

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 444 865

51 Int. Cl.:

F16J 15/00 (2006.01) **F16J 15/32** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 13.06.2005 E 05760249 (2)
 (97) Fecha y número de publicación de la concesión europea: 16.10.2013 EP 1779007
- (54) Título: Conjunto de junta de estanqueidad giratoria compuesta
- (30) Prioridad:

12.07.2004 US 889246

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.02.2014

(73) Titular/es:

A.W. CHESTERTON COMPANY (100.0%) 225 Fallon Road, Middlesex Industrial Park Stoneham Massachusetts 02180-2999, US

(72) Inventor/es:

GRIMANIS, MICHAEL P. y KALESHIAN, JOSEPH K.

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Conjunto de junta de estanqueidad giratoria compuesta

Campo de la Invención

5

15

20

25

30

35

40

45

La presente invención se refiere a un conjunto de junta de estanqueidad para sellar un eje o una varilla con respecto a un componente de la carcasa estacionaria. En particular, la invención se refiere a un conjunto de junta de estanqueidad compuesta para proporcionar un sellado entre un eje giratorio y una carcasa estacionaria, de acuerdo con el preámbulo de la reivindicación 1 y como se describe en el documento US6164660 A.

Antecedentes de la invención

Conjuntos de junta de estanqueidad convencionales se emplean en una amplia variedad de entornos y disposiciones, tales como por ejemplo, en aparatos mecánicos, para proporcionar una junta estanca. Los conjuntos de sellado se sitúan normalmente alrededor de un eje o varilla giratorio o giratoria que está montado o montada en y sobresale de una carcasa mecánica estacionaria.

Un conjunto de sellado convencional generalmente comprende un elemento de sellado formado de un material elástico y un resorte o de otro elemento de desplazamiento elástico para desplazar el elemento de sellado contra un eje giratorio. El elemento de desplazamiento desplaza al elemento de sellado en un acoplamiento de sellado con el eje para formar una junta estanca.

No obstante, tales conjuntos de sellado adolecen de varias deficiencias y desventajas. Por ejemplo, el resorte está típicamente expuesto al fluido interno o del proceso del aparato mecánico que se está sellando, el cual puede potencialmente degradar al resorte, conduciendo potencialmente al fallo del resorte. Además, los resortes y otros elementos de desplazamiento movibles tienden a perder sus características de desplazamiento elástico con el tiempo, reduciendo la eficiencia de la junta de estanqueidad.

Otro inconveniente de los conjuntos de sellado convencionales son las malas características frente al desgaste de los elementos de sellado elásticos. A medida que los elementos de sellado se desgastan, la cantidad de fuerza de sellado radial por el elemento de sellado contra el eje disminuye, lo que resulta en una correspondiente disminución de la efectividad de sellado de los elementos de sellado. Esta esperada degradación en el rendimiento del sellado necesita una frecuente monitorización, reemplazo y/o ajuste de los elementos de sellado. El proceso de reemplazo y ajuste requiere así frecuentes periodos de tiempo de inactividad para el sistema que emplea el conjunto de junta de estanqueidad, lo que reduce la eficiencia de sellado del sistema global e incrementa por ello los costes.

Otros y más específicos objetos de esta invención serán en parte obvios y en parte evidentes a partir de los dibujos y descripción que sigue.

Compendio de la invención

El conjunto de junta de estanqueidad compuesta de la presente invención está adaptado y configurado para proporcionar un sellado estanco entre un eje giratorio y equipo estacionario. El conjunto de junta de estanqueidad emplea componentes estacionarios relativamente entre sí que producen una junta de estanqueidad estática altamente efectiva, y componentes movibles, flexibles que aseguran dinámicamente una junta estanca cuando el conjunto de junta de estanqueidad topa con el eje giratorio. El conjunto de junta de estanqueidad de la invención tiene por ello un diseño compuesto en el que diferentes porciones del conjunto están formadas de diferentes materiales para crear óptimamente funciones de sellado dinámico y estático para montar a o en el equipo estacionario. Específicamente, el conjunto de junta de estanqueidad compuesta incluye las características de la reivindicación 1. La naturaleza dinámica de una porción del conjunto de junta de estanqueidad permite al conjunto mantener una junta estanca con el eje durante el desgaste del eje, excentricidades del eje y otros.

Otras realizaciones de la invención se describen en las reivindicaciones dependientes.

Breve descripción de los dibujos

Estas y otras características y ventajas de la presente invención se comprenderán más profundamente con referencia a la descripción detallada que sigue junto con los dibujos adjuntos, en los cuales números de referencia iguales se refieren a elementos iguales en las diferentes vistas. Los dibujos ilustran los principios de la invención y, aunque no están a escala, muestran dimensiones relativas.

La FIGURA 1A es una vista en perspectiva de un conjunto de junta de estanqueidad compuesta de acuerdo con las enseñanzas de la invención;

ES 2 444 865 T3

- la FIGURA 1B es una vista de corte detallada de una porción del conjunto de junta de estanqueidad compuesta de la Figura 1A;
- la FIGURA 2 es una vista lateral de sección transversal del conjunto de junta de estanqueidad compuesta de la Figura 1 ensamblado en un eje;
- 5 la FIGURA 3 es una vista fragmentada en sección transversal del conjunto de junta de estanqueidad compuesta de la Figura 1:
 - la FIGURA 4 es una vista de sección transversal de la carcasa estática del conjunto de junta de estanqueidad compuesta;
- la FIGURA 5 es una vista de sección transversal del componente de la carcasa exterior de la carcasa estática de la 10 Figura 4;
 - la FIGURA 6 es una vista de sección transversal del componente de la carcasa interior de la carcasa estática de la Figura 4;
 - la FIGURA 7A es una vista lateral de un conjunto de junta de estanqueidad compuesta dividida que incluye una pluralidad de componentes separados de acuerdo con una realización de la invención;
- la FIGURA 7B ilustra el conjunto de junta de estanqueidad compuesta dividida ensamblado en una primera interfaz de división entre los componentes de la carcasa estática; y
 - la FIGURA 7C ilustra el conjunto de junta de estanqueidad compuesta dividida ensamblado en una segunda interfaz de división entre los componentes de la carcasa estática.

Descripción detallada de las realizaciones preferidas

- La presente invención proporciona un conjunto de junta de estanqueidad compuesta para ser montado en un eje giratorio, una varilla oscilante o en otro dispositivo adecuado. La invención se describirá en lo que sigue con respecto a las realizaciones ilustradas. Resultará evidente para los expertos en la materia que la presente invención puede ser implementada en un número de aplicaciones y realizaciones diferentes y que no está específicamente limitada en su aplicación a la realización particular representada en esta memoria.
- Los términos "conjunto de junta de estanqueidad" y "conjunto de sellado" tal como se utilizan en esta memoria pretenden incluir varios tipos de conjuntos de sellado, que incluyen juntas de estanqueidad mono-bloque, juntas de estanqueidad divididas, juntas de estanqueidad concéntricas, juntas de estanqueidad de espiral y otros tipos y configuraciones de conjuntos de junta de estanqueidad y de sellado.
- El término "eje" pretende referirse a cualquier dispositivo adecuado en un sistema mecánico, hidráulico o neumático en el cual puede ser montada la junta de estanqueidad y que incluye ejes, varillas y otros dispositivos conocidos.
 - Los términos "axial" y "axialmente" utilizados en esta memoria se refieren a una dirección generalmente paralela al eje geométrico de un eje. Los términos "fluido" y "fluidos" se refieren a líquidos, gases y combinaciones de los mismos.
- El término "axialmente interior" tal como se utiliza en esta memoria se refiere a la porción de equipo estacionario y a un conjunto de junta de estanqueidad próximo al sistema mecánico, hidráulico o neumático que emplea el conjunto de junta de estanqueidad. Por el contrario, el término "axialmente exterior" tal como se utiliza en esta memoria se refiere a la porción de conjunto estacionario y a un conjunto de junta de estanqueidad distal del sistema mecánico, hidráulico o neumático.
- El término "radialmente interior" tal como se utiliza en esta memoria se refiere a la porción del conjunto de junta de estanqueidad próxima a un eje. Por el contrario, el término "radialmente exterior" tal como se utiliza en esta memoria se refiere a la porción del conjunto de junta de estanqueidad distal de un eje.
 - Los términos "equipo estacionario", "superficie estática" y "prensaestopas" tal como se utilizan en esta memoria pretenden incluir cualquier estructura estacionaria adecuada que alberga un eje o varilla al cual está fijada la junta de estanqueidad.
- Una realización de ejemplo de un conjunto de junta de estanqueidad 10 de acuerdo con las enseñanzas de la presente invención se ilustra en las Figuras 1A, 1B, 2 y 3. El conjunto de junta de estanqueidad 10 está preferiblemente dispuesto concéntricamente alrededor de un eje 18 ó varilla giratorio, tal como se muestra en las Figuras 2 y 3, y puede estar asentado en una ranura 53 anular formada en un prensaestopas o equipo estacionario

asociado con un sistema mecánico, hidráulico o neumático 58 (en lo que sigue en esta memoria, sistema mecánico). El eje 18 se extiende a lo largo de un eje geométrico 30, y está parcialmente montado dentro de la carcasa. Durante la operación del sistema mecánico que emplea el conjunto de junta de estanqueidad 10 ilustrado, el eje 18 gira dentro de u oscila a lo largo del eje geométrico 30 con respecto al equipo del sistema estacionario. El conjunto de junta de estanqueidad 10 incluye una pluralidad de componentes de sellado 12, 14, 22, 32, configurados para cooperar entre sí con el fin de proporcionar un sellado estanco y una ruta a prueba de filtraciones entre el equipo estacionario y el eje 18, evitando con ello las filtraciones de fluido del sistema mecánico.

Como se muestra en la Figuras 1A, 1B, 2 y 3, el conjunto de junta de estanqueidad 10 incluye un primer elemento de junta de estanqueidad anular 12 y un segundo elemento de junta de estanqueidad anular 14 axialmente adyacente al primer elemento de junta de estanqueidad anular 12 para proporcionar un sellado dinámico contra el eje 18. El conjunto de junta de estanqueidad 10 incluye también unos componentes de junta de estanqueidad 22 y 32 para recibir a los elementos de la junta de estanqueidad 12, 14 y proporcionar un sellado estático contra un prensaestopas u otro componente estacionario del sistema mecánico, hidráulico o neumático. Cuando están ensamblados, los componentes de la junta de estanqueidad del conjunto de junta de estanqueidad 10 cooperan para proporcionar un sellado entre los elementos de la junta de estanqueidad y el eje, entre los elementos de la junta de estanqueidad, y un sellado entre el conjunto y el sistema mecánico, hidráulico o neumático. Los componentes de la junta de estanqueidad del conjunto de junta de estanqueidad 10 se mantienen preferiblemente juntos mediante un ajuste de interferencia, aunque resultará evidente para un experto en la materia que puede utilizarse cualquier medio adecuado para ensamblar, ajustar, fijar y retener los componentes de la junta de estanqueidad.

10

15

20

25

30

35

40

45

Como se ilustra en la Figura 3, cada elemento de junta de estanqueidad 12, 14 comprende un anillo que incluye una superficie de sellado 62 y 64 anular radialmente interior, respectivamente, que se acopla al eje 18 para establecer juntas estancas dinámicas primera y segunda del conjunto de junta de estanqueidad 10. En la realización ilustrativa los elementos de junta de estanqueidad 12, 14 tienen una sección transversal substancialmente rectangular, de manera que las superficies de sellado 62, 64 se extienden substancialmente rectas y paralelas con respecto a la superficie exterior del eje, y las restantes superficies se extienden substancialmente perpendiculares entre sí y a las superficies de sellado 62, 64. Resultará evidente para un experto en la materia que los elementos de junta de estanqueidad 12, 14 pueden tener cualquier tamaño y configuración adecuados para establecer una o más juntas estancas dinámicas con el eje 18. Por ejemplo, aunque las superficies de sellado 62, 64 ilustrativas son planas, las superficies de sellado 62, 64 pueden tener cualquier forma adecuada para topar con el eje 18 para formar una junta estanca. Una ventaja significativa de emplear elementos de junta de estanqueidad 12, 14 eliminables y reemplazables, con respecto a los componentes de las juntas de estanqueidad restantes 22 y 32 (o la carcasa estática 23) del conjunto de junta de estanqueidad 10, es que los elementos de la junta de estanqueidad 12, 14 pueden ser fácilmente eliminados, reemplazados o reparados cuando las superficies de sellado 62, 64 están desgastadas.

La carcasa estática 23 ilustrada, mostrada en las Figuras 2, 3 y 4 comprende una carcasa o componente de sellado 22 exterior y una carcasa o componente de sellado 32 interior, que cooperan para recibir a los elementos de la junta de estanqueidad 12, 14 anulares primero y segundo entre ellos. Cuando están ensamblados, el componente de la carcasa exterior 22 y el componente de la carcasa interior 32 forman un hueco 200 anular en un extremo radialmente interior de la carcasa estática 23 que tiene el tamaño adecuado y está configurado para recibir y mantener a los elementos de la junta de estanqueidad 12, 14. El componente de la carcasa interior 32 aplica una fuerza de carga radial a los elementos de la junta de estanqueidad 12, 14 dinámicos, para forzar a las superficies de sellado 62 y 64 anulares a que se sitúen en contacto con el eje 18. El componente de la carcasa exterior 22 se asienta sobre, captura o retiene el componente de la carcasa interior 22 y proporciona un sellado estático en una superficie exterior del mismo al equipo estacionario cuando se asienta en el interior de la ranura 53. Cuando está asentado en el hueco 200 entre los componentes de la carcasa estática 22, 32, los elementos de la junta de estanqueidad 12 y 14 anulares primero y segundo se desplazan radialmente en acoplamiento de sellado con el eje 18 bajo una amplia gama de condiciones de operación, tal como se describe con más detalle en lo que sigue.

Las Figuras 5 y 6 son vistas de sección transversal del componente de la carcasa exterior 22 y del componente de la carcasa interior 32, respectivamente. Como se ilustra en la Figura 5, el componente de la carcasa exterior 22 tiene una sección transversal substancialmente en forma de J, que forma una ranura 24 anular para recibir en ella a un saliente 34 anular del componente de la carcasa interior 32. El componente de la carcasa exterior 22 incluye un brazo axialmente delantero 26 y un brazo axialmente trasero 28 separado del brazo axialmente delantero 26 mediante la ranura 24 anular. El brazo axialmente trasero 28 es preferiblemente más corto que el brazo axialmente delantero 26 para formar la sección transversal en forma de J.

El brazo axialmente delantero 26 comprende una superficie exterior 262, que comprende una superficie que se extiende radialmente que mira axialmente hacia adelante. En la realización ilustrativa, la superficie exterior 262 se

separa cónicamente hacia el lado radialmente interior del conjunto de junta de estanqueidad 10. El brazo axialmente delantero 26 también incluye una superficie interior 264. La superficie interior 264 comprende una superficie que se extiende radialmente, que mira axialmente hacia atrás, que forma una pared lateral de la ranura 24. El brazo axialmente delantero 26 puede tener una superficie inferior 266 que se conecta con la superficie interior 264 y la superficie exterior 262 del brazo axialmente delantero 26. En la realización ilustrativa, la superficie exterior 262 se separa cónicamente hacia la superficie interior 264, lo que resulta en una relativamente pequeña superficie inferior 266. Alternativamente, la superficie exterior 262 puede unirse de manera directa a la superficie interior 262 sin una superficie inferior intermedia 266. En otra realización de la invención, la superficie exterior 262 se extiende substancialmente recta o separándose de la superficie interior 264, lo que resulta en una relativamente mayor superficie inferior 266. Los expertos en la materia reconocerán fácilmente que el brazo 26 del componente de la carcasa exterior 22 puede tener muchas configuraciones diferentes.

10

15

20

25

30

35

40

45

50

55

El brazo axialmente trasero 28 del componente de la carcasa exterior 22 es substancialmente más corto que el brazo axialmente delantero 26 para albergar al componente de la carcasa interior 32. El brazo axialmente trasero 28 está definido por una superficie interior 284 que comprende una superficie que se extiende radialmente 284, que mira axialmente hacia adelante que forma una segunda pared lateral de la ranura 24. Una superficie exterior 282 del brazo axialmente trasero 28 comprende una superficie que mira axialmente hacia atrás que se extiende en la dirección radial. Una superficie inferior 286 radialmente interior se conecta a la superficie interior 284 y a la superficie exterior 282 y se extiende de manera substancialmente paralela al eje longitudinal del eje 18 y de manera substancialmente perpendicular a la superficie interior 284 y a la superficie exterior 282. La superficie inferior 286 está configurada para topar o acoplarse a una superficie que se extiende axialmente 266 del componente de la carcasa interior 32, como se describe en lo que sigue.

El componente de la carcasa exterior 22 incluye también una porción de conexión 29 que conecta el brazo axialmente delantero 26 y el brazo axialmente trasero 28 para definir la ranura 24. La porción de conexión 29 está definida por la superficie radialmente interior 294 que se extiende axialmente, que se extiende entre y se conecta a las paredes laterales 264, 284 que se extienden radialmente. La porción de conexión 29 está también definida por una superficie exterior 296 radial que se extiende axialmente. La superficie exterior 296 está configurada para formar una junta de estanqueidad estática con una superficie estática del equipo estacionario o un prensaestopas del sistema 20. Una ranura opcional puede ser proporcionada en la superficie exterior 296 para recibir un anillo en O para facilitar el sellado del conjunto de junta de estanqueidad 10 contra una superficie del equipo estacionario. Alternativamente, una superficie exterior 298 puede estar formada entre las salientes 298a, 298b que se extienden desde la superficie exterior 296, como se ilustra. Los salientes están adaptados a la junta de estanqueidad contra una pared de la ranura 53 para formar una junta estanca. Alternativamente, la ranura 298 exterior puede ser grabada, hendida, grabada mediante un ataque químico, cortada o formada de otra manera en la superficie exterior 296. Un experto en la materia reconocerá que puede utilizarse cualquier medio adecuado para proporcionar una junta de estanqueidad estática entre el componente de la carcasa exterior 22 y una superficie estática, tal como un equipo estacionario o prensaestopas.

Un experto en la materia reconocerá que el componente de la carcasa exterior 22 no está limitado a la orientación y configuración ilustradas. Por ejemplo, la posición y orientación de los brazos 26, 28 puede ser invertida, de manera que el componente descrito como el brazo axialmente trasero 28 más corto podría ser alternativamente proporcionado axialmente delantero con respecto al brazo axialmente delantero 26 más largo. Alternativamente, los dos brazos 26, 28 que definen la ranura 24 pueden tener una longitud substancialmente similar. Pueden también contemplarse otras configuraciones.

En referencia a la Figura 6, el componente de la carcasa interior 32 está configurado para cooperar con el componente de la carcasa exterior 22 para recibir a los elementos de junta de estanqueidad 12, 14 entre ellos. Como se muestra, el componente de la carcasa interior 32 incluye un saliente 34 anular radialmente exterior configurado para ser recibido en la ranura 24, y una porción de cuerpo 36, que coopera con el brazo 26 del componente de la carcasa exterior para formar el hueco 200 para recibir a los elementos de la junta de estanqueidad 12 y 14. El componente de la carcasa interior 32 también incluye una región flexible 38 para flexionar selectivamente el hueco 200 para albergar a los elementos de la junta de estanqueidad y para aplicar una fuerza radialmente hacia el interior sobre los elementos de la junta de estanqueidad 12, 14.

El saliente anular 34 tiene preferiblemente el tamaño y dimensiones para ser mantenido dentro de la ranura 24 mediante ajuste de fricción, aunque un experto en la materia reconocerá que puede ser utilizado cualquier medio adecuado para acoplar a los componentes de la carcasa interior y exterior de acuerdo con las enseñanzas de la presente invención. El ajuste por interferencia entre el saliente anular 34 y la ranura 24 proporciona una junta de estanqueidad estanca entre el componente de la carcasa interior 32 y el componente de la carcasa exterior 22.

El saliente 34 ilustrativo tiene una forma rectangular, aunque un experto en la materia reconocerá que los salientes 34 y la ranura 24 asociada pueden tener cualquier tamaño, forma y configuración adecuados. Como se muestra, el

saliente comprende una pared delantera 342 configurada para topar con la pared lateral 264 de la ranura, una pared superior 348, que se extiende en la dirección axial y mira en la dirección radialmente exterior, configurada para topar con la superficie que mira radialmente hacia el interior 294 y una pared trasera 344 configurada para topar con la pared lateral 284 de la ranura. Para complementar la configuración de la ranura 24 ilustrativa, las paredes 342 y 344 se extienden de manera substancialmente perpendicular hasta la pared superior 348, aunque un experto en la materia reconocerá que los salientes 34 y la ranura asociada 24 pueden tener cualquier configuración adecuada.

5

10

15

20

25

30

35

La porción de cuerpo axialmente trasera 36 del componente de la carcasa interior 32 en la realización ilustrativa está configurada de manera que cuando el componente de la carcasa exterior 22 y el componente de la carcasa interior 32 son ensamblados, la carcasa estática 20 resultante es substancialmente simétrica alrededor del plano central que se extiende radialmente. La porción de cuerpo 36 incluye una pared que se extiende axialmente 366 configurada para topar con la superficie inferior 286 del brazo 28 y con una superficie exterior 362 que puede ser substancialmente complementaria a la superficie exterior 262 del brazo axialmente delantero 26 del componente de la carcasa exterior. Una pared interior que se extiende radialmente 364 sobre la porción de cuerpo 36 coopera con la porción radialmente inferior de la superficie interior 264 para formar el hueco 200 para recibir a los elementos de junta de estanqueidad 12, 14. En la realización ilustrativa, la superficie exterior 362 es substancialmente en forma de arco y se separa cónicamente de manera axial y radialmente hacia el interior desde la pared 366 hacia el hueco 200. Cuando la carcasa estática 23 es ensamblada, la superficie exterior 362 del componente de la carcasa interior 32 se alinea con la superficie exterior trasera 282 del componente de la carcasa exterior. Como se muestra, una superficie inferior que se extiende axialmente 366, correspondiente a la superficie inferior que se extiende axialmente 266 del brazo 26, se extiende desde la superficie exterior 362 y conecta a la superficie exterior 362 a la superficie interior

El componente de la carcasa interior 32 forma la región flexible 38 entre el hueco 200 y el saliente 34 anular y entre la porción de cuerpo 36 y el brazo axialmente delantero 26 del componente de la carcasa exterior cuando la carcasa estática 23 está ensamblada, es decir, en una región axial y radialmente central del conjunto de junta de estanqueidad 10. La región flexible 38 está configurada para permitir que la carcasa reciba y aplique una fuerza radial a los elementos de la junta de estanqueidad 12, 14. La región flexible 38 ilustrativa incluye una ranura 382 que se extiende axialmente y un brazo flexible 384 que se conecta con un saliente 386 opcional que define una frontera radialmente exterior del hueco 200. La geometría de la región flexible 38 no está limitada a la realización ilustrativa, y puede ser alterada o configurada para tener cualquier forma adecuada suficiente para proporcionar una cantidad seleccionada de fuerza radial o para variar la cantidad de fuerza radial aplicada a los elementos de la junta de estanqueidad 12, 14.

La ranura 382 se extiende entre la porción de cuerpo 36 y el brazo axialmente delantero 26 del componente de la carcasa exterior y está formada entre el saliente 34 y el brazo flexible 384. La ranura 382 que se extiende axialmente se define mediante una primera pared 382a que se extiende axialmente que define una superficie inferior del saliente 34 anular, y una segunda pared 382b que se extiende axialmente que se extiende desde la porción de cuerpo y está separada de la primera pared 282a mediante una distancia seleccionada, y una tercera pared 382c que conecta la primera pared 382a y la segunda pared 382b. La segunda pared 382b define una superficie superior del brazo flexible 384 y el saliente 386. La tercera pared 382c de la ranura 382 forma una superficie que se extiende radialmente de la porción de cuerpo 36.

El saliente 386 está separado del brazo axialmente delantero 26 por un primer hueco que se extiende radialmente 201 y la porción de cuerpo 36 por un segundo hueco que se extiende radialmente 202. El brazo flexible 384 conecta una porción superior del saliente 386 a la porción de cuerpo 36 sobre el segundo hueco 202. El uso de un brazo flexible 384 para conectar el saliente 386, que de otro modo flota entre el componente de la carcasa exterior 22 y el resto del componente de la carcasa interior 32, permite que el saliente 386 se mueva dinámicamente con respecto al resto de la carcasa estática 20 y comprima selectivamente el hueco 200 durante el uso. Por ello, el conjunto de junta de estanqueidad 10 opera como una junta de estanqueidad estática dentro de la ranura mientras que conjuntamente proporciona características dinámicas. Esto ocurre cuando la región flexible 38 se mueve dinámicamente para acomodar y/o mantener la relación de sellado entre los elementos de la junta de estanqueidad 12, 14 y el eje 18. Esta disposición de sellado dinámico permite que el conjunto de junta de estanqueidad 10 maneje las perturbaciones de fluido y mecánicas que pueden de otro modo afectar o romper el sellado estanco y el eje.

En la realización ilustrativa, las fuerzas aplicadas a la superficie exterior del componente de la carcasa exterior se traducen en fuerzas de sellado en las interfaces entre el componente de la carcasa interior 32 y el componente de la carcasa exterior 22. De esta manera, la carcasa estática 23 puede ser manejada como una sola unidad, y se impiden las filtraciones.

En referencia a las Figuras 3 y 4, en un estado relajado, la anchura W (Width, en inglés) axial del hueco 200 es ligeramente inferior a la anchura combinada W' de los elementos de la junta de estanqueidad 12, 14. La región flexible 38 permite que el hueco 200 se flexione para acomodar a los elementos de la junta de estanqueidad 12, 14 y

para comprimirse alrededor de los elementos de sellado 12, 14 para fijar y retener a los elementos de sellado 12, 14 en su sitio

Como se muestra en las Figuras 2 y 3, cuando la junta de estanqueidad 10 es ensamblada, los elementos de sellado 12, 14 se extienden sobrepasando el extremo radialmente interior y la carcasa estática 23, para permitir que las superficies de sellado 62, 64 se sitúen en contacto y sellen contra el eje 18, mientras que la carcasa estática 20 está separada de y no está directamente en contacto con el eje 18. De esta manera, los elementos de la junta de estanqueidad 12, 14 puede girar con el eje 18 para proporcionar una superficie de sellado dinámica, mientras que la carcasa estática 23 permanece estacionaria y proporciona un sellado estático contra un prensaestopas u otra superficie estática.

5

30

35

50

10 Durante la operación, el primer borde de sellado 62 anular y el segundo borde de sellado 64 anular de los elementos de la junta de estanqueidad 12, 14 se sitúan en contacto con la superficie exterior del eje 18, mientras que la superficie exterior o una junta de estanqueidad sobre la superficie exterior del componente de la carcasa exterior 22 se sitúa en contacto con la superficie estática exterior del equipo estacionario para proporcionar un sellado estanco entre el equipo estacionario y el eje 18. La longitud radial combinada de la junta de estanqueidad 10 en un estado no 15 deformado es preferiblemente seleccionada para ser menor que la distancia entre la carcasa estática y el eje, de manera que la región flexible 38 comprima dinámicamente una cantidad seleccionada para proporcionar una fuerza de sellado interior elástica, radialmente elástica en los bordes de la junta de estanqueidad 62, 64. Las fuerzas de sellado radiales cooperan para proporcionar una junta de estanqueidad estanca entre el conjunto de junta de estanqueidad 10 y el eje 18 forzando a los bordes de sellado 62 y 64 en acoplamiento con el eje 18. De esta 20 manera, el conjunto de junta de estanqueidad 10 de la presente invención proporciona una junta estanca durante la operación. De acuerdo con una práctica típica, la fuerza de carga radal puede ser del orden de aproximadamente 175 Newtons por metro circular (1 libra por pulgada circular), pero puede variar típicamente inversamente con la velocidad del eje. Por contraposición con otro tipo de disposiciones de sellado, el conjunto de junta de estanqueidad 10 de la presente invención no está típicamente relacionado con la extrusión de la junta de estanqueidad puesto que 25 el eje se mueve a velocidades relativamente bajas. Los expertos en la materia reconocerán fácilmente que éste no es necesariamente el caso.

De acuerdo con una realización de la invención, el conjunto de junta de estanqueidad 10 puede ser construido de una estructura compuesta que utiliza diferentes materiales para facilitar el sellado dinámico y estático. El tipo de material utilizado para cada componente de la junta de estanqueidad 12, 14, 22 y 32 depende de uno o más factores, incluyendo la velocidad del eje, el tipo de fluido, la temperatura del fluido, el acabado superficial, el coste, la presión del fluido que se está sellando, el factor de PV (presión y velocidad) del material particular y otros. El material seleccionado preferiblemente minimiza el desgaste para maximizar la vida útil de la junta de estanqueidad 10. Los componentes 12, 14, 22, 32 pueden tener también diferentes valores de dureza para facilitar el sellado. Una persona no experta en la materia podrá seleccionar los materiales apropiados basándose en las consideraciones anteriores. De acuerdo con una práctica, los componentes de la junta de estanqueidad 22 y 32 pueden estar formados del mismo o diferentes materiales. Asimismo, los elementos de la junta de estanqueidad 12 y 14 pueden estar formados del mismo o diferentes materiales, y están preferiblemente formados del mismo material, que puede o puede no ser diferente del material o los materiales utilizado o utilizados para los elementos de la junta de estanqueidad 22 y 32.

Los elementos de la junta de estanqueidad primero y segundo 12 y 14 están preferiblemente seleccionados basándose en la velocidad de la superficie y en los requisitos de desgaste. Por ejemplo, el material que forma los elementos de la junta de estanqueidad 12, 14 es preferiblemente capaz de un movimiento a baja y a alta velocidad. Materiales adecuados incluyen material poli-tetra-fluoro-etileno (PTFE) y polietileno de ultra alto peso molecular (UHMWPE – Ultra High Molecular Weight Polyethylene, en inglés). De acuerdo con una realización preferida, el material que forma los elementos de la junta de estanqueidad 12, 14 comprende PTFE con poliamida, que puede incluir TEFLON con relleno conocido, aunque un experto en la material reconocerá que pueden utilizar otros materiales adecuados.

Los componentes de la carcasa estática 22 y 32 pueden estar formados de cualquier material que sea compatible con y adecuado para el fluido de la carcasa o el sistema mecánico, el módulo de la velocidad o la velocidad vectorial del eje, la presión dentro del sistema mecánico y otros. De acuerdo con la presente invención, los componentes de la carcasa estática 22 y 32 están preferiblemente formados de un material elastómero, poliuretano, PTFE u otro material adecuado. El material para la carcasa estática 23 es preferiblemente adecuado para proporcionar la carga radial de los elementos de la junta de estanqueidad 12 y 14 dinámicos. De acuerdo con una práctica preferida, uno o más de los componentes de la junta de estanqueidad está formado o están formados de poliuretano.

La fuerza aplicada por los componentes de la carcasa puede ser variada, ajustada o seleccionada mediante la configuración del componente y mediante el material particular utilizado. Por ejemplo, los componentes de sellado 22 y 32 pueden estar formados de diferentes materiales para proporcionar diferentes tipos de sellado. De acuerdo

con una práctica, el componente de la junta de estanqueidad o la carcasa interior 22 pueden opcionalmente estar formados de un material que permite el movimiento elástico de la región flexible para formar, asistir con o mantener una función de sellado dinámico, mientras que el componente de la junta de estanqueidad o la carcasa exterior 32 puede estar formado de un material más rígido que sea adecuado para efectuar una función de sellado estático. Además, los elementos de la junta de estanqueidad 12 y 14 están formados de materiales seleccionados basándose en la velocidad y en los requisitos de desgaste para proporcionar una función de sellado dinámico. Por ello, el conjunto de junta de estanqueidad 10 compuesta puede utilizar diferentes materiales para proporcionar funciones de sellado estáticos y dinámicos que varían.

En una realización preferida de la invención, uno o más componentes del conjunto de junta de estanqueidad 10 puede o pueden ser separado o separados para facilitar la instalación, la sustitución, la monitorización o la inspección del conjunto de junta de estanqueidad 10 compuesto. En particular, la instalación, la sustitución y la inspección de los elementos de la junta de estanqueidad 12 y 14 separados del conjunto de la junta de estanqueidad 10 compuesta pueden ser llevadas a cabo sin necesitar la rotura completa del sistema mecánico y sin tener que pasar los elementos de sellado sobre un extremo del eje 18. Cada parte separada forma segmentos de junta de estanqueidad arqueados de cada componente 12, 14, 22 y/ó 32 que se conectan en la interfaz a través de correspondientes superficies de separación.

Las partes divididas de los componentes 12, 14, 22 y 32, respectivamente, pueden estar escalonadas para evitar una filtración axial del fluido. Por ejemplo, como se muestra en las Figuras 7A, 7B y 7C, la parte dividida 327 en el componente de la carcasa interior 32 puede ser escalonada desde la parte dividida 227 en el componente de la carcasa exterior. Una parte separada 127 en el primer elemento de sellado 12 puede asimismo estar escalonada desde una parte separada en el segundo elemento de sellado (no mostrado) y/o las partes separadas 227 y 327. El componente de la carcasa interior 32 es la parte separada en una interfaz para formar las superficies de las partes separadas primera y segunda 327a, 327b, que topan entre sí cuando el componente de la carcasa interior 32 está ensamblado. El componente de la carcasa exterior 22 está dividido en una interfaz para formar las superficies de parte separada primera y segunda 227a, 227b, que están mecánicamente cargadas juntas y topan entre sí cuando el componente de la carcasa exterior está ensamblado. Cuando la junta de estanqueidad está cargada, el ajuste del conjunto de junta de estanqueidad 10 entre el equipo estacionario y el eje, así como el ajuste de interferencia entre los componentes de la carcasa 22 y 23, comprime la junta de estanqueidad alrededor de las circunferencias, y comprime las superficies separadas entre sí para proporcionar un sellado axial y radial entre ellas.

20

25

45

50

55

Como se muestra en la Figura 7B, debido al escalonamiento entre las partes divididas 227 y 327, la primera superficie dividida 327a del componente de la carcasa interior 32 sobresale con respecto a una primera superficie dividida 227a del componente de la carcasa interior 32 para formar un borde de interconexión 328 que sobresale radialmente. Como se muestra en la Figura 7C, una segunda superficie dividida 227b del componente de la carcasa exterior 22 se extiende más allá de la segunda superficie dividida 327b del componente de la carcasa interior en una correspondiente cantidad para formar un borde de interconexión cóncavo 228. La superficie compuesta, es decir, el borde de interconexión que sobresale radialmente, formado por las primeras superficies divididas 227a y 327a de la carcasa estática 20 ensamblada es así complementaria a la superficie compuesta, es decir, al borde de interconexión cóncavo, formado por las segundas superficies divididas 227b, 327b de la carcasa estática 20 ensamblada. Cuando la carcasa estática 20 está ensamblada, la parte cóncava 228 recibe el borde sobresaliente 328 para promover el bloqueo entre los segmentos de la carcasa estática cuando están ensamblados.

Uno o más de los componentes de la junta de estanqueidad puede o pueden ser dividido o divididos para formar segmentos de junta de estanqueidad arqueados y que conectan en la interfaz a través de bordes de interconexión complementarios que se adaptan entre sí, que tienen un diseño generalmente no plano o no lineal para promover el bloqueo de los segmentos de la junta de estanqueidad entre sí cuando están ensamblados. Pueden emplearse también otras configuraciones de bordes separados para proporcionar un sellado estanco correcto y adecuado.

Alternativamente, los elementos de la junta de estanqueidad 12, 14 y/o los componentes de la carcasa estática 22, 32 pueden ser divididos en una segunda interfaz para permitir que los segmentos de la junta de estanqueidad sean completamente separados en segmentos de junta de estanqueidad separados. Resultará también evidente para un experto en la materia que los elementos de la junta de estanqueidad 12 y 14 pueden estar también separados y situados en puntos escalonados adicionales, para proporcionar un sellado estanco adicional.

De acuerdo con una realización alternativa, los componentes de la junta de estanqueidad 10 pueden ser unitarios, y tener el tamaño y la configuración para proporcionar los atributos y funciones descritos anteriormente. Un experto en la materia reconocerá que, por ejemplo, los elementos de la junta de estanqueidad 12, 14 pueden comprender un elemento de sellado unitario, y/o que la carcasa estática 23 puede comprender un componente unitario, en lugar de un componente de la carcasa exterior e interior acoplados entre sí como se ha mostrado y descrito anteriormente. Los expertos en la materia reconocerán fácilmente que los componentes del conjunto de junta de estanqueidad 10 pueden ser separados en más de una ubicación.

ES 2 444 865 T3

Preferiblemente, el elemento compuesto, mientras es ensamblado a partir de una pluralidad de componentes, puede ser manejado e instalado como un elemento único, en lugar de instalar individualmente cada componente de un equipo. Esto ahorra tiempo cuando se utiliza e instala el conjunto de junta de estanqueidad de la presente invención.

- El conjunto de junta de estanqueidad 10 compuesto de la presente invención proporciona significativas ventajas sobre los conjuntos de juntas de estanqueidad anteriores. El uso de una carcasa estática con elementos de sellado eliminables permite que los elementos de sellado sean fácilmente reemplazados cuando están desgastados. La región flexible asegura que los elementos de sellado sean mantenidos en constante contacto con el eje para asegurar una junta estanca. La junta de estanqueidad 10 puede ser fácilmente instalada y eliminada sin requerir la rotura del equipo.
- Aunque la realización de ejemplo del conjunto de junta de estanqueidad 10 compuesta de la presente invención se ha descrito anteriormente junto con un eje giratorio, resultará evidente para un experto en la materia que el conjunto de junta de estanqueidad 10 compuesta puede ser utilizado en muy diferentes entornos y aplicaciones, que incluyen, por ejemplo, proporcionar un sellado estanco alrededor de una varilla oscilante.

REIVINDICACIONES

- 1. Un conjunto de junta de estanqueidad compuesta para proporcionar una junta de estanqueidad entre un eje (18) y una superficie estática (58), extendiéndose el eje (18) a lo largo de un eje geométrico longitudinal (30), comprendiendo el conjunto de junta de estanqueidad compuesta:
- un primer elemento de junta de estanqueidad (12) anular que tiene una superficie de sellado dinámico (62) para situarse en contacto con el eje (18) con el fin de proporcionar una junta de estanqueidad entre el primer elemento de la junta de estanqueidad (12) y el eje (18); y
 - una carcasa estática (23) que tiene un hueco (200) anular compresible en un extremo radialmente interior para recibir en él al primer elemento de la junta de estanqueidad (12);
- 10 caracterizado por que:

35

la carcasa estática (23) comprende:

un componente de carcasa exterior (22) que define una superficie de sellado estática (296) en un extremo radialmente exterior para situarse en contacto con la superficie estática (58); y

un componente de carcasa interior (32) recibido en el componente de carcasa exterior (22) y que tiene una región flexible (38) que comprende:

un saliente (386) que define una frontera radialmente exterior del hueco (200) anular para situarse en contacto con y aplicar una fuerza de carga radial al primer elemento de la junta de estanqueidad (12) para desviar el primer elemento de la junta de estanqueidad (12) en acoplamiento con el eje (18) cuando el primer elemento de la junta de estanqueidad (12) es recibido en el hueco (200) anular, y

- un brazo flexible (384) para conectar el saliente (386) a la carcasa estática (23), donde el componente de la carcasa exterior (22) y el componente de la carcasa interior (32) están acoplados mediante un ajuste de interferencia, con el componente de la carcasa exterior (22) que comprende una ranura (24) anular para recibir a un correspondiente saliente (34) del componente de la carcasa interior (32).
 - 2. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, que comprende también:
- un segundo elemento de junta de estanqueidad (14) anular que tiene una superficie de sellado dinámico (64) para situarse en contacto con el eje (18), donde el segundo elemento de junta de estanqueidad (14) está dispuesto axialmente adyacente al primer elemento de junta de estanqueidad (12) en el hueco (200) anular.
 - 3. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que los componentes de junta de estanqueidad primero y segundo (12, 14) tienen una sección transversal generalmente rectangular.
- 30 4. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que el componente de la carcasa exterior (22) y el componente de la carcasa interior (32) cooperan para formar un hueco (200) anular entre ellos y un extremo radialmente interior de la carcasa estática (23).
 - 5. El conjunto de junta de estanqueidad compuesta de la reivindicación 2, en el que el hueco (200) anular tiene una anchura que es menor que una anchura combinada de los elementos de la junta de estanqueidad primero y segundo (12, 14).
 - 6. El conjunto de junta de estanqueidad compuesta de la reivindicación 5, en el que el hueco (200) anular está adaptado para flexionarse con el fin de acomodar a los elementos de la junta de estanqueidad primero y segundo (12, 14), manteniendo con ello a los elementos de la junta de estanqueidad (12, 14) ajustados mediante fricción.
- 7. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que el saliente (386) se extiende entre una ranura (382) que se extiende axialmente formada en la carcasa estática (23) y el hueco (200) anular, y está separada de un extremo axialmente delantero (264) de la carcasa estática (23) mediante un primer hueco que se extiende radialmente (201) y de un extremo axialmente trasero (364) de la carcasa estática (23) mediante un segundo hueco que se extiende radialmente (202).
- 8. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que el primer elemento de la junta de estanqueidad (12) está separado en una primera interfaz de separación (127).
 - 9. El conjunto de junta de estanqueidad compuesta de la reivindicación 2, en el que el segundo elemento de la junta de estanqueidad (14) está separado en una segunda interfaz de separación.

- 10. El conjunto de junta de estanqueidad compuesta de la reivindicación 9, en el que el primer elemento de la junta de estanqueidad (12) está separado en una primera interfaz de separación (127) y la segunda interfaz de división está escalonada desde la primera interfaz de separación (127).
- 11. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que la carcasa estática (23) está dividida.
 - 12. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que el componente de la carcasa exterior (22) está separado en una primera interfaz de separación (227) y el componente de la carcasa interior (32) está separado en una segunda interfaz de separación (327) que está escalonada desde la primera interfaz de separación (227).
- 10 13. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que la superficie de sellado estático (296) comprende un anillo en O asentado en una ranura formada en una superficie radialmente exterior de la carcasa estática (23).
 - 14. El conjunto de junta de estanqueidad compuesta de la reivindicación 1, en el que la superficie de sellado dinámico (62) del primer elemento de la junta de estanqueidad (12) se extiende sobrepasando el extremo radialmente interior de la carcasa estática (23) cuando el primer elemento de la junta de estanqueidad (12) es recibido en el hueco (200) anular.
 - 15. Un método de sellado de un eje (18) que utiliza el conjunto de junta de estanqueidad compuesta de cualquiera de las reivindicaciones 1 a 14, que comprende las etapas de:
- insertar un elemento de la junta de estanqueidad (12) anular en un hueco (200) anular formado en una carcasa estática (23); y

desviar una superficie de sellado dinámico (62) en el elemento de la junta de estanqueidad (12) anular en contacto con el eje (18).

16. El método de la reivindicación 15, que comprende también la etapa de:

5

15

ensamblar la carcasa estática (23) insertando un saliente (34) anular de un componente de la carcasa interior (32) en una ranura (24) anular de un componente de la carcasa exterior (22), por lo que el hueco (24) anular está definido entre el componente de la carcasa interior (32) y el componente de la carcasa exterior (22).

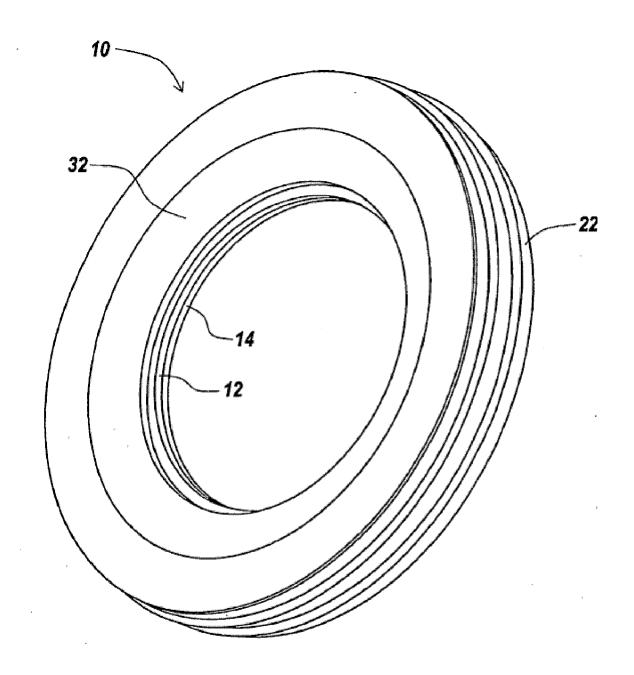


Fig. 1A

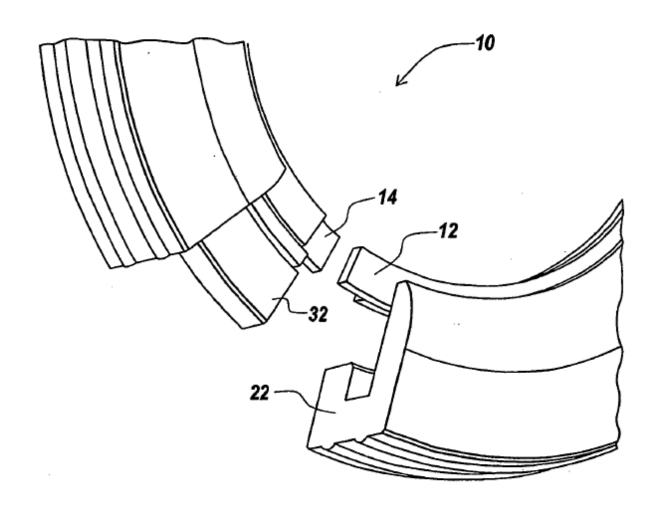


Fig. 1B

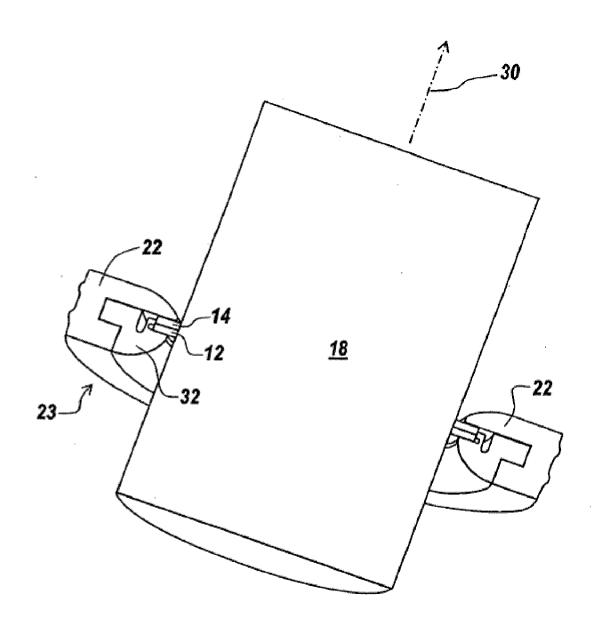


Fig. 2

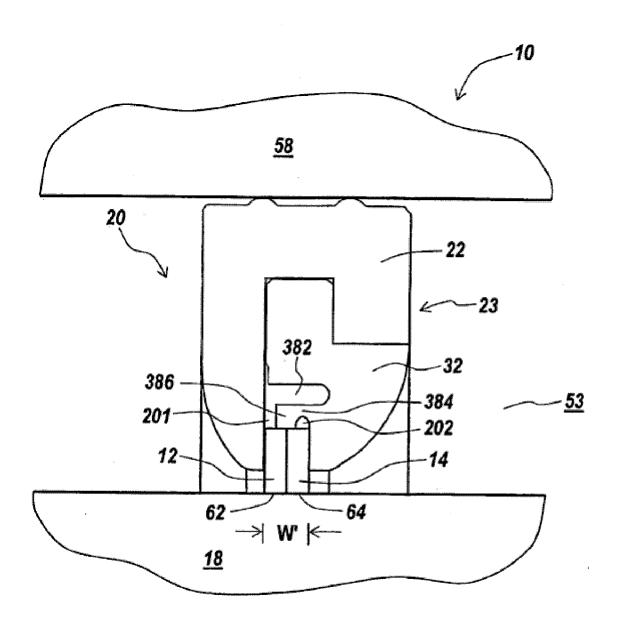
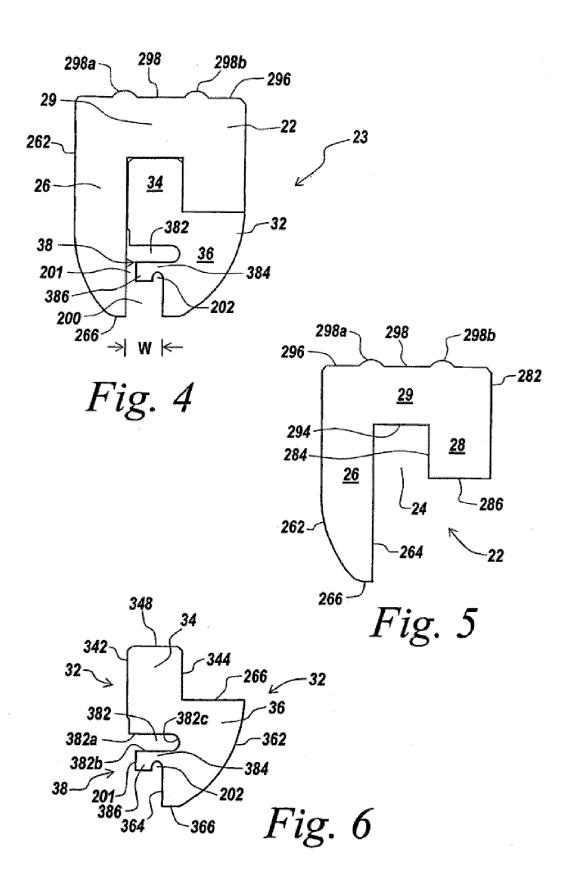



Fig. 3

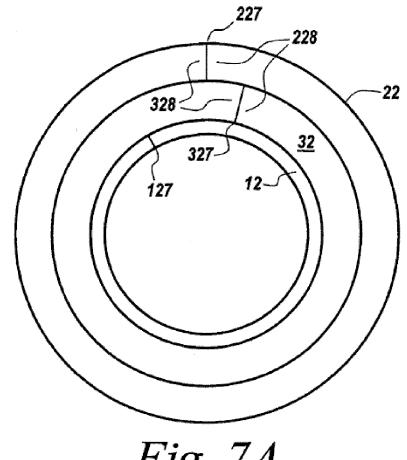


Fig. 7A

Fig. 7B

Fig. 7C