgtcgcgttg	ttgatggtcg	tgtaacagat	gatgttgaat	atttatctgc	aattgaagaa	1860

```
gtaggtactg ttattgcaca ggccgattct gcattggata aagatggaca tttaacagaa
                                                                    1920
gacttegttt cagtaegtea ceaaggtgae ttegttegta tgecacetga aaaagtgaeg
                                                                    1980
catatggatg tatctgctca acaggttgta tctgtcgctg catcacttat tccattcctt
                                                                    2040
gaacacgatg atgccaaccg tgcattgatg ggttcaaaca tgcaacgtca ggctgttcct
                                                                    2100
                                                                    2160
acattgettg etgataaace acttgtgggt accggcatgg aagcaaacgt agcgcacgac
tctggtgtat gtgtgatcgc gaaacgtggc ggacgcattg agtttgtaga tgcatcacgt
                                                                    2220
gtggttattc gtgtcaacga agatgaaatg atcgcgggtg aagcaggtgt agatatctac
                                                                    2280
aacttgatca aatacacgeg ttcaaaccaa aacacatgta ttaaccaaaa agtgettgtg
                                                                    2340
agcatgggeg ataaagtegg cegtggtgae gttettgetg atggteeate aactgatggt
                                                                    2400
ggtgaattag cattgggtca gaacatgcgt gtcgcgttca tgacttggaa cggttataac
                                                                    2460
tacgaagact cgattttatt atctgaacgt gttcttcaag aagatcgttt aacgtcaatt
                                                                    2520
catattcaag aattatcatg tgttgcacgc gatacgaagt taggtgcgga agaaatcact
                                                                    2580
geogatatto ctaacgtagg tgaagcageg ttatctaaac ttgatgaatc aggtattgtt
                                                                    2640
                                                                    2700
tatateggtg etgaagttge agegggtgat attettgttg gtaaagtgae acetaaaggt
gaaacacaat taacccctga agaaaaatta cttcgtgcaa tctttggtga gaaagcagca
                                                                    2760
gacgttaaag attcatcttt acgtgtttct tcaagcgtta aaggtacagt catcgacgtt
                                                                    2820
caagtgttta cacgtgacgg tatcgagaaa gatgaacgtg ctcaagcgat tgagaaagcg
                                                                    2880
caacttgatg cttatcgtaa agacttgaaa gaagaattca aaatcttcga agaagctgct
                                                                    2940
cgtgaacgta ttatccgttt gttaaaaggc caagagtcaa atggcggcgg tacgaccaag
                                                                    3000
                                                                    3060
cgcggtgata agctatctga agatgtattg tctggtttag agcttgttga tcttttagaa
gttcaaccaa cagacgaagg catcgctgaa cgcttaactc aaattcaagt gttcttgaaa
                                                                    3120
                                                                    3180
gagaagaget acgagattga tgagaaattt getgagaaaa aacgcaaact ttetacaggt
gatgagetta caacaggtgt attgaaagtt gttaaagttt acttagetgt aaaacgtegt
                                                                    3240
                                                                    3300
atccagcctg gtgataaaat ggcgggtcgt cacggtaaca aaggtgttgt atcaaacatc
ttgcctgttg aagacatgcc gcatgatatc catggtgttc cagttgatgt cgtacttaac
                                                                    3360
                                                                    3420
ccattgggtg taccatcacg tatgaacgtg ggtcagattc ttgaaactca cttaggtatg
gotgoaaaag gtottggoga taagatogac aagatgatga aagagcaacg tacogttott
                                                                    3480
                                                                    3540
gagettegtg atttettaga caagatttat aacaaagttg gtggegagea agaagatett
gatagettaa etgatgaaga aatettggtg ttateaggta aettgegtaa aggtgtteet
                                                                    3600
                                                                    3660
ttagctacgc cagtatttga tggtgcagaa gaaagtcaga tcaaagagtt acttgagctt
                                                                    3720
ggtggtatct cacqtacagg tcaaacagta ttgtatgacg gacqtacagg tgagcgtttt
                                                                    3780
gaccgcccag taactgttgg ttatatgtac atgctcaagt tgaaccattt ggttgatgac
                                                                    3840
aagatgcatg cacgttctac tggttcttat tcacttgtaa ctcaacaacc gcttggtggt
                                                                    3900
aaagcacaat teggtggtea gegttteggt gagatggaag tetgggeact agaagettat
ggtgctgctt atacacttca agaaatgctt actgtgaagt cggatgacgt tgaaggtcgt
                                                                     3960
actogoatot ataagaacat oqtagatqqt aaccattata tggatcoggg tatgootgaa
                                                                     4020
togtttaacg tattgaccaa agagatocgt totttaggta toaacattga actgaaaaat
                                                                     4080
                                                                     4089
ggtgactaa
```

<210> 26 <211> 4089

<212> ADN

<213> acinetobacter bouvetii

<400> 26

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgcccaag	60
gtaatggatg	ttccgtactt	gctcgcgatt	caagtcgact	cgtacagaac	tttcttgcaa	120
gatggcaaaa	ctccaaaaaa	ccgcgaagat	ateggtetee	aagccgcatt	tcgttcagtt	180
tttcctatag	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagtcttggt	240
aagcctgagt	ttgatgtgcg	tgagtgtatt	ctccgcggct	caacttatgc	agcgccaatg	300
cgtgtaaaaa	ttegtetgat	cttaaaagac	cgcgaaacta	aatcaatcaa	agacgtgcgc	360
gagcaagaag	tctacatggg	cgaaatgccg	ctcatgactg	ataacggtac	cttcgttatt	420
aacggtactg	agcgtgtcat	cgtatctcaa	ttgcaccgtt	cgccgggcgt	gttctttgac	480
cacgataagg	gcaaaaccca	ttcaageggt	aaagtgcttt.	atteagegeg	gattattcct	540
taccgcggtt	catggttaga	ctttgaattt	gatgcgaaag	acctggtctt	tgtacgtatt	600
gaccgccgcc	gcaaattgct	tgcgactgtg	gtgcttcgtg	ccttaggtta	caacaactct	660
caaattcttg	atttgttcta	tgaaaaagtg	cctgtctacc	tagacatggg	cagctatcag	720
attgatcttg	tgeetgaaeg	cctgcgcggt	gaaatggccc	aattigatat	tgctgataaa	780
gacggcaaag	tcattgtaga	gcaaggcaaa	cgtatcaacg	cgcgtcacgt	gcgtcagatg	840
gaagcagcag	ggcttgagaa	gctttctgtt	ccagatgaat	acttgtatga	acgcattatt	900
gctgaagacg	tggctttacg	cggcggcgat	gtgattgcgg	caaataccgt	gcttagccat	960
gaaattatgg	tgaaattggc	tgaaggcggt	gtgaagcaat	tcaacatcct	gttcaccaac	1020
gatattgacc	geggtteatt	catcgcggac	tetttgegtg	cagatacaac	gtccagccgt	1080
gaagaagcgc	ttgtagaaat	ctacaaagta	atgcgtccag	gcgagccgcc	gacgaaagaa	1140
gcggctgaaa	acttattcaa	caacctgttc	ttctcttctg	aacgttatga	cetgteteet	1200
gtaggtcgca	tgaagttcaa	ecgccgtttg	ggccgccctt	acgaagtggg	tacagatcag	1260
aagtcacgtg	aagttgaagg	cattctttca	aacgaagaca	ttacagatgt	tetteaaaca	1320
ctgattgaaa	teegeaacgg	taaaggtgaa	gtcgatgata	tegateactt	gggtaaccgc	1380
cgtgtgcgtt	ctgtcggtga	aatgacagaa	aaccaattcc	gtgtaggcct	agttcgtgta	1440

```
1500
gagegtgetg ttaaagaacg tetateteaa getgaaactg acaacttgte teegcaagat
                                                                    1560
ttaatcaatg cgaagccagt tgctgctgca atcaaagaat tctttggttc aagccaattg
                                                                    1620
totcagtica tggaccaaaa caacccattg totgaaatta cacacaaacg togtgtatca
                                                                    1680
gegettiggge etiggtigtti gaetegtigaa egegeggget tegaagtaeg tigaegtaeat
                                                                    1740
caaactcact acggtcgtgt gtgcccaatt gagactcctg aaggtccaaa cattggtttg
                                                                    1800
atcaactcac tttcagttta cgctaaatgt aacaacttcg gtttcttgga aactccatac
cgtaaagttg ttgatggccg tgtaacggat gacgttgaat acttatctgc aattgaagaa
                                                                    1860
                                                                    1920
gtaggtactg ttattgcaca ggccgattct ggcgtcgata aagacggtaa cttgcaagaa
                                                                    1980
qaqtttqttt ctqtacqtca tcaaqqtqaa ttcqtacqta tgcctcctga aaaaqtqacq
catatggacg tgtctgcaca acaggttgta tctgtagcag catcattgat tccgttcctt
                                                                    2040
gaacacgatg acgccaaccg tgcattgatg ggttcgaaca tgcagegtca agctgtgcct
                                                                    2100
                                                                    2160
acqttaattg ctgacaagcc gcttgtaggt acaggcatgg aagcaaatgt agcgcatgac
                                                                    2220
totggtgtgt gtgtaattgc gaaccgcggc ggccgcattg aatttgttga cgcatcacgt
gtcgtgatcc gtgtgaatga agacgaaatg gttgctggtg aagcaggcgt agatatctac
                                                                    2280
aacctgatca aatacaccog ttcgaaccaa aacacctgta tcaaccagaa agttcttgta
                                                                     2340
                                                                     2400
aaactgggtg ataaagttgg ccgcggtgac gtattggctg atggtccatc gacggatggc
ggtgagetgg egetgggtea aaacatgege gtagegttea tgacttggaa eggttacaac
                                                                    2460
tacgaagact cgatcttatt atctgagcgc gtacttcaag aagaccgttt gacgtctatt
                                                                     2520
                                                                     2580
cacatccaag aattatcatg cgtcgcgcgt gatactaaac tgggtgctga agaaatcact
geggatatte caaacgtggg tgaagetgea etgtetaage ttgatgaate aggtattgtt
                                                                    2640
                                                                     2700
tacatoggtg ctgaagtcac tgctggcgat atcttggttg gtaaagtgac gcctaaaggt
                                                                     2760
gaaactcagc tgactcctga agaaaaactg cttcgcgcaa tcttcggtga aaaagcggct
gacgtaaaag attcatcttt acgtgtatct tcatctgtga aaggtacggt tattgacgtt
                                                                     2820
caagtgttta cacgtgatgg tottgaaaaa gacgaacgtg ctcaagcaat tgaaaaagcg
                                                                     2880
                                                                     2940
cagttagatg catacegeaa agacttgaaa gaagaataca aaatettega agaagetgeg
cgtgaacgta ttgtgcgctt gctaaaaggt caagaatcga atggcggcgg cacaactaaa
                                                                     3000
cgcggtgaca aactttctga agaagtattg tctggtttag agcttgctga tctgcttgaa
                                                                     3060
atteageeta cagacgaagg cattgetgag egettaacte aaatteaagt gttettgaaa
                                                                     3120
gagaagagca ctgaaattga tgagaaattt gctgagaaaa aacgcaaact ttctacaggc
                                                                     3180
gatgagetta caactggtgt attgaaagtt gttaaagttt acttagetgt aaaacgeege
                                                                     3240
atccageegg gtgataagat ggegggtegt caeggtaaca aaggtgttgt atctaacate
                                                                     3300
ttgcctgtag aagacatgcc gcacgatgcc aacggtgttc ctgtagacgt ggtgcttaac
                                                                     3360
cogotyggty taccytcacy tatgaacyty gytcagatto ttgagactca ottgggcaty
                                                                     3420
gcagcgaaag gtcttggcga Caaaatcgac aagatgatga aagagcagcg cactgttctt
                                                                     3480
                                                                      3540
quacticgtg mattettaga caugatttac macamagttg geggegagem aquagatett
gacagettaa etgatgatga aatettggeg ettteaggea aeetgegtge aggtgtteet
                                                                      3600
ttggcaacgc ctgtatttga cggtgctgaa gaatcacaaa ttaaagaatt gctagagctt
                                                                      3660
ggoggcattt cacqtactgg tcaaacagta ttgtatgatg gccgtactgg tqagcgtttc
                                                                      3720
gaccgtcctg taactgtagg ttacatgtac atgctgaaac tgaaccactt ggtagacgac
                                                                      3780
aaaatgcatg cgcgttctac tggttcttat tctcttgtta cgcagcagcc attgggcggt
                                                                      3840
aaagcgcagt tcggtggtca gcgtttcggt gagatggaag tctgggcact ggaagcatat
                                                                      3900
                                                                      3960
ggcgcagcgt acacgctcca agaaatgctt acagttaagt cggatgacgt tgaaggccgt
accegcatet ataagaacat tgtagatgge aaccattata tggateeggg catgeetgaa
                                                                      4020
togttcaacg tattgaccaa agagatccgt totttaggta toaacattga actgaaaaat
                                                                      4080
                                                                      4089
ggtgactaa
```

<210> 27 <211> 4089 <212> ADN <213> acinetobacter gerneri

<400> 27

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgcccgaa 60 gtaatggaag eteegtaett getegegatt caagtegaet egtacagaac etteetteaa 120 gatggcaaaa caccaaaaaa ccgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttccaattg aaagttattc tggcaatgct gctttagaat tcgttgagta tagccttggt 240 aaaccagagt ttgatgttcg tgagtgtatt cttcgcggct cgacttttgc ggcaccaatg 300 cgcgttaaaa ttcgtttgat catcaaagat cgtgaaacga aatcgatcaa agacgttcgt 360 gaacaagaag tttacatggg tgaaatgcca ctcatgactg agaacggtac ctttgttatt 420 aacggtactg aacgtgtaat cgtttctcaa ttacaccgtt ctccaggtgt gttctttgac 480 Cacgataaag gtaagactca ttcaagtggt aaagtgcttt attctgcacg tatcattcct 540 taccgtggtt catggttgga ctttgagttt gatgcgaaag atttagttta tgttcgtatc 600 gaccgtcgtc gtaaattatt agcaactgct attcttcgtg ctttagatta tacaaatgaa 660 caaatettag aaatgtteta tgagaaagtt eetgtatate tagatatggg tagetaccaa 720 attgacettg tgeetgaacg tetgegtgge gaaatggete aattegacat tactgatget 780 gatggcaaag tgattgttga acaaggtaaa cgtattaatg cgcgtcatgt tcgtcaaatg 840 gaagettetg gtttaactaa getttetgtt eetgatgaat atttatatga gegtattaca 900 getgaagata teacactgaa agatggtgaa gtgatteaag caaacactgt gettggteat 960 gacattatgg tgaaattggc tgaaggeggt attaaacaat ttaatateet atteaceaac 1020

gatatcgacc	gtggttcatt	tategeagat	acattacgta	cagatactac	aacaggcegt	1080
gaagaagcgc	ttgttgaaat	ctataaagta	atgcgtccag	gcgagccacc	aacaaaagaa	1140
gctgctgaaa	acttattcaa	caacttgttc	ttetettetg	aacgttatga	cttatctcct	1200
gtaggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tactgatcag	1260
aagtctcgtg	aagttgaagg	tattctttct	aacgaagaca	ttatcgacgt	attaaaaact	1320
ctcgttgaaa	tccgtaac g g	taaaggcgaa	gtcgacgata	tcgaccattt	aggtaaccgt	1380
cgtgtacgtt	cagttggtga	aatgactgaa	aaccaattcc	gtgttggttt	agttcgtgtt	1440
gaacgtgctg	ttaaagaacg	tttaagccaa	gctgaaacag	ataacttgtc	tccacaagat	1500
ttaatcaatg	cgaaaccagt	tgctgctgca	atcaaagaat	tatttggtta	aagccaattg	1560
tctcagttca	tggaccaaaa	caacccattg	tctgaaatca	cacacaaacg	tcgtgtatca	1620
gctctcggac	ctggtggttt	gactcgtgaa	egtgeggget	ttgaggtacg	tgacgtacat	1680
caaactcact	atggtcgtgt	atgtcctatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgttta	tgcaaaatgt	aataacttcg	gtttcttgga	aactccatac	1800
cgtaaagttg	ttgatggtcg	tgtaactgaa	gatgttgagt	atttatctgc	tattgaa g aa	1860
gtaggtactg	ttattgcaca	ggccgattct	agtgtagatg	gcgataataa	cttaactgaa	1920
gaattcgttt	ctgtacgtca	tcaaggtgaa	ttcgttcgta	tgcctcctga	aaaagtgacg	1980
catatggatg	tatcagctca	acaggttgta	tctgtagctg	catcattgat	teegtteett	2040
gaacacgatg	atgccaaccg	tgcattgatg	ggttcaaaca	tgcaacgtca	ggctgttcct	2100
acattgcttg	ctgacaaacc	acttgttggt	acaggtatgg	aagcaaacgt	agcgcgtgac	2160
tcaggtgtat	gtgtgatcgc	gaaacgtggc	ggtatgatcg	aatttgttga	cgcttcacgt	2220
gttgtgattc	gtgttaacga	agatgaaatg	attgctggtg	aagctggtgt	agatatetae	2280
aacctcatca	aatatacccg	ttcgaaccaa	aatacttgta	tcaaccaaaa	agttctcgtg	2340
agcttgggtg	ataaagtagg	tegeggtgat	gtattggctg	atggtccatc	tacagacggt	2400
ggtgaacttg	ctcttggtca	gaacatgcgc	gtagcgttca	tgacttggaa	cggttataac	2460
tacgaagact	cgattttatt	atctgaacgt	gttcttcaag	aagategttt	gacttctatt	2520
cacattcaag	aattgtcatg	tgtagctcgt	gatactaagt	taggtgcaga	agaaatcact	2580
gcagatattc	ctaacgttgg	tgaagetgeg	ctgtctaaac	ttgatgagtc	aggtatcgtt	2640
tatatcggtg	ctgaagtaac	tgctggtgac	attettgtag	gtaaagtaac	gcctaaaggt	2700
gaaactcagt	tgactcctga	agaaaaactt	cttcgtgcga	tcttcggtga	aaaagctgct	2760
gacgttaaag	attcatcttt	acgcgttcca	totggtacta	aaggtacagt	gattgacgtt	2820
caagtettta	ctcgtgatgg	tattgaaaaa	gatgaacgtg	ctcaagcaat	tgagaaagct	2880
cagcttgatg	cttaccgtaa	agatttgaaa	gaagaatata	aaatctttga	agaagctgct	2940
cgtgaacgta	ttgttcgctt	gttgaaaggt	caagaatcaa	atggtggtgg	ttcaactaaa	3000
cgtggtgaca	aactttctga	agaattgtta	tctggtttag	agctagttga	tcttcttgaa	3060

attcaaccaa	gtgatgaagg	tattgctgaa	cgtttaactc	aaattcaagt	gttcttgaaa	3120
gaaaagagcc	atgaaattga	tgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggt	3180
gatgagetta	caactggtgt	attgaaagtt	gttaaagtgt	atttggctgt	taaacgtcgt	3240
atccaaccgg	gtgataaaat	ggcgggtcgt	cacgggaaca	aaggtgttgt	atcaaacatc	3300
cttcctgtag	aagatatgcc	gcatgacatc	aacggtgttc	ctgttgacgt	agtacttaac	3360
ccactgggtg	taccgtcacg	tatgaacgtg	ggtcagattc	ttgaaacaca	tttaggttta	3420
gctgccaaag	gtcttggtga	gcaaatcgat	aagatgctca	aagagcaacg	tacgattgct	3480
gaadttcgtg	tgttcttgga	caagatttat	aacaaagttg	gtggcgagca	agaagatett	3540
gatagcttaa	ctgatgaaga	aatccttgtt	ctttcaggta	atttacgtaa	aggtgttcct	3600
ttagcaactc	cagtatttga	tggtgctgaa	gaaggtcaaa	ttaaagagct	tcttgaactt	3660
gctgaacttc	cacgttctgg	tcaaacagta	ttgtatgacg	gacgtacagg	tgagcgtttt	3720
gaccgtcctg	taaccgttgg	ttatatgtac	atgttgaaac	ttaaccactt	ggttgatgac	3780
aagatgcatg	cacgttctac	tggttcttac	tcattagtga	cacaacaacc	gcttggtggt	3840
aaagcacaat	tcggtggtca	gcgtttcggt	gagatggaag	tetgggeact	tgaagcatac	3900
ggtgcggctt	acacactaca	agaaatgctt	acagttaagt	cggatgacgt	tgaaggtcgt	3960
acacgtgtct	acaaaaacat	tgtagatggc	aaccattata	tgga t ccggg	tatgeetgaa	4020
tcgttcaacg	tattgaccaa	agagatccgt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 28

<211> 4089

<212> ADN

<213> acinetobacter grimontii

<400> 28

60 atggeatact catatacega aaagaaaegg ateegtaaga attttggtaa attgeeceae gtaatggaag caccgtactt actttcgatt caggtcgatt cgtatcgtac attcttacaa ggtggtaaaa ctccaaaaaa tcgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 tttcctattg aaagttattc tggcaatgct gctttagaat ttgttgagta tagccttggt 240 aaacccgagt ttgacgtgcg tgaatgtatt ttacgtggtt cgacttatgc ggcaccaatg 300 cgtgtaaaaa ttcgtttgat cattaaagat cgcgaaacga aatcaatcaa agatgttcgt 420 gaacaagaag tgtacatggg cgaaatgccg ctcatgaccg acaacggtac tttcgttatt 480 aacggtactg aacgtgtaat cgtatctcaa ttacaccgtt caccaggcgt attctttgat catgataagg gtaaaacaca ctcaagcggt aaagtgttgt attcagcacg tatcattcct 540 taccgtggtt catggttaga ttttgaattc gatgcaaaag atttagtttt cgtacgtatt 600

gaccgtcgtc	gtaaattgtt	ggcgactgtg	atcttacgtg	ctttaaatta	tagcaatgaa	660
caaatettga	atttgttcta	tgaaaaagta	cctgtatatc	ttgatatggg	tagctatcaa	720
attgacctcg	ttccagatcg	cttacgtggt	gaaatggege	aatttgatat	cttggacaac	780
gatggtaaag	caatcgttga	gcaaggtaag	cgtattaatg	cacgtcatgt	acgccaaatg	840
gaagcagcta	acttagetaa	getttetgta	cctgatgaat	atttatatga	gcgtattaca	900
gctgaagaca	tcacacttaa	gaatggtgat	gtgattcctg	caaataccgt	acttagccat	960
gaaattatgg	tgaaattggc	tgaaggtggt	gttaaacaat	ttaacateet	attcactaat	1020
gacatcgatc	gtggttcgtt	cattgcagat	acattacgtg	cagatacaac	aacaggtcgt	1080
gaagaagcgc	ttgttgaaat	ctataaagta	atgegteeag	gtgaaccacc	gacaaaagaa	1140
gcagcagaga	acttatttaa	taacttattc	ttctcttctg	aacgttatga	cctttctcca	1200
gtaggtcgta	tgaagtttaa	ccgtcgtttg	ggtegteett	acgaagtggg	tactgatcag	1260
aagtcacgtg	aagttgaagg	tattttatcg	catgacgata	tcattgatgt	acttcgtaca	1320
ttagttgaga	tccgcaatgg	taaaggtgaa	gtcgacgata	tcgatcactt	gggtaaccgt	1380
cgcgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	ggttcgtgtt	1440
gaacgtgctg	tgaaagagcg	tttaagccaa	gctgaaactg	ataacttgtc	tccacaagat	1500
ttaatcaacg	cgaaaccagt	tgctgcggca	atcaaagaat	tetttggtte	aagccagtta	1560
tctcagttca	tggaccaaaa	caacccatta	tctgagatta	cacataaacg	tegtgtgtet	1620
gegettggte	ctggtggttt	gacacgtgaa	cgcgcaggct	tcgaagtgcg	tgacgtacat	1680
caaactcact	atggtcgtgt	ttgtccaatt	gaaacacctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tttctgtcta	tgctaaagcg	aatgacttcg	gtttcttgga	aacaccatac	1800
cgtaaagttg	tagacggtcg	tgttacagat	gaagttgaat	atttatctgc	aattgaagaa	1860
gtaggcaccg	tcattgcaca	agccgactca	gcagtggata	aagatggcaa	cttgactgaa	1920
gaaatggttt	ctgtacgtca	tcaaggtgaa	ttcgtacgta	tgtcgcctga	gcgcgtaaca	1980
catatggacg	tttctgcaca	gcaggttgtt	tetgttgeag	cgtcattaat	tccattcctt	2040
gaacacgatg	acgcaaaccg	tgcattgatg	ggttcgaaca	tgcaacgtca	ggctgttcct	2100
acacttcgtg	ctgacaaacc	acttgtcggt	acgggtatgg	aagcaaacgt	agcacgcgac	2160
tcaggtgtat	gtgtgatcgc	gggtcgtggt	ggtgtaattg	aatatgttga	tgcatctcgt	2220
ategttatte	gtgttaacga	agatgaaatg	attgcaggtg	aagcaggtgt	agatatttac	2280
aacctgatca	aatatacacg	ttcaaaccaa	aatacatgta	ttaaccaaaa	tgtcatcgta	2340
aacttgggcg	acaaagttgc	tegtggegat	attttggctg	acggtccatc	gactgacatg	2400
ggtgaacttg	cgctaggtca	aaacatgcgc	gtcgcgttca	tgacatggaa	cggttataac	2460
tatgaagact	caatcttact	ttctgagcgt	gtgcttcaag	aagaccgttt	aacgtcgatt	2520
catattcaag	aattgtcatg	tgtagcgcgt	gatactaagt	taggtgcaga	agaaattact	2580
gctgatattc	ctaacgtcgg	tgaagetgea	ctgtctaaac	ttgatgagtc	aggtattgtt	2640

tatateggtg	ctgaagttac	tgcaggtgat	attcttgttg	gtaaggtaac	acctaaaggt	2700
gaaactcagt	taacacctga	agaaaaacta	cttcgtgcaa	tctttggtga	aaaagegget	2760
gacgtaaaag	attcatcttt	acgtgttccg	tcaggcacta	aaggtacagt	gattgacgtt	2820
caagtcttca	cacgtgatgg	tttagaaaaa	gatgaacgtg	cgcaagcaat	tgagaaaget	2880
cagcttgatg	cataccgtaa	agacttgaaa	gaagaataca	aaatettega	agaagcagca	.2940
cgtgagcgta	ttgttcgttt	gttgaaaggt	caagaatcta	acggtggtgg	ttcgactaaa	3000
cgtggtgaga	agettteaga	agatatgttg	tctggtctag	agttagttga	tctacttgaa	3060
atccaaccaa	cagatgaagc	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	3120
gaaaagagcc	atgaaattga	tgaaaagttt	gctgagaaga	aacgtaaact	ttctacaggt	3180
gatgagttaa	caactggtgt	attgaaagtt	gttaaggttt	acctagcagt	taaacgtcgt	3240
atccaacctg	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	3300
ttaccagttg	aagacatgcc	acatgatgcc	aatggtgtgc	cagttgatat	cgtattgaac	3360
ccactcggtg	taccatcgcg	tatgaacgtg	ggtcagattc	ttgaaactca	cttaggtatg	3420
gcagcaaaag	gtttgggtga	gcagattgat	aaaatgctca	aacaacaacg	tacaattgcc	3480
gagttacgtt	cattccttga	caagatttat	aataaagtgg	gtggtgagca	agaacagctt	3540
gacacactga	ctgatgaaga	gatcttgaaa	ctttcaggta	atttacgtgc	tggtgtgcct	3600
ttggcaactc	cagtattcga	tggtgctgaa	gagtcacaaa	tcaaagagtt	acttgaactt	3660
gcagagttac	cacgttctgg	tcaacagatc	ttgtttgatg	gacgtacagg	tgagcagttt	3720
gategtecag	taactgtcgg	ttacatgtat	atgettaagt	tgaaccactt	ggttgacgac	3780
aagatgcatg	cacgttcaac	tggttcttac	tcacttgtga	cacaacaacc	gcttggtggt	3840
aaagcacaat	teggtggtca	gcgtttcggt	gagatggaag	tatgggcact	tgaagcatat	3900
ggtgcagcat	atacceteca	agaaatgctc	actgtgaagt	cggatgacgt	cgaaggtcgt	3960
acacgcatct	ataagaacat	tgtagatgga	aaccattata	tggatccggg	tatgeetgaa	4020
tegtteaaeg	tattgaccaa	agagatccgt	tetttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 29

<211> 4089

<212> ADN

<213> Acinetobacter tandoii

<400> 29

atggcatact catataccga aaagaaacgg atccgtaaga attttggtaa attgcctagt 60 gttatggatg ctccgtactt gctcgcgatt caagtcgact cgtacagaac gttcttgcaa 120 gatggcaaat caccaaaaaa ccgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180

tttcctatag	aaagttattc	tggcaatgct	getetagaat	ttgttgagta	tagccttggt	240
aagccggagt	ttgatgttcg	cgaatgtatt	cttcgtggct	caacttatgc	ggcaccaatg	300
cgtgtaaaaa	ttcgtttgat	cattaaagat	cgtgaaacga	aatcaatcaa	agacgtgcgt	360
gagcaagaag	tgtacatggg	tgaaatgcca	ctcatgacgg	ataacgggac	attcgttatt	420
aatggtactg	agcgtgtaat	cgtatctcag	ttacaccgtt	cgccaggcgt	gttctttgat	480
catgataagg	gtaaaactca	ctcaagcggt	aaagtgcttt	attcggcacg	tattattcct	540
taccgtggtt	catggttaga	ctttgaattt	gatgcaaaag	atttagtcta	tgtccgtatt	600
gaccgtcgtc	gtaaattgct	tgcgactgtg	gttttacgtg	cattggatta	cagcaacgaa	660
caaattctag	atttattcta	cgagaaagta	cctgtctatt	tagacatggg	tagctaccaa	720
attgaccttg	taccagaacg	cctgcgtggc	gaaatggctc	aattcgacat	taccgataat	780
gacggtaaag	tgattgttga	acaaggtaag	cgtattaacg	cgcgtcatgt	acgtcaaatg	840
gaagcttcag	gcttaacgaa	getttetgtt	ccagacgaat	atttatatga	gcgtattact	900
gcccaagata	tcactttacg	tgatggcgaa	gtgattcctg	cgaatacctt	gctaagccat	960
gaagtgatgg	tgaagetgge	tgaaggtggc	gtgaagcagt	ttaatattct	gtttacgaat	1020
gacatcgatc	gtggttcgtt	cattgcggat	tototacgtg	cagatacaac	aacaggtcgt	1080
gaagaagege	ttgttgaaat	ctacaaagta	atgegtecag	gtgagecace	aacaaaagaa	1140
gcagctgaaa	acttatttaa	taacttattc	ttetettetg	agcgttacga	tttatcgcca	1200
gttggtcgta	tgaagtttaa	ccgtcgtttg	ggtcgtcctt	acgaagtcgg	tactgatcag	1260
aagtcacgtg	aagttgaagg	tateettteg	aacagcgata	tcactgatgt	attaaaaaca	1320
ttggttgaaa	ttcgtaacgg	taaaggcgaa	gtggatgata	ttgaccactt	gggtaaccgt	1380
cgtgttcgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	ggttcgtgtt	1440
gagcgtgctg	taaaagagcg	tttaagccaa	gcagaagcag	ataacttgtc	tccgcaagat	1500
ttaatcaatg	cgaaaccagt	tgcagcggca	atcaaagaat	tetttggtte	aagccagtta	1560
tctcagttca	tggatcaaaa	caacccattg	tctgagatta	cacacaaacg	tcgtgtatct	1620
gcacttggtc	ctggtggttt	aacacgtgaa	egt gcgggct	ttgaagtacg	tgacgtacat	1680
caaactcact	atggtcgtgt	atgtccgatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740
atcaactcgc	tatctgttta	tgcaaaatgt	aataacttcg	gtttcttgga	aactccatac	1800
cgtaaagttg	ttgatggacg	tgtaacggat	gaagttgaat	acttatctgc	gattgaagaa	1860
gtaggcactg	tcattgcaca	agecgaetet	gcagtcgatg	cagacaatca	cttgacggaa	1920
gagtttgttt	ctgtacgtca	ccaaggtgat	ttcgtgcgta	tgccacctga	aaaagtgacg	1980
catatggatg	tatctgctca	acaggttgta	tctgttgcag	catcattgat	tccgttcctt	2040
gaacacgatg	atgcgaaccg	tgcattaatg	ggttcgaaca	tgcaacgtca	ggatgttaag	2100
acattattgg	cggataaacc	gcttgttggt	acagggatgg	aagcaaatgt	agcacgtgat	2160
tetggtgtgt	gtgtcattgc	aaaccgtggt	ggtgcgattg	aatacgtaga	cgcttctcgt	2220

```
2280
atogtgatto gtgtaaacga agaagagatg gtagcgggtg aagcgggtgt agatatotac
aacctqatca aatatacacg ttctaaccaa aatacatgta tcaaccaaaa cgtcgtagtt
                                                                     2340
cgcatgggtg acaaagttgc tcgtggtgat gtattggctg atggtccatc gactgatggt
                                                                     2400
ggtgaacttg cgcttggtca aaacatgcgc gtcgcgttca tgacttggaa cggttataac
                                                                    2460
                                                                     2520
tatqaaqact cqatcttact ttctqaqcqt qttcttcaaq aaqaccqttt aacttcgatc
catatecaag agttategtg tgttgcacgt gatactaaat tgggtgctga agaaattact
                                                                    2580
geggatatee egaaegtggg tgaagetgea etttetaage ttgatgaate aggtattgtt
                                                                     2640
tatateggtg ctgaagttgc agegggegac atcettgttg gtaaagtaac geetaaaggt
                                                                     2700
gaaacgcaat taacaccaga agaaaaactg cttcgtgcaa tttttggtga aaaagcagct
                                                                     2760
gacgttaaag attettettt acgtgtteca tetggtacga aaggtacagt aattgacgtt
                                                                     2820
caagtgttta cacgtgatgg tcttgaaaaa gacgaacgtg cgcaagcaat tgaaaaagcg
                                                                     2880
caattagatg cttaccgtaa agacttgaaa gaagaatata aaatcttcga agaagcagca
                                                                     2940
egtgaacgta ttgttegett gttgageggt caagaatega atggeggtgg eggeacgaag
                                                                     3000
cgtggtgaca aactttcaga agatatgttg tctggcttag agttggttga tttacttgaa
                                                                     3060
atccagccaa gtgatgaagc gattgctgaa cgtttaaccc aaattcaagt gttcttgaaa
                                                                     3120
gagaagaget ttgaaattga egagaaattt getgagaaaa aaegeaaaet ttetacaggt
                                                                     3180
gatgaactaa caactggcgt attgaaagtt gtgaaggttt accttgcagt taaacgtcgt
                                                                     3240
atccagectg gtgataagat ggegggtegt caeggtaaca aaggtgttgt gtctaacate
                                                                     3300
ctaccagtcg aagacatgcc gcatgatgcc aatggtgttc cagtcgatat cgtattgaac
                                                                     3360
ccgttgggtg taccgtcacg tatgaacgtg gggcagatte ttgaaactca cttgggtatg
                                                                     3420
getgegaaag gtttgggtga geaaattgat aagatgetea aacaacageg tgaaattget
                                                                     3480
gaactacgtg ttttcctaga caaaatctac aacaaagtgg gcggtcagca agaagattta
                                                                     3540
gacagettaa eagatgatga aatettggtg ttggcaggta aettacgtge aggtgtacet
                                                                     3600
ttagcaactc ctgtatttga tggtgctgaa gaaagccaaa tcaaagagtt actagagctg
                                                                     3660
                                                                     3720
getgaaatte caegtteggg teaaacegta ttgtatgatg gaegtacagg tgaaegttte
gaccgtcctg taactgtagg ctatatgtac atgettaagt tgaaccactt ggttgacgac
                                                                     3780
aagatgcatg cocgttotac aggttottac toattagtaa ogcaacaacc attgggtggt
                                                                     3840
aaageteagt teggtggtea gegttteggt gagatggagg tetgggeact tgaggettat
                                                                     3900
ggcgcagett atacacttca agaaatgete actgtgaagt eggatgaegt tgaaggtegt
                                                                     3960
actogtatot ataagaatat tgtagatggt aaccattata tggacccagg tatgcctgaa
                                                                     4020
togttcaacg tattgaccaa agagatccgt tetttaggta tcaacattga actgaaaaat
                                                                     4080
ggtgactaa
                                                                     4089
```

<210> 30

<211> 4089

5 <212> ADN

<213> acinetobacter tjernbergiae

<400> 30

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccat	60	
gtaatggaag	caccgtactt	actttcgatt	caggtcgatt	cgtatcgtac	attettacaa	120	
ggcggtaaaa	ctccaaaaaa	tcgcgaagat	ateggtetee	aagccgcatt	tcgttcagtt	180	
tttcctattg	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagtcttggt	240	
aagcccgagt	ttgacgtacg	tgaatgtatt	ttacgtggtt	caacttatge	agcaccaatg	300	
cgcgtaaaaa	ttcgtttgat	tattaaagat	cgtgaaacga	aatcaattaa	agatgttcgt	360	
gaacaagaag	tctacatggg	tgaaatgcca	ctcatgaccg	ataacggtac	ttttgttatc	420	
aatggtactg	agcgtgtgat	tgtgtctcag	ttacaccgtt	cgccaggtgt	attctttgat	480	
catgataaag	gtaagaccca	ttcaagtggt	aaagtgttgt	atteggeacg	tattatteet	540	
taccgtggtt	catggttaga	ttttgaattt	gatgctaaag	atcttgttta	tgtgcgtatt	600	
gaccgtcgtc	gtaaactatt	agcaactgta	attctgcgcg	ctttaggcta	tgcaaatgca	660	
caaatcttga	atttattcta	tgaaaaagtg	cctgtatatc	ttgatatggg	tagttatcag	720	
attgatcttg	tgccagateg	attacgcggt	gaaatggcgc	agtttgatat	tgccgataat	780	
gacggtaaag	tcattgttga	acaaggtaaa	cgtattaatg	tacgtcatgt	acgtcaaatg	840	
gaageggeta	atttagccaa	actttctgta	cctgatgagt	atttatatga	acgtattacc	900	
gctgaagata	ttaccttaaa	agatggtgat	gtgattcctg	caaatacgct	gcttagtcat	960	
gaagtcatgg	tgaagttagc	tgaaggtggc	gttaaacagt	tcaatatctt	gtttactaat	1020	
gatattgatc	gtggctcttt	tattgctgat	agtttacgtg	cagacacaac	ttcagggcgt	1080	
gaagaagcat	tagtagaaat	ttacaaagta	atgcgtccag	gtgaaccacc	aacaaagaa	1140	
gctgctgaaa	acttatttaa	taatttattc	ttctcttctg	aacgttatga	cctttctcca	1200	
gtaggtcgca	tgaagtttaa	ccgtcgtttg	ggtcgtcctt	acgaagtggg	tacagatcag	1260	
aaatcgcgtg	aagttgaagg	tattttateg	cacgacgata	tcatcgatgt	actgcgtaca	1320	
ttggttgaaa	ttcgtaacgg	taaaggtgaa	gtcgatgata	tcgaccactt	aggtaaccgt	1380	
cgtgtacgtt	ctgttggtga	aatgacagaa	aaccaattcc	gtgttggttt	agttcgtgtt	1440	
gaacgtgctg	ttaaagagcg	tttaagccaa	gcagagacag	ataatttgtc	tccacaagat	1500	
ttaatcaatg	cgaaaccagt	tgetgetgea	atcaaagaat	tctttggttc	aagccaattg	1560	
tctcagttca	tggatcaaaa	caatccattg	tctgaaatta	cacataaacg	tegtgtatet	1620	
gegettggee	ctggtggttt	gacacgtgag	cgtgeggget	tegaagteeg	tgacgtacat	1680	
caaactcact	atggtcgtg t	ttgtccaatt	gaaacgcctg	aaggtccaaa	cattggtttg	1740	
atcaactcgc	tttctgtcta	tgcaaaagcg	aatgactttg	gtttcttgga	aacaccatac	1800	

```
1860
cqtaaaqtcg ttgatggtcg tqtqactqat qaqqttgaat atttatctqc aattgaagaa
gttgggactg tgattgcaca ggccgattct ggtgtagata aagatggtaa cttaacagaa
                                                                    1920
gaaatggctt ctgtacgtca tcagggcgaa tttgtacgta tgccacctga aaaagtgacg
                                                                    1980
catatggacg tatctgctca geaggttgtt tetgttgctg categettat teegtttett
                                                                    2040
gaacacgatg atgcgaaccg tgcattgatg ggttcaaaca tgcaacgtca ggctgttccg
                                                                    2100
acattgcgtg ctgacaagcc gcttgttggt acqqgtatgg aagcaaacgt agcacgtgat
                                                                    2160
totggtgtgt gtgtgatcgc agaccgtggt ggtgcgattg aatatgttga tgcatctcgt
                                                                    2220
atcgtgattc gtgtaaacga agatgaaatg attgcgggtg aagcgggtgt agatatctat
                                                                    2280
aacctgatca aatatacacg ttcaaaccaa aatacctgta tcaaccaaaa cgttatcgta
                                                                    2340
                                                                    2400
aacttgggtg acaaagttgc tcgtggcgat atcttggctg atggtccatc gactgatatg
ggtgaacttg cgcttggtca aaacatgcgc gtcgcgttca tgacatggaa cggttataac
                                                                    2460
tacgaagact cgatcttact ttctgagcgt gtacttcaag aagaccgttt aacgtcgatt
                                                                    2520
catatccaag aattgtcatg tgtagcgcgt gatactaagt taggtgcaga agaaattact
                                                                    2580
                                                                    2640
gccgatattc ctaacgtggg tgaagctgca ctgtctaagt tggatgagtc tggtattgtt
tatatoggtg otgaagtgac tgogggtgac atcottgttg gtaaggtaac gootaaaggt
                                                                    2700
gaaactcagt taacacctga agaaaaacta cttcgcgcga tetttggtga aaaagctgct
                                                                    2760
gacgttaaag actottottt acgcgttoca totggtacca aaggtactgt gattgacgtt
                                                                    2820
caagtettta egegtgatgg tttggaaaaa gatgaaegtg etcaageeat tgagaaaget
                                                                    2880
cagcttgatg cataccgtaa agatttgaaa gaagaataca aaatcttcga agaagcagca
                                                                    2940
cgtgaacgta ttqttcqttt gttgacaqqt caaqagtcta acqqtqqtqq ctcaactaaq
                                                                    3000
cgtggtgata aactttctgc agatgtcttg tctggtttag agctggttga tttacttgaa
                                                                    3060
attcaaccga ctgatgaagc aattgeagag cgtttaactc agattcaagt gttcttgaaa
                                                                     3120
gagaagaget acgaaattga cgagaagttt gcagagaaga aacgtaaact ttctacaggt
                                                                    3180
gatgaattaa caacgggtgt attgaaagtt gttaaggttt acctcgctgt taaacgtcgt
                                                                    3240
atccagcotg gtgataagat ggcgggtcgt catggtaaca aaggtgttgt atctaacatc
                                                                    3300
ttacctgttg aagacatgcc tcatgatgcg aatggtgtgc cagtcgatat cgtattgaac
                                                                     3360
ccattgggtg taccgtcacg tatgaacgtg ggtcagattc ttgagactca cttaggtatg
                                                                    3420
geggegaaag gtettggega taaaategaa aaaatgttga aagaacageg tacagtgatt
gaactgcgtg aattottaga caagatttat aacaaggtog gtggtgagca agaagagott
                                                                    3540
gacagottaa otgatgogga aqtottqqca otttoaggca acttacqtqo tggtgttoca
                                                                    3600
ttggcaacgc ctgtatttga cggtgctgaa gaaagtcaga ttaaagactt acttgaattg
                                                                    3660
                                                                    3720
gcagacatct cacgtacggg tcaaacggta ttgtttgacg gacgtacagg tgaacagttt
gategiectg taactgtagg ttacatgtac atgeteaaat tgaaccaett ggttgatgae
                                                                    3780
aagatgcatg cgcgttcaac gggttcttac tcacttgtga ctcaacagcc gcttggtggt
                                                                    3840
                                                                    3900
aaagcacaat tcggtggtca gcgtttcggt gagatggaag tatgggcact tgaagcatac
qqtqctqcat acacgctcca agaaatqctt acagtgaaqt cqqatqacgt cqaaqqtcqt
                                                                    3960
acacgcatct ataagaacat tgtagatggt aaccattata tggatccggg tatgcctgaa
                                                                    4020
tegtteaacg tattgaccaa agagateegt tetttaggta teaacattga aetgaaaaat
                                                                    4080
                                                                    4089
ggtgactaa
```

<210> 31

5

<211> 4089

<212> ADN

<213> acinetobacter towneri

<400> 31

atggcatact	catataccga	aaagaaacgg	atccgtaaga	attttggtaa	attgccccaa	60
gtaatggatg	caccgtactt	gctttcgatt	caagtcgact	cgtaccgtac	tttccttcaa	120
gatggcaaaa	ctccaaaaag	ccgcgaagat	ateggtetee	aagccgcatt	tegtteagtt	180
tttcctatag	aaagttattc	tggcaatgct	gctttagaat	ttgttgagta	tagtcttggt	240
aagcctgagt	ttgatgtacg	tgagtgtatt	cttcgcggct	caacttatgc	ggcaccaatg	300
cgcgtaaaaa	ttcgtttgat	cattaaagat	cgtgaaacga	aatcaatcaa	agatgtgcgt	360
gagcaagaag	tctacatggg	cgaaatgcca	ttgatgacgg	ataacggtac	ctttgtgatt	420
aacggtactg	agcgtgtaat	tgtttctcaa	ttacaccgtt	caccaggcgt	gttctttgac	480
cacgataaag	gtaagaccca	ctcgagcggt	aaagtgttgt	attcagcacg	cattattcct	540
taccgtggct	catggttaga	ctttgaattc	gatgccaaag	acctcgttta	tgtgcgtatt	600
gaccgtcgtc	gtaaattgct	tgcgactgta	gtgttgcgtg	cattgggcta	tagcaatgaa	660
caaatcctag	acttgttctt	tgagaaagta	cctgtctatt	tagacatggg	tagctaccaa	720
attgaccttg	tcccagaacg	cttacgtggc	gaaatggcac	aatttgacat	cactgatact	780
gacggcaaag	tgattgttga	gcaaggtaaa	cgcattaatg	cgcgtcacgt	acgtcaaatg	840
gaagcagctg	gtcttgagaa	gctttcagtt	cctgatgagt	acttgtacga	acgtattact	900
gcagaagaca	tccagctaaa	agatggcgat	gtgattgctg	caaacacctt	gttaagccat	960
gaaatcatgg	tgaaacttgc	agaaggtggt	gttaaacaat	ttaacatcct	attcaccaat	1020
gacatogaco	gtggttcgtt	cattgcggac	accttacgtg	cagatacaac	tgttggtcgt	1080
gaagatgctt	tggtagaaat	ctacaaagtg	atgcgtccag	gtgagccacc	gacgaaagaa	1140
gccgctgaaa	atctgttcaa	taacttgttc	ttetettetg	agegttatga	tttatcgcca	1200
gtaggtcgta	tgaagttcaa	ccgtcgtttg	ggtcgtcctt	acgaagt ggg	tacagatcag	1260
aaatcacgtg	aagttgaagg	tattttgtct	aacgaagaca	ttaccgatgt	acttaaaaca	1320
ttgatcgaaa	tccgtaacgg	taaaggtgaa	gtcgacgata	tegaceactt	gggtaaccgt	1380

cgcgtacgtt	cagtgggcga	gatgactgaa	aaccaattcc	gtgttggttt	ggtacgtgtt	1440
gagcgtgctg	taaaagagcg	tttgtcacaa	gctgaaacag	acaacctgtc	tecgeaagat	1500
ttaatcaatg	cgaagccagt	ggctgctgca	atcaaagaat	tetttggtte	aagccaattg	1560
tctcagttca	tggaccaaaa	caacccgttg	tctgaaatta	cccacaagcg	tegegtatet	1620
gcgcttggtc	caggtggttt	gacacgtgaa	cgtgcaggct	ttgaggtacg	tgacgtacac	1680
caaactcact	atggtcgtgt	gtgtccaatt	gaaacgcctg	aaggtccaaa	ca ttg gtttg	1740
atcaactcgc	tttctgttta	tgcaaaatgt	aataattttg	gcttcttgga	aacgccatac	1800
cgtaaagtgg	ttgatggtcg	tgtaaccgat	gaggttgagt	atttatctgc	aattgaagaa	1860
gtgggcacga	tcattgegca	agcggactca	agcgtagacc	aagatggcaa	tttaacagaa	1920
gaattcgtat	ctgtacgtca	ccaaggtgac	ttcgtgcgta	tgccgccaga	gcgcgtgacg	1980
cacatggacg	tttctgcaca	gcaggttgta	tctgtagcag	catcactgat	tccattcctt	2040
gagcacgatg	acgccaaccg	tgccttgatg	ggatcgaaca	tgcaacgtca	ggetgtteeg	2100
acgcttatcg	ctgataaacc	acttgtgggt	acagggatgg	aagcgaacgt	agcacatgac	2160
tcaggtgtat	gtgtgattgc	aaaccgtggt	ggtcgtattg	aatatgtega	tgcttcacgt	2220
gtagtcattc	gtgtgaacga	agaagaaatg	atcgcgggtg	aagcaggtgt	agatatctac	2280
aacctgatca	aatacacacg	ttcaaaccaa	aacacttgta	ttaaccaaaa	agttttggtg	2340
aagatgggtg	ataaggtagg	tegtggtgat	gtattggctg	acggtccatc	tacagatggc	2400
ggtgagettg	cactcggtca	gaacatgcgt	gtcgcgttca	tgacttggaa	tggctataac	2460
tacgaagact	cgatcttgct	ttctgagcgt	gtacttcaag	aagaccgttt	aacttcgatt	2520
cacattcaag	aattgtcatg	tgttgcacgt	gataccaaat	tgggtgcgga	agaaatcaca	2580
gctgatattc	caaacgtggg	cgaagctgca	ctgtctaaac	tagacgagtc	tggtatcgtt	2640
tacattggtg	ctgaagttac	tgcaggcgac	atcctggtag	gtaaagtaac	gccgaagggt	2700
gaaactcagt	taacccctga	agaaaaattg	cttcgtgcaa	tetteggtga	aaaagcagca	2760
gatgtgaaag	attcatcatt	gcgcgttcca	tcaggtacta	aaggtacagt	gattgacgtt	2820
caagtgttta	cccgcgatgg	tctagaaaaa	gacgaacgtg	cgcaagcaat	tgaaaaagca	2880
cagttagatg	catatcgcaa	agacttgaaa	gaagaataca	aaatctttga	agaagctgca	2940
cgtgaacgta	ttatccgctt	attgaaaggc	caagagtcta	acggtggcgg	tacaaccaaa	3000
cgtggcgaca	agetttetga	agatatgttg	tcaggettgg	ctttagtgga	tttacttgaa	3060
attcaaccaa	gtgatgaagc	gattgctgaa	cgcttaacgc	aaattcaaac	cttcttgaaa	3120
gagaagagct	ttgaaattga	tgagaaattt	gctgagaaga	aacgtaaact	ttetacagge	3180
gatgagctca	ctacaggcgt	gttgaaagtt	gttaaggtgt	acttggctgt	taaacgtcgc	3240
atccaaccgg	gtgataagat	ggcgggtcgt	cacggtaaca	aaggtgttgt	atctaacatc	3300
ttgccagtag	aagacatgcc	gcacgatgct	aacggtgtac	ctgttgacat	cgtattgaac	3360
ccactaggtg	taccatct c g	tatgaacgtg	ggtcagattc	ttgaaacaca	cttgggtatg	3420

gcagccaaag	gtttgggtga	gcaaattgac	aagatgctca	aacaacaacg	tgagattgct	3480
gaactacgtg	cgttcctaga	caagatttat	aacaaagtgg	gtggcgagca	agaagatett	3540
gacagettaa	ctgatgatga	aatcttggta	ttggcgggta	acttgcgtgc	aggtgttcca	3600
ttggctactc	ctgtatttga	tggtgctgaa	gaaggtcaaa	tcaaagaatt	gcttgaactg	3660
gctgaattac	cacgttcagg	tcagaccgta	ttgtatgatg	gacgtacagg	cgagaaattc	3720
gaccgtcctg	tgactgtagg	ttatatgtac	atgctcaaac	ttaaccactt	ggtggatgac	3780
aagatgcacg	cacgttctac	aggttcttac	tcacttgtaa	cgcaacagcc	gttaggtggt	3840
aaggcacaat	tcggtggtca	gcgtttcggt	gagatggaag	tetgggeaet	tgaagcatac	3900
ggtgctgctt	atacgctgca	agaaatgctc	actgtgaagt	cggatgacgt	tgaaggtogt	3960
accegeatet	ataagaacat	tgtagatggc	aaccattata	tggatccggg	catgcctgaa	4020
tcatttaacg	tattgaccaa	agagatccgt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089

<210> 32 <211> 4089 5 <212> ADN

<213> acinetobacter parvus

<400> 32

atggeatact catatacega aaagaaacgg atccgtaaga attttggtaa attgeeceac 60 120 ggcggtaaaa ctccaaaaaa tcgcgaagat atcggtctcc aagccgcatt tcgttcagtt 180 ttteetattg aaagttatte tggeaatget getttagaat ttgttgagta tagtettggt 240 aagcetgagt ttgacgtacg tgaatgtatt ttacgtggtt caacttatge agcaccaatg 300 cgcgtaaaaa ttcgtttgat cattaaagat cgtgaaacga aatcaattaa agacgtgcgt 360 gaacaagaag titacatggg tgaaatgcca cicatgaccg ataacggtac titcgttatc 420 aacggtactg agcgtgtcat cgtatctcaa ttacaccgtt caccaggtgt attctttgac 480 catgacaagg gtaaaaccca ctcaagtggt aaagtgttgt attcagcacg tattattcct 540 taccgtggtt catggttaga ttttgaattt gatgctaaag atttagtatt cgtacgtatt 600 gaccgtcgtc gtaagttact ggcaacggtg attctacgtg ccttgaatta cagcaatgaa 660 caaatcttga atttgttcta tgaaaaagta cctgtatatc ttgatatggg tagctatcaa 720 attgatcttg ttccagatcg cttacgtggt gaaatggcac aatttgatat cttagacaat 780 840 gaagetgega aettageeaa getttetgta eetgatgaat atttatatga gegtattaca 900 gotgaagata toacactgaa aagtggtgat gtgattootg cgaataccgt tottagccat 960

gacatcatgg tgaagatcgc	tgaaaatggt	gtgaagcagt	ttaacatcct	attcacgaat	1020
gatattgatc gtggttcgtt	tgttgcggat	acattacgtg	cagatacaac	aacaggtcgt	1080
gaagaagcac ttgttgaaat	ctataaagtc	atgcgtccag	gcgagccgcc	gacgaaagaa	1140
gctgctgaaa acctattcaa	taatttgttc	ttctcttctg	agcgttatga	cctttctcca	1200
gtgggtcgta tgaagttcaa	ccgtcgtttg	gggcgtccat	acgaagtcgg	tactgaccag	1260
aagtcacgtg aagttgaagg	tattctgtca	cacgacgata	ttattgatgt	attacgtaca	1320
ttagtagaaa tccgtaacgg	taaaggtgaa	gtcgacgata	tcgatcactt	aggtaaccgt	1380
cgtgtacgtt ctgtgggtga	aatgacagaa	aaccaattcc	gtgttggtct	agtccgtgtt	1440
gaacgtgctg tgaaagagcg	tttaagccaa	gcagaaactg	ataacttgtc	tccgcaagat	1500
ttaattaacg ccaaaccagt	tgctgcggca	atcaaagaat	tctttggttc	aagccaattg	1560
totcagttca tggaccaaaa	taacccattg	tctgagatta	cgcacaaacg	tcgtgtatct	1620
gegettggte etggtggttt	gacgcgtgaa	cgtgcaggct	ttgaagtacg	tgacgtacat	1680
caaactcact atggtcgtgt	ttgtccaatt	gaaacacctg	aaggtccaaa	cattggtttg	1740
atcaactogo tttotgtota	tgctaaagcg	aatgacttcg	gtttcttgga	aacaccatac	1800
cgtaaagttg ttgatggtcg	tgtgactgat	gaagttgaat	acttatctgc	aattgaagaa	1860
gtaggcactg tcattgcaca	agccgactca	gcagtggata	aagatggcaa	cttgactgaa	1920
gaaatggttt ctgtccgtca	tcaaggtgaa	tttgtgcgta	tgtcgcctga	gegegteaca	1980
catatggatg tttctgcaca	gcaggttgtt	tctgttgcag	catcattgat	tccattcctt	2040
gaacacgatg atgcgaaccg	tgccttgatg	ggttcgaaca	tgcaacgtca	ggctgttcct	2100
acattgcgtg ctgacaagcc	gcttgttggt	acaggtatgg	aagcaaacgt	agcacgtgac	2160
tcaggtgtgt gtgtaatcgc	caaccgcggt	ggtgcgattg	aatatgttga	tgcatctcgt	2220
ategtgattc gtgtcaacga	agatgaaatg	attgcgggtg	aagcaggtgt	agatatctat	2280
aacctgatca aatatacacg	atcaaaccaa	aatacctgta	ttaaccagaa	tgtcatcgtg	2340
aacctgggcg acaaagttgc	tcgtggtgat	attttggctg	acggtccatc	gactgacatg	2400
ggtgaacttg cgctgggtca	aaacatgcgc	gtcgcgttca	tgacatggaa	cggttataac	2460
tatgaagact cgatcttact	ttctgagcgt	gtgcttcaag	aagatcgttt	aacgtcgatt	2520
cacattcagg aattgtcatg	tgtcgcacgt	gatactaagt	tgggctcgga	agaaattacc	2580
gctgatattc caaacgttgg					2640
tatatoggtg cggaagtgac	tgcgggtgac	atccttgttg	gtaaagtcac	gcctaaaggt	2700
gaaactcagt taacacctga	agaaaaatta	cttcgtgcaa	tctttggtga	aaaagcggct	2760
gacgtaaaag actcgtcttt	acgtgttcca	tegggtacta	aaggtacagt	gattgacgtt	2820
caagtettea caegtgatgg	tttggaaaaa	gatgaacgtg	cgcaggcaat	tgagaaagct	2880
cagcttgatg cataccgtaa	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	2940
cgtgaacgta ttgttcgttt	gttgaaaggt	caagaat cta	atggtggtgg	ttcaaccaaa	3000

cgcggtgata	aactttctgc	agaggtattg	tctggtttag	agttggttga	tttacttgaa	3060
atccagccaa	atgatgaagc	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	3120
gagaagagtt	acgagattga	cgagaagttt	gctgagaaga	agcgtaaact	ttctacaggt	3180
gatgaattaa	caactggcgt	attgaaagtt	gttaaggttt	acctggcagt	taaacgtcgt	3240
atccagcctg	gtgataagat	ggegggtegt	cacggtaaca	aaggtgttgt	atcaaacatc	3300
ttgccagttg	aagacatgcc	acatgatgcg	aatggtgtgc	cagtcgacat	cgtattgaac	3360
ccacttggtg	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	3420
gcggcgaaag	gtcttggcga	taagatcgaa	aaaatgttga	aagaacaacg	tacagtgatt	3480
gaactgcgtg	aattettaga	caagatttat	aacaaggttg	gtggtgagca	ggaagagctt	3540
gatagettga	ctgacgcaga	aatcttggcg	ctttcaggta	acttacgtgc	tggtgttcca	3600
ttagcgacto	ctgtatttga	tggtgctgaa	gaaagccaga	tcaaagactt	acttgaattg	3660
gcagacattt	ctcgtacagg	tcaaacagta	ttgtttgatg	gtcgtacagg	tgaacagttt	3720
gaccgtcctg	taactgtagg	ttacatgtac	atgctgaaac	tgaaccactt	ggttgatgac	3780
aagatgcatg	cgcgttcaac	aggttcttac	tcacttgtaa	ctcaacaacc	gcttggtggt	3840
aaagcacaat	tcggtggtca	gcgtttcggt	gagatggaag	tctgggcact	tgaagcatac	3900
ggtgctgcat	atacgeteca	agaaatgctt	acagtgaagt	cggatgacgt	cgaaggtcgt	3960
acacgcatct	ataagaacat	tgtagatggg	aaccattaca	tggatccggg	tatgcctgaa	4020
tegttcaacg	tattgaccaa	agagateegt	tctttaggta	tcaacattga	actgaaaaat	4080
ggtgactaa						4089
<210> 33 <211> 350 <212> ADN <213> Acinetobact	er calcoaceticus					
<400> 33						
agacttgaaa	gaagaataca	agatetttga	agaagcagct	cgtgagcgtg	taattcgttt	60
gcttaacggc	caagagtcta	acggtggtgg	ttcgactaaa	cgtggcgaca	agetegttga	120
cggtatgttg	tctggtttag	agcttgttga	cttacttgaa	atecaaceta	cagatgaagc	180
aattgctgaa	cgtttatctc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaattga	240
tgagaagttt	gcagagaaga	aacgtaagct	ttcgactggt	gatgagttaa	caacaggtgt	300
tctgaaagtt	gttaaagttt	acctagcagt	taaacgtcgt	attcagcctg		350
<210> 34 <211> 350						

5

10

15

<212> ADN

<400> 34

<213> Acinetobacter baumannii

	agacttgaaa gaa	igaataca agatettegi	a agaagcggct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc caa	agagtota atggcggtg	y ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta tct	ggtttag agcttgttg	a tttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag cgt	ttaactc aaattcaag	gttcttgaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc gct	gagaaga aacgtaagc	tgccacaggt	gatgaattaa	cgactggcgt	300
	attaaaagtt gtt	aaggttt acttagctg	t taaacgtcgt	attcagcctg		350
5	<210> 35 <211> 350 <212> ADN <213> Acinetobacter sp.					
	<400> 35					
	agacttgaaa gaa	gaataca agatctttga	agaagcagct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc caa	gagteta atggeggtgg	ttcaactaaa	cgtggtgaca	aactcgttga	120
	agaagtgtta tct	ggtttag agcttgttga	tttacttgaa	attcaaccgg	cagatgaagc	180
	aatcgctgag cgt	ttaactc aaattcaagt	gttcttaaaa	gaaaagagcg	cagaaattga	240
	tgagaaatte get	gagaaga aacgtaagct	tgcaacaggt	gatgaattaa	caactggcgt	300
	attgaaagtt gtt	aaagttt acttagctgt	taaacgtcgt	attcagcctg		350
10	<210> 36 <211> 350 <212> ADN <213> Acinetobacter haei	molyticus				
15	<400> 36					
	agacttgaaa gaa	gaataca aaatcttcga	agaagcagca	cgtgaacgta	ttgttcgctt	60
	gttgaaaggt caa	gagtcaa atggtggcgg	, tacaactaag	cgcggcgata	aactctcaga	120
	agatgtattg tct	ggtttag agcttgttga	tttacttgaa	atccaaccag	ctgatgaagc	180
	gattgctgaa cgt	ttaacgc aaattcaagt	gttcttgaaa	gagaagagca	tcgaaatcga	240
	tgagaaattt gca	gagaaga agcgtaagct	ttctacaggt	gatgaattaa	caacgggtgt	300
	attaaaagtt gtt	aaggttt accttgcggt	taagcgtcgt	attcagcctg		350
20	<210> 37 <211> 350 <212> ADN <213> Acinetobacter junii					
	<400> 37					

	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	cgtgagcgta	ttgttcgttt	60
	gttgaaaggt	caagaatcta	acggtggtgg	ttcgactaaa	cgtggtgaga	agctttcaga	120
	agatatgttg	tctggtctag	agttagttga	tctacttgaa	atccaaccaa	cagatgaagc	180
	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gaaaagagcc	atgaaattga	240
	tgaaaaattt	gctgagaaga	aacgtaaact	ttctacaggg	gatgagttaà	caactggtgt	300
	attgaaagtt	gttaaggttt	acctagcagt	taaacgtcga	atccaacctg		350
5	<210> 38 <211> 350 <212> ADN <213> Acinetobact	er sp.					
	<400> 38						
	agatttgaaa	gaagaataca	aaatctttga	agaagcagca	cgtgaacgta	ttgttcgctt	60
	gttgaaaggt	aaagagtcta	atggtggcgg	tacaacgaag	cgcggcgata	aacttgcaga	120
	agatatgttg	tctggtttag	agctggttga	tttgttagaa	atccaaccaa	cagatgaagc	180
	aatcgctgaa	cgtttaactc	aaattcaggt	attcttgaaa	gagaagagta	tcgagattga	240
	tgagaaattt	gctgagaaga	aacgcaaact	ctctacaggt	gatgaattaa	caacgggtgt	300
	attaaaagtt	gttaaggttt	accttgcagt	gaaacgtcgt	atccaaccgg		350
10 15	<210> 39 <211> 350 <212> ADN <213> Acinetobact	er johnsonii					
	<400> 39	gaagaataca	aaatottooa	acaaccacca	Catassats	ttattaatt	60
	_	caagagtcta	_				120
		totggtttag					180
	_	cgtttaactc			_		240
							300
	attgaaagtt (gcagagaaaa attaaggttt			-	caacaygigi	350
		3,,,,,,,,	icceggeege c	added to de	••••		
20	<210> 40 <211> 350 <212> ADN <213> Acinetobact	er lwoffii					
25	<400> 40						
	agacttgaaa	a gaagagttca	agatctttga	agaagcagca	cgtgaacgtg	taattcgttt	60
	gttgaacggt	: caagagtega	atggtggcgg	taccactaaa	cgtggcgaca	aactgtctga	120
	agacgtgttg	g tctggtttag	agcttgttga	tcttcttgaa	attcaaccgg	ttgatgaagc	180
	aatcgctgaa	ı egtetaaege	aaattcaagt	gttcttgaaa	gagaagagct	tcgaaattga	240
	cgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggc	gatgagctga	ccactggcgt	300
	attgaaagta	gttaaagttt	atcttgcggt	aaaacgtcgc	atccagccgg		350

5	<210>41 <211> 350 <212> ADN <213> Acinetobacte	er sp.					
	<400> 41						
	agacttgaaa	gaagaattca	aaatcttcga	agaagctgca	cgtgaacgtg	taatccgtct	60
	actgaatggc	caagagtcga	atggtggcgg	tacaactaaa	cgtggcgaca	aactgtctga	120
	agacgtgttg	tctggtttag	agcttgttga	tettettgaa	attcaaccag	ttgatgaagc	180
	aattgctgaa	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagct	tcgaaattga	240
	cgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggc	gatgaactga	ccactggcgt	300
	ttt aaaagtt	gttaaggttt	atcttgctgt	aaaacgtcgc	atccaaccgg		350
10	<210> 42 <211> 350 <212> ADN <213> Acinetobacte	ersp.					
15	<400> 42	~~~~~hb~~				h h a h a a a h h h	60
		gaagagttca	_				60 700
		caagagtcaa					120
	agacgtattg	tctaacttag	agcttgttga	tctgttagaa	gttcaaccag	cagacgaagg	180
	tattgctgag	cgtttaacgc	agattcaagt	gttcttgaaa	gagaagagcc	acgagatega	240
	tgagaagttt	gctgagaaaa	aacgtaaact	ttcaacgggt	gatgaactga	caactggtgt	300
	gttgaaagtt	gttaaagttt	atcttgctgt	taaacgtcgt	atccagcctg		350
20	<210> 43 <211> 350 <212> ADN <213> Acinetobacte	er sp.					
	<400> 43						
	agacttgaaa	gaagaattca	aaatcttcga	agaagcagct	cgtgaacgta	ttatccgttt	60
	gttaaaaggc	caagagtcga	atggcggcgg	tactactaag	cgcggtgata	agctatctga	120
	agatgtattg	tctggtttag	agcttgttga	tcttttagaa	gttcaaccaa	cagatgaagg	180
	catcgctgaa	cgcttaactc	aaattcaagt	gttcttgaaa	gagaagagct	acgagattga	240
	tgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggt	gatgagctta	caacaggtgt	300
	cttgaaagtt	gttaaagttt	atttagctgt	aaaacgtcgt	atccagcctg		350
25 30	<210> 44 <211> 350 <212> ADN <213> Acinetobacte <400> 44	er radioresistens					

	agatttgaaa	gaagaatata	aaatctttga	agaagcggct	cgtgaacgta	ttgtacgttt	60
	getgaaagat	caggtgtcta	acggcggtgg	aaatactaaa	cgtggtgaga	aactgtctga	120
	agaattgcta	tctggccttg	aactgattga	tctgctcgaa	atccagccaa	gcgatgaagc	180
	gattgctgaa	cgtttaaccc	agatccaggt	gttcttgaaa	gagaaaagca	ccgagattga	240
	cgagaagttt	gccgagaaga	aacgcaagct	ttctacgggt	gatgagctga	ctcatggcgt	300
	attgaaagtt	gtgaaggttt	atctagcagt	taaacgtcgt	atccagccgg		350
5	<210> 45 <211> 350 <212> ADN <213> Acinetobact	<i>er</i> sp.					
	<400> 45						
	agacttgaaa	gaagagtaca	aaatcttcga	agaagcagca -	cgtgaacgta	ttgttcgttt	60
	gttgaaaggt	caagagtcta	acggtggcgg	ttcaactaaa	cgcggtgata	aacttgctga	120
	agacgtattg	tctggtttag	agcttgttga	tttacttgaa	atccaaccga	ctgatgaggc	180
	aattgcagag	cgtctaactc	aaattcaagt	gttcttgaaa	gagaagagct	atgaaattga	240
	tgagaagttt	gcagagaaga	agcgtaaact	ttctacaggt	gatgaattaa	ccactggcgt	300
	attgaaagtt	gttaaggttt	accttgcggt	taaacgtcgt	atccagcctg		350
10	<210> 46 <211> 350 <212> ADN <213> Acinetobact	<i>er</i> sp.					
15	<400> 46						
	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	cgtgaacgta	ttgttcgttt	60
	gttgaaaggt	caagaatcta	acggtggcgg	ttcaaccaaa	cgcggcgata	aactttcaga	120
	agatgtattg	tctggcttag	agcttgttga	tttacttgaa	atccagccaa	atgatgaagc	180
	aattgetgaa	cgtttaactc	agattcaagt	gttcttgaaa	gagaagagct	acgagattga	240
	cgagaagttt	gctgagaaga	agcgtaaact	ttctacaggt	gatgaattaa	caacgggcgt	300
	attgaaagtt	gttaaggttt	accttgcggt	gaaacgtcgt	atccagcctg		350
20	<210> 47 <211> 350 <212> ADN <213> acinetobacte	er schindleri					
	<400> 47						

	w5 u .	, c c g a a a	Jacquaraca	aaacccccga	agaagcagca	cgcgaacgca	tedereageou	•
	gttg	gaaaggt	caggaatcta	acggtggtgg	cacaactaaa	cgcggtgaca	aactgtctga	120
	agat	gttctg	tctggtttag	agcttgttga	tctgttagac	atccaaccag	tagatgaagc	180
	aatt	gctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcc	ttgaaattga	240
	tgaa	aagttt	gctgagaaga	aacgcaaatt	atctacaggc	gatgaactta	caactggcgt	300
	acto	gaaagtt	gttaaggttt	atctagcggt	taaacgtcgt	atccagcctg		350
5	<210> 48 <211> 35 <212> AE <213> ac	0	<i>r</i> ursingii					
	<400> 48							
	agat	ttgaaa	gaagaataca	aaatctttga	agaagcagca	cgtgaacgta	ttgtgcgctt	60
	atta	aaaggt	caggattcta	acggtggtgg	cacgactaaa	cgtggtgaca	aactgactga	120
	agat	ttattg	tctggtcttg	agctggtcga	tttacttgaa	attcaaccaa	gtgatgaagg	180
	cato	gctgag	cgtttaagtc	aaattcaagt	attcttgaaa	gagaagagtg	ctgaaattga	240
	tgag	gaaattt	gctgagaaaa	aacgcaaatt	agcgacgggt	gatgagttaa	cgacgggtgt	300
	cttg	gaaagtc	gttaaagtct	accttgcagt	taaacgtcgt	atccagccag		350
10	<210> 49 <211> 35 <212> AE <213> ac	0	r baylyi					
15	<400> 49							
	agad	cttgaaa	gaagaattca	aaatcttcga	agaagctgct	cgtgaacgta	ttatccgttt	60
	gtta	aaaaggc	caagagtcaa	atggeggegg	tacgaccaag	cgcggtgata	agctatctga	120
	agat	tgtattg	tctggtttag	agcttgttga	tcttttagaa	gttcaaccaa	cagacgaagg	180
	cate	cgctgaa	cgcttaactc	aaattcaagt	gttcttgaaa	gagaagagct	acgagattga	240
	tgag	gaaattt	gctgagaaaa	aacgcaaact	ttctacaggt	gatgagctta	caacaggtgt	300
	att	gaaagtt	gttaaagttt	acttagctgt	aaaacgtcgt	atccagcctg		350
20		0)N inetobacte	r bouvetii					
	<400> 50							

	agaettgaaa	gaagaataca	aaatettega	agaagetgeg	cgtgaacgta	rrgrgegett	60
	gctaaaaggt	caagaatcga	atggcggcgg	cacaactaaa	cgcggtgaca	aactttctga	120
	agaagtattg	tctggtttag	agcttgctga	tctgcttgaa	attcagccta	cagacgaagg	180
	cattgctgag	cgcttaactc	aaattcaagt	gttcttgaaa	gagaagagca	ctgaaattga	240
	tgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggc	gatgagctta	caactggtgt	300
	attgaaagtt	gttaaagttt	acttagctgt	aaaacgccgc	atccagccgg		350
5	<210>51 <211> 350 <212> ADN <213> acinetobacte	er gerneri					
	<400> 51						
	agatttgaaa	gaagaatata	aaatctttga	agaagctgct	cgtgaacgta	ttgttcgctt	60
	gttgaaaggt	caagaatcaa	atggtggtgg	ttcaactaaa	cgtggtgaca	aactttctga	120
	agaattgtta	tctggtttag	agctagttga	tcttcttgaa	attcaaccaa	gtgatgaagg	180
	tattgctgaa	cgtttaactc	aaattcaagt	gttcttgaaa	gaaaagagcc	atgaaattga	240
	tgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggt	gatgagctta	caactggtgt	300
	attgaaagtt	gttaaagtgt	atttggctgt	taaacgtcgt	atccaaccgg		350
10	<210> 52 <211> 350 <212> ADN <213> acinetobacte	er grimontii					
15	<400> 52						
	agacttgaaa	gaagaataca	aaatcttcga	agaagcagca	cgtgagcgta	ttgttcgttt	60
	gttgaaaggt	caagaatcta	acggtggtgg	ttcgactaaa	cgtggtgaga	agctttcaga	120
	agatatgttg	tctggtctag	agttagttga	tctacttgaa	atccaaccaa	cagatgaagc	180
	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gaaaagagcc	atgaaattga	240
	tgaaaagttt	gctgagaaga	aacgtaaact	ttctacaggt	gatgagttaa	caactggtgt	300
	attgaaagtt	gttaaggttt	acctagcagt	taaacgtcgt	atccaacctg		350
20	<210> 53 <211> 350 <212> ADN <213> acinetobacte	er tandoii					
	<400> 53						

	agacttgaaa	gaagaatata	aaatcttcga	agaagcagca	cgtgaacgta	ttgttcgctt	60
	gttgageggt	caagaatcga	atggcggtgg	cggcacgaag	cgtggtgaca	aactttcaga	120
	agatatgttg	tctggcttag	agttggttga	tttacttgaa	atccagccaa	gtgatgaagc	180
	gattgctgaa	cgtttaaccc	aaattcaagt	gttcttgaaa	gagaagagct	ttgaaattga	240
	cgagaaattt	gctgagaaaa	aacgcaaact	ttctacaggt	gatgaactaa	caactggcgt	300
	attgaaagtt	gtgaaggttt	accttgcagt	taaacgtcgt	atccagcctg		350
5	<210> 54 <211> 350 <212> ADN <213> acinetobacte	er tjernbergiae					
	<400> 54						
	agatttgaaa	gaagaataca	aaatcttcga	agaagcagca	cgtgaacgta	ttgttcgttt	60
	gttgacaggt	caagagtcta	acggtggtgg	ctcaactaag	cgtggtgata	aactttctgc	120
	agatgtcttg	tctggtttag	agctggttga	tttacttgaa	attcaaccga	ctgatgaage	180
	aattgcagag	cgtttaactc	agattcaagt	gttcttgaaa	gagaagagct	acgaaattga	240
	cgagaagttt	gcagagaaga	aacgtaaact	ttctacaggt	gatgaattaa	caacgggtgt	300
	attgaaagtt	gttaaggttt	acctcgctgt	taaacgtcgt	atccagcctg		350
10	<210> 55 <211> 350 <212> ADN <213> acinetobacte	er towneri					
15	<400> 55						
	agacttgaaa	gaagaataca	aaatctttga	agaagctgca	cgtgaacgta	ttatccgctt	60
	attgaaaggc	caagagtcta	acggtggcgg	tacaaccaaa	cgtggcgaca	agctttctga	120
	agatatgttg	tcaggcttgg	ctttagtgga	tttacttgaa	attcaaccaa	gtgatgaagc	180
	gattgctgaa	cgcttaacgc	aaattcaaac	cttcttgaaa	gagaagagct	ttgaaattga	240
	tgagaaattt	gctgagaaga	aacgtaaact	ttctacaggc	gatgagctca	ctacaggcgt	300
	gttgaaagtt	gttaaggtgt	acttggctgt	taaacgtcgc	atccaaccgg		350
20	<210> 56 <211> 350 <212> ADN <213> acinetobacte	er parvus					
	<400> 56						
	agacttgaaa	gaagaataca	aaatettega	agaagcagca	cgtgaacgta	ttgttcgttt	60
	gttgaaaggt	caagaatcta	atggtggtgg	ttcaaccaaa	cgcggtgata	aactttctgc	120
	agaggtattg	tctggtttag	agttggttga	tttacttgaa	atccagccaa	atgatgaagc	180
	aattgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagtt	acgagattga	240
25	cgagaagttt	gctgagaaga	agcgtaaact	ttetacaggt	gatgaattaa	caactggcgt	300

	attgaaagtt gttaaggttt acctggcagt taaacgtcgt atccagcctg	350
5	<210> 57 <211> 350 <212> ADN <213> Acinetobacter baumannii	
	<400> 57	
	agatttgaaa gaagaataca agatettega agaagegget egtgagegtg taattegttt	60
	gcttaaaggc caagagteta atggeggtgg tteaactaaa egtggtgata aactttetga	120
	agatttatta tetggtttag agettgttga ettaettgaa atteaaceag cagatgaage	180
	aatcgctgag cgtttaactc aaattcaagt gttcttgaaa gagaagagcg cagaaatcga	240
	tgagaaatto gotgagaaga aacgtaagot tgcaacaggt gatgaattaa caactggtgt	300
4.0	attaaaagtt gttaaagttt acttagctgt taaacgtcgt attcagcctg	350
10	<210> 58 <211> 350 <212> ADN <213> Acinetobacter baumannii	
15	<400> 58	
	agacttgaaa gaagaataca agatcttcga agaagcggct cgtgagcgtg taattcgttt	60
	gcttaaaggc caagagtcta atggcggtgg ttcaactaaa cgtggtgata aactttctga	120
	agatttatta tetggtttag agettgttga ettaettgaa atteaaceag eagatgaage	180
	aatcgctgag cgtttaactc aaattcaagt gttcttgaaa gagaagagcg cagaaatcga	240
	tgagaaatto gotgagaaga aacgtaagot tgcaacaggt gatgaattaa caactggogt	300
	attaaaagtt gttaaggttt acttagctgt taaacgtcgt attcagcctg	350
20	<210> 59 <211> 350 <212> ADN <213> Acinetobacter baumannii	
	<pre><400> 59 agacttgaaa gaagaataca agatettega agaagegget cgtgagegtg taateegttt</pre>	60
	acttaaaggc caagagteta atggcggtgg ttcaactaaa cgtggtgata aactttctga	120
	agatttatta totggtttag agottgttga ottacttgaa attcaaccag cagatgaago	180
	aatcgctgag cgtttaactc aaattcaagt gttcttgaaa gagaagagcg cagaaatcga	240
	tgagaaattc gctgagaaga aacgtaagct tgcaacaggt gatgaattaa caactggcgt	300
25	attaaaagtt gttaaagttt acttagctgt taaacgtcgt attcagcctg	350
30	<210> 60 <211> 350 <212> ADN <213> Acinetobacter baumannii	
	<400> 60	

	agacttgaaa	gaagaataca	agatettega	agaagcggct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggcgt	300
	attaaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
5	<210>61 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 61						
	agacttgaaa	gaagaataca	agatcttcga	agaagcggct	cgtgagcgtg	, taattegttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	g cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	g cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggcgt	300
	attaaaagtt	gttaaggttt	acttagctgt	taaacgtcgt	attcagcctg	J	350
10	<210> 62 <211> 350 <212> ADN <213> Acinetobacte <400> 62	er baumannii					
	agacttgaaa	gaagaataca	agatettega	agaagcggct	cgtgagcgtg	taatccgttt	60
	acttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	a aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	g cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagc	g cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	a caactggcgt	300
	attaaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctq	3	350
20	<210> 63 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
25	<400> 63						
	agacttgaaa	gaagaataca	agatettega	agaagcggct	cgtgagcgtg	, taattcgttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	tttacttgaa	attcaaccag	g cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	g cagacatega	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	ı cgactggcgt	300
	attaaaactt	attaaaattt	acthacctor	taaacgtcgt	atteageete	1	350

5	<210> 64 <211> 350 <212> ADN <213> Acinetobacter baumannii	
	<400> 64	
	agacttgaaa gaagaataca agatettega agaagegget egtgagegtg taattegttt	60
	gcttaaaggc caagagtcta atggcggtgg ttcaactaaa cgtggtgata aactttctga	120
	agatttatta tetggtttag agettgttga ettaettgaa atteaaceag eagatgaage	180
	aategetgag egtttaaete aaatteaagt gttettgaaa gagaagageg eagaaatega	240
	tgagaaattc gctgagaaga aacgtaagct tgcaacaggt gatgaattaa caactggcgt	300
	attaaaagtt gttaaagttt acttagctgt taaacgtcgt attcagcctg	350
10	<210> 65 <211> 350 <212> ADN <213> Acinetobacter baumannii	
15	<400> 65	
	agacttgaaa gaagaataca agatettega agaagegget egtgagegtg taateegttt	60
	acttaaagge caagagteta atggeggtgg tteaactaaa egtggtgata aactttetga	120
	agatttatta tetggtttag agettgttga ettaettgaa atteaaceag cagatgaage	180
	aatcgctgag cgtttaactc aaattcaagt gttcttgaaa gagaagagcg cagaaatcga	240
	tgagaaatto gotgagaaga aacgtaagot tgcaacaggt gatgaattaa caactggogt	300
	attaaaagtt gttaaagttt acttagctgt taaacgtcgt attcagcctg	350
20	<210> 66 <211> 350 <212> ADN <213> Acinetobacter baumannii	
	<400> 66	
	agacttgaaa gaagaataca agatcttcga agaagcggct cgtgagcgtg taattcgttt	60
	gcttaaaggc caagagtcta atggcggtgg ttcaactaaa cgtggtgata aactttctga	120
	agatttatta tetggtttag agettgttga ettaettgaa atteaaceag eagatgaage	180
	aatcgctgag cgtttaactc aaattcaagt gttcttgaaa gagaagagcg cagaaatcga	240
	tgagaaatto gotgagaaga aacgtaagot tgcaacaggt gatgaattaa caactggtgt	300
	attaaaagtt gttaaagttt acttagctgt taaacgtcgt attcagcctg	350
25 30	<210> 67 <211> 350 <212> ADN <213> Acinetobacter baumannii <400> 67	

	agacttgaaa	gaagaacaca	agacccccga	agaagcggcc	cacanacaca	######################################	
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
	t gagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggtgt	300
	attaaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
5	<210> 68 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 68						
	agacttgaaa	gaagaataca	agatettega	agaagcggct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggcgt	300
	attgaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
10 15	<210> 69 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
.0	<400> 69						
	agacttgaaa	gaagaataca	agatcttcga	agaagcggct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agettgttga	tttacttgaa	. attcaaccag	cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	cgactggcgt	300
	attaaaagtt	gttaaggttt	acttagctgt	taaacgtcgt	attcagcctg		350
20	<210> 70 <211> 350 <212> ADN <213> Acinetobacte <400> 70	er baumannii					

	agacttgaaa	gaagaataca	agatettega	agaagcggct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggtgt	300
	attgaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
5	<210>71 <211> 350 <212> ADN <213> Acinetobacter	baumannii					
	<400>71 agacttgaaa	gaagaataca	agatettega	agaaggggt	cataaacata	taattcottt	60
	gcttaaaggc						120
	agatttatta						180
	aatcgctgag						240
	tgagaaattc						300
	attaaaagtt					cauccaacac	350
10	ar caddage c	geraaggeee	acceageige	chaacgeege	accoagecty		550
	<210> 72 <211> 350 <212> ADN <213> Acinetobacter	baumannii					
15	<400> 72						
	agacttgaaa g	gaagaataca	agatettega	agaagcggct	cgtgagcgtg	taatccgttt	60
	acttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta t	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag (egtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc 🤅	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggcgt	300
	attaaaagtt 🤉	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
20	<210> 73 <211> 350 <212> ADN <213> Acinetobacter	baumannii					
	<400> 73						
	agacttgaaa				. – – –		60
	gcttaaaggc						120
	agat t tatta		•				180
	aatcgctgag						240
25	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggtgt	300

	attgaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
5	<210> 74 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 74						
	agacttgaaa	gaagaataca	agatcttcga	agaagcggct	cgtgagcgtg	taattcgttt	60
	gcttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa	attcaaccag	cagatgaagc	180
	aatcgctgag	cgtttaactc	aaattcaagt	gttcttaaaa	gagaagagcg	cagaaatcga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgaattaa	caactggcgt	300
10	attgaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
15	<210> 75 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
13	<400> 75						
	agacttgaaa	gaagagtata	aaatcttcga	agaagcggct	cgtgaacgtg	taattcgttt	60
		caagagtcta					120
	agatttattg	tctggcttag	agcttgttga	tttacttgaa	attcaaccga	cagatgaagc	180
	aatcgctgag	cgtttaactc	agattcaagt	gttcttgaaa	gagaagagcg	cagaaattga	240
	tgagaaattc	gctgagaaga	aacgtaagct	tgcaacaggt	gatgagttaa	caactggcgt	300
	attgaaagtt	gttaaagttt	acttagctgt	taaacgtcgt	attcagcctg		350
20	<210> 76 <211> 350 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 76						
	agacttgaaa	gaagaataca	agatcttcga	agaagcggct	cgtgagcgtg	taatccgttt	60
	acttaaaggc	caagagtcta	atggcggtgg	ttcaactaaa	cgtggtgata	aactttctga	120
	agatttatta	tctggtttag	agcttgttga	cttacttgaa 	attcaaccag	cagatgaagc	180
	aatcgctgag	g cgtttaactc	aaattcaagt	gttcttgaaa	gagaagagcg	cagaaatcga	240
		gctgagaaga	_	•			300
0.5	_	gttaaagttt					350
25	4040× 77						
30	<210> 77 <211> 450 <212> ADN <213> Acinetobacte	er calcoaceticus					
	<400> 77						

	gryaraaaac	ggerggrege	cacggraaca	aaggtgttgt	atetaacatt	ccacciguity	00
	aagacatgcc	acacgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccattgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	gcagctaaag	180
	ggcttggtga	taaaatcgaa	aaaatgttga	aagaacagcg	cacagtttta	gaacttcgcg	240
	aattcttaga	caagatttat	aacaaagtcg	geggegagea	agaagatctt	gatagettaa	300
	ctgatgctga	agtcttagca	ctttcaggca	acttacgtgc	tggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaatta	gctgatattt	420
	cgcgtactgg	tcaaacagta	ttgtttgatg				450
5	<210> 78 <211> 450 <212> ADN <213> Acinetobacte	r baumannii					
	<400> 78						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggettggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattcttaga	caagatttat	aacaaagtcg	gcggtgagca	agaagatett	gatagcttga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtacggg	tcaaacagta	ttgtttgacg				450
10	<210> 79 <211> 450 <212> ADN <213> Acinetobacte	rsp.					
15	<400> 79						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acacgatgct	aacggtgtac	cagtagatat	cgtattgaac	ccgttgggcg	120
	taccatctcg	tatgaacgtg	ggtcagattc	ttgagactca	cttaggtatg	gcggctaaag	180
	ggcttggtga	taaaatcgag	aaaatgttga	aagaacagcg	tacagtttta	gaactgcgtg	240
	aattcttaga	caagatttat	aacaaagtcg	gtggtgagca	agaagatctt	gatagcttaa	300
	ctgatgctga	agtcttggca	ctttcaggca	acttacgtgc	tggtgtacct	ttggctactc	360
	ctgtattcga	tggtgctgaa	gaaagccaaa	ttaaagactt	gcttgagtta	gctggtatct	420
	ctcgtacagg	tcaaacagta	ttgtttgatg				450
20	<210> 80 <211> 450 <212> ADN <213> Acinetobacte	r haemolyticus					
	<100> 80						

	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgtggt	atcaaatatc	ttacctgtag	60
	aagacatgcc	gcatgatatt	cacggtgtgc	cagttgatat	cgtattgaac	ccattgggtg	120
	taccatcacg	tatgaacgtg	ggtcagattc	ttgaaactca	cttgggtatg	gcggcaaaag	180
	gtctgggtga	gcaaattgat	aagatgetee	aacagcaacg	tacgattgct	gaattgcgtg	240
	cgttcctcga	caagatttac	aacaaagttg	gtggcgaaca	agaagatctt	gatagettaa	300
	ccgacgaaga	agttttaaaa	cttgcaggta	acctgcgtgc	aggtgtgcct	ttggcgacac	360
	cagtatttga	tggtgctgaa	gaaagtcaaa	ttaaagagtt	acttgagctt	gctgaattgc	420
	cacgtactgg	tcaaaccgta	ttgtttgatg				450
5	<210>81 <211> 450 <212> ADN <213> Acinetobact	er junii					
	<400> 81	aacaaat aat	caccataaca	acceptation	atcasacato	ttaccagttg	60
							120
		acatgatgcc					
	raccarogeg	catgaacgtg	ggccagacec		Cttaggtatg	gcagcaaaag	180
	gtttgggtga	gcagattgat	aaaatgctca	aacaacaacg	tacaattgcc	gagttacgtt	240
	cattccttga	caagatttat	aataaagtgg	gtggtgagca	agaacagctt	gacacactaa	300
	ctgacgaaga	gatctttaag	cttgcaggta	atttacgtgc	tggtgtgcct	ttggcaactc	360
	cagtatttga	tggtgctgaa	gagtcacaaa	tcaaagagtt	acttgagctt	gcagagttac	420
	cacgttctgg	tcaacaaatc	ttgtttgatg				450
10 15	<210> 82 <211> 450 <212> ADN <213> Acinetobact	<i>er</i> sp.					
10	<400> 82						
		ggcgggtcgt					60
	aagatatgcc	acatgatgcc	aatggtgtac	ctgttgacat	cgtattgaac	ccattgggtg	120
	taccgtcgcg	tatgaacgtg	ggtcagattc	ttgaaaccca	tttgggcttg	gcggcaaaag	180
	gtttgggtga	gcagatcgat	aagatgctgc	aacaacaacg	taccgttgct	gaacttcgtt	240
	tgttccttga	taagatttac	aacaaagttg	gtggcgagca	agaagatett	gatagcttaa	300
	ctgatgaaga	agtgttgaag	cttgcaggta	acttacgtgc	aggtgttcct	ttggcaacac	360
	cagtgtttga	tggtgctgaa	gaaagccaaa	ttaaagaatt	acttgaactt	gctgaattgc	420
	cgcgttctgg	tcaacagact	ttgtttgatg				450
20	<210> 83 <211> 450						

<212> ADN

<213> Acinetobacter johnsonii

	<400> 83						
	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	ttctaacatc	ttgcctgttg	60
	aagacatgco	gcacgatgcc	aatggtgttc	cagtcgacat	cgtattgaac	ccactgggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	tagagactca	cttaggtatg	gcagcgaaag	180
	gtcttggcga	agaaatcgac	aagatgttaa	aagegeaacg	tactgtactt	gagettegtg	240
	gattcttaga	caagatttat	aacaaagttg	gtggcgagca	agaagatctt	gatagcttaa	300
	ctgatgatga	aattttggtg	ctttcgggta	acttgcgtgc	gggtgttcct	cttgcaacgc	360
	cagtattcga	tggtgctgaa	gaatctcaaa	ttaaagactt	gttagagctt	gcgaacattt	420
	cacgtactgg	tcaaacagta	ttgtatgatg				450
5	<210> 84 <211> 450 <212> ADN <213> Acinetobacte	er Iwoffii					
10	<400> 84				-bb-	**	60
		ggccggtcgt					60
		acacgatgcc					120
		tatgaacgtg					180
		tcaaatcgac					240
		caagatttat	•		-		300
	ctgatgaaga	aatcttgaaa	ctttctggta	acttgcgtgc	tggtgtgcct	ttggcaacac	360
	ctgtattcga	tggtgctgaa	gaaggtcaga	tcaaagaatt	gttacaactt	gcaggtctat	420
	caagtactgg	tcagacagta	ttatatgatg				450
15	<210> 85 <211> 450 <212> ADN <213> Acinetobacte	<i>er</i> sp.					
	<400> 85						
		ggcgggtcgt				-	60
	aagacatgcc	acatgatgcc	aacggtgtac	ctgttgatat	cgtattgaac	ccgcttggcg	120
	taccatcacg	tatgaacgtg	ggtcagattc	ttgaaactca	cttgggtatg	geggegaaag	180
	gtcttggcga	tcaaatcgac	aagatgatga	aagagcaacg	tactgtactt	gagettegtg	240
	atttcctgga	caagatttac	aataaagttg	gtggcgagca	agaagatctt	gatagcttga	300
	ctgatgaaga	aatcttgaaa	ctttctggca	acttgcgtgc	tggtgtgcct	ttggctactc	360
	ctgtattcga	tggtgctgaa	gaaggtcaga	tcaaagagtt	gttacaactt	gcaggcctat	420
00	ctagtactgg	tcagaccgta	ttatatgatg				450
20	<210> 86 <211> 450 <212> ADN <213> Acinetobact	er sp.					

	<400> 86						
	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	ttaccagttg	60
	aagatatgcc	gcatgacatc	catggtgttc	cagtggatgt	ggtacttaac	ccactcggtg	120
	taccatcacg	tatgaacgtg	ggtcagattc	ttgaaactca	cttgggtatg	gcagcgaaag	180
	gtettggega	taagatcgac	aagatgatga	aagagcaacg	tactgttctt	gaacttcgtg	240
	aattettaga	caagatttat	aacaaagttg	gtggcgagca	agaagatett	gatagcttga	300
	ctgatgaaga	aatcttggtg	ttatcaggta	acttgcgtaa	aggtgttcct	ttagctacac	360
	cagtatttga	. tggtgcagaa	gaaggacaaa	tcaaagagtt	acttgaactt	ggtggtatct	420
	cacgtacagg	tcaaacagta	ttgtatgatg				450
5 10	<210> 87 <211> 450 <212> ADN <213> Acinetobacto	<i>er</i> sp.					
	<400> 87 gtgataagat	ggegggtegt	cacggtaaca	aaggtgttgt	atcaaacatc	ttgcctgttg	60
		gcatgacatc					120
	taccatcacg	tatgaacgtg	ggtcagattc	ttgaaactca	cttaggtatg	gctgcaaaag	180
	gtcttggcga	taagatcgac	aagatgatga	aagagcaacg	taccgttctt	gagettegtg	240
	atttcttaga	caagatttat	aacaaagttg	gtggcgagca	agaagatctt	gatagcttaa	300
	ctgatgaaga	aatcttggtg	ttatcaggta	acttgcgtaa	aggtgttcct	ttagctacgc	360
	cagtatttga	tggtgcagaa	gaaagtcaga	tcaaagagtt	acttgagctt	ggtggtatct	420
	cacgtacagg	tcaaacagta	ttgtatgacg				450
15	<210> 88 <211> 450 <212> ADN <213> Acinetobacto	er radioresistens					
	<400> 88 gtgataaaat	ggcgggtcgt	cacgggaaca	agggtgtggt	atcacaaatc	ctgcctgtag	60
		acatgatgcc					120
		tatgaacgtg					180
		gcagatcgac					240
		taagatttac					300
		aatcttgaaa					360
20		tggtgccgaa					420
20		ccagcagatc			-		450
25	<210> 89 <211> 450 <212> ADN						

	<213> Acinetobacte	er sp.					
	<400> 89						
	gtgataaaat	ggcgggtcgt	cacggtaaca	aaggtgttgt	gtcaaacatc	ttgcctgttg	60
	aagacatgcc	acacgatgcg	aatggtgtac	cagtcgatat	cgtattgaac	ccattgggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttaggtatg	gcggccaaag	180
	gtcttggcga	taaacttgaa	aaaatgttga	aagaacaacg	tacagtgtta	gaactacgtg	240
	acttettaga	caagatttat	aacaaggtcg	gtggtgagca	agaagagctt	gatagcttaa	300
	ctgatgccga	aatcttggcg	ctttcaggta	acttacgtgc	tggtgttcca	ttagcaacac	360
	ctgtatttga	tggtgctgaa	gaaagccaga	tcaaagactt	acttgaatta	gcagacatct	420
	cacgtacagg	tcaaacggta	ttgtttgacg				450
5	<210> 90 <211> 450 <212> ADN <213> Acinetobacte	<i>er</i> sp.					
10	<400> 90						
	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atcaaacatc	ttaccggttg	60
	aagacatgcc	acatgatgcg	aatggcgtac	cagtcgacat	cgtattgaac	ccactgggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	gcagcgaaag	180
	gtcttggcga	taaaatcgaa	aaaatgttga	aagaacaacg	tacagtgatt	gaactgcgtg	240
	aattettaga	caagatttat	aacaaggttg	gcggtgagca	ggaagagctt	gatagcttga	300
	ctgatgcaga	aatcttggcg	ctttcaggta	acttacgtgc	tggtgttcca	ttggcaacac	360
	ctgtatttga	tggtgctgaa	gaaagccaga	tcaaagacct	acttgaactt	gctgatatct	420
	cacgtactgg	tcaaacggta	ttgtttgacg				450
15	<210>91 <211> 450 <212> ADN <213> acinetobacte	er schindleri					
	<400> 91						
	gtgataagat	ggcgggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttgccggtag	60
	aagacatgcc	acacgatgcc	aacggtgtac	ctgttgatat	cgttcttaac	ccgctaggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	gccgccaaag	180
	gtcttggcga	caaaatcgac	aagatgcttc	aagagcaacg	tacggtgctt	gagcttcgtg	240
	aattettaga	caagatttac	aacaaagttg	gtggtgagca	agaagatctt	gatagcctga	300
	ctgatgatga	aatcttggca	ttgtctggta	acttgcgtaa	aggtgttcct	ttggcaactc	360
	cagtattcga	cggtgctgaa	gaatcgcaaa	tcaaagaatt	gttagagctt	ggtggcattt	420
20	cacgtactgg	tcaaacagta	ttgtatgatg				450
	<210> 92 <211> 450 <212> ADN						

	<213> acinetobacte	er ursingii					
	<400> 92						
	gtgataaaat	ggcgggtcgt	cacgggaaca	aaggtgttgt	ttctaacatc	ttgcctgtag	60
	aagacatgcc	acatgatgcc	aatggtgtac	ctgtcgatat	cgtcttgaac	ccattaggtg	120
	taccategeg	tatgaacgtg	ggtcagattc	tggagacaca	tctaggattg	gcagccaaag	180
	gtctgggtga	acaaatcgat	aagatgttgc	aacaacagcg	taccattgcc	gaacttcgta	240
	tcttccttga	taagatttac	aacaaggtcg	gtggtgagca	agaagatcta	aacagtctga	300
	ctgatgatga	agtcttggta	ttggctggca	acttgcgtaa	aggtgtacca	ctagcaactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagagtt	acttgagttg	gctgaattgc	420
	cacgtactgg	tcaacagatt	ttgtttgatg				450
5 10	<210> 93 <211> 450 <212> ADN <213> acinetobacte	er baylyi					
10	<400> 93						
	gtgataaaat	ggcgggtcg t	cacggtaaca	aaggtgttgt	atcaaacatc	ttgcctgttg	60
	aagacatgcc	gcatgatatc	catggtgttc	cagttgatgt	cgtacttaac	ccattgggtg	120
	taccatcacg	tatgaacgtg	ggtcagattc	ttgaaactca	cttaggtatg	gctgcaaaag	180
	gtcttggcga	taagatcgac	aagatgatga	aagagcaacg	taccgttctt	gagettegtg	240
	atttcttaga	caagatttat	aacaaagttg	gtggcgagca	agaagatctt	gatagettaa	300
	ctgatgaaga	aatcttggtg	ttatcaggta	acttgcgtaa	aggtgttcct	ttagctacgc	360
	cagtatttga	tggtgcagaa	gaaagtcaga	tcaaagagtt	acttgagctt	ggtggtatct	420
	cacgtacagg	tcaaacagta	ttgtatgacg				450
15	<210> 94 <211> 450 <212> ADN <213> acinetobacte	er bouvetii					
	<400> 94						
	gtgataagat	ggcgggtcgt	cacggtaaca	aaggtgttgt	atctaacatc	ttgcctgtag	60
	aagacatgcc	gcacgatgcc	aacggtgttc	ctgtagacgt	ggtgcttaac	ccgctgggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggcatg	gcagcgaaag	180
	gtcttggcga	caaaatcgac	aagatgatga	aagagcagcg	cactgttctt	gaacttcgtg	240
	aattettaga	caagatttac	aacaaagttg	geggegagea	agaagatctt	gacagcttaa	300
	ctgatgatga	aatcttggcg	ctttcaggca	acctgcgtgc	aggtgttcct	ttggcaacgc	360
	ctgtatttga	cggtgctgaa	gaatcacaaa	ttaaagaatt	gctagagctt	ggcggcattt	420
20	cacgtactgg	tcaaacagta	ttgtatgatg				450
	<210> 95 <211> 450						

<212> ADN <213> acinetobacter gerneri <400> 95 60 gtgataaaat ggcgggtcgt cacgggaaca aaggtgttgt atcaaacatc cttcctgtag aagatatgcc gcatgacatc aacggtgttc ctgttgacgt agtacttaac ccactgggtg 120 180 taccgtcacg tatgaacgtg ggtcagattc ttgaaacaca tttaggttta gctgccaaag gtcttggtga gcaaatcgat aagatgetea aagagcaacg tacgattget gaacttegtg 240 tgttcttgga caagatttat aacaaagttg gtggcgagca agaagatctt gatagcttaa 300 Ctgatgaaga aatcottgtt ctttcaggta atttacgtaa aggtgttcct ttagcaactc 360 cagtatttga tggtgctgaa gaaggtcaaa ttaaagagct tcttgaactt gctgaacttc 420 450 cacgttctgg tcaaacagta ttgtatgacg 5 <210> 96 <211> 450 <212> ADN 10 <213> acinetobacter grimontii <400> 96 60 gtgataagat ggcgggtcgt cacggtaaca agggtgttgt atcaaacatc ttaccagttg aagacatqcc acatgatgcc aatggtgtgc cagttgatat cgtattgaac ccactcggtg 120 180 taccategeg tatgaacgtg ggtcagattc ttgaaactca cttaggtatg gcagcaaaag gtttgggtga gcagattgat aaaatgctca aacaacaacg tacaattgcc gagttacgtt 240 300 catteettqa caagatttat aataaagtgg gtggtgagca agaacagett gacacactga ctgatgaaga gatcttgaaa ctttcaggta atttacgtgc tggtgtgcct ttggcaactc 360 cagtattcga tggtgctgaa gagtcacaaa tcaaagagtt acttgaactt gcagagttac 420 450 cacgttctgg tcaacagatc ttgtttgatg 15 <210> 97 <211> 450 <212> ADN <213> acinetobacter tandoii <400> 97 20 gtgataagat ggcgggtcgt cacggtaaca aaggtgttgt gtctaacatc ctaccagtcg 60 120 aagacatgcc gcatgatgcc aatggtgttc cagtcgatat cgtattgaac ccgttgggtg taccgtcacg tatgaacgtg gggcagattc ttgaaactca cttgggtatg gctgcgaaag 180 gtttgggtga gcaaattgat aagatgctca aacaacagcg tgaaattgct gaactacgtg 240 300 ttttcctaga caaaatctac aacaaagtgg gcggtcagca agaagattta gacagcttaa cagatgatga aatcttggtg ttggcaggta acttacgtgc aggtgtacct ttagcaactc 360 420 ctgtatttga tggtgctgaa gaaagccaaa tcaaagagtt actagagctg gctgaaattc 450 cacgttcggg tcaaaccgta ttgtatgatg <210> 98

<211> 450

	<212> ADN <213> acinetobacte	r tjernbergiae					
	<400> 98						
	gtgataagat	ggcgggtcgt	catggtaaca	aaggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	tcatgatgcg	aatggtgtgc	cagtcgatat	cgtattgaac	ccattgggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttaggtatg	gcggcgaaag	180
	gtcttggcga	taaaatcgaa	aaaatgttga	aagaacagcg	tacagtgatt	gaactgcgtg	240
	aattettaga	caagatttat	aacaaggtcg	gtggtgagca	agaagagctt	gacagettaa	300
	ctgatgcgga	agtcttggca	ctttcaggca	acttacgtgc	tggtgttcca	ttggcaacgc	360
	ctgtatttga	cggtgctgaa	gaaagtcaga	ttaaagactt	acttgaattg	gcagacatct	420
5	cacgtacggg	tcaaacggta	ttgtttgacg				450
10	<210> 99 <211> 450 <212> ADN <213> acinetobacte	r towneri					
	<400> 99						
	gtgataagat	ggegggtegt	cacggtaaca	aaggtgttgt	atctaacatc	ttgccagtag	60
	aagacatgcc	gcacgatgct	aacggtgtac	ctgttgacat	cgtattgaac	ccactaggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	ttgaaacaca	cttgggtatg	gcagccaaag	180
	gtttgggtga	gcaaattgac	aagatgctca	aacaacaacg	tgagattgct	gaactacgtg	240
	cgttcctaga	caagatttat	aacaaagtgg	gtggcgagca	agaagatctt	gacagettaa	300
	ctgatgatga	aatcttggta	ttggcgggta	acttgcgtgc	aggtgttcca	ttggctactc	360
	ctgtatttga	tggtgctgaa	gaaggtcaaa	tcaaagaatt	gcttgaactg	gctgaattac	420
	cacgttcagg	tcagaccgta	ttgtatgatg				450
15	<210> 100 <211> 450 <212> ADN <213> acinetobacte	r parvus					
20	<400> 100						
	gtgataagat	ggcgggtcgt	cacggtaaca	aaggtgttgt	atcaaacatc	ttgccagttg	60
	aagacatgcc	acatgatgeg	aatggtgtgc	cagtcgacat	cgtattgaac	ccacttggtg	120
	taccgtcacg	tatgaacgtg	ggtcagattc	ttgagactca	cttgggtatg	gcggcgaaag	180
	gtettggega	taagatcgaa	aaaatgttga	aagaacaacg	tacagtgatt	gaactgcgtg	240
	aattottaga	caagatttat	aacaaggttg	gtggtgagca	ggaagagctt	gatagcttga	300
	ctgacgcaga	aatcttggcg	ctttcaggta	acttacgtgc	tggtgttcca	ttagcgactc	360
	ctgtatttga	tggtgctgaa	gaaagccaga	tcaaagactt	acttgaattg	gcagacattt	420
	ctcgtacagg	tcaaacagta	ttgtttgatg				450

5	<210> 101 <211> 450 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 101	ggctggtcgt	caccottaaca	aagatattat	atotaacato	ttacctatta	60
							120
		acatgatgct					180
		tatgaacgtg					240
		caaaatcgaa					
		caagatttat					300
		aattctagcg					360
		tggtgctgaa		ttaaagactt	actigaattg	getgaeattt	420
	cacgtacggg	tcaaacagta	ttgtttgatg				450
10	<210> 102 <211> 450 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 102	ggctggtcgt	cacggtaaca	aaggtgttgt	atctaacatc	thacctqttq	60
		acatgatgct					120
		tatgaacgtg					180
		caaaatcgaa					240
		caagatttat					300
		aattctagcg					360
							420
		tggtgctgaa tcaaacagta		ccaaagaccc	accegaaccg	googacacce	450
15		Journal	0090003003				
20	<210> 103 <211> 450 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 103 gtgataagat	ggctggtcgt	cacggtaaca	agggtgttg t	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattettaga	caagatttat	aacaaagtcg	gcggtgagca	agaagatctt	gatagcttga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtactgg	tcaaacagta	ttgtttgacg				450
25			_				

25

	<211> 450 <212> ADN <213> Acinetobacte	er baumannii					
5	<400> 104						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctaggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattc ttag a	caagatttat	aacaaagtcg	gcggtgagca	agaagatctt	gatagcttga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtacggg	tcaaacagta	ttgtttgacg				450
10	<210> 105 <211> 450 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 105 gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
						ccgctgggtg	120
						geggetaaag	180
						gaactgcgcg	240
						gatagettga	300
						ttagctactc	360
		tggtgctgaa					420
15		tcaaacagta		e caaaagaac c c	actigaatig	900900000	450
20	<210> 106 <211> 450 <212> ADN <213> Acinetobacte		- 				
	<400> 106						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattcttaga	caagatttat	aacaaagtcg	gcggtgagca	agaagatctt	gatagettga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtactgg	tcaaacagta	ttgtttgacg				450

	<211> 450 <212> ADN <213> Acinetobacte	er baumannii					
5	<400> 107						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattcttaga	caagatttat	aacaaagtcg	gcggtgagca	agaagatctt	gatagettga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtacggg	tcaaacagta	ttgtttgacg				450
10	<210> 108 <211> 450 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 108	gastaataat	anogatheeas	accetettet	atataaaata	ttacctatta	60
					atctaacatc		120
					cgtattgaac		180
					cttgggtatg		
					tacagtetta		240
					agaagatctt		300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagetacte	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
15	cacgtacggg	tcaaacagta	ttgtttgatg				450
20	<210> 109 <211> 450 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 109						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattottaga	caagatttat	aacaaagtcg	gcggtgagca	agaagatett	gatagettga	300
	ctgatgaaga	aattetageg	cttgcgggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtactgg	tcaaacagta	ttgtttgacg				450

<210> 110

	<211> 450 <212> ADN <213> Acinetobact	er baumannii					
5	<400> 110						
	gtgataagat	t ggatggtagi	cacggtaaca	aaggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgc	c acatgatge	aacggtgtg	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatetec	g tatgaacgts	g ggtcagatto	: tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	a caaaatcgaa	a aaaatgttga	aagaacaacg	tacagtttta	gaactgcgcg	240
	aattottaga	a caagatttat	: aacaaagtag	gcggtgagca	agaagatett	gatagettga	300
	ctgatgaaga	a aattctageg	ı cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	a tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtacggg	g tcaaacagta	ttgtttgatg				450
10	<210> 111 <211> 450 <212> ADN <213> Acinetobact	er baumannii					
	<400> 111						
	gtgataagat	ggctggtcgt	cacggtaaca	aaggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	ccgctgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgegeg	240
	aattottaga	caagatttat	aacaaagtag	geggtgagea	agaagatctt	gatagcttga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagetaete	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtacggg	tcaaacagta	ttgtttgatg				450
15	<210> 112 <211> 450 <212> ADN <213> Acinetobact	er baumannii					
	<400> 112						60
		- "	cacggtaaca				60
			aacggtgtgc				120
			ggtcagattc				180
			aaaatgttga				240
			aacaaagtcg				300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacqtactqq	trasararta	ttatttaaaa				450

F	<210> 113 <211> 450 <212> ADN <213> Acinetobacter baumannii	
5	<400> 113	
	gtgataagat ggctggtcgt cacggtaaca agggtgttgt atctaacatc ttacctgttg	60
	aagacatgee acatgatget aacggtgtge eggtagatat egtattgaae cegetgggtg	120
	taccatctcg tatgaacgtg ggtcagattc tagagactca cttgggtatg geggctaaag	180
	ggcttggtga caaaatcgaa aaaatgttga aagaacaacg tacagtttta gaactgcgcg	240
	aattettaga caagatttat aacaaagteg geggtgagea agaagatett gatagettga	300
	ctgatgaaga aattotagog cttgoaggta acttgogtgo gggtgtgoot ttagotacto	360
	ctgtatttga tggtgctgaa gaaagtcaaa ttaaagactt acttgaattg gctgacattt	420
	cacgtacggg tcaaacagta ttgtttgatg	450
10	<210> 114 <211> 450 <212> ADN <213> Acinetobacter baumannii	
	<400> 114	
	gtgataagat ggctggtcgt cacggtaaca aaggtgttgt atctaacatc ttacctgttg	60
	aagacatgee acatgatget aacggtgtge eggtagatat egtattgaac eegetgggtg	120
	taccateteg tatgaaegtg ggteagatte tagagaetea ettgggtatg geggetaaag	180
	ggcttggtga caaaatcgaa aaaatgttga aagaacaacg tacagtttta gaactgcgcg	240
	aattettaga caagatttat aacaaagteg geggtgagea agaagatett gatagettga	300
	ctgatgaaga aattotagog ottgoaggta acttgogtgo gggtgtgoot ttagotacto	360
	ctgtatttga tggtgctgaa gaaagtcaaa ttaaagattt acttgaattg gctgacattt	420
15	cacgtacggg tcaaacagta ttgtttgatg	450
20	<210> 115 <211> 450 <212> ADN <213> Acinetobacter baumannii	
	<400> 115	
	gtgataagat ggctggtcgt cacggtaaca agggtgttgt atctaacatc ttacctgttg	60
	aagacatgee acatgatget aaeggtgtge eggtagatat egtattgaae eegetgggtg	120
	taccatctcg tatgaacgtg ggtcagattc tagagactca cttgggtatg gcggctaaag	180
	ggettggtga caaaategaa aaaatgttga aagaacaaeg tacagtttta gaactgegeg	240
	aattottaga caagatttat aacaaagtog goggtgagoa agaagatott gatagottga	300
	ctgatgaaga aattctagcg cttgcaggta acttgcgtgc gggtgtgcct ttagctactc	360
	ctgtatttga tggtgctgaa gaaagtcaaa ttaaagactt acttgaattg gctgacattt	420
	sentenna taeesente ttattaen	450

5	<210> 116 <211> 450 <212> ADN <213> Acinetobacter baumannii	
	<400> 116	
	gtgataagat ggctggtcgt cacggtaaca agggtgttgt atctaacatc ttacctgttg	60
	aagacatgee acatgatget aacggtgtge eggtagatat egtattgaac eegetgggtg	120
	taccatctcg tatgaacgtg ggtcagattc tagagactca cttgggtatg gcggctaaag	180
	ggettggtga caaaategaa aaaatgttga aagaacaaeg tacagtttta gaactgegeg	240
	aattettaga caagatttat aacaaagteg geggtgagea agaagatett gatagettga	300
	ctgatgaaga aattctagcg cttgcaggta acttgcgtgc gggtgtgcct ttagctactc	360
	ctgtatttga tggtgctgaa gaaagtcaaa ttaaagactt acttgaattg gctgacattt	420
	cacgtactgg tcaaacagta ttgtttgacg	450
10	<210> 117 <211> 450 <212> ADN <213> Acinetobacter baumannii	
15	<pre><400> 117 gtgataagat ggctggtcgt cacggtaaca aaggtgttgt atctaacatc ttacctgttg</pre>	60
	aagacatgcc acatgatgct aacggtgtgc cggtagatat cgtattgaac ccgctgggtg	120
	taccateteg tatgaacgtg ggtcagatte tagagactea ettgggtatg geggetaaag	180
		240
	ggettggtga caaaategaa aaaatgttga aagaacaaeg tacagtttta gaactgegeg	
	aattettaga caagatttat aacaaagteg geggtgagea agaagatett gatagettga	300
	ctgatgaaga aattetageg ettgeaggta aettgegtge gggtgtgeet ttagetaete	360
	ctgtatttga tggtgctgaa gaaagtcaaa ttaaagactt acttgaattg gctgacattt	420
	cacgtacggg tcaaacagta ttgtttgacg	450
20	<210> 118 <211> 450 <212> ADN <213> Acinetobacter baumannii	
	<400> 118	~ ~
	gtgataagat ggctggtcgt cacggtaaca aaggtgttgt atctaacatc ttacctgttg	60
	aagacatgce acatgatget aacggtgtge eggtagatat egtattgaac eegetgggtg	120
	taccatcteg tatgaacgtg ggtcagatte tagagactea ettgggtatg geggetaaag	180
	ggettggtga eaaaategaa aaaatgttga aagaacaaeg tacagtttta gaactgegeg	240
	aattottaga caagatttat aacaaagtog goggtgagoa agaagatott gatagottga	300
	ctgatgaaga aattetageg ettgeaggta aettgegtge gggtgtgeet ttagetaete	360
	ctgtatttga tggtgctgaa gaaagtcaaa ttaaagactt acttgaattg gctgacattt	420
	cacgtacggg tcaaacagta ttgtttgatg	450

5	<210> 119 <211> 450 <212> ADN <213> Acinetobact	er baumannii					
	<400> 119						
	gtgataagat	ggctggtcgt	catggtaaca	aaggtgttgt	ttctaacatc	ttacctgttg	60
	aagacatgcc	acacgatgcg	aacggtgtac	ctgtagatat	cgtattgaac	ccgttgggcg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tegaaactea	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacagcg	tacagtttta	gaactacgtg	240
	aattcttaga	caagatttat	aacaaagtcg	gtggcgagca	agaagatctt	gatagcttga	300
	ctgatgatga	aatcctagca	ctttcaggca	acttgcgtgc	tggtgttcct	ttggctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagattt	acttgagttg	gctgacattt	420
	cacgtacagg	tcaaacagta	ttgtttgatg				450
10	<210> 120 <211> 450 <212> ADN <213> Acinetobact	er baumannii					
15	<400> 120						
	gtgataagat	ggctggtcgt	cacggtaaca	agggtgttgt	atctaacatc	ttacctgttg	60
	aagacatgcc	acatgatgct	aacggtgtgc	cggtagatat	cgtattgaac	cegetgggtg	120
	taccatctcg	tatgaacgtg	ggtcagattc	tagagactca	cttgggtatg	gcggctaaag	180
	ggcttggtga	caaaatcgaa	aaaatgttga	aagaacaacg	tacagtttta	gaactgegeg	240
	aattcttaga	caagatttat	aacaaagtcg	geggtgagca	agaagatctt	gatagettga	300
	ctgatgaaga	aattctagcg	cttgcaggta	acttgcgtgc	gggtgtgcct	ttagctactc	360
	ctgtatttga	tggtgctgaa	gaaagtcaaa	ttaaagactt	acttgaattg	gctgacattt	420
	cacgtactgg	tcaaacagta	ttgtttgacg				450
20	<210> 121 <211> 305 <212> ADN <213> Acinetobact	er calcoaceticus					
	<400> 121						
	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagccttttt	gcgttacaat	aatcggctcg	atttttgttt	gttctgtaca	ataattgtcg	120
	tgttttagaa	taatcagagt	aatttcaaat	gtttaccaat	atttttcttt	ttaaaaaata	180
	ttgttaagcg	ttttaatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctgtgta	attccttctg	agecegttet	gcaggcgggc	ttggtttact	ttccgaggac	300
25	tccag						305
	<210> 122 <211> 305						

<212> ADN

	<213> Acinetobacti	er baumannii					
	<400> 122						
	ttgtaaaagg	agtoggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagcettttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgttaagcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctgcgta	attccttctg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
	tccag						305
5 10	<210> 123 <211> 304 <212> ADN <213> Acinetobact	<i>er</i> sp.					
10	<400> 123						
	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagcetttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	tgttttagga	120
	aaattcaaat	aaaacaagta	atttcaaatg	tttaccaata	ttttcttt	ttaaaaatat	180
	tgttaagcgt	ttttatacca	ctaaaaattg	cagcatttgt	aaacagtggt	ggccatatcg	240
	geetgegtaa	ttccttctga	gcccgttctg	caggcgggct	tggtttactt	tccgaggact	300
	ccag						304
15	<210> 124 <211> 308 <212> ADN <213> Acinetobact	er haemolyticus					
	<400> 124						
	tgctgtaggg	agtcgatttt	ttgaaaatcg	gctccaaaaa	atggctgatg	getettgggt	60
	catcagcctt	tttgcgttac	aataatcggc	tcgttttttg	ttagttttgc	gtttttgacg	120
	catataatta	gaacaaacgg	ctaaatatca	aacgettace	aatattttt	tgcttataaa	180
	aatattgtta	agcgttttaa	taccactaaa	aattgcagca	tttgtaaaca	gtggtggcca	240
	tateggettg	cgtaattcct	tctaagcccg	ttctgcaggc	ggcttagttt	actttccgag	300
20	gactccag						308
25	<210> 125 <211> 308 <212> ADN <213> Acinetobact	er junii					
	<400> 125						

	ttctgtaggg	agtcgatttt	tttataatcg	gctccaaaaa	atggctgatg	gctcttgggt	60
	catcageett	tttgcgttac	aataatcggc	tcgttttttg	ttagttttgc	atattttgtg	120
	cagattttta	tagaaaacaa	ataaaatcaa	atgcttacca	atatttttt	gcttataaaa	180
	atattgttaa	gcgttttgat	accactaaaa	attgcagcat	ttgtaaacag	tggtggccat	240
	atcggcctgc	gtaattcctt	ctaggcccgt	tetgeaggeg	ggcttagttt	actttccgag	300
	gactccag						308
5	<210> 126 <211> 308 <212> ADN <213> Acinetobacte	<i>er</i> sp.					
	<400> 126						
	tactgtaggg	agtcggtttt	tttgataatc	ggctccaaaa	aatggctgat	ggctcttggg	60
	tcatcagcct	ttttgcgtta	caataatcgg	ctcgttttt	gttagtttcg	catataatat	120
	gcgggttttt	gcaataaaaa	gactaatatc	aaacgcttaa	caatgttttt	tgcttataaa	180
	aatattgtta	agcgttttaa	taccactaaa	aattgcagca	tttgtaaaca	gtggtggcca	240
	tatcggcctg	cgtaatcctt	ctaggcccgt	tetgeaggeg	ggcttagttt	acttcccgag	300
40	gactccag						308
10 15	<210> 127 <211> 301 <212> ADN <213> Acinetobacte	er johnsonii					
10	<400> 127						
		gggggaatat					60
	cagccttttt	gcgttacaat	aatcggctcg	atttttgttt	gcttggtgga	aaatccatca	120
	aattaaaata	aagaaaagaa	tcaaacgttt	accaatattt	ttcaaattta	aaaatattgg	180
	taagcgtttc	aataccactg	aaaattgcag	catttgtaaa	aagtggtggc	catateggee	240
	tgcgtaattc	cttctgagec	egttetgeag	gegggetegg	tttactttcc	gaggactcca	300
	g						301
20	<210> 128 <211> 308 <212> ADN <213> Acinetobacte	er Iwoffii					
	<400> 128						
		gagccggttt					60
		ttttgcgtta					120
		aaaataaaca	_	_			180
		gttttaatac					240
25		aattccttct	gagcccgttc	tgcaggcggg	cttggtttac	actttccgag	300
	gactccag						308

5	<210> 129 <211> 306 <212> ADN <213> Acinetobacter sp.	
	<400> 129	
	tttcttaagg gageeggttt tttataateg getecaaaaa ttggetgatg getettgggt	60
	catcageett tttgegttae aataategge tegatttttg tttgeatgat ataaaaatea	120
	tacaaattga aaataaacat aatgaacaaa cgtttaccaa tatttttcat taaaaaatat	180
	tgataagogt tttaatacca ctaaaaattg cagcatttgt aaagagtggt ggccatatog	240
	gccagcgtaa ttccttctga gcccgttctg caggcgggct tggtttacac tttccgagga	300
	ctccag	306
10	<210> 130 <211> 307 <212> ADN <213> <i>Acinetobacter</i> sp.	
15	<400> 130	
	tcttaagggg agtcgatttt tttataatcg gctccacaaa ttggctgatg gctcttgggt	60
	catcagcett tttgegttac aataategge tegattttag attgattgat ataaaaatea	120
	tcaattttta aaataaataa acataatcaa acgcttacca atatttttca gttttaaaaa	180
	tattgttaag cgttttgtac cactgaaatt tgcagcattt gtataaaagt ggtggtcata	240
	togacetgeg taatteette taagttegtt etgeaggegg gettagttta ettteegagg	300
	actccag	307
20	<210> 131 <211> 304 <212> ADN <213> <i>Acinetobacter</i> sp.	
	<400> 131	
	tttegetagg ggtegaattt taatttgace ecaaaaattg getgatgget ettgggteat	60
	Cageettttt gegttacaat aateggeteg attttagatt gattggtaga aaaaceatea	120
	attttaaaaa taaataaaca caatcaaacg cttaccaata tttttccatt ttaaaaatat	180
	tgctaagcgt tttgtaccac tgaaatttgc agcatttgta taaaagtggt ggtcatatcg	240
	acctgcgtaa ttccttctaa gttcgttctg caggcggact tagtttactt tccgaggact	300
	ccag	304
25 30	<210> 132 <211> 304 <212> ADN <213> Acinetobacter radioresistens <400> 132	

	ttctttaagg	agtcgatttt	ttaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagcctttt	gcgttacaat	aatcggctcg	atttttgtta	gtttgctgaa	tatatcggtt	120
	aatttaataa	taaatcaaat	aaattcaaac	gcttaccaat	attttttgat	ttgaaaatat	180
	tgataagcgt	tttcatacca	ctcaagattg	cagcttttgt	aaaaagtggt	ggccatatcg	240
	gcctgcgtaa	ttccttctga	gcccgttctg	caggcgggct	tggtttactt	tccgaggact	300
	ccag						304
5	<210> 133 <211> 309 <212> ADN <213> Acinetobacte	er sp.					
	<400> 133						
	tgctgtaggg	agtcgatttt	ttgaaaatcg	gctccaaaaa	atggctgatg	getettgggt	60
	catcagcctt	tttgcgttac	aataatcggc	tcgctttttg	ttagttttac	gtttagcgtg	120
	cgtattattt	gaacaaaata	catgaaatca	aacgcttacc	aatattttt	tgcttataaa	180
	aatattgtta	agcgttttaa	taccactaaa	aattgcagca	tttgtaaaca	gtggtggcca	240
	tatcggcctg	cgtaattect	tctagacccg	ttctgcaggc	gggtttagtt	tactttccga	300
	ggactccag						309
10 15	<210> 134 <211> 309 <212> ADN <213> Acinetobacte	er sp.					
10	<400> 134						
	ttetgtaggg	agtcgatttt	ttcaaaatcg	gctccaaaaa	atggctgatg	getettgggt	60
	catcagectt	tttgcgttac	aataatcggc	tcgttttttg	ttagttttgc	atataatacg	120
	cgtgttattt	gagcaaattt	agcaaaatca	aacgcttacc	aatattttt	tgcttataaa	180
	aatattgtta	agcgttttaa	taccactaaa	aattgcagca	tttgtaaaca	gtggtggcca	240
	tateggeetg	cgtaattcct	tctaagcccg	ttctgcaggc	gggcttagtt	tactttccga	300
	ggaetecag						309
20	<210> 135 <211> 310 <212> ADN <213> acinetobacte	r schindleri					
25	<400> 135						
	tttcttaaag	gagtcggttt	ttttataatc	ggctccaaaa	attggctgat	ggctcttggg	60
	tcatcagcct	ttttgcgtta	caataatcgg	ctcgattttt	gtttgcatga	tagaaattca	120
	tacaaattta	aaaaacaaac	ataattgatc	aaatgcttac	caatatttt	gcagtaaaaa	180
	atattgttaa	gcgttttaat	accactaaaa	attgcagcat	ttgtaaagag	tggtggccat	240
	atcggccagc	gtaattcctt	ctgagcccgt	tctgcaggcg	ggcttagttt	acactttccg	300
	aggactccag						310

5	<210> 136 <211> 308 <212> ADN <213> acinetobacter ursingii	
	<400> 136	
	tgcatcaagg ggtcgatttt ttgataatcg gccccataaa atggctgatg gctcttgggt	60
	catcageett tttgegttae aataategge tegatttttg tttgtttgat ataaaaaege	120
	togatttaaa gaacaaatga aataaattoa aacgottaco aatatttto tggtttaaaa	180
	atattgttaa gcgttttaat accacttaaa aattgcagca tttgtaaaag tggtggccat	240
	atcggcctgc gtcattccat ccaagetcgt tctgcaggcg agcctggttt actttccgag	300
	gactccag	308
10	<210> 137 <211> 304 <212> ADN <213> acinetobacter baylyi	
15	<400> 137	
	tttcgctagg ggtcgaattt taatttgacc ccaaaaattg gctgatggct cttgggtcat	60
	cagcettttt gegttacaat aateggeteg attttagatt gattggtaga aaaaceatea	120
	atttaaaaa taaataaaca caatcaaacg cttagcaata tttttccatt ttaaaaatat	180
	tgctaagcgt tttgtaccac tgaaatttgc agcatttgta taaaagtggt ggtcatatcg	240
	acctgcgtaa ttccttctaa gttcgttctg caggcggact tagtttactt tccgaggact	300
	ccag	304
20	<210> 138 <211> 305 <212> ADN <213> acinetobacter bouvetii	
	<400> 138	
	tettaagagg agecgatttt tttataateg getecagaaa atggetgatg getettgggt	60
	catcagcctt tttgcgttac aataatcggc tcgatttttg tttgcatgat ataaaaatca	120
	tacaaattag aaatacagat aaatgtcaaa cgcttaccaa tatttttccg tttaaaaaaat	180
	attgttaage gttttaatae cactataaat tgcagcattt gtcaaagtgg tggccatate	240
	ggcctgcgta attccttcta aacccgttct gcaggcgggt ttagtttact ttccgaggac	300
25	tecag	305
30	<210> 139 <211> 309 <212> ADN <213> acinetobacter gerneri	
-	<400> 139	

	tcgctttatg	gagtcgattt	tttgtaatcg	gctccaaaaa	acggctgatg	gctcttgggt	60
	catcagcctt	tttgcgttac	aataatcggc	tcgattttta	gattgatcga	tagaataatc	120
	atcaatttta	aaaataaata	tacaaattca	aacgcttacc	aatattttc	cattttaaaa	180
	atattgttaa	gcgttttata	ccactgaaaa	ttgcagcatt	tgtataaagg	tggtggtcat	240
	atcgacctgc	gtaattcctt	ctaagttcgt	tctgcaggcg	ggcttggtat	tactttccga	300
	ggactccag						309
5	<210> 140 <211> 308 <212> ADN <213> acinetobacte	er grimontii					
	<400> 140						
	ttctgtaggg	agtcgatttt	tttataatcg	gctccaaaaa	atggctgatg	gctcttgggt	60
	catcageett	tttgcgttac	aataatcggc	tcgttttttg	ttagttttgc	atattttgtg	120
	cagatttta	tagaaaacaa	ataaaatcaa	atgcttacca	atatttttt	gcttataaaa	180
	atattgttaa	gegttttgat	accactaaaa	attgcagcat	ttgtaaacag	tggtggccat	240
	atcggcctgc	gtaatteett	ctaggcccgt	tctgcaggcg	ggcttagttt	actttccgag	300
	gactccag						308
10	<210> 141 <211> 306 <212> ADN <213> acinetobacte	er tandoii					
15	<400> 141						
	tcttaagagg	agtcgatttt	ttataatcgg	ctccacaaaa	tggctgatgg	ctattgggta	60
	atcagccttt	ttgcgttaca	ataatcggct	cgactccaat	ttgactgatt	taaaaatcat	120
	caaatttaaa	caataaagac	aaactttaaa	cgcttaccaa	tatttttcta	ttcaaaaaat	180
	attgttaago	gttttaatac	cactaaaaat	tgcagcattt	gtaaacagto	gtggccatat	240
	cggcctgcgt	aatteettet	aaacccgttc	tgcaggcggg	tttagtttac	tttccgagga	300
	ctccag		·				306
20	<210> 142 <211> 307 <212> ADN <213> acinetobacte	er tjernbergiae					
	<400> 142						
	tgtgtaggga	gtcgattttt	ttataatcgg	ctccaaaaaa	tggctgatgg	ctcttgggtc	60
	atcageettt	ttgcgttaca	ataatcggct	cgttttttgt	tagttttacg	tttgagtgcg	120
	tgtttttcaa	acaaataaca	gaaaatcaaa	cgcttaccaa	tattttttg	cctataaaaa	180
	tattgttaag	cgttttaata	ccactaaaaa	ttgcagcatt	tgtaaacagt	ggtggccata	240
	teggeetgeg	taattccttc	taagcccgtt	ctgcaggcgg	gtttagttta	ctttccgagg	300
25	actccag						307

5	<210> 143 <211> 307 <212> ADN <213> acinetobacter towneri	
	<400> 143	
	tettaagggg agtegatttt tttataateg aetecaaaaa atggetgatg getettgggt	60
	catcagcctt tttgcgttac aattatcggc tcgatttttg tttgaatgat gggaaaacca	120
	togaaaacaa tataaatcaa taaaatcaaa ogottaccaa tatttttoca catttaaaaa	180
	tattgttaag cgttttaata ccactaaaaa ttgcagcatt tgtaaagagt ggtggccata	240
	teggeetgeg taatteette taaaceegtt etgeaggegg gtttagttta ettteegagg	300
	actecag	307
10	<210> 144 <211> 308 <212> ADN <213> acinetobacter parvus	
15	<400> 144	
	tgctgtaggg agtcgatttt ttcaaaatcg gctccaaaaa atggctgatg gctcttgggt	60
	catcagcett tttgegttae aataategge tegttttttg atagttttae gtteattgtg	120
	cgtattattt aaacaaaatt tatgaaatca aacgcttacc aatatttttt tgcttataaa	180
	aatattgtta agcgttttaa taccactaaa attgcagcat ttgtaaacag tggtggccat	240
	atcggcctgc gtaattcttt ctagacccgt tctgcaggcg ggtttagttt actttccgag	300
	gactccag	308
20	<210> 145 <211> 305 <212> ADN <213> Acinetobacter baumannii	
	<400> 145	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagccatttt gcgttacaat aatcggctcg atttttgtta gttttgtttg gtttttagat	120
	aaagcctaaa taaaataaat aaattcaaat gcttaccaat atttttcatt tttaaaaata	180
	ttgttaageg tttttatace actaaaaatt geageatttg taaacagtgg tggccatate	240
	ggcctgcgta attccttctg agcccgttct gcaggcgggc ttggtttact ttccgaggac	300
25	tccag	305
	<210> 146 <211> 305 <212> ADN <213> Acinetobacter baumannii	
30	<400> 146	

		ttgtaaaagg	agreggttt	taaategget	ccataaaatg	getgatgget	cttgggtcat	60
		cagccttttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
		aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
		ttgttaagcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
		ggcctgcgta	attccttctg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
		tccag						305
5	<21 <21	0> 147 1> 305 2> ADN 3> Acinetobacte	er baumannii					
	<400	0> 147						
	1	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	•	cagcettttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	•	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	1	ttgttaagcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	9	gcctgcgta	attecttetg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
	1	ccag						305
10	<21°	0> 148 1> 305 2> ADN 3> <i>Acinetobacte</i>	er baumannii					
15	<400	0> 148						
	ŧ	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	•	cageettttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	ė	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
		ttgttaagcg	ttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
		ggcctgcgta	attccttctg	agecegttet	gcaggcgggc	ttggtttact	ttccgaggac	300
		tccag						305
20	<21 ²	0> 149 1> 305 2> ADN 3> Acinetobacte	er baumannii					
	<400	0> 149						

	ttgtaa	aagg	agtcggtttt	taaatcggct	ccataaaatg	gergargger	errgggrear	60
	cagcct	tttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagco	taaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaaata	180
	ttgtta	agcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctg	cgta	attccttctg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
	tccag							305
5	<210> 150 <211> 305 <212> ADN <213> Acinete	obactei	r baumannii					
	<400> 150							
	ttgtaa	aagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagcct	tttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagcc	taaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgtta	agcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctg	cgta	attecttetg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
	tccag							305
10 15	<210> 151 <211> 305 <212> ADN <213> Acinete	obactei	r baumannii					
	<400> 151							
	ttgtaa	aagg	agteggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagccti	tttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagcct	taaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgttaa	agcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctga	egta	attccttctg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
	tccag							305
20	<210> 152 <211> 305 <212> ADN <213> Acinete	obactei	r baumannii					

	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagcettttt gegttacaat aateggeteg atttttgtta gttttgtttg gtttttagag	120
	aaageetaaa taaaataaat aaatteaaat gettaceaat attttteatt tttaaaaaata	180
	ttgttaageg tttttatacc actaaaaatt geageatttg taaacagtgg tggeeatate	240
	ggcctgcgta attocttctg agcccgttct gcaggcgggc ttggtttact ttccgaggac	300
	tccag	305
5	<210> 153 <211> 305 <212> ADN <213> Acinetobacter baumannii	
	<400> 153	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cageettttt gegttacaat aateggeteg atttttgtta gttttgtttg gtttttagag	120
	aaagcctaaa taaaataaat aaattcaaat gcttaccaat atttttcatt tttaaaaata	180
	ttgttaagcg tttttatacc actaaaaatt gcagcatttg taaacagtgg tggccatatc	240
	ggcctgcgta attccttctg agcccgttct gcaggcgggc ttggtttact ttccgaggac	300
	tccag	305
10 15	<210> 154 <211> 305 <212> ADN <213> Acinetobacter baumannii	
15	<400> 154	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagcettttt gegttacaat aateggeteg atttttgtta gttttgtttg gtttttagag	120
	aaageetaaa taaaataaat aaatteaaat gettaeeaat attttteatt tttaaaaata	180
	ttgttaageg tttttatace actaaaaatt geageatttg taaacagtgg tggeeatate	240
	ggcctgcgta attccttctg agcccgttct gcaggcgggc ttggtttact ttccgaggac	300
	tecag	305
20	<210> 155 <211> 305 <212> ADN <213> Acinetobacter baumannii	
	<400> 155	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagcettttt gegttacaat aateggeteg attittgtta gttttgtttg gtttttagag	120
	aaagootaaa taaaataaat aaattoaaat gottaccaat atttttoatt tttaaaaata	180
	ttgttaagcg tttttatacc actaaaaatt gcagcatttg taaacagtgg tggccatatc	240
	ggcetgegta attecttetg agecegttet geaggeggge ttggtttaet tteegaggae	300
25	tccag	305

5	<210> 156 <211> 305 <212> ADN <213> Acinetobacter baumannii	
	<400> 156	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagecttttt gegttacaat aateggeteg atttttgtta gttttgtttg gtttttagag	120
	aaagootaaa taaaataaat aaattoaaat gottaccaat atttttoatt tttaaaaata	180
	ttgttaagcg tttttatacc actaaaaatt gcagcatttg taaacagtgg tggccatatc	240
	ggcctgcgta attccttctg agcccgttct gcaggcgggc ttggtttact ttccgaggac	300
	tccag	305
10	<210> 157 <211> 305 <212> ADN <213> Acinetobacter baumannii	
15	<400> 157	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagcettttt gegttacaat aateggeteg atttttgtta gttttgtttg gtttttagag	120
	aaageetaaa taaaataaat aaatteaaat gettaceaat attttteatt tttaaaaata	180
	ttgttaagcg tttttatacc actaaaaatt gcagcatttg taaacagtgg tggccatatc	240
	ggcctgcgta attccttctg agcccgttct gcaggcgggc ttggtttact ttccgaggac	300
	tocag	305
20	<210> 158 <211> 305 <212> ADN <213> Acinetobacter baumannii	
	<400> 158	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagcettitt gegitacaat aateggeteg attitigita gittigitig gittitagag	120
	aaageetaaa taaaataaat aaatteaaat gettaeeaat attttteatt tttaaaaaata	180
	ttgttaagcg tttttatacc actaaaaatt gcagcatttg taaacagtgg tggccatatc	240
	ggcctgcgta attecttetg agcccgttet gcaggcgggc ttggtttact ttccgaggac	300
	tecag	305
25 30	<210> 159 <211> 305 <212> ADN <213> Acinetobacter baumannii	
-	<400> 159	

	ttgtaaaagg	agtcggttt t	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagcettttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgttaagcg	ttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctgcgta	attecttetg	agcccgttct	gcaggcgggc	ttggtttact	ttccgaggac	300
	tccag						305
5	<210> 160 <211> 305 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 160						
	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
	cagcctttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgttaagcg	tttttatacc	actaaaaatt	gcagcatttg	taa aca g t gg	tggccatatc	240
	ggcctgcgta	attecttetg	agctcgttct	gcaggcggg	ttggtttact	ttccgaggac	300
	tccag						305
10	<210> 161 <211> 305 <212> ADN <213> Acinetobacte	er baumannii					
15	<400> 161						
	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaatg	gctgatggct	cttgggtcat	60
			aatcggctcg				120
	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgttaagcg	tttttatacc	actaaaaatt	gcagcatttg	taaacagtgg	tggccatatc	240
	ggcctgcgta	attecttetg	agecegttet	gcaggcggg	ttggtttact	ttccgaggac	300
	tccag						305
20	<210> 162 <211> 305 <212> ADN <213> Acinetobacte	er baumannii					
	<400> 162						
	ttgtaaaagg	agtcggtttt	taaatcggct	ccataaaato	gctgatggct	cttgggtcat	60
	cagcettttt	gcgttacaat	aatcggctcg	atttttgtta	gttttgtttg	gtttttagag	120
	aaagcctaaa	taaaataaat	aaattcaaat	gcttaccaat	atttttcatt	tttaaaaata	180
	ttgttaageg	tttttatacc	actaaaaatt	gcagcatttg	, taaacagtgg	tggccatatc	240
	ggcctgcgta	attccttctg	agcccgttct	gcaggcggg	: ttggtttact	ttccgaggac	300
25	tccag						305

5	<210> 163 <211> 304 <212> ADN <213> Acinetobacter baumannii	
	<400> 163	
	ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat	60
	cagcettttt gegttacaat aateggeteg atttttgtta gttttgtttg atttttagaa	120
	aaatctaaat aaaacaagaa atttcaaatg tttaccaata tttttctttt ttaaaaatat	180
	tgttaagcgt ttttatacca ctaaaaattg cagcatttgt aaacagtggt ggccatatcg	240
	geetgegtaa tteettetga geeegttetg caggeggget tagtttaett teegaggaet	300
	ccag	304
10	<210> 164 <211> 305 <212> ADN <213> Acinetobacter baumannii	
15	<pre><400> 164 ttgtaaaagg agtcggtttt taaatcggct ccataaaatg gctgatggct cttgggtcat</pre>	60
		120
	Cagcottttt gogttacaat aatoggotog atttttgtta gttttgtttg gtttttagag	180
	aaagcctaaa taaaataaat aaattcaaat gcttaccaat atttttcatt tttaaaaata	
	ttgttaageg tttttatacc actaaaaatt geageatttg taaacagtgg tggccatate	240
	ggeetgegta atteettetg agecegttet geaggeggge ttggtttaet tteegaggae	300
	tccag	305
20	<210> 165 <211> 86 <212> ADN <213> Acinetobacter calcoaceticus	
	<400> 165	
	gtcgtaagac tcacgatttt ttaggaaaaa acaatatttg tgacccagtc gggtaagcgt	60
25	tgcttcccga cacacggaga aaaaaa	86
25	<210> 166 <211> 86 <212> ADN <213> Acinetobacter baumannii	
30	<400> 166	
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
	ggcttcccga cacacggaga aaaaaa	86
35	<210> 167 <211> 86 <212> ADN <213> Acinetobacter sp.	
	<400> 167	

	gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcat	60
	tgcttcccga	cacacggaga	aaaaaa				86
5	<210> 168 <211> 172 <212> ADN <213> Acinetobacte	er haemolyticus					
	<400> 168						
	ttagccatta	atccccctc	agcccccttt	atgaaagggg	gagttcccac	tcgaaagagt	60
	aggggettee	ctcctcagaa	aaaggaggga	ctgagggagg	attattcagt	taaaaaacaa	120
	tatttgtgac	ccagttgagt	gagtgtagct	cctcgacaca	cggagaaaaa	aa	172
10 15	<210> 169 <211> 149 <212> ADN <213> Acinetobacte	er junii					
	<400> 169						
	-			aaaagggtgg			60
	ggagaggttg	agggagggtt	gttcagttaa	aaaacaatat	ttgtgaccca	gtcaggtaag	120
	cctagcttcc	tgacacacgg	agaaaaaaa				149
20	<210> 170 <211> 170 <212> ADN <213> Acinetobacte	<i>er</i> sp.					
	<400> 170						
	ttagccatta	atccccgag	ccccttgac	gaaaggggga	gttcccactt	gaaagggtag	60
	gagetteeet	ccttagaaaa	aagagggact	gagggaggat	tattcagtta	aaaaacaata	120
25	tttgtgacco	agtegggega	gettagetee	ctgacacacg	gagaaaaaaa		170
30	<210> 171 <211> 141 <212> ADN <213> Acinetobacte	er johnsonii					
	<400> 171						
	gtttctccat	tgaatctccc	caacetetet	tgttcaaaga	gaggetteet	cgaaaggtaa	60
	gcggggagat	ttctcagtta	aaaaacaata	tttgtgaccc	agttgtgtag	tgaaagtctc	120
	cacaacacac	ggagaaaaaa	a				141
35	<210> 172 <211> 177 <212> ADN <213> Acinetobacte	er Iwoffii					
40	<400> 172						

	ttagttccat	tgaatctccc	ttgcgaagca	gtgcttctca	cctctttaag	aaagaggga	60
	aagtecetet	ttataaaggg	ggatttaggg	ggattcttgg	gattcccaat	tcagttaaaa	120
	acaatatttg	tgacccagtc	gagaagtgaa	aatctcctcg	acacacggag	aaaaaaa	177
5	<210> 173 <211> 150 <212> ADN <213> Acinetobacte	er sp.					
	<400> 173						
	ttagttccat	ttaatccctc	caacccctct	ttgataaaga	gggcttcccc	cttaacaaag	60
	ggggactgag	ggggattaaa	attcagttaa	aaaacaatat	ttgtgaccca	gttgttgagt	120
10	gaaaatctcc	acaacacacg	gagaaaaaaa				150
15	<210> 174 <211> 144 <212> ADN <213> Acinetobacte	er sp.					
	<400> 174						
	atcccccttg	atcccccttt	gttaaagggg	ggatttccct	tctttcttaa	agagggggca	60
	ggggagattc	caaatctcag	tgaaaaaaca	atatttgtga	cccagccgta	gagaaaatgc	120
	ctcttcggca	cacggagaaa	aaaa				144
20	<210> 175 <211> 154 <212> ADN <213> Acinetobacte	<i>er</i> sp.					
25	<400> 175						
	acttcaccat	tgaatctccc	taaatccctc	tttatgaaag	agggactttc	ccccttagaa	60
	aaagggggat	caagggggat	taaaattcag	tgaaaaaaca	atatttgtga	cccagtcgta	120
	gcctgaaaag	cgcttcgaca	cacggagaaa	aaaa			154
30	<210> 176 <211> 89 <212> ADN <213> Acinetobacte	er radioresistens					
	<400> 176						
	ggtctaggac	ccttcacctt	ttcaggtaaa	aacaatattt	gtgacccagc	cgggcgggca	60
25	atgtgeeece	cggtacacgg	agaaaaaaa				89
35	<210> 177 <211> 154 <212> ADN <213> Acinetobacte	er sp					
40		Jp.					
	<400> 177 aaaatctccc	ccaacccctc	tttaagaaag	a ggg gagaaa	gteeteettt	gtaaaggggg	60
						-	

	atttaggggg	gattatagat	tcccaaattt	cagtaaaaac	aatatttgtg	acccagtcgg	120
	gtgagettag	cttcccgaca	cacggagaaa	aaaa			154
5	<210> 178 <211> 153 <212> ADN <213> Acinetobacte	ersp.					
	<400> 178						
	aaaatctccc	ccaacccctc	tttgagaaag	aggggagaaa	gtcccccttt	ataaaggggg	60
	atttaggggg	attagatatt	cccaaatttc	agtaaaaaca	atatttgtga	cccagtcggg	120
	tgagcttagc	tectegacae	acggagaaaa	aaa			153
10	<210> 179 <211> 159 <212> ADN <213> acinetobacte	r schindleri					
15	<400> 179						
	gaaatctccc	ctgacccctc	tttgagaaag	aggggagaag	teccccctt	tttaaaggg	60
	ggatttaggg	ggattettaa	aattcccaaa	tttcagtaaa	. aaacaatatt	tgtgacccag	120
	ttgttgagtg	aaaatctcca	caacacacgg	agaaaaaaa			159
20	<210> 180 <211> 136 <212> ADN <213> acinetobacte	r ursingii					
	<400> 180						
	atccccctcg	atteeeettt	gttaaagggg	gcccctcttt	tcaaagaggg	gttagaggag	60
	attttcaaat	ttcagtaaaa	acaatatttg	tgacccagtc	ggatgagcct	agctctctga	120
25	cacacggaga	aaaaaa					136
30	<210> 181 <211> 88 <212> ADN <213> acinetobacte	r baylyi					
	<400> 181						
	gcgttaagct	gactcagatt	tttcaggaaa	aacagtattt	gtgacccagc	cgagtgagcg	60
	aatgctcctc	ggtatacgga	gaaataaa				88
35	<210> 182 <211> 156 <212> ADN <213> acinetobacte	r bouvetii					
40	<400> 182						
	gaaatctccc	ccgacccctc	tttgaaaaag	aggggagaaa	atececettt	ataaaggggg	60
	atttaggggg	attttcaaga	ttccagaaat	tcagtaaaaa	caatatttgt	gacccagttg	120
	tgaagtgaaa	atctccacaa	cacacggaga	aaaaaa			156

	<210> 183 <211> 170 <212> ADN <213> acinetobacte	er gerneri					
5	<400> 183						
	ttaaccatta	atccccccaa	cccctttga	aaagggggag	gtccagcact	taaatagttg	60
	caacctccct	cctttattaa	aggagggatt	gagggaggat	tctcagttaa	aaaacaatat	120
	ttgtgaccca	gtcgagaagt	gaaaatctcc	togacgcacg	gagaaaaaaa		170
10	<210> 184 <211> 150 <212> ADN <213> acinetobacte	er grimontii					
	<400> 184						
		_				cctgagaaaa	60
				aaaaacaata	tttgtgaccc	agtcaggtaa	120
15	gcctagcttc	ctgacacacg	gagaaaaaaa				150
20	<210> 185 <211> 156 <212> ADN <213> acinetobacte	er tandoii					
	<400> 185						
	gaaatctccc	ccgatccctc	tttaagaaag	aggggagaag	tcccccttag	taaaggggga	60
	tttaggggga	ttttttgaga	ttccctattc	agtgaaaaaa	caatatttgt	gacccagtcg	120
	agaagtgaaa	atctcctcga	cacacggaga	aaaaaa			156
25	<210> 186 <211> 143 <212> ADN <213> acinetobacte	er tjernbergiae					
30	<400> 186						
	atccccctcg	atcccccttt	gttaaagggg	gaagttcccc	tctttttcaa	agaggggtta	60
	ggggagattt	cataatttca	gtaaaaaaca	atatttgtga	cccagtcggg	tgagcgtagc	120
	teceegacae	acggagaaaa	aaa				143
35	<210> 187 <211> 157 <212> ADN <213> acinetobacte	er towneri					
	<400> 187						
	tcatctccat	taaatctccc	tagatecete	tttataaaag	agggactttt	ccccctttga	60
	aaaagggg ga	t taa ggggga	ttaaaactca	gttaaaaaac	aatatttgtg	acccagttgg	120
	gatgtgaaaa	cagcctccca	gcacacggag	aaaaaaa			157
40	<210> 188						
	<211> 143 <212> ADN						

	<213> acinetobacter parvus	
	<400> 188	
	atccccctcg ttcccccttt aaaaaagggg ggaagttccc ctctttgaaa agaggggcta	60
	ggcggagatt ccataatttc agtaaaaaca atatttgtga cccagtcgga agagcgtagc	120
	teccegacae acggagaaaa aaa	143
5	<210> 189 <211> 86 <212> ADN <213> Acinetobacter baumannii	
10		
	<pre><400> 189 gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga</pre>	60
	ggcttcccga cacacggaga aaaaaa	86
15	<210> 190 <211> 86 <212> ADN <213> Acinetobacter baumannii	
	<400> 190	
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
20	gccttcccga cacacggaga aaaaaa	86
25	<210> 191 <211> 86 <212> ADN <213> Acinetobacter baumannii	
	<400> 191	
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
	ggcttcccga cacacggaga aaaaaa	86
30	<210> 192 <211> 86 <212> ADN <213> Acinetobacter baumannii	
35	<400> 192	
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
	ggcttcccga cacacggaga aaaaaa	86
40	<210> 193 <211> 86 <212> ADN <213> Acinetobacter baumannii	
	<pre><400> 193 gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga</pre>	60
	ggcttcccga cacacggaga aaaaaa	86
45		
	<210> 194 <211> 86 <212> ADN <213> Acinetobacter baumannii	

	<400> 194	
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
	ggcttcccga cacacggaga aaaaaa	86
5	<210> 195 <211> 86 <212> ADN <213> Acinetobacter baumannii	
10	<400> 195	
	gtegtaagae teaegatttt ttaggtaaaa acaatatttg tgacccagte gggtaagega	60
	ggcttcccga cacacggaga aaaaaa	86
15	<210> 196 <211> 86 <212> ADN <213> Acinetobacter baumannii	
	<400> 196	~,
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
20	ggetteeega cacaeggaga aaaaaa	86
20	<210> 197 <211> 86 <212> ADN <213> Acinetobacter baumannii	
25		
	<400> 197 gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
	ggcttcccga cacacggaga aaaaaa	86
30	<210> 198 <211> 86 <212> ADN <213> Acinetobacter baumannii	
	<400> 198	
	gtogtaagac toacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
35	ggetteeega cacaeggaga aaaaaa	86
40	<210> 199 <211> 86 <212> ADN <213> Acinetobacter baumannii	
	<400> 199	
	gtcgtaagac tcacgatttt ttaggtaaaa acaatatttg tgacccagtc gggtaagcga	60
	ggcttcccga cacacggaga aaaaaa	86
45	<210> 200 <211> 86 <212> ADN <213> Acinetobacter baumannii	
50	<400> 200	

	gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggcttcccga	cacacggaga	aaaaaa				86
5	<210> 201 <211> 86 <212> ADN <213> Acinetobact	er baumannii					
	<400> 201						
	gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggetteeega	cacacggaga	aaaaaa				86
10 15	<210> 202 <211> 86 <212> ADN <213> Acinetobact	er baumannii					
10	<400> 202 gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggetteeega	cacacggaga	aaaaaa				86
20	<210> 203 <211> 86 <212> ADN <213> Acinetobact	er baumannii					
	<400> 203						
	gtegtaagae	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
25	ggetteeega	cacacggaga	aaaaaa				86
30	210> 204 <211> 86 <212> ADN <213> Acinetobact	er baumannii					
	<400> 204						
	gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggetteeega	cacacggaga	aaaaaa				86
35	<210> 205 <211> 86 <212> ADN <213> Acinetobact	er baumannii					
40	<400> 205						
	gtcgtaagac	: tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggetteeega	. cacacggaga	aaaaaa				86
45	<210> 206 <211> 86 <212> ADN <213> Acinetobact	er baumannii					
	<400> 206						

	gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggetteeega	cacacggaga	aaaaaa				86
	<210> 207						
_	<211> 86						
5	<212> ADN						
	<213> Acinetobacte	er baumannıı					
	<400> 207						
	gtcgtaagac	tcacgatttt	ttaggaaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggcttcccga	cacacggaga	aaaaaa				86
10							
	<210> 208						
	<211> 86						
	<212> ADN						
	<213> Acinetobacte	er baumannii					
15							
	<400> 208						
	gtcgtaagac	tcacgatttt	ttaggtaaaa	acaatatttg	tgacccagtc	gggtaagcga	60
	ggcttcccga	cacacggaga	aaaaaa				86

REIVINDICACIONES

- 1. Gen *rpo*B completo de una bacteria del género *Acinetobacter* seleccionada de entre las 23 especies siguientes: *A. calcoaceticus* (especie genómica 1), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia comprende una secuencia seleccionada de entre las secuencias tales como se describen en las secuencias SEC ID nº 9 y 11 a 32 respectivamente, y las secuencias que presentan por lo menos 98% de identidad, así como sus secuencias complementarias.
- 2. Gen *rpo*B completo de una bacteria del género *Acinetobacter* seleccionada de entre dichas 23 especies según la reivindicación 1, caracterizado porque su secuencia consiste en una secuencia seleccionada de entre las secuencias SEC ID nº 9 y 11 a 32, las secuencias inversas y las secuencias complementarias, y las secuencias que presentan por lo menos 98% de identidad con dichas secuencias.
- 3. Fragmento de gen *rpoB* de una bacteria del género *Acinetobacter* seleccionada de entre las 23 especies siguientes: *A. calcoaceticus* (especie genómica 1), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia comprende una secuencia seleccionada de entre las secuencias tales como se describen en las secuencias SEC ID nº 33 y 35 a 56 respectivamente, y las secuencias SEC ID nº 77 y 79 a 100 respectivamente, y las secuencias que presentan por lo menos 98% de identidad y sus secuencias complementarias.
- 4. Fragmento del gen *rpoB* de una bacteria del género *Acinetobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia consiste en una secuencia seleccionada de entre las secuencias SEC ID nº 33 a 56 respectivamente y las secuencias SEC ID nº 77 a 100 respectivamente, y las secuencias que presentan por lo menos 98% de identidad, y sus secuencias complementarias.
- 5. Fragmento intergénico que comprende una secuencia no codificante que bordea el gen *rpoB* de una bacteria del género *Acinetobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvu*, caracterizado porque su secuencia comprende una secuencia seleccionada de entre las secuencias tales como se describen en las secuencias SEC ID nº 121 a 144 respectivamente, y las secuencias SEC ID nº 165 a 188 respectivamente, y las secuencias que presentan por lo menos 98% de identidad y sus secuencias complementarias.
- 6. Fragmento intergénico que comprende una secuencia no codificante que bordea el gen *rpoB* de una bacteria del género *Acinetobacter* según la reivindicación 5, caracterizado porque su secuencia consiste en una secuencia seleccionada de entre las secuencias SEC ID nº 121 a 144 respectivamente y las secuencias SEC ID nº 165 a 188 respectivamente, y las secuencias que presentan por lo menos 98% de identidad, y sus secuencias complementarias.
- 7. Fragmento según una de las reivindicaciones 3 a 6, caracterizado porque consiste en un oligonucleótido que presenta una secuencia específica de una bacteria *Acitenobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, caracterizado porque su secuencia consiste en una secuencia de por lo menos 18, preferentemente de 18 a 35, motivos nucleotídicos consecutivos incluidos en una de las secuencias seleccionadas de entre las secuencias tales como se describen en las secuencias:
 - SEC ID nº 33 a 56 respectivamente,

10

15

20

25

30

35

40

45

- SEC ID n° 77 a 100 respectivamente.
- SEC ID nº 121 a 144 respectivamente,

- SEC ID nº 165 a 188 respectivamente, y
- las secuencias que presentan por lo menos 98% de identidad y sus secuencias complementarias.
- 8. Utilización *in vitro* como sonda de especie de un fragmento del gen según una de las reivindicaciones 3 a 6 o un oligonucleótido según la reivindicación 7.
 - 9. Oligonucleótido caracterizado porque presenta una secuencia conservada de una bacteria *Acitenobacter* seleccionada de entre las 24 especies siguientes:
- A. calcoaceticus (especie genómica 1), A. baumannii (especie genómica 2), especie genómica 3, A. haemolyticus (especie genómica 4), A. junii (especie genómica 5), especie genómica 6, A. johnsonii (especie genómica 7), A. lwoffii (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, A. radioresistens (especie genómica 12), especie genómica 13, especie genómica 16, A. schindleri, A. ursingii, A. baylyi, A. bouvetii, A. gerneri, A. grimontii, A. tandoii, A. tjernbergiae, A. towneri, A. parvu, que comprende una secuencia de por lo menos 12, preferentemente de por lo menos 18 motivos nucleotídicos consecutivos incluidos en una de las secuencias seleccionadas de entre las secuencias tales como se han descrito en las secuencias SEC ID nº 1 a 8 siguientes, sus secuencias complementarias:
 - SEC ID nº 1: 5'-TAYCGYAAAGAYTTGAAAGAAG-3',
 - SEC ID nº 2: 5'-CMACACCYTTGTTMCCRTGA-3',
 - SEC ID nº 3: 5'-GTGATAARATGGCBGGTCGT-3',
 - SEC ID nº 4: 5'-CGBGCRTGCATYTTGTCRT-3',
 - SEC ID nº 5 :5'-GAAGARCTTAAGAMDAARCTTG-3'
 - SEC ID nº 6: 5'-CGTTTCTTTTCGGTATATGAGT-3',
 - SEC ID nº 7: 5'-GTTCTTTAGGTATCAACATTGAA-3',
 - SEC ID nº 8: 5'-GACGCAAGACCAATACGRAT-3',

en las que:

30 - D representa A, G o T,

- Y representa C o T,
- B representa C, G o T,
- R representa A o G, y
- M representa A o C.

35

40

60

20

- 10. Mezcla de oligonucleótidos, caracterizada porque comprende una mezcla equimolar de oligonucleótidos tales como se definen en la reivindicación 9, de secuencias diferentes que comprende por lo menos 12, preferentemente por lo menos 18 motivos nucleotídicos consecutivos incluidos en una de las secuencias SEC ID $\rm n^{\circ}$ 1 a 5 y 8 o los oligonucleótidos de secuencias complementarias.
- 11. Mezcla de oligonucleótidos según la reivindicación 10, caracterizada porque consiste en una mezcla equimolar de 8 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID $\rm n^{o}$ 1, o unos oligonucleótidos de secuencias complementarias.
- 45 12. Mezcla de oligonucleótidos según la reivindicación 10, caracterizada porque consiste en una mezcla equimolar de 16 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 2 o unos oligonucleótidos de secuencias complementarias.
- 13. Mezcla de oligonucleótidos según la reivindicación 10, caracterizada porque consiste en una mezcla equimolar de 6 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 3 o unos oligonucleótidos de secuencias complementarias.
- 14. Mezcla de oligonucleótidos según la reivindicación 10, caracterizada porque consiste en una mezcla equimolar de 24 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 4 o unos oligonucleótidos de secuencias complementarias.
 - 15. Mezcla de oligonucleótidos según la reivindicación 10, caracterizada porque consiste en una mezcla equimolar de 24 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 5 o unos oligonucleótidos de secuencias complementarias.
 - 16. Oligonucleótido según la reivindicación 9, caracterizado porque su secuencia consiste en la secuencia SEC ID nº 6 o secuencia complementaria.
- 17. Oligonucleótido según la reivindicación 9, caracterizado porque su secuencia consiste en la secuencia SEC ID nº
 7 o una secuencia complementaria.

- 18. Mezcla de oligonucleótidos según la reivindicación 10, caracterizada porque consiste en una mezcla equimolar de 2 oligonucleótidos de secuencias diferentes que consiste en la secuencia SEC ID nº 8 o unos oligonucleótidos de secuencias complementarias.
- 5 19. Utilización como cebador de amplificación y/o de reacción de secuenciación de un oligonucleótido o una mezcla de oligonucleótidos según una de las reivindicaciones 9 a 18, para la detección por identificación molecular de una bacteria de una de dichas especies del género *Acitenobacter*.
- 20. Procedimiento de detección por identificación molecular de una bacteria de una de las especies del género 10 Acitenobacter, caracterizado porque se utiliza:
 - el gen rpoB completo de dicha bacteria según la reivindicación 1 o 2, o
 - un fragmento del gen según una de las reivindicaciones 3 a 6, y/o
 - un oligonucleótido según una de las reivindicaciones 7, 9, 16 o 17 o una mezcla de oligonucleótidos según una de las reivindicaciones 10 a 15 o 18.
- 21. Procedimiento según la reivindicación 20, caracterizado porque se intenta detectar específicamente una especie dada de una bacteria *Acitenobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, procedimiento en el que:
 - 1- se pone en contacto una muestra que contiene o que es susceptible de contener unos ácidos nucleicos de por lo menos tal bacteria, con por lo menos una sonda de especie que consiste en un oligonucleótido según la reivindicación 7 o un fragmento del gen según una de las reivindicaciones 3 a 7, preferentemente un fragmento del gen que consiste respectivamente en una de dichas secuencias seleccionadas de entre:
 - SEC ID n° 33 a 56 respectivamente.

15

30

35

40

45

- SEC ID nº 77 a 100 respectivamente,
- SEC ID nº 121 a 144 respectivamente,
- SEC ID nº 165 a 188 respectivamente, y
- las secuencias que presentan por lo menos el 98% de identidad y sus secuencias inversas y secuencias complementarias, y
- 2- se determina la formación o la ausencia de un complejo de hibridación entre dicha sonda y los ácidos nucleicos de la muestra, y se determina así la presencia de dicha especie de *Acinetobacter* en la muestra si existe la formación de un complejo de hibridación.
- 22. Procedimiento según la reivindicación 20, caracterizado porque comprende las etapas en las que:
- 1- se ponen en contacto unos cebadores de amplificación que comprenden dichas mezclas de oligonucleótidos según una de las reivindicaciones 10 a 15 o 18, con una muestra que contiene o que es susceptible de contener unos ácidos nucleicos de por lo menos una de dicha bacteria del género *Acinetobacter*, y se realiza una amplificación de ácidos nucleicos por reacción de polimerización enzimática que comprende:
- como cebador 5', por lo menos un oligonucleótido o una mezcla de oligonucleótidos según una de las reivindicaciones 10, 11, 13, 15 y 17 que comprende una secuencia incluida en una de las secuencias SEC ID nº 1, 3, 5, y 7, que consiste preferentemente en dicha secuencia SEC ID nº 1, 3, 5, y 7 completa o las secuencias complementarias, y
- como cebador 3', por lo menos un oligonucleótido o mezcla de oligonucleótidos según una de las reivindicaciones 10, 12, 14, 16, y 18 que comprende las secuencias incluidas en una de las secuencias SEC ID nº 2, 4 6, y 8 respectivamente, que consiste preferentemente en dicha secuencia SED ID nº 2, 4, 6, y 8 completa o respectivamente une secuencia complementaria.
 - 2- y se determina la aparición o la ausencia de un producto de amplificación, y se determina así la presencia o la ausencia de dicha bacteria en la muestra si un producto de amplificación ha aparecido o no ha aparecido respectivamente.

23. Procedimiento según la reivindicación 22, caracterizado porque se intenta detectar una especie dada de una bacteria *Acitenobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, y, en la etapa 2, se determina la presencia o la ausencia de la especie dada de una dicha bacteria efectuando las etapas en las que:

10

5

- a) se realiza una reacción de secuenciación de un fragmento del gen amplificado con dichos cebadores, y
- b) se compara la secuencia de dicho fragmento amplificado obtenido con la secuencia de un fragmento del gen de dicha bacteria que comprende respectivamente:

15

dichas secuencias SEC ID n° 33 a 56, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID n° 1 y 2 respectivamente

20

dichas secuencias SEC ID nº 77 a 100, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 3 y 4 respectivamente, y

dichas secuencias SEC ID nº 121 a 144, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 5 y 6 respectivamente, y

25

- dichas secuencias SEC ID nº 165 a 188, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 7 y 8 respectivamente.

30

24. Procedimiento según la reivindicación 22, caracterizado porque se intenta detectar una especie dada de una bacteria *Acitenobacter* seleccionada de entre las 24 especies siguientes: *A. calcoaceticus* (especie genómica 1), *A. baumannii* (especie genómica 2), especie genómica 3, *A. haemolyticus* (especie genómica 4), *A. junii* (especie genómica 5), especie genómica 6, *A. johnsonii* (especie genómica 7), *A. lwoffii* (especie genómica 8), especie genómica 9, especie genómica 10, especie genómica 11, *A. radioresistens* (especie genómica 12), especie genómica 13, especie genómica 16, *A. schindleri*, *A. ursingii*, *A. baylyi*, *A. bouvetii*, *A. gerneri*, *A. grimontii*, *A. tandoii*, *A. tjernbergiae*, *A. towneri*, *A. parvus*, y, en la etapa 2, se determina la presencia o la ausencia de la especie dada de una dicha bacteria efectuando las etapas en las que:

35

a- se pone en contacto una muestra que contiene o que es susceptible de contener unos ácidos nucleicos amplificados de por lo menos una de dicha bacteria, con por lo menos una sonda de especie que consiste en un fragmento del gen *rpoB* según una de las reivindicaciones 3 a 6, o un oligonucleótido según la reivindicación 7, preferentemente un fragmento que consiste respectivamente en una de dicha secuencias seleccionadas de entre:

40

- SEC ID nº 33 a 56 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEQ. ID. nº 1 y 2 respectivamente

45

SEC ID nº 77 a 100 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 3 y 4 respectivamente, y

50

 SEC ID nº 121 a 144 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 5 y 6 respectivamente, y

-

 SEC ID nº 165 a 188 respectivamente, cuando dichos cebadores 5' y 3' son unos oligonucleótidos de secuencias incluidas en las secuencias SEC ID nº 7 y 8 respectivamente, y

55

b- se determina la formación o la ausencia de un complejo de hibridación entre dicha sonda y los ácidos nucleicos amplificados de la muestra, y se determina así la presencia o la ausencia de dicha especie *Acinetobacter* en la muestra si existe la formación o no de un complejo de hibridación.

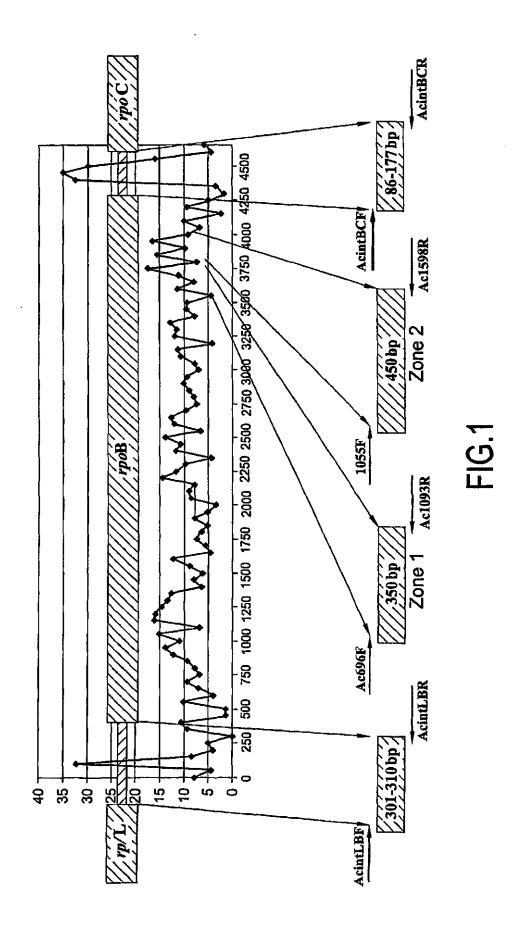
25. Procedimiento según una de las reivindicaciones 22 a 24, caracterizado porque se realizan las etapas que comprenden:

60

65

1- una primera amplificación del ácido nucleico de dicha muestra con un par de cebadores 5' y 3' seleccionados de entre dichas mezclas de oligonucleótidos según las reivindicaciones 11 y 12, que comprende unas secuencias incluidas respectivamente en las secuencias SEC ID n° 1 y SEC ID n° 2, que consiste preferentemente en dichas secuencias SEC ID n° 1 y 2, o las secuencias complementarias, y

- 2- una primera determinación de la aparición o la ausencia de un producto de amplificación que comprende unos ácidos nucleicos de por lo menos una dicha bacteria, por hibridación o, llegado el caso, secuenciación y comparación de los amplificados obtenidos en la etapa 1 con los fragmentos que consisten respectivamente en una de dichas secuencias seleccionadas de entre SEC ID nº 33 a 56 respectivamente, y
 - si en esta etapa 2 se determina la presencia de las especies A. grimontii o A. junii, se realiza además:
 - 3a-una segunda reacción de amplificación con unos cebadores 5' y 3' seleccionados de entre dichas mezclas de oligonucleótidos según la reivindicación 10 o las reivindicaciones 13 y 14, que comprenden unas secuencias incluidas respectivamente en las secuencias SEC ID nº 3 y SEC ID nº 4, que consisten preferentemente en dichas secuencias SEC ID nº 3 y 4, o las secuencias complementarias, v
 - 4a-una determinación de la aparición o la ausencia de un producto de amplificación que comprende unos ácidos nucleicos de por lo menos una dicha bacteria, por hibridación o, llegado el caso, secuenciación y comparación de los amplificados obtenidos en la etapa 3a con los fragmentos que consisten respectivamente en una de dichas secuencias seleccionadas de entre SEC ID nº 77 a 100 respectivamente, o
 - si en esta etapa 2 se determina la presencia de las especies A. baylii o especie genómica 11, se realiza además:
 - 3b-una segunda reacción de amplificación con unos cebadores 5' y 3' seleccionados de entre dichas mezclas de oligonucleótidos según las reivindicaciones 17 y 18, que comprenden unas secuencias incluidas respectivamente en las secuencias SEC ID nº 7 y SEC ID nº 8, que consisten preferentemente en dichas secuencias SEC ID nº 7 y 8, o las secuencias complementarias, y
 - 4b-una determinación de la aparición o la ausencia de un producto de amplificación que comprende unos ácidos nucleicos de por lo menos una dicha bacteria, por hibridación o, llegado el caso, secuenciación y comparación de los amplificados obtenidos en la etapa 3b con los fragmentos que consisten respectivamente en una de dichas secuencias seleccionadas de entre SEC ID nº 165 a 188 respectivamente.
- 26. Kit de diagnóstico útil en un procedimiento según una de las reivindicaciones 20 a 25, caracterizado porque comprende por lo menos uno de dicho oligonucleótido según una de las reivindicaciones 7, 9, 16 o 17 o un mezcla de oligonucleótidos según una de las reivindicaciones 10 a 15 o 18 o un fragmento del gen según una de las reivindicaciones 3 a 6, así como, preferentemente, unos reactivos útiles en las reacciones de hibridaciones o reacciones de amplificación o secuenciación llegado el caso.


5

15

20

25

30

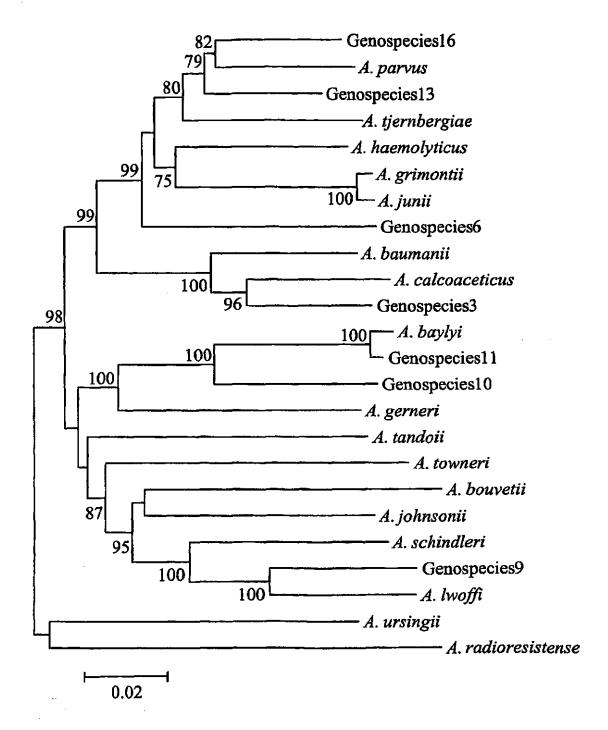
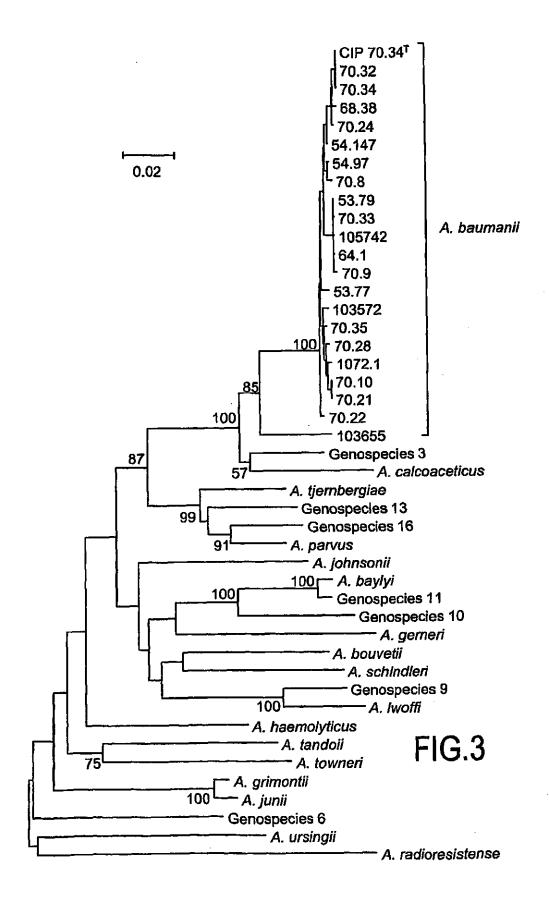
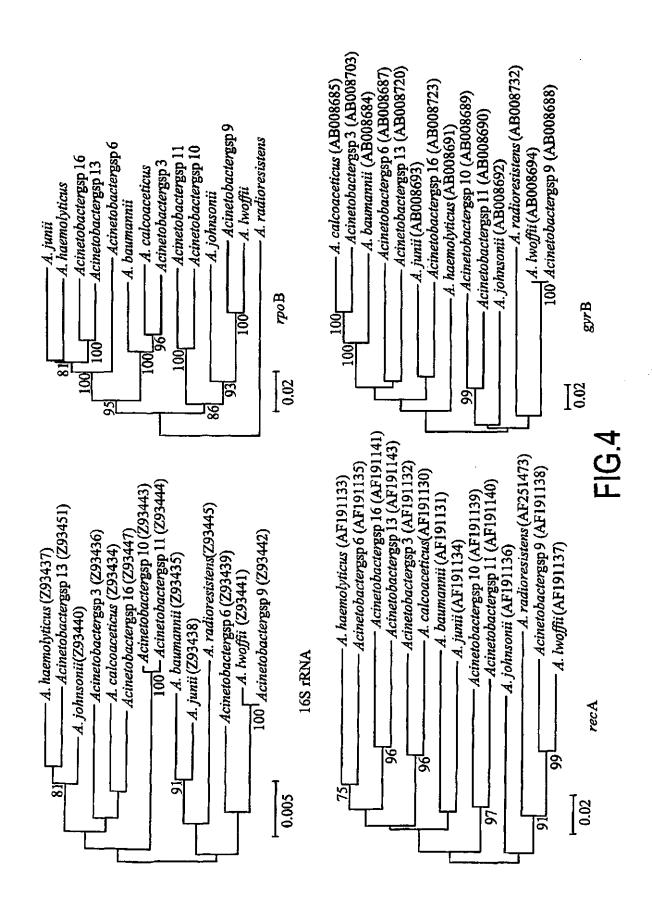




FIG.2

