

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 445 532

51 Int. Cl.:

C07C 209/74 (2006.01) C07C 211/30 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 08.09.2010 E 10751938 (1)
 (97) Fecha y número de publicación de la concesión europea: 06.11.2013 EP 2475641

(54) Título: Proceso para preparar cinacalcet

(30) Prioridad:

10.09.2009 EP 09169934

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 03.03.2014

(73) Titular/es:

ZACH SYSTEM S.P.A. (100.0%) Via Lillo del Duca, 10 20091 Bresso (Milano), IT

(72) Inventor/es:

CATOZZI, NICOLA; COTARCA, LIVIUS; FOLETTO, JOHNNY; FORCATO, MASSIMILIANO; GIOVANETTI, ROBERTO; SORIATO, GIORGIO y VERZINI, MASSIMO

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Proceso para preparar cinacalcet

La invención se refiere a un proceso para preparar el producto de principio activo cinacalcet, sus productos intermedios y su sal de clorhidrato farmacéuticamente aceptable. Cinacalcet (CNC), concretamente N-[(1R)-1-(1-naftil)etil]-3-[3-(trifluorometil)-fenil]propan-1-amina se usa en terapia como sal de clorhidrato de fórmula (I)

10

15

La sal de clorhidrato de cinacalcet (CNC.HCI), comercializada como MIMPARA™ en la Unión Europea, es un agente calcimimético que disminuye la secreción de la hormona paratiroidea activando los receptores de calcio.

MIMPARA™ está aprobado para el tratamiento de hiperparatiroidismo secundario (HPTS) en pacientes con enfermedad renal crónica que reciben diálisis y para el tratamiento de hiperparatiroidismo primario (HPTP) en pacientes para los que la paratiroidectomía no es apropiada clínicamente o está contraindicada.

El documento WO 2007/127449 A1 da a conocer un derivado de cinacalcet insaturado de fórmula (II) como producto intermedio en la producción de cinacalcet.

20

La patente estadounidense n.º 6.011.068 da a conocer una clase de arilalquilaminas que comprende genéricamente cinacalcet y sales del mismo.

25

La patente estadounidense n.º 6.211.244 describe específicamente cinacalcet o una sal farmacéuticamente o complejo del mismo como el compuesto 22J. La patente estadounidense n.º 6.211.244 también da a conocer métodos de síntesis para preparar moléculas activas frente a los receptores de calcio, como las que tienen una estructura análoga a la de cinacalcet, mediante un enfoque de aminación reductora que comprende la condensación del aldehído o la cetona aromáticos apropiados con la arilamina adecuada seguida por la reducción con cianoborohidruro de sodio (NaBH₃CN) o triacetoxiborohidruro de sodio, o mediante una condensación mediada por hidruro de diisobutilaluminio (DIBAL-H) de una amina aromática con un aril-nitrilo, seguida por la reducción del complejo de aluminio-imina intermedio con cianoborohidruro de sodio o borohidruro de sodio. El método para condensar un nitrilo con una amina primaria o secundaria en presencia de hidruro de diisobutilaluminio para formar la imina correspondiente se da a conocer genéricamente en la patente estadounidense n.º 5.504.253.

35

30

La preparación de cinacalcet, descrita en el esquema 1 de Drugs of the Future 2002, 27(9), 831-836, (2002), comprende la reacción de 1(R)-(1-naftil)etilamina (R-NEA) con 3-[3-(trifluorometil)fenil]propionaldehído por medio de tetraisopropóxido de titanio (Ti(O-i-Pr)₄) para dar la imina correspondiente, que se reduce finalmente con cianoborohidruro de sodio en etanol, tal como se representa en el siguiente esquema 1:

40 Esquema 1

45

Tetrahedron Letters, (45), 8355-8358, (2004) pie de página 12, da a conocer la preparación del material de partida 3-[3-(trifluorometil)fenil]propionaldehído mediante reducción de ácido 3-(trifluorometil)cinámico en el alcohol correspondiente seguida por oxidación para dar el aldehído deseado, tal como se representa en el siguiente

esquema 2:

Esquema 2

5

10

20

25

30

35

Según Synthetic Communications, 38: 1512-1517 (2008), la síntesis anterior de cinacalcet implica el uso de reactivos tales como Ti(O-i-Pr)₄ y DIBAL-H, que tienen que manipularse en grandes volúmenes porque el cinacalcet ha de prepararse a escala comercial y la manipulación de estos reactivos pirofóricos y sensibles a la humedad a gran escala hace que la síntesis requiera más esfuerzo.

La solicitud de patente internacional WO 2008/035212 da a conocer un proceso alternativo para preparar 3-[3-(trifluorometil)fenil]propionaldehído, que comprende la oxidación de 3-[3-(trifluorometil)fenil]propan-1-ol.

La patente estadounidense n.º 7.250.533 da a conocer otro proceso para preparar cinacalcet, que comprende convertir el resto hidroxilo de 3-[3-(trifluorometil)fenil]propanol en un buen grupo saliente y combinar el compuesto resultante con (R)-(1-naftil)etilamina preferiblemente en presencia de una base, según el siguiente esquema 3:

Esquema 3

$$F_3C$$
OH
$$F_3C$$

$$X$$

$$+$$

$$H_2N$$

$$CNC$$

X = buen grupo saliente

Según la patente estadounidense n.º 7.294.735, puede formarse carbamato de cinacalcet en diversas cantidades mientras que se usan diferentes disolventes durante la síntesis de cinacalcet tal como se describe en la patente estadounidense n.º 7.250.533 anterior. La patente estadounidense n.º 7.294.735 da a conocer un proceso para la preparación de clorhidrato de cinacalcet, que contiene carbamato de cinacalcet en una cantidad de aproximadamente el 0,03 por ciento en área a aproximadamente el 0,15 por ciento en área medido mediante un método cromatográfico, que comprende las etapas de (a) disolver cinacalcet, que contiene carbamato de cinacalcet en una cantidad de aproximadamente el 3 por ciento en área a aproximadamente el 6 por ciento en área según se determina mediante un método cromatográfico, en acetona, un éter C₂₋₈ lineal o de cadena ramificada, mezclas del mismo o con agua; (b) añadir cloruro de hidrógeno para obtener un precipitado; y (c) recuperar el clorhidrato de cinacalcet.

La solicitud de patente estadounidense n.º 2007/259964 proporciona un proceso para preparar cinacalcet que comprende reducir ácido 3-(trifluorometil)cinámico para obtener ácido 3-(3-trifluorometilfenil)-propanoico, opcionalmente convertir ácido 3-(3-trifluorometilfenil)-propanoico en un derivado de ácido adecuado y combinar el ácido 3-(3-trifluorometilfenil)-propanoico o, si es el caso, dicho derivado con (R)-(1-naftil)etilamina para dar (R)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propanamida y reducir (R)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propanamida en cinacalcet, según el siguiente esquema 4:

40 Esquema 4

X = carbonilo, alcoxilo, halógeno o sulfonilo

Tetrahedron Letters, (49), 13-15, (2008), da a conocer una secuencia de síntesis para dar clorhidrato de cinacalcet que comprende la reducción de ácido 3-(trifluorometil)cinámico en presencia de hidróxido de paladio para obtener ácido 3-(3-trifluorometilfenil)-propanoico, que se acopla con (R)-1-(1-naftil)etilamina para dar la amida correspondiente. Entonces se reduce la amida en presencia de trifluoruro de boro-THF y borohidruro de sodio como agentes reductores. Tras la conversión completa, se hidroliza el complejo de amina-borano resultante mediante la adición de agua y se hace reaccionar el cinacalcet bruto extraído en tolueno con ácido clorhídrico para dar clorhidrato de cinacalcet, según el siguiente esquema 5:

Esquema 5 F₃C COOH F₃C COOH F₃C CNC.HCl

En la solicitud de patente n.º 2007MU00555 y Synthetic Communications, 38: 1512-1517 (2008) se da a conocer otro proceso para preparar clorhidrato de cinacalcet, a través de (R)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propanamida.

La patente estadounidense n.º 7.393.967 da a conocer un proceso para preparar cinacalcet a través del acoplamiento de 3-bromotrifluorotolueno con la alilamina (R)-N-(1-(naftalen-1-il)etil)prop-2-en-1-amina en presencia de un catalizador y al menos una base para obtener (R,E)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)prop-2-en-1-amina (CNC-eno) y reducir el cinacalcet insaturado para obtener cinacalcet, tal como se representa en el siguiente esquema 6:

25 Esquema 6

$$F_{3}C$$
 B_{r}
 H
 CNC

El documento WO 2009/002427 da a conocer varios métodos para la preparación de cinacalcet o sales del mismo y polimorfos de cinacalcet.

El documento EP 2022777 describe un método de hidrogenación para la preparación de cinacalcet a partir del alquino correspondiente.

El documento EP 1990333 da a conocer un proceso de múltiples etapas, que comprende hacer reaccionar un producto intermedio *in situ* formado a partir de ácido 3-(trifluometilfenil)propiónico y cloroformiato de etilo con una (R)-(+)-1-(1-naftil)etilamina para dar un producto intermedio de amida que entonces se reduce para obtener cinacalcet.

El documento WO 2009/025792 proporciona formas cristalinas de fumarato de cinacalcet y succinato de cinacalcet y procesos para preparar dichas formas cristalinas.

El documento WO 2009/039241 proporciona un proceso para producir clorhidrato de cinacalcet, que incluye: proporcionar una sal de carboxilato de cinacalcet, y convertir dicha sal de carboxilato de cinacalcet, más preferiblemente acetato de cinacalcet, en clorhidrato de cinacalcet por medio de una reacción de intercambio aniónico.

La presente invención proporciona un proceso novedoso y eficaz que conduce a cinacalcet, sus sales farmacéuticamente aceptables y productos intermedios del mismo, que es conveniente para la escala industrial y proporciona el producto deseado con buenos rendimientos.

Por consiguiente, es un objeto de la presente invención proporciona un método para preparar clorhidrato de cinacalcet y productos intermedios del mismo, que puede usarse para la producción en masa.

La presente invención proporciona un proceso para la preparación de clorhidrato de cinacalcet y productos intermedios del mismo, que avanza esencialmente tal como se representa en el siguiente esquema 7:

Esquema 7

5

20

$$F_3C$$
 (V)
 (IX)
 $($

Por tanto, es un objeto de la presente invención proporcionar un proceso para preparar el producto intermedio de cinacalcet de fórmula (X)

comprendiendo dicho proceso:

10 i) reducir el compuesto de fórmula (V)

para dar el compuesto de fórmula (IX)

15

$$F_3C$$

$$OH$$

$$(IX)$$

У

5 ii) tratar el compuesto de fórmula (IX) con un agente de cloración.

En un aspecto de la presente invención, el compuesto de fórmula (IX) no se aísla de la mezcla de reacción.

En otro aspecto de la presente invención, el compuesto de fórmula (IX) se aísla de la mezcla de reacción.

El compuesto de fórmula (IX) puede existir como base libre o como una sal de un ácido HZ, en el que Z es un contraión aniónico farmacéuticamente aceptable.

Un "contraión aniónico farmacéuticamente aceptable" Z se refiere a una molécula o un átomo cargado negativamente que está equilibrado por el producto intermedio de cinacalcet protonado cargado positivamente. Un contraión aniónico farmacéuticamente aceptable puede ser orgánico o inorgánico. Por ejemplo, los contraiones aniónicos farmacéuticamente aceptables representativos incluyen cloruro, bromuro, bisulfato (hidrogenosulfato), metanosulfonato, p-toluenosulfonato, fosfato, hidrogenofosfato, oxalato, formiato, acetato, citrato, tartrato, succinato, maleato y malonato. Se prefieren cloruro, bisulfato, p-toluenosulfonato, tartrato y succinato; se prefiere más cloruro.

20

10

En un aspecto preferido de la presente invención, el compuesto de fórmula (IX) se aísla de la mezcla de reacción como una sal tal como se dio a conocer anteriormente en el presente documento.

Como ejemplo, el compuesto de fórmula (IX) en la que Z es cloruro es el compuesto de fórmula (IXa)

25

$$F_3C$$
 OH
 $IXa)$

30

La reducción en la etapa i) puede llevarse a cabo en presencia de agentes reductores adecuados incluyendo borohidruro de sodio, borohidruro de litio, hidruro de diisobutilaluminio y 1,1,3,3-tetrametildisiloxano en combinación con un ácido de Lewis, por ejemplo AlCl₃, TCl₄, FeCl₃ o ZnCl₂. La reducción en la etapa i) puede llevarse a cabo con hidrógeno gaseoso en presencia de catalizadores de reducción adecuados incluyendo Pd/C, PtO₂ (catalizadores de Adam), níquel Raney y PdCl₂.

35

40

La reacción en la etapa i) puede llevarse a cabo en un disolvente seleccionado de, por ejemplo agua, un alcohol C_1 - C_5 lineal o ramificado, tal como, por ejemplo, alcohol metílico, etílico, n-propílico, iso-propílico, n-butílico, sec-butílico o terc-butílico, un éter C_4 - C_8 lineal, ramificado o cíclico tal como, por ejemplo, 1,2-dimetoxietano, 2-metoxietil éter, diisopropil éter, dibutil éter, metil terc-butil éter, tetrahidrofurano (THF) o 1,4-dioxano, o una mezcla de los mismos; seleccionándose el disolvente adecuado según procedimientos convencionales bien conocidos por un experto en la técnica, dependiendo del agente reductor. La reacción en la etapa i) puede llevarse a cabo a una temperatura de entre -10° y 40°C, a lo largo de un periodo de aproximadamente 0,5 a 10 horas. Cuando se usa el catalizador Pd/C, PtO2 o PdCl2, la presión de H_2 es normalmente de 101,325 kPa. Cuando se usa níquel Raney, la presión de H_2 es moderadamente alta (6.894,757 kPa). Normalmente, la hidrogenación se lleva a cabo a lo largo de un periodo de aproximadamente 5 a aproximadamente 24 horas.

45

La reducción en la etapa i) también puede llevarse a cabo a través de hidrogenación catalítica de transferencia (CTH). Cuando la reducción se lleva a cabo en condiciones de CTH, se emplean materiales de alimentación que portan hidrógeno adecuados, tales como, por ejemplo ácido fórmico, formiato de amonio o formiato de sodio, preferiblemente formiato de amonio o formiato de sodio. Para activar el material que porta hidrógeno como donador

de hidrógeno, se emplea un catalizador tal como se definió anteriormente para fomentar la transferencia de hidrógeno desde el material de alimentación que porta hidrógeno al sustrato. La CTH puede realizarse mediante cualquier método conocido por un experto en la técnica. En particular, cuando se usan técnicas de CTH en la reacción en la etapa i), el compuesto de fórmula (V) se disuelve en un disolvente seleccionado de por ejemplo, tolueno, ácido acético y un alcohol C₁-C₅ tal como se definió anteriormente, preferiblemente alcohol etílico, en presencia de ácido fórmico, formiato de amonio o formiato de sodio, preferiblemente formiato de amonio o formiato de sodio, a la temperatura de reflujo del disolvente seleccionado, a lo largo de un periodo de aproximadamente 5 a 48 horas.

10 Preferiblemente, la reducción en la etapa i) puede llevarse a cabo usando borohidruro de sodio en metanol a una temperatura que oscila entre -10°C y 10°C.

La reacción en la etapa ii) puede llevarse a cabo con un agente de cloración adecuado seleccionado del grupo que comprende cloruro de tionilo (SOCl₂), pentacloruro de fósforo (PCl₅), oxicloruro de fósforo (POCl₃), cloruro de oxalilo ((CICO)₂), ácido clorhídrico gaseoso, fosgeno (Cl₂CO), y equivalentes oligoméricos no gaseosos de fosgeno tales como cloroformiato de triclorometilo (difosgeno, líquido) y carbonato de bis(triclorometilo) (trifosgeno, BTC, sólido) que actúan como fuente de fosgeno *in situ*. Los disolventes que pueden emplearse en la etapa ii) pueden seleccionarse del grupo que comprende disolventes hidrocarbonados alifáticos lineales, ramificados y cíclicos C₃-C₇ incluyendo hexano, heptano, ciclopentano, ciclohexano, cicloheptano, y mezclas de los mismos; hidrocarburos aromáticos incluyendo benceno, tolueno, xilenos, prefiriéndose tolueno y xilenos, siendo el más preferido tolueno; éteres lineales, ramificados y cíclicos incluyendo metil terc-butil, diisopropil, di-n-butil éter, THF y metil-THF; disolventes apróticos incluyendo hexametilfosforamida (HMPA) y 1,3-dimetil-3,4,5,6-tetrahidro-2(1H)-pirimidinona (DMPU).

La reacción en la etapa ii) puede llevarse a cabo a una temperatura que oscila entre aproximadamente 0°C y el punto de ebullición del disolvente, a lo largo de un periodo de aproximadamente 1 hora a 24 horas. Preferiblemente, la reacción en la etapa ii) se lleva a cabo usando cloruro de tionilo u oxicloruro de fósforo (POCl₃) como el agente de cloración, en tolueno, a una temperatura que oscila entre 10° y 50°C, durante un tiempo que oscila entre 1 hora y 12 horas. En una realización más preferida, la reacción en la etapa ii) se lleva a cabo usando cloruro de tionilo en tolueno, operando a 30°C durante 3 horas.

Cuando el compuesto de fórmula (IX) se aísla de la mezcla de reacción, preferiblemente en forma de una sal de un ácido HZ tal como se definió anteriormente, la reacción en la etapa ii) puede llevarse a cabo preferiblemente con un disolvente seleccionado de, por ejemplo, ciclohexano, tolueno, xileno, diclorometano, THF o hexametilfosforamida (HMPA), a una temperatura de entre 10°C y el punto de ebullición del disolvente seleccionado, a lo largo de un periodo de aproximadamente 1 hora a 24 horas. Preferiblemente, la sal del compuesto de fórmula (IX) es la sal de clorhidrato.

Cuando el compuesto de fórmula (IX) no se aísla de la mezcla de reacción, la reacción en la etapa ii) puede llevarse a cabo preferiblemente con un disolvente seleccionado de, por ejemplo, ciclohexano, tolueno, xileno, diclorometano, 1,2-dicloroetano, metil terc-butil, diisopropil, di-n-butil éter, THF, metil-THF o hexametilfosforamida (HMPA), a una temperatura de entre 0º y 70ºC, a lo largo de un periodo de aproximadamente 1 hora a 24 horas.

En una realización, la reacción en la etapa ii) produce el producto intermedio de fórmula (X) a la vez que se genera una determinada cantidad del compuesto de fórmula (XI)

15

20

35

50

55

El compuesto de fórmula (X) o una mezcla de compuestos de fórmulas (X) y (XI) puede usarse entonces para preparar clorhidrato de cinacalcet de fórmula (I).

Además, la presente invención engloba un proceso para preparar clorhidrato de cinacalcet, preparando el producto intermedio de cinacalcet de fórmula (X) o una mezcla de compuestos de fórmulas (X) y (XI) tal como se describió anteriormente, y convirtiéndolo en clorhidrato de cinacalcet de fórmula (I).

Por tanto, es un objeto adicional de la presente invención un proceso para preparar clorhidrato de cinacalcet de fórmula (I)

que comprende las etapas de:

5 i) reducir el compuesto de fórmula (V)

para dar el compuesto de fórmula (IX)

10

15

25

$$F_3C$$

$$OH$$

$$(IX)$$

ii) tratar el compuesto de fórmula (IX) con un agente de cloración para dar el compuesto de fórmula (X), que puede estar en mezcla con el compuesto de fórmula (XI); y

$$F_{3}C$$

$$(XI)$$

$$(XI)$$

20 iii) convertir el compuesto de fórmula (X) o, si es el caso, el compuesto de fórmula (X) mezclado con el compuesto de fórmula (XI) en clorhidrato de cinacalcet de fórmula (I).

La conversión en la etapa iii) del compuesto de fórmula (X) o, si es el caso, el compuesto de fórmula (X) mezclado con el compuesto de fórmula (XI), puede llevarse a cabo con una fuente de protones ácida seleccionada de ácido clorhídrico acuoso o ácido acético glacial, preferiblemente ácido clorhídrico al 30% y Zn elemental. Los disolventes que pueden emplearse en la etapa iii) se seleccionan del grupo que comprende agua; alcoholes C₁-C₄ lineales y

ES 2 445 532 T3

ramificados seleccionados del grupo que comprende alcohol metílico, etílico, n-propílico, iso-propílico, n-butílico, sec-butílico y terc-butílico; éteres lineales, ramificados y cíclicos seleccionados del grupo que comprende metil terc-butil, diisobutil, di-n-butil éter, THF, metil-THF y mezclas de los mismos; a una temperatura que oscila entre 0° y 60°C. Preferiblemente, la reacción en la etapa iii) puede llevarse a cabo en etanol o mezclas de THF/agua a una temperatura de aproximadamente 25°C.

Alternativamente, la conversión en la etapa iii) puede llevarse a cabo mediante hidrogenación catalítica, es decir con hidrógeno molecular en presencia de un catalizador seleccionado de Pd/C, PtO2, níquel Raney y PdCl2, preferiblemente Pd/C. La hidrogenación catalítica puede realizarse mediante cualquier método conocido por un experto en la técnica. Por ejemplo, el compuesto de fórmula (X) o, si es el caso, el compuesto de fórmula (X) mezclado con el compuesto de fórmula (XI), puede disolverse en un disolvente adecuado y exponerse a presión de H₂, en presencia de un catalizador tal como, por ejemplo, Pd/C, PtO₂ (catalizadores de Adam), níquel Raney o PdCl₂. Cuando el catalizador se selecciona de Pd/C, PtO₂ o PdCl₂, se elige la presión de H₂ en el intervalo de desde 50,66 hasta 506,62 kPa, mientras que cuando el catalizador es níquel Raney, se elige la presión de H₂ en un mayor intervalo de desde 405,3 hasta 7092,75 kPa. El disolvente adecuado puede seleccionarse del grupo que comprende un nitrilo C₂-C₅ tal como, por ejemplo, acetonitrilo; un alcohol C₁-C₄ lineal o ramificado tal como, por ejemplo, alcohol metílico, etílico, n-propílico, iso-propílico, n-butílico, sec-butílico o terc-butílico; una cetona C₃-C₉ lineal o ramificada tal como, por ejemplo, metiletil o metilisobutil cetona; un éster C₃-C₇ lineal o ramificado tal como, por ejemplo, acetato de etilo, iso-propilo o n-butilo; tolueno y mezclas de los mismos. Preferiblemente, el disolvente puede seleccionarse del grupo que consiste en metanol, etanol, isopropanol, acetato de etilo y mezclas de los mismos; más preferiblemente el disolvente es metanol. Normalmente, la hidrogenación se lleva a cabo a lo largo de un periodo de aproximadamente 1 hora a 96 horas. La temperatura de reacción puede oscilar entre 0º y 50°C, preferiblemente entre 10° y 30°C, lo más preferiblemente la hidrogenación se lleva a cabo a 20°C.

En un aspecto preferido, la conversión en la etapa iii) se lleva a cabo disolviendo el compuesto (X) o, si es el caso, el compuesto de fórmula (X) mezclado con el compuesto de fórmula (XI), en metanol y exponiendo la mezcla a gas hidrógeno a 100 kPa, a 20°C en presencia del 0,5%-1% mol/mol de Pd/C.

La conversión en la etapa iii) también puede producirse de manera eficaz cuando el compuesto de fórmula (X) está presente como base libre.

En un aspecto particular, la presente invención proporciona la formación de la base libre del compuesto de fórmula (X), antes de convertirlo en clorhidrato de cinacalcet. El compuesto de fórmula (X) como base libre preferiblemente no se aísla de la mezcla de reacción antes de su conversión en clorhidrato de cinacalcet.

El compuesto de fórmula (X) se convierte por tanto en la base libre correspondiente mediante reacción con una base acuosa seleccionada del grupo que comprende hidróxido de sodio, hidróxido de potasio, carbonato de sodio, carbonato de potasio, hidrogenocarbonato de sodio e hidrogenocarbonato de potasio, y se extrae en un disolvente orgánico, tal como por ejemplo, tolueno, acetato de etilo, acetato de isopropilo o MTBE, antes de convertirse en clorhidrato de cinacalcet. Alternativamente, el compuesto de fórmula (X) se disuelve en metanol en presencia de una base inorgánica, tal como, por ejemplo, carbonato de sodio, carbonato de potasio, hidrogenocarbonato de sodio o hidrogenocarbonato de potasio.

En una realización preferida, se forma la base libre del compuesto de fórmula (X) con hidrogenocarbonato de sodio acuoso, se extrae en tolueno y luego se expone a hidrógeno a 100 kPa en una mezcla de tolueno/metanol o tolueno/acetona, a una temperatura de 20°C, en presencia de Pd/C. En otra realización preferida, el compuesto de fórmula (X) se disuelve en metanol y la reacción se lleva a cabo mediante la presurización a 100 kPa con hidrógeno en presencia de Pd/C y una cantidad estequiométrica de hidrogenocarbonato de sodio, a una temperatura de 20°C.

La presente invención también incluye un proceso en un solo recipiente para la preparación de clorhidrato de cinacalcet sin aislamiento de productos intermedios; en particular, el producto intermedio de fórmula (IX) se prepara y se usa *in situ* sin aislamiento.

El compuesto de fórmula (V) tal como se definió anteriormente puede prepararse según los métodos descritos en la solicitud de patente internacional n.º WO 2010/049293 en tramitación junto con la presente de ZaCh System, por ejemplo, tal como se notifica en el siguiente ejemplo de referencia 1. La presente invención se ejemplifica mediante los siguientes ejemplos, que se proporcionan únicamente para ilustración y no debe interpretarse que limitan el alcance de la invención.

60 Ejemplo de referencia 1

Síntesis de sal de clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ona (V)

Método A

65

55

10

15

20

35

Se cargaron clorhidrato de (R)-(1-naftil)etilamina (100,0 g), paraformaldehído (15,9 g), 3-(trifluorometil)acetofenona (135,7 g), ácido clorhídrico acuoso al 30% p/p (5,6 g), etanol (150,0 g) y agua (10,0 g) en el reactor y se agitó a reflujo durante 14 h, hasta que se observó una conversión satisfactoria mediante HPLC. Entonces se añadieron agua (300,0 g) y tolueno (305,0 g) y se agitó la mezcla a 25°C. Se separaron las fases orgánica y acuosa y se cargó agua adicional (200,0 g) sobre la fase orgánica con el fin de favorecer la precipitación. Se aisló el compuesto del título (95,6 g) tras filtración a temperatura ambiente, lavado con agua y metil terc-butil éter y desecación a 50°C.

RMN de sal de clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)-fenil)-propan-1-ona (V) 1 H-RMN (400 MHz, DMSO-d₆), δ (ppm, TMS): 10,00 (1H, s a; -N H_{2}^{+} -), 9,24 (1H, s a; -N H_{2}^{+} -), 8,31 (1H, d, J = 8,4; ArH), 8,23 (1H, d, J = 8,0 Hz; ArH), 8,16 (1H, s a; ArH), 8,08-7,96 (4H, m; ArH), 7,82 (1H, t, J = 8,0 Hz; ArH), 7,69-7,58 (3H, m; ArH), 5,47-5,36 (1H, m; -CH(CH₃)-), 3,70-3,54 (2H, m; -C H_{2} -), 3,41-3,26 (2H, m; -C H_{2} -), 1,72 (3H, m, J = 6,4 Hz; -CH(C H_{3})-).

Método B

15

20

30

35

40

45

50

Se cargaron clorhidrato de (R)-(1-naftil)etilamina (1,5 g), paraformaldehído (0,3 g), 3-(trifluorometil)acetofenona (1,8 g), ácido clorhídrico acuoso al 30% p/p (0,1 g), etanol (4,5 g) y agua (1,5 g) en el reactor con agitación y se hicieron reaccionar durante 5 minutos con irradiación de microondas (máx. 250 W), hasta que se observó una conversión satisfactoria mediante HPLC. Entonces se añadieron agua (10,0 g) y tolueno (3,0 g) y se agitó la suspensión resultante a 25°C. Se aisló el compuesto del título (1,6 g) tras filtración a temperatura ambiente, lavado con agua y metil-2-propanol y desecación a 50°C.

25 Ejemplo 1

Síntesis de clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ol (IXa)

Se suspende clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ona (V) (15,95 g, 39,104 mmol) en metanol frío (50 ml) a -10°C y, posteriormente, se añade lentamente una disolución de borohidruro de sodio (0,75 g, 19,610 mmol), hidróxido de sodio acuoso al 30% p/p (5,74 g, 43,014 mmol) y agua (5 ml) con el fin de mantener la temperatura interna por debajo de 0°C. Se agita la mezcla de reacción a 0°C durante 0,5 h y entonces se extingue mediante adición de ácido clorhídrico acuoso al 30% p/p hasta pH=1, seguido por agua (40 ml), y se permite que alcance la temperatura ambiente. Se calienta la suspensión espesa así formada hasta 50°C, se agita durante 20 minutos y entonces se enfría hasta 5°C. Se filtra el precipitado, se lava con una mezcla de agua/metanol 9:1 vol/vol (10 ml) y se seca a 50°C a vacío. Se obtienen 14,69 g (35,841 mmol) de clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ol (IXa) de alta calidad (rendimiento: 91,7%; polvo de color blanco).

Ejemplo 2

Síntesis de clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X)

$$F_3C \xrightarrow{HCl} HCl \\ H \xrightarrow{H} HCl \\ H \xrightarrow{H} H$$

Se suspende clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ol (IXa) (20,0 g, 48,796 mmol) en tolueno (140 ml) a 40°C y se añade gota a gota cloruro de fosforilo (4,3 g, 28,044 mmol) a lo largo de 10 minutos. Se agita la mezcla de reacción durante dos horas a 60°C, entonces se añade DMF (1,0 g) a 40°C, seguido por cloruro de fosforilo adicional (3,2 g, 20,870 mmol). Se agita la mezcla a 40°C durante la noche y entonces se añade MTBE (40 ml). Se eliminan los componentes volátiles mediante destilación a vacío repetidamente y se restituye el MTBE. Tras esto, se recibe una disolución de tolueno/MTBE 1:1 vol/vol, que se calienta hasta 70°C y se permite que se enfríe lentamente hasta 15°-20°C. Se envejece el precipitado así obtenido a

temperatura ambiente durante la noche, entonces se filtra y se lava con una mezcla de tolueno/MTBE 1:1 vol/vol (3 x 12 ml). Se obtiene clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) como un polvo de color blanco tras desecación a 55°C a vacío (6,0 g, 14,008 mmol, rendimiento: 28,7%).

Ejemplo 3

5

10

15

20

25

30

35

40

45

50

55

60

Síntesis de clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) y clorhidrato de (R,E)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)prop-2-en-1-amina (XI)

Método A

Se suspende clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ol (IX) (35,0 g, 85,393 mmol) en tolueno (150 ml) a 20°C y se añade lentamente cloruro de tionilo (11,2. g, 94,141 mmol). Se agita la mezcla de reacción a 30°-40°C durante 4-5 h y entonces se elimina el disolvente por destilación a vacío. Se lava la suspensión espesa en tolueno residual con isopropanol, tras varios ciclos de destilación/rellenado. Se pone a reflujo la disolución en isopropanol resultante durante 1 h, entonces se enfría hasta 45°C y se le añade metil terc-butil éter (MTBE) (70 ml). Se agita la suspensión así obtenida a 45°C durante 1 h, entonces se enfría hasta 0°C y se envejece durante 1 h. se obtienen 29,6 g de una mezcla 95,8:4,2 (% de área de HPLC) de clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)prop-1-amina (XI) y clorhidrato de (R,E)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)prop-2-en-1-amina (XI) como un polvo de color blanco tras filtración, lavado con una mezcla de isopropanol/MTBE 3:1 vol/vol (2 X 20 ml) y desecación a 55°C a vacío.

Método B

Se suspende clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ol (IX) (50,0 g, 121,990 mmol) en MTBE (200 ml) y agua (80 ml) a temperatura ambiente. Se añade gota a gota hidróxido de sodio (disolución acuosa al 30% p/p) (17,1 g, 128,250 mmol) con el fin de controlar la reacción exotérmica y se agita la mezcla hasta que se disuelve por completo el sólido de partida. Entonces se separa la fase orgánica y se lava repetidamente con agua hasta pH neutro. Por tanto se lava el MTBE con tolueno y se añade lentamente cloruro de tionilo (16,7 g, 140,372 mmol) a la disolución en tolueno resultante, a la vez que se mantiene a 10°-20°C. Se calienta la mezcla de reacción hasta 60°C y se mantiene durante 4 h, o hasta IPC positivo (mediante HPLC). Al completarse la reacción, se carga MTBE (170 ml) y se calienta la mezcla hasta 80°-85°C y se elimina de manera azeotrópica las trazas de agua. Se enfría la mezcla hasta 60°C, se restituye el MTBE, entonces se enfría hasta 10°C y se envejece durante dos horas. Se obtienen 46,1 g de una mezcla 96,2:3,8 (% de área de HPLC) de clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)prop-2-en-1-amina (XI) como un polvo de color blanco tras filtración, lavado con una mezcla de tolueno/MTBE 1:1 vol/vol (3 x 40 ml) y desecación a 55°C a vacío.

Ejemplo 4

Síntesis en un solo recipiente de clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) y clorhidrato de (R,E)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)prop-2-en-1-amina (XI)

Se suspende clorhidrato de (R)-3-(1-(naftalen-1-il)etilamino)-1-(3-(trifluorometil)fenil)propan-1-ona (V) (100,0 g, 245,182 mmol) en metanol frío (50 ml) a -10°C y, posteriormente, se añade lentamente una disolución de borohidruro de sodio (4,6 g, 121,597 mmol), hidróxido de sodio acuoso al 30% p/p (35,5 g, 266,250 mmol) y agua (30 ml) con el fin de mantener la temperatura interna por debajo de 0°C. Se agita la mezcla de reacción a 0°C durante 0,5 h, entonces se extingue mediante adición de ácido acético (36,7 g, 611,157 mmol), se permite que alcance la temperatura ambiente y se le añade agua (280 ml). Se elimina el disolvente volátil por destilación a vacío a 40°C, entonces se carga MTBE (400 ml). Se separa la fase orgánica y se lava con agua (3 x 50 ml). Entonces se libera la base libre mediante adición de hidróxido de sodio (ac. al 30% p/p; 48,8 g, 366,0 mmol) hasta pH=12-13, y se lava la fase orgánica con agua (3 x 50 ml). Se elimina el MTBE por destilación a vacío y se lava con tolueno. Entonces se enfría la mezcla de reacción hasta 20°C y se carga gota a gota una disolución de cloruro de tionilo (30,5 g, 256,367 mmol) en tolueno (60 ml) a lo largo de dos horas. Entonces se agita la mezcla a 30°C durante 3 horas y una vez que se completa la reacción, se eliminan los componentes volátiles a vacío a 60°C. Entonces se restituye el tolueno y se enfría la mezcla de reacción hasta 20°C. Se añade diisopropil éter (200 ml) y se pone a reflujo la mezcla de reacción a 80°C durante 1 hora, entonces se enfría hasta 20°C. Se filtra la suspensión espesa

resultante, se lava el sólido con tolueno/diisopropil éter 2:1 vol/vol (60 ml), seguido por MTBE (3 x 60 ml). Se calienta la suspensión espesa así formada hasta 50°C, se agita durante 20 minutos y entonces se enfría hasta 5°C. Se obtienen 65,0 g de una mezcla 98,4:1,6 (% de área de HPLC) de clorhidrato de (R)-3-cloro-N-(1-(naftaten-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) y clorhidrato de (R,E)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)-prop-2-en-1-amina (XI) como un polvo de color blanco tras desecación a 55°C a vacío.

Ejemplo 5

10

Síntesis de clorhidrato de (R)-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (I) (clorhidrato de cinacalcet)

$$F_3C$$

$$HC1$$

$$H_3$$

$$H_4$$

$$H_5$$

$$H_7$$

Método A

15 Se cargan clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) (15,0 g, 35,021 mmol), metanol (150 ml), catalizador heterogéneo y eventualmente un aditivo en un autoclave, se expone a una atmósfera inerte y entonces se presuriza con gas hidrógeno a 100 kPa, con agitación a 20°C. Una vez que se completa la reacción (IPC mediante HPLC), se aísla el producto final (clorhidrato de cinacalcet) tras filtración a través de un lecho de Celite®, eliminación del disolvente y, eventualmente, recristalización según las enseñanzas del ejemplo 13 de la solicitud de patente internacional n.º WO 2010/094674 en los casos en los que no se emplea 20 aditivo. En el caso en el que se usa bicarbonato de sodio en la mezcla de reacción como extintor de cloruro de hidrógeno, se añade agua y entonces se filtra la mezcla de reacción a través de un lecho de Celite®. Tras eliminarse el metanol a vacío, se añade acetato de isopropilo (150 ml) y se carga hidróxido de sodio al 30% p/p hasta que se disuelve por completo la suspensión de partida. Entonces se separa la fase orgánica, se lava con agua hasta pH 25 neutro, se trata con ácido clorhídrico acuoso al 30% p/p hasta pH 2-3 y se concentra para dar clorhidrato de cinacalcet, que se recristaliza opcionalmente en disolventes de éster o éter o mezclas de los mismos con pequeñas cantidades de disolvente alcohólico (véase la siguiente tabla para resultados detallados).

Catalizador	Cat., %	Aditivo/equiv.	Tiempo, h	Conv., %
Pd al 5%/C ⁽¹⁾	0,5	-	96	99,5
Pd al 5%/C ⁽¹⁾	0,9	-	43	98,6
Pd al 5%/C ⁽¹⁾	0,5	NaHCO ₃ /0,95	9	99,7
Pd(Pb)/CaCO ₃	5,0	NaHCO ₃ /0,95	5	32,5
PdCl ₂	5,0	NaHCO ₃ /0,95	9	97,9
Ni Raney	5,0	-	7	13,6
PdCl ₂	5,0	-	8	89,0

(1) Pd al 5%/C Engelhard 5398: catalizador optimizado específicamente para reacciones de N,O-desbencilación (2) Pd al 5%/C Engelhard 5016

30 Método B

35

Se suspende clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) (5,0 g, 11,674 mmol) en disolvente alcohólico o mezclas de agua/THF (40 ml) a 25°C. Se carga un aditivo ácido fuente de protones (7-8 equiv.) seguido por polvo de zinc (2,5-3,5 equiv.), añadido en porciones. Se observan desprendimiento de gas, reacción exotérmica y disolución del material de partida y se agita la mezcla de reacción a 25°C hasta que se logra el consumo completo de zinc. Se monitoriza el transcurso de la reacción mediante HPLC (véase la siguiente tabla para resultados detallados).

	Fuente de protones	Disolvente	Tiempo, h	Conv., %
3,0	HCI ac.	MeOH	22	99,7
3,0	HCI ac.	EtOH	22	97,9
3,0	HCI ac.	THF/H ₂ O	22	90,9
3,0	HOAc	THF/H ₂ O	22	99,8

Método C

Se disuelve clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) (10,0 g, 23,347 mmol) en metanol (100 ml) y se añade cloruro de paladio (0,124 g, 0,699 mmol) a 20°C. Se carga lentamente trietilsilano (7,4 g, 63,639 mmol) a lo largo de 20 minutos, con el fin de controlar la reacción exotérmica y entonces se agita la mezcla de reacción a 20°C. Tras 18 horas, se observa una conversión del 94% mediante HPLC.

Método D

Se suspende clorhidrato de (R)-3-cloro-N-(1-(naftalen-1-il)etil)-3-(3-(trifluorometil)fenil)propan-1-amina (X) (15,0 g, 35,021 mmol) en tolueno (90 ml) a 15°-20°C y se carga gota a gota bicarbonato de sodio ac. sat. (75,6 g, ≈72 mmol), con agitación vigorosa, hasta pH=8-9 de la fase acuosa. Se dispone la mezcla en reposo algunos minutos y entonces se separa la fase orgánica, se lava con agua (2 x 75 ml) y se transfiere a un autoclave. Se añade paladio al 5% sobre carbono (contenido en humedad del 50%) (0,373 g, 0,088 mmol), seguido por metanol (15 ml), se expone la mezcla a atmósfera inerte, entonces se presuriza con gas hidrógeno a 100 kPa, tras agitar a 20°C. Se mantiene la presión de hidrógeno hasta IPC positivo (mediante HPC, aproximadamente 4-5 h), entonces se filtra la mezcla de reacción a través de un lecho de Celite[®]. Se elimina el etanol por destilación de la disolución filtrada y se añade acetato de isopropilo (IPAC) (90 ml). Se calienta la suspensión resultante hasta 70°C y se agita durante 30 minutos, entonces se enfría lentamente hasta 0°C. Se aísla clorhidrato de cinacalcet como un polvo de color blanco tras filtración, lavado con IPAC (2 x 15 ml) y desecación a 60°-65°C a vacío (11,4 g, 28,944 mmol; rendimiento: 82,6%).

REIVINDICACIONES

1. Producto intermedio de cinacalcet que tiene la siguiente fórmula (X)

₅ (X)

- 2. Proceso para la preparación del producto intermedio de cinacalcet de fórmula (X) según la reivindicación 1, que comprende las etapas de:
- 10 i) reducir el compuesto de fórmula (V)

para dar el compuesto de fórmula (IX)

 F_3C OH (IX)

У

15

20 ii) tratar el compuesto de fórmula (IX) con un agente de cloración seleccionado del grupo que comprende cloruro de tionilo (SOCl₂), pentacloruro de fósforo (PCl₅), oxicloruro de fósforo (POCl₃), cloruro de oxalilo ((CICO)₂), ácido clorhídrico gaseoso, fosgeno (Cl₂CO), y equivalentes oligoméricos no gaseosos de fosgeno tales como cloroformiato de triclorometilo (difosgeno, líquido) y carbonato de bis(triclorometilo) (trifosgeno, BTC, sólido), que actúan como fuente de fosgeno in situ.

3. Proceso según la reivindicación 2, en el que el agente de cloración es cloruro de tionilo (SOCl₂) u oxicloruro de fósforo (POCl₃).

4. Proceso según la reivindicación 2, en el que el compuesto de fórmula (IX) no se aísla de la mezcla de reacción.

5. Proceso según la reivindicación 2, en el que el compuesto de fórmula (IX) se aísla de la mezcla de reacción en forma de una sal con un ácido HZ, en el que Z es un contraión aniónico farmacéuticamente aceptable seleccionado del grupo que comprende: cloruro, bromuro, bisulfato (hidrogenosulfato), metanosulfonato, p-toluenosulfonato, fosfato, hidrogenofosfato, oxalato, formiato, acetato, citrato, tartrato, succinato, maleato y malonato.

6. Proceso según la reivindicación 5, en el que Z es cloruro.

- 7. Proceso para la preparación de clorhidrato de cinacalcet de fórmula (I), que comprende las etapas de preparar el compuesto de fórmula (X) según la reivindicación 2 y convertirlo en clorhidrato de cinacalcet.
- 8. Proceso para preparar clorhidrato de cinacalcet de fórmula (I)

40

35

25

que comprende las etapas de:

5 i) reducir el compuesto de fórmula (V)

para dar el compuesto de fórmula (IX)

10

15

 F_3C OH (IX)

ii) tratar el compuesto de fórmula (IX) con un agente de cloración seleccionado del grupo que comprende cloruro de tionilo (SOCl₂), pentacloruro de fósforo (PCl₅), oxicloruro de fósforo (POCl₃), cloruro de oxalilo ((CICO)₂), ácido clorhídrico gaseoso, fosgeno (Cl₂CO), y equivalentes oligoméricos no gaseosos de fosgeno tales como cloroformiato de triclorometilo (difosgeno, líquido) y carbonato de bis(triclorometilo) (trifosgeno, BTC, sólido), que actúan como fuente de fosgeno *in situ.*, para dar el compuesto de fórmula (X), que puede estar en mezcla con el compuesto de fórmula (XI), y

(XI)

ES 2 445 532 T3

- iii) convertir el compuesto de fórmula (X) o, si es el caso, el compuesto de fórmula (X) mezclado con el compuesto de fórmula (XI) en clorhidrato de cinacalcet de fórmula (I).
- 9. Proceso según la reivindicación 8, en el que la conversión en la etapa iii) se lleva a cabo con una fuente de protones ácida seleccionada de ácido clorhídrico acuoso y ácido acético glacial y Zn.
 - 10. Proceso según la reivindicación 9, en el que la fuente de protones ácida es ácido clorhídrico.
- 11. Proceso según la reivindicación 8, en el que la conversión en la etapa iii) se lleva a cabo con hidrógeno 10 molecular en presencia de un catalizador.
 - 12. Proceso según la reivindicación 11, en el que el catalizador se selecciona del grupo que comprende Pd/C, PtO₂, níquel Raney y PdCl₂.
- 13. Proceso según la reivindicación 12, en el que el catalizador es Pd/C. 15
 - 14. Proceso según la reivindicación 11, en el que la conversión se lleva a cabo en presencia de un aditivo.
 - 15. Proceso según la reivindicación 14, en el que el aditivo es NaHCO₃.
 - 16. Proceso según la reivindicación 8, en el que el compuesto de fórmula (X) es de base libre, antes de convertirlo en clorhidrato de cinacalcet en la etapa iii).
- 17. Proceso según la reivindicación 16, en el que el compuesto de fórmula (X) como base libre no se aísla de la 25 mezcla de reacción.
 - 18. Proceso según la reivindicación 8, en el que el producto intermedio de fórmula (IX) se prepara y se usa in situ sin aislamiento.

17