

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 442 900

51 Int. Cl.:

B29C 45/14 (2006.01) **B29C 45/33** (2006.01) **F16K 5/06** (2006.01) **F16K 27/06** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 02.04.2008 E 08754042 (3)
 (97) Fecha y número de publicación de la concesión europea: 11.12.2013 EP 2140185
- (54) Título: Válvula para radiadores con base plástica y el método de producción de la misma
- (30) Prioridad:

13.04.2007 TR 200702519

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 14.02.2014

73) Titular/es:

KALDE KLIMA ORTA BASINC FITTINGS VE VALF SANAYI ANONIM SIRKETI (100.0%) BEYMERSAN MERMERCILER SAN. SITESI 10.CAD. NO:12 BEYLIKDUZU BUYUKCEKMECE 34520 ISTANBUL, TR

(72) Inventor/es:

TOPALYAN, AKSEL

(74) Agente/Representante:

LAZCANO GAINZA, Jesús

DESCRIPCIÓN

Válvula para radiadores con base plástica y el método de producción de la misma

Campo técnico

5

15

25

La invención se refiere al método de producción de las válvulas con base plástica que proporcionan la conexión de los radiadores con las tuberías con base plástica, sin el uso de los adaptadores con base plástica para posibilitar la conexión entre las válvulas para radiadores y las tuberías con base plástica en el campo de la calefacción.

Antecedentes de la invención

En el sector de la calefacción de hoy en día, los radiadores se usan frecuentemente en espacios cerrados tales como las casas, oficinas, etc. La conexión de los radiadores con las tuberías se proporciona por medio de las válvulas para radiadores. Las válvulas para radiadores pueden detener el flujo del líquido, cuando se desee.

Dichas válvulas para radiadores se fabrican hoy en día de material con base de metal. A fin de conectar las válvulas para radiadores con el sistema de tubería plástica seguido de su ensamble en el radiador, el proceso de ensamble se debe llevar a cabo usando una parte llamada adaptador con base plástica.

No hay otra forma de conexión con la tubería con base plástica. La válvula para radiadores con base de metal se puede producir a través de los métodos de procesamiento de metal y la conexión es posible solamente por un sistema de roscado.

Por lo tanto, el ensamble de acuerdo con el sistema de conexión roscado es posible sólo con ayuda del componente de adaptador con base plástica, y el ensamble a la tubería con base plástica se puede llevar a cabo por medio de la soldadura a enchufe, debido al adaptador con base plástica.

En dicho sistema, el adaptador con base plástica está implicado como un componente adicional que se usa. Dicho adaptador conduce a pérdidas en el sistema de calefacción y provoca la pérdida de potencia.

Debido a la conexión roscada, la posibilidad también es alta para que se produzca la fuga. Esto trae consigo el costo laboral adicional. Se producen los costos en tiempo y trabajo para la conexión del adaptador con base plástica, dichos costos y el costo del adaptador con base plástica en sí provocan una desventaja para el sistema.

En la solicitud de patente Europea núm. EP1193432 en el registro del Instituto Turco de Patentes, las siguientes frases se incluyen en relación con el tema: "La invención se refiere a una válvula, particularmente una válvula para radiadores que tiene un cuerpo de válvula que presenta una conexión de entrada y una conexión de salida, en donde hay incluido un aparato de cierre que comprende un miembro de válvula entre la conexión de entrada y la conexión de salida y una carcasa de válvula, en donde el cuerpo de válvula presenta un alojamiento de válvula que se conecta a una conexión de entrada a través de una boca de entrada y a una conexión de salida a través de una boca de salida, en donde la carcasa de la válvula se localiza en un primer extremo de un canal dentro de un cuerpo de carcasa, el cuerpo de válvula se localiza un alojamiento interior, con la dicha válvula que es giratoria entre una primera posición donde un segundo extremo del canal solapa la boca de salida."

40 La válvula para radiadores que se pone en práctica en la solicitud anteriormente mencionada se conecta con las tuberías por medio de un adaptador adicional. Por consiguiente, las desventajas antes mencionadas no han sido capaces de superarse.

Del mismo modo, la solicitud del modelo de utilidad núm. TR 2005 04330 U en el registro del Instituto Turco de Patentes incluye las siguientes frases relacionadas con el tema: "La válvula para radiadores con junta de teflón se usa en los sistemas de calefacción. El cuerpo fabricado como un monobloque se hace de material de Cu Zn 37 Pb. En su forma más general, la válvula para radiadores de esquina con junta de teflón se puede denominar también como un miembro que sirve para regular el régimen de flujo del fluido que pasa a través de los calentadores, en la entrada y la salida. Además, el material plástico usado en la fabricación de la válvula es resistente a temperaturas máximas de funcionamiento. En nuestro producto, la junta de teflón se usa como asiento en el interior del cuerpo en la dirección donde está presente el flujo de agua. El uso de juntas cumple una función importante en la conexión de la boquilla al cuerpo por medio de una tuerca. La junta de teflón es importante, especialmente para proporcionar el sellado. La junta de teflón que hemos producido puede funcionar bajo una presión máxima de funcionamiento de 100 bar y una temperatura de funcionamiento de 120 C. Puesto que la junta de

teflón es resistente a la presión y la temperatura y por lo tanto no sufre deformación, impide el funcionamiento de la válvula para radiadores de esquina."

En la solicitud mencionada anteriormente, la junta de teflón se usa para proporcionar el sellado, pero no es posible evitar las pérdidas de energía en los sistemas de calefacción.

Similarmente, la solicitud del modelo de utilidad núm. TR 2006 04328 U en el registro del Instituto Turco de Patentes incluye las siguientes frases relacionadas con el tema: "El adaptador de inserto de válvula termostática para los radiadores de aluminio es el adaptador de metal que se usa para fijar directamente los insertos de válvula termostática a los perfiles de la tapa del radiador de aluminio sin los cuerpos de válvula plana o de esquina que se usa caracterizado porque comprende dos piezas cilíndricamente formadas o una pieza metálica procesada como monobloque. En el diseño con dos piezas, el adaptador comprende dos partes, específicamente el asiento de la válvula de inserto y el soporte de inserto. El asiento de válvula se monta en el perfil de la tapa del radiador por medio del método de acoplamiento hermético/pegado tal como que se proporciona la posición completamente abierta del inserto de válvula termostática. El soporte de inserto es una parte metálica cilíndrica, con el interior del mismo que se rosca en armonía con los tornillos de rosca macho en la superficie exterior del inserto. La superficie externa del mismo comprende una superficie cilíndrica conectada a la tapa del radiador por medio del método de acoplamiento hermético/pegado o un separador que se asienta en la superficie frontal de la tapa por medio de la roscas. El diseño de monobloque se proporciona mediante la fabricación de este diseño bicomponente como monobloque."

Además en esta solicitud, la válvula para radiadores proporciona la conexión con las tuberías de transporte por medio de un adaptador y no se pueden eliminar dichas desventajas.

Por otra parte otra solicitud se refiere a las válvulas numeradas en la US 3807 692 A. En la sección de resumen publicada de esta solicitud se encuentran las inscripciones:" Una válvula giratoria que tiene un miembro giratorio con una superficie exterior que forma al menos un segmento de una esfera. Un conducto se extiende a través de los lados opuestos del segmento. Una porción hundida anular está en el segmento contiguo y que rodea cada extremo del conducto. Una carcasa giratoria monta el miembro giratorio en la misma y tiene un conducto a través del mismo que comprende una porción de conducto que es alineable con el conducto de miembro giratorio y tiene un perímetro más grande que el perímetro interior de la porción hundida. Se fijan un par de sellos anulares elásticos entre la carcasa y el miembro giratorio. Un sello está alrededor de cada extremo del conducto del segmento. Los sellos se extienden en el conducto del miembro de carcasa en acoplamiento sellado contiguo con la porción hundida anular".

La solicitud de patente US 3807692A antes mencionada se refiere a un sello de válvulas esféricas plásticas. Que se proporcionan al dar formas específicas a los núcleos de moldeo. Además, estas válvulas no son para válvulas para radiadores sino válvulas de tipo lineal que se pueden usar para los propósitos generales y se pueden conectar solamente mediante soldadura plástica. Además, no es probable fabricar las válvulas de tal técnica de sellado como válvula de tipo L (junta).

Por otra parte otra solicitud se refiere a las válvulas numeradas en la BE586457. En la sección de resumen publicada de esta solicitud se encuentran las inscripciones: "La conexión de derivación para dispositivos con entrada y salida son coaxiales con la combinación en una pieza de un tubo de conector coaxial y una cavidad cuyo eje es paralelo al eje de la tubería, la cavidad usada en algunas válvulas PLA, en donde la cavidad que contiene la válvula tiene una sección transversal poligonal y, particularmente, cuadrada y en esta cavidad se refiere a una parte intermedia de la misma forma que el asiento de la llave"

La solicitud belga basada en BE586457, llamada sistema frederick BOONSTRA es un uso de la válvula de acoplamiento para los contadores de fluidos (agua y gas), regulador de presión y dispositivos similares, que tiene entrada y salida coaxial. El método de producción es la fundición en lugar de inyección. Por otro lado, no es una válvula de bola; esta controla el fluido con un eje en lugar de una bola.

Como resultado de las desventajas anteriormente mencionadas, la búsqueda se ha iniciado para una innovación en la técnica de la producción de la válvula para radiadores.

Descripción de la invención

5

10

15

20

50

Basado en el estado mencionado de la técnica, el objetivo de la invención es proporcionar un método de producción de válvulas para radiadores con base plástica, en donde se logra la conexión de las válvulas para radiadores con las tuberías sin el uso de un aparato intermediario.

ES 2 442 900 T3

Otro objetivo de la invención es proporcionar un método de producción de válvulas para radiadores con base plástica, que eliminan los problemas con la fuga, debido a los cuerpos metálicos de las válvulas para radiadores que se conectan con el adaptador plástico por medio de los tornillos roscados.

Otro objetivo de la invención es proporcionar un método de producción de válvulas para radiadores con base plástica, que minimice el costo de producción, puesto que no se necesita un aparato adicional para llevar a cabo la dicha conexión.

Otro objetivo de la invención es proporcionar un método de producción de válvulas para radiadores con base plástica, que elimina el trabajo adicional, puesto que no se necesita un aparato adicional para llevar a cabo la dicha conexión.

Aún otro objetivo de la invención es proporcionar un método de producción de válvulas para radiadores con base plástica, que eliminan el problema de pérdida de calor y energía que se produce en los sistemas de calefacción.

Aún otro objetivo de la invención es proporcionar un método de producción de válvulas para radiadores con base plástica, que minimice el tiempo de producción y ensamble, puesto que no se necesita un aparato adicional para llevar a cabo la dicha conexión.

Descripción de las figuras

La Figura - 1 Vista en perspectiva de una válvula para radiadores con base plástica

La Figura - 2 Vista en sección lateral de una válvula para radiadores con base plástica

La Figura - 3 La vista ensamblada del molde usado en el método de acuerdo con la reivindicación independiente.

Números de referencia

1. válvula para radiadores

1.1 Inserto

1.2 Boquilla

1.3 Tuerca de boquilla

1.4 Mango de válvula

1.5 Cuerpo de válvula

2. Conjunto interior de válvula esférica

3. Adaptador plástico

3.1 Cuerpo plástico

4. Molde

4.1 Núcleo de molde móvil

4.2 Núcleo de molde fijo

Descripción detallada de la invención

En la Figura-1, se representa la vista en perspectiva de la válvula para radiadores con base plástica (1).

Dicha válvula para radiadores (1) comprende la boquilla (1.2), el inserto (1.1), la tuerca de boquilla (1.3), el mango de válvula (1.4), el conjunto interior de válvula esférica (2), el cuerpo de válvula (1.5) y el cuerpo plástico (3.1), como los componentes principales.

La válvula para radiadores (1) se conecta al radiador por medio de la boquilla (1.2), el inserto (1.1) y la tuerca de boquilla (1.3).

Dicho conjunto interior de válvula esférica (2) y el mango de válvula (1.4) constituyen el grupo de válvulas. El adaptador plástico (3) se conecta en monobloque, como una continuación del cuerpo de válvula (1.5). Dicho adaptador plástico (3) y el cuerpo de válvula (1.5) se posicionan como los componentes que forman la estructura de la válvula para radiadores (1).

Dicho cuerpo de válvula (1.5) protege el conjunto interior de válvula esférica (2), y soporta además el mango de válvula (1.4).

El adaptador plástico (3) se posiciona como el componente que proporciona la conexión de la válvula para radiadores (1) con los tubos. Dicho adaptador plástico (3) está rodeado por el cuerpo plástico (3.1).

4

30

25

10

20

40

50

ES 2 442 900 T3

De acuerdo con la modalidad preferida de la invención, dicho cuerpo de válvula (1.5) y el adaptador plástico (3) se fabrican de plástico y los derivados de plástico.

En la Figura-2, se presenta la vista en perspectiva de dicha válvula para radiadores (1).

5

20

25

35

40

Dicha boquilla (1.2) y el inserto (1.1) se fabrican de material metálico, y se conectan con el cuerpo de válvula (1.5). La tuerca de boquilla (1.3), que se localiza alrededor de la boquilla (1.2), asegura la válvula para radiadores (1) en el radiador. Por lo tanto, la boquilla (1.2) se posiciona como la pieza de conexión que une la válvula para radiadores (1) al radiador.

- 10 El sistema de núcleo empleado en el molde de inyección de plástico permite que se fabrique la válvula para radiadores con base plástica (1).
 - En la Figura-3, se representa la vista ensamblada de dicho molde (4). Primero, el inserto (1.1) se posiciona sobre el núcleo de molde (ijo (4.2) localizado dentro de dicho molde (4).
- 15 Después el conjunto interior de válvula esférica (2) se posiciona sobre dicho inserto (1.1).
 - El núcleo de molde móvil (4.1) se mueve de manera sincrónica con el cierre del molde (4) en una primera dirección (B). Por lo tanto, dicho núcleo de molde móvil (4.1) empuja el conjunto interior de válvula esférica (2) en una segunda dirección (A) perpendicular a la primera dirección (B), a fin de asegurar el mismo. Con la máquina de inyección que empuja el material plástico en el molde (4), se forma el cuerpo plástico (3.1).
 - A medida que el molde (4) se abre, el núcleo de molde móvil (4.1) se conecta el cuerpo plástico (3.1) que constituye el cuerpo del adaptador plástico (3) con el cuerpo de válvula (1.5) en una dirección opuesta (C) a dicha primera dirección (B), de manera integral, y permite que el mismo salga del molde (4).
 - De esta manera, el adaptador plástico (3) y el cuerpo de válvula (1.5) que constituyen la estructura de la válvula para radiadores (1) se fabrican como un componente integral.
- Dicho núcleo de molde móvil (4.1) y el núcleo de molde fijo (4.2) forman el material plástico que proviene de la máquina de inyección, en cierto sentido para incluir el inserto (1.1) y el conjunto interior de válvula esférica (2).
 - Tras el montaje de la boquilla (1.2), la tuerca de boquilla (1.3) y el mango de válvula (1.4) en el conjunto interior de válvula esférica (2) y el inserto (1.1) localizado dentro de dicho cuerpo de válvula (1.5), se completa la producción de la válvula para radiadores con base plástica (2).
 - Dicha boquilla (1.2) se conecta al radiador mediante la envoltura preferentemente de lino o teflón.
 - El cuerpo principal de la válvula para radiadores con base plástica (1) que comprende el adaptador plástico (3) y el cuerpo de válvula (1.5) se suelda a la tubería plástica por medio de la soldadura a enchufe.
 - La tuerca de boquilla (1.3) en boquilla (1.2) conectada al radiador y al inserto (1.1) se conecta uno con respecto al otro. La válvula para radiadores con base plástica (1) lleva a cabo la función de apertura-cierre, que se controla por el mango de válvula (1.4).
- 45 El agua caliente dentro de la tubería plástica pasa al radiador debido a que la válvula para radiadores con base plástica (1) y dicho radiador con agua caliente a su vez, calienta el ambiente en el que se localiza.
- La invención no se puede limitar a las modalidades representativas presentadas en esta sección. Las modalidades alternativas que se pueden realizar por los expertos en la materia basada en los componentes y/o métodos fundamentales dentro del alcance de protección como se define en las reivindicaciones constituirán la violación de la invención.

REIVINDICACIONES

- 1. Método para fabricar, dentro de al menos un molde (4), una válvula para radiadores con base plástica (1) usada en el sector de calefacción, dicha válvula que comprende al menos un conjunto interior de válvula esférica (2), al menos una boquilla (1.2) que proporcionan la conexión con el radiador y al menos un inserto (1.1) conectado con dicha boquilla (1.2) caracterizado porque comprende las etapas de
 - posicionar dicho inserto (1.1) en un núcleo de molde fijo (4.2) localizado dentro de dicho molde (4),
 - posicionar dicho conjunto interior de válvula esférica (2) adyacente a dicho inserto (1.1) en el núcleo de molde fijo (4.2),
 - mover un núcleo de molde móvil (4.1) localizado en dicho molde (4) de manera sincrónica con el cierre del molde (4) en una primera dirección (B).
 - empujar el conjunto interior de válvula esférica (2) por dicho núcleo de molde móvil (4.1) en una segunda dirección (A) perpendicular a la primera dirección (B), a fin de asegurar el mismo,
 - empujar el material plástico en dicho molde (4) mediante una máquina de inyección, por lo tanto formar el cuerpo de válvula (1.5) que rodea dicho inserto (1.1) y el conjunto interior de válvula esférica (2), y formar el adaptador plástico (3) posicionado en monobloque como la continuación de dicho cuerpo de válvula (1.5),
 - mover dicho núcleo de molde móvil (4.1) en una dirección opuesta (C) a dicha primera dirección (B) de forma sincrónica con la apertura del molde (4), eliminando por lo tanto el cuerpo de válvula monobloque (1.5) y el adaptador plástico (3) de dicho molde (4); en donde la al
 - menos una boquilla (1.2) se monta en dicho cuerpo de válvula (1.5); y
 - una tuerca de boquilla (1.3) se monta en dicha boquilla (1.2).

5

10

15

20

2. El método para fabricar, dentro de al menos un molde (4), una válvula para radiadores con base plástica (1) de acuerdo con cualquiera de las reivindicaciones anteriores **caracterizado porque** al menos un mango de válvula (1.4) se monta en dicho cuerpo de válvula (1.5).

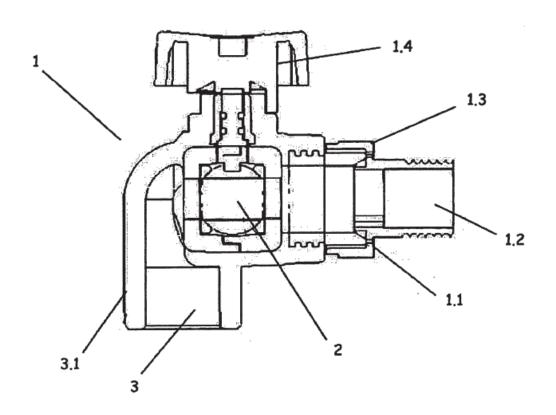


FIGURA 1

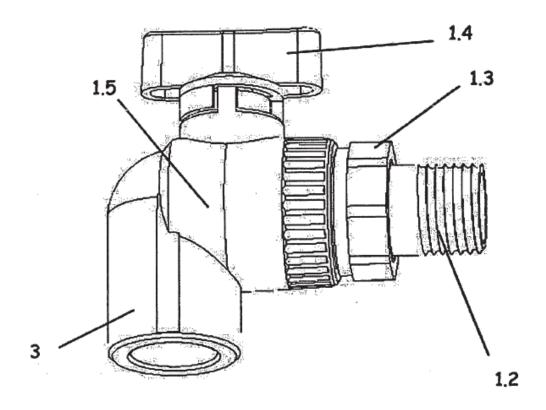


FIGURA 2

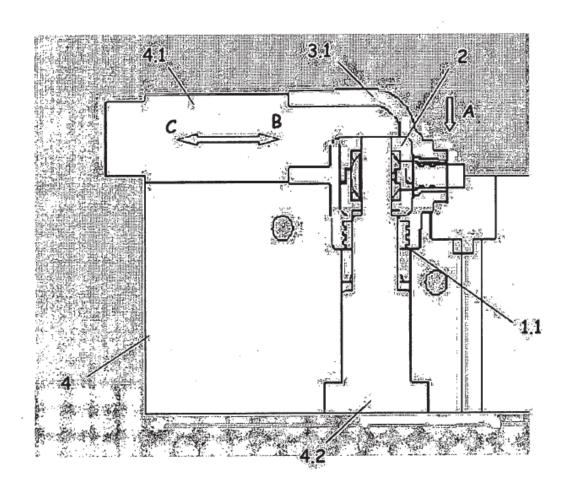


FIGURA 3