

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 447 422

51 Int. Cl.:

C12N 15/85 (2006.01) A01K 67/033 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 28.07.2004 E 04743590 (4)
 (97) Fecha y número de publicación de la concesión europea: 20.11.2013 EP 1649027
- (54) Título: Sistemas de expresión para el control de insectos dañinos
- (30) Prioridad:

28.07.2003 GB 0317656

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 12.03.2014

(73) Titular/es:

OXITEC LIMITED (100.0%) 71 MILTON PARK, ABINGDON OXFORDSHIRE OX14 4RX, GB

(72) Inventor/es:

ALPHEY, LUKE

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Sistemas de expresión para el control de insectos dañinos

5 La presente invención se refiere a sistemas de expresión en insectos que comprenden un promotor.

La manipulación genética de insectos distintos de *Drosophila melanogaster*, por procedimientos de ADN recombinante está en su infancia (Alphey, 2002; Alphey y Andreasen, 2002; Alphey y col., 2002; Benedict y Robinson, 2003; Berghammer y col., 1999; Catteruccia y col., 2000; Coates y col., 1998; Handler, 2002; Horn y col., 2002; Jasinskiene y col., 1998; Lobo y col., 2002; Lozovsky y col., 2002; McCombs y Saul, 1995; Moreira y col., 2004; Peloquin y col., 2000; Perera y col., 2002; Scott y col., 2004), y se han obtenido muy pocas líneas transgénicas de insectos no-*Drosophila*, utilizando promotores heterólogos.

La transformación de insectos es un sistema de baja eficacia que requiere la identificación de transformantes escasos, en un contexto con un gran número de individuos no transformados. Por tanto, es importante que los transformantes tengan un marcador fácilmente valorable. Actualmente los marcadores favoritos son las proteínas fluorescentes, tales como la GFP, DsRed y sus derivados mutantes. Estos requieren elementos de control de la transcripción, incluyendo un promotor, para su funcionamiento. Los mejor conocidos de estos son los genes de la *Drosophila* Actin5C (Act5C) y ubi-p63E (Pub). También se ha utilizado una seda de polilla homóloga de Act5C, el BmA3, así como un par de promotores específicos de tejido (3xP3, un promotor sintético específico de ojo, y Act88F, específico de los músculos indirectos de vuelo).

Sin embargo, ninguno de estos promotores es satisfactorio completamente. El Act5C se ha utilizado para transformar varios mosquitos, así como *Drosophila*, pero su patrón de expresión en mosquitos está lejos de ser ubicuo (Catteruccia y col., 2000; Pinkerton y col., 2000). Los esfuerzos para utilizarlo como parte de un marcador de transformación en la mosca mediterránea de la fruta (Ceratitis capitata) han fallado, donde los experimentos con Pub habían conseguido un buen resultado. El Pub tiene limitaciones similares: el patrón de expresión que se ha visto en los transformantes de la mosca mediterránea de la fruta es muy variable, sugiriendo que el patrón de expresión es al menos muy sensible al efecto de posición. Además, ninguno de estos promotores se puede regular en un sentido o activarse o desactivarse si se desea.

Fussenegger y col., (1998a; 1998b) ilustra una retroalimentación positiva que controla transcripciones multicistrónicas, utilizando un marcador de selección, en un ejemplo. Los experimentos se restringieron a sistemas mamíferos. Se describe el pTRIDENT como un operón artificial mamífero tricistrónico. Se ha descrito la expresión o la expresión transitoria de genes del ciclo celular detenidos para "manipulación metabólica", es decir, que regulan la expresión de proteínas deseadas, y se menciona que un efecto de "silenciamiento" del dominio transactivador VP16 puede ser letal para la célula huésped, incluso a niveles de expresión moderados (Berger y col., 1990; Damke y col., 1995; Gill y Ptashne, 1988; Gossen y Bujard, 1992; Salghetti y col., 2001). Se han tratado los beneficios de los sistemas autorreguladores mono o policistrónicos, incluyendo los sistemas de expresión multicistrónicos selectivos de mamíferos que incluyen el tTA en una configuración basada en pTRIDENT o una configuración tetracistrónica (pQuatro-tTA; Fussenegger y col., (1998b); Figura 2). Aunque el gen tTA se codifica en la unidad de expresión multicistrónica por sí misma, no se expresa o se expresa poco tTA bajo condiciones de restricción. Este sistema de regulación por retroalimentación positiva no muestra signos de silenciamiento. Los experimentos con una configuración monocistrónica de retroalimentación positiva en animales transgénicos, tampoco ha mostrado efectos perjudiciales (Shockett y col., 1995).

Se han caracterizado muy pocos promotores u otros elementos de control, y existe una necesidad acuciante para tales elementos. Sería deseable proporcionar un promotor universal activo en todas o casi todas las células de un amplio intervalo de insectos, o que fuera capaz de una utilización más amplia que un promotor existente. Una pretensión más es regular la actividad de los promotores de insectos, especialmente en una manera de estadio de vida y/o específica de sexo. También se pretende reducir o eliminar selectivamente la actividad del promotor en células o teiidos particulares. La presente invención proporciona tales sistemas.

Sorprendentemente, se ha descubierto ahora que es posible emplear un mecanismo de retroalimentación positiva tanto para mejorar el efecto de un promotor de insectos, así como para controlar su expresión.

Por tanto, en un primer aspecto, la presente invención proporciona un sistema de expresión génica de insectos, que comprende al menos un gen que hay que expresar y al menos un promotor del mismo, en el que el producto del gen que hay que expresar sirve como factor de control positivo de la transcripción para al menos un promotor, y que es controlable por el producto, o la expresión del producto.

Como se utiliza en el presente documento, el término "gen" se refiere a cualquier secuencia de ADN que se pueda transcribir o traducir en un producto, al menos uno de los cuales tiene una actividad o función in vivo. Tal gen normalmente tendrá al menos un promotor de transcripción y un terminador asociado operativamente con él.

65

10

15

20

25

30

35

45

50

55

El producto capaz del control positivo de la transcripción puede actuar de cualquier manera adecuada. En particular, el producto se puede unir a un potenciador localizado en las proximidades del promotor o promotores, sirviendo de esta manera para mejorar la unión de la polimerasa al promotor, por ejemplo. Se pueden emplear otros mecanismos, tales como contra un represor de los mecanismos, tal como el bloqueo de un inhibidor de la transcripción o la traducción. Los inhibidores de la transcripción se pueden bloquear, por ejemplo, utilizando ARN en horquilla o ribozimas para bloquear la traducción del ARNm que codifica el inhibidor, por ejemplo, o el producto se puede unir al inhibidor directamente, previniendo de esta manera la inhibición de la transcripción o la traducción.

- Más preferentemente, el mecanismo es un mecanismo de retroalimentación positiva, en el que el producto, que puede ser el ARN o el producto de la traducción del mismo, actúa en el sitio del potenciador de la transcripción, normalmente uniéndose al sitio, y así aumentando la actividad promotora. El aumento de la actividad promotora sirve entonces para incrementar la transcripción del gen para el producto, que a su vez, además sirve para elevar la inhibición o mejorar la promoción, llevando de esta manera a un bucle de retroalimentación positiva.
- El control del producto puede ser por cualquier medio adecuado, y puede efectuarse a cualquier nivel. Se prefiere que el control sea eficaz bien para bloquear la transcripción del gen de factor de control o para bloquear la traducción del producto ARN del mismo, o para prevenir o inhibir la acción de la traducción del producto del gen.
- Por ejemplo, el producto del gen tTA (activador de transcripción que se reprime en presencia de tetraciclina) actúa en la secuencia del operador tetO (Baron y Bujard, 2000; Gossen y col., 1994; Gossen y Bujard, 1992). Corriente arriba de un promotor, en cualquier orientación, cuando el tetO se une al producto del gen tTA, es capaz de aumentar los niveles de transcripción a partir de un promotor que esté muy próximo al mismo. Si el gen tTA es parte del casete que comprende el operador tetO junto con el promotor, se produce entonces la retroalimentación positiva cuando se expresa el producto génico del tTA.

25

- El control de este sistema se consigue fácilmente por exposición a la tetraciclina, la cual se une al producto génico e impide la transactivación del tetO.
- El sistema tTA también tiene la ventaja de proporcionar una toxicidad específica del estadio en varias especies. En particular, se observa el "silenciamiento" en las fases de desarrollo de muchos insectos, siendo la fase precisa de los insectos susceptibles dependiente de la especie. Algunos insectos pueden alcanzar el estadio de pupa antes de que muera la larva, mientras que otros mueren antes. La susceptibilidad varía del 100 % de mortalidad a una pequeña reducción de las tasas de supervivencia. Sin embargo, en general, los insectos adultos parecen ser inmunes al efecto de silenciamiento de tTA, por lo que es posible criar insectos que comprendan un sistema tTA de retroalimentación positiva en presencia de tetraciclinas, y luego liberar los insectos adultos en el medio. Estos insectos no suponen o mínimamente, una desventaja para el tipo silvestre, y se cruzarán con los insectos de tipo silvestre, pero las larvas que portan el casete tTA de retroalimentación positiva morirán antes de alcanzar la madurez.
- Es relativamente sencillo modificar la secuencia de tTA para mejorar la compatibilidad con la especie de insecto que se desee, y esto se ha demostrado en los Ejemplos adjuntos, con tTAV, el cual tiene dos aminoácidos adicionales que proporcionan un sitio para proteasas, pero que se codifica por una secuencia que se ha cambiado sustancialmente a partir de la del tTA con el fin de que se ajuste más estrechamente a su uso en *Drosophila*.
- 45 En consecuencia, en un aspecto preferido, la presente invención proporciona un sistema como el que se describe, en el que al menos un gen es tTA, o es un gen que codifica un producto similar al tTA eficaz para regular positivamente el promotor tetO.
- Por tanto, la presente invención es útil en combinación con un gen letal dominante, que permita la expresión selectiva del gen letal dominante, o la expresión en un estadio específico, como se desee, del gen letal o del fenotipo letal. Se apreciará que el gen letal dominante no necesita de una parte integral del mecanismo de retroalimentación positiva, sino que puede ser parte de un casete bicistrónico, por ejemplo. Particularmente se prefiere el uso de la presente invención en asociación con RIDL (Liberación de Insectos que son portadores de un Dominante Letal).
- El control del mecanismo de retroalimentación positiva, en el caso de tTA o un análogo del mismo, se efectúa simplemente por la presencia o ausencia de tetraciclina, o por modulación de la concentración de tetraciclina, cuando se utiliza el producto del gen tTA. En el caso de otro sistema de retroalimentación positiva, el GAL4, se puede controlar por ejemplo, por temperatura, suprimiendo de esta manera el gen eficaz, preferentemente un gen letal dominante, hasta que se libere el insecto.
 - Se pueden emplear también otros mecanismos, tales como ribozimas o antisentido o moléculas ARN parcialmente autocomplementarias, tales como ARN en horquilla, para inhibir o evitar la expresión de un péptido activador, o agentes bloqueantes que impidan la unión del activador al sitio potenciador.
- Tales agentes bloqueantes pueden expresarse en el mismo insecto bajo condiciones selectivas, o se pueden administrar, por ejemplo, como parte del medio de cultivo.

Cuando el agente bloqueante o controlador se produce en el insecto, se prefiere entonces que su expresión sea selectiva, tal como que sea específica del sexo. La administración del agente bloqueante en el medio de cultivo, por ejemplo, hará posible la supresión del casete de retroalimentación positiva bajo cualquier circunstancia, hasta la liberación del insecto, tras la cual se producirá la selección específica sea por el sexo o el estadio, preferentemente en una generación posterior, preferentemente, de manera particular, en la siguiente generación.

Más preferentemente, el casete que comprende el mecanismo de retroalimentación positiva se asocia con la especificidad por el sexo o el estadio. Por ejemplo, se ha observado corte y empalme específico del sexo en los mecanismos de *transformación* y de *sexo doble* vistos en la mayoría de insectos, y se puede emplear para limitar la expresión del sistema de retroalimentación en un sexo en particular, empleando el corte y empalme específico de sexo por ejemplo, para eliminar todo o parte del gen efector, o para incorporar un desplazamiento de la fase de lectura o un codón de terminación, o para modular la estabilidad de ARN o la eficacia traduccional de ARNm, o cualquier otra cosa que afecte la expresión para la diferenciación entre sexos. Se prefiere particularmente dirigirlo contra las hembras de las especies dañinas.

15

20

10

Aunque es posible proporcionar el gen efector en un lugar diferente e incluso en un cromosoma separado, generalmente es preferible unir el gen efector con el gen de retroalimentación. Esto se puede conseguir bien situando los dos genes en tándem, incluyendo la posibilidad de proporcionar los dos como un producto de fusión, o por ejemplo proporcionando cada gen con su propio promotor en orientaciones opuestas pero en yuxtaposición con el sitio potenciador.

Un gen efector es el gen del que se desea potenciar la expresión. Cuando el producto de retroalimentación positiva también es eficazmente letal para un estadio específico, tal como el tTA en muchas especies, entonces el gen efector y el gen de retroalimentación puede ser uno y el mismo, y esto es una realización preferida.

25

El gen efector será a menudo un gen letal, y se prevé que el sistema de la presente invención se empleará más frecuentemente en el control de las poblaciones de insectos dañinos, particularmente en combinación con la técnica RIDL o un procedimiento relacionado, como se describe posteriormente.

30 Se

Se prefiere incluir un marcador con los sistemas de la invención, tales como DsRed, proteínas fluorescentes verdes, y variantes de los mismos, ya que las tasas de éxito en insectos son extremadamente bajas, es útil ser capaces de poderlos seleccionar de alguna manera.

35

40

El promotor puede ser un gran promotor complejo, pero estos tienen a menudo la desventaja de que se utilizan muy poco o esporádicamente cuando se utilizan en huéspedes no insectos. En consecuencia, se prefiere emplear promotores mínimos, tales como Hsp70, que aunque tiene naturalmente relativamente un bajo nivel de actividad, puede potenciarse sustancialmente en un escenario de retroalimentación positiva, tal como el que usan tTA y tetO.

45

Un promotor es una secuencia de ADN, generalmente directamente corriente arriba de la secuencia codificante, que se necesita para la transcripción básica y/o regulada de un gen. En particular, un promotor tiene la información suficiente para permitir el inicio de la transcripción, que tiene generalmente un sitio de inicio del comienzo de la transcripción y un sitio de unión para el complejo de la polimerasa. Un promotor mínimo generalmente tendrá suficiente secuencia adicional para permitir que esos dos sean eficaces. Normalmente se suprime cualquier otra secuencia de información, tal como la que determina la especificidad tisular, por ejemplo, y el que se prefieran los promotores mínimos es, normalmente, porque como resultado de esta deficiencia, son sustancialmente inactivos en ausencia de un potenciador activo. Por tanto, un cistrón, o sistema, los dos términos son preferentemente intercambiables en general en el presente documento, de la invención generalmente estará inactivo cuando el o cada promotor es un promotor mínimo, hasta que un potenciador adecuado u otro elemento regulador se activa o deja de estar reprimido, normalmente el producto génico.

50

55

Por tanto, se apreciará que los promotores mínimos se pueden obtener directamente de fuentes conocidas de promotores, o derivados de los promotores más grandes que se producen naturalmente, o que por otra parte ya se conocen. Los promotores mínimos adecuados incluyen un promotor mínimo derivado de hsp70, un promotor mínimo P (ejemplificado posteriormente como WTP-tTA), un promotor mínimo CMV (ejemplificado posteriormente como JY2004-Tta), un promotor mínimo basado en Act5C, un fragmento del promotor BmA3, y un promotor core Adh (Bieschke, E., Wheeler, J., y Tower, J. (1998). Doxycycline-induced transgene expression during *Drosophila* development and aging. Mol Gen Genet 258, 571-579). Por ejemplo, el Act5C responde al tTA en Aedes transgénicos y la presente invención.

60

No todos los promotores mínimos funcionarán necesariamente en todas las especies de insectos, pero es fácilmente evidente para los expertos en la técnica cómo hacer para asegurar que el promotor se active. Por ejemplo, un plásmido u otro vector, que comprenda un cistrón de la invención con el promotor mínimo a ensayarse además comprende un marcador, un gen que codifica una proteína fluorescente, bajo el control de un promotor que se sepa que funciona en esas especies, el procedimiento además comprende el ensayo de la expresión del marcador en individuos transgénicos relacionados, y el ensayo de la expresión del gen bajo el control del promotor mínimo en los individuos que expresan el marcador, ensayando el ARN transcrito. La presencia del ARN por encima de los valores

antecedentes bajo condiciones inducidas o no reprimidas es indicativo de que el promotor mínimo está activo en las especies que se investigan; la ausencia o presencia de solo bajos niveles de tal ARN en condiciones no inducidas o reprimidas es indicativo de que el promotor mínimo tiene una actividad intrínseca basal baja.

Nosotros hemos utilizados los siguientes promotores marcadores, a modo de ejemplo solamente, pero muchos otros son útiles y aparentes para los expertos en la técnica:

mini-blanco (promotor blanco): WPT-tTA, JY2004-tTA

Promotor Act5C: LA513 y LA517 Promotor ubi-p63E: LA656 y LA1038

Promotor BmA3: LA710

10

25

30

40

45

50

Potenciador hr y promotor ie1: LA920, LA1124 y LA1188

y todos estos son útiles como o en la preparación de promotores mínimos.

Se apreciará que un cistrón o sistema de la invención puede comprender dos o más cistrones. Un sistema puede 15 comprender además elementos no unidos, tal como cuando un segundo gen que va a expresarse está lejos del cistrón de retroalimentación positiva.

Por lo tanto, en un aspecto preferido, la presente invención proporciona construcciones de retroalimentación positiva 20 de la forma general que se muestra en la Figura 1. En este escenario, la proteína activadora de la transcripción que reprime la tetraciclina (tTA), cuando se expresa, se une a la secuencia del operador tetO y da lugar a la expresión de un promotor mínimo cercano. En la configuración mostrada, este da lugar entonces a la expresión de tTA, que se une entonces al tetO, y así sucesivamente, creando un sistema de retroalimentación positiva. Este sistema se inhibe por la tetraciclina, que se une a la tTA y evita que se una a etO.

La expresión es controlable, y puede conseguirse uniendo operativamente el promotor a un factor de transcripción controlable. Como se ilustró anteriormente, puede ser tTA (que se reprime o se induce por tetraciclina), o cualquier otro sistema de factor controlable, tal como GAL4 (que es ligeramente sensible al frío, y que puede además controlarse por el uso de GAL80 o mutantes del mismo), o por ejemplo, el sistema de expresión regulado por estreptogramina. Se apreciará que los otros sitios de unión apropiados del factor de transcripción dependerán del factor de transcripción de que se trate, tales como, por ejemplo UAS_{GAL4} (secuencia de activación corriente arriba) para GAL4.

Los sistemas preferidos de la presente invención tienen altos niveles de expresión inducida, preferentemente disponible a varios niveles de inducción, con un bajo nivel basal de expresión del gen regulado, pero también de 35 cualquier otro componente, y preferentemente a través de un intervalo de especies. Los niveles basales preferentemente son bajos o esencialmente no existen cuando la expresión es fuertemente perjudicial, aunque los niveles aceptables dependerán del efecto del producto. Los niveles máximos generalmente no serán un problema, ya que la condición de retroalimentación positiva a menudo producirá niveles de expresión mortales e, incluso cuando la expresión del producto no es mortal, o asociado con consecuencias fatales, es posible que se expresen en mayores concentraciones que la mayoría de los productos génicos.

Cuando se desea un nivel basal de expresión, se puede emplear una secuencia que no necesite la presencia de un potenciador, aunque generalmente habrá retroalimentación. Como al menos hay un nivel de corte de la retroalimentación, por debajo del cual la retroalimentación no funciona, se apreciará entonces que se prefiere mantener un mínimo de expresión retroalimentada del gen.

Las diferentes construcciones de la presente invención (descritas en los Ejemplos adjuntos) tienen varias actividades, según los componentes de las construcciones. Por ejemplo, en Drosophila: WPT-tTA da lugar a un nivel bajo de expresión inducida (no reprimida).

JY2004-tTA da lugar a una fuerte expresión cuando no se reprime, aproximadamente equivalente al Act5C-tTA LA513 es letal cuando no se reprime.

Los primeros dos parecen que dan una expresión constitutiva, a juzgar por el uso de un gen indicador (tRE-EGFP), 55 esto es difícil de evaluar para el LA513 letal, aunque a 10 µg/ml tet, es justo suficiente para una buena supervivencia, el LA513 en Drosophila conduce a la expresión de un gen indicador tetO₇-EGFP tanto en la línea germinal masculina y femenina en adultos, así como en células somáticas. Esto lo distingue de Act5C, que se utiliza comúnmente como un promotor "ubicuo, constitutivo", que, de hecho, no se expresa bien en estas células.

60 Las propiedades de estas construcciones se muestran en la Tabla 1, a continuación.

			Tabla 1		
	Expresión Máx.	Promotor mínimo	Intrón	¿Región codificante optimizada?	3'UTR y poliA
WPT-tTA	Baja	Р	PP1α96A	No	fs(1)K10
JY2004-tTA	Alta	CMV	β-globina Conejo	No	β-globina Conejo
LA513	Muy alta (letal)	Hsp70	Adh	Sí	fs(1)K10

En consecuencia, se apreciará que el nivel de expresión inducida o no reprimida se puede modificar de manera útil y predecible ajustando la secuencia del sistema de retroalimentación positivo. La toxicidad y/o la actividad de la proteína tTA se puede modificar independientemente de las señales de control de la transcripción o traducción por medio de varias estrategias, por ejemplo, utilizando una señal de localización nuclear, una modificación del dominio de activación, etc. (véase Fussenegger, 2001 para más ejemplos).

La letalidad de LA513 es útil, por las razones dadas anteriormente, y más particularmente porque:

10

15

20

25

45

55

- a) Proporciona un sistema génico letal que se puede reprimir compacto y altamente eficaz;
- b) Como utiliza solamente elementos de control simples de *Drosophila* (promotor mínimo hsp70, un intrón pequeño y un terminador de fs (1) K10), tanto este, como su casete de expresión, funcionan a lo largo de un amplio intervalo filogenético;
- c) Tiene un efecto perjudicial muy pequeño, si tiene alguno en adultos, incluso en ausencia de tetraciclina. Esta es una propiedad muy deseable y sorprendente en el campo de su uso, por ejemplo en un programa de control basado en RIDL, en el que los adultos liberados deben ser competitivos y tienen que tener una vida larga para la eficacia completa del programa. Se apreciará que el efecto del sistema de la invención podría ser modificado además incorporando un letal eficaz para adultos, por ejemplo en la configuración "expresión bidireccional retroalimentación positiva" descrita en el presente documento; y
- d) Por su naturaleza, se minimiza la "comunicación" entre varios elementos. Esto es porque: (i) el core de la construcción solamente es un elemento compositivo, mejor que los dos sistemas de expresión bipartita: (ii) el potenciador principal del componente autorregulador, los sitios de unión tTA, está activo esencialmente solo en ausencia de tetraciclina y (iii) la expresión modesta de tTA bajo la influencia de un potenciador próximo, sea en otra parte de la construcción o en el cromatina cercana, es poco probable que sea perjudicial de manera significativa.

JY2004-tTA también es útil en la presente invención.

Sin quedar ligados por ninguna teoría, el mecanismo por el cual el LA513 mata los embriones y las larvas recientes, pero no los adultos parece ser que es una propiedad inherente de su toxicidad. La toxicidad de tTA se cree que deriva de su "silenciamiento de la transcripción", en el que el alto nivel de expresión del dominio activador de la transcripción (en el caso de tTA es el VP16 o un fragmento del mismo) se une a elementos de la maquinaria de la transcripción y los valora, conduciendo a un efecto general sobre la transcripción, aunque también puede actuar saturando la ruta de degradación de la ubiquitina. El silenciamiento de la transcripción es el efecto que se cree que produce los efectos perjudiciales en las líneas celulares de mamíferos que expresan altos niveles de tTA; en el contexto de la expresión optimizada de retroalimentación positiva de LA513 conduce a la expresión de tTA a niveles letales. Sin embargo, los estados en desarrollo pueden ser más sensibles a la ruptura de la transcripción que los adultos: puesto que tienen que expresar los genes de una manera altamente coordinada para alcanzar un desarrollo apropiado, mientras que los adultos pueden ser más tolerantes a la ruptura.

El desarrollo de los heterocigotos LA513 en el medio con un nivel intermedio de tet (3 o 10 μg/ml), siendo suficiente para sobrevivir, mostró un retraso significativo, en relación a sus hermanos del tipo silvestre. Experimentos paralelos utilizando altas concentraciones de tetraciclina, por ejemplo 100 μg/ml, no mostraron ningún retraso del desarrollo, sugiriendo de esta manera que la expresión subletal de tTA puede afectar adversamente el desarrollo normal de los insectos.

Se prefiere que el sistema de retroalimentación positivo muestre una alta relación entre conexión: desconexión y que el cambio de conectado a desconectado sea sobre un intervalo de concentración más estrecho que en un sistema convencional, permitiendo de esta manera la utilización de una amplia variedad de moléculas efectoras. Se pueden utilizar moléculas efectoras con toxicidad baja (baja actividad específica), que se puedan expresar a altos niveles bajo las condiciones activas sin llevar a problemas de toxicidad a niveles basales. A la inversa, las más tóxicas (con actividad específica alta) se pueden utilizar a niveles basales necesariamente bajos que no impidan altos niveles de expresión cuando se dejan de reprimir o se inducen. Como el nivel basal de expresión se determina solo parcialmente por el nivel de tTA, en el caso de las moléculas de toxicidad baja supone una ventaja particularmente clara. La tTA es un ejemplo preferido de una molécula efectora con una baja actividad específica que se puede utilizar como letal en el contexto de retroalimentación positiva de LA513, por ejemplo. La ventaja del cambio de

conectado a desconectado en un intervalo de concentración estrecho es que se puede utilizar una concentración modesta de represor sin riesgo de expresión residual (no totalmente reprimida) que conduzca a efectos adversos que potencialmente seleccionen por la resistencia. Por el contrario, para un sistema inducible, las concentraciones modestas del activador pueden dar una expresión completa.

Los controladores activados o no reprimidos son útiles para expresar moléculas efectoras. Ejemplos de moléculas efectoras incluyen ARN funcionales, ribozimas, etc., y una o más proteínas codificadas. Se apreciará que, son apropiados diferentes niveles de expresión, para diferentes aplicaciones. Como los factores de transcripción específicos de secuencia utilizados para controlar el sistema de retroalimentación positiva también se pueden utilizar para expresar otros genes en un sistema de expresión bipartita, se puede conseguir haciendo dos construcciones separadas, una con el controlador (normalmente una construcción de un factor promotor de la transcripción, siendo aquí una construcción de retroalimentación positiva), el otro con el gen o la molécula de interés bajo el control de un promotor compuesto (sitio de unión + promotor mínimo) que responde al factor de transcripción (Bello y col., 1998; Brand y col., 1994). Esto también es apropiado para estos controladores de la retroalimentación positivos. De manera alternativa, los dos elementos se pueden combinar en la misma construcción. Esta realización tiene ventajas significativas para la mayoría de las aplicaciones de campo, como que se reduce sustancialmente el riesgo de que los dos componentes se separen por recombinación. Además, el sistema completo de expresión se puede introducir en un solo acontecimiento de transformación, lo que significa que los insectos homocigotos para el sistema son homocigotos para un locus solamente mejor que dos, lo que hace más fácil construirlos por reproducción, y tiende a reducir pérdida en la aptitud biológica debido a mutagénesis por inserción.

También es posible condensar tal sistema de expresión en una forma más compacta, tal como se ilustra en la Figura 2 adjunta.

Esto aprovecha la naturaleza bidireccional de los potenciadores, en este caso el sitio de unión tetO en presencia de tTA. Esta disposición además permite, o facilita, el uso de elementos aisladores para reducir el efecto de potenciadores o supresores de la cromatina adyacente: en esta disposición el casete de expresión completo puede estar flanqueado por aisladores. Esta disposición también elimina la necesidad de duplicar los sitios de unión del factor de transcripción en la construcción. Tal duplicación es preferible evitarla, porque puede llevar a inestabilidad durante la recombinación homóloga. Por razones similares, generalmente se prefiere utilizar aisladores no idénticos, tales como scs y scs', mejor que utilizar el mismo dos veces.

Es posible además condensar el sistema para proporcionar una transcripción única, sea bicistrónica o expresando un único polipéptido, el cual puede potencialmente procesarse además en más de una proteína, por ejemplo por el uso de una técnica de fusión a ubiquitina (Varshavsky, 2000). Cada una de estas estrategias (expresión bidireccional, expresión bicistrónica, proteína de fusión con transactivador) tiende a reducir el tamaño de la construcción, lo que a su vez tiende a aumentar la frecuencia de transformación y reduce el que se convierta en una diana mutagénica. Tal condensación se puede conseguir por varias formas, como se muestra, en forma de diagrama, en la Figura 3 adjunta. Las extensiones apropiadas y las variaciones de las disposiciones mostradas en forma de diagrama serán evidentes para los expertos en la técnica.

Como un ejemplo de la utilidad de tal sistema, se puede construir un marcador general de transformación utilizando un sistema transactivador que se sepa que funciona sobre un amplio intervalo filogenético, por ejemplo, el que se basa en tetR, GAL4, lexA o AcNPV ie-1. Tal transactivador, unido funcionalmente a una región codificante por una proteína fluorescente por cualquiera de los procedimientos anteriores (expresión bidireccional, expresión bicistrónica, proteína de fusión con transactivador), proporcionaría un marcador genético expresado por un amplio intervalo de tejidos y estadios de desarrollo a lo largo de un intervalo filogenético amplio. Tal marcador debería ser útil no solo para detectar los transgénicos en transformación y otros experimentos de laboratorio, sino también para distinguir, por ejemplo, las moscas transgénicas de las moscas de tipo silvestre en el campo, o aquellas capturadas en el campo.

Otro ejemplo es la expresión de una transposasa, integrada en los cromosomas, que sería una construcción "impulsadora", por ejemplo la transposasa *piggyBac* integrada en un cromosoma de insecto utilizando *mariner/mos1*. Tales construcciones son útiles para removilizar elementos *piggyBac*. Un impulso aplicable ampliamente debería expresarse a un nivel significativo a lo largo de un amplio intervalo filogenético. El sistema de expresión de la presente invención proporciona esto. Además, tal construcción (*piggyBac* transposasa bajo el control de un sistema de retroalimentación positivo de una de las estructuras mencionadas) debería ser útil también en la transformación de insectos por medio de expresión transitoria (co-expresión de un plásmido "auxiliar", el procedimiento utilizado más ampliamente para transformación de insectos), y así mismo sería útil y funcional a lo largo de un amplio intervalo filogenético.

Es ventajoso regular la acción de un sistema de expresión en el estadio, sexo u otros niveles, además de ser capaz de regular el nivel de expresión cambiando las condiciones ambientales. Ejemplos adecuados son los siguientes:

60

5

10

15

20

35

40

45

50

1. Expresión de una proteína represora.

Las proteínas represoras se conocen o pueden construirse para los principales sistemas de expresión, por ejemplo GAL80 o sus derivados mutantes por el sistema GAL4, el tetR fusionado a proteínas inhibidoras por el sistema tet, etc. Otra alternativa es el silenciamiento génico del factor de transcripción utilizando un ARN en horquilla dirigido contra parte del casete de expresión. La expresión basal a partir del sistema de retroalimentación positiva es bastante bajo, de forma que se puede suprimir fácilmente por la expresión de tal inhibidor.

La expresión de un inhibidor adecuado bajo un control adecuado tenderá a inhibir la expresión a partir del casete de expresión de retroalimentación positiva donde se expresa el inhibidor. La expresión específica femenina, por ejemplo, puede alcanzarse de esta manera expresando un inhibidor en machos.

2. Integración de especificidad en el sistema de retroalimentación positiva.

La especificidad se puede integrar en el sistema de retroalimentación positiva utilizando componentes que son específicos por sí mismos. Por ejemplo, la señal de la combinación del promotor mínimo hsp70 + intrón SV40 y poliA de pUAST se sabe que no se expresa en la línea germinal femenina de *Drosophila*, mientras que la señal del promotor mínimo P + intrón P + fs (1) K10 poliA de pUASp se expresa (Rorth, 1998). Los sistemas de retroalimentación positiva pueden, de este modo, construirse para que específicamente se expresen o no en este tejido, dependiendo del uso de los elementos reguladores apropiados.

En otra realización, se puede integrar una especificidad de sexo en el sistema por el uso de un corte y empalme específico de sexo. El corte y empalme específico de sexo de *doble sexo* y sus homólogos es un mecanismo regulador conservativo y, por tanto, disponible para su uso de esta forma en un amplio intervalo filogenético. El corte y empalme específico de sexo de *transformación* y sus homólogos es otra alternativa. El uso de corte y empalme específico de sexo en un sistema de expresión de retroalimentación positivo se puede conseguir de varias formas, como se muestra, en forma de diagrama en la Figura 4 adjunta. Las extensiones apropiadas y las variaciones de las disposiciones mostradas en forma de diagrama serán evidentes para los expertos en la técnica.

En otra configuración, un sitio de corte y empalme específico se puede insertar en una región que codifica el transactivador de forma que dos o más proteínas alternativas se producen en distintas condiciones, por ejemplo, en diferentes tipos celulares o en sexos diferentes. Esto se puede ordenar de forma que se produzca un activador de transcripción en un tipo celular pero en otro tipo celular lo que se produce es un represor de transcripción. Esta disposición tiene la ventaja de que es relativamente robusta frente a la producción debido a un corte y empalme ineficaz (imperfecto) de una proporción relativamente baja de activador de la transcripción en el tipo celular apropiado, por ejemplo, en células masculinas, será menos probable que produzca una amplificación de retroalimentación positiva ya que estas células están produciendo también una gran cantidad de represor. La discriminación en el resultado (relación entre los niveles de activador de transcripción en los dos tipos celulares, o la relación de la expresión de un indicador u otro ARN o proteína ligado funcionalmente a la expresión del activador de la transcripción) entre los dos tipos celulares se mejora de esta manera.

Será fácilmente evidente para los expertos en la técnica que cualquiera de estas disposiciones del transactivador específico puede combinarse fácilmente con cualquiera de las disposiciones desveladas en el presente documento para la expresión de una proteína adicional o ARN, por ejemplo, expresión bidireccional, expresión bi o multicistrónica, expresión de una proteína de fusión, o combinado con uno o más casetes de expresión separados dependiendo de, o parcialmente dependiendo de, la expresión del transactivador, sea combinado en la misma construcción o en cualquier sitio del genoma o la célula.

3. Utilización de una molécula efectora específica

45

50

55

60

La específicidad en la consecuencia fenotípica también se puede introducir por el uso de una molécula efectora específica. Cuando una molécula, por ejemplo ARN o una proteína, que se expresa bajo el control de cualquiera de los sistemas de expresión descritos en el presente documento tiene un efecto específico solo en células particulares, tejidos, o sexo, etc., entonces, se puede obtener la especificidad fenotípica con una expresión específica más o menos amplia del transactivador. Por ejemplo, en el contexto de un programa de control de la población con liberación masiva de insectos tipo RIDL, utilizando el sistema de expresión de una molécula solamente tóxica o preferentemente tóxica, para los estadios previos a adultos, da como resultado adultos que son completamente, o razonablemente competitivos en relación al tipo silvestre. Esto es deseable, ya que la efectividad del programa depende de la competitividad y la longevidad de las formas adultas, cuando se liberan en el medio. Como la concentración de su represor interno (por ejemplo, la tetraciclina) es probable que disminuya en el medio libre, sería ventajoso asegurar que la inducción (sin represión) del sistema de expresión, como y cuando ocurre en adultos, tenga un efecto negativo mínimo sobre ellos.

Como otro ejemplo, la separación de sexos, o los efectos específicos del sexo, se pueden conseguir por la expresión en machos y hembras de una molécula con efectos diferentes en machos y en hembras. Por ejemplo, la expresión de la proteína Transformadora en machos de *Drosophila* tenderá a transformarles en hembras, pero no tendrá efecto

en hembras. Similarmente, la expresión de la proteína específica de machos letal-2 (Msl-2) en Drosophila tenderá a matar hembras, pero no machos (Gebauer y col., 1998; Kelley y col., 1995; Matsuo y col., 1997; Thomas y col., 2000). A la inversa, la expresión de una molécula de ARN parcialmente autocomplementaria con homología sustancial en su región autocomplementaria, o región formadora de doble cadena ("contra ARN en horquilla") para la transformación tenderá a transformar las hembras genéticas en machos fenotípicos, mientras que los machos genéticos no se afectan, y la expresión de ARN en horquilla contra msl-2 tenderá a ser letal para los machos pero no para las hembras. La expresión de ARN en horquilla contra los exones específicos de machos o hembras de doble sexo tenderán a afectar esos sexos solamente, y la expresión simultanea de ARN que codifique la otra forma de doble sexo (es decir, Dsx^M en hembras o Dsx^F en machos) tenderá a modificar o potenciar este efecto. Esta expresión simultanea de una proteína y una molécula de ARN en horquilla se puede conseguir fácilmente combinando la estrategia bicistrónica o de proteína de fusión descrita anteriormente con la expresión de un ARN en horquilla utilizando un sistema de expresión bidireccional como se ha descrito anteriormente. Se puede añadir además especificidad de sexo, estadio u otra a tal sistema por la incorporación del corte y empalme específico apropiado u otras señales de control de la transcripción, traducción u otras post-traduccionales en cualquier parte del sistema como será evidente para la persona experta en la técnica.

Las moléculas de ARN en horquilla multifuncionales se pueden construir y están previstas. Por ejemplo, el ARNi contra la transformación de la mosca mediterránea de la fruta Ceratitis capitata Wiedmann (mosca mediterránea de la fruta) tenderá a transformar la hembras genéticas en machos fértiles. Para un programa de control de la población en un área amplia que se base en la liberación masiva de tales insectos, es preferible esterilizar las moscas liberadas. Esto se puede conseguir utilizando una molécula ARN compuesta que rompa simultáneamente la expresión de ambas trasformaciones y un gen necesario para la espermatogénesis o la viabilidad embrionaria o larvaria. Muchos de tales genes se conocen en Drosophila con homólogos en mosquitos u otros animales. Con la mosca mediterránea de la fruta, se puede fácilmente aislar un homólogo adecuado, utilizando técnicas conocidas por los expertos en la técnica. Nosotros preferimos utilizar un gen que permita la producción de fluido seminal, y preferentemente también esperma, para reducir la tendencia de la hembra a aparearse de nuevo después de la inseminación por el macho afectado. Particularmente preferimos dirigir esta segunda parte de la molécula de ARNi en horquilla contra el efecto letal paterno, de forma que no se produzca una descendencia viable, o contra el gen expresado zigóticamente que se necesita para la viabilidad embrionaria o larvaria o el desarrollo, de forma que la descendencia heredera de la construcción estará afectada. Se han concebido otras construcciones y serán fácilmente evidentes para los expertos en la técnica: por ejemplo la expresión de una proteína letal específica de hembras por la expresión bicistrónica y un ARN en horquilla que da lugar a un efecto letal paterno por expresión bidireccional. En común con el ARN en horquilla compuesto contra un gen adecuado de determinación del sexo y un efecto letal paterno, se permite la generación de una población de insectos de un solo sexo (solo machos), cuya descendencia entera morirá por la acción de la acción del efecto letal paterno, independientemente de si su progenie o parejas se alimentan con tetraciclina. Por tanto, la presente invención proporciona un promotor controlado, como se ha definido, en el que el promotor está unido operativamente con el ADN que codifica un ARNi que produce mortalidad o esterilidad. En este caso, la mortalidad puede corresponder a baja salud, tal como falta de vuelo, más que a una letalidad instantánea, produciendo que la probabilidad de emparejamiento se reduzca sustancialmente.

4. Utilización de recombinasa(s) específica(s) del sitio

La especificidad se puede introducir también en un sistema de retroalimentación positiva insertando un fragmento "tapón" que lo inactive. Si este fragmento "tapón" está flanqueado por los sitios diana para una recombinasa específica del sitio adecuada, entonces tenderá a escindirse en presencia de la recombinasa activa. Cualquier sistema para la expresión selectiva de una recombinasa activa, por ejemplo, la expresión de la recombinasa bajo el control de un promotor específico de hembras, tenderá por tanto a producir la expresión selectiva del sistema de retroalimentación positiva, en este caso solamente en hembras. Si la recombinasa solamente se expresa en células somáticas, por ejemplo utilizando el procedimiento descrito anteriormente, entonces la versión transmitida a la siguiente generación incluye el fragmento tapón, el cual puede estar de nuevo en las hijas pero no en los hijos. A la inversa, si la recombinasa se expresa solamente en el genoma, la provisión de recombinasa activa conducirá a una prole en la que el sistema de expresión está activo, a partir de los padres en los que está inactivo. Esto se puede utilizar, por ejemplo para generar gametos que contienen un sistema génico letal dominante o estéril (por ejemplo, específico de hembras o no específico del sexo) para su uso en una estrategia de control de población de insectos.

En una realización preferida, el fragmento tapón codifica la recombinasa. Esta realización es particularmente compacta. En otra realización preferida, el fragmento tapón codifica un represor de la transcripción que tiende a inactivar el sistema de expresión de retroalimentación positiva- esta realización tiende a reducir la expresión basal del sistema en presencia del fragmento tapón.

A la inversa, el sistema se puede inactivar específicamente en ciertas células o clones de células, introduciendo sitios diana para una recombinasa específica del sitio adecuada en posiciones adecuadas, y luego expresando o introduciendo la recombinasa activa adecuada en las células apropiadas, tal que uno o más elementos funcionales clave del sistema de expresión se eliminan o rompen por recombinación entre los sitios diana de la recombinasa.

Los sistemas de recombinasa adecuados incluyen cre/lox y Flp/FRT.

9

55

10

15

20

25

30

35

40

45

50

60

La presente invención se ilustra por los siguientes Ejemplos, no limitantes. En los siguientes ejemplos, las Figuras son las siguientes:

- La Figura 1 muestra un escenario de activador de la transcripción que se reprime por tetraciclina;
- 5 La Figura 2 muestra un sistema de la invención que utiliza un potenciador bidireccional;
 - La Figura 3 muestra un sistema específico de sexo;
 - La Figura 4 muestra otro sistema específico de sexo;
 - La Figura 5 es un di agrama de la región tetO₇-tTA del pJY2004:
 - La Figura 6 es un diagrama esquemático de pLA513:
- 10 La Figura 7 es un diagrama esquemático del transposón del LA513;
 - La Figura 8 es un diagrama esquemático del pLA517:
 - La Figura 9 ilustra la acción bidireccional de tetO₇ en mosquitos 513A y 513B;
 - La Figura 10 es un diagrama esquemático de pLA656;
 - La Figura 11 es un diagrama esquemático de pLA928:
- 15 La Figura 12 es un diagrama esquemático de pLA1124;
 - La Figura 13 es un diagrama esquemático de pLA670;
 - La Figura 14 es un diagrama esquemático de pLA1038;
 - La Figura 15 es un diagrama esquemático de pLA710;
 - La Figura 16 ilustra el corte empalme específico de sexo de Cctra en la mosca mediterránea de la fruta;
- 20 La Figura 17 es un diagrama esquemático de pLA1188; y
 - La Figura 18 ilustra el corte empalme específico de sexo en la mosca mediterránea de la fruta.

Ejemplos

Se hicieron una serie de construcciones con tTA en una configuración de retroalimentación positiva, es decir con la expresión de tTA regulada por la unión de tTA a tetO. Se obtuvieron los insectos transgénicos que portaban estas construcciones y se analizaron sus propiedades.

tTAV

30

35

En algunos casos, la intención era obtener niveles muy altos de expresión de tTA en ausencia de tetraciclina. En varias construcciones ejemplificadas descritas posteriormente en el presente documento, la expresión de tTA era tan alta como para ser letal. Como parte del proceso de obtención una fuerte expresión de tTA, parte de la fase de lectura abierta de tTA se rediseñó para expresar una proteína similar, pero con el uso de un codón cercano a la norma para *Drosophila melanogaster*, y deficiente en algunos sitios crípticos potenciales de corte y empalme presentes en la secuencia de nucleótidos original. Esta variante de la secuencia de tTA se llamó tTAV (SEC ID Nº 3, secuencia proteica SEC ID Nº 32).

EJEMPLO 1

40

WTP-tTA y JY2004-tTA en Drosophila melanogaster

La región codificante de tTA (SEC. ID Nº 29, secuencia proteica SEC ID Nº 30) de pUHD15-1 (SEC ID Nº 33, Gossen y col., 1994, Gossen y Bujard, 1992) se situó bajo el control de tetO, en una configuración de retroalimentación positiva, insertándola en pWPT2 (Bello y col., 1998) o pJY2004, una versión de pJY2000 que carece de aisladores (Stebbins y Yin, 2001). Estas construcciones se llamaron pWTP-tTA y pJY2004-tTA, respectivamente. Se proporciona un diagrama de la región tetO₇-tTA de pJY2004 en la Figura 5 adjunta, y es la SEC ID Nº 14.

50 En pWTP-tTA los sitios de unión del tetO₇ están seguidos por un promotor mínimo del elemento P, una secuencia directora de *Drosophila* hsp70, un intrón corto del gen PP1α96A de *Drosophila*, la región codificante de tTA y un terminador de *Drosophila* hsp70. En pJY2004-tTA, el promotor mínimo y las secuencias directoras son de CMV, seguido por la región codificante de tTA y un terminador de la transcripción de la β-globina de conejo, como se muestra en la Figura 5.

55

60

Las *Drosophila*s *melanogaster* transgénicas que portaban cualquiera de estas construcciones eran totalmente viables, incluso sin tetraciclina en la dieta. Se examinaron los insectos doblemente heterocigotos por WTP-EGFP y cualquiera de estas construcciones viendo su fluorescencia verde característica de la expresión de EGFP. Los insectos con WTP-tTA y WTP-EGFP mostraron una fluorescencia muy débil solamente ligeramente por encima de la autofluorescencia anterior. Por el contrario, los insectos con JY2004-tTA y WTP-EGFP mostraron una fuerte fluorescencia, similar a la vista en los insectos que portaban EGFP bajo control del promotor Actin5C, el cual se utiliza ampliamente como un promotor fuerte, constitutivo en *Drosophila* (por ejemplo, Reichhart y Ferrandon, 1998). La expresión de EGFP se reprimió hasta niveles indetectables cuando los insectos se criaron con una dieta suplementada con 100 µg/ml de tetraciclina. En el control de los insectos heterocigotos tanto WTP-EGFP, JY2004-tTA o WTP-tTA no mostraron fluorescencia por encima del antecedente tanto si se criaron con una dieta que contuviera tetraciclina, como si no.

Nosotros situamos la tTA bajo el control del promotor Actin5C, en el plásmido pP [Casper-Act5C-tTA]. Las moscas transgénicas que portaban esta construcción y WTP-EGFP, criadas con una dieta que carecía de tetraciclina, mostraron fluorescencia verde de intensidad comparable a la observada en moscas equivalentes con JY2004-tTA y WTP-EGFP.

Estos resultados muestran que las construcciones de retroalimentación positiva pueden utilizarse para dar una expresión reprimida por la tetraciclina fuerte (JY2004-tTA) o débil (WTP-tTA), a partir de una construcción adecuada (aquí WTP-EGFP).

El EGFP se utiliza ampliamente como un indicador neutro. Nosotros además ensayamos el cruzamiento de las moscas JY2004-tTA con moscas con construcciones capaces de expresar proteínas conocidas o predichas de ser perjudiciales. Insertamos el dominio central de Nipp1Dm (Bennett y col., 2003; Parker y col., 2002) ("nipper"), en el pJY2004, para crear el pJY2004-nipper, y se transformaron *Drosophila* con esta construcción. También utilizamos moscas que portaban tetO-hid (Heinrich y Scott, 2000). En cada caso, el cruzamiento con moscas JY2004-tTA producía mortalidad reprimida por la tetraciclina. Los datos de los dos cruzamientos del ejemplo se presentan en la Tabla 2, siguiente.

Tabla 2

				.,
Uso de constru	cciones de retroalimer	ntación positiva para diri Drosophila	gir la expres	sion de genes letales en
Macho JY2004-tTA/CyO x Hembra tetO-hid/tetO-hid				[tetraciclina] (μg/ml)
JY2004-tTA	CyO			
0	15			0
9	10			100
Macho JY2004-tTA/0	CyO x Hembra JY2004	l-nipper/JY2004-nipper		
JY2004-tTA	CyO			
0	20			0
16	13			100

EJEMPLO 2

20

25

35

40

LA513 en Drosophila melanogaster

Preparamos una construcción pLA513 (SEC ID № 16, diagrama esquemático mostrado en la Figura 6), que contenía un transposón *piggyBac* no autónomo. Generamos *Drosophila melanogaster* transgénica que portaba esta construcción por coinyección de un plásmido auxiliar en una cepa con ojos blancos (Handler, 2002; Handler y James, 2000). Los transgénicos potenciales se seleccionaron por la fluorescencia característica de DsRed2. Se recuperaron 5 líneas transgénicas, que se designaron como O53, M8, M13, F23 y F24. Un diagrama esquemático del transposón LA513 se muestra en la Figura 7 adjunta.

30 Las estirpes de *Drosophila melanogaster* se mantuvieron a 25 °C en un medio con levadura/ azúcar/ maíz/ tetraciclina (tetraciclina (Sigma) a una concentración final de 100 μg/ml), a menos que se establezca otra cosa. Todos los experimentos se llevaron a cabo a 25 °C.

Supervivencia de LA513/+ transgénicos con y sin tetraciclina

Se cruzaron los heterocigotos transgénicos con el tipo silvestre al menos por triplicado en el medio con y sin Tc (tetraciclina). En ausencia de letalidad alguna, se debería esperar que aproximadamente la mitad de la descendencia de tal cruzamiento sería transgénica. La descendencia se valoró como adultos jóvenes por el marcador de fluorescencia DsRed [Matz y col., 1999] utilizando un microscopio Olympus SZX12 con capacidad de fluorescencia, y se calculó la relación de fluorescentes (transgénicos) con respecto al total de moscas. Los resultados se muestran en la Tabla 3, a continuación. En estos experimentos, todas las 5 líneas transgénicas mostraron un 100 % de mortalidad, en ausencia de tetraciclina y una buena supervivencia (es decir una relación fluorescentes: no fluorescentes de ~1:1), en presencia de 100 μg/ml de tetraciclina. La inspección de los viales mostraba poca o no mucha fluorescencia en ausencia de Tc, aunque estaban presentes muchas larvas con una fluorescencia muy pequeña, al tiempo que eran visibles larvas no fluorescentes (tipo silvestre para LA513) de todos los tamaños. Esto sugiere que, en ausencia de tetraciclina, el LA513 produce mortalidad a un estadio temprano (embrionario y/o larvario reciente) del estadio de desarrollo.

Tabla 3

Las	Las inserciones LA53 son letales dominantes que se reprimen por la tetraciclina									
Línea LA513	0 μg/m	l Tetraciclina	100 μg/ml Tetraciclina							
	Nº de moscas	Nº de fluorescentes	Nº de moscas	Nº de fluorescentes	Relación					
0513	490	0	1963	937	0,48					
M8	74	0	66	25	0,38					
M13	657	0	1838	892	0,49					
F23	473	0	1914	845	0,44					
F24	61	0	114	60	0,53					
Total	1 <i>755</i>	0	5895	2759	0,47					

La letalidad dominante podría tener varias causas. Sin estar restringidos por teoría alguna, parece probable que, en ausencia de tetraciclina, se acumula tTAV a una concentración relativamente alta y que es letal, posiblemente debido al silenciamiento de la transcripción, o la interferencia con la degradación proteica. Una alternativa es que, en ausencia de tetraciclina, la tTAV se une a tetO y actúa como un potenciador a largo plazo, perturbando la expresión de genes cercanos a la inserción del LA513. Esto parece improbable, porque todas las 5 líneas dieron resultados similares. Cada una de estas líneas derivaba de un superviviente diferente G0 a la inyección, y por tanto estas líneas están probablemente portando el LA513 integrado en diferentes sitios genómicos. Verificamos esto por PCR inversa. La tabla 4, a continuación, muestra los sitios de integración para 3 de las líneas; en cada caso la inserción LA513 estaba en la secuencia TTAA, como se esperaba por la preferencia de inserción en el sitio del transposón *piggyBac*. Como se esperaba, las tres inserciones estaban además en 3 sitios diferentes en el genoma de la *Drosophila*.

Tabla 4

	Sitios de inserción de LA513 en el genoma de Drosophila							
Línea	Secuencia amplificada o al sitio de integración	Brazo del cromosoma predicho	Citología de Drosophila predicha	Gen más próximo predicho				
O513	Cacagcgcatgatgagcaca TTAA caaaatgtagtaaaatagga (SEC ID Nº 1)	2L	25F4-25F5	CG9171				
M8	Gtttcgataaatattgctat TTAA aatgcttattttcaatgcta (SEC ID № 2)	2L	36F6-36F6	CG15160				
F24	Tttgttttctaacgttaaag TTAA agagagtccagccacatttt (SEC ID Nº 3)	2L	21C4-21C5	CG13691				

15 Se muestra la secuencia que está flanqueando el sitio de inserción, TTAA, en mayúsculas. Las localizaciones cromosómicas predichas, y el gen más próximo predicho, se muestran también; estos están basados en la secuencia de *Drosophila* publicada.

EJEMPLO 3

20

25

Reducción de la toxicidad de tTAV

El efecto tóxico del nivel de expresión alto de tTAV se cree que es debido al silenciamiento de la transcripción y/o a la interferencia con la proteólisis dependiente de ubiquitina, por medio de la sección derivada de VP-16 (Gossen y Bujard, 1992; Salghetti y col., 2001). Por lo tanto, nosotros hemos modificado el tTAV eliminando la sección VP16 y sustituyéndola con una secuencia sintética que codifica 3 copias de un péptido (PADALDDFDLDML) derivado del VP16 (Baron y Bujard, 2000; Baron y col., 1997). Este derivado se llamó tTAF; el plásmido resultante se llamó pLA517, y es la SEC ID Nº 17, y se muestra, en forma de diagrama, en la Figura 8 adjunta.

Se transformó la *Drosophila melanogaster* con esta construcción, y se obtuvo una línea transgénica. Los machos LA513 heterocigotos se cruzaron con hembras del tipo silvestre (para LA513) y se valoró la fluorescencia de la descendencia (como adultos). Si toda la descendencia tenía la misma probabilidad de sobrevivir, la proporción esperada de la descendencia total fluorescente era del 50 %. En ausencia de tetraciclina, esta proporción fue del 32 %, solamente una reducción modesta comparada con el 48 % cuando los parentales y la descendencia se mantuvieron con una dieta se suplementó con 100 μg/ml. Los resultados se muestran en la Tabla 5, a continuación. Ensayamos si la suplementación de tetraciclina en la dieta de los parentales pero no de la descendencia podría reducir esta mortalidad. En este caso, observamos una proporción intermedia de 0,37, indicando que la tetraciclina

contribuida maternalmente tenía un efecto beneficioso modesto.

Tabla 5

Efecto de la tetraciclina en la supervivencia de LA517/+ Drosophila y sus hermanos +/+							
LA517							
Parental [Tc] μg/ml	No fluorescentes	Fluorescentes					
0	0	165	78				
100	100	524	482				
100	0	502	297				

Como el LA517, solo, tiene poco impacto sobre la viabilidad, a diferencia de la construcción LA513 estrechamente relacionada, ensayamos si era capaz de controlar la expresión de un gen heterólogo bajo el control de tetO. Para esto utilizamos tetO-hid (Heinrich y Scott, 2000). Las moscas homocigotas por tetO-hid se cruzaron con las moscas heterocigotas por LA517. En ausencia de tetraciclina solamente el 3,4 % de los descendientes adultos llevaban el LA517. En presencia de 100 μg/ml de tetraciclina, la proporción era del 42 %. Por lo tanto el LA517 es capaz de dirigir la expresión eficaz de un gen heterólogo.

Tabla 6

Efecto	Efecto de la tetraciclina en la supervivencia de LA517/+, +/tetO-hid de <i>Drosophila</i> y sus hermanos +/+, +/tetO-hid				
TetO-H	TetO-Hid x LA517/+				
[Tc]	No fluorescentes Fluorescentes				
0	636	23			
100	174	127			

EJEMPLO 4

10

15

20

Utilización de análogos de la tetraciclina

Se utilizó la línea F23 para determinar si análogos químicos de la tetraciclina podían utilizarse en lugar de la tetraciclina para suprimir la letalidad de LA513. Con este fin, ensayamos 3 análogos en una intervalo de concentraciones de 0 a 100 μ g/ml (suministradores: tetraciclina y doxiciclina, Sigma; 4-epi-oxitetraciclina, Acros Organics: clortetraciclina Fuzhou Antibiotic Group Corp.). Calculamos las concentraciones necesarias para la supervivencia media máxima. Se muestran en la tabla 7, a continuación.

Tabla 7

	Eficacia de los análogos de Tc						
Línea Tc/Análogo Concentración para la supervivencia media máxima, μ							
F23	Tetraciclina	5,0					
F23	Doxiciclina	3,9					
F23	7-Clortetraciclina	1,7					
F23	4-epi-oxitetraciclina	42,0					

EJEMPLO 5

25 Longevidad de adultos LA513/+ en ausencia de tetraciclina

LA513 claramente confiere letalidad dominante, activa en el estadio embrionario o de larva reciente. Las larvas se criaron con una dieta suplementada con 100 μ g/ml de tetraciclina. Después de la eclosión, los adultos se transfirieron a una dieta que carecía de tetraciclina. Se midió la duración de la vida de estos adultos, y también la de los adultos w¹¹¹⁸ no transgénicos comparables. Como se muestra en la Tabla 8, a continuación, las líneas transgénicas mostraron una supervivencia buena como adultos con respecto al control no transgénico. Esto sugiere que la especificidad de estadio se había obtenido de este modo- aquí LA513 es letal larvario/embrionario, pero no es letal para adultos.

35

Tabla 8

	Media de la duración de vida de los adultos LA513/+ transgénicos de <i>Drosophila</i>						
Línea	Media de tiempo de supervivencia post-eclosión,	Desviación estándar	Número de Moscas				
	días						
O513	40,3	12,3	66				
M8	26,1	2,5	9				
M13	29,5	9,9	47				
F23	29,6	11,3	83				
F24	19,9	10,0	9				
<i>w</i> ¹¹¹⁸	22,2	8,6	88				

Es posible explicar estos datos de longevidad proponiendo que las larvas acumulan tetraciclina alimentándose, y que retienen esta tetraciclina en la madurez, de forma que sobreviven como adultos incluso en la ausencia de tetraciclina en la dieta. Para examinar esto, se criaron moscas heterocigotas de LA513/+ (línea M13) como larvas con varias concentraciones de tetraciclina. Tras la eclosión, los adultos se transfirieron a una dieta carente de tetraciclina y se midió la duración de la vida de estos adultos, como anteriormente. Como se muestra en la Tabla 9, a continuación, la concentración de la tetraciclina de la dieta mientras eran larvas no tiene un efecto obvio sobre la longevidad de los adultos subsecuentes en ausencia de tetraciclina, lo que implica que la supervivencia de los adultos no se debe primariamente a la retención de tetraciclina durante la alimentación de las larvas. A una concentración de 1 μ g/ml, ningún transgénico sobrevivió hasta la madurez, y a 3 μ g/ml solo sobrevivió hasta la madurez aproximadamente la mitad del número esperado, por lo que esta concentración está cerca del mínimo para la supervivencia de las larvas.

Tabla 9

Efecto de la tetraciclina de las larvas en la longevidad de los adultos							
Tetraciclina de las larvas μg/ml	Media de tiempo de supervivencia post- eclosión, días	Desviación estándar	Número de Moscas				
1	-	-	-				
3	33,5	13,2	9				
10	28,4	9,6	17				
30	26,3	11,3	23				
100	29,5	9,9	47				

15

20

10

Otra posible explicación para la supervivencia de los adultos LA513/+ es que el tTAV sea inactivo en adultos, por lo que el ciclo de retroalimentación positiva no funciona, y el tTAV no se acumula. Examinamos esto midiendo la cantidad de ARNm tTAV por PCR cuantitativa a continuación de una reacción de transcriptasa inversa (rt-PCR cuantitativa, o qPCR). Utilizamos química Taqman y reactivos (ABI), y un instrumento de QPCR ABI Prism 7000. Cada muestra se ensayó por triplicado: los datos son la media de estos tres ensayos. Los cebadores 18S se hibridaron al ARN18S de *Drosophila melanogaster*, Ceratitis capitata y Aedes aegypti, entonces estos cebadores se utilizaron para las tres especies.

Cebadores utilizados:

25

18S RNA Cebador directo: ACGCGAGAGGTGAAATTCTTG Cebador inverso: GAAAACATCTTTGGCAAATGCTT Sonda TaqMan MGB: 6-Fam-CCGTCGTAAGACTAAC-MG	SEC ID Nº 4 5 6B 6
tTAV	7
Cebador directo: CATGCCGACGCGCTAGA	1
Cebador inverso: TAAACATCTGCTCAAACTCGAAGTC	8
Sonda TagMan MGB: VIC-TCGATCTGGACATGTTGG-MC	3B 9

Encontramos que los 0513 criados con 100 μg/ml de tetraciclina tenían una relación tTA: 18S de 0,00016 (larvas) y 0,00013 (adultos). Los adultos que provenían de larvas con 100 μg/ml de tetraciclina, pero que se transferían a una di eta sin tetraciclina cuando eran adultos tenían unas relaciones de 0,0061, 0,0047, 0,0087 y 0,011 después de 1, 2,

4 y 8 días sin tetraciclina respectivamente. Este aumento de 28 y 64 veces en la expresión con respecto a los controles alimentados con tetraciclina indica que el sistema de expresión con retroalimentación positiva basada en tTAV es funcional en adultos.

EJEMPLO 6

15

20

25

LA513 en Aedes aegypti

Se transformaron mosquitos Aedes aegypti (el mosquito de la fiebre amarilla, también el vector principal del dengue febril urbano) con LA513. Se obtuvieron dos líneas independientes de inserción, la LA513A y la LA513B.

A los machos heterocigotos por LA513A (criados como larvas con 30 µg/ml de tetraciclina) se les dejó aparearse con hembras tipo silvestre. Se recogieron los huevos y las larvas resultantes se criaron en medio normal, o en medio suplementado con tetraciclina (Tc) a 30 µg/ml. Se determinó el número de adultos transgénicos y no transgénicos resultantes de esos huevos. Los datos son la suma de al menos 5 experimentos. Las larvas se criaron con una densidad de \leq 250 individuos por litro; todos los huevos de los experimentos "sin tetraciclina" se lavaron dos veces antes de la sumersión para evitar la transferencia de tetraciclina. Para los experimentos "con tetraciclina", se suplementaron la sangre parental y el agua azucarada con 30 µg/ml de tetraciclina; mientras que para los experimentos "sin tetraciclina" no. El ensayo χ^2 para la diferenciación en la relación entre la supervivencia de adultos transgénicos y de tipo silvestre: "con tetraciclina", en cualquier orientación: p> 0,05; "sin tetraciclina" en cualquier orientación p< 0,001 (hipótesis nula: el genotipo con respecto a LA513 no tiene efecto sobre la supervivencia).

Por tanto, LA513A es dominante letal que se puede reprimir, con una penetración en estos experimentos el 95-97 %. El LA513B también es dominante letal que se puede reprimir, con una penetración en estos experimentos del 100 %. Los resultados se muestran en la Tabla 10, a continuación.

				<u>Tabla 10</u>						
	Efecto de te	etraciclina en la s	supervive	ncia de Aede	es aegypti	LA513/-	+ y sus	herman	os +/+	
Parentales		Descendencia								
Macho	Hembra		Tc en larvas	Genotipo						
		Huevos			1 ^{er}	2⁰	3º	4 º	Pupa	Adultos
					estado larvario					
				LA513A/+	489	468	446	442	437	434
LA513A/+	+/+	1000	Sí	Tipo silvestre	444	431	403	400	396	392
				LA513A/+	442	420	404	399	393	383
+/+	LA513A/+	1000	Sí	Tipo silvestre	466	444	428	417	412	404
				LA513A/+	274	265	235	208	155	7
LA513A/+	+/+	-/+ 540	No	Tipo silvestre	233	225	214	212	209	206
				LA513A/+	216	205	181	168	131	9
+/+	LA513A/+	497	No	Tipo silvestre	241	225	216	214	211	207
		- ·								
Parentales	l la mala ma	Descendencia	T	Constina						
Macho	Hembra		Tc en larvas	Genotipo						
		L Huevos	iaivas		1 er	2⁰	3º	4º	Pupa	Adultos
		110000			estado	_	Ü	•	i upu	ridditoo
					larvario					
				LA513B/+	161	153	147	141	139	131
LA513B/+	+/+	377	Sí	Tipo silvestre	178	171	165	160	157	153
				LA513B/+	189	181	170	166	161	153
+/+	LA513B/+	3/+ 442	Sí	Tipo silvestre	203	198	185	182	180	176
				LA513B/+	69	19	0	0	0	0
LA513B/+	+/+	188	No	Tipo silvestre	85	84	83	83	82	81

-				LA513B/+	91	60	0	0	0	0
+/+	LA513B/+	497	No	Tipo silvestre	107	104	99	98	95	93

Examinamos la supervivencia de los machos LA513A/+ que habían sido criados con tetraciclina (30 μg/ml), cuando eran larvas, pero a los que no se les dio tetraciclina cuando fueron adultos. Encontramos que todos los machos ensayados sobrevivieron durante tres semanas, independientemente del genotipo (LA513A/LA513A, LA513A/+ o +/+) o de la presencia o ausencia de tetraciclina en su dieta (n≥ 40 para cada genotipo).

Investigamos las cinéticas de inducción de tTAV en mosquitos adultos LA513B/+ después de la retirada de la tetraciclina utilizando qPCR. Como se muestra en la Tabla 11, a continuación, el tTAV aumentaba en machos y hembras tras la retirada de tetraciclina. La inducción de la expresión de tTA es bastante rápida tras eliminar la Tc, como en la *Drosophila*. En cada caso, el cambio entre las dietas que contenían diferentes niveles de tetraciclina proporciona un nivel de control sobre el nivel de expresión de los genes controlados por tTA (ejemplificado aquí por el mismo tTA), utilizando tal sistema de retroalimentación positiva.

Tabla 11 Inducción de la expresión de tTA en machos LA513B/+ después de la retirada de tetraciclina

Sexo	Tiempo (días) sin tetraciclina	Relación de expresión tTA:18S	Expresión de tTA:18S con respecto a machos con tetraciclina
Macho	0	0,00036	1
Hembra	0	0,00060	1,7
Macho	3	0,0043	12
Hembra	3	0,014	38
Macho	4	0,054	150
Hembra	4	0,019	530
Macho	8	0,012	34
Hembra	8	0,52	1500
Macho	16	0,10	280
Hembra	16	0,032	88

EJEMPLO 7

Potenciación reprimible por tetraciclina de un promotor cercano por tTAV en una configuración de retroalimentación positiva

Observamos que el marcador fluorescente en mosquitos transgénicos LA513A y LA513B mostraba un patrón diferente en ausencia de tetraciclina, cuando se comparaba con el patrón en presencia de tetraciclina. La fluorescencia en presencia de tetraciclina era típica de la expresión dirigida por Actin5C en mosquitos (Catteruccia y col., 2000; Pinkerton y col., 2000), y limitada sobre todo a la parte hinchada del tórax. Por el contrario, en ausencia de tetraciclina, la expresión era mucho más fuerte y evidente sustancialmente por todo el cuerpo de los individuos transgénicos. En cada caso, la evaluación de la intensidad de la fluorescencia y el patrón de expresión se hizo por observación visual utilizando microscopía de fluorescencia.

La expresión de tTAV en esta situación de retroalimentación positiva parece, por tanto, que estimula la expresión del promotor cercano Actin5C. Esto se ilustra, en forma de diagrama en la Figura 9. También descubrimos que la concentración intermedia de tetraciclina, se ajustaba sustancialmente a la supresión de la letalidad de LA513, y no suprimía este patrón de expresión amplio de fluorescencia. A esas concentraciones intermedias de tetraciclina, se acumulaba el tTAV a un nivel intermedio – subletal, pero mayor que con 30 µg/ml de tetraciclina, y que aún influenciaba la expresión de DsRed2. Esto ejemplifica de nuevo el control adicional disponible modulando la concentración de tetraciclina.

La Figura 9 ilustra la acción bidireccional de tetO₇ en mosquitos 513A y 513B. En 513, el DsRed2 está bajo el control de transcripción del promotor Actin5C de *Drosophila*.

- 40 (A) En presencia de tetraciclina, se produce relativamente poco tTAV, que se une a la tetraciclina y que no tiene o tiene poco efecto sobre la expresión de DsRed2. Se ve DsRed2 en un patrón típico de la expresión de Actin5C en mosquitos.
 - (B) En ausencia de tetraciclina, tTAV estimula su propia expresión en un bucle de retroalimentación positiva.
 - (C) tTAV se une a los sitios tetO y aumenta la expresión del promotor mínimo hsp70, y por tanto de tTAV, pero también del promotor Actin5C, y por tanto de DsRed2.

15

20

30

35

10

EJEMPLO 8

20

25

LA656, LA928 y LA1124 en Ceratitis capitata

No se obtuvieron líneas transgénicas de la mosca mediterránea de la fruta (mosca mediterránea de la fruta, Ceratitis capitata), utilizando pLA513, probablemente indicando que el marcador basado en Actin5C de pLA513 no es apropiado para su uso en mosca mediterránea de la fruta. Esto enfatiza el deseo de que haya construcciones de expresión con un intervalo amplio de especies. Nosotros, por tanto, modificamos la construcción para incluir un marcador basado en una poliubiquitina (ubi-p63E) en vez de la que se basaba en Actin5C de pLA513. Tal construcción es pLA656. También hicimos dos construcciones adicionales, pLA928, y pLA1124 (SEC ID Nos 18, 20 y 21, respectivamente, y que se muestra en forma de diagrama en las Figuras 10, 11, y 12), utilizando un marcador basado en el potenciador hr5 y el promotor ie1 de un baculovirus (virus de poliedrosis nuclear *Autographica califórnica*, AcMNPV). Este se diferencia en la orientación del marcador con respecto al casete tetO-tTAV. El potenciador hr está más próximo al casete tetO-tTAV en pLA1124 que en pLA928. Además, el pLA1124 tiene 21, en vez de 7, copias de tetO y adicionalmente tiene una región GAGA-factor de unión aparente relacionada con la de pUASp (Roth, 1998).

Se obtuvo una línea transgénica por pLA656, tres por pLA928 y tres por pLA1124. Se asumió que estas líneas tienen inserciones independientes, ya que se derivaron de diferentes G0 supervivientes de la inyección.

Se cruzaron machos heterocigotos de cada línea con hembras tipo silvestre. La descendencia se crio con una dieta de referencia para *Drosophila* de levadura/azúcar/germen de trigo o levadura/azúcar/maíz, suplementada apropiadamente con tetraciclina. Los parentales se mantuvieron con la misma dieta, suplementada con 100 µg/ml de tetraciclina en el caso de los machos transgénicos. Las hembras del tipo silvestre con las que se aparearon los machos se mantuvieron sin tetraciclina, para eliminar cualquier contribución potencial materna de tetraciclina. Se determinó el número de pupas y adultos transgénicos y no transgénicos obtenidos en cada cruzamiento clasificándolos por el DsRed2 mediante microscopía de fluorescencia.

Los resultados de estos cruzamientos se muestran en la Tabla 12, a continuación. En cada caso, en ausencia de tetraciclina, la supervivencia de los heterocigotos transgénicos era menor del 2 % en relación con su tipo silvestre. El cambio entre las dietas que contenían diferentes niveles de tetraciclina, la modificación de la construcción y el efecto del uso de una posición, se tratan en otra parte del presente documento.

Tabla 12

Efecto de la	tetraciclina sobre I	as moscas n		fruta heter nos +/+	ocigotas tran	sgénicas p	or varias cor	nstrucciones y sus
LA656	Descendencia [Tc] (μg/ml)	Pupas F/NF	Relación de supervivencia pupal (%)	Macho F	Hembra F	Macho NF	Hembra NF	Relación de supervivencia de adultos (%)
	0	84/1161	7	6	2	530	551	0,7
	0,1	16/423	4	0	0	205	177	0
	1	124/384	32	34	12	155	174	14
	3	258/370	70	84	53	165	133	46
	10	249/252	99	91	98	107	127	81
	100	330/307	107	151	150	134	148	107
<u>LA928m1</u>	Descendencia [Tc] (μg/ml)	Pupas F/NF	Relación de supervivencia pupal (%)	Macho F	Hembra F	Macho NF	Hembra NF	Relación de supervivencia de adultos (%)
	0	28/1499	1,87	5	1	661	639	0,46
	0,1	0/765	0	0	0	347	246	0
	1	190/256	74	62	59	119	101	55
	3	290/302	96	133	98	143	107	92
	10	nd	nd	nd	nd	nd	nd	nd
	100	222/286	77	84	84	146	126	74
<u>LA928m3</u>	Descendencia [Tc] (μg/ml)	Pupas F/NF	Relación de supervivencia pupal (%)	Macho F	Hembra F	Macho NF	Hembra NF	Relación de supervivencia de adultos (%)
	0	68/1026	6,6	13	4	489	449	1,8
	0,1	0/265	0	0	0	117	91	0
	1	358/446	80	154	100	228	164	65

	3	105/105	100	39	35	42	38	93
	10	nd	nd	nd	nd	nd	nd	nd
	100	245/245	100	109	121	117	108	100
LA928F1	Descendencia [Tc] (μg/ml)	Pupas F/NF	Relación de supervivencia pupal (%)	Macho F	Hembra F	Macho NF	Hembra NF	Relación de supervivencia de adultos (%)
	0	17/1331	1,3	2	0	639	599	0,16
	0,1	2/254	0,8	0	0	100	84	0
	1	461/567	81	218	146	244	181	85
	3	520/527	99	214	182	249	202	88
	10	350/399	91	139	112	131	159	87
	100	126/117	108	63	57	57	49	113
	•	•	•		•		•	
LA1124f1	Descendencia [Tc] (μg/ml)	Pupas F/NF	Relación de supervivencia	Macho F	Hembra F	Macho NF	Hembra NF	Relación de supervivencia
			pupal (%)					de adultos (%)
	0	104/213	pupal (%) 51	0	3	95	62	de adultos (%)
	0	104/213 478/536	,	0 218	3 208	95 205	62 203	` '
	_		51					1.9
LA1124m1	_		51					1.9
LA1124m1	100 Descendencia	478/536 Pupas	51 89 Relación de supervivencia	218	208	205	203	1.9 104 Relación de supervivencia
<u>LA1124m1</u>	100 Descendencia [Tc] (μg/ml)	478/536 Pupas F/NF	51 89 Relación de supervivencia pupal (%)	218 Macho	208 Hembra F	205 Macho	203 Hembra	1.9 104 Relación de supervivencia de adultos (%)
LA1124m1	Descendencia [Tc] (µg/ml)	478/536 Pupas F/NF 337/437	51 89 Relación de supervivencia pupal (%)	218 Macho F	208 Hembra F	205 Macho NF 176	203 Hembra NF 207	1.9 104 Relación de supervivencia de adultos (%) 0,78
	Descendencia [Tc] (µg/ml) 0 100 Descendencia	478/536 Pupas F/NF 337/437 84/90 Pupas	51 89 Relación de supervivencia pupal (%) 77 93 Relación de supervivencia	218 Macho F 2 35 Macho	208 Hembra F 1 31	205 Macho NF 176 30 Macho	203 Hembra NF 207 26 Hembra	1.9 104 Relación de supervivencia de adultos (%) 0,78 118 Relación de supervivencia

Se recolectaron las pupas y se valoró su fluorescencia (columna 3), entonces se les dejó eclosionar. Se evaluaron la fluorescencia y el sexo (columnas 5-8) de los adultos supervivientes. A partir de estos datos en adultos, se calculó la relación entre supervivientes fluorescentes y no fluorescentes, y se presenta en la columna 9 como el porcentaje de adultos fluorescentes observados en relación con los no fluorescentes. Se esperaba que estos cruzamientos darían, de media, igual número de individuos transgénicos y no transgénicos; de esta forma si sobreviven hasta la madurez la misma proporción de individuos transgénicos y no transgénicos, entonces debería dar una "relación de supervivencia de adultos" del 100 %.

10 Además investigamos la expresión de tTA en estas líneas transgénicas por PCR-rt (tiempo real) cuantitativa (qPCR). Los resultados se dan en la Tabla 13, a continuación.

<u>Tabla 13</u>
Niveles de expresión de tTA en mosca mediterránea de la fruta tipo silvestre y transgénicas

Muestra	Relación tTA/18S	Relación NT/T
Larvas		
WT tet	3,13E-06	
WT NT	2,81E-06	
656 tet	5,80E-06	1,00
656 NT	2,06E-04	36
670A tet	2,71E-06	1,00
670A NT	1,10E-04	41
670e tet	9,70E-06	1,00
670e NT	8,40E-05	8,7
Adultos		_
Hembra WT	2,83E-06	
Macho WT	2,16E-07	
Heterocigotos		
656 tet M 0d	5,52E-06	1,00

656 tet M8d	1,12E-05	2,0
656 NT M 0d	4,49E-05	8,1
656 NT M 2d	2,77E-04	50
656 NT M 4d	2,22E-04	40
656 NT M 8d	9,71E-05	18
656 NT M 16d	1,49E-04	27
670 M tet	4,21E-06	1,00
670 F tet	2,86E-06	0,68
670 M NT S	6,93E-05	16,45
670 F NT S	1,92E-04	45,57
928Am1 F tet	7,17E-06	1,00
928Am1 M tet	8,56E-06	1,19
928Am1 M NT 2d	1,71E-04	23,81
928Am1 M NT 4d	5,36E-04	74,72
928Am1 M NT 8d	1,91E-04	26,66
928Am1 M NT 16d	1,01E-05	1,41
928Am1 M tet 8d	1,11E-06	0,16
928Am1 M NT S	2,22E-04	31,02
928Am1 M NT S	1,51E-04	21,11
928Am3 F tet	9,09E-07	1,00
928Am3 M tet	9,09E-07	1,00
928Am3 F NT S	3,62E-05	39,85
928Am3 F NT S	8,74E-04	962,07
928Am3 F NT S	2,99E-04	329,32
928Am3 M NT S	5,53E-05	60,83
928Am3 M NT S	9,18E-04	1009,90
1124f1 F tet	2,86E-05	1,00
1124f1 F NT 7d	4,11E-04	14,35
1124m1 M tet	1,62E-05	1,00
1124m1 F NT S	9,30E-04	57,55
1124m2 F tet	8,98E-05	1,00
1124m2 F NT 7d	7,90E-04	8,79
Homocigotos		
656 tet 8d	1,49E-05	1,00
656 NT 0d	9,23E-05	6,2
656 NT 2d	3,90E-03	262
656 NT 4d	1,92E-03	129
656 NT 8d	4,70E-03	316
656 NT 16d	8,58E-04	58
M: Cove mecouline:	·	

M: Sexo masculino;

EJEMPLO 9

LA670 en Ceratitis capitata

Obtuvimos una sola línea transgénica de mosca mediterránea de la fruta por transformación con pLA670, una construcción que se parecía mucho a pLA656. Este plásmido se ilustra en la Figura 13 adjunta, y es la SEC ID Nº 23.

10

F: Sexo femenino;

tet: Criado con una dieta suplementa da con 100 μg/ml de tetraciclina;

NT S: Criado con dieta de referencia (0 µg/ml de tetraciclina);

d: días post eclosión;

NT (n)d: alimentados con dieta tet, cuando llegan a adultos con dieta no tet (NT)

durante n días, como se indica;

tet (n)d: alimentados con dieta tet, cuando llegan a adultos con dieta tet

durante n días, como se indica

Sin embargo, esta línea transgénica dio una cantidad significativa de descendientes adultos transgénicos, incluso cuando se criaron con una dieta carente de tetraciclina cuando eran larvas (Tabla 14). Sin embargo esta línea de inserción LA670 produce una cantidad fácilmente detectable de ARNm tTAV en ausencia de tetraciclina, que se reduce sustancialmente por la tetraciclina de la dieta (evaluado por qPCR, los resultados se muestran en la Tabla 13 anterior). Por tanto, LA670 representa una fuente regulable útil de tTAV con la cual controlar la expresión de los genes que responden a tTAV. La diferencia fenotípica entre LA656 y LA670, que son extremadamente similares en su estructura, es debida probablemente al efecto de posición., que es la variación en la expresión de los transgenes dependiendo de donde están insertados en el genoma. Tal variación se muestra también por la variación de fenotipo y los niveles de expresión de tTAV entre diferentes líneas transgénicas con la misma construcción, como se muestra en la Tabla 13, anterior. Por tanto, se proporciona un procedimiento simple para obtener líneas transgénicas que porten construcciones de retroalimentación positiva con diferentes niveles de expresión y consecuencias fenotípicas. que comprende la generación de un panel de líneas de inserción y selección de los niveles y patrones de expresión reprimida y basal.

Tabla 14

Etecto a	le la tetraciclina so	obre las mo		as de la fri anos +/+	ita neteroci	gotas trar	isgenicas p	or LA670, y sus
<u>LA670</u>	Descendencia [Tc] (μg/ml)	Pupas F/NF	Relación de supervivencia pupal (%)	Macho F	Hembra F	Macho NF	Hembra NF	Relación de supervivencia de adultos (%)
	0	182/220	83	72	35	102	103	52
	100	10/8	125	5	3	5	3	100
F: fluores		10/0	120					100

15

20

25

30

10

Se recogieron las pupas y se valoró la fluorescencia (columna 3), entonces se les dejó eclosionar. Se evaluaron la fluorescencia y el sexo (columnas 5-8) de los adultos supervivientes. A partir de estos datos en adultos, se calculó la relación entre supervivientes fluorescentes y no fluorescentes, y se presenta en la columna 9 como el porcentaje de adultos fluorescentes observados en relación con los no fluorescentes. Se esperaba que estos cruzamientos darían, de media, igual número de individuos transgénicos y no transgénicos; de esta forma si sobreviven hasta la madurez la misma proporción de individuos transgénicos y no transgénicos, entonces debería dar una "relación de supervivencia de adultos" del 100 %.

Ensayamos la capacidad de LA670 para dirigir la expresión de secuencias situadas bajo del control de la transcripción de tetO. Analizamos la expresión de dos ARNm potenciales de pLA1038 (Figura 14, SEC ID Nº 24), que contiene dos unidades de transcripción que responden a tTA, transcritas divergentemente. Estos son CMV-tTA y hsp70-Cctra-nipper. Se llevó a cabo un análisis por PCR, con controles, de la expresión de estas unidades de transcripción en presencia y ausencia de pLA670. Ambas unidades de transcripción se expresan en presencia de pLA670. CMV-tTA se expresa a un nivel más bajo pero detectable en transgénicos LA1038/+ en ausencia de LA670. La hsp70-Cctra-nipper no se expresaba detectablemente en ausencia de pLA670, lo que muestra que la expresión además está controlada por, y depende de, la tTAV suministrada por pLA670.

EJEMPLO 10

35 LA710 en Pectinophora gossypiella

La Pectinophora gossypiella (gusano rosado o lagarta rosada, un lepidóptero) se transformó con LA710 (Figura 15, SEC ID Nº 19) por procedimientos de referencia (Peloquin, y col., 2000). Se recuperaron cuatro líneas transgénicas. Los machos de esta línea se cruzaron con hembras de tipo silvestre para LA710. Las larvas recién nacidas se situaron en viales individuales de 1,7 ml con una dieta, o bien con o sin 7-clortetraciclina (40 μg/ml), y se valoró su fluorescencia. No se observó ninguna diferencia significativa en el número de transgénicos supervivientes en la madurez con respecto al número de sus hermanos de tipo silvestre, tanto con o sin clortetraciclina. Concluimos que LA710 no produce normalmente la acumulación de niveles letales de tTAV, incluso en ausencia de clortetraciclina en la dieta.

45

50

40

Examinamos la expresión de ARNm tTAV en los transgénicos LA710 por PCR a continuación de una reacción de transcriptasa inversa (rt-PCR). Encontramos que no era detectable el ARNm tTAV en las larvas alimentadas con clortetraciclina, pero era detectable en las larvas que no habían recibido la clortetraciclina (datos no mostrados). Esta construcción de retroalimentación positiva, por lo tanto, proporciona en estas polillas, una fuente de tTAV que se puede regular por el suministro en la dieta de clortetraciclina, y para la que la expresión no reprimida, aunque detectable fácilmente, no es letal. También observamos una variación significativa en la intensidad de la banda correspondiente al ARNm tTAV en muestras de diferentes líneas.

EJEMPLO 11

LA1124 en Pectinophora gossypiella

La Pectinophora gossypiella (gusano rosado o lagarta rosada, un lepidóptero) se transformó con LA1124 (Figura 12, SEC ID Nº 21) por procedimientos de referencia (Peloquin, y col., 2000). Se recuperó una única línea transgénica. Los machos de esta línea se cruzaron con hembras de tipo silvestre para LA1124. Las larvas recién nacidas se situaron en viales individuales de 1,7 ml con una dieta, o bien con o sin 7-clortetraciclina (40 μg/ml), y se valoró su fluorescencia. Estas larvas se evaluaron de nuevo cuando tenían un tiempo de desarrollo de último estadio larvario.
 Todas las larvas sobrevivieron, excepto las larvas fluorescentes (LA1124/+) con la dieta que carecía de clortetraciclina, como se muestra en la Tabla 15, a continuación.

Tabla 15

Gusano rosado: supervivencia desde el estadio temprano hasta el último, de LA1124/+ o sus hermanos de tipo							
	silvestre, con una dieta con o sin clortetraciclina						
Clortetraciclina100 µg/ml		Clortetraciclina 0 μο	y/ml				
LA1124/+	Tipo silvestre	LA1124/+	Tipo silvestre				
3 (0 muertes)	11 (0 muertes)	8 (8 muertes)	7 (0 muertes)				

Examinamos la expresión de ARNm tTAV en los gusanos rosas del algodón LA1124 por PCR a continuación de una reacción de transcriptasa inversa (rt-PCR). Encontramos que el ARNm tTAV se detectaba fácilmente en las larvas alimentadas con clortetraciclina, y estaba elevado considerablemente en las larvas que no habían recibido la clortetraciclina (datos no mostrados). La expresión basal significativa de ARNm tTAV en esta construcción se debe probablemente a la inclusión en LA1124 del potenciador hr, que se incluyó por esta razón. La comparación de la estructura y función de LA1124 y la de LA710 ilustra claramente que los niveles basal y máximo del producto génico se pueden seleccionar fácilmente, modificando apropiadamente la construcción de expresión, este principio se demuestra, aquí, regulando los niveles de expresión de un ARN dependiente de tTAV (en este caso el ARNm tTAV).

EJEMPLO 12

20

30

35

55

25 Expresión específica del sexo utilizando retroalimentación positiva

Se prefiere controlar, por el diseño, la expresión de tTAV a partir de una construcción de retroalimentación positiva, de forma que se puede expresar deferencialmente en diferentes tejidos, o en diferentes estadios de desarrollo, o diferentes sexos, por ejemplo. Una aplicación para esto es en la determinación del sexo genético, en el que se induce un dimorfismo sexual entre los dos sexos y que se utiliza como base para separar los dos sexos. En el contexto de la Técnica de insectos Estériles, por ejemplo, para la mosca mediterránea de la fruta, esto significa preferentemente matar las hembras, más preferentemente en un estadio temprano de su desarrollo. No se conocen promotores de actuación temprana específicos de hembras para mosca mediterránea de la fruta, lo cual limita el potencial del sistema de dos componentes dominante letal que se puede reprimir, ejemplificado para *Drosophila*, que utiliza promotores o potenciadores de genes de proteína de yema de huevo (Heinrich y Scott, 2000; Thomas y col., 2000). Sería claramente ventajoso ser capaces de combinar las características beneficiosas de un sistema de retroalimentación positiva condicional con un mecanismo que confiriera la especificidad femenina.

Por tanto, modificamos una construcción de retroalimentación positiva no específica del sexo insertando una región intrónica específica del sexo de Cctra, el homólogo en la mosca mediterránea de la fruta del gen transformador de *Drosophila melanogaster* (Pane y col., 2002). El corte y empalme específico del sexo de Cctra se ilustra en forma de diagrama en la Figura 16, que se ha adaptado de Pane y col., 2002, mencionado anteriormente. La Figura 16 muestra la organización genómica del gen *tra* de la mosca mediterránea de la fruta. La línea superior representa el locus genómico Cctra. Los exones se muestran como bloques, aug marca el codón de inicio compartido. Las uniones alternadas de corte y empalme se marcan como i. Los sitios de unión aparentes tra/tra-2 se marcan con puntas de flecha. La transcripción F1, es el único que codifica proteína Cctra funcional, y es específico de hembras. Las transcripciones M1 y M2 se encuentran tanto en machos como en hembras.

Se producen tres transcripciones principales: M1, M2 y F1. La transcripción F1 se encuentra solamente en hembras, y es el único que codifica la proteína Cctra funcional, de longitud completa. Las transcripciones M1 y M2 se encuentran tanto en machos como en hembras, e incluyen una secuencia exónica adicional, que inserta uno o más codones de parada relativos a la transcripción F1, dando lugar a que se trunque la fase de lectura abierta.

Insertamos el intrón Cctra en la fase de lectura abierta de tTAV, de forma que la escisión por corte y empalme del intrón completo, en forma de transcripción F1, debería reconstituirse en una región codificadora intacta tTAV, pero cortando y empalmando en la manera de M1 o M2 resultaría en una proteína truncada incapaz de actuar como un potenciador de la transcripción. El plásmido resultante pLA1188 (Figura 17, SEC ID Nº 22), se inyecto en los embriones de mosca mediterránea de la fruta. Se recuperaron las larvas supervivientes, y se analizaron extractos de estas larvas por rt-PCR para determinar el patrón de corte y empalme de la transcripción tTAV.

Las larvas hembras rendían productos PCR que correspondían a los tamaños esperados que resultarían del corte y empalme en el patrón del gen Cctra endógeno, en otras palabras correspondiendo al corte y empalme en los patrones M1, M2 y F1. Estos datos indican que el intrón Cctra puede cortar y empalmar correctamente en un contexto heterólogo, y por tanto, proporcionar un procedimiento adecuado para introducir una especificidad del sexo en una construcción de retroalimentación positiva. Además, como se conservó la función de tra a lo largo de un intervalo filogenético amplio (Saccone y col., 2002), y se conocen otros intrones específicos del sexo, por ejemplo, en Drosophila melanogaster el gen de sexo doble (dsx), que también se conserva bien, proporciona un procedimiento general para manipular la expresión de genes. Será aparente para la persona experta en la técnica que tales manipulaciones pueden alternativamente, o adicionalmente, aplicarse a otros genes que responden a un activador de la transcripción, de forma que se puede conseguir la expresión específica del sexo de un gen diana combinando la expresión no específica del sexo de un activador de la transcripción con la expresión específica del sexo, por ejemplo, por medio de corte y empalme de un ARN funcional bajo el control de la transcripción del activador de la transcripción. Además, será también aparente que esto proporciona un mecanismo simple para la expresión diferencial de dos, o más, genes diana diferentes, o productos génicos, tal que uno, o un grupo, se exprese en ambos sexos y el otro, u otro grupo, en un solo sexo. Esto se ilustra para la mosca mediterránea de la fruta en la Figura 18.

Los cebadores utilizados fueron:

10

15

30

```
20 Tra(tTAV)Sec+: 5'-CCTGCCAGGACTCGCCTTCC (SEC ID № 12)
Tra(tTAV)Sec-: 5'-GTCATCAACTCCGCGTTGGAGC (SEC ID № 13)
```

Se produjeron productos RT-PCR de ~600 y -200 pb cuando el ADNc derivado de hembras de mosca mediterránea de la fruta 1 y 2 se utilizaron como matriz, representando respectivamente formas cortadas y empalmadas de ARNm específicas de "macho" (M1 y M2) y específicas de hembras (F1) (datos no mostrados). El producto de ~200 pb puede que se produjera debido a la contaminación con ADN tTAV - la forma femenina de corte y empalme eliminaba completamente el intrón Cctra y por tanto llevaba a un producto PCR que es idéntico al que se debería obtener de cualquiera de los varios plásmidos que contienen tTAV o las muestras manejadas en el mismo laboratorio. La banda de ~600 pb, por el contrario, retiene ~400 pb de la secuencia Cctra y es diagnóstica del correcto corte y empalme de la construcción.

En otro experimento (datos no mostrados), se analizó la expresión de las transcripciones de LA1038 en respuesta a tTAV de LA670 por cromatografía en gel (datos no mostrados), utilizando:

```
A: rt-PCR para la expresión de CMV-tTA de LA1038 en extractos de heterocigotos dobles LA1038/+, LA670/+; B: rt-PCR para la expresión de hsp70-Cctra-nipper en extractos de heterocigotos dobles LA1038/+, LA670/+; y C: rt-PCR para la expresión de CMV-tTA de LA1038 en extractos de heterocigotos LA1038/+ sin LA670.
```

Todas las moscas se criaron en ausencia de tetraciclina en la dieta. En A y C, se presentaron dos bandas entre 200 pb y 400 pb y representaban el ADNc del ARNm cortado y empalmado (la banda de bajo peso molecular) y el ADN genómico o el ADNc del mensaje sin cortar y empalmar (la banda de mayor peso molecular) respectivamente. En B, una banda de aproximadamente 200 pb representa el ADNc del ARNm cortado y empalmado en el patrón de la transcripción de Cctra específica de hembra, una banda superior de aproximadamente 1500 pb que representa el ADN genómico o el ADNc del mensaje sin cortar y empalmar, y bandas de tamaño intermedio que representan el ADNc cortado y empalmado en el patrón de las transcripciones M1 y M2 de Cctra no específicas de sexo, o bandas no específicas.

Las secuencias cebadoras utilizadas fueron.

```
50 hsp70-Cctra-nipper: NIP: 5'-CATCGATGCCCAGCATTGAGATG y
HSP: 5'-CAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTA;
CMV-tTA: CMV: 5'- GCCATCCACGCTGTTTTGACCTCCATAG y
TTA: 5'-GCCAATACAATGTAGGCTGCTCTACAC
```

Estos datos (no mostrados) demuestran que la sección hsp-Cctra-nipper de LA1038 demuestra que se cortó y empalmó correctamente en la forma femenina en 6/6 hembras, y en la forma masculina en 6/6 machos.

Secuencias de referencia:

pLA928 (SEC ID № 20) **pLA1038** (SEC ID № 24) **pLA1124** (SEC ID № 21) **pLA1188** (SEC ID № 22)

5

10

Referencias

- Alphey, L. (2002). Re-engineering the Sterile Insect Technique. Insect Biochem Mol Biol 32, 1243-1247. Alphey, L., y Andreasen, M. H. (2002). Dominant lethality and insect population control. Mol Biochem Parasitol 121, 173-178.
- Alphey, L., Beard, B., Billingsley, P., Coetzee, M., Crisanti, A., Curtis, C. F., Eggleston, P., Godfray, C., Hemingway, J., Jacobs-Lorena, M., y col. (2002). Malaria control with genetically modified vectors. Science 298, 119-121.
- Baron, U., y Bujard, H. (2000). Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Meth Enzymol 327.
 - Baron, U., Gossen, M., y Bujard, H. (1997). Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucl Acids Res 25, 2723-2729.

 Bello, B., Resendez-Perez, D., y Gehring, W. (1998). Spatial and temporal targeting of gene expression in
 - Bello, B., Resendez-Perez, D., y Gehring, W. (1998). Spatial and temporal targeting of gene expression in *Drosophila* by means of a tetracycline-dependent transactivator system. Development 125, 2193-2202. Benedict, M., y Robinson, A. (2003). The first releases of transgenic mosquitoes: an argument for the sterile
- Benedict, M., y Robinson, A. (2003). The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19, 349-355.

 Bennett, D., Szoor, B., Gross, S., Vereshchagina, N., y Alphey, L. (2003). Ectopic expression of inhibitors of Protein Phosphatase type 1 (PP1) can be used to analyse roles of PP1 in *Drosophila* development. Genetics 164, 235-245.
- Berger, S. L., Cress, W. D., Cress, A., Triezenberg, S. J., y Guarente, L. (1990). Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61, 1199-1208.
 - Berghammer, A. J., Klingler, M., y Wimmer, E. A. (1999). A universal marker for transgenic insects. Nature 402, 370-371.
- Brand, A., Manoukian, A., y Perrimon, N. (1994). Ectopic expression in *Drosophila*. Meth Cell Biol 44, 635-654. Catteruccia, F., Nolan, T., Loukeris, T., Blass, C., Savakis, C., Kafatos, F., y Crisanti, A. (2000). Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959-962. Coates, C., Jasinskiene, N., Miyashiro, L., y James, A. (1998). Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95, 3748-3751.
- Damke, H., Gossen, M., Freundlieb, S., Bujard, H., y Schmid, S. (1995). Tightly regulated and inducible expression of dominant interfering dynamin mutant in stably transformed HeLa cells. Meth Enz 257, 209-220. Fussenegger, M. (2001). The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. Biotechnol Prog 17, 1-51. Fussenegger, M., Mazur, X., y Bailey, J. (1998a). pTRIDENT, a novel vector family for tricistronic expression in
- mammalian cells. Biotech Bioeng 57, 1-10.
 Fussenegger, M., Moser, S., y Bailey, J. (1998b). pQuattro vectors allow one-step transfection and auto-selection of quattrocistronic artificial mammalian mammalian. Cytotechnology 28, 229-235.
 - Gebauer, F., Merendino, L., Hentze, M. W., y Valcarcel, J. (1998). The *Drosophila* splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA 4, 142-150.
- Gill, G., y Ptashne, M. (1988). Negative effect of the transcriptional activator GAL4. Nature 334, 721-724.
 Gossen, M., Bonin, A., Freundlieb, S., y Bujard, H. (1994). Inducible gene expression systems for higher eukaryotic cells. Curr Opin Biotechnol 5, 516-520.
 Gossen, M., y Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline- responsive promoters. Proc Natl Acad Sci U S A 89, 5547-5551.
- Handler, A. (2002). Use of the *piggyBac* transposon for germ-line transformation of insects. Insect Biochem Mol Biol 32, 1211-1220.
 Handler, A., y James, A. (2000). Insect transgenesis: methods and applications (Boca Raton, CRC Press).
 Heinrich, J., y Scott, M. (2000). A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Nat'l Acad Sci (USA) 97, 8229-8232.
- Horn, C., Schmid, B., Pogoda, F., y Wimmer, E. (2002). Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32, 1221-1235.

 Jasinskiene, N., Coates, C., Benedict, M., Cornel, A., Rafferty, C., James, A., y Collins, F. (1998). Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95, 3743-3747.
- Kelley, R. L., Solovyeva, I., Lyman, L. M., Richman, R., Solovyev, V., y Kuroda, M. I. (1995). Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in *Drosophila*. Cell 81, 867-877.
 - Lobo, N., Hua-Van, A., Li, X., Nolen, B., y Fraser, M. (2002). Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a *piggyBac* vector. Insect Molecular Biology 11, 133-139.
- 133-139.Lozovsky, E., Nurminsky, D., Wimmer, E., y Hartl, D. (2002). Unexpected stability of mariner transgenes in

Drosophila. Genetics 160, 527-535.

5

Matsuo, T., Takahashi, K., Kondo, S., Kaibuchi, K., y Yamamoto, D. (1997). Regulation of cone cell formation by Canoe and Ras in the developing *Drosophila* eye. Development 124, 2671-2680.

McCombs, S., y Saul, S. (1995). Translocation-based genetic sexing system for the oriental fruit-fly (Diptera, Tephritidae) based on pupal color dimorphism. Ann Ent Soc Am 88, 695-698.

- Moreira, L., Wang, J., Collins, F., y Jacobs-Lorena, M. (2004). Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. Genetics 166, 1337-1341.
- Pane, A., Salvemini, M., Delli Bovi, P., Polito, C., y Saccone, G. (2002). The transformer gene in Ceratitis capitata provides a genetic basis for selecting and remembering the sexual fate. Development 129, 3715-3725.
- Parker, L., Gross, S., Beullens, M., Bollen, M., Bennett, D., y Alphey, L. (2002). Functional interaction between NIPP1 and PP1 in *Drosophila*: lethality of over-expression of NIPP1 in flies and rescue by the over-expression of PP1. Biochem J 368, 789-797.
 - Peloquin, J. J., Thibault, S. T., Staten, R., y Miller, T. A. (2000). Germ-line transformation of pink bollworm (Lepidoptera: gelechiidae) mediated by the *piqqyBac* transposable element. Insect Mol Biol 9, 323-333.
- Perera, O., Harrell, R., y Handler, A. (2002). Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a *piggyBac*-EGFP tranposon vector is routine and highly efficient. Insect Molecular Biology 11, 291-297.
 - Pinkerton, A., Michel, K., O'Brochta, D., y Atkinson, P. (2000). Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Molecular Biology 9, 1-10.
- 20 Reichhart, J., y Ferrandon, D. (1998). Green balancers. *Drosophila* Information Service 81, 201-202. Rorth, P. (1998). Gal4 in the *Drosophila* female germline. Mech Dev 78, 113-118.
 - Saccone, G., Pane, A., y Polito, C. (2002). Sex determination in flies, fruitfles and butterflies. Genetica 116, 15-23.
- Salghetti, S., Caudy, A., Chenoweth, J., y Tansey, W. (2001). Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651-1653.
 - Scott, M., Heinrich, J., y Li, X. (2004). Progress towards the development of a transgenic strain of the Australian sheep blowfly (Lucilia cuprina) suitable for a male-only sterile release program. Insect Biochem Mol Biol 34, 185-192
- Shockett, P., Difilippantonio, M., Hellman, N., y Schatz, D. (1995). A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Nat'l Acad Sci (USA) 92, 6522-6526.
 - Stebbins, M., y Yin, J. (2001). Adaptable doxycycline-regulated gene expression systems for *Drosophila*. Gene 270, 103-111.
- Thomas, D., Donnelly, C., Wood, R., y Alphey, L. (2000). Insect population control using a dominant, repressible, lethal genetic system. Science 287, 2474-2476.
 - Varshavsky, A. (2000). Ubiquitin fusion technique and its descendants. Meth Enz 327.

LISTADO DE SECUENCIAS

- 40 <110> Oxitec Limited
 - <120> Control de Plagas
 - <130> WPP88353
- 45
 - <150> UK 0317656.7 <151> 28-07-2003
 - <131> 20-01-200
 - <160> 33
- 50 <170> PatentIn versión 3.2
 - <210> 1
 - <211> 44
 - <212> ADN
- 55 <213> *Drosophila* sp.
 - <400> 1
 - cacagcgcat gatgagcaca ttaacaaaat gtagtaaaat agga 44
- 60 <210> 2
 - <211> 44
 - <212> ADN
 - <213> Drosophila sp.
- 65 <400> 2
 - gtttcgataa atattgctat ttaaaatgct tattttcaat gcta 44

5	<210> 3 <211> 44 <212> ADN <213> Drosophila sp. <400> 3 tttgttttct aacgttaaag ttaaagagag tccagccaca tttt	44
10	<210> 4 <211> 21 <212> ADN <213> Artificial	
15	<220> <223> Cebador de PCR	
	<400> 4 acgcgagagg tgaaattctt g 21	
20	<210> 5 <211> 23 <212> ADN <213> Artificial	
25	<220> <223> Cebador de PCR	
20	<400> 5 gaaaacatct ttggcaaatg ctt 23	
30	<210> 6 <211> 16 <212> ADN <213> Artificial	
35	<220> <223> Parte de nucleótido de sonda TaqMan MGB	
40	<400> 6 ccgtcgtaag actaac 16	
45	<210> 7 <211> 17 <212> ADN <213> Artificial	
	<220> <223> Cebador de PCR	
50	<400> 7 catgccgacg cgctaga 17	
55	<210> 8 <211> 26 <212> ADN <213> Artificial	
60	<220> <223> Cebador de PCR	
60	<400> 8 gtaaacatct gctcaaactc gaagtc 26	
65	<210> 9 <211> 18 <212> ADN	

	<213> Artificial
E	<220> <223> Parte de nucleótido de sonda TaqMan MGB
5	<400> 9 tcgatctgga catgttgg 18
10	<210> 10 <211> 25 <212> ADN <213> Artificial
15	<220> <223> Cebador de PCR
	<400> 10 gccctcgatg gtagacccgt aattg 25
20	<210> 11 <211> 27 <212> ADN <213> Artificial
25	<220> <223> Cebador de PCR
30	<400> 11 gctaaacaat ctgcaggtac cctggcg 27
	<210> 12 <211> 20 <212> ADN <213> Artificial
35	<220> <223> Cebador de PCR
40	<400> 12 cctgccagga ctcgccttcc 20
45	<210> 13 <211> 22 <212> ADN <213> Artificial
	<220> <223> Cebador de PCR
50	<400> 13 gtcatcaact ccgcgttgga gc 22
55	<210> 14 <211> 2556 <212> ADN <213> Artificial
60	<220> <223> JY2004-tTA <400> 14

gcgg ccgca t	agtogacatt	.tcgagtttac	cactecetat	cagtgataga	gaaaagtgaa	60
agtc ga gttt	accactccct	atcagtgata	gagaaaagtg	aaagtcgagt	ttaccactcc	120
ctatcagtga	tagagaaaag	tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	180
agtgaaagtc	gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	tegagtttac	240
cactecetat	cagtgataga	gaaaagtgaa	agtcgagttt	accactccct	atcagtgata	300
gagaaaagtg	aaagtcgagc	teggtacccg	ggtcgaggta	ggcgtgtacg	gtgggaggcc	360
tatataagca	gagetegttt	agtgaaccgt	cagatcgcct	ggagacgeca	tecacgetgt	420
tttgacctcc	atagaagaca	ccgggaccga	tccagcctcc	geggeeeega	attegagete	480
ggtacccggg	gateceeget	cgagctgaat	agggaattgg	gaattggag c	agaggtg ggt	540
tettegeatt	acactgttcg	ccacaatctt	gtttattcat	tegeettgea	ggttgccacc	600
atggaattga	gattagataa	aagtaaagtg	attaacagcg	cattagagct	gcttaatgag	660
gtcggaatcg	aaggtttaac	aacccgtaaa	ctcgcccaga	agctaggtgt	agagcagcct	720
acattgtatt	ggcatgtaaa	aaataagcgg	gctttgctcg	acgccttagc	cattgagatg	780
ttagataggc	accatactca	cttttqccct	ttagaagggg	aaagetggea	agattttta	840

```
cgtaataacg ctaaaagttt tagatgtgct ttactaagtc atcgcgatgg agcaaaagta
                                                                      900
catttaggta cacggcctac agaaaaaqag tatgaaactc tcgaaaatca attagccttt
                                                                      960
ttatgccaac aaggtttttc actagagaat gcattatatg cactcagege tgtggggcat
                                                                     1020
tttactttag gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga agaaagggaa
                                                                     1080
acacctacta ctgatagtat geogecatta ttacgacaag ctategaatt atttgateac
                                                                     1140
caaggtgcag agccagcett cttattegge cttgaattga teatatgegg attagaaaaa
                                                                     1200
caacttaaat gtgaaagtgg gtccgcgtac agccgcgcgc gtacgaaaaa caattacggg
                                                                     1260
totaccateg agggeotget egateteceg gaegaegaeg ceceegaaga ggeggggetg
                                                                     1320
geggeteege geetgteett teteecegeg ggaeacaege geagaetgte gaeggeeeee
                                                                     1380
ceqaeeqatq teaqeetqqq qqaegagete caettagaeg geqaqqaegt qqeqatqqeq
                                                                     1440
catgoogacg ogotagacga tttogatotg gacatgttgg gggacgggga ttccccgggt
                                                                     1500
cogggattta cocccacga otcogcocco tacggogoto tggatatggo cgacttogag
                                                                     1560
tttgagcaga tgtttaccga tgcccttgga attgacgagt acggtgggta gtgaaacgcg
                                                                     1620
totagagetg agaactteag ggtgagtttg gggaccettg attgttettt ettttteget
                                                                     1680
attgtaaaat tcatgttata tggagggggc aaagttttca gggtgttgtt tagaatggga
                                                                     1740
agatgteect tgtateacca tggaceetca tgataatttt gtttetttea etttetaete
                                                                     1800
tgttgacaac cattgtctcc tcttattttc ttttcatttt ctgtaacttt ttcgttaaac
                                                                     1860
tttagcttgc atttgtaacg aatttttaaa ttcacttttg tttatttgtc agattgtaag
                                                                     1920
tactttctct aatcactttt ttttcaaggc aatcagggta tattatattg tacttcagca
                                                                    1980
cagtittaga gaacaattgt tataattaaa tgataaggta gaatattict gcatataaat
                                                                     2040
tetggetgge gtggaaatat tettattggt agaaacaact acaccetggt catcatectg
                                                                     2100
cctttctctt tatggttaca atgatataca ctgtttgaga tgaggataaa atactctgag
                                                                    2160
tecaaaccqq gecettetge taaccatgtt catgeettet tetettteet acageteetg
                                                                    2220
ggcaacgtgc tggttgttgt gctgtctcat cattttggca aagaattcac tcctcaggtg
                                                                    2280
caggotgoot atcagaaggt ggtggotggt gtggocaatg cootggotca caaataccac
                                                                    2340
tgagatettt ttecetetge caaaaattat ggggacatea tgaageeect tgageatetg
                                                                    2400
acttetgget aataaaggaa atttatttte attgeaatag tgtgttggaa tttttttgtgt
                                                                    2460
ctctcactcg gaaggacata tgggagggca aatcatttaa aacatcagaa tgagtatttg
                                                                    2520
                                                                    2556
gtttagagtt tggcaacata tgcccatagc ggccgc
```

5

<210> 15 <211> 12087

<212> ADN

<213> Artificial

<220>

<223> pP[Casper-Act5C-tTA]

<400> 15

gatecatgag caattageat gaacgttetg aaaagegegt ttagetetee actaettaca 60 catattctat gctgcaatat tgaaaatcta ataaacaaaa ctaatgtaca ttaattcttc 120 agttttgaat atccttctcc tgactttctt atttagaatt aatataatac tgcatacatt 180 aatactgtaa atatgataag tacctgcaaa acactgcagc tcaagtctta atgaggttct 240 grgatagett agcataatta gtaacttate gegeagaatt ceetaatgtt ceegacetae 300 atgtacttct gatagttgcc gaggtcaaat gttgttgtat ttgtattata cctcaatatt 360 ggtatattca atatctaata gtacccaatt caattgcaaa gatagtcatt aaaaaaacct 420 aaatcactig caaattgact tttctgccgg aaaagcaacc ttgacacaca aaqttaatta 480 gtttatctgg aagtcatgtg agaaatttgt aaataaaatt tttcgcagta atttaagtgg 540 gcctaatccc ttttaagcat cttggtttta cgatgacacc gcaataaggt acaactttat 600 attgtttttg caatcagctt gagtctttat taggcatcag tctttctctc taagtttctt 660 egigeaataa aigaggitee aaacteegia gattitteet teitigitga aiccagatee 720 tgcaaagaaa aaagagcaaa cooctaggto tgtocaggaa tgtattttog tgtttgtoga 780 tegaceatgg tetegagagg cettgeagee aagetttgeg tactegeaaa ttattaaaaa 840 taaaacttta aaaataattt ogtotaatta atattatgag ttaattoaaa coccaoggac 900 atgctaaggg ttaatcaaca atcatatcgc tgtctcactc agactcaata cgacactcag 960 aatactattc ctttcactcg cacttattgc aagcatacgt taagtggatg tctcttgccg 1020 acgggaccac cttatgttat ttcatcatgg tctggccatt ctcatcgtga gcttccgggt 1080 getegeatat—ctggctctaa.gacttegggc ccgacgcaag.gagtagccga catatatecg 1140 aaataactgc ttgttttttt ttttaccatt attaccateg tgtttactgt ttattgcccc 1200 ctcaaaaagc taatgtaatt atatttgtgc caataaaaac aagatatgac ctatagaata 1260 caagtattte cccttcgaac atccccacaa gtagactttg gatttgtott ctaaccaaaa 1320 gacttacaca cotgoataco ttacatcaaa aactogttta togotacata aaacacoggg 1380 atatattttt tatatacata etttteaaat egegegeeet etteataatt eaceteeace 1440 acaccaegtt tegtagttge tetttegetg teteccaece geteteegea acacatteae 1500 cttttgtteg acgaecttgg agegactgte gttagtteeg egegattegg tgeggtattt 1560 cacacegeat atggtgeact ctcagtacaa tetgetetga tgccgcatag ttaagecage 1620 cocgacacco gocaacacco gotgacgogo cotgacgggo ttgtotgeto coggoatcog -1680 cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat 1740 caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag gttaatgtca 1800 tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc 1860 ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct 1920

g	ataaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	1980
c	ccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	2040
t _f	gaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	2100
t	caacagegg	taagateett	gagagttttc	geceegaaga	acgttttcca	atgatgagca	2160
c	ttttaaagt	tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	2220
t	cggtcgccg	catacactat	totcagaatg	acttggttga	gtactcacca	gtcacagaaa	2280
a	gcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	2340
a	taacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	2400
t	tttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagetgaatg	2460
a	agccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	2520
g	caaactatt	aactggcgaa	ctacttactc	tagetteceg	gcaacaatta	atagactgga	2580
t	ggaggcgga	taaagttgca	ggaccacttc	tgegetegge	ccttccggct	ggctggttta	2640
t	tgctgataa	atctggagcc	ggtgagcgtg	ggtetegegg	tatcattgca	geactggggc	2700
C	agatggtaa	gecetecegt	atcgtagtta	tetacaegae	gggagtcag	gcaactatgg	2760
a	tgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	2820
Ç	agaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	2880
99	gatotaggt	gaagateett	tttgataatc	tcatgaccaa	aatcccttaa	ogtgagtttt	2940
C	gttccactg	agegteagae	cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	3000
t	tetgegegt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	3060
t	gecggatca-	-agagctacca	actctttttc	.cgaaggtaac	tggcttcagc	agagogoaga	3120
t	accaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	3180
C	accgcctac	ataccteget	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	3240
aș	gtogtgtot	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagoggtogg	3300
g	ctgaacggg	gggttcgtgc	acacageeca	gcttggagcg	aacgacctac	accgaactga	3360
g	atacctaca	gcgtgagcta	tgagaaagcg	ccacgcttcc	cgaagggaga	aaggeggaca	3420
99	gtatccggt	aagcggcagg	gtcggaacag	gagagegeae	gagggagctt	ccagggggaa	3480
a	cgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	3540
t	gtgatgete	gtcagggggg	cggagcctat	ggaaaaac g c	cttcttcttg	aacteggget	3600
C	ggtgccagt	atacctcaaa	tggttgtcgt	acctctcatg	gtteegttae	gccaacgagg	3660
g	tctgctgat	taaccaatgg	gcgga cgtg g	agccgggcga	aattagctgc	acatogtoga	3720
a	caccacgtg	ccccagttcg	ggcaaggtca	tcctggagac	gcttaacttc	tccgccgccg	3780
a	tctgccgct	ggactacgtg	ggtctggccc	atgatgaaat	aacataaggt	ggtcccgtcg	3840
a	aagccgaag	cttaccgaag	tatacactta	aattcagtgc	acgtttgctt	gttgagagga	3900

aaggttgtgt	gcggacgaat	tttttttga	aaacattaac	ccttacgtgg	aataaaaaaa	3960
aatgaaatat	tgcaaatttt	gctgcaaagc	tgtgactgga	gtaaaattaa	ttcacgtgcc	4020
gaagtgtgct	attaagagaa	aattgtggga	gcagagcctt	gġgtgcagcc	ttggtgaaaa	4080
ctcccaaatt	tgtgataccc	actttaatga	ttegcagtgg	aaggctgcac	ctgcaaaagg	4140
tcagacattt	aaaaggaggc	gactcaacgc	agatgccgta	cctagtaaag	tgatagagcc	4200
tgaaccagaa	aagataaaag	aaggctatac	cagtgggagt	acacaaacag	agtaagtttg	4260
aatagtaaaa	aaaatcattt	atgtaaacaa	taacgtgact	gtgcgttagg	tcctgttcat	4320
tgtttaatga	aaataagagc	ttgagggaaa	aaattcgtac	tttggagtac	gaaatgcgtc	4380
gtttagagca	gcagccgaat	taattctagt	tccagtgaaa	tccaagcatt	ttctaaatta	4440
aatgtattct	tattattata	gttgttattt	ttgatatata	taaacaacac	tattatgccc	4500
accattttt	tgagatgcat	ctacacaagg	aacaaacact	ggatgtcact	ttcagttcaa	4560
attgtaacgc	taatcactcc	gaacaggtca	caaaaaatta	ccttaaaaag	tcataatatt	4620
aaattagaat	aaatataget	gtgagggaaa	tatatacaaa	tatattggag	caaataaatt	4680
gtacatacaa	atatttatta	ctaatttcta	ttgagacgaa	atgaaccact	cggaaccatt	4740
tgagegaacc	gaategegeg	gaactaacga	cagtcgctcc	aaggtcgtcg	aacaaaaggt	4800
gaatgtgttg	cggagagcgg	gtgggagaca	gcgaaagagc	aactacgaaa	cgtggtgtgg	4860
tggaggtgaa	ttatgaagag	ggcgcgcgat	ttgaaaagta	tgtatataaa	aaatatatcc	4920
cggtgtttta	tgtagcgata	aacgagtttt	tgatgtaagg	tatgcaggtg	tgtaagtctt	4980
ttggttagaa	gacaaatcca	aagtetaett	gtggggatgt	tcgaagggga	aatacttgta	5040
-ttctataggt,	_catatettgt.	_ttttat <u>tgg</u> c	.acaaatataa	ttacattagc	tttttgaggg	5100
ggcaataaac	agtaaacacg	atggtaataa	tggtaaaaaa	aaaaaacaag	cagttatttc	5160
ggatatatgt	cggctactcc	ttgegteggg	cccgaagtet	tagagccaga	tatgcgagca	5220
cccggaagct	cacgatgaga	atggccagac	ccacgtagtc	cageggeaga	teggeggegg	5280
agaagttaag	cgtctccagg	åtgacettge	ccgaactggg	gcacgtggtg	ttcgacgatg	5340
tgcagctaat	ttegecegge	tecaegteeg	cccattggtt	aatcagcaga	ccctcgttgg	5400
cgtaacggaa	ccatgagagg	tacgacaacc	atttgaggta	tactggcacc	gageeegagt	5460
tcaagaagaa	gccgccaaag	agcaggaatg	gtatgataac	cggcggaccc	acagacagcg	5520
ccatcgaggt	cgaggagctg	gcgcaggata	ttagatatcc	gaaggacgtt	gacacattgg	5580
ccaccagagt	gaccagegee	aggcagttga	agaagtgeag	cactccggcc	cgcagtccga	5640
tcatcggata	ggcaatcgcc	gtgaagacca	gtggcactgt	gagaaaaagc	ggcaattegg	5700
caatcgtttt	gcccagaaag	tatgtgtcac	agcgataaag	tcgacttcgg	gcctccctca	5760
taaaaactgg	cagctctgag	gtgaacacct	aaatcgaatc	gattcattag	aaagttagta	5820
aattattgaa	atgcaaatgt	attctaaaca	tgacttacat	ttatcgtggc	aaagacgttt	5880

tgaaaggtca	tgttggtcag	gaagaggaag	atggctccgt	tgatattcat	cacacccact	5940
tgcgtgagtt	gttggcccaa	aaagatgagg	ccaatcaaga	tggcaaccat	ctgcaaatta	6000
aaatgttact	cgcatctcat	taatattcgc	gagttaaatg	aaatttattt	atcttctgca	6060
aaactataaa	ctatacatct	cattgaaaaa	aactaagaag	ggtgtggaat	caggcaattc	6120
tatctaaaat	ctagcgaatt	tgtttccaag	aattgtaagc	gttatatcat	ttgtttccac	6180
tggaaccact	caccgttgtc	tgaataagtc	gcacttttac	gaggagtggt	tccttgagca	6240
cegacageca	ggatcgccac	aggacegeee	ggaactgcat	gaaccaggtg	gccttgtagg	6300
tgtacccatt	ctccggctgc	tccagtggct	tctccagatt	tttggtggcc	aacaactgct	6360
ccatatcccg	ggctactttg	ctaatggcaa	aattgtcgcc	atatettgge	gateegatea	6420
cgggactcga	tetecegtee	gggcacaacg	gccaacacct	gtacgtaaaa	gtccgccgga	6480
ttgtagttgg	taggacac t g	ggcacccacg	ctggatagga	gttgagatgt	aatgtaatgc	6540
tagataccct	taataaacac	atcgaactca	ctaggaaaag	aagtcgacgg	cttcgctggg	6600
agtgcccaag	aaagctaccc	tgccctcggc	catcag <u>a</u> agg	atcttgtcaa	agageteaaa	6660
cagctcggaa	gacggctgat	gaatggtcag	gatgacggte	ttgcccttct	gcgacagctt	6720
cttcagcacc	tggacgacgc	tgtgggcggt	aaatgagtcc	agtccggagg	tgggctcatc	6780
gcagatcaga	agcggcggat	cggttagtgc	ctcggaggcg	aatgccagac	gcttcctttc	6840
tccgccggac	agacctttca	cectgeeggg	cacaccgatg	atcgtgtgct	gacatttgct	6900
gagcgaaagc	tcctggatca	cctgatccac	gcgggccact	cgctgccgat	aggtcagatg	6960
tegtggcate	egcaccatgg	cttggaaaat	caggtgttcc	ctggccgtta	gggagccgat	7020
aaagaggtca	.tcctgctgga	cataggcgca	cetggeetge	atctccttgg	cgtccacagg	7080
ttggccattg	agcagtegca	tcccggatgg	cgatacttgg	atgccctgcg	gegategaaa	7140
ggcaagggca	ttcagcaggg	tegtetttee	ggcaccggaa	ctgcccatca	cggccaaaag	7200
ttcgcccgga	taggccacgc	cgcaaactga	gtttcaaatt	ggtaattgga	ccctttatta	7260
agatttcaca	cagatcagcc	gactgcgaat	agaaactcac	cgttcttgag	caaatgtttc	7320
ctgggcgccg	gtatgtgtcg	ctcgttgcag	aatagtccgc	gtgtccggtt	gaccagctgc	7380
cgccatccgg	agcccggctg	attgaccgcc	ccaaagatgt	ccatattgtg	ccaggcatag	7440
gtgaggttct	cggctagttg	gccgetecet	gaaccggagt	cctccggcgg	actgggtggc	7500
aggagcgtgc	cgtagttttt	ggcctgcccg	aagccctggt	taatgcagct	ctgcgaagcg	7560
teegetgtea	-ccctgeaatg	ataggggatc	tcaaatatca	actacaagcg	ttatgctcat	7620
ctaaccccga	acaaaacgaa	gtatcctacg	aagtaggttt	atacttttat	ttattttttg	7680
tgcatagctt	aaaatatctg	gttgttatat	tttttgtaaa	aaagaatgta	gtcgaaaatg	7740
aatgccttta	gatgtcttga	tcatgatatg	atcttaaaaa	ttgtcttata	tagegageae	7800
agctaccaga	ataatctgtt	tcgtgtcact	atttgtttgt	gcgattgcgg	tttgggattt	7860

ttgtgggtcg	cagttctcac	gccgcagaca	atttgatgtt	gcaatcgcag	ttcctataga	7920
tcaagtgaac	ttaagatgta	tgcacatgta	ctactcacat	tgttcagatg	ctcggcagat	7980
gggtgtttgc	tgcctccgcg	aattaatagc	tcctgatcct	cttggcccat	tgccgggatt	8040
tttcacactt	teceetgett	acccacccaa	aaccaatcac	caccccaatc	actcaaaaaa	8100
caaacaaaaa	taagaagcga	gaggagtttt	ggcacagcac	tttgtgttta	attgatggcg	8160
taaaccgctt	ggagettegt	cacgaaaccg	ctgacaaagt	gcaactgaag	gcggacattg	8220
acgctaggta	acgctacaaa	cggtggcgaa	agagatagcg	gacgcagcgg	cgaaagagac	8280
ggcgatattt	ctgtggacag	agaaggaggc	aaacagcgct	gactttgagt	ggaatgtcat	8340
tttgagtgag	aggtaatcga	aagaacctgg	tacatcaaat	accettggat	cgaagtaaat	8400
ttaaaactga	tcagataagt	tcaatgatat	ccagtgcagt	aaaaaaaaa	aatgttttt	8460
ttatctactt	teegeaaaaa	tgggttttat	taacttacat	acatactaga	attctaaaaa	8520
aaatcatgaa	tggcatcaac	tctgaatcaa	atctttgcag	atgcacctac	ttctcatttc	8580
cactgtcaca	teatttttcc	agateteget	gcctgtta tg	tggcccacaa	accaagacac	8640
gttttatggc	cattaaagct	ggctgatcgt	cgccaaacac	caaatacata	tcaatatgta	8700
cattcgagaa	agaagcgatc	aaagaagcgt	cttcgggcga	gtaggagaat	gcggaggaga	8760
aggagaacga	gctgatctag	tatctctcca	caatccaatg	ccaactgacc	aactggccat	8820
attoggagca	atttgaagcc	aatttccatc	gcctggcgat	cgctccattc	ttggctatat	8880
gtttttcacc	gttcccgggg	ccattttcaa	agactcgtcg	gtaagataag	attgtgtcac	8940
tcgctgtctc	tcttcatttg	togaagaatg	ctgaggaatt	tegegatgae	gtcggcgagt	9000
attttgaaga	.atgagaataa	trigiatita	tacgaaaatc	agttagtgga	attttctaca	9060
aaaacatgtt	atctatagat	aattttgttg	caaaatatgt	tgactatgac	aaagattgta	9120
tgtatatacc	tttaatgtat	teteattte	ttatgtattt	ataatggcaa	tgatgatact	9180
gatgatattt	taagatgatg	ccagaccaca	ggctgatttc	tgcgtctttt	gccgaacgca	9240
gtgcatgtgc	ggttgttgtt	ttttggaata	gtttcaattt	teggaetgte	cgctttgatt	9300
tcagtttctt	ggcttattca	aaaagcaaag	taaagccaaa	aaagcgagat	ggcaatacca	9360
aatgeggeaa	aacggtagtg	gaaggaaagg	ggtgcggggc	agcggaagga	agggtggggc	9420
ggggcgtggc	ggggtctgtg	getgggegeg	acgtcaccga	cgttggagcc	actcctttga	9480
ccatgtgtgc	gtgtgtgtat	tattcgtgtc	tegecacteg	ccggttgttt	ttttctttt	9540
atctcgctct	ctctagcgcc	atetegtacg	catgeteaac	gcaccgcatg	ttgccgtgtc-	9600
ctttatgcgt	cattttggct	cgaaataggc	aattattt aa	acaaagatta	gtcaacgaaa	9660
acgctaaaat	aaataagtct	ecaatatggt	tacttattgc	catgtgtgtg	cagecaacga	9720
tagcaacaaa	agcaacaaca	cagtggcttt	ccctctttca	ctttttgttt	gcaagcgcgt	9780
gcgagcaaga	eggeaegaee	ggcaaacgca	attacgctga	caaagagcag	acgaagtttt	9840

9900	gcgatattta	aataacaatt	atgcatttgc	cctgatacga	catcaaggcg	ggccgaaaaa
9960	aacaaattat	aaaaaaataa	acacacaaa	tgacttcaaa	tgaagctgtt	atattgttta
10020	accgagacga	ctaacagcac	tegttacggg	ggacagctta	attaggaatc	ttgaaagaga
10080	gatgcagagg	ccaagcagac	agaactgccg	agcctctgga	ctgacgtcac	aatagettae
10140	tgtgaggcgt	tgtgcttgtg	gtagtacgca	gtaggccagc	gagtagcgga	acgacacata
10200	tegattacet	actgagaaaa	catagactgc	tgcgcaaacg	gtotootgtt	ctctctcttc
10260	agcaatcaca	ctattaagat	ctattcaaaa	tgcactatta	aatgaatatt	attttttatg
10320	ttgagcaaaa	aatgatcaat	gatgcaacga	ccacctgage	aaatactata	ttcaatagcc
10380	cttttctctc	ttgctgtgta	gaaatgcttc	catcattata	tttaggacgg	atgctgcata
10440	gttttctacg	agttaggtgt	aaccggctta	ttattgttaa	tgtttcgccg	gtctggcagc
10500	aaccaatttg	gtccctgaat	ttgcacaaat	aagatgtgtg	cccctactag	actagtgatg
10560	atg t tt taa t	tttaactgta	atgaatatta	gtaagctaat	agcagtaaac	aagtgcagat
10620	gttttggcat	acatatgtat	aaacacatgt	aacccactat	attactaata	ategetggae
10680	cataaagata	accatcacag	aagcaccgtg	aaatgtgtaa	gttggggaaa	acaatgagta
10740	caactgatag	tcacatgccg	ccaaattgaa	tgagtaaccc	gtatcgaata	áccagetgaa
10800	cgaacaccca	cacacaagca	atacaagaca	tcatggcgat	agtacactct	gacccatgga
10860	tacccatata	gaacaattca	cccaatcggc	taaatgaaaa	aaattotoog	gttgcggagg
10920	aggttttagc	gcggctgata	ggagagcatt	acttgagage	tttgaacgcg	tggtaaaagt
10980	ccgtttgagt	catatcacta	gaccagtttt	cgggctgcgg	ctttataaaa	gctaagcggg
11040	gcagtcgtct	ccatcagcca	_caaagccgct	.cct.cccgaca	-tgtggatact	-tettgtgetg
11100	aaagtgatta	agataaaagt	tggctagatt	agaaccaaaa	ccccggatct	aatccagaga
11160	cgtaaactcg	tttaacaacc	gaatogaagg	aatgaggtcg	agagetgett	acagcgcatt
11220	aagcgggctt	tgtaaaaaat	tgtattggca	cagcctacat	aggtgtagag	cccagaagct
11280	tgccctttag	tactcacttt	ataggcacca	gagatgttag	cttagccatt	tgctcgacgc
11340	tgtgctttac	aagttttaga	ataacgctaa	tttttacgta	ctggcaagat	aaggggaaag
11400	aaacagtatg	gectacagaa	taggtacacg	aaagtacatt	cgatggagca	taagtcatcg
11460	gagaatgcat	tttttcacta	gccaacaagg	gcctttttat	aaatcaatta	aaactctcga
11520	gatcaagagc	cgtattggaa	ctttaggttg	gggcatttta	cagcgctgtg	tatatgcact
11580	ccattattac	tagtatgccg	ctactactga	agggaaacac	taaagaagaa	atcaagtcgc
11640	tteggeettg	agcettetta	gtgcagagcc	gatcaccaag	cgaattattt	gacaagctat
11700	gegtacagee	aagtgggtcc	ttaaatgtga	gaaaaacaac	atgcggatta	aattgatcat
11760	ctcccggacg	cctgctcgat	ccatcgaggg	tacgggtcta	gaaaaacaat	gegegegtae
11820	eccgcgggac	gteetttete	ctccgcgcct	gggctggcgg	cgaagaggcg	acgaegeeee

acacgcgcag actgtcgacg gccccccga ccgatgtcag cctgggggac gagctccact 11880
tagacggcga ggacgtggcg atggcgcatg ccgacgcgct agacgattte gatctggaca 11940
tgttggggga cggggattcc ccgggtccgg gatttacccc ccacgactcc gcccctacg 12000
gcgctctgga tatggccgac ttcgagtttg agcagatgtt taccgatgcc cttggaattg 12060
acgagtacgg tgggtagggg gcgcgag 12087

<210> 16 <211> 11920 5 <212> ADN <213> Artificial

<220>

<223> pLA513

<400> 16

10

gggccgatet gacaatgtte agtgcagaga eteggetacg cetegtggac tttgaagttg 60 accaacaatg tttattctta cctctaatag tcctctgtgg caaggtcaag attctgttag 120 aagccaatga agaacctggt tgttcaataa cattttgttc gtctaatatt tcactaccgc 180 ttgacgttgg ctgcacttca tgtacctcat ctataaacgc ttcttctgta tcgctctgga 240 cgtcatcttc acttacgtga tctgatattt cactgtcaga atcctcacca acaagctcgt 300 categotitg cagaagagea gagaggatat geteategte taaagaacta eccattitat 360 tatatattag teaegatate tataacaaga aaatatatat ataataagtt atcaegtaag 420 tagaacatga aataacaata taattategt atgagttaaa tettaaaagt caegtaaaag 480 ataatcatgc gtcattttga ctcacgcggt cgttatagtt caaaatcagt gacacttacc 540 600 _gcattgacaa_gcacgcctca_cgggagctcc aageggcgac tgagatgtcc taaatgcaca gegaeggatt egegetattt agaaagagag ageaatattt caagaatgea tgegteaatt 660 ttacgcagac tatctttcta gggttaaaaa agatttgcgc tttactcgac ctaaacttta 720 aacacgtcat agaatcttcg tttgacaaaa accacattgt ggccaagctg tgtgacgcga 780 cgcgcgctaa agaatggcaa accaagtcgc gcgagcgtcg acctgcaggc atgcaagctt 840 gcatgcctgc aggtcgaaat tcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt 900 atcogotoac aattocacac aacatacgag coggaagcat aaagtgtaaa gootggggtg 960 cctaatgagt gagctaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg 1020 gaaacctgtc gtgccagetg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc 1080 gtattgggeg ctetteeget teetegetea etgacteget gegeteggte gtteggetge 1140 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1200 acgeaggaaa gaacatgtga geaaaaggee ageaaaagge eaggaacegt aaaaaggeeg 1260 cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1320 caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 1380

geteectegt	gegeteteet	gttccgaccc	tgccgcttac	cggatacetg	tccgcctttc	1440
tecetteggg	aagegtggeg	ctttctcaat	gctcacgctg	taggtatctc	agttcggtgt	1500
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagcec	gaccgctgcg	1560
ccttatccgg	taactatcgt	cttgagteca	acccggtaag	acacgactta	tcgccactgg	1620
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggeggtget	acagagttct	1680
tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgegetetge	1740
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	1800
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatoto	1860
aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	1920
aagggattt	ggtcatgaga	ttatcaaaaa	ggatetteae	ctagatcett	ttaaattaaa	1980
aatgaagttt	taaatcaatc	taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	2040
gcttaatcag	tgaggcacct	atctcagcga	tetgtetatt	tegtteatee	atagttgcct	2100
gactccccgt	cgtgtagata	actacgatac	gggagggctt	accatctggc	cccagtgctg	2160
caatgatacc	gegagaccea	cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	2220
ccggaagggc	cgagcgcaga	agtggtcctg	caactttatc	cgcctccatc	cagtctatta	2280
attgttgccg	ggaagctaga	gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	2340
ccattgctac	aggcatcgtg	gtgtcacgct	cgtcgtttgg	tatggcttca	ttcagctccg	2400
gttcccaacg	atcaaggcga	gttacatgat	ccccatgtt	gtgcaaaaaa	gcggttagct	2460
ccttcggtcc	teegategtt	gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	2520
tggcagcact	gcataattet.	cttactgtca.	tgccatccgt	aagatgcttt	tctgtgactg	2580
gtgagtactc	aaccaagt ca	ttctgagaat	agtgtatgcg	gcgaccgagt	tgetettgee	2640
cggcgtcaat	acgggataat	accgcgccac	atagcagaac	tttaaaagtg	ctcatcattg	2700
gaaaacgttc	ttcggggcga	aaactctcaa	ggatcttacc	gctgttgaga	tccagttcga	2760
tgtaacccac	tegtgcaccc	aactgatctt	cagcatcttt	tactttcacc	agcgtttctg	2820
ggtga gcaa a	aacaggaagg	caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	2880
gttgaatact	catactcttc	ctttttcaat	attattgaag	catttatcag	ggttattgtc	2940
tcatgagcgg	atacatattt	gaatgtattt	agaaaaataa	acaaataggg	gttccgcgca	3000
catttccccg	aaaagtgcca	cctgacgtct	aagaaaccat	tattatcatg	acattaacct	3060
ataaaaatag	gegtateaeg	aggccctttc	gtotogogog	tttcggtgat	gacggtgaaa	3120
acctctgaca	catgcagctc	ccggagacgg	tcacagettg	tctgtaagcg	gatgeeggga	3180
gcagacaagc	cegteaggge	gcgtcagcgg	gtgttggcgg	gtgtegggge	tggcttaact	3240
atgoggcate	agagcagatt	gtactgagag	tgcaccatat	gcggtgtgaa	atacegeaca	3300
gatgcgtaag	gagaaaatac	cgcatcaggc	gccattcgcc	attcaggetg	cgcaactgtt	3360

gggaagggcg	atcggtgcgg	geetettege	tattacgcca	gctggcgaaa	gggggatgtg	3420
ctgcaaggcg	attaagttgg	gtaacgccag	ggttttccca	gtcacgacgt	tgtaaaacga	3480
cggccagtgc	caagctttgt	ttaaaatata	acaaaattgt	gateceacaa	aatgaagtgg	3540
ggcaaaatca	aataattaat	agtgtecgta	aacttgttgg	tettcaactt	tttgaggaac	3600
acgttggacg	gcaaatccgt	gactataaca	caagttgatt	taataattt	agccaacacg	3660
tcgggctgcg	tgttttttgc	cgacgegtet	gtgtacacgt	tgattaactg	gtcgattaaa	3720
ctgttgaaat	aatttaattt	ttggttcttc	tttaaatctg	tgatgaaatt	ttttaaaata	3780
actttaaatt	cttcattggt	aaaaaatgcc	acgttttgca	acttgtgagg	gtctaatatg	3840
aggtcaaact	cagtaggagt	tttatccaaa	aaagaaaaca	tgattacgtc	tgtacacgaa	3900
cgcgtattaa	cgcagagtgc	aaagtataag	agggttaaaa	aatatatttt	acgcaccata	3960
tacgcatcgg	gttgatatcg	ttaatatgga	tcaatttgaa	cagttgatta	acgtgtctct	4020
geteaagtet	ttgatcaaaa	cgcaaatcga	cgaaaatgtg	teggacaata	tcaagtcgat	4080
gagcgaaaaa	ctaaaaaggc	tagaatacga	caatctcaca	gacagcgttg	agatatacgg	4140
tattcacgac	agcaggctga	ataataaaaa	aattagaaac	tattatttaa	ccctagaaag	4200
ataatcatat	tgtgacgtac	gttaaagata	atcatgcgta	aaattgacgc	atgtgtttta	4260
toggtotgta	tatcgaggtt	tatttattaa	tttgaataga	tattaagttt	tattatattt	4320
acacttacat	actaataata	aattcaacaa	acaatttatt	tatgtttatt	tatttattaa	4380
aaaaaac aa	aaactcaaaa	tttcttctat	aaagtaacaa	aacttttaaa	cattetetet	4440
tttacaaaaa	taaacttatt	ttgtacttta	aaaacagtca	tgttgtatta	taaaataagt	4500
-aattagetta-	acttatacat.	.aatagaaaca_	aattatactt	attagtcagt	cagaaacaac	4560
tttggcacat	atcaatatta	tgctctcgac	aaataacttt	tttgcatttt	ttgcacgatg	4620
catttgectt	tegeettatt	ttagaggggc	agtaagtaca	gtaagtacgt	tttttcatta	4680
ctggctcttc	agtactgtca	tctgatgtac	caggcacttc	atttggcaaa	atattagaga	4740
tattatcgcg	caaatatctc	ttcaaagtag	gagcttctaa	acgcttacgc	ataaacgatg	4800
acgtcaggct	catgtaaagg	tttctcataa	attttttgcg	actttggacc	ttttctccct	4860
tgctactgac	attatggctg	tatataataa	aagaatttat	gcaggcaatg	tttatcattc	4920
cgtacaataa	tgccataggc	cacctattcg	tcttcctact	gcaggtcatc	acagaacaca	4980
tttggtctag	cgtgtccact	ccgcctttag	tttgattata	atacataacc	atttgcggtt	5040
taccggtact	ttegttgata	gaagcatcct	catcacaaga	tgataataag	tataccatct	5100
tagctggctt	cggtttatat	gagacgagag	taaggggtcc	gtcaaaacaa	aacatcgatg	5160
tteccactgg	cctggagcga	ctgtttttca	gtacttccgg	tatetegegt	ttgtttgatc	5220
gcacggttcc	cacaatggtt	gcggccggcc	agatttaaat	gageggeege	agatatecag	5280
tgcagtaaaa	aaaaaaaatg	ttttttttat	ctactttccg	caaaaatggg	ttttattaac	5340

ttacatacat	actagaattc	tatattctaa	aaacacaaat	gatacttcta	aaaaaaatca	5400
tgaatggcat	caactctgaa	tcaaatcttt	gcagatgcac	ctacttctca	tttccactgt	5460
cacatcattt	ttccagatct	cgctgcctgt	tatgtggccc	acaaaccaag	acacgtttta	5520
tggccattaa	agctggctga	tegtegecaa	acaccaaata	catatcaata	tgtacattcg	5580
agaaagaagc	gatcaaagaa	gegtettegg	gcgagtagga	gaatgcggag	gagaaggaga	5640
acgagetgat	ctagtatctc	tccacaatcc	aatgccaact	gaccaactgg	ccatattcgg	5700
agcaatttga	agccaatttc	catcgcctgg	cgategetec	attcttggct	atatgttttt	5760
caccgttccc	ggggccattt	tcaaagactc	gtcggtaaga	taagattgtg	teactegetg	5820
tctctcttca	tttgtcgaag	aatgetgagg	aatttcgcga	tgacgtegge	gagtattttg	5880
aagaatgaga	ataatttgta	tttatacgaa	aatcagttag	tggaattttc	tacaaaaaca	5940
tgttatctat	agataatttt	gttgcaaaat	atgttgacta	tgacaaagat	tgtatgtata	6000
tacctttaat	gtattctcat	tttcttatgt	atttataatg	gcaatgatga	tactgatgat	6060
attttaagat	gatgccagac	cacaggetga	tttctgcgtc	ttttgccgaa	cgcagtgcat	6120
gtgcggttgt	tgttttttgg	aatagtttca	attttcggac	tgtccgcttt	gatttcagtt	6180
tettggetta	ttcaaaaagc	aaagtaaagc	caaaaaagcg	agatggcaat	accaaatgcg	6240
gcaaaacggt	agtggaagga	aaggggtgcg	gggcagcgga	aggaagggtg	gggcggggcg	6300
tggcggggtc	tgtggetggg	cgcgacgtca	ccgacgttgg	agccactcct	ttgaccatgt	6360
gtgcgtgtgt	gtattattcg	tgtctcgcca	ctcgccggtt	gtttttttet	ttttatctcg	6420
ctctctctag	cgccatetcg	tacgcatgct	caacgcaccg	catgttgccg	tgtcctttat	6480
gcgtcatttt	ggctcgaaat	aggçaattat	t <u>ta</u> aacaaag	attagtcaac	gaaaacgcta	6540
aaataaataa	gtctacaata	tggttactta	ttgccatgtg	tgtgcagcca	acgatagcaa	6600
caaaagcaac	aacacagtgg	ctttccctct	ttcacttttt	gtttgcaagc	gcgtgcgagc	6660
aagacggcac	gaccggcaaa	cgcaattacg	ctgacaaaga	gcagacgaag	ttttggccga	6720
aaaacatcaa	ggcgcctgat	acgaatgcat	ttgcaataac	aattgcgata	tttaatattg	6780
tttatgaagc	tgtttgactt	caaaacacac	aaaaaaaaa	ataaaacaaa	ttattįtgaaa	6840
gagaattagg	aatcggacag	cttatcgtta	cgggctaaca	gcacaccgag	acgaaatagc	6900
ttacctgacg	tcacagcete	tggaagaact	geegecaage	agacgatgca	gaggacgaca	6960
catagagtag	cggagtaggc	cagcgtagta	cgcatgtgct	tgtgtgtgag	gcgtctctct	7020
cttcgtctcc	tgtttgcgca	aacgcataga	ctgcactgag	aaaatcgatt.	acctattttt	·7080·
tatgaatgaa	tatttgcact	attactattc	aaactatta	agatagcaat	cacattcaat	7140
agccaaatac	tataccacct	gagcgatgca	acgaaatgat	caatttgage	aaaaatgctg	7200
catatttagg	acggcatcat	tatagaaatg	cttcttgctg	tgtacttttc	tetegtetgg	7260
cagctgtttc	gccgttattg	ttaaaaccgg	cttaagttag	gtgtgttttc	tacgactagt	7320

gatgeceeta	ctagaagatg	tgtgttgcac	aaatgtccct	gaataaccaa	tttgaagtgc	7380
agatagcagt	aaacgtaagc	taatatgaat	attatttaac	tgtaatgttt	taatatcgct	7440
ggacattact	aataaaccca	ctataaacac	atgtacatat	gtatgttttg	gcatacaatg	7500
agtagttggg	gazazaatgt	gtaaaagcac	cgtgaccatc	acagcataaa	gataaccagc	7560
tgaagtatcg	aatatgagta	acccccaaat	tgaatcacat	gccgcaactg	ataggaccca	7620
tggaagtaca	ctcttć atg g	cgatatacaa	gacacacaca	agcacgaaca	cccagttgcg	7680
gaggaaattc	teegtaaatg	aaaacccaat	cggcgaacaa	ttcataccca	tatatggtaa	7740
aagttttgaa	cgcgacttga	gagcggagag	cattgcggct	gataaggttt	tagegetaag	7800
cgggctttat	aaaacgggct	gcgggaccag	ttttcatatc	actaccgttt	gagttcttgt	7860
gctgtgtgga	tactcctccc	gacacaaagc	cgctccatca	gccagcagtc	gtctaatcca	7920
gagaccccgg	atctagaacc	aaaatggcta	gaatggcctc	ctccgagaac	gtcatcaccg	7980
agttcatgcg	cttcaaggtg	cgcatggagg	gcaccgtgaa	cggccacgag	ttcgagatcg	8040
agggcgaggg	cgagggccgc	ccctacgagg	gccacaacac	cgtgaagctg	aaggtgacca	8100
agggcgg ccc	cctgcccttc	geetgggaca	tcetgteece	ccagttecag	tacggctcca	8160
aggtgtacgt	gaagcacccc	gccgacatcc	ccgactacaa	gaagetgtee	ttccccgagg	8220
gcttcaagtg	ggagcgcgtg	atgaacttcg	aggac gg cgg	cgtggcgacc	gtgacccagg	8280
actcctccct	acsadascaac	tgcttcatct	acaaggtgaa	gttca tcggc	gtgaacttcc	8340
cctccgacgg	ccccgtgatg	cagaagaaga	ccatgggctg	ggaggcctcc	accgagcgcc	8400
tgtacccccg	cgacggcgtg	ctgaagggcg	agacccacaa	ggccctgaag	ctgaaggacg	8460
gcggccacta	_cctggtggag.	ttcaagtcca	tctacatggc	caagaagccc	gtgcagctgc	8520
ccggctacta	ctacgtggac	gccaagctgg	acatcacete	ccacaacgag	gactacacca	8580
tc gt gg agca	gtacgagege	accgagggcc	gccaccacct	gttcctgtga	gatecatgag	8640
caattagcat	gaacgttetg	aaaagcgcgt	ttagctctcc	actacttaca	catattctat	8700
gctgcaatat	tgaaaatcta	ataaacaaaa	ctaatgtaca	ttaattette	agttttgaat	8760
atcettetee	tgactttctt	atttagaatt	aatataatac	tgcatacatt	aatactgtaa	8820
atatgataag	tacctgcaaa	acactgcage	tcaagtctta	atgaggttct	gogatagett	8880
agcataatta	gtaacttatc	gegeagaatt	ccctaatgtt	cccgacctac	atgtacttct	8940
gatagttgcc	gaggtcaaat	gttgttgtat	ttgtattata	cctcaatatt	ggtatattca	9000
atatetaata	gtacccaatt	caattgcaaa	gatagtcatt	aaaaaaacct	aaatcacttg	9060
caaattgact	tttctgccgg	aaaagcaacc	ttgacacaca	aagttaatta	gtttatctgg	9 120
aagtcatgtg	agaaatttgt	aaataaaatt	tttcgcagta	atttaagtgg	gcctaatccc	9180
ttttaagcat	cttggtttta	cgatgacacc	gcaataaggt	acaactttat	attgtttttg	9240
caatcagctt	gagtctttat	taggcatcag	tettetete	taagtttctt	cgtgcaataa	9300

atgaggttcc	aaactccgta	gatttttcct	tetttgttga	atccagatcc	tgcaaagaaa	9360
aaagagcaaa	cecetaggte	tgtccaggaa	tgtattttcg	tgtttgtcga	tcgaccatgg	9420
tctcgagggg	gggccttaat	taagaggcgc	gccaggtttc	gactttcact	tttctctatc	9480
actgataggg	agtggtaaac	tegaetttea	cttttctcta	tcactgatag	ggagtggtaa	9540
actcgacttt	cacttttctc	tatcactgat	agggagtggt	aaactcgact	ttcacttttc	9600
tctatcactg	atagggagtg	gtaaactcga	ctttcacttt	tetetateae	tgatagggag	9660
tggtaaactc	gactttcact	tttctctatc	actgataggg	agtggtaaac	tcgactttca	9720
cttttctcta	tcactgatag	ggagt g gtaa	actcgaaaac	gagcgccgga	gtataaatag	9780
aggcgcttcg	tctacggagc	gacaattcaa	ttcaaacaag	caaagtgaac	acgtcgctaa	9640
gcgaaagcta	agcaaataaa	caagcgcagc	tgaacaaget	aaacaatctg	cggtaccctg	9900
geggtaagtt	gatcaaagg a	aacgcaaagt	tttcaagaaa	aaacaaaact	aatttgattt	9960
ataacacctt	tagaaaccac	catgggcagc	cgcctggata	agtccaaagt	catcaactcc	10020
gegttggage	tgttgaacga	agttggcatt	gagggactga	cgacccgcaa	gttggcgcag	10080
aagctgggcg	tggagcagcc	caccctetac	tggcacgtga	agaataagcg	ggcgctgctg	10140
gatgccctgg	ccatcgagat	getegacege	caccacacgc	atttttgccc	gttggaaggc	10200
gagtcctggc	aggacttcct	cegcaataac	gccaagtcgt	tccgctgcgc	tetgetgtee	10260
caccgagacg	gtgccaaagt	ccatctcggc	acgegeeega	ccgaaaagca	atacgagaça	10320
ctggagaacc	agetegegtt	cctgtgccag	caaggettea	gcctggaaaa	tgctctctac	10380
getetg age g	ccgtcggtca	ctttaccctg	ggctgcgtgc	tggaggacca	agagcatcaa	10440
gtcgcaaaag	aggagcgcga	gaccccaaca	accgattcga	tgccccact	gctgcgtcag	10500
geaategage	tgttcgatca	tcaaggagcc	gagccggcat	tcctgttcgg	cttggagctg	10560
attatetgeg	gattggaaaa	gcaactgaaa	tgcgagtcgg	getegggeee	cgcgtacagc	10620
cgcgcgcgta	cgaaaaacaa	ttacgggtct	accatcgagg	gcctgctcga	teteeeggae	10680
gacgacgccc	ccgaagaggc	ggggctggcg	geteegegee	tgtcctttct	ccccgcggga	10740
cacacgcgca	gactgtcgac	ggcccccccg	accgatgtca	gcctggggga	cgagetecae	10800
ttagacggcg	aggacgtggc	gatggcgcat	gecgaegege	tagacgattt	cgatctggac	10860
atgttggggg	acggggattc	ceegggteeg	ggatttaccc	cccacgaete	cgccccctac	10920
ggegetetgg	atatggccga	cttcgagttt	gagcagatgt	ttaccgatgc	ccttggaatt	10980
gacgagtacg	gtgggtagtt	ctagagtcga	cetegaaegt	taacgttaac	gtaacgttaa	11040
ctcgaggagc	ttgataacat	tatacctaaa	cecatggtca	agagtaaaca	tttctgcctt	11100
tgaagttgag	aacacaatta	agcatcccct	ggttaaacct	gacattcata	cttgttaåta	11160
gcgccataaa	catagcacca	atttcgaaga	aatcagttaa	aagcaattag	caattagcaa	11220
ttagcaataa	ctctgctgac	ttcaaaacga	gaagagttgc	aagtatttgt	aaggcacagt	11280

ttatagacca ccgaeggctc attagggctc gtcatgtaac taagcgcggt gaaacccaat 11340
tgaacatata gtggaattat tattatcaat ggggaagatt taaccctcag gtagcaaagt 11400
aatttaattg caaatagaga gtcctaagac taaataatat atttaaaaat ctggcccttt 11460
gaccttgctt gtcaggtgca tttgggttca atcgtaagtt gcttctatat aaacactttc 11520
cccatccccg caataatgaa gaataccgca gaataaagag agatttgcaa caaaaaataa 11580
aggcattgcg aaaacttttt atgggggatc attacactcg ggcctacggt tacaattccc 11640
agccacttaa gcgacaagtt tggccaacaa tccatctaat agctaatagc gcaatcactg 11700
gtaatcgcaa gagtatatag gcaatagaac ccatggattt gaccaaaggt aaccgagaca 11760
atggagaagc aagaggattt caaactgaac acccacagta ctgtgtacta ccactggcgc 11820
gtttgggagc tccaagcggc gactgagatg tcctaaatgc acagcgacgg attcgcgcta 11880
tttagaaaga gagagcaata tttcaagaaa aacggcgccc 11920

5

<210> 17 <211> 11570

<212> ADN

<213> Artificial

<220>

<223> pLA517

10

<400> 17

ggccgctcat ttaaatctgg ccggccgcaa ccattgtggg aaccgtgcga tcaaacaaac 60 gegagatace ggaagtactg aaaaacagte getecaggee agtgggaaca tegatgtttt 120 gttttgacgg acccttact ctcgtctcat ataaaccgaa gccagctaag atggtatact 180 ._tattatcatc_ttgtgatgag.gatgcttcta_tcaacgaaag taccggtaaa ccgcaaatgg 240 ttatgtatta taatcaaact aaaggcggag tggacacgct agaccaaatg tgttctgtga 300 tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgataaaca 360 ttgcctgcat aaattctttt attatataca gccataatgt cagtagcaag ggagaaaagg 420 tocaaagtog caaaaaattt atgagaaaco tttacatgag cotgacgtoa togtttatgo 480 gtaagegttt agaageteet aetttgaaga gatatttgeg egataatate tetaatattt 540 tgccaaatga agtgcctggt acatcagatg acagtactga agagccagta atgaaaaaaac 600 gtacttactg tacttactgc ccctctaaaa taaggcgaaa ggcaaatgca tcgtgcaaaa 660 aatgcaaaaa agttatttgt cgagagcata atattgatat gtgccaaagt tgtttctgac 720 tgactaataa gtataatttg tttctattat gtataagtta agctaattac ttattttata 780 atacaacatg actgttttta aagtacaaaa taagtttatt tttgtaaaag agagaatgtt 840 900 taaacataaa taaattgttt gttgaattta ttattagtat gtaagtgtaa atataataaa 960 acttaatate tatteaaatt aataaataaa eetegatata cagacegata aaacacatge 1020

gtcaatttta	cgcatgatta	tctttaacgt	acgtcacaat	atgattatct	ttctagggtt	1080
aaataatagt	ttctaatttt	tttattattc	agcctgctgt	cgtgaatacc	gtatatotoa	1140
acgctgtctg	tgagattgtc	gtattctagc	ctttttagtt	tttcgctcat	cgacttgata	1200
ttgtccgaca	cattttcgtc	gatttgcgtt	ttgatcaaag	acttgagcag	agacacgtta	1260
atcaactgtt	caaattgatc	catattaacg	atatcaaccc	gatgcgtata	tggtgcgtaa	1320
aatatattt	ttaaccctct	tatactttgc	actctgcgtt	aatacgcgtt	cgtgtacaga	1380
cgtaatcatg	ttttcttttt	tggataaaac	tcctactgag	tttgacctca	tattagaccc	1440
tcacaagttg	caaaacgtgg	cattttttac	caatgaagaa	tttaaagtta	ttttaaaaaa	1500
tttcatcaca	gatttaaaga	agaaccaaaa	attaaattat	ttcaacagtt	taatcgacca	1560
gttaatcaac	gtgtacacag	acgcgtcggc	aaaaaacacg	cageeegaeg	tgttggctaa	1620
aattattaaa	tcaacttgtg	ttatagtcac	ggatttgccg	tccaacgtgt	tcctcaaaaa	1680
gttgaagacc	aacaagttta	cggacactat	taattatttg	attttgcccc	acttcatttt	1740
gtgggatcac	aattttgtta	tattttaaac	aaagcttggc	actggccgtc	gttttacaac	1800
gtcgtgactg	ggaaaaccet	ggcgttacce	aacttaatcg	ccttgcagca	catccccctt	1860
tegecagetg	gcgtaatagc	gaagaggccc	gcaccgateg	cccttcccaa	cagttgcgca	1920
gcctgaatgg	cgaatggcgc	ctgatgcggt	attttctcct	tacgcatctg	tgcggtattt	1980
cacaccgcat	atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagecage	2040
eccgacaccc	gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ceggeateeg	2100
cttacagaca	agctgtgacc	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	2160
caccgaaacg	_cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	2220
tgataataat	ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	2280
ctatttgttt	atttttctaa	atacattcaa	atatgtatee	gctcatgaga	caataaccct	2340
gataaatgct	tcaataatat	tgaaaaagga	agagtat g ag	tattcaacat	tteegtgteg	2400
cccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	2460
tgaaagtaaa	agatgctgaa	gatca gtt gg	gtgcacgagt	gggttacatc	gaactggatc	2520
tcaacagcgg	taagatoott	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	2580
cttttaaagt	tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	2640
teggtegeeg	catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	2700
agcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg*	2760
ataacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	2820
ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	2880
aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	2940
gcaaactatt	aactggcgaa	ctacttactc	tagetteeeg	gcaacaatta	atagactgga	3000

tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	ectteegget	ggctggttta	3060
ttgctgataa	atctggagcc	ggtgagcgtg	ggtctcgcgg	·tatcattgca	gcactggggc	3120
cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg	3180
atgaacgaaa	tagacagate	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	3240
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	3300
ggatctaggt	gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	3360
cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	3420
ttetgegegt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	3480
tgccggatca	agagetacca	actettttte	cgaaggtaac	tggcttcagc	agagegeaga	3540
taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	3600
caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	3660
agtogtgtot	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagoggtogg	3720
gctgaacggg	gggttegtge	acacagecca	gcttggagcg	aacgacctac	accgaactga	3780
gatacctaca	gcgtgagcat	tgagaaagcg	ccacgcttcc	cgaagggaga	aaggcggaca	3840
ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	3900
acgectggta	tctttatagt	cctgtcgggt	ttcgccacet	ctgacttgag	cgtcgatttt	3960
tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	4020
ggttcctggc	cttttgctgg	ccttttgctc	acatgttctt	tcctgcgtta	tcccctgatt	4080
ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	cgctcgccgc	agccgaacga	4140
.ccgagcgcag	_cgagtcagtg_	_agcgaggaag_	_cggaagagcg	cccaatacgc	aaaccgcctc	4200
teccegegeg	ttggccgatt	cattaatgca	gctggcacga	caggttteee	gactggaaag	4260
cgggcagtga	gcgcaacgca	attaatgtga	gttagctcac	tcattaggca	ccccaggett	4320
tacactttat	gcttccggct	cgtatgttgt	gtggaattgt	gagcggataa	caatttcaca	4380
caggaaacag	ctatgaccat	gattacgaat	ttegaeetge	aggcatgcaa	gcttgcatgc	4440
ctgcaggtcg	acgctcgcgc	gactt gg ttt	gccattctt	agegegegte	gegteacaca	4500
gcttggccac	aatgtggttt	ttgtcaaacg	aagattctat	gacgtgttta	aagtttaggt	4560
cgagtaaagc	gcaaatcttt	tttaacccta	gaaagatagt	ctgcgtaaaa	ttgacgcatg	4620
cattcttgaa	atattgctct	ctctttctaa	atagcgcgaa	tecgtegetg	tgcatttagg	4680
acatctcagt	cgccgcttgg	agetecegtg	aggcgtgctt	gtcaatgcgg	taagtgtcac	4740
tgattttgaa	ctataacgac	cgc gtga gtc	aaaatgacgc	atgattatct	tttacgtgac	4800
ttttaagatt	taactcatac	gataattata	ttgttatttc	atgttctact	tacgtgataa	4860
cttattatat	atatattttc	ttgttataga	tatcgtgact	aatatataat	aaaatgggta	4920
gttetttaga	cgatgagcat	atcctctctg	ctcttctgca	aagcgatgac	gagettgttg	4980

gtgaggattc	tgacagtgaa	atatcagatc	acgtaagtga	agatgacgtc	cagagcgata	5040
cagaagaagc	gtttatagat	gaggtacatg	aagtgcagcc	aacgtcaagc	ggtagtgaaa	5100
tattagacga	acaaaatgtt	attgaacaac	caggttcttc	attggcttct	aacagaatct	5160
tgacettgee	acagaggact	attagaggta	agaataaaca	ttgttggtca	acttcaaagt	5220
ccacgaggcg	tagccgagtc	totgcactga	acattgtcag	ateggeeegg	gcgccgtttc	5280
ccaaacgcgc	cagtggtagt	acacagtact	gtgggtgttc	agtttgaaat	cctcttgctt	5340
ctccattgtc	tcggttacct	ttggtcaaat	ccatgggttc	tattgcctat	atactettge	5400
gattaccagt	gattgcgcta	ttagctatta	gatggattgt	tggccaaact	tgtcgcttaa	5460
gtggctggga	attgtaaccg	taggcccgag	tgtaatgatc	ccccataaaa	agttttcgca	5520
atgcctttat	tttttgttgc	aaatctctct	ttattctgcg	gtattcttca	ttattgcggg	5580
gatggggaaa	gtgtttatat	agaagcaact	tacgattgaa	cccaaatgca	cctgacaagc	5640
aaggtcaaag	ggccagattt	ttaaatatat	tatttagtct	taggactete	tatttgcaat	5700
taaattactt	tgctacctga	gggttaaatc	ttccccattg	ataataataa	ttccactata	5760
tgttcaattg	ggtttcaccg	cgcttagtta	catgacgagc	cctaatgagc	cgtcggtggt	5820
ctataaactg	tgccttacaa	atacttgcaa	ctcttctcgt	tttgaagtca	gcagagttat	5880
tgctaattgc	taattgctaa	ttgcttttaa	ctgatttctt	cgaaattggt	gctatgttta	5940
tggcgctatt	aacaagtatg	aatgtcaggt	ttaaccaggg	gatgcttaat	tgtgttctca	6000
acttcaaagg	cagaaatgtt	tactcttgac	catgggttta	ggtataatgt	tatcaagctc	6060
ctcgagttaa	cgttacgtta	acgttaacgt	tcgaggtcga	ctctagatta	ttacagcatg	6120
tcgagatcaa	agtcgtccaa	agcatcageg	ggcaacatat	ccaagtcaaa	atcatcgaga	6180
gegteegeeg	gcagcatatc	caggtcgaag	tcatccaggg	catcggcggg	gecegagece	6240
gactegeatt	tcagttgctt	ttccaatccg	cagataatca	getecaagee	gaacaggaat	6300
gccggctcgg	ctccttgatg	atcgaacagc	tcgattgcct	gacgcagcag	tggg ggcat c	6360
gaatcggttg	ttggggtete	gegeteetet	tttgcgactt	gatgetettg	gtcctccage	6420
acgcagccca	gggtaaagtg	accgacggcg	ctcagagegt	agagagcatt	ttccaggctg	6480
aagccttgct	ggcacaggaa	cgcgagctgg	ttctccagtg	tctcgtattg	cttttcggtc	6540
gggegegtge	cgagatggac	tttggcaccg	teteggtggg	acagcagagc	gcagcggaac	6600
gacttggcgt	tattgcggag	gaagteetge	caggactcgc	cttccaacgg	gcaaaaatgc	6660
gtgtggtggc ,	ggtcgagcat	ctcgatggcc-	agggcatcca	gcagcgcccg	cttattcttc	6720
acgtgccagt	agagggtggg	ctgctccacg	cccagcttct	gcgccaactt	gcgggtjegte	6780
agtccctcaa	tgccaacttc	gttcaacagc	tccaacgcgg	agttgatgac	tttggactta	6840
tccaggcggc	tgcccatggt	ggtttctaaa	ggtgttataa	atcaaattag	ttttgttttt	6900
tcttgaaaac	tttgcgtttc	ctttgatcaa	cttaccgcca	gggtaccgca	gattgtttag	6960

cttgttcagc	tgcgcttgtt	tatttgctta	gctttcgctt	agcgacgtgt	tcactttgct	7020
tgtttgaatt	gaattgtcgc	teegtagaeg	aagcgcctct	atttatactc	cggcgctcgt	7080
tttcgagttt	accactccct	atcagtgata	gagaaaagtg	aaagtcgagt	ttaccactcc	7140
ctatcagtga	tagagaaaag	tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	7200
agtgaaagtc	gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	tcgagtttac	7260
cactccctat	cagtgataga	gaaaagtgaa	agtcgagttt	accactccct	atcagtgata	7320
gagaaaagtg	aaagtcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	7380
aacctggcgc	gcctcttaat	taaggccccc	cctcgagacc	atggtcgatc	gacaaacacg	7440
aaaatacatt	cctggacaga	cctaggggtt	tgctcttttt	tetttgcagg	atctggattc	7500
aacaaagaag	gaaaaatcta	cggagtttgg	aacctcattt	attgcacgaa	gaaacttaga	7560
gagaaagact	gatgcctaat	aaagactcaa	gctgattgca	aaaacaatat	aaagttgtac	7620
cttattgcgg	tgtcatcgta	aaaccaagat	gcttaaaagg	gattaggccc	acttaaatta	7680
ctgcgaaaaa	ttttat.ttac	aaatttctca	catgaettee	agataaacta	attaactttg	7740
tgtgtcaagg	ttgcttttcc	ggcagaaaag	tcaatttgca	agtgatttag	gtttttttaa	7800
tgactatett	tgcaattgaa	ttgggtacta	ttagatattg	aatataccaa	tattgaggta	7860
taatacaaat	acaacaacat	ttgacctcgg	caactatcag	aagtacatgt	aggtcgggaa	7920
cattagggaa	ttctgcgcga	taagttacta	attatgctaa	gctatcgcag	aacctcatta	7980
agacttgagc	tgcagtgttt	tgcaggtact	tatcatattt	acagtattaa	tgtatgcagt	8040
attatattaa	ttctaaataa	gaaagtcagg	agaaggatat	tcaaaactga	agaattaatg	8100
-tacattagtt	_ttgtttatta_	_gattttcaat	attgcagcat	agaatatgtg	taagtagtgg	8160
agagctaaac	gcgcttttca	gaacgttcat	gctaattgct	catggatctc	acaggaacag	822 0
gtggtggcgg	ccct cggt gc	gctcgtactg	ctccacgatg	gtgtagtcct	cgttgtggga	8280
ggtgatgtcc	agcttggcgt	ccacgtagta	gtageeggge	agctgcacgg	gettettgge	8340
catgtagatg	gacttgaact	ccaccaggta	gtggccgccg	tccttcagct	tcagggcctt	8400
gtgggtatog	cccttcagca	cgccgtcgcg	ggggtacagg	cgctcggtgg	aggcetecca	8460
gcccatggtc	ttettetgea	teacggggee	gtcggagggg	aagttcacgc	cgatgaactt	8520
caccttgtag	atgaagcagc	cgtcctgcag	ggaggagtcc	tgggtcacgg	tcgccacgcc	8580
gccgtcctcg	aagttcatca	cgcgctccca	cttgaagccc	tcggggaagg	acagcttctt	8640
gtagtcgggg	atgtcggcgg	ggtgcttcac	gtacaccttg	gagccgtact	ggaactgggg	8700
ggacaggatg	tcccaggcga	agggcagggg	gccgcccttg	gtcaccttca	gcttcacggt	8760
gttgtggccc	tcgtaggggc	ggccctcgcc	ctogccctcg	atctcgaact	cgtggccgtt	8820
cacggtgccc	tecatgegea	ccttgaagcg	catgaactcg	gtgatgacgt	teteggagga	8880
ggccattcta	gccattttgg	ttctagatcc	ggggtatatg	gattagacga	ctgctggctg	8940

atggagegge	tttgtgtcgg	gaggagtate	cacacagcac	aagaactcaa	acggtagtga	9000
tatgaaaact	ggtcccgcag	cccgttttat	aaagcccgct	tagcgctaaa	accttatcag	9060
ccgcaatgct	ctccgctctc	aagtcgcgtt	caaaactttt	accatatatg	ggtatgaatt	9120
gttcgccgat	tgggttttca	tttacggaga	atttcctccg	caactgggtg	ttegtgettg	9180
tgtgtgtctt	gtatatcgcc	atgaagagtg	tacttccatg	ggtcctatca	gttgcggcat	9240
gtgattcaat	ttgggggtta	ctcatattcg	atacttcagc	tggttatctt	tatgctgtga	9300
tggtcacggt	gcttttacac	attttttccc	caactactca	ttgtatgcca	aaacatacat	9360
atgtacatgt	gtttatagtg	ggtttattag	taatgtccag	cgatattaaa	acattacagt	9420
taaataatat	tcatattagc	ttacgtttac	tgctatctgc	acttcaaatt	ggttattcag	9480
ggacatttgt	gcaacacaca	tettetagta	ggggcatcac	tagtcgtaga	aaacacacct	9540
aacttaagcc	ggttttaaca	ataacggcga	aacagctgcc	agacgagaga	aaagtacaca	9600
gcaagaagca	tttctataat	gatgccgtcc	taaatatgca	gcatttttgc	tcaaattgat	9660
catttcgttg	categeteag	gtggtatagt	atttggctat	tgaatgtgat	tgctatctta	9720
atagttttga	atagtaatag	tgcaaatatt	cattcataaa	aaataggtaa	tcgattttct	9780
cagtgcagtc	tatgcgtttg	cgcaaacagg	agacgaagag	agagacgcct	cacacacaag	9840
cacatgcgta	ctacgctggc	ctactccgct	actctatgtg	tegteetetg	catcgtctgc	9900
ttggcggcag	ttettecaga	ggetg tgaeg	tcaggtaagc	tatttcgtct	cggtgtgctg	9960
ttagcccgta	acgataagct	gtccgattcc	taattctctt	tcaaataatt	tgttttattt	10020
tttttttgt	gtgttttgaa	gtcaaacagc	ttcataaaca	atattaaata	togcaattgt	10080
tattgcaaat	gcattcgtat	caggcgcctt	gatgttttc	ggccaaaact	tegtetgete	10140
tttgtcagcg	taattgcgtt	tgccggtcgt	gccgtcttgc	tegeaegege	ttgcaaacaa	10200
aaagtgaa a g	ag gga aagcc	actgtgttgt	tgcttttgtt	gctatcgttg	gctgcacaca	10260
catggcaata	agtaaccata	ttgtagactt	atttatttta	gegttttegt	tgactaatct	10320
ttgtttaaat	aattgcctat	ttcgagccaa	aatgacgcat	aaaggacacg	gcaacatgcg	10380
gtgcgttgag	catgcgtacg	agatggcgct	agagagagcg	agataaaaag	aaaaaacaa	10440
ccggcgagtg	gegagacacg	aataatacac	acacgcacac	atggtcaaag	gagtggctcc	10500
aacgteggtg	acgtcgcgcc	cagccacaga	ccccgccacg	ccccgcccca	ccetteette	10560
cgctgccccg	cacccettec	cttccactac	cgttttgccg	catttggtat	tgccatctcg	10620
cttttttggc	tttactttgc	tttttgaata	agccaagaaa	ctgaaatcaa	agcggacagt	-10è80-
ccgaaaattg	asactattcc	aaaaacaac	aaccgcacat	gcactgcgtt	cggcaaaaga	10740
cgcagaaatc	agcctgtggt	ctggcatcat	cttaaaatat	catcagtatc	atcattgcca	10800
ttataaatac	ataagaaaat	gagaatecat	taaaggtata	tacatacaat	ctttgtcata	10860
gtcaacatat	tttgcaacaa	aattatctat	agataacatg	tttttgtaga	aaattccact	10920

aactgatttt cgtataaata caaattattc tcattcttca aaatactcgc cgacgtcatc 10980 gegaaattee teageattet tegacaaatg aagagagaca gegagtgaca caatettate 11040 ttaccgacga gtctttgaaa atggccccgg gaacggtgaa aaacatatag ccaagaatgg 11100 agegategec aggegatega aattegette aaattegetee gaatategee agttegeteag 11160 ttggcattgg attgtggaga gatactagat cagctcgttc tccttctcct ccgcattctc 11220 ctactegece gaagacgett etttgatege ttettteteg aatgtacata ttgatatgta 11280 tttggtgttt ggcgacgatc agccagcttt aatggccata aaacgtgtct tggtttgtgg 11340 gccacataac aggcagcgag atctggaaaa atgatgtgac agtggaaatg agaagtaggt 11400 gcatctgcaa agatttgatt cagagttgat gccattcatg atttttttta gaagtatcat 11460 ttgtgttttt agaatataga attctagtat gtatgtaagt taataaaacc catttttgcg 11520 gaaagtagat aaaaaaaaca ttttttttt ttactgcact ggatatctgc 11570

5

<210> 18 <211> 11251

<212> ADN

<213> Artificial

<220>

<400> 18

<223> pLA656

10

cgccaggcga tggaaattgg cttcaaattg ctccgaatat ggccagttgg tcagttggca 60 ttggattgtg gagagataet agatcagete gtteteette teeteegeat teteetaete 120 georgaagae gettetttga tegettettt etegaatgta catattgata tgtatttggt 180 .gtttggcgac_gatcagccag_ctttaatggc_cataaaacgt gtcttggttt gtgggccaca 240 taacaggcag cgagatetgg aaaaatgatg tgacagtgga aatgagaagt aggtgcatet 300 gcaaagattt gattcagagt tgatgccatt catgattttt tttagaagta tcatttgtgt 360 ttttagaata tagaattota gtatgtatgt aagttaataa aacccatttt tgcggaaagt 420 agataaaaaa aacatttttt ttttttactg cactggatat ctgcggccgc tcatttaaat 480 ctggccggcc gcaaccattg tgggaaccgt gcgatcaaac aaacgcgaga taccggaagt 540 600 tactotegto toatataaac ogaagocago taagatggta tacttattat catottgtga 660 tgaggatgot totatoaacg aaagtacogg taaacogcaa atggttatgt attataatca 720 aactaaaqqc qqaqtqqaca cqctaqacca aatqtqttct qtqatqacct qcaqtaqqaa 780 gacgaatagg tggcctatgg cattattgta cggaatgata aacattgcct gcataaattc 840 ttttattata tacagecata atgtcagtag caagggagaa aaggtccaaa gtcgcaaaaa 900 atttatgaga aacctttaca tgagcctgac gtcatcgttt atgcgtaagc gtttagaagc 960 tectactitg aagagatatt tgegegataa tatetetaat attitgeeaa atgaagtgee 1020

tggtacatca	gatgacagta	ctgaagagcc	agtaatgaaa	aaacgtactt	actgtactta	1080
ctgcccctct	aaaataaggc	gaaaggcaaa	tgcatcgtgc	aaaaaatgca	aaaaagttat	1140
ttgtcgagag	cataatattg	atatgtgcca	aagttgtttc	tgactgacta	ataagtataa	1200
tttgtttcta	ttatgtataa	gttaagctaa	ttacttattt	tataatacaa	catgactgtt	1260
tttaaagtac	aaaataagtt	tatttttgta	aaagagagaa	tgtttaaaag	ttttgttact	1320
ttatagaaga	aattttgagt	ttttgtttt	ttttaataaa	tasatasaca	taaataaatt	1380
gtttgttgaa	tttattatta	gtatgtaagt	gtaaatataa	taaaacttaa	tatctattca	1440
aattaataaa	taaacctcga	tatacagacc	gataaaacac	atgcgtcaat	tttacgcatg	1500
attatcttta	acgtacgtca	caatatgatt	atctttctag	ggttaaataa	tagtttctaa	1560
tttttttatt	attcagcetg	ctgtcgtgaa	taccgtatat	ctcaacgetg	tctgtgagat	1620
tgtcgtattc	tagccttttt	agtttttcgc	tcatcgactt	gatattgtcc	gacacatttt	1680
cgtcgatttg	cgttttgatc	aaagacttga	gcagagacac	gttaatcaac	tgttcaaatt	1740
gatccatatt	aacgatatca	acccgatgcg	tatatggtgc	gtaaaatata	ttttttaacc	1800
ctcttatact	ttgcactctg	cgttaatacg	cgttcgtgta	cagacgtaat	catgttttct	1860
tttttggata	aaactcctac	tgagtttgac	ctcatattag	acceteacaa	gttgcaaaac	1920
gtggcatttt	ttaccaatga	agaatttaaa	gttattttaa	aaaatttcat	cacagattta	1980
aagaagaacc	aazaattaaa	ttatttcaac	agtttaatcg	accagttaat	caacgtgtac	2040
acəgacgcgt	cggcaaaaaa	cacgcagccc	gacgtgttgg	ctaaaattat	taaatcaact	2100
tgtgttatag	tcacggattt	gccgtccaac	gtgttcctca	aaaagttgaa	gaccaacaag	2160
_tttacggaca	_ctattaatta,	t <u>t</u> tgattttg	ccccacttca	ttttgtggga	tcacaatttt	2220
gttatatttt	aaacaaagct	tggcactggc	cgtcgtttta	caacgtegtg	actgggaaaa	2280
ccctggcgtt	acccaactta	ategeettge	agcacatece	cctttcgcca	gctggcgtaa	2340
tagcgaagag	gecegeaceg	ategeeette	ccaacagttg	cgcagcctga	atggcgaatg	2400
gcgcctgatg	cggtattttc	tccttacgca	tetgtgeggt	atttcacacc	gcatatggtg	2460
cacteteagt	acaatctgct	ctgatgccgc	atagttaagc	cageceegae	acccgccaac	2520
acccgetgae	gegecetgae	gggettgtet	geteceggea	teegettaca	gacaagetgt	2580
gaccgtctcc	gggagctgca	tgtgtcagag	gttttcaccg	tcatcaccga	aacgcgcgag	2640
acgaaagggc	ctcgtgatac	gcctattttt	ataggttaat	gtcatgataa	taatggtttc	2700
ttagacgtca	ggtggcactt	ttcggggaaa	tgtgcgcgga	acccctattt	gtttattttt	2760
ctaaatacat	tcaaatatgt	atccgctcat	gagacaataa	ccctgataaa	tgcttcaata	2820
atattgaaaa	aggaagagta	tgagtattca	acatttccgt	gtcgccctta	ttcccttttt	2880
tgcggcattt	tgccttcctg	tttttgctca	cccagaaacg	ctggtgaaag	taaaagatgc	2940
tgaagatcag	ttgggtgcac	gagtgggtta	catcgaactg	gateteaaca	gcggtaagat	3000

cettgagagt tttcgccccg	aagaacgttt	tccaatgatg	agcactttta	aagttctgct	3060
atgtggcgcg gtattatccc	gtattgacgc	cgggcaagag	caactcggtc	gccgcataca	3120
ctattctcag aatgacttgg	ttgagtactc	accagtcaca	gaaaagcatc	ttacggatgg	3180
catgacagta agagaattat	gcagtgctgc	cataaccatg	agtgataaca	ctgcggccaa	3240
cttacttctg acaacgatcg	gaggaccgaa	ggagctaacc	gcttttttgc	acaacatggg	3300
ggatcatgta actcgccttg	atcgttggga	accggagctg	aatgaagcca	taccaaacga	3360
cgagcgtgac accacgatgc	ctgtagcaat	ggcaacaacg	ttgcgcaaac	tattaactgg	3420
cgaactactt actctagctt	cccggcaaca	attaatagac	tggatggagg	cggataaagt	3480
tgcaggacca cttctgcgct	cggcccttcc	ggctggctgg	tttattgctg	ataaatctgg	3540
agccggtgag cgtgggtctc	geggtatcat	tgcagcactg	gggccagatg	gtaagccctc	3600
cegtategta gttatetaca	cgacggggag	tcaggcaact	atggatgaac	gaaatagaca	3660
gategetgag ataggtgeet	cactgattaa	gcattggtas	ctgtcagacc	aagtttactc	3720
atatatactt tagattgatt	taaaacttca	tttttaattt	aaaaggatct	aggtgaagat	3780
cctttttgat aatctcatga	ccaaaatccc	ttaacgtgag	ttttcgttcc	actgagcgtc	3840
agaccccgta gaaaagatca	aaggatette	ttgagatcct	ttttttctgc	gcgtaatctg	3900
ctgcttgcaa acaaaaaaac	caccgctacc	ageggtggtt	tgtttgccgg	atcaagagct	3960
accaactctt tttccgaagg	taactggett	cagcagagcg	cagataccaa	atactgteet	4020
tctagtgtag ccgtagttag	gccaccactt	caagaactct	gtagcaccgc	ctacatacct	4080
cgctctgcta atcctgttac	cagtggctgc	tgccagtggc	gat aagtc gt	gtcttaccgg	4140
.gttggactca_agacgatagt	taccggataa	ggcgcagcgg	tcgggctgaa	cggggggttc	4200
gtgcacacag cccagcttgg	agcgaacgac	ctacaccgaa	ctgagatacc	tacagegtga	4260
gcattgagaa agcgccacgc	ttcccgaagg	gagaaaggcg	gacaggtatc	cggtaagcgg	4320
cagggtcgga acaggagagc	gcacgaggga	gcttccaggg	ggaaacgcct	ggtatcttta	4380
tagtcctgtc gggtttcgcc	acctctgact	tgagegtega	tttttgtgat	gctcgtcagg	4440
ggggcggagc ctatggaaaa	acgecageaa	cgcggccttt	ttacggttcc	tggccttttg	4500
ctggcctttt gctcacatgt	tettteetge	gttatecect	gattctgt gg	ataaccgtat	4560
taccgccttt gagtgagctg	ataccgctcg	cegeageega	acgaccgagc	gcagcgagtc	4620
agtgagcgag gaagcggaag	agegeecaat	acgcaaaccg	ceteteeeeg	cgcgttggcc	4680
gattcattaa tgcagetggc	acgacaggtt	tcccgactgg	aaagcgggca	gtgagcgcaa-	4740
cgcaattaat gtgagttagc	tcactcatta	ggcaccecag	gctttacact	ttatgcttcc	4800
ggctcgtatg ttgtgtggaa	ttgtgagcgg	ataacaattt	cacacaggaa	acagetatga	4860
ccatgattac gaatttcgac	ctgcaggcat	gcaagcttgc	atgeetgeag	gtcgacgctc	4920
gegegaettg gtttgeeatt	ctttagcgcg	cgtcgcgtca	cacagettég	ccacaatgtg	4980

gtttttgtca	aacgaagatt	ctatgacgtg	tttaaagttt	aggtcgagta	aagcgcaaat	5040
cttttttaac	cctagaaaga	tagtotgogt	aaaattgacg	catgcattct	tgaaatattg	5100
etetetett	ctaaatagcg	cgaatccgtc	gctgtgcatt	taggacatct	cagtogoogo	5160
ttggagctcc	cgtgaggcgt	gcttgtcaat	gcggtaagtg	tcactgattt	tgaactataa	5220
cgaccgcgtg	agtcaaaatg	acgcatgatt	atcttttacg	tgacttttaa	gatttaactc	5280
atacgataat	tatattgtta	tttcatgttc	tacttacgtg	ataacttatt	atatatatat	5340
tttcttgtta	tagatatcgt	gactaatata	taataaaatg	ggtagttctt	tagacgatga	5400
gcatatectc	totgetette	tgcaaagcga	tgacgagctt	gttggtgagg	attetgacag	5460
tgaaatatca	gatcacgtaa	gtgaagatga	cgtccagagc	gatacagaag	aagcgtttat	5520
agatgaggta	catgaagtgc	agccaacgtc	aagcggtagt	gaaatattag	acgaacaaaa	5580
tgttattgaa	caaccaggtt	cttcattggc	ttctaacaga	atcttgacct	tgccacagag	5640
gactattaga	ggtaagaata	aacattgttg	gtcaacttca	aagtccacga	ggcgtagccg	5700
agtetetgea	ctgaacattg	tcagatcggc	ccgggcgccg	tttttcttga	aatattgctc	5760
tctctttcta	aatagcgcga	atcegteget	gtgcatttag	gacateteag	tegeegettg	5820
gagctcccaa	acgcgccagt	ggtagtacac	agtactgtgg	gtgttcagtt	tgaaatcctc	5880
ttgcttctcc	attgtctcgg	ttacctttgg	tcaaatccat	gggttctatt	gcctatatac	5940
tcttgcgatt	accagtgatt	gcgctattag	ctattagatg	gattgttggc	caaacttgtc	6000
gcttaagtgg	ctgggaattg	taaccgtagg	cccgagtgta	atgatecece	ataaaaagtt	6060
ttcgcaatgc	ctttatttt	tgttgcaaat	ctctcttat	tctgcggtat	tcttcattat	6120
_tgcggggatg.	_gggaaagtgt_	<u>ttatatagaa</u>	gcaacttacg	ațtgaaccca	aatgcacctg	6180
acaagcaagg	tcaaagggcc	agatttttaa	atatattatt	tagtettagg	actctctatt	6240
tgcaattaaa	ttactttgct	acctgagggt	taaatcttcc	ccattgataa	taataattcc	6300
actatatgtt	caattgggtt	teacegeget	tagttacatg	acgageceta	atgageegte	6360
ggtggtctat	aaactgtgcc	ttacaaatac	ttgcaactct	tctcgttttg	aagtcagcag	6420
agttattgct	aattgctaat	tgctaattgc	ttttaactga	tttcttcgaa	attggtgcta	6480
tgtttatggc	gctattaaca	agtatgaatg	tcaggtttaa	ccaggggatg	cttaattgtg	6540
ttotcaactt	caaaggcaga	aatgtttact	cttgaccatg	ggtttaggta	taatgtta tc	6600
aagctecteg	agttaacgtt	acgttaacgt	taacgttcga	ggtcgactct	agaactaccc	6660
accgtactcg	tcaattccaa	gggcatcggt	aaacatctgc	tcaaactcga	agtoggocat-	6720 -
atccaga gc g	ccgtaggggg	cggagtcgtg	gggggtaaat	cccggacccg	gggaateece	6780
gtccccaac	atgtccagat	cgaaatcgtc	tagegegteg	gcatgcgcca	tegecaegte	6840
ctcgccgtct	aagtggaget	cgtcccccag	gctgacatcg	gtegggggg	ccgtcgacag	6900
tetgegegtg	tgtcccgcgg	ggagaaagga	caggcgcgga	gccgccagcc	ccgcctcttc	6960

gggggcgtcg	tcgtccggga	gatcgagcag	gccctcgatg	gtagacccgt	aattgtttt	7020
cgtacgcgcg	cggctgtacg	cggggcccga	gcccgactcg	catttcagtt	gcttttccaa	7080
tccgcagata	atcagctcca	agccgaacag	gaatgccggc	teggeteett	gatgatcgaa	7140
cagctcgatt	gcctgacgca	gçagtggggg	catcgaatcg	gttgtt gg gg	tctcgcgctc	7200
ctcttttgcg	acttgatgct	cttggtcctc	cagcacgcag	cccagggtaa	agtgaccgac	7260
ggcgctcaga	gcgtagagag	cattttccag	gctgaagcct	tgctggcaca	ggaacgcgag	7320
ctggttctcc	agtgtctcgt	attgcttttc	ggtegggege	gtgccgagat	ggactttggc	7380
accgtctcgg	tgggacagca	gagegeageg	gaacgacttg	gcgtta tt gc	ggaggaagtc	7440
ctgccaggac	tegeetteca	acgggcaaaa	atgegtgtgg	tggcggtcga	gcatctcgat	7500
ggccagggca	tccagcagcg	cccgcttatt	cttcacgtgc	cagtagaggg	tgggetgete	7560
cacgcccagc	ttctgcgcca	acttgcgggt	cgtcagtccc	tcaatgccaa	cttcgttcaa	7620
cagetecaae	gcggagttga	tgactt t gga	cttatccagg	cggctgccca	tggtggtttc	7680
taaaggtgtt	ataaatcaaa	ttagttttgt	tttttcttga	aaactttgcg	tttcctttga	7740
tcaacttacc	gccagggtac	cgcagattgt	ttagcttgtt	cagetgeget	tgtttatttg	7800
cttagctttc	gcttagcgac	gtgttcactt	tgcttgtttg	aattgaattg	togotoogta	7860
gacgaagcgc	ctctatttat	actccggcgc	togttttcga	gtttaccact	ccctatcagt	7920
gatagagaaa	agtgaaagtc	gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	7980
togagtttac	cactccctat	cagtgataga	gaaaagtgaa	agtcgagttt	accactccct	8040
atcagtgata	gagaaaagtg	aaagt cgagt	ttaccactcc	ctatcagtga	tagagaaaag	8100
tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaagtc	gagtttacca	8160
ctccctatca	gtgatagaga	aaagtgaaag	tcgaaacctg	gcgcgcctct	taattaactc	8220
gcgttaagat	acattgatga	gtttggacaa	accacaacta	gaatgcagtg	aaaaaaatgc	8280
tttatttgtg	aaatttgtga	tgctattgct	ttatttgtaa	ccattataag	ctgcaataaa	8340
caagttaaca	acaacaattg	cattcatttt	atgtttcagg	ttcaggggga	ggtgtgggag	8400
gttttttaaa	gcaagtaaaa	cctctacaaa	tgtggtatgg	ctgattatga	tcagttatct	8460
agatccggtg	gatettacgg	gtcctccacc	ttccgctttt	tettgggteg	agateteagg	8520
aacaggtggt	ggcggccctc	ggtgcgctcg	tactgctcca	cgatggtgta	gtcctcgttg	8580
tgggaggtga	tgtccagctt	ggcgtccacg	tagtagtagc	cgggcagctg	cacgggcttc	8640
ttggccatgt	agatggactt	gaactccacc	aggtagtggc	egcegteett	cagcttcagg	8700
gccttgtggg	tctcgccctt	cagcacgccg	tcgcgggggt	acaggcgctc	ggtggaggcc	8760
teccagecca	tggtcttctt	ctgcatcacg	gggccgtcgg	aggggaagtt	cacgccgatg	8820
aacttcacct	tgtagatgaa	gcagccgtcc	tgcagggagg	agteetgggt	cacggtcgcc	8880
acgccgccgt	cctcgaagtt	catcacgcgc	tcccacttga	agccctcggg	gaaggacagc	8940

ttcttgtagt	cggggatgtc	ggcggggtgc	ttcacgtaca	ccttggagcc	gtactggaac	9000
tggggggaca	ggatgtccca	ggcgaagggc	agggggccgc	ccttggtcac	cttcagcttc	9060
acggtgttgt	ggccctcgta	ggggcggccc	tegeeetege	cctcgatctc	gaactcgtgg	9120
ccgttcacgg	tgccctccat	gcgcaccttg	aagogoatga	actoggtgat	gacgttctcg	9180
gaggaggcca	tggtggcgac	cggtttgcgc	ttettettgg	gtggggtggg	atccccgatc	9240
tgcattttgg	attattctgc	gggtcaaaat	agagatgtgg	aaaattagta	cgaaatcaaa	9300
tgagtttcgt	tgaaattaca	aaactattga	aactaacttc	ctggctgggg	aataaaaatg	9360
ggaaacttat	ttatcgacgc	caactttgtt	gagaaacccc	tattaaccct	ctacgaatat	9420
tggaacaaag	gaaagcgaag	aaacaggaac	aaaggtagtt	gagaaacctg	ttccgttgct	9480
cgtcatcgtt	ttcataatgc	gagtgtgtg c	atgtatatat	acacagetga	aacgcatgca	9540
tacacattat	tttgtgtgta	tatggtgacg	tcacaactac	taagcaataa	gaaattttcc	9600
agacgtggct	ttcgtttcaa	gcaacctact	ctatttcagc	taaaaataag	tggatttcgt	9660
tggtaaaata	cttcaattaa	gcaaagaact	aactaactaa	taacatgcac	acaaatgctc	9720
gagtgcgttc	gtgatttctc	gaattttcaa	atgcgtcact	gcgaatttca	caatttgcca	9780
ataaatcttg	gcgaaaatca	acacgcaagt	tttatttata	gatttgtttg	cgttttgatg	9840
ccaattgatt	gggaaaacaa	gatgcgtggc	tgccaatttc	ttattttgta	attacgtaga	9900
gcgttgaata	aaaaaaaaat	ggccgaacaa	agacettgaa	atgcagtttt	tcttgaaatt	9960
actcaacgtc	ttgttgctct	tattactaat	tggtaacage	gagttaaaaa	cttacgtttc	10020
ttgtgacttt	cgagaatgtt	cttttaattg	tactttaatc	accaacaatt	aagtataaat	10080
_ttttcgctga.	.ttgcgcttta	ctttctgctt	gtacttgctg	ctgcaaatgt	caattggttt	10140
tgaaggcgac	cgttcgcgaa	cgctgtttat	ataccttcgg	tgtccgttga	aaatcactaa	10200
aaaataccgt	agtgttcgta	acactttagt	acagagaaaa	aaaattgtgc	cgaaatgttt	10260
ttgatacgta	cgaatacctt	gtattaaaat	tttttatgat	ttctgtgtat	cactttttt	10320
ttgtgttttt	cgtttaaact	caccacagta	caaaacaata	aaatatttt	aagacaattt	10380
caaattgaga	cotttctcgt	actgacttga	ccggctgaat	gaggatttct	acctagacga	10440
cctacttctt	accatgacat	tgaatgcaat	gccacctttg	atctaaactt	acaaaagtcc	10500
aaggcttgtt	aggattggtg	tttatttagt	ttgcttttga	aatagcactg	tettetetac	10560
cggctataat	tttgaaactc	gcagcttgac	tggaaattta	aaaagtaatt	ctgtgtaggt	10620
aaagggtgtt	ttaaaagtgt.	gatgtgttga-	gcgttgcggc	aacgactgct	atttatgtat	10680
atattttcaa	aacttattgt	ttttgaagtg	ttttaaatgg	agctatetgg	caacgctgcg	10740
cataatctta	cacaagcttt	tettaateea	tttttaagtg	aaatttgttt	ttactctttc	10800
ggcaaataat	tgttaaatcg	ctttaagtgg	gcttacatct	ggataagtaa	tgaaaacctg	10860
catattataa	tattaaaaca	tataatccac	tgtgctttcc	ccgtgtgtgg	ccatatacct	10920

aaaaaagttt attttegeag ageecegeac ggteacacta eggtteggeg attttegatt 10980
ttggacagta etgattgeaa gegeacegaa ageaaaatgg agetggagat tttgaaegeg 11040
aagaacagca ageegtaegg caaggtgaag gtgeecteeg gegeeaegee eateggegat 11100
etgegegeec taatteacaa gaceetgaag eagaececae aegegaateg eeagtegett 11160
egtetggaac tgaagggeaa aageetgaaa gataeggaca eattggaate tetgtegetg 11220
egtteeggeg acaagategg ggtaeegega t 11251

<210> 19

5

<211> 9468

<212> ADN <213> Artificial

<220>

<223> pLA710

10 <400> 19

ggccgctcat ttaaatctgg ccggccgcaa ccattgtggg aaccgtgcga tcaaacaaac 60 gegagatace ggaagtactg aaaaacagte getecaggee agtgggaaca tegatgtttt 120 gttttgacgg accepttact etegteteat ataaacegaa gecagetaag atggtatact 180 tattatcatc ttgtgatgag gatgetteta teaacgaaag taccggtaaa ccgcaaatgg 240 ttatgtatta taatcaaact aaaggeggag tggacaeget agaccaaatg tgttetgtga 300 tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgataaaca 360 ttgcctgcat aaattctttt attatataca gccataatgt cagtagcaag ggagaaaagg 420 tocaaagtog caaaaaattt atgagaaace tttacatgag cotgacgtoa togtttatgo 480 _gtaagogttt_agaagctcct_actttgaaga_gatatttgcg cgataatatc totaatattt 540 tgccaaatga aqtgcctggt acatcagatg acagtactga agagccagta atgaaaaaac 600 gtacttactg tacttactgc ccctctaaaa taaggcgaaa ggcaaatgca tcgtgcaaaa 660 aatgcaaaaa agttatttgt cgagagcata atattgatat gtgccaaagt tgtttctgac 720 tgactaataa gtataatttg tttctattat gtataagtta agctaattac ttattttata 780 atacaacatg actgttttta aagtacaaaa taagtttatt tttgtaaaag agagaatgtt 840 900 taaacataaa taaattyttt gttqaattta ttattagtat gtaagtgtaa atataataaa 960 acttaatato tattoaaatt aataaataaa ootogatata cagacogata aaacacatgo 1020 gtcaatttta cgcatgatta tetttaacgt acgtcacaat atgattatet ttetagggtt 1080 aaataatagt ttctaatttt tttattattc agcctgctgt cgtgaatacc gtatatctca 1140 acgoigtoig igagatigio giattolago cittitagti titogoloat cgactigata 1200 ttgtccgaca cattttcgtc gatttgcgtt ttgatcaaag acttgagcag agacacgtta 1260 atcaactgtt caaattgatc catattaacg atatcaaccc gatgcgtata tggtgcgtaa 1320

aatatatttt	ttaaccctct	tatactttgc	actctgcgtt	aatacgcgtt	cgtgtacaga	1380
cgtaatcatg	ttttctttt	tggataaaac	tectactgag	tttgacctca	tattagaccc	1440
tcacaagttg	caaaacgtgg	cattttttac	caatgaagaa	tttaaagtta	ttttaaaaaa	1500
tttcatcaca	gatttaaaga	agaaccaaaa	attaaattat	ttcaacagtt	taatcgacca	1560
gttaatcaac	gtgtacacag	acgcgtcggc	aaaaaacacg	cagcccgacg	tgttggctaa	1620
aattattaaa	tcaacttgtg	ttatagtcac	ggatttgccg	tccaacgtgt	tcctcaaaaa	1680
gttgaagacc	aacaagttta	cggacactat	taattatttg	attttgcccc	acttcatttt	1740
gtgggatcac	aattttgtta	tattttaaac	aaagettgge	actggccgtc	gttttacaac	1800
gtcgtgactg	ggaaaaccct	ggcgttaccc	aacttaatcg	ccttgcagca	catececett	1860
tegecagetg	gcgtaatagc	gaagaggccc	gcaccgatcg	cccttcccaa	cagttgcgca	1920
gcctgaatgg	cgaatggcgc	ctgatgcggt	atttteteet	tacgcatctg	tgcggtattt	1980
cacaccgcat	atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagccagc	2040
cccgacaccc	gccaacaccc	getgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	2100
cttacagaca	agctgtgacc	gtotooggga	gctgcatgtg	tcagaggttt	tcaccgtcat	2160
caeegaaaeg	cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	2220
tgataataat	ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	2280
ctatttgttt	atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccet	2340
gataaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	2400
cccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	2460
.tgaaagtaaa.	_agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	2520
	taagatcctt					2580
cttttaaagt	tctgctatgt	ggegeggtat	tatcccgtat	tgacgccggg	caagagcaac	2640
	catacactat					2700
	ggatggcatg					2760
_	ggccaactta	_			_	2820
·	catgggggat					2880
	aaacgacgag	•				2940
	aactggcgaa					3000
					ggctggttta	
	atctggagcc					3120
	geceteeegt					. 3180
	tagacagatc					3240
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	3300

ggatetaggt	gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	3360
cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	gateetttt	3420
ttctgcgcgt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	3480
tgccggatca	agagetacca	actctttttc	cgaaggtaac	tggcttcagc	agagegeaga	3540
taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	3600
caccgcctac	ataceteget	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	3660
agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	3720
gctgaacggg	gggttcgtgc	acacageeca	gcttggagcg	aacgacctac	accgaactga	3780
gatacctaca	gcgtgagcat	tgagaaagcg	ccacgettee	cgaagggaga	aaggcggaca	3840
ggtatccggt	aagcggcagg	gtcggaacag	gagagegeae	gagggagett	ccagggggaa	3900
acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	3960
tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	4020
ggttcctggc	cttttgctgg	ccttttgctc	acatgttett	tectgegtta	tcccctgatt	4080
ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	cgctcgccgc	agccgaacga	4140
ccgagcgcag	cgagtcagtg	agcgaggaag	cggaagagcg	cccaatacgc	aaaccgcctc	4200
teceegegeg	ttggccgatt	cattaatgca	gctggcacga	caggtttccc	gactggaaag	4260
cgggcagtga	gcgcaacgca	at taatg tga	gttagctcac	tcattaggca	ccccaggett	4320
tacactttat	gcttccggct	cgtatgttgt	gtggaattgt	gagcggataa	caatttcaca	4380
caggaaacag	ctatgaccat	gattacgaat	ttcgacctgc	aggcatgcaa	gcttgcatgc	4440
_ctgcaggtcg	_acgctcgcgc	gacttggttt	gccātt¢tţt	agegegegte	gcgtcacaca	4500
gcttggccac	aatgtggttt	ttgtcaaacg	aagattctat	gacgtgttta	aagtttaggt	4560
cgagtaaagc	gcaaatcttt	tttaacccta	gaaagatagt	ctgcgtaaaa	ttgacgcatg	4620
cattcttgaa	atattgctct	ctctttctaa	atagcgcgaa	teegtegetg	tgcatttagg	4680
acateteagt	cgccgcttgg	agctcccgtg	aggcgtgctt	gtcaatgcgg	taagtgtcac	4740
tgattttgaa	ctataacgac	cgcgtgagtc	aaaatgacgc	atgattatct	tttacgtgac	4800
ttttaagatt	taactcatac	gataattata	ttgttatttc	atgttctact	tacgtgataa	4860
cttattatat	atatattttc	ttgttataga	tatcgtgact	aatatataat	aaaatgggta `	4920
gttctttaga	cgatgagcat	atcotototg	ctcttctgca	aagcgatgac	gagcttgttg	4980
gtgaggattc	tgacagtgaa	atatcagatc	acgtaagtga	agatgacgtc-	cagagogata	5040
cagaagaagc	gtttatagat	gaggtacatg	aagtgcagcc	aacgtcaagc	ggtagtgaaa	5100
tattagacga	acaaaatgtt	attgaacaac	caggttcttc	attggcttct	aacagaatct	5160
tgacettgcc	acagaggact	attagaggta	agaataaaca	ttgttggtca	acttcaaagt	5220
ccacgaggcg	tageegagte	tctgcactga	acattgtcag	atcggcccgg	gcgccgtttt	5280

tcttgaaata	ttgctctctc	tttctaaata	gcgcgaatcc	gtcgctgtgc	atttaggaca	5340
totoagtogo	cgcttggagc	teccaaaege	gccagtggta	gtacacagta	ctgtgggtgt	5400
tcagtttgaa	atcctcttgc	ttctccattg	tctcggttac	ctttggtcaa	atccatgggt	5460
tetattgeet	atatactett	gcgattacca	gtgattgcgc	tattagctat	tagatggatt	5520
gttggccaaa	cttgtcgctt	aagtggctgg	gaattgtaac	cgtaggcccg	agtgtaatga	5580
tcccccataa	aaagttttcg	caatgcettt	attttttgtt	gcaaatctct	ctttattctg	5640
cggtattctt	cattattgcg	gggatgggga	aagtgtttat	atagaagcaa	cttacgattg	5700
aacccaaatg	cacctgacaa	gcaaggtcaa	agggccagat	ttttaaatat	attatttagt	5760
cttaggactc	tctatttgca	attaaattac	tttgctacct	gagggttaaa	tcttccccat	5820
tgataataat	aattccacta	tatgttcaat	tgggtttcac	cgcgcttagt	tacatgacga	5880
gccctaatga	gccgtcggtg	gtetataaac	tgtgccttac	aaatacttgc	aactcttctc	5940
gttttgaagt	cagcagagtt	attgctaatt	gctaattgct	aattgctttt	aactgatttc	6000
ttegaaattg	gtgctatgtt	tatggcgcta	ttaacaagta	tgaatgtcag	gtttaaccag	6060
gggatgctta	attgtgttct	caacttcaaa	ggcagaaatg	tttactcttg	accatgggtt	6120
taggtataat	gttatcaage	tcctcgagtt	aacgttacgt	taacgttaac	gttcgaggtc	6180
gactctagaa	ctacccaccg	tactcgtcaa	ttccaagggc	atcggtaaac	atctgctcaa	6240
actegaagte	ggccatatcc	agagegeegt	agggggcgga	gtcgt ggg g	gtaaatcccg	6300
gacccgggga	atccccgt c c	cccaacatgt	ccagategaa	atcgtctagc	gcgtcggcat	6360
gcgccatcgc	cacgtcctcg	ccgtctaagt	ggagetegte	ccccaggctg	acateggteg	6420
99 9 999cc9t	<u>cgacagtctg</u>	cgcgtgtgtc	ccgcggggag	aaaggacagg	cgcggagccg	6480
ccagcccegc	ctcttcgggg	gcgtcgtcgt	ccgggagatc	gagcaggccc	tcgatggtag	6540
accegtaatt	gtttttcgta	cgcgcgcggc	tgtacgcggg	gcccgagccc	gactcgcatt	6600
tcagttgctt	ttccaatccg	cagataatca	gctccaagcc	gaacaggaat	gccgg¢tcgg	6660
ctccttgatg	atcgaacagc	tcgattgcct	gacgcagcag	tgggggcatc	gaatcggttg	6720
ttggggtete	gegeteetet	tttgcgactt	gatgetettg	gtcctccage	acgcagccca	6780
gggtaaagtg	accgacggcg	ctcagagcgt	agagagcatt	ttccaggctg	aagcettget	6840
ggcacaggaa	cgcgagctgg	ttctccagtg	tctcgtattg	cttttcggtc	gggcgcgtgc	6900
cgagatggac	tttggcaccg	tctcggtggg	acagcagagc	gcagcggaac	gacttggcgt	6960
tattgcggag	gaagtcctgc	caggactcgc.	cttccaac g g	gcaaaaatgc	gtgtggtggc	7020
ggtcgagcat	ctcgatggcc	agggcatcca	gcagcgcccg	cttattcttc	acgtgccagt	7080
agagggtggg	ctgctccacg	cccagcttct	gcgccaactt	gcgggtegte	agteceteaa	7140
tgccaacttc	gttcaacagc	tocaacgcgg	agttgatgac	tttggactta	tccaggcggc	7200
tgcccatggt	ggtttctaaa	ggtgttataa	atcaaattag	ttttgtttt	tcttgaaaac	7260

tttgcgtttc	ctttgatcaa	cttaccgcca	gggtaccgca	gattgtttag	cttgttcagc	7320
tgcgcttgtt	tatttgctta	gctttcgctt	agcgacgtgt	tcactttgct	tgtttgaatt	7380
gaattgtcgc	tccgtagacg	aagegeetet	atttatactc	cggcgctcgt	tttcgagttt	7440
accactccct	atcagtgata	gagaaaagtg	aaagtcgagt	ttaccactcc	ctatcagtga	7500
tagagaaaag	tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaagtc	7560
gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	tcgagtttac	cactecetat	7620
cagtgataga	gaaaagtgaa	agtcgagttt	accactccct	atcagtgata	gagaaaagtg	7680
aaagtcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	aacctggcgc	7740
gcctcttaat	taactcgcgt	taagatacat	tgatgagttt	ggacaaacca	caactagaat	7800
gcagtgaaaa	aaatgcttta	tttgtgaaat	ttgtgatgct	attgctttat	ttgtaaccat	7860
tataagctgc	aataaacaag	ttaacaacaa	caattgcatt	cattttatgt	ttcaggttca	7920
g ggggagg tg	tgggaggttt	tttaaagcaa	gtaaaacctc	tacaaatgtg	gtatggctga	7980
ttatgatcag	ttatctagat	ccggtggatc	ttacgggtcc	tecacettee	gctttttctt	8040
gggtcgagat	ctcaggaaca	ggtggtg g cg	gccctcggtg	cgctcgtact	gctccacgat	8100
ggtgtagtcc	tcgttgtggg	aggtgatgtc	cagettggeg	tccacgtagt	agtagccggg	8160
cagetgeacg	ggcttcttgg	ccatgtagat	ggacttgaac	tecaccaggt	agtggccgcc	8220
gteetteage	ttcagggcct	tgtgggtete	gcccttcage	acgccgtcgc	gggggtacag	8280
gcgctcggtg	gaggcctccc	agcccatggt	cttcttctgc	atcacggggc	cgtcggaggg	8340
gaagttcacg	ccgatgaact	tcaccttgta	gatgaagcag	cegtectgca	gggaggagtc	8400
-ctgggtcacg	-gtegecaege	cgccgtcctc	gaagttcatc	acgegetece	acttgaagcc	8460
ctcggggaag	gacagettet	tgtagtcggg	gatgtcggcg	gggtgcttca	cgtacacctt	8520
ggagccgtac	tggaactggg	gggacaggat	gtcccaggcg	aagggcaggg	ggccgccctt	8580
ggtcaccttc	agetteaegg	tgttgtggcc	ctcgtagggg	eggecetege	cctcgccctc	8640
gatetegaae	tegtġgeegt	tcacggtgce	ctccatgcgc	accttgaage	gcatgaactc	8700
ggtgatgacg	tteteggagg	aggccatggt	ggcgaccggt	ttgegettet	tettgggtgg	8760
ggtgggatcc	tegtegeaca	tcttgaatta	gtctgcaaga	aaagaaaaaa	aacaattcaa	8820
actacattct	cattccatac	attatactaa	gtaaacgaca	aatttatttg	cgtccatcta	8880
tttagtgacg	ttaaagaaaa	ctgtataaga	ttcataattc	actgttccca	atttctgttt	8940
ccgaattgat	-cgatgcgagt	ggacactttg	aaatgtgcgt	ccaataaact	tatttettat	9000
ttagtagtgt	ttattaacat	ctgcagtaca	ctaaattccg	aaaaatgttt	tttttataa	9060
aaaatttcac	ttcactagtt	atgcaacaat	tatgtaacgt	aacacgttat	cattagcgta	9120
ttattaaaaa	aaaaaaacac	tcaaacatat	gtaatactta	aaggtaaagg	gacggagaac	9180
cttcgaaatt	caaattttac	aaataaataa	atatgtttt	ttttctttcg	caattttaaa	9240

attaaaactt acatagtatt attaaataag tgacaagtac gtagatgcga atgegeactg 9300

ttegageaca cettagtaaa tgagaacega etegtgagga taaactatat aaaagageeg 9360

ttateacaat ttacacagta teggeteeag tttgtttte caccaatege gggetgacte 9420

agtttttgte accatatatg gtaacgegea egetateagg taccatge 9468

<210> 20 <211> 10140 5 <212> ADN <213> Artificial

<220>

<223> pLA928

10 <400> 20

ggccgctcat ttaaatctgg ccggccgcaa ccattgtggg aaccgtgcga tcaaacaaac 60 gcgagatacc ggaagtactg aaaaacagtc gctccaggcc agtgggaaca tcgatgtttt 120 gttttgacgg acceettact etegteteat ataaaccgaa gecagetaag atggtatact 180 tattatcatc ttgtgatgag gatgcttcta tcaacgaaag taccggtaaa ccgcaaatgg 240 ttatgtatta taatcaaact aaaggeggag tggacaeget agaccaaatg tgttetgtga 300 tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgataaaca 360 ttgcctgcat aaattetttt attatataca gccataatgt cagtagcaag ggagaaaagg 420 tocaaagtog caaaaaattt atgagaaacc tttacatgag cotgacgtca togtttatgo 480 gtaagogttt agaagotoot actttgaaga gatatttgcg cgataatatc totaatattt 540 tgccaaatga agtgcctggt acatcagatg acagtactga agagccagta atgaaaaaac 600 --gtacttactg...tacttactgc.ccctctaaaa taaggegaaa ggcaaatgca tcgtgcaaaa 660 aatgcaaaaa agttatttgt cgagagcata atattgatat gtgccaaagt tgtttctgac 720 tgactaataa gtataatttg tttctattat gtataagtta agctaattac ttatttata 780 atacaacatg actgttttta aagtacaaaa taagtttatt tttgtaaaag agagaatgtt 840 900 taaacataaa taaattgttt gttgaattta ttattagtat gtaagtgtaa atataataaa 960 acttaatato tattoaaatt aataaataaa cotogatata cagacogata aaacacatgo 1020 gtcaatttta cgcatgatta tctttaacgt acgtcacaat atgattatct ttctagggtt 1080 aaataatagt ttotaatttt tttattatto agootgotgt ogtgaataco gtatatotoa 1140 acgetgtetg tgagattgte gtattetage etttttagtt tttegeteat egacttgata---1200 ttgtccgaca cattttcgtc gatttgcgtt ttgatcaaag acttgagcag agacacgtta 1260 atcaactgtt caaattgatc catattaacg atatcaaccc gatgcgtata tggtgcgtaa 1320 aatatatttt ttaaccctct tatactttgc actctgcgtt aatacgcgtt cgtgtacaga 1380 cgtaatcatg ttttcttttt tggataaaac tcctactgag tttgacctca tattagaccc 1440

tcacaagttg	caaaacgtgg	cattttttac	caatgaagaa	tttaaagtta	ttttaaaaaa	1500
tttcatcaca	gatttaaaga	agaaccaaaa	attaaattat	ttcaacagtt	taatcgacca	1560
gttaatcaac	gtgtacacag	acgogtoggo	aaaaaacacg	cagcccgacg	tgttggctaa	1620
aattattaaa	tcaacttgtg	ttatagtcac	ggatttgccg	tccaacgtgt	tectcaaaaa	1680
gttgaagacc	aacaagttta	eggacactat	taattatttg	attttgcccc	acttcatttt	1740
gtgggatcac	aattttgtta	tattttaaac	aaagcttggc	actggccgtc	gttttacaac	1800
gtcgtgactg	ggaaaaccct	ggcgttaccc	aacttaatcg	ccttgcagca	catccccctt	1860
tegecagetg	gcgtaatagc	gaagaggccc	gcaccgatcg	cccttcccaa	cagttgcgca	1920
gcctgaatgg	cgaatggcgc	ctgatgcggt	attttetect	tacgcatctg	tgcggtattt	1980
cacaccgcat	atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagccagc	2040
cccgacaccc	gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ceggcateeg	2100
cttacagaca	agctgtgacc	gteteeggga	gctgcatgtg	tcagaggttt	tcaccgtcat	2160
caccgaaacg	cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	2220
tgataataat	ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	2280
ctatttgttt	atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccet	2340
gataaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	2400
eccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	2460
tgaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	2520
tcaacagcgg	taagatcctt	gagagttttc	geceegaaga	acgttttcca	atgatgagca	2580
cttttaaagt	_tctgctatgt	ggggcggtat	_tatecegtaț	tgacgccggg	caagagcaac	2640
teggtegeeg	catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	2700
agcatettae	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	2760
ateacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	2820
ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagetgaatg	2880
aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	2940
gcaaactatt	aactggcgaa	ctacttactc	tagcttcccg	gcaacaatta	atagactgga	3000
tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	ccttccggct	ggctggttta	3060
ttgctgataa	atctggagcc	ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	3120
cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg-	3180
atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	3240
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	3300
ggatctaggt	gaagateett	tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	3360
cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	gateetttt	3420

ttetgegegt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	3480
tgccggatca	agagctacca	actcttttc	cgaaggtaac	tggcttcagc	agagcgcaga	3540
taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	3600
caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggetgetgee	agtggcgata	3660
agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	3720
gctgaacggg	gggttegtge	acacageeca	gcttggagcg	aacgacctac	accgaactga	3780
gatacctaca	gcgtgagcat	tgagaaagcg	ccacgettee	cgaagggaga	aaggeggaca	3840
ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	3900
acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	3960
tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	4020
ggttcctggc	cttttgctgg	ccttttgctc	acatgttett	tectgcgtta	tcccctgatt	4080
ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	cgctcgccgc	agcegaacga	4140
ccgagcgcag	cgagtcagtg	agcgaggaag	cggaagagcg	cccaatacgc	aaaccgcete	4200
teccegegeg	ttggccgatt	cattaatgca	gctggcacga	caggtttecc	gactggaaag	4260
cgggcagtga	gegeaaegea	attaatgtga	gttagctcac	tcattaggca	ccccaggctt	4320
tacactttat	gcttccggct	cgtatgttgt	gtggaattgt	gagcggataa	caatttcaca	4380
caggaaacag	ctatgaccat	gattacgaat	ttcgacctgc	aggcatgcaa	gcttgcatgc	4440
ctgcaggtcg	acgetegege	gacttggttt	gccattcttt	agcgcgcgtc	gcgtcacaca	4500
gcttggccac	aatgtggttt	ttgtcaaacg	aagattetat	gacgtgttta	aagtttaggt	4560
cgagtaaagc	.gcaaatcttt	tttaacccta	gaąagatagt	ctgcgtaaaa	ttgacgcatg	4620
cattcttgaa	atattgctct	ctctttctaa	atagegegaa	tccgtcgctg	tgcattta gg	4680
acateteagt	cgccgcttgg	agctcccgtg	aggegtgett	gtcaatgcgg	taagtgtcac	4740
tgattttgaa	ctataacgac	cgcgtgagtc	aaaatgacgc	atgattatct	tttacgtgac	4800
ttttaagatt	taactcatac	gataattata	ttgttatttc	atgttctact	tacgtgataa	4860
cttattatat	atatattttc	ttgttataga	tatcgtgact	aatatataat	aaaatgggta	4920
gttctttaga	cgatgagcat	atcotototg	ctcttctgca	aagcgatgac	gagottgttg	4980
gtgaggattc	tgacagtgaa	atatcagatc	acgtaagtga	agatgacgte	cagagogata	5040
cagaagaagc	gtttatagat	gaggtacatg	aagtgcagcc	aacgtcaagc	ggtagtgaaa	5100
tattagacga	acaaaatgtt	attgaacaac	caggttcttc	attggcttct.	aacagaatet	5160
tgaccttgcc	acagaggact	attagaggta	agaataaaca	ttgttggtca	acttcaaagt	5220
ccacgaggcg	tagccgagtc	totgcactga	acattgtcag	ateggeeegg	gcgccgtttt	5280
tcttgaaata	ttgctctctc	tttctaaata	gcgcgaatcc	gtcgctgtgc	atttaggaca	5340
totcagtogo	cgcttggagc	tcccaaacgc	gccagtggta	gtacacagta	ctgtgggtgt	5400

tcagtttgaa	atcctcttgc	ttetecattg	tctcggttac	ctttggtcaa	atccatgggt	5460
tctattgcct	atatactett	gcgattacca	gtgattgcgc	tattagctat	tagatggatt	5520
gttggccaaa	cttgtcgctt	aagtggctgg	gaattgtaac	cgtaggcccg	agtgtaatga	5580
tcccccataa	aaagttttcg	caatgccttt	attttttgtt	gcaaatctct	ctttattctg	5640
cggtattctt	cattattgcg	gggatgggga	aagtgtttat	atagaagcaa	cttacgattg	5700
aacccaaatg	cacctgacaa	gcaaggtcaa	agggccagat	ttttaaatat	attatttagt	5760
cttaggactc	tctatttgca	attaaattac	tttgctacct	gagggttaaa	tcttccccat	5820
tgataataat	aattccacta	tatgttcaat	tgggtttcac	cgcgcttagt	tacatgacga	5880
gecetaatga	gccgtcggtg	gtctataaac	tgtgccttac	aaatacttgc	aactettete	5940
gttttgaagt	cagcagagtt	attgctaatt	gctaattgct	aattgetttt	aactgatttc	6000
ttcgaaattg	gtgctatgtt	tatggcgcta	ttaacaagta	tgaatgtcag	gtttaaccag	6060
gggatgctta	attgtgttct	caacttcaaa	ggcagaaatg	tttactcttg	accatgggtt	6120
taggtataat	gttatcaagc	tcctcgagtt	aacgttacgt	taacgttaac	gttcgaggtc	6180
gactctagaa	ctacccaccg	tactcgtcaa	ttccaagggc	atcggtaaac	atctgctcaa	6240
actcgaagtc	ggccatatcc	agagcgccgt	agggggcgga	gtegtggggg	gtaaatcccg	6300
gacccgggga	atccccgtcc	cccaacatgt	ccagatcgaa	atcgtctage	gcgtcggcat	6360
gegecatege	cacgtcetcg	ccgtctaagt	ggagctcgtc	ccccaggetg	acatcggtcg	6420
ggggggccgt	cgacagtctg	cgcgtgtgtc	ccgcggggag	aaaggacagg	cgcggagccg	6480
ccagccccgc	ctcttcgggg	gcgtcgtcgt	ccgggagatc	gagcaggccc	tcgatggtag	6540
.acccgtaatt	gtttttcgta	cgcgcgcggc	tgtacgcggg	gcccgagccc	gactcgcatt	6600
tcagttgctt	ttccaatccg	cagataatca	gctccaagcc	gaacaggaat	gccggctcgg	6660
ctccttgatg	atcgaacagc	tcgattgcct	gacgcagcag	tgggggcatc	gaatcggttg	6720
ttggggtete	gegeteetet	tttgcgactt	gatgctcttg	gtectecage	acgcagccca	6780
gggtaaagtg	accgacggcg	ctcagagcgt	agagagcatt	ttccaggctg	aagcettget	6840
ggcacaggaa	cgcg agc tgg	ttctccagtg	tctcgtattg	cttttcggtc	gggcgcgtgc	6900
cgagatģgac	tttggcaccg	teteggtggg	acagcagagc	gcagcggaac	gacttggcgt	6960
tattgcggag	gaagtcctgc	caggactcgc	cttccaacgg	gcaaaaatgc	gtgtggtggc	7020
ggtcgagcat	ctcgatggcc	agggcatcca	gcagegeeeg	cttattcttc	acgtgccagt	7080
agagggtggg	ctgctccacg.	cccagcttct-	gcgccaactt	gcgggtcgte	agteceteaa	7140
tgccaacttc	gttcaacagc	tccaacgcgg	agttgatgac	tttggactta	tccaggcggc	7200
tgcccatggt	ggtttctaaa	ggtgttataa	atcasattag	ttttgtttt	tcttgaaaac	7260
tttgcgtttc	ctttgatcaa	cttaccgcca	gggtaccgca	gattgtttag	cttgttcagc	7320
tgcgcttgtt	tatttgctta	gctttcgctt	agcgacgtgt	tcactttgct	tgtttgaatt	7380

gaattgtege	tccgtagacg	aagegeetet	atttatacto	cggcgctcgt	tttcgagttt	7440
accactccct	atcagtgata	gagaaaagtg	aaagtcgagt	ttaccactcc	: ctatcagtga	7500
tagagaaaag	tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaagtc	7560
gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	tcgagtttac	cactccctat	7620
cagtgataga	gaaaagtgaa	agtcgagttt	accactccct	atcagtgata	gagaaaagtg	7680
aaagtcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	aacctggcgc	7740
gcctcttaat	taactcgcgt	taagatacat	tgatgagttt	ggacaaacca	caactagaat	7800
gcagtgaaaa	aaatgcttta	tttgtgaaat	ttgtgatgct	attgetttat	ttgtaaccat	7860
tataagetge	aataaacaag	ttaacaacaa	caattgcatt	cattttatgt	ttcaggttca	7920
gggggaggtg	tgggaggttt	tttaaagcaa	gtaaaacctc	tacaaatgtg	gtatggctga	7980
ttatgatcag	ttatctagat	ccggtggatc	ttacgggtcc	tecacettee	gctttttctt	8040
gggtcgagat	ctcaggaaca	ggtggtggcg	gccctcggtg	cgctcgtact	gctccacgat	8100
ggtgtagtcc	tegttgtggg	aggtgatgtc	cagettggeg	tccacgtagt	agtagccggg	8160
cagctgcacg	ggcttcttgg	ccatgtagat	ggacttgaac	tccaccaggt	agtggccgcc	8220
gtccttcagc	ttcagggcct	tgtgggtctc	gcccttcagc	acgccgtcgc	gggggtacag	8280
gcgctcggtg	gaggectecc	agcccatggt	cttcttctgc	atcacggggc	cgtcggaggg	8340
gaagttcacg	ccgatgaact	tcaccttgta	gatgaagcag	ccgtcctgca	gggaggagtc	8400
ctgggtcacg	gtcgccacgc	cgccgtcctc	gaagttcatc	acgcgctccc	acttgaagcc	8460
ctcggggaag	gacagettet	tgtagtcggg	gatgtcggcg	gggtgcttca	cgtacacctt	8520
_ggagccgtac	.tggaactggg	.gggacaggat	gteccaggeg	aagggcaggg	ggccgccctt	8580
ggtcaccttc	agcttcacgg	tgttgtggcc	ctcgtagggg	cggccctcgc	cctcgccctc	8640
gatctcgaac	tegtggcegt	tcacggtgcc	ctccatgcgc	accttgaagc	gcatgaactc	8700
ggtgatgacg	ttctcggagg	aggccatggt	ggcgaccggt	ttgcgcttct	tettgggtgg	8760
ggtgggatct	cccatggtgg	cctgaatctc	aacttgcacc	tgaaggtagt	gcagcaagga	8820
tgagcaaaag	ggaagaaccc	agaaaagaac	gggaaaactt	accccaatta	gaattgcttg	8880
tegeegeeag	tgtcaacttg	caactgaaac	aatatccaac	atgaacgtca	atttatactg	8940
ccctaatggc	gaacacgata	acaatatttc	ttttattatg	ccctctaaaa	ccaacgcggt	9000
tatcgtttat	ttattcaaat	tagatataga	acateegeeg	acatacaatg	ttaatgcaaa	9060
aacgogtttg-	-gtgagcggat	acgaaaacag	tcggccgata	aacattaatc	tgaggtcgat	9120
aacaccgtcc	ttgaacggaa	cacgaggagc	gtacgtgatc	agctgcattc	gegegeegeg	9180
cctttatcga	gatttatttg	catacaacaa	gtacactgcg	ccgttgggat	ttgtggtaac	9240
gcgcacacat	gcagagctgc	aagtgtggca	cattttgtct	gtgcgcaaaa	cctttgaagc	9300
caaaagtacg	aggtccgtta	cgggcatgct	agegeacaeg	gacaatggac	ccgacaaatt	9360

ctacgccaaq gatttaatga taatgtcggg caacgtatcc gttcatttta tcaataacct 9420 acaaaaatgt cgcgcgcatc acaaagacat cgatatattt aaacatttat gtcccgaact 9480 gcaaatcgat aatagtgttg tgcaacctcg agegtccgtt tgatttaacg tatagcttgc 9540 aaatgaatta tttaattate aatcatgttt taegegtaga attetaceeg taaagegagt 9600 ttagttatga gccatgtgca aaacatgaca tcagctttta tttttataac aaatgacatc 9660 atttettgat tgtgttttac aegtagaatt ctactegtaa agegagttea gttttgaaaa 9720 acaaatgaca tcatcttttt gattgtgctt tacaagtaga attctaccog taaatcaagt 9780 teggttttga aaaacaaatg agteatattg tatgatatea tattgeaaaa caaatgaete 9840 atcaatcgat cgtgcgttac acgtagaatt ctactcgtaa agcgagttta tgagccgtgt 9900 gcaaaacatg acatcatete gatttgaaaa acaaatgaca teatecaetg ategtgeatt 9960 acaagtagaa ttctactcgt aaagccagtt Cggttatgag ccgtgtacaa aacatgacat 10020 cagattatga ctcatacttg attgtgtttt acgcgtagaa ttctactcgt aaagccagtt 10080 caattttaaa aacaaatgac atcatccaaa ttaataaatg acaagcaatg ggtaccatgc 10140

5

<210> 21 <211> 10522

<212> ADN

<213> Artificial

<220>

<223> pLA1124

10

<400> 21

gtggtttttg tcaaacgaag attctatgac gtgtttaaag tttaggtcga gtaaagcgca 60 -aatotttttt aaccotagaa.agatagtotg ogtaaaattg acgcatgcat tottgaaata 120 ttgctctctc tttctaaata gcgcgaatcc gtcgctgtgc atttaggaca tctcagtcgc 180 cgcttggage teeegtgagg cgtgcttgte aatgeggtaa gtgteactga tttttgaacta 240 taacgaccgc gtgagtcaaa atgacgcatg attatetttt acgtgacttt taagatttaa 300 · ctcatacgat aattatattg ttatttcatg ttctacttac gtgataactt attatatata 360 tattttcttg ttatagatat cgtgactaat atataataaa atgggtagtt ctttagacga 420 tgagcatate etetetgete ttetgeaaag egatgaegag ettgttggtg aggattetga 480 cagtgaaata tcagatcacg taagtgaaga tgacgtccag agcgatacag aagaagcgtt 540 tatagatgag gtacatgaag tgcagccaac gtcaagcggt agtgaaatat tagacgaaca 600 aaatgttatt gaacaaccag gttcttcatt ggcttctaac agaatCttga ccttgccaca --660 gaggactatt agaggtaaga ataaacattg ttggtcaact tcaaagtcca cgaggcgtag 720 cogagitatet geactgaaca tigicagate ggcccgggcg ccgittitet igaaatatig 780 ctctctctt ctaaatageg egaateegte getgtgeatt taggacatet cagtegeege 840 ttggagetee caaaegegee agtggtagta cacagtactg tgggtgttea gtttgaaate 900

ctettactte	tecattotet	cggttacctt	togtcaaatC	catgoottct	attocctata	960
		attgcgctat				1020
-		ttgtaaccgt				1080
		ttttgttgca		•		1140
	•	tgtttatata				1200
ctgacaagca	aggtcaaagg	gccagatttt	taaatatatt	atttagtctt	aggactctct	1260
atttgcaatt	aaattacttt	gctacctgag	ggttaaatct	tccccattga	taataataat	1320
tccactatat	gttcaattgg	gtttcaccgc	gcttagttac	atgacgagcc	ctaatgagcc	1380
gteggtggte	tataaactgt	gccttacaaa	tacttgcaac	tettetegtt	ttgaagtcag	1440
cagagttatt	gctaattgct	aattgctaat	tgcttttaac	tgatttcttc	gaaattggtg	1500
ctatgtttat	ggcgctatta	acaagtatga	atgtcaggtt	taaccagggg	atgcttaatt	1560
gtgttctcaa	cttcaaaggc	agaaatgttt	actettgace	atgggtttag	gtataatgtt	1620
atcaagctcc	tcgagttaac	gttacgttaa	cgttaacgtt	cgaggtcgac	tctagaacta	1680
cceaccgtac	tcgtcaattc	caagggcatc	ggtaaacatc	tgctcaaact	cgaagtcggc	1740
catatccaga	gcgccgtagg	gggcggagtc	gtggggggta	aatcccggac	ccggggaatc	1800
cccgtccccc	aacatgtcca	gatcgaaatc	gtctagcgcg	tcggcatgcg	ccatcgccac	1860
gtcctcgccg	tctaagtgga	getegteece	caggetgaca	teggtegggg	gggccgtcga	1920
cagtotgogo	gtgtgtcccg	cggggagaaa	ggacaggcgc	ggageegeea	gccccgcctc	1980
t t cgg gggc g	tegtegteeg	ggagatcgag	caggeceteg	atggtagacc	cgtaattgtt	2040
-et-tegtacge	gegeggetgt	acgeggggcc	.cgagcccgac	teggatttea	gttgcttttc	2100
caatecgcag	ataatcagct	ccaagccgaa	caggaatgcc	ggeteggete	cttgatgate	2160
gaacageteg	attgeetgac	gcagcagtgg	gggcatcgaa	toggttgttg	gggtetegeg .	2220
ctcctcttt	gcgacttgat	gctcttggtc	ctccagcacg	cagcccaggg	taaagtgacc	2280
gacggcgctc	agagegtaga	gagcattttc	caggctgaag	ccttgctggc	acaggaacgc	2340
gagctggttc	tocagtgtct	cgtattgctt	tteggteggg	cgcgtgccga	gatggacttt	2400
ggcaccgtct	cggtgggaca	gcagagcgca	gcggaacgac	ttggcgttat	tgcggaggaa	2460
gtcctgccag	gactcgcctt	ccaacgggca	aaaatgegtg	tggtggeggt	cgagcatctc	2520
gatggccagg	gcatccagca	gegeeegett	attcttcacg	tgccagtaga	gggtgggctg	2580
ctccacgccc	agettetgeg	ccaacttgcg	ggtcgtcagt	ccctcaatge-	caacttcgtt	2640
caacagctcc	aacgcggagt	tgatgacttt	ggacttatcc	aggeggetge	ccatggtggt	2700
ttctaaaggt	gttataaatc	aaattagttt	tgtttttct	tgaaaacttt	gcgtttcctt	2760
		taccgcagat				2820
		gacgtgttca				2880
	J 2-			_ ,		-

gtagacgaaq	gegeetetatt	tatactccgg	cgctcgtttt	cgagtttacc	actccctatc	2940
agtgatagag	aaaagtgaaa	gtcgagttta	ccactcccta	tcagtgatag	agaaaagtga	3000
aagtcgagti	taccactccc	tatcagtgat	agagaaaagt	gaaagtcgag	tttaccactc	3060
cctatcagt	, atagagaaaa	gtgaaagtcg	agtttaccac	tccctatcag	tgatagagaa	3120
aagtgaaagi	: cgagtttacc	actecetate	agtgatagag	aaaagtgaaa	gtcgagttta	3180
ccactcccta	tcagtgatag	agaaaagtga	aagtcgaaac	ctggcgcgcc	ccggccatcg	3240
agaaagagag	g agagaagaga	agagagagaa	cattcgagaa	agagagagag	aagagaagag	3300
agagaacata	ctccctatca	gtgatagaga	agtccctatc	agtgatagag	atgtccctat	3360
cagtgataga	gagtteeeta	tcagtgatag	agacgtccct	atcagtgata	gagaagtccc	3420
tatcagtgat	agagagatc c	ctatcagtga	tagagatttc	cctatcagtg	atagagaggt	3480
ccctatcagt	gatagagact	tecetateag	tgatagagaa	atccctatca	gtgatagaga	3540
catccctato	: agtgatagag	aactccctat	cagtgataga	gacctcccta	tcagtgatag	3600
agatcgatgo	ggccgcatgg	tacccattgc	ttgtcattta	ttaatttgga	tgatgtcatt	3660
tgtttttaaa	attgaactgg	ctttacgagt	agaattctac	gcgtaaaaca	caatcaagta	3720
tgagtcataa	tctgatgtca	tgttttgtac	acggctcata	accgaactgg	ctttacgagt	3780
agaattctac	: ttgtaatgca	cgatcagtgg	atgatgtcat	ttgtttttca	aatcgagatg	3840
atgtcatgtt	ttgcacacgg	ctcataaact	cgctttacga	gtagaattct	acgtgtaacg	3900
cacgatcgat	tgatgagtca	tttgttttgc	aatatgatat	catacaatat	gactcatttg	3960
tttttcaaaa	ccgaacttga	tttacgggta	gaattctact	tgtaaagcac	aatcaaaaag	4020
_atgatgtcat	<u>ttgttttca</u>	_aaactgaact_	cgctttacga	gtagaattct	acgtgtaaaa	4080
cacaatcaag	aaatgatgtc	atttgttata	aaaataaaag	ctgatgtcat	gttttgcaca	4140
tggctcataa	ctaaactcgc	tttacgggta	gaattctacg	cgtaaaacat	gattgataat	4200
taaataatto	atttgcaagc	tatacgttaa	atcaaacgga	cgctcgaggt	tgcacaacac	4260
tattatcgat	ttgcagttcg	ggacataaat	gtttaaatat	atcgatgtct	ttgtgatgcg	4320
egegacattt	ttgtaggtta	ttgataaaat	gaacggatac	gttgcccgac	attatcatta	4380
aatccttggc	gtagaatttg	tegggtecat	tgtcegtgtg	cgctagcatg	cccgtaacgg	4440
acctcgtact	tttggcttca	aaggttttgc	gcacagacaa	aatgtgccac	acttgcaget	4500
ctgcatgtgt	gegegttace	acaaatccca	acggcgcagt	gtacttgttg	tatgcaaata	4560
aatctcgata	aaggegegge	gcgcgaatgc	agetgateac	gtacgeteet	cgtgttccgt	4620
tcaaggacgg	tgttatcgac	ctcagattaa	tgtttatcgg	ccgactgttt	tegtateege	4680
tcaccaaacg	cgtttttgca	ttaacattgt	atgtcggcgg	atgttctata	tctaatttga	4740
ataaataaac	gataaccgcg	ttggttttag	agggcataat	aaaagaaata	ttgttatcgt	4800
gttcgccatt	agggcagtat	aaattgacgt	tcatgttgga	tattgtttca	gttgcaagtt	4860

gacactggcg	gcgacaagca	attctaattg	gggtaagttt	tecegttett	ttctgggttc	4920
ttcccttttg	ctcatccttg	ctgcactacc	ttcaggtgca	agttgagatt	caggecacca	4980
tgggagatcc	caccccaccc	aagaagaagc	gcaaaccggt	cgccaccatg	gcctcctccg	5040
agaacgtcat	caccgagttc	atgcgcttca	aggtgcgcat	ggagggcacc	gtgaacggcc	5100
acgagttcga	gatcgagggc	gagggcgagg	gccgccccta	cgagggccac	aacaccgtga	5160
agctgaaggt	gaccaagggc	ggccccctgc	ccttcgcctg	ggacateetg	tcccccagt	5220
tccagtacgg	ctccaaggtg	tacgtgaagc	accecgeega	cateceegae	tacaagaagc	5280
tgtccttccc	cgagggcttc	aagtgggagc	gcgtgatgaa	cttcgaggac	ggcggcgtgg	5340
cgaccgtgac	ccaggactcc	tecctgcagg	acggctgctt	catctacaag	gtgaagttca	5400
tcggcgtgaa	cttcccctcc	gacggccccg	tgatgcagaa	gaagaccatg	ggctgggagg	5460
cctccaccga	gegeetgtae	ccccgcgacg	gcgtgctgaa	gggcgagacc	cacaaggccc	5520
tgaagctgaa	ggacggcggc	cactacctgg	tggagttcaa	gtccatctac	atggccaaga	5580
agcccgtgca	getgeeegge	tactactacg	tggacgccaa	gctggacatc	acctcccaca	5640
acgaggacta	caccatcgtg	gagcagtacg	agegeacega	gggccgccac	cacctgttcc	5700
tgagatctcg	acccaagaaa	aagcggaagg	tggaggaccc	gtaagatcca	ccggatctag	5760
ataactgate	ataatcagcc	ataccacatt	tgtagaggtt	ttacttgctt	taaaaaacct	5820
cccacacctc	cccctgaacc	tgaaacataa	aatgaatgca	attgttgttg	ttaacttgtt	5880
tattgcagct	tataatggtt	acaaataaag	caatagcatc	acaaatttca	caaataaagc	5940
attttttca	ctgcattcta	gttgtggt tt	gtccaaactc	atcaatgtat	cttaacgcga	6000
_gttaattaag	.gccgctcatt	<u>taaatctgge</u>	cggccgcaac	cattgtggga	accgtgcgat	6060
caaacaaacg	cgagataccg	gaagtactga	aaaacagtcg	ctccaggcca	gtgggaacat	6120
cgatgttttg	ttttgacgga	ccccttactc	tegteteạta	taaaccgaag	ccagctaaga	6180
tggtatactt	attatcatct	tgtgatgagg	atgettetat	caacgaaagt	accggtaaac	6240
cgcaaatggt	tatgtattat	aatcaaacta	aaggcggagt	ggacacgcta	gaccaaatgt	6300
gttctgtgat	gacctgcagt	aggaagacga	ataggtggcc	tatggcatta	ttgtacggaa	6360
tgataaacat	tgcctgcata	aattottta	ttatatacag	ccataatgtc	agtagcaagg	6420
gagaaaaggt	ccaaagtege	aaaaaattta	tgagaaacct	ttacatgagc	ctgacgtcat	6480
cgtttatgcg	taagcgttta	gaageteeta	ctttgaagag	atatttgcgc	gataatatct	6540
ctaatatttt	gccaaatgaa	gtgcctggta	catcagatga	cagtactgaa	gagecagtaa	6600
tgaaaaaacg	tacttactgt	acttactgcc	cctctaaaat	aaggcgaaag	gcaaatgcat	6660
cgtgcaaaaa	atgcaaaaaa	gttatttgtc	gagagcataa	tattgatatg	tgccaaagtt	6720
gtttctgact	gactaataag	tataatttgt	ttctattatg	tataagttaa	gctaattact	6780
tattttataa	tacaacatga	ctgtttttaa	agtacaaaat	aagtttattt	ttgtaaaaga	6840

gagaatgttt	aaaagttttg	ttactttata	gaagaaattt	tgagtttttg	tttttttta	6900
ataaataaat	aaacataaat	aaattgtttg	ttgaatttat	tattagtatg	taagtgtaaa	6960
tataataaaa	cttaatatct	attcaaatta	ataaataaac	ctcgatatac	agaccgataa	7020
aacacatgcg	tcaattttac	gcatgattat	ctttaacgta	cgtcacaata	tgattatctt	7080
tctagggtta	aataatagtt	tctaattttt	ttattattca	gcctgctgtc	gtgaataccg	7140
tatatctcaa	cgctgtctgt	gagattgtcg	tattctagcc	tttttagttt	ttegctcatc	7200
gacttgatat	tgtccgacac	attttcgtcg	atttgcgttt	tgatcaaaga	cttgagcaga	7260
gacacgttaa	tcaactgttc	aaattgatcc	atattaacga	tatcaacccg	atgcgtatat	7320
ggtgcgtaaa	atatatttt	taaccetett	atactttgca	ctctgcgtta	atacgcgttc	7380
gtgtacagac	gtaatcatgt	tttcttttt	ggataaaact	cctactgagt	ttgacctcat	7440
attagaccct	cacaagttgc	aaaacgtggc	atttttacc	aatgaagaat	ttaaagttat	7500
t ttaaaaa at	ttcatcacag	atttaaagaa	gaaccaaaaa	ttaaattatt	tcaacagttt	7560
aatcgaccag	ttaatcaacg	tgtacacaga	cgcgtcggca	aaaaacacgc	agcccga c gt	7620
gttggctaaa	attattaaat	caacttgtgt	tatagtcacg	gatttgccgt	ccaacgtgtt	7680
cctcaaaaag	ttgaagacca	acaagtttac	ggacactatt	aattatttga	ttttgcccca	7740
cttcattttg	tgggatcaca	attttgttat	attttaaaca	aagcttggca	ctggccgtcg	7800
ttttacaacg	togtgactgg	gaaaaccctg	gegttaceca	acttaatcgc	cttgcagcac	7860
atcccccttt	cgccagctgg	cgtaatagcg	aagaggcccg	caccgatcgc	ccttcccaac	7920
agttgcgcag	cctgaatggc	gaatggcgcc	tgatgcggta	ttttctcctt	acgcatetgt	7980
.gcggtatttc	acacegeata	tggtgcactc	tcagtacaat	ctgctctgat	gccgcatagt	8040
taagccagcc	ccgacacccg	ccaacacccg	ctgacgcgcc	ctgacgggct	tgtctgctcc	8100
cggcatccgc	ttacagacaa	gctgtgaccg	tctccgggag	ctgcatgtgt	cagaggtttt	8160
caccgtcatc	accgaaacgc	gcgagacgaa	agggcctcgt	gatacgeeta	tttttatagg	8220
ttaatgtcat	gataataatg	gtttcttaga	cgtcaggtgg	cacttttcgg	ggaaatgtgc	8280
geggaacece	tatttgttta	tttttctaaa	tacattcaaa	tatgtatccg	ctcatgagac	8340
aataaccctg	ataaatgctt	caataatatt	gaaaaaggaa	gagtatgagt	attcaacatt	8400
teegtgtege	ccttattccc	tttttgegg	cattttgcct	teetgttttt	gctcacccag	8460
aaacgctggt	gaaagtaaaa	gatgctgaag	atcagttggg	tgcacgagtg	ggttacatcg	8520
.aactggatct	caacageggt	aagatccttg	agagttttcg	ccccgaagaa	cgttttccaa 🧸	8580
tgatgagcac	ttttaaagtt	ctgctatgtg	gcgcggtatt	atcccgtatt	gacgccgggc	8640
aagagcaact	cggtcgccgc	atacactatt	ctcagaatga	cttggttgag	tactcaccag	8700
tcacagaaaa	gcatcttacg	gatggcatga	cagtaagaga	attatgcagt	gctgccataa	8760
ccatgagtga	taacactgcg	gccaacttac	ttctgacaac	gatcggagga	ccgaaggagc	8820

```
taaccgcttt titgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg
                                                                     6880
agotgaatga agodatadda aacgacgago gtgacaccao gatgootgta gcaatggcaa
                                                                     8940
caacgttqcq caaactatta actggcgaac tacttactct agcttcccgg caacaattaa
                                                                     9000
tagactggat qqaqqqqqat aaagttgcag gaccacttct qcgctcggcc cttccgqctq
                                                                     9060
getggtttat tgctgataaa tctggageeg gtgagegtgg gtctegeggt atcattgeag
                                                                     9120
cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg
                                                                     9180
caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt
                                                                     9240
ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt
                                                                     9300
aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac
                                                                     9360
gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag
                                                                     9420
atcettttt tetgegegta atctgetget tgeaaacaaa aaaaccaceg etaceagegg
                                                                     9480
tggtttgttt geeggateaa gagetaecaa etetttttee gaaggtaaet ggetteagea
                                                                     9540
gagegeagat accaaatact gteettetag tgtageegta gttaggeeac caetteaaga
                                                                     9600
actotytago acogoctaca tacotogoto tyotaatoot gttaccagtg gotyctgoca
                                                                     9660
gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc
                                                                     9720
ageggteggg etgaaegggg ggttegtgea cacageceag ettggagega aegacetaca
                                                                     9780
cegaactgag atacctacag egtgageatt gagaaagege caegetteee gaagggagaa
                                                                     9840
aggeggacag gtateeggta ageggeaggg teggaacagg agagegeaeg agggagette
                                                                     9900
cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc
                                                                     9960
gtcgatbttt-gtgatgctcg-teaggggggc.ggagcctatg gaaaaacgcc agcaacgcgg
                                                                    10020
cotttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt cctgcgttat
                                                                    10080
cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc gctcgccgca
                                                                    10140
gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca
                                                                    10200
aacegoetet ceeegegegt tggeegatte attaatgeag etggeacgae aggttteeeg
                                                                    10260
actggaaagc gggcagtgag cgcaacgcaa ttaatgtgag ttagctcact cattaggcac
                                                                    10320
eccaggettt acaetttatg etteeggete gtatgttgtg tggaattgtg ageggataae
                                                                    10380
aatttcacac aggaaacagc tatgaccatg attacgaatt tcgacctgca ggcatgcaag
                                                                    10440
cttgcatgcc tgcaggtcga cgctcgcgcg acttggtttg ccattcttta gcgcgcgtcg
                                                                   10500
cgtcacacag cttggccaca at
                                                                    10522
```

5

<211> 11867

<212> ADN

<210> 22

<213> Artificial

<220>

<223> pLA1188

<400> 22

gtggttttg	tcaaacgaag	attctatgac	gtgtttaaag	tttaggtcga	gtaaagcgca	60
aatcttttt	aaccctagaa	agatagtetg	cgtaaaattg	acgcatgcat	tcttgaaata	120
ttgetetete	tttctaaata	gcgcgaatcc	gtcgctgtgc	atttaggaca	tctcagtcgc	180
cgcttggagc	tcccgtgagg	cgtgcttgtc	aatgcggtaa	gtgtcactga	ttttgaacta	240
taacgaccgc	gtgagtcaaa	atgacgcatg	attatctttt	acgtgacttt	taagatttaa	300
ctcatacgat	aattatattg	ttatttcatg	ttctacttac	gtgataactt	attatatata	360
tattttcttg	ttatagatat	cgtgactaat	atataataaa	atgggtagtt	ctttagacga	420
tgagcatatc	ctctctgctc	ttctgcaaag	cgatgacgag	cttgttggtg	aggattctga	480
cagtgaaata	tcagatcacg	taagtgaaga	tgacgtccag	agcgatacag	aagaagcgtt	540
tatagatgag	gtacatgaag	tgcagccaac	gtcaagcggt	agtgaaatat	tagacgaaca	600
aaatgttatt	gaacaaccag	gttcttcatt	ggcttctaac	agaatcttga	ccttgccaca	660
gaggactatt	agaggtaaga	ataaacattg	ttggtcaact	tcaaagtcca	cgaggcgtag	720
ccgagtctct	gcactgaaca	ttgtcagatc	ggcccgggcg	ccgtttttct	tgaaatattg	780
ctctctctt	ctaaatagcg	cgaatccgtc	gctgtgcatt	taggacatct	cagtegeege	840
ttggagctcc	caaacgcgcc	agtggtagta	cacagtactg	tgggtgttca	gtttgaaatc	900
ctettgette	tecattgtet	cggttacctt	tggtcaaatc	catgggttct	attgcctata	960
tactcttgcg	attaccagtg	attgcgctat	tagctattag	atggattgtt	ggccaaactt	1020
gtcgcttaag	tggctgggaa	ttgtaaccgt	aggcccgagt	gtaatgatcc	cccataaaaa	1080
gttttcgcaa	tgcctttatt.	.ttttgttgca	aatctctctt	tattctgcgg	tattcttcat	1140
tattgcgggg	atggggaaag	tgtttatata	gaagcaactt	acgattgaac	ccaaatgcac	1200
ctgacaagca	aggtcaaagg	gccagatttt	taaatatatt	atttagtctt	aggactetet	1260
atttgcaatt	aaattacttt	gctacctgag	ggttaaatct	tccccattga	taataataat	1320
tocactatat	gttcaattgg	gtttcaccgc	gcttagttac	atgacgagcc	ctaatgagcc	1380
gtcggtggtc	tataaactgt	gccttacaaa	tacttgcaac	tettetegtt	ttgaagtcag	1440
cagagttatt	gctaattgct	aattgctaat	tgcttttaac	tgatttcttc	gaaattggtg	1500
ctatgtttat	ggcgctatta	acaagtatga	atgtcaggtt	taaccagggg	atgcttaatt	1560
gtgttctcaa	cttcaaaggc	agaaatgttt	actettgace	atgggtttag	gtataatgtt	1620
atcaagetee	tcgagttaac	gttacgttaa	cgttaacgtt	cgaggtcgac	tctagaacta	1680
cccaccgtac	tegtcaatte	caagggcatc	ggtaaacatc	tgctcaaact	cgaagtcggc	1740
catatccaga	gegeegtagg	gggcggagtc	gtggggggta	aatcccggac	ccggggaatc	1800
cccgtccccc	aacatgtcca	gatcgaaatc	gtctagegeg	teggcatgeg	ccategecae	1860
gtcctcgccg	tctaagtgga	getegteece	caggctgaca	teggtegggg	gggccgtcga	1920

cagtetgege	gtgtgtcccg	cggggagaaa	ggacaggege	ggagccgcca	gccccgcctc	1980
ttcgggggcg	tegtegteeg	ggagatcgag	caggcecteg	atggtagacc	cgtaattgtt	2040
tttcgtacgc	gcgcggctgt	acgcggggcc	cgagcecgac	togcatttca	gttgcttttc	2100
caatccgcag	ataatcagct	ccaagccgaa	caggaatgcc	ggctcggctc	cttgatgatc	2160
gaacageteg	attgcctgac	gcagcagtgg	gggcatcgaa	toggttgttg	gggtctcgcg	2220
ctcctctttt	gegacttgat	gctcttggtc	ctccagcacg	cagcccaggg	taaagtgacc	2280
gacggcgctc	agagcgtaga	gagcattttc	caggetgaag	ccttgctggc	acaggaacgc	2340
gagetggtte	tccagtgtct	cgtattgctt	ttcggtcggg	cgcgtgccga	gatggacttt	2400
ggcaccgtct	cggtgggaca	gcagagcgca	gcggaacgac	ttggcgttat	tgcggaggaa	2460
gtcctgccag	gaetegeett	ccaacgggca	aaaatgcgtg	tggtggcggt	cgagcatctc	2520
gatggccagg	gcatccagca	gegeeegett	attetteace	tatagatacc	atagatgtat	2580
ggattægtat	catatacata	caaaggctat	ttttgggaca	tattaatatt	aacaatttcc	2640
gtgatagttt	tcaccatttt	tgttgaatgt	tacgttgaaa	atttaaattt	gttttaaatt	2700
aattttacca	gtcatgtgtt	cttaaaagtt	tttatgattg	aaacggcata	aagtggttca	2760
aaaatttatc	aagaaaggct	ttccttttt	aaatcttatc	tttttctctt	aaaaatcact	2820
agtcaattca	ttattaattt	gttaacttga	atttggaatg	tctatttact	ttcagataaa	2880
ttaaagcaag	aaacttaata	ttcgaaaaaa	attgattcta	aatggaattt	cacttgatct	2940
tcatgtatgc	atatcaattt	ttatttacat	tgtataataa	gtttcgagtt	gattgttgta	3000
atccacaggt	gtcccagaga	attaaattcc	aaattaccca	agtttattga	atgttgattg	3060
tagtttcagt,	,tgctttgttg.	ctgcaacaat_	<u>ggcttg</u> ttga	<u>ttg</u> tagatat	tttccctttc	3120
cttggtttac	ttattacata	gactgaaaaa	gaggtttact	tttttgatac	ttatgaaaaa	3180
tttctattag	tgattactaa	ccaatcgcta	tatgtttact	agaaaacaaa	taaactcttt	3240
acattaacat	tcaataatgt	ttgctctgta	accgacaatt	gaaggcgtta	cagcaacagt	3300
aatataacta	gettettaae	cctcatctat	taaccccatc	gtttaaaaca	ctatgttaaa	3360
tggtctaaca	aatctagata	ctaatagatg	tcttattact	tagcagecac	agctgcaaca	3420
tccaagacaa	tttttgaaac	ttettattga	gctcttggca	gcagaaatgt	tggtatttt	3480
cacagettte	tgaaagaccg	gcaccttcct	ccggttcccg	tttctgaatt	caagaggatt	3540
tecgacecee	aattaatccc	gaaacaaata	aggtatattc	aaaatgatgg	aaaagtcatg	3600
gctgctgacc	ttatttttat.	tectattgat	agaatattat	teceettta	aatacactgt	3660
actaagaggt	ccggctataa	ttttactcac	ttgtcgatta	tcccatagaa	tgttgattgt	3720
agttggttgc	ttttccaggt	gagagttgat	caagtcacaa	aagttagcgt	gtgttgattg	3780
tagatttgaa	ggtaaaataa	tttttgcacc	cattcatcgg	gtaaaacgtt	ctccatagaa	3840
tacatttcca	tcgataattg	ataacttatg	aatttcaaag	aaaaaaatat	gcttttaaaa	3900

ttacgtgcca	gtagagggtg	ggctgctcca	cgcccagctt	ctgcgccaac	ttgcgggtcg	3960
tcagtccctc	aatgccaact	tegttcaaca	gctccaacgc	ggagttgatg	actttggact	4020
tatccaggcg	gctgcccatg	gtggtttcta	aaggtgttat	aaatcaaatt	agttttgttt	4080
tttcttgaaa	actttgcgtt	tcctttgatc	aacttaccgc	cagggtaccg	cagattgttt	4140
agcttgttca	gctgcgcttg	tttatttgct	tagetttege	ttagcgacgt	gttcactttg	4200
cttgtttgaa	ttgaattgtc	gctccgtaga	cgaagcgcct	ctatttatac	tccggcgctc	4260
gttttcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	gtttaccact	4320
ccctatcagt	gatagagaaa	agtgaaagtc	gagtttacca	ctccctatca	gtgatagaga	4380
aaagtgaaag	tcgagtttac	cactccctat	cagtgataga	gaaaagtgaa	agtcgagttt	4440
accactccct	atcagtgata	gagaaaagtg	aaagtcgagt	ttaccactcc	ctatcagtga	4500
tagagaaaag	tgaaagtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaagtc	4560
gaaacctggc	gagacaagge	catcgagaaa	gagagagaga	agagaagaga	gagaacattc	4620
gagaaagaga	gagagaagag	aagagagaga	acatactccc	tatcagtgat	agagaagtcc	4680
ctatcagtga	tagagatgtc	cctatcagtg	atagagagtt	ccctatcagt	gatagagacg	4740
tccctatcag	tgatagagaa	gtecetatea	gtgatagaga	gatccctatc	agtgatagag	4800
atttccctat	cagtgataga	gaggtcccta	tcagtgatag	agactteest	atcagtgata	4860
gagaaateee	tatcagtgat	agagacatcc	ctatcagtga	tagagaactc	cctatcagtg	4920
atagagacct	ccctatcagt	gatagagatc	gatgcggccg	catggtaccc	attgcttgtc	4980
atttattaat	ttggatgatg	tcatttgttt	ttaaaattga	actggcttta	cgagtagaat	5040
_tctacgcgta	.aaacacaatc.	.aagtatgagt	cataatctga	tgtcatgttt	tgtacacggc	5100
tcataaccga	actggcttta	cgagtagaat	tctacttgta	atgcacgatc	agtggatgat	5160
gtcatttgtt	tttcaaatcg	agatgatgtc	atgttttgca	cacggctcat	aaactcgctt	5220
tacgagtaga	attctacgtg	taacgcacga	tegattgatg	agtcatttgt	tttgcaatat	5280
gatatcatac	aatatgactc	atttgtttt	caaaaccgaa	cttgatttac	gggtagaatt	5340
ctacttgtaa	agcacaatca	aaaagatgat	gtcatttgtt	tttcaaaact	gaactcgctt	5400
tacgagtaga	attctacgtg	taaaacacaa	tcaagaaatg	atgtcatttg	ttataaaaat	5460
aaaagctgat	gtcatgtttt	gcacatggct	cataactaaa	ctcgctttac	gggtagaatt	5520
ctacgcgtaa	aacatgattg	ataattaaat	aattcatttg	caagctatac	gttaaatcaa	5580
.acggacgctc	gaggttgcac	aacactatta	tcgatttgca	gttcgggaca	taaatgttta	5640
aatatatcga	tgtctttgtg	atgegegega	catttttgta	ggttattgat	aaaatgaacg	5700
gatacgttgc	ccgacattat	cattaaatcc	ttggcgtaga	atttgtcggg	tccattgtcc	5760
gtgtgcgcta	gcatgcccgt	aacggacctc	gtacttttgg	cttcaaaggt	tttgcgcaca	5820
gacaaaatgt	gccacacttg	cagctctgca	tgtgtgcgcg	ttaccacaaa	tcccaacggc	5880

gcagtgtact	tgttgtatgc	aaataaatct	cgataaaggc	geggegegeg	aatgcagctg	5940
atcacgtacg	ctcctcgtgt	teegtteaag	gacggtgtta	tegaceteag	attaatgttt	6000
atcggccgac	tgttttcgta	teegeteace	aaacgcgttt	ttgcattaac	attgtatgtc	6060
ggcggatgtt	ctatatctaa	tttgaataaa	taaacgataa	cegegttggt	tttagagggc	6120
ataataaaag	aaatattgtt	atcgtgttcg	ccattagggc	agtataaatt	gacgttcatg	6180
ttggatattg	tttcagttgc	aagttgacac	tggcggcgac	aagcaattct	aattggggta	6240
agttttcccg	ttettttetg	ggttcttccc	ttttgctcat	ccttgctgca	ctaccttcag	6300
gtgcaagttg	agattcagge	caccatggga	gateccacce	cacccaagaa	gaagcgcaaa	6360
ccggtcgcca	ccatggcctc	ctccgagaac	gtcatcaccg	agttcatgcg	cttcaaggtg	6420
cgcatggagg	gcaccgtgaa	eggccaegag	ttcgagatcg	agggcgaggg	cgagggccgc	6480
ccctacgagg	gccacaacac	egtgaagetg	aaggtgacca	agggcggccc	cetgecette	6540
gcctgggaca	tectgtcccc	ccagttccag	tacggctcca	aggtgtacgt	gaagcacccc	6600
gccgacatcc	ccgactacaa	gaagctgtcc	ttccccgagg	gcttcaagtg	ggagcgcgtg	6660
atgaacttcg	aggacggcgg	cgtggcgacc	gtgacccagg	actcctccct	gcaggacggc	6720
tgetteatet	acaaggtgaa	gttcategge	gtgaacttcc	cctccgacgg	ccccgtgatg	6780
cagaagaaga	ccatgggctg	ggaggcctcc	accgagcgcc	tgtacccccg	cgacggcgtg	6840
ctgaagggcg	agacccacaa	ggecetgaag	ctgaaggacg	gcggccacta	cctggtggag	6900
ttcaagtcca	tctacatggc	caagaagccc	gtgcagctgc	ccggctacta	ctacgtggac	6960
gccaagctgg	acateacete	ccacaacgag	gactacacca	tcgtggagca	gtacgagcgc	7020
_accgagggcc	_gccaccacct	g <u>t</u> tcctgaga	tetegaceca	agaaaaagcg	gaaggtggag	7080
gacccgtaag	atccaccgga	tctagataac	tgatcataat	cagccatacc	acatttgtag	7140
aggttttact	tgctttaaaa	aacctcccac	acctcccct	gaacctgaaa	cataaaatga	7200
atgcaattgt	tgttgttaac	ttgtttattg	cagcttataa	tggttacaaa	taaagcaata	7260
gcatcacaaa	tttcacaaat	aaagcatttt	tttcactgca	ttctagttgt	ggtttgtcca	7320
aactcatcaa	tgtatcttaa	cgcgagttaa	ttaaggccgc	tcatttaaat	ctggccggcc	7380
gcaaccattg	tgggaaccgt	gcgatcaaac	aaacgcgaga	taccggaagt	actgaaaaac	7440
agtcgctcca	ggccagtggg	aacatcgatg	ttttgttttg	acggacccct	tactctcgtc	7500
tcatataaac	cgaagecage	taagatggta	tacttattat	catcttgtga	tgaggatgct	7560
tctatcaacg	aaagtaccgg	taaaccgcaa	atggttatgt	attataatca	aactaaaggc	7620
ggagtggaca	cgctagacca	aatgtgttct	gtgatgacct	gcagtaggaa	gacgaatagg	7680
tggcctatgg	cattattgta	cggaatgata	aacattgcct	gcataaattc	ttttattata	7740
tacagccata	atgtcagtag	caagggagaa	aaggtccaaa	gtcgcaaaaa	atttatgaga	7800
aacctttaca	tgagcctgac	gtcatcgttt	atgcgtaagc	gtttagaagc	tcctactttg	7860

aagagatatt	tgcgcgataa	tatctctaat	attttgccaa	atgaagtgcc	tggtacatca	7920
gatgacagta	ctgaagagcc	agtaatgaaa	aaacgtactt	actgtactta	ctgcccctct	7980
aaaataaggc	gaaaggcaaa	tgcatcgtgc	aaaaaatgca	aaaaagttat	ttgtcgagag	8040
cataatattg	atatgtgcca	aagttgtttc	tgactgacta	ataagtataa	tttgtttcta	8100
ttatgtataa	gttaagctaa	ttacttattt	tataatacaa	catgactgtt	tttaaagtac	8160
aaaataagtt	tatttttgta	aaagagagaa	tgtttaaaag	ttttgttact	ttatagaaga	8220
aattttgagt	ttttgtttt	ttttaataaa	taaataaaca	taaataaatt	gtttgttgaa	8280
tttattatta	gtatgtaagt	gtaaatataa	taaaacttaa	tatctattca	aattaataaa	8340
taaacctcga	tatacagacc	gataaaacac	atgcgtcaat	tttacgcatg	attatcttta	8400
acgtacgtca	caatatgatt	atctttctag	ggttaaataa	tagtttctaa	tttttttatt	8460
attcagcctg	ctgtcgtgaa	taccgtatat	ctcaacgctg	tctgtgagat	tgtcgtattc	8520
tagccttttt	agtttttcgc	tcatcgactt	gatattgtcc	gacacatttt	cgtcgatttg	8580
cgttttgatc	aaagacttga	gcagagacac	gttaatcaac	tgttcaaatt	gatccatatt	8640
aacgatatca	accegatgeg	tatatggtgc	gtaaaatata	tttttaacc	ctcttatact	8700
ttgcactctg	cgttaatacg	egttegtgta	cagacgtaat	catgttttct	tttttggata	8760
aaactcctac	tgagtttgac	ctcatattag	accctcacaa	gttgcaaaac	gtggcatttt	8820
ttaccaatga	agaatttaaa	gttattttaa	aaaatttcat	cacagattta	aagaagaacc	8880
aaaaattaaa	ttatttcaac	agtttaatcg	accagttaat	caacgtgtac	acagacgcgt	8940
cggcaaaaaa	cacgcagccc	gacgtg ttgg	ctaaaattat	taaatcaact	tgtgttatag	9000
_tcacggattt	_gccgtccaac	_gtgt_tcctca	aaaagttgaa	gaccaacaag	tttacggaca	9060
ctattaatta	tttgattttg	cccacttca	ttttgtggga	tcacaattt	gttatatttt	9120
aaacaaagct	tggcactggc	cgtcgtttta	caacgtcgtg	actgggaaaa	ccctggcgtt	9180
acccaactta	ategeettge	agcacatccc	cctttcgcca	gctggcgtaa	tagcgaagag	9240
gecegeaceg	ategecette	ccaacagttg	cgcagcctga	atggcgaatg	gcgcctgatg	9300
cggtattttc	teettaegea	tetgtgeggt	atttcacacc	gcatatggtg	cactctcagt	9360
acaatctgct	ctgatgccgc	atagttaagc	cagccccgac	accegecaac	accegetgae	9420
gegeeetgae	gggcttgtct	gctcccggca	tccgcttaca	gacaagctgt	gaccgtctcc	9480
gggagctgca	tgtgtcagag	gttttcaccg	tcatcaccga	aacgcgcgag	acgaaagggc	9540
ctcgtgatac	gcctatttt	ataggttaat	gtcatgataa	taatggtttc-	ttagacgtca	9600
ggtggcactt	ttcggggaaa	tgtgcgcgga	acccctattt	gtttatttt	ctaaatacat	9660
tcaaatatgt	atccgctcat	gagacaataa	ccctgataaa	tgettcaata	atattgaaaa	9720
aggaagagta	tgagtattca	acatttccgt	gtcgccctta	teccetttt	tgeggeattt	9780
tgccttcctg	tttttgctca	cccagaaacg	ctggtgaaag	taaaagatgc	tgaagatcag	9840

ttgggtgcac	gagtgggtta	catcgaactg	gateteaaca	gcggtaagat	ccttgagagt	9900
tttcgccccg	aagaacgttt	tccaatgatg	agcactttta	aagttctgct	atgtggcgcg	9960
gtattatccc	gtattgacgc	cgggcaagag	caactcggtc	geegeataca	ctattctcag	10020
aatgacttgg	ttgagtactc	accagteaca	gaaaagcatc	ttacggatgg	catgacagta	10080
agagaattat	gcagtgctgc	cataaccatg	agtgataaca	ctgcggccaa	cttacttctg	10140
acaacgatcg	gaggaccgaa	ggagctaacc	gcttttttgc	acaacatggg	ggatcatgta	10200
actogocttg	atcgttggga	accggagetg	aatgaagcca	taccaaacga	cgagcgtgac	10260
accacgatge	ctgtagcaat	ggcaacaacg	ttgcgcaaac	tattaactgg	cgaactactt	10320
actctagctt	cccggcaaca	attaatagac	tggatggagg	cggataaagt	tgcaggacca	10380
cttctgcgct	cggcccttcc	ggctggctgg	tttattgctg	ataaatctgg	agccggtgag	10440
cgtgggtctc	gcggtatcat	tgcagcactg	gggccagatg	gtaagecete	ccgtatcgta	10500
gttatctaca	cgacggggag	tcaggcaact	atggatgaac	gaaatagaca	gategetgag	10560
ataggtgcct	cactgattaa	gcattggtaa	ctgtcagacc	aagtttactc	atatatactt	10620
tagattgatt	taaaacttca	tttttaattt	aaaaggatet	aggtgaagat	cctttttgat	10680
aatctcatga	ccaaaatccc	ttaacgtgag	ttttegttee	actgagcgtc	agaccccgta	10740
gaaaagatca	aaggatcttc	ttgagatect	ttttttctgc	gcgtaatctg	ctgcttgcaa	10800
acasasasac	cacegetace	agoggtggtt	tgtttgccgg	atcaagagct	accaactctt	10860
tttccgaagg	taactggctt	cagcagagcg	cagataccaa	atactgtcct	tctagtgtag	10920
ccgtagttag	gccaccactt	caagaactet	gtagcaccgc	ctacatacct	cgctctgcta	10980
atcctgttac	. cagtggctgc	tgccagtggc	gat <u>a</u> agtcgt	gtcttaccgg	gttggactca	11040
agacgatagt	taccggataa	99с9са9с9 9	tcgggctgaa	cggggggttc	gtgcacacag	11100
cccagcttgg	agcgaacgac	ctacaccgaa	ctgagatacc	tacagegtga	gcattgagaa	11160
agegeeaege	ttcccgaagg	gagaaaggcg	gacaggtatc	cggtaagcgg	cagggtcgga	11220
acaggagagc	gcacgaggga	gcttccaggg	ggaaacgcct	ggtatcttta	tagtcctgtc	11280
gggtttcgcc	acctctgact	tgagcgtcga	tttttgtgat	gctcgtcagg	ggggcggagc	11340
ctatggaaaa	acgccagcaa	cgcggccttt	ttacggttcc	tggccttttg	ctggcctttt	11400
geteacatgt	tettteetge	gttatcccct	gattetgtgg	ataaccgtat	taccgccttt	11460
gagtgagctg	ataccgctcg	ccgcagccga	acgaccgagc	gcagcgagtc	agtgagcgag	11520
gaagcggaag	agegeceaat	acgcaaaccg	ecteteceeg	cgcgttggcc	gattcattaa	11580
tgcagctggc	acgacaggtt	tcccgactgg	aaagcgggca	gtgagçgcaa	cgcaattaat	11640
gtgagttagc	tcactcatta	ggcaccccag	gctttacact	ttatgcttcc	ggctcgtatg	11700
ttgtgtggaa	ttgtgagcgg	ataacaattt	cacacaggaa	acagetatga	ccatgattac	11760
gaatttcgac	ctgcaggcat	gcaagcttgc	atgcctgcag	gtcgacgete	gcgcgacttg	11820

gtttgccatt ctttagcgcg cgtcgcgtca Cacagcttgg ccacaat 11867

<210> 23
<211> 10786
5 <212> ADN
<213> Artificial

<220>

<223> pLA670

<400> 23

10

ggccgctcat ttaaatctgg ccgccgcaa ccattgtggg aaccgtgcga tcaaacaaac 60 gegagatace ggaagtactg aaaaacagte getecaggee agtgggaaca tegatgtttt 120 gttttgacgg acccettact etegteteat ataaacegaa gecagetaag atggtatact 180 tattatcatc ttgtgatgag gatgcttcta tcaacgaaag taccggtaaa ccgcaaatgg 240 ttatgtatta taatcaaact aaaggeggag tggacaeget agaccaaatg tgttetgtga 300 tgacctgcag taggaagacg aataggtggc ctatggcatt attgtacgga atgataaaca 360 ttgcctgcat aaattctttt attatataca gccataatgt cagtagcaag ggagaaaagg 420 tocaaagtog caaaaaattt atgagaaaco tttacatgag cotgaegtoa togtttatgo 480 gtaagegttt agaageteet aetttgaaga gatatttgeg egataatate tetaatattt 540 tgccaaatga agtgcctggt acatcagatg acagtactga agagccagta atgaaaaaac 600 gtacttactg tacttactgc ccctctaaaa taaggcgaaa ggcaaatgca tcgtgcaaaa 660 aatgcaaaaa agttatttgt cgagagcata atattgatat gtgccaaagt tgtttctgac 720 tgactaataa gtataatttg tttctattat gtataagtta agctaattac ttattttata 780 _atacaacatg_actgttttta_aagtacaaaa_taagtttatt tttgtaaaag agagaatgtt 840 900 taaacataaa taaattgttt gttgaattta ttattagtat gtaagtgtaa atataataaa 960 acttaatato tattoaaatt aataaataaa cotogatata cagacogata aaacacatgo 1020 gtcaatttta egcatgatta tetttaaegt aegtcaeaat atgattatet ttetagggtt 1080 asataatagt ttctaatttt tttattatte ageetgetgt egtgaatace gtatatetea 1140 acgotytoty tyagattyto ytattotago ottottaytt totogotoat cyacttyata 1200 ttgtccgaca caitttcgtc gatttgcgtt ttgatcaaag acttgagcag agacacgtta 1260 atcaactgtt caaattgatc catattaacg atatcaaccc gatgegtata tggtgegtaa 1320 aatatatitt ttaaccotot tatactitgo actotgogit aatacgogit cgtgtacaga 1380 cgtaatcatg tittcttitt tggataaaac tcctactgag titgacctca tattagaccc 1440 tcacaagttg caaaacgtgg cattttttac caatgaagaa tttaaagtta ttttaaaaaa 1500 tttcatcaca gatttaaaga agaaccaaaa attaaattat ttcaacagtt taatcgacca 1560 gttaatcaac gtgtacacag acgcgtcggc aaaaaacacg cagcccgacg tgttggctaa 1620

aattattaaa	tcaacttgtg	ttatagtcac	ggatttgccg	tecaaegtgt	tcctcaaaaa	1680
gttgaagaco	: aacaagttta	cggacactat	taattatttg	attttgcccc	acttcatttt	1740
gtgggatcac	aattttgtta	tattttaaac	aaagcttggc	actggccgtc	gttttacaac ·	1800
gtcgtgactg	ggaaaaccct	ggcgttaccc	aacttaatcg	ccttgcagca	catecccctt	1860
tegecagetg	gcgtaatagc	gaagaggccc	gcaccgatcg	ecetteceaa	cagttgcgca	1920
gcctgaatgg	cgaatggcgc	ctgatgcggt	attttctcct	tacgcatctg	tgcggtattt	1980
cacaccgcat	atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagccagc	2040
cccgacaccc	gecaacacce	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	2100
cttacagaca	agetgtgace	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	2160
cacegaaaeg	cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	2220
tgataataat	ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	egeggaacee	2280
ctatttgttt	atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	2340
gataaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	2400
cccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	2460
tgaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	2520
tcaacagegg	taagatcctt	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	2580
cttttaaagt	tctgctatgt	ggcgcggtat	tatecegtat	tgacgccggg	caagagcaac	2640
teggtegeeg	catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	2700
agcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	2760
ataacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	2820
ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	2880
aagecatace	aaacgacgag	egtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	2940
gcaaactatt	aactggcgaa	ctacttactc	tagetteeeg	gcaacaatta	atagactgga	3000
tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	ccttccggct	ggctggttta	3060
ttgctgataa	atctggagcć	ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	3120
cagatggtaa	geecteeegt	atogtagtta	tctacacgac	ggggagtcag	gcaactatgg	3180
atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	3240
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	3300
ggatctaggt	gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	çgtgagtttt ·	3360 ⁻
cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atettettga	gatccttttt	3420
ttetgegegt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	3480
tgccggatca	agagctacca	actctttttc	cgaaggtaac	tggcttcagc	agagcgcaga	3540
taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	3600

caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	3 660
agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	3720
gctgaacggg	gggttegtgc	acacagecea	gcttggagcg	aacgacctac	accgaactga	3780
gatacctaca	gcgtgagcat	tgagaaagcg	ccacgettee	cgaagggaga	aaggcggaca	3840
ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagett	ccagggggaa	3900
acgcctggta	tctttatagt	ectgtegggt	ttcgccacct	ctgacttgag	cgtcgatttt	3960
tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	4020
ggtteetgge	cttttgctgg	ccttttgctc	acatgttctt	tectgegtta	tcccctgatt	4080
ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	cgctcgccgc	agccgaacga	4140
ccgagcgcag	cgagtcagtg	agcgaggaag	cggaagagcg	cccaatacgc	aaaccgcctc	4200
teccegegeg	ttggccgatt	cattaatgca	gctggcacga	caggtttccc	gactggaaag	4260
cgggcagtga	gegeaaegea	attaatgtga	gttagctcac	tcattaggca	ccccaggett	4320
tacactttat	getteegget	cgtatgttgt	gtggaattgt	gagcggataa	caatttcaca	4380
caggaaacag	ctatgaccat	gattacgaat	ttcgacctgc	aggcatgcaa	gcttgcatgc	4440
ctgcaggtcg	acgctcgcgc	gacttggttt	gccattcttt	agegegegte	gcgtcacaca	4500
gcttggccac	aatgtggttt	ttgtcaaacg	aagattctat	gacgtgttta	aagtttaggt	4560
cgagtaaagc	gcaaatcttt	tttaacccta	gaaagatagt	ctgcgtaaaa	ttgacgcatg	4620
cattettgaa	atattgctct	ctctttctaa	atagegegaa	tccgtcgctg	tgcatttagg	4680
acatctcagt	cgccgcttgg	agctcccgtg	aggegtgett	gtcaatgcgg	taagtgtcac	4740
tgattttgaa	ctataacgac.	.cgcgtgagtc	aaaatgacgc	atgattatct	tttacgtgac	4800
ttttaagatt	taactcatac	gataattata	ttgttatttc	atgttetaet	tacgtgataa	4860
cttattatat	atatattttc	ttgttataga	tategtgact	aatatataat	aaaat gggt a	4920
gttctttaga	cgatgagcat	atcctctctg	ctcttctgca	aagcgatgac	gaget tgttg	4980
gtgaggattc	tgacagtgaa	atatcagatc	acgtaagtga	agatgacgtc	cagagegata	5040
cagaagaagc	gtttatagat	gaggtacatg	aagtgcagcc	aacgtcaagc	ggtagtgaaa	5100
tattagacga	acaaaatgtt	attgaacaac	caggttcttc	attggcttct	aacagaatct	5160
tgaccttgcc	acagaggact	attagaggta	agaataaaca	ttgttggtca	acttcaaagt	5220
ccacgaggcg	tagccgagtc	tetgeactga	acattgtcag	atcggcccgg	gcgccgtttt	5280
tcttgaaata	ttgctctctc	tttctaaata	gegegaatee	gtcgctgtgc	atttaggaca	5340
tctcagtcgc	cgcttggagc	teccaaaege	gccagtggta	gtacacagta	ctgtgggtgt	5400
tcagtttgaa	atcctcttgc	ttctccattg	tctcggttac	ctttggtcaa	atccatgggt	5460
tctattgcct	atatactett	gegattaeca	gtgattgcgc	tattagctat	tagatggatt.	5520
gttggccaaa	cttgtcgctt	aagtggctgg	gaattgtaac	cgtaggcccg	agtgtaatga	5580

teccecataa aaagtttteg o	caatgccttt	attttttgtt	gcaaatctct	ctttattctg	5640
cggtattett cattattgcg g	ggatgggga	aagtgtttat	atagaagcaá	cttacgattg	5700
aacccaaatg cacctgacaa g	gcaaggtcaa	agggccagat	ttttaaatat	attatttagt	5760
cttaggactc tctatttgca a	ittaaattac	tttgctacct	gagggttaaa	tottocccat	5820
tgataataat aattccacta t	atgttcaat	tgggtttcac	cgcgcttagt	tacatgacga	5880
gccctaatga gccgtcggtg g	ptctataaac	tgtgccttac	aaatacttgc	aactcttctc	5940
gttttgaagt cagcagagtt a	ttgctaatt	gctaattgct	aattgctttt	aactgatttc	6000
ttcgaaattg gtgctatgtt t	atggcgcta	ttaacaagta	tgaatgtcag	gtttaaccag	6060
gggatgctta attgtgttct c	aacttcaaa	ggcagaaatg	tttactcttg	accatgggtt	6120
taggtataat gttatcaagc t	cctcgagtt:	aacgttacgt	taacgttaac	gttegaggte	6180
gactotagaa ctacccaccg t	actegteaa	ttccaagggc	atcggtaaac	atctgctcaa	6240
actogaagto ggocatatoo a	gagcgccgt	agggggcgga	gtcgtggggg	gtaaatcccg	6300
gaccoggga ateccogtco c	ecaacatgt	ccagatcgaa	ategtetage	gcgtcggcat	6 360
gegecatege caegteeteg e	cgtctaagt:	ggagctegte	ccccaggctg	acateggteg	6420
ggggggccgt cgacagtctg c	gcgtgtgtc	ccgcggggag	aaaggacagg	cgcggagccg	6480
ccageceege etettegggg g	cgtcgtcgt	ccgggagatc	gagcaggccc	tcgatggtag	6540
accegtaatt gtttttegta e	gegegegge	tgtacgcggg	gcccgagccc	gactegcatt	6600
tcagttgctt ttccaatccg c	agataatca	gctccaagcc	gaacaggaat	geeggetegg	6660
ctccttgatg atcgaacage t	cgattgcct	gacgcagcag	tgggggcatc	gaateggttg	6720
ttggggtetc_gegeteetett	ttgcgactt_	gatgctcttg_	gtcctccage	acgcagccca '	6780
gggtaaagtg accgacggcg c	tcagagcgt	agagagcatt	ttccaggctg	aageettget	6840
ggcacaggaa cgcgagctgg t	tetecagtg	tctcgtattg	ctttteggte	gggcgcgtgc	6900
cgagatggac tttggcaccg t	ctcggtggg	acagcagagc	gcagcggaac	gacttggcgt	6960
tattgeggag gaagteetge e	aggactege	cttccaacgg	gcaaaaatgc ·	gtgtggtggc	7020
ggtegageat etegatggee a	gggcateca	gcagcgcccg	cttattcttc	acgtgccagt	7080
agagggtggg ctgctccacg c	ccagettet	gegecaaett	gegggtegte	agteceteaa	7140
tgccaacttc gttcaacagc t	ccaacgegg	agttgatgac	tttggactta	tecaggegge	7200
tgcccatggt ggtttctaaa g	gtgttataa	atcaaattag	ttttgtttt	tettgaaaac	7260
tttgcgtttc ctttgatcaa-c	ttaccgcca-	gggtaccgca	gattgtttag	cttgttcagc	7320
tgcgcttgtt tatttgctta g	ctttcgctt	agcgacgtgt	tcactttgct	tgtttgaatt	7380
gaattgtege teegtagaeg a	agcgcctct	atttatactc	cggcgctcgt	tttcgagttt	7440
accactecet atcagtgata g	agaaaagtg	aaagtcgagt	ttaccactcc	ctatcagtga	7500
tagagaaaag tgaaagtcga g	tttaccact	ecctatcagt	gatagagaaa	agtgaaagtc	7560

gagtttacca	ctccctatca	gtgatagaga	aaagtgaaag	tcgagtttac	cactccctat	7620
cagtgataga	gaaaagtgaa	agtcgagttt	accactccct	atcagtgata	gagaaaagtg	7680
aaagtcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	aacctggcgc	7740
gcctcttaat	taactcgcgt	taagatacat	tgatgagttt	ggacaaacca	caactagaat	7800
gcagtgaaaa	aaatgcttta	tttgtgaaat	ttgtgatgct	attgctttat	ttgtaaccat	7860
tataagctgc	aataaacaag	ttaacaacaa	caattgcatt	cattttatgt	ttcaggttca	7920
gggggaggtg	tgggaggttt	tttaaagcaa	gtaaaacctc	tacaaatgtg	gtatggctga	7980
ttatgatcag	ttatctagat	ccggtggatc	ttacgggtcc	tccaccttcc	gctttttctt	8040
gggtcgagat	ctcaggaaca	ggtggtggcg	geceteggtg	cgctcgtact	gctccacgat	8100
ggtgtagtcc	tegttgtggg	aggtgatgtc	cagcttggcg	tccacgtagt	agtagccggg	8160
cagctgcacg	ggettettgg	ccatgtagat	ggacttgaac	tccaccaggt	agtggccgcc	8220
gtccttcagc	ttcagggcct	tgtgggtete	gecetteage	acgccgtcgc	gggggtacag	8280
gcgctcggtg	gaggeeteee	agcccatggt	cttcttctgc	atcacggggc	cgtcggaggg	8340
gaagttcacg	ccgatgaact	tcaccttgta	gatgaagcag	ccgtcctgca	gggaggagtc	8400
ctgggtcacg	gtcgccacgc	cgccgtcctc	gaagttcatc	acgcgctccc	acttgaagce	8460
ctcggggaag	gacagettet	tgtagtcggg	gatgtcggcg	gggtgcttca	cgtacacctt	8520
ggagccgtac	tggaactggg	gggacaggat	gtcccaggeg	aagggcaggg	ggccgccctt	8580
ggtcacette	agetteacgg	tgttgtggcc	ctcgtagggg	cggccctcgc	cctcgccctc	8640
gatctcgaac	tegtggeegt	tcacggtgcc	ctccatgcgc	accttgaagc	gcatgaactc	8700
_ggtgatgacg.	tteteggagg.	aggccatggt	ggcga ccgg t	ttgegettet	tettgggtgg	8760
ggtgggatcc	ccgatctgca	ttttggatta	ttctgcgggt	caaaatagag	atgtggaaaa	8820
ttagtacgaa	atcaaatgag	tttcgttgaa	attacaaaac	tattgaaact	aacttectgg	8880
ctggggaata	aaaatgggaa	acttatttat	cgacgccaac	tttgttgaga	aacccctatt	8940
aaccctctac	gaatattgga	acaaaggaaa	gcgaagaaac	aggaacaaag	gtagttgaga	9000
aacctgttcc	gttgctcgtc	atcgttttca	taatgcgagt	gtgtgcatgt	atatatacac	9060
agctgaaacg	catgcataca	cattattttg	tgtgtatatg	gtgacgtcac	aactactaag	9120
caataagaaa	ttttccagac	gtggctttcg	tttcaagcaa	cctactctat	ttcagctaaa	9180
aataagtgga	tttegttggt	aaaatacttc	aattaagcaa	agaactaact	aactaataac	9240
atgcacacaa-	atgctcgagt	gcgttcgtga	tttctcgaat	tttcaaatgc	gtcactgcga	9300
atttcacaat	ttgccaataa	atcttggcga	aaatcaacac	gcaagtttta	tttatagatt	9360
tgtttgcgtt	ttgatgccaa	ttgattggga	aaacaagatg	cgtggctgcc	aatttettat	9420
tttgtaatta	cgtagagcgt	tgaataaaaa	aaaaatggcc	gaacaaagac	cttgaaatgc	9480
agtttttctt	gaaattactc	aacgtcttgt	tgctcttatt	actaattggt	aacagcgagt	9540

taaaaactta	egtttettgt	gactttcgag	aatgttcttt	taattgtact	ttaatcacca	9600
acaattaagt	ataaattttt	cgctgattgc	gctttacttt	ctgcttgtac	ttgctgctgc	9660
aaatgtcaat	tggttttgaa	ggcgaccgtt	cgcgaacgct	gtttatatac	cttcggtgtc	9720
cgttgaaaat	cactaaaaaa	taccgtagtg	ttcgtaacac	tttagtacag	agaaaaaaaa	9780
ttgtgccgaa	atgtttttga	tacgtacgaa	taccttgtat	taaaattttt	tatgatttct	9840
gtgtatcact	ttttttttgt	gtttttcgtt	taaactcacc	acagtacaaa	acaataaaat	9900
atttttaaga	caatttcaaa	ttgagacctt	tctcgtactg	acttgaccgg	ctgaatgagg	9960
atttctacct	agacgaccta	cttcttacca	tgacattgaa	tgcaatgcca	cctttgatct	10020
aaacttacaa	aagtecaagg	cttgttagga	ttggtgttta	tttagtttgc	ttttgaaata	10080
gcactgtctt	ctctaccggc	tataattttg	aaactcgcag	cttgactgga	aatttaaaaa	10140
gtaattctgt	gtaggtaaag	ggtgttttaa	aagtgtgatg	tgttgagcgt	tgcggcaacg	10200
actgctattt	atgtatatat	tttcaaaact	tattgttttt	gaagtgtttt	aaatggagct	10260
atctggcaac	gctgcgcata	atcttacaca	agettttett	aatccatttt	taagtgaaat	10320
ttgtttttac	tctttcggca	aataattgtt	aaatcgcttt	aagtgggett	acatctggat	10380
aagtaatgaa	aacctgcata	ttataatatt	aaaacatata	atccactgtg	ctttccccgt	10440
gtgtggccat	atacctaaaa	aagtttattt	tegeagagee	ccgcacggtc	acactacggt	10500
teggegattt	tcgattttgg	acagtactga	ttgcaagcgc	accgaaagca	aaatggagct	10560
ggagattttg	aacgcgaaga	acageaagee	gtacggcaag	gtgaaggtgc	cctccggcgc	10620
cacgeccate	ggcgatctgc	gcgccctaat	tcacaagacc	ctgaagcaga	ccccacacgc	10680
_gaatcgccag,	_tcgqttqgtc	tgg <u>aac</u> tgaa	gggcaaaagc	ctgaaagata	cggacacatt	10740
ggaatctctg	tegetgegtt	ccggcgacaa	gatcggggta	ccatge		10786

5

<210> 24 <211> 14720 <212> ADN

<213> Artificial

<220>

<223> pLA1038

10

<400> 24

gggctatgge gegeeggacg eggeaagtet gegagettat atttacgtgg ateteeggtg 60
tgtccatgat teggcatcat atcataaacg aegaatteca ataaaaactt tgcttgttga 120
taacacetga tgttcagaga tgecegataa aatcacaget gttctggtte acagtcacca- 180
gaaataaaaa atattggaat tgagatgtac acaattaacg atatttataa atatetteeg 240
atagtetate gteeggttaa teaaaataaa gtgegacgaa ttaacatatt ttcaaaatta 300
agacgetttg atagatgtat ttgtatagag atagaaatta aggttaaaat aacataaatg 360
ecaaagttta gageactatt caataattet ettgattea aattgaaata atacacaata 420

taacattttc	taacactaca	aagtcacgat	attettecae	caaccgatag	tatogoacac	480
ttgccattcg	cctcatcacg	cacacgcccg	cttcacaatt	caaacgaacg	gcattttatt	540
ttcacaggat	cccgggagtc	gtgaatgttt	tacccaatat	cgactttcat	tgttaactga	600
ccaaaattgt	aatetgttet	gttagttgtc	gagtgcctgt	geegegateg	ctatgggcat	660
atgttgccaa	actctaaacc	aaatactcat	tctgatgttt	taaatgattt	gccctcccat	720
atgtccttcc	gagtgagaga	cacaaaaaat	tecaacacac	tattgcaatg	asaataaatt	780
tcctttatta	gccagaagtc	agatgeteaa	ggggcttcat	gatgtcccca	taatttttgg	840
cagagggaaa	aagatctcag	tggtatttgt	gagccagggc	attggccaca	ccagccacca	900
ccttctgata	ggcagcctgc	acctgaggag	tgaattcttt	gccaaaatga	tgagacagca	960
caacaaccag	cacgttgccc	aggagctgta	ggaaagagaa	gaaggcatga	acatggttag	1020
cagaggggcc	cggtttggac	tcagagtatt	ttatcctcat	ctcaaacagt	gtatatcatt	1080
gtaaccataa	agagaaaggc	aggatgatga	ccagggtgta	gttgtttcta	ccaataagaa	1140
tatttccacg	ccagccagaa	tttatatgca	gaaatattct	accttatcat	ttaattataa	1200
caattgttct	ctaaaactgt	gctgaagtac	aatataatat	accctgattg	ccttgaaaaa	1260
aaagtgatta	gagaaagtac	ttacaatctg	acaaataaac	aaaagtgaat	ttaaaaattc	1320
gttacaaatg	caagctaaag	tttaacgaaa	aagttacaga	aaatgaaaag	aaaataagag	1380
gagacaatgg	ttgtcaacag	agtagaaagt	gaaagaaaca	aaattatcat	gagggtccat	1440
ggtgatacaa	gggacatett	cccattctaa	acaacaccct	gaaaactttg	cccctccat	1500
ataacatgaa	ttttacaata	gcgaaaaaga	aagaacaatc	aagggteece	aaactcaccc	1560
tgaagttete	-agetetagac	gcgtttcact	acccaccgta	ctcgtcaatt	ccaagggcat	1620
cggtaaacat	ctgctcaaac	tegaagtegg	ccatatccag	agcgccgtag	ggggcggagt	1680
cgtggggggt	aaatcccgga	cccggggaat	ccccgtcccc	caacatgtcc	agatogaaat	1740
cgtctagcgc	gtcggcatgc	gccatcgcca	egteetegee	gtctaagtgg	agetegteee	1800
ccaggctgac	atcggtcggg	ggggccgtcg	acagtetgeg	cgtgtgtccc	gcggggagaa	1860
aggacaggcg	eggageegee	ageccegeet	cttcgggggc	gtcgtcgtcc	gggagatcga	1920
geaggeeete	gatggtagac	ccgtaattgt	ttttcgtacg	egegeggetg	tacgcggacc	1980
cactttcaca	tttaagttgt	ttttctaatc	cgcatatgat	caattcaagg	ccgaataaga	2040
aggetggete	tgcaccttgg	tgatcaaata	attcgatagc	ttgtcgtaat	aatggeggea	2100
tactatcagt	agtaggtgtt	tccctttctt	ctttagcgac	ttgatgetet	tgatetteca	2160
atacgcaacc	taaagtaaaa	tgccccacag	cgctgagtgc	atataatgca	ttctctagtg	2220
aaaaaccttg	ttggcataaa	aaggctaatt	gattttcgag	agtttcatac	tgtttttctg	2280
taggccgtgt	acctaaatgt	acttttgctc	categegatg	acttagtaaa	gcacatetaa	2340
aacttttagc	gttattacgt	aaaaaatctt	gccagettte	cccttctaaa	gggcaaaagt	2400

gagtatggtg	cctatctaac	atctcaatgg	ctaaggcgtc	gagcaaagcc	cgcttatttt	2460
ttacatgcca	atacaatgta	ggctgctcta	cacctagett	ctgggcgagt	ttacgggttg	2520
ttaaaccttc	gattccgacc	tcattaagca	gctctaatgc	gctgttaatc	actttacttt	2580
tatctaatct	caattccatg	gtggcaacct	gcaaggcgaa	tgaataaaca	agattgtggc	2640
gaaca gtgta	atgcgaagaa	cccaectctg	ctccaattcc	caattcccta	ttcagctcga	2700
geggggatec	ccgggtaccg	agctcgaatt	cggggccgcg	gaggetggat	eggteeeggt	2760
gtcttctatg	gaggtcaaaa	cagcgt gg at	ggogtotoca	ggcgatctga	cggttcacta	2820
aacgagctct	gcttatatag	gccteccacc	gtacacgcct	acctcgaccc	gggtaccgag	2880
ctcgactttc	acttttctct	atcactgata	gggagtggta	aactcgactt	tcacttttct	2940
ctatcactga	tagggagt g g	taaactcgac	tttcactttt	ctctatcact	gatagggagt	3000
ggtaaactcg	actttcactt	ttctctatca	ctgataggga	gtggtaaact	cgactttcac	3060
ttttctctat	cactgatagg	gagtggtaaa	ctcgactttc	acttttctct	atcactgata	3120
gggagtggta	aactcgactt	teacttttct	ctatcactga	tagggagtgg	taaactcgaa	3180
atgtcgacta	tgcggaccga	gegeeggagt	ataaatagag	gegettegte	tacggagega	3240
caattcaatt	caaacaagca	aagtgaacac	gtegetaage	gaaagctaag	caaataaaca	3300
agegeagetg	aacaagctaa	acaatctgcg	ctagecacca	tggttgttat	taaacgtaga	3360
tttggtaatt	ttaaaagcat	attttttct	ttgaaattca	taagttatca	attatcgatg	3420
gaaatgtatt	ctatggagaa	cgttttaccc	gatgaatggg	tgcaaaaatt	attttacctt	3480
caaatctaca	atçaaçacac	gctaactttt	gtgacttgat	caactctcac	ctggaaaagc	3540
-aaccaactac	-aatcaacatt.	.ctatgggata.	atcgacaagt	gagtaaaatt	atagccggac	3600
ctcttagtac	agtgtattta	aaaggggaat	aatattctat	caataggaat	aaaaataagg	3660
tcagcagcca	tgacttttcc	atcattttga	atatacetta	tttgtttcgg	gattæattgg	3720
gggtcggaaa	tectettgaa	ttcagaaacg	ggaaccggag	gaaggtgccg	gtctttcaga	3780
aagctgtgaa	aaataccaac	atttctgctg	ccaagagete	aataagaag t	ttcaaaaatt	3840
gtcttggatg	ttgcagctgt	ggctgctaag	taataagaca	tctattagta	tctagatttg	3900
ttagaccatt	taacatagtg	ttttaaacga	tggggttaat	agatgagggt	taagaagcta	3960
gttatattac	tgttgctgta	acgccttcaa	ttgtcggtta	cagagcaaac	attattgaat	4020
gttaatgtaa	agagtttatt	tgttttctag	taaacatata	gcgattggtt	agtaatcact	4080
aatagaaatt	tttcataagt	atcaaaaaag·	taaacctctt	tttcagtcta	tgtaataagt	4140
aaaccaagga	aagggaaaat	atctacaatc	aacaagccat	tgttgcagca	acaaagcaac	4200
tgaaactaca	atcaacattc	aataaacttg	ggtaatttgg	aatttaattc	tetgggacac	4260
ctgtggatta	caacaatcaa	ctcgaaactt	attatacaat	gtaaataaaa	attgatatgc	4320
atacatgaag	atcaagtgaa	attccattta	gaatcaattt	ttttcgaata	ttaagtttct	4380

tgctttaatt	tatctgaaag	taaatagaca	ttccaaattc	aagttaacaa	attaataatg	4440
aattgactag	tgatttttaa	gagaaaaaga	taagatttaa	aaaaggaaag	cctttcttga	4500
taaatttttg	aaccacttta	tgccgtttca	atcataaaaa	cttttaagaa	cacatgactg	4560
gtaaaattaa	tttaaaacaa	atttaaattt	tcaacgtaac	attcaacaaa	aatggtgaaa	4620
actatcacgg	aaattgttaa	tattaatatg	tcccaaaaat	agcctttgta	tgtatatgat	4680
actaatccat	acatctatgg	tatctatagg	tgaaggctca	aagcetetgg	gegeteteet	4740
gggcetgece	gaaagccaaa	cggagcttga	taatcttaca	gaatacaaca	cggcccacaa	4800
teggegeate	tcaatgctgg	gcatcgatga	tgataccaat	atgcgaaagc	aaaacgcctt	4860
gaaacaggga	cggcgcactc	gaaatgtcac	atttaacgat	gaggagattg	tcatcaatcc	4920
tgaggatgtg	gatectaatg	tgggacgctt	caggaacttg	gtacaaacca	ctgtggtgcc	4980
cgccaagagg	gctcgctgcg	acgtcaacca	ttagtgataa	cgegtetaga	gctgagaact	5040
tcagggtgag	tttggggacc	cttgattgtt	ctttctttt	cgctattgta	aaattca tgt	5100
tatatggagg	gggcaaagtt	ttcagggtgt	tgtttagaat	gggaagatgt	cccttgtatc	5160
accggtgatc	ataatcagcc	ataccacatt	tgtagaggtt	ttacttgctt	taaaaaacct	5220
cccacacctc	cccctgaacc	tgaaacataa	aatgaatgca	attgttgttg	ttaacttgtt	5280
tattgcagct	tataatggtt	acaaataaag	caatagcatc	acaaatttca	caaataaagc	5340
attttttca	ctgcattcta	gttgtggttt	gtccaaactc	atcaatgtat	cttaacgcga	5400
gtttaaacgc	gtccgcatac	gteegeteae	gttaagttcc	gcagagagaa	gttgttgaaa	5460
acataaacag	aatcacttgt	tgcactcttt	gagaaaactg	gggctattgc	ggaaaaaaacc	5520
aactaaaaat.	-attgeagg tt	-aggggtac t a	egetegattg.	gcgtacggcc	accacttttg	5580
cgacttcact	gttaaccgct	accttcatag	agacttttac	ccgataaatg	ttatgtagtt	5640
tgactttctc	tgttaatcac	aagaaaaaat	attgtggaaa	ttaaaattat	ctcaaactca	5700
ataaggaaat	aataatatat	acacctatgt	tttatagaag	tcaacagtaa	ataagttatt	5760
tggaaaacca	ttgtagccgt	ttaaataaat	ctccttgagt	gtgttttaaa	taacggtcat	5820
taagtatatt	acttggccct	ctgaatttct	tgaattacac	cattttttga	aataaatcaa	5880
tccaaaagac	tactttttgg	tggcaaatga	actgcataaa	aagtaacaaa	agaaatatgt	5940
ttttgaaata	acagtatagc	tgaagtgtat	taasaaatac	cgtcatatga	gcgacccgct	6000
gttaccg ctt	cgctgcgaat	gacaaaacgg	gctgagcaag	aaaatg gcgt	agaaggcgac	6060
gaaaattcgt	ttcactcgtg	aagaaaacct	cgataactga	ggaatacagc	tgggatttaa	6120
agagcatatt	cgaactacaa	gcagagatgt	ttcctggtgg	aaacggaaac	gccgatttgg	6180
getacaacaa	gcatgcccac	gtecatggac	ttggacaaca	tggccatggg	cacaaccata	6240
atcacaatca	gtteetgege	agececeace	accccccaca	catttttcac	tgeceteegg	6300
gggcggtcag	ggcatggtga	cgcccatggt	agcegeegge	ctgccgctcg	ccatgcaggg	6360

tggcgttggc	atcgattggc	gcagctcgcc	cagcaatgga	ttaattaact	cgcgttaaga	6420
tacattgatg	agtttggaca	aaccacaact	agaatgcagt	gaaaaaaatg	ctttatttgt	6480
gaaatttgtg	atgctattgc	tttatttgta	accattataa	gctgcaataa	acaagttaac	6540
aacaacaatt	gcattcattt	tatgtttcag	gttcaggggg	aggtgtggga	ggtttttaa	6600
agcaagtaaa	acctctacaa	atgtggtatg	gctgattatg	atcagttatc	tagatccggt	6660
ggatettacg	ggtcctccac	cttccgcttt	ttcttgggtc	gagateteag	gaacaggtgg	6720
tggcggccct	cggtgcgctc	gtactgctcc	acgatggtgt	agtcctcgtt	gtgggaggtg	6780
atgtccagct	tggcgtccac	gtagtagtag	ccgggcagct	gcacgggctt	cttggccatg	6840
tagatggact	tgaactccac	caggtagtgg	cegeegteet	tcagettcag	ggccttgtgg	6900
gtotogecot	tcagcacgcc	gtcgcggggg	tacaggeget	cggtggaggc	ctcccagccc	6960
atggtcttct	tctgcatcac	ggggccgtcg	gagggaagt	tcacgccgat	gaacttcacc	7020
ttgtagatga	agcagccgtc	ctgcagggag	gagteetggg	tcacggtcgc	cacgccgccg	7080
tectegaagt	tcatcacgcg	ctcccacttg	aagccct cg g	ggaaggacag	cttcttgtag	7140
toggggatgt	cggcggggtg	cttcacgtac	accttggage	cgtactggaa	ctggggggac	7200
aggatgtccc	aggcgaaggg	cagggggccg	cccttggtca	ccttcagctt	cacggtgttg	7260
tggccctcgt	aggggeggcc	ctcgccctcg	ccctcgatet	cgaactcgtg	gccgttcacg	7320
gtgccctcca	tgcgcacctt	gaagcgcatg	aactcggtga	tgacgttctc	ggaggaggcc	7380
atggtggcga	ccggtttgcg	cttcttcttg	ggtggggtgg	gateceegat	ctgcattttg	7440
gattattctg	cgggtcaaaa	tagagatgtg	gaaaattagt	acgaaatcaa	atgagtttcg	7500
-ttgaaattac.	.aaaactattg	aaactaactt.	_ectggctggg	.gaataaaaat	gggaaactta	7560
tttatcgacg	ccaactttgt	tgagaaaccc	ctattaaccc	tctacgaata	ttggaacaaa	7620
ggaaagcgaa	gaaacaggaa	caaaggtagt	tgagaaacct	gtteegttge	tegteategt	7680
tttcataatg	cgagtgtgtg	catgtatata	tacacagctg	aaacgcatgc	atacacatta	7740
ttttgtgtgt	atatggtgac	gtcacaacta	ctaagcaata	agaaattttc	cagacgtggc	7800
tttcgtttca	agcaacctac	tctatttcag	ctaaaaataa	gtggatttcg	ttggtaaaat	7860
acttcaatta	agcaaagaac	taactaacta	ataacatgca	cacaaatgct	cgagtgcgtt	7920
cgtgatttct	cgaattttca	aatgcgtcac	tgcgaatttc	acaatttgcc	aataaatctt	7980
ggcgaaaatc	aacacgcaag	ttttatttat	agatttgttt	gcgttttgat	gccaattgat	8040
tgggaaaaca	agatgcgtgg	ctgccaattt	cttattttgt	aattacgtag	agegttgaat	8100*
aaaaaaaaaa	tggccgaaca	aagaccttga	aatgcagttt	ttcttgaaat	tactcaacgt	8160
cttgttgctc	tt attactaa	ttggtaacag	cgagttaaaa	acttacgttt	cttgtgactt	8220
tcgagaatgt	tcttttaatt	gtactttaat	caccaacaat	taagtataaa	tttttcgctg	8280
attgcgcttt	actttctgct	tgtacttgct	gctgcaaatg	tcaattggtt	ttgaaggcga	8340

	ccgttcgcga	acgctgttta	tatacettcg	gtgtccgttg	aaaatcacta	aaaaataccg	8400
	tagtgttcgt	aacactttag	tacagagaaa	aaaaattgtg	ccgaaatgtt	tttgatacgt	8460
	acgaatacct	tgtattaaaa	ttttttatga	tttctgtgta	teacttttt	tttgtgtttt	8520
	tegtttaaac	tcaccacagt	acaaaacaat	aaaatatttt	taagacaatt	tcaaattgag	8580
	acctttctcg	tactgacttg	accggctgaa	tgaggatttc	tacctagacg	acctacttct	8640
	taccatgaca	ttgaatgcaa	tgccaccttt	gatctaaact	tacaaaagtc	caaggcttgt	8700
	taggattggt	gtttatttag	tttgcttttg	aaatagcact	gtetteteta	ccggctataa	8760
	ttttgaaact	cgcagcttga	ctggaaattt	aaaaagtaat	tctgtgtagg	taaagggtgt	8820
	tttaaaagtg	tgatgtgttg	agcgttgcgg	caacgactgc	tatttatgta	tatattttca	8880
	aaacttattg	tttttgaagt	gttttaaatg	gagctatetg	gcaacgctgc	gcataatctt	8940
	acacaagctt	ttcttaatcc	atttttaagt	gaaatttgtt	tttactcttt	cggcaaataa	9000
	ttgttaaatc	gctttaagtg	ggcttacatc	tggataagta	atgaaaacct	gcatattata	9060
	atattaaaac	atataatcca	ctgtgettte	cccgtgtg tg	gccatatacc	taaaaaagtt	9120
	ta ttttc gca	gageccegca	cggtcacact	acggttcggc	gattttcgat	tttggacagt	9180
	actgattgca	agcgcaccga	aagcaaaatg	gagetggaga	ttttgaacgc	gaagaacagc	9240
	aagccgtacg	gcaaggtgaa	ggtgecetec	ggcgccacgc	ccatcggcga	tetgegegee	9300
	ctaattcaca	agaccctgaa	gcagacccca	cacgcgaatc	gccagtogct	tegtetggaa	9360
	ctgaagggca	aaagcctgaa	agatacggac	acattggaat	ctctgtcgct	gcgttccggc	9420
	gacaagatcg	gggtaccatg	cggccgctca	tttaaatctg	gccggcctgg	ccgatctgac	9480
-	aatgttcagt	gcagagactc	ggctacgcct	cgtggacttt	gaagttgacc	aacaatgttt	9540
	attcttacct	ctaatagtcc	tctgtggcaa	ggtcaagatt	ctgttagaag	ccaatgaaga	9600
	acctggttgt	tcaataacat	tttgttcgtc	taatatttca	ctaccgcttg	acgttggctg	9660
	cacttcatgt	acctcatcta	taaacgcttc	ttctgtatcg	ctctggacgt	catcttcact	9720
	tacgtgatet	gatatttcac	tgtcagaatc	ctcaccaaca	agctcgtcat	cgctttgcag	9780
	aagagcagag	aggatatgct	catcgtctaa	agaactaccc	attttattat	atattagtca	9840
	cgatatctat	aacaagaaaa	tatatata	ataagttatc	acgtaagtag	aacatgaaat	9900
	aacaatataa	ttatcgtatg	agttaaatct	taaaagtcac	gtaaaagata	atcatgcgtc	9960
	attttgactc	acgcggtcgt	tatagttcaa	aatcagtgac	acttaccgca	ttgacaagca	10020
	cgcctčācgg	gagetecaag	cggcgactga	gatgtcctaa	atgcacagcg	acggattcgc~	10080
	gctatttaga	aagagagagc	aatatttcaa	gaatgcatgc	gtcaatttta	cgcagactat	10140
	ctttctaggg	ttaaaaaaga	tttgegettt	actogacota	aactttaaac	acgtcataga	10200
	atcttcgttt	gacaaaaacc	acattgtggc	caagctgtgt	gacgcgacgc	gcgctaaaga	10260
	atggcaaacc	aagtegegeg	agegtegace	tgcaggcatg	caagcttgca	tgcctgcagg	10320

tcgaaattcg	taatcatggt	catagetgtt	tcctgtgtga	aattgttato	: cgctcacaat	10380
tccacacaac	atacgagccg	gaagcataaa	gtgtaaagco	tggggtgcct	aatgagtgag	10440
ctaactcaca	ttaattgcgt	tgcgctcact	gecegettte	: cagtcgggaa	acctgtcgtg	10500
ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	10560
ttccgcttcc	togotoactg	actegetgeg	ctcggtcgtt	. eggetgegge	gageggtate	10620
agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	10680
catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggeegegt	tgctggcgtt	10740
tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	10800
gcgaaacccg	acaggaetat	aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	10860
ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcetttetee	cttcgggaag	10920
cgtggcgctt	tetcaatget	cacgctgtag	gtatctcagt	tcggtgtagg	tegttegete	10980
caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	11040
ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	cagecactgg	11100
taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	agtggtggcc	11160
taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	agccagttac	11220
cttcggaaaa	agagttggta	getettgate	cggcaaacaa	accaccgetg	gtagcggtgg	11280
tttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggateteaag	aagatccttt	11340
gatcttttct	acggggtctg	acgctcagtg	gaacgaaaac	tcacgttaag	ggattttggt	11400
catgagatta	tcaaaaagga	tetteaceta	gateetttta	aattaaaaat	gaagttttaa	11460
.atcaatctaa_	agtatatatg	agtaaacttg	gtctgacagt	_taccaatgct	_taatcagtga	11520
ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gttgcctgac	tccccgtcgt	11580
gtagataact	acgatacggg	agggcttacc	atctggcccc	agtgctgcaa	tgataccgcg	11640
agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	gaagggccga	11700
gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	gttgccggga	11760
agctagagta	agtagtt cgc	cagttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	11820
catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	agctccggtt	cccaacgatc	11880
aaggcgagtt	acatgatece	ccatgttgtg	caaaaaagcg	gttagctcct	teggteetee	11940
gatcgttgtc	agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	cagcactgca	12000
taattctctt	actgtcatgc	catccgtaag	atgettttet	gtgactggtg	agtactcaac	12060
caagtcattc	tgagaatagt	gtatgeggeg	accgagttgc	tcttgccegg	cgtcaatacg	12120
ggataatacc	gcgccacata	gcagaachtt	aaaagtgctc	atcattggaa	aacgttcttc	12180
ggggcgaaaa	ctctcaagga	tettaceget	gttgagatcc	agttcgatgt	aacccactcg	12240
tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	12300

aggaaggcaa	aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	12360
actetteett	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	12420
catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	12480
agtgccacct	gacgtctaag	aaaccattat	tatcatgaca	ttaacctata	aaaataggcg	12540
tatcacgagg	ccctttcgtc	tegegegttt	cggtgatgac	ggtgaaaacc	tctgacacat	12600
gcagctcccg	gagacggtca	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	12660
tcagggcgcg	tcagcgggtg	ttggcgggtg	teggggetgg	cttaactatg	cggcatcaga	12720
gcagattgta	ctgagagtgc	accatatatg	cggtgtgaaa	taccgcacag	atgcgtaagg	12780
agaaaatacc	gcatcaggcg	ccattcgcca	ttcaggetge	gcaactgttg	ggaagggcga	12840
teggtgeggg	cctcttcgct	attacgccag	ctggcgaaag	ggggatgtgc	tgcaaggcga	12900
ttaagttggg	taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	ggccagtgcc	12960
aagctttgtt	taaaatataa	caaaattgtg	atcccacaaa	atgaagtggg	gcaaaatcaa	13020
ataattaata	gtgtccgtaa	acttgttggt	cttcaacttt	ttgaggaaca	cgttggacgg	13080
caaatccgtg	actataacac	aagttgattt	aataatttta	gecaacacgt	cgggctgcgt	13140
gttttttgcc	gacgcgtctg	tgtacacgtt	gattaactgg	tcgattaaac	tgttgaaata	13200
atttaatttt	tggttcttct	ttaaatctgt	gatgaaattt	tttaaaataa	ctttaaattc	13260
ttcattggta	aaaaatgcca	cgttttgcaa	cttgtgaggg	tctaatatga	ggtcaaactc	13320
agtaggagtt	ttatccaaaa	aagaaaacat	gattacgtct	gtacacgaac	gcgtattaac	13380
gcagagtgca	aagtataaga	gggttaaaaa	atatatttta	cgcaccatat	acgcatcggg	13440
ttgatatcgt	_taatatggat.	.caatttgaac	agttgattaa	egtgtetetg	ct <u>c</u> aagtctt	13500
tgatcaaaac	gcaaatcgac	gaa aatg tgt	cggacaatat	caagtcgatg	agcgaaaaac	13560
taaaaaggct	agaatacgac	aatctcacag	acagcgttga	gatatacggt	attcacgaca	13620
gcaggctgaa	taataaaaaa	attagaaact	attatttaac	cctagaaaga	taatcatatt	13680
gtgacgtacg	ttaaagataa	tcatgcgtaa	aattgacgca	tgtgttttat	eggtetgtat	13740
atcgaggttt	atttattaat	ttgaatagat	attaagtttt	attatattta	cacttacata	13800
ctaataataa	attcaacaaa	caatttattt	atgtttattt	atttattaaa	aaaaaacaaa	13860
aactcaaaat	ttettetata	aagtaacaaa	acttttaaac	attetetett	ttacaaaaat	13920
aaacttattt	tgtactttaa	aaacagtcat	gttgtattat	aaaataagta	attagcttaa	13980
cttatacata	atagaaacaa.	attatactta	ttagtcagtc	agaaacaact	ttggcacata	14040
tcaatattat	getetegaca	aataactttt	ttgcattttt	tgcacgatge	atttgccttt	14100
cgccttattt	tagaggggca	gtaagtacag	taagtacgtt	ttttcattac	tggctcttca	14160
gtactgtcat	ctgatgtacc	aggcacttca	tttggcaaaa	tattagagat	attategege	14220
aaatatctct	tcaaagtagg	agcttctaaa	cgcttacgca	taaacgatga	cgtcaggctc	14280

atgtaaaggt ttotcataaa ttttttgcga ctttggacct tttctccctt gctactgaca 14340

ttatggctgt atataataaa agaatttatg caggcaatgt ttatcattcc gtacaataat 14400

gecataggee acctattegt ettectactg caggicatea cagaacacat tiggictage 14460

	gtgtecaete	cgcctttagt	ttgattataa	tacataacca	tttgcggttt	accggtactt	14520
	tegttgatag	aagcatcctc	atcacaagat	gataataagt	ataccatctt	agetggette	14580
	ggtttatatg	agacgagagt	aaggggtccg	tcaaaacaaa	acatcgatgt	teccaetgge	14640
	ctggagcgac	tgtttttcag	tacttccggt	atctcgcgtt	tgtttgatcg	cacggttccc	14700
	acaatggttg	eggecagece					14720
5	<210> 25 <211> 23 <212> ADN <213> Artificial						
10	<220> <223> Cebador de I <400> 25						
15	catcgatgcc cagcattg <210> 26 <211> 34 <212> ADN <213> Artificial	ag atg 23					
20	<220> <223> Cebador de I	PCR					
	<400> 26 caagcaaagt gaacac	gtcg ctaagcgaa	a gcta 34				
25	<210> 27 <211> 28 <212> ADN <213> Artificial						
30	<220> <223> Cebador de I	PCR					
35	<400> 27 gccatccacg ctgttttga <210> 28 <211> 27	c ctccatag	28				
40	<212> ADN <213> Artificial <220> <223> Cebador de I	PCR					
45	<400> 28 gccaatacaa tgtaggct		27				
50	<210> 29 <211> 1005 <212> ADN <213> Artificial						

<220>

<223> Región codificante de tTA de pUHD15-1

<400> 29

5

atgtctagat	tagataaaag	taaagtgatt	aacagcgcat	tagagctgct	taatgaggtc	60
ggaatcgaag	gtttaacaac	ccgtaeactc	gcccagaagc	taggtgtaga	gcagcctaca	120
ttgtattggc	atgtaaaaaa	taagcgggct	ttgctcgacg	ccttagccat	tgagatgtta	180
gataggcacc	atactcactt	ttgcccttta	gaaggggaaa	gctggcaaga	ttttttacgt	240
aataacgcta	aaagttttag	atgtgcttta	ctaagtcatc	gcgatggagc	aaaagtacat	300
ttaggtacac	ggcctacaga	aaaacagtat	gaaactctcg	aaaatcaatt	agccttttta	360
tgccaacaag	gtttttcact	agagaatgca	ttatatgcac	tcagcgctgt	ggggcatttt	420
actttaggtt	gcgtattgga	agatcaagag	catcaagtcg	ctaaagaaga	aagggaaaca	480
cctactactg	atagtatgcc	gccattatta	cgacaagcta	tcgaattatt	tgatcaccaa	540
ggtgcagagc	cageettett	atteggeett	gaattgatca	tatgcggatt	agaaaaacaa	600
cttaaatgtg	aaagtgggtc	cgcgtacagc	cgcgcgcgta	cgaaaaacaa	ttacgggtct	660
accategagg	gcctgctcga	totocoggac	gacgacgccc	ccgaagaggc	ggggctggcg	720
geteegegee	tgtcctttct	ccccgcggga	cacacgcgca	gactgtcgac	ggcccccccg	780
accgatgtca	gcctggggga	cgagctccac	ttagacggcg	aggacgtggc	gatggcgcat	840
geegaegege	tagacgattt	cgatctggac	atgttggggg	acggggattc	cccgggtccg	900
_ggatttaccc	_cccaggactc	cgccccctac	ggcgetetgg	atatggccga	cttcgagttt	960
gagcagatgt	ttaccgatgc	ccttggaatt	gacgagtacg	gtggg		1005

<210> 30

<211> 336

<212> PRT

<213> Artificial

<220>

<223> tTA

15

10

<400> 30

Met Gly Ser Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu 1 5 10 15

Leu Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala 20 25 30

Gln Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn 35 40

Lys	Arg S0	Ala	Leu	Leu	Asp	Ala 55	Leu	Ala	Ile	Glu	Met 60	Leu	Asp	Arg	His
His 65	Thr	His	Phe	Cys	Pro 70	Leu	Glu	Gly	Glu	Ser 75	Trp	Gln	Asp	Phe	Leu 80
Arg	Asn	Asn	Ala	Lys 85	Ser	Phe	Arg	Cys	Ala 90	Leu	Leu	Ser	His	Arg 95	Ąsp
Gly	Ala	Lys	Val 100	His	Leu	Gly	Thr	Arg 105	Pro	Thr	Glu	Lys	Gln 110	Tyr	G1u
Thr	Leu	Glu 115	Asn	Gln	Leu	Ala	Phe 120	Leu	Cys	Gln	Gln	Gly 125	Phe	Ser	Leu
Glu	Asn 130	Ala	Leu	Tyr	Ala	Leu 135	Ser	Ala	Val	Gly	His 140	Phe	Thr	Гел	Gly
Cys 145	Val	Leu	Glu	Asp	Gln 150	Glu	His	Gln	Val	Ala 155	Lys	Glu	Glu	Arg	Glu 160
Thr	Pro	Thr	Thr	Asp 165	Ser	Met	Pro	Pro	Leu 170	Leu	Arg	Gln	Ala	Ile 175	Glu
Leu	Phe	Asp	His 180	Gln	Gly	Ala	Glu	Pro 185	Ala	Phe	Leu	Phe	Gly 190	Leu	Gl u
Leu	Ile	Ile 195	Суѕ	Gly	Leu	Glu	L уs 200	Gl n	Leu	Lys	Cys	Glu 205	Ser	Gly	Ser
Ala	Туг 210	Ser	Arg	Ala	Arg	Thr 215	Lys	Asn	Asn	Tyr	Gly 220	Ser	Thr	Ile	Glu
Gly 225	Leu	Leu	Asp	Leu	Pro 230	Asp	Asp	Ąsp	Ala	Pro 235	Glu	Glu	Ala	Gly	Leu 240
Ala	Ala	Pro	Arg	Leu 245	Ser	Phe	Leu	Pro	Ala 250	Gly	His	Thr	Arg	Arg 255	Leu
Ser	Thr	Ala	Pro 260	Pro	Thr	Asp	Val	Ser 265	Leu	Gly	Asp	Glu	Leu 270	His	Leu
Asp		Glu 27 5	ĄzĄ	Val	Ala	Met	Ala 280	His	Ala	Asp		Leu 285 -	_	Asp	Phe
Asp	Leu 290	Asp	Met	Leu	Gly	Asp 295	Gly	qaA	Ser	Pro	Gly 300	Pro	Gly	Phe	Thr
Pro 305	His	Asp	Ser	Ala	Pro 310	Tyr	Gly	Ala	Leu	Asp 315	Met	Ala	Asp		Glu 320

Phe Glu Gln Met Phe Thr Asp Ala Leu Gly Ile Asp Glu Tyr Gly Gly 325 330 335

<210> 31 <211> 1017 <212> ADN 5 <213> Artificial

> <220> <223> tTAV

10 <400> 31

atgggcagcc gcctggataa gtccaaagtc atcaactccg cgttggagct gttgaacgaa 60 gttggcattg agggactgac gacccgcaag ttggcgcaga agctgggcgt ggagcagccc 120 accetetact ggcaegtgaa gaataagegg gegetgetgg atgeeetgge categagatg 180 ctegacegee accaeaegea tititegeeeg tiggaaggeg agtectggea ggactteete 240 equantaged coangleght controlled etgetators accommand typesaagte 300 catcteggea egegecegae egaaaageaa taegagacae tggagaacca getegegtte 360 ctqtqccaqc aaggettcaq cetqqaaaat getetetacq etetqaqeqe eqteqqtcac 420 480 tttaccctgg gctgcgtgct ggaggaccaa gagcatcaag tcgcaaaaga ggagcgcgag accecaacaa cegattegat geocecactg etgegteagg caategaget gttegateat 540 caaggageeg ageeggeatt cetgttegge ttggagetga ttatetgegg attggaaaag 600 caactgaaat gcgagtcggg ctcgggcccc gcgtacagcc gcgcgcgtac gaaaaacaat 660 tacgggteta ccatcgaggg cotgctcgat ctcccggacg acgacgcccc cgaagaggcg 720 gggetggegg-etecgegeet gteetttete-eeegegggae acaegegeag actgtegaeg gecececega cegatgteag eetgggggac gageteeact tagaeggega ggaegtggeg 640 atggegeatg ecgaegeget agaegattte gatetggaea tgttggggga eggggattee 900 cogggtcogg gatttacccc ccacgactcc gccccctacg gcgctctgga tatggccgac 960 ttogagtttg agcagatgtt taccgatgcc cttggaattg acgagtacgg tgggtag 1017

<210> 32 15 <211> 338 <212> PRT <213> Artificial

<220> 20 <223> tTAV <400> 32

Met Gly Ser Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu 1 5 10 15

Leu Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala 20 25 30

Gln	Lys	Leu 35	Gly	Val	Glu	Gln	Pro 40	Thr	Leu	Tyr	Trp	His 45	Val	Lys	Asn
Lys	Arg 50	Ala	Leu	Leu	Asp	Ala 55	Leu	Ala	Ile	Glu	Met 60	Leu	Asp	Arg	His
His 65	Thr	His	Phe	Cys	Pro 70	Leu	Glu	Gly	Glu	Ser 75	Trp	Gln	Asp	Phe	Leu 80
Atg	Asn	Asn	Ala	Ъуз 85	ser	Phe	Arg	Суз	Ala 90	Leu	Leu	Ser	His	Arg 95	Asp
Gly	Ala	Lys	Val 100	His	Leu	Gly	Thr	Arg 105	Pro	Thr	Glu	Lys	Gln 110	Tyr	Glu
Thr	Leu	Glu 115	Asn	Gl n	Leu	Ala	Phe 120	Leu	Cys	Gln	Gln	Gly 125	Phe	Ser	Leu
Glu	Asn 130	Ala	Leu	Туг	Ala	Leu 135	Ser	Ala	Val	Gly	His 140	Phe	Thr	Fen	Gly
Cys 145	Val	Leu	Glu	Asp	Gln 150	Glu	His	Gln	Val	Ala 155	Lys	Glu	Glu	Arg	Glu 160
Thr	Pro	Thr	Thr	Asp 165	Ser	Met	Pro	Pro	Leu 170	Leu	Arg	Gln	Ala	Ile 175	Glu
Lęu	Phe	Asp	His 180	Gln	Gly	Ala	Glu	Pro 185	Ala	Phe	Leu	Phe	Gly 190	Leu	Glu
Leu	Ile	Ile 195	Cys	Gly	Leu	Glu	Lys 200	Gln	Leu	Lys	Cys	Glu 205	Ser	Gly	Ser
Gly	Pro 210	Ala	Tyr	Ser	Arg	Ala 215	Arg	Thr	Lys	Asn	Asn 220	Tyr	Gly	Ser	Thr
Ile 225	Glu	Gly	Leu	Leu	Asp 230	Leu	Pro	Asp	Asp	Авр 235	Ala	Pro	G1u	Glu	Ala 240
Gly	Leu	Ala	Ala	Pro 245	Arg	Leu	Ser	Phe	Leu 250	Pro	Ala	Gly	His	Thr 255	Arg
Arg	Leu	Ser	Thr 260	Ala	Pro	Pro	Thr	Asp 265	Val	Ser	Leu	Gly	Asp 270	Glu	Leu
His	Leu	Asp 275	Gly	Glu	Asp	Val	Ala 280	Met	Ala	His	Ala	Asp 285	Ala	Leu	Asp

Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly 290 295 300

Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp 305 310 315 320

Phe Glu Phe Glu Gin Met Phe Thr Asp Ala Leu Gly Ile Asp Glu Tyr 325 330 335

Gly Gly

<210> 33 <211> 4455

<212> ADN

<213> Artificial

<220>

<223> pUHD15-1

10 <400> 33

5

ctcgaggagc ttggcccatt gcatacgttg tatccatatc ataatatgta catttatatt 60 ggeteatgte caacattace gecatgttga cattgattat tgactagtta ttaatagtaa 120 tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg 180 gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg 240 tatgttecca tagtaacgec aatagggact ttecattgac gtcaatgggt ggagtattta 300 egetaaactg cecaettgge agtacateaa gtgtateata tgecaagtac geceetatt 360 gaegicaatg aeggtaaatg geeegeetgg cattatgeee agtacatgae ettatgggae 420 tttectactt ggcagtacat.ctacgtatta gtcatcgcta ttaccatggt gatgcggttt 480 tggcagtaca tcaatgggcg tggatagcgg tttgactcac ggggatttcc aagtctccac 540 cocattgacg tcaatgggag tttgttttgg caccaaaatc aacgggactt tccaaaatgt 600 cgtaacaact ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat 660 ataagcagag ctcgtttagt gaaccgtcag atcgcctgga gacgccatcc acgctgtttt 720 gacctccata gaagacaccg ggaccgatcc agcctccgcg gccccgaatt catatgtcta 780 gattagataa aagtaaagtg attaacagcg cattagagct gcttaatgag gtcggaatcg 840 aaggtttaac aaccegtaaa etegeecaga agetaggtgt agageageet acattgtatt 900 ggcatgtaaa aaataagcgg gctttgctcg acgccttagc cattgagatg ttagataggc 960 accatactca cttttgccct ttagaagggg aaagctggca agatttttta cgtaataacg 1020 ctaaaagttt tagatgtgct ttactaagtc atcgcgatgg agcaaaagta catttaggta 1080 cacggoctac agaaaaacag tatgaaactc togaaaatca attagcottt ttatgccaac 1140 aaggtttttc actagagaat gcattatatg cactcagege tgtggggcat tttactttag 1200 gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga agaaagggaa acacctacta 1260

ctgatagtat	geegeeatta	ttacgacaag	ctatcgaatt	atttgatcac	caaggtgcag	1320
agecageett	cttattcggc	cttgaattga	tcatatgcgg	attagaaaaa	caacttaaat	1380
gtgaaagtgg	gtccgcgtac	ageegegege	gtacgaaaaa	caattacggg	tetaceateg	1440
agggcctgct	cgatctcccg	gacgacgacg	cccccgaaga	ggcggggctg	gcggctccgc	1500
gcctgtcctt	teteccegeg	ggacacacgc	gcagactgtc	gacggccccc	ccgaccgatg	1560
tcagcctggg	ggacgagctc	cacttagacg	gcgagġacgt	ggcgatggcg	catgccgacg	1620
cgctagacga	tttcgatctg	g acatgttgg	gggacgggga	ttccccgggt	ccgggattta	1680
ccccccacga	ctccgccccc	tacggcgctc	tggatatggc	cgacttcgag	tttgagcaga	1740
tgtttaccga	tgccettgga	attgacgagt	acggtgggta	gggggcgcga	ggatccagac	1800
atgataagat	acattgatga	gtttggacaa	accadaacta	gaatgcagtg	aaaaaatgc	1860
tttatttgtg	aaatttgtga	tgctattgct	ttatttgtaa	ccattataag	ctgcaataaa	1920
caagttaaca	acaacaattg	cattcatttt	atgtttcagg	ttcaggggga	ggtgtgggag	1980
gttttttaaa	gcaagtaaaa	cctctacaaa	tgtggtatgg	ctgattatga	tectgcaage	2040
ctcgtcgtct	ggccggacca	cgctatctgt	gcaaggtccc	cggacgcgcg	ctccatgagc	2100
agagcgcccg	ccgccgaggc	aagactcggg	cggcgccctg	cccgtcccac	caggtcaaca	2160
ggcggtaacc	ggcctcttca	tcgggaatgc	gcgcgacctt	cagcategee	ggcatgtecc	2220
ctggcggacg	ggaagtatca	gctcgaccaa	gcttggcgag	attttcagga	gctaaggaag	2280
ctaaaatgga	gaaaaaaatc	actggatata	ccaccgttga	tatatcccaa	tggcatcgta	2340
aagaacattt	tgaggcattt	cagteagttg	ctcaatgtac	Ctataaccag	accgttcagc	2400
tgcattaatg	aatcggccaa	cgcgcgggga	gaggcggttt	gcgtattggg	cgctcttccg	2460
cttcctcgct	cactgactcg	ctgcgctcgg	tegttegget	geggegageg	gtatcagetc	2520
actcaaaggc	ggtaatacgg	ttatccacag	aatcagggga	taacgcagga	aagaacatgt	2580
gagcaaaagg	ccagcaaaag	gccaggaacc	gtaaaaaggc	cgcgttgctg	gcgtttttcc	2640
ataggeteeg	cccccctgac	gagcatcaca	aaaatcgacg	ctcaagtcag	aggtggcgaa	2700
acccgacagg	actataaaga	taccaggcgt	ttccccctgg	aagctccctc	gtgcgctctc	2760
ctgttccgac	cctgccgctt	accggatacc	tgtccgcctt	totocotteg	ggaagegtgg	2820
cgetttetea	atgctcacgc	tgtaggtatc	tcagttcggt	gtaggtcgtt	cgctccaagc	2880
tgggctgtgt	gcacgaaccc	cccgttcagc	cegacegetg	cgccttatcc	ggtaactatc	2940
gtettgagte	caacceggta	agacacgact	tategeeact	ggcagcagcc	actggtaaca-	3000
ggattagcag	agcgaggtat	gtaggeggtg	ctacagagtt	cttgaagtgg	tggcctaact	3060
acggctacac	tagaaggaca	gtatttggta	tetgegetet	gctgaagcca	gttaccttcg	3120
gaaaaagagt	tggtagctct	tgatccggca	aacaaaccac	cgctggtagc	ggtggttttt	3180
ttgtttgcaa	gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	3240

tttctacggg	gtctgacgct	cagtggaacg	aaaactcacg	ttaagggatt	ttggtcatga	3300
gattatcaaa	aaggatette	acctagatcc	ttttaaatta	aaaatgaagt	tttaaatcaa	3360
tctaaagtat	atatgagtaa	acttggtctg	acagttacca	atgettaate	agtgaggcac	3420
ctatctcage	gatctgtcta	tttcgttcat	ccatagttgc	ctgactcccc	gtcgtgtaga	3480
taactacgat	acgggagggc	ttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	3540
cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	agccggaagg	gccgagcgca	3600
gaagtggtcc	tgcaacttta	teegeeteea	tccagtctat	taattgttgc	cgggaagcta	3660
gagtaagtag	ttegecagtt	aatagtttgc	gcaacgttgt	tgccattgct	acaggcatcg	3720
tggtgtcacg	ctcgtcgttt	ggtatggctt	dattcagctc	cggttcccaa	cgatcaaggc	3780
gagttacatg	atcccccatg	ttgtgcaaaa	aagcggttag	ctccttcggt	cctccgatcg	3840
ttgtcagaag	taagttggcc	gcagtgttat	cactcatggt	tatggcagca	ctgcataatt	3900
ctcttactgt	catgccatcc	gtaagatgct	tttctgtgac	tggtgagtac	tcaaccaagt	3960
cattctgaga	atagtgtatg	cggcgaccga	gttgctcttg	cccggcgtca	atacgggata	4020
ataccgcgcc	acatagcaga	actttaaaag	tgctcatcat	tggaaaacgt	tettegggge	4080
gaaaactctc	aaggatctta	ccgctgttga	gatecagtte	gatgtaaccc	actegtgeac	4140
ccaactgatc	ttcagcatct	tttactttca	ccagcgtttc	tgggtgagca	aaaacaggaa	4200
ggcaaaatgc	cgcaaaaaag	ggaataaggg	cgacacggaa	atgttgaata	ctcatactct	4260
teetttttea	atattattga	agcatttatc	agggttattg	tctcatgage	ggatacatat	4320
ttgaatgtat	ttagaaaaat	aaacaaatag	gggtteegeg	cacatttccc	cgaaaagtgc	4380
cacctgacgt	-ctaagaaacc	attattatca	tgacattaac	ctataaaaat	aggegtatea	4440
cgaggccctt	tcg tc					4455

REIVINDICACIONES

- 1. Un sistema de expresión génica que se puede reprimir, operativo en un insecto, que comprende dos elementos en la misma construcción, en la que:
- 5 el primer elemento comprende al menos un gen de factor de control que hay que expresar y al menos un primer promotor del mismo; y el segundo elemento comprende al menos un segundo promotor y un gen de interés bajo el control de dicho al menos un segundo promotor;
 - en el que un producto del gen de factor de control que hay que expresar sirve como factor de control de la transcripción positivo para ambos, el al menos un primer promotor en dicho primer elemento y el al menos un segundo promotor en dicho segundo elemento, con lo que dicho producto del gen de factor de control, o la expresión de dicho producto del gen factor de control, se puede reprimir,
 - siendo el primer y el segundo promotores, promotores mínimos de insecto, que pueden ser el mismo o diferentes.

10

25

35

60

- Un sistema de acuerdo con la reivindicación 1, en el que se asocia un potenciador con el, o cada, promotor mínimo de insecto, sirviendo el producto génico para potenciar la actividad del, o cada, promotor mínimo de insecto por medio del potenciador.
- 3. Un sistema de acuerdo con la reivindicación 2, en el que el factor del control es el producto génico tTA o un análogo que se puede reprimir del mismo, y en el que una o más unidades operadoras tetO están unidas operativamente al promotor y es el potenciador, sirviendo tTA o sus análogos para potenciar la actividad del promotor por medio del tetO.
 - 4. Un sistema de acuerdo con la reivindicación 3, en el que el gen de factor de control codifica el producto tTAV (SEC ID № 32).
 - 5. Un sistema de acuerdo con cualquier reivindicación anterior, en el que el gen se modifica para casi seguir parcialmente el uso de un codón en una especie en la que el sistema es para su uso.
- 6. Un sistema de acuerdo con cualquier reivindicación anterior, en el que el primer y/o el segundo promotores están sustancialmente inactivos en ausencia del factor de control de transcripción positivo.
 - 7. Un sistema de acuerdo con cualquier reivindicación anterior, en el que el primer y/o el segundo promotores mínimos de insecto se seleccionan de entre: hsp70, un promotor mínimo P, un promotor mínimo basado en Act5C, un fragmento del promotor BmA3, un promotor core Adh y un promotor Act5C, o combinaciones de los mismos.
 - 8. Un sistema de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el primer y/o el segundo promotores mínimos se derivan de, o son un fragmento de, Hsp70.
- 9. Un sistema de acuerdo con cualquier reivindicación anterior que reduce la aptitud biológica cuando se deja de reprimir.
 - 10. Un sistema de acuerdo con la reivindicación 9, que comprende un gen letal bajo el control de un promotor del sistema.
- 45 11. Un sistema de acuerdo con la reivindicación 10, en el que el gen letal es un gen letal dominante.
 - 12. Un sistema de acuerdo con las reivindicaciones 10 u 11, en el que el gen letal y el gen de factor de control son el mismo.
- 50 13. Un sistema de acuerdo con la reivindicación 12, en el que el gen es tTA o un análogo del mismo.
 - 14. Un sistema de acuerdo con las reivindicaciones 10 u 11, en el que el gen letal y el gen factor de control son diferentes.
- 55 15. Un sistema de acuerdo con la reivindicación 9, en el que la reducción de la aptitud biológica es una alta tasa de mortalidad.
 - 16. Un sistema de acuerdo con cualquier reivindicación anterior, en el que la expresión del gen de factor de control es selectiva.
 - 17. Un sistema de acuerdo con la reivindicación 16, en el que la expresión del gen de factor de control está determinado por el sexo.
- 18. Un sistema de acuerdo con la reivindicación 17, que comprende una secuencia letal de *sexo doble*, transformación o específica del sexo.

- 19. Un sistema de acuerdo con cualquier reivindicación anterior, en el que el gen de interés está unido operativamente a al menos un promotor mínimo de insecto.
- 20. Un sistema de acuerdo con la reivindicación 19, en el que el gen de interés es un gen letal dominante.
- 21. Un sistema de acuerdo con la reivindicación 19, en el que el gen de interés codifica ARNi.
- 22. Un sistema de acuerdo con cualquiera de las reivindicaciones 19 a 21, en el que la activación del promotor mínimo de insecto al que está unido operativamente el gen de interés da lugar a un efecto selectivo por medio de un
 producto de transcripción o de traducción de ADN bajo el control del promotor mínimo de insecto.
 - 23. Un sistema de acuerdo con cualquiera de las reivindicaciones 16 a 22, en el que la selección es específica de la especie.
- 15 24. Un sistema de acuerdo con cualquiera de las reivindicaciones 16 a 23, en el que la selección es específica del estadio de desarrollo.
 - 25. Un sistema de acuerdo con cualquier reivindicación anterior, que es al menos dos cistrones, estando dichos cistrones unidos a un potenciador bajo el control del gen de factor de control.
 - 26. Un sistema de acuerdo con cualquier reivindicación anterior, en el que al eliminarse un supresor del gen la expresión del gen de factor de control no tiene sustancialmente ningún efecto sobre la aptitud biológica del adulto en el que se ha eliminado el supresor.
- 25. 27. Un sistema de acuerdo con cualquier reivindicación anterior, limitado por elementos aisladores.
 - 28. Un sistema de acuerdo con la reivindicación 27, en el que los aisladores son aisladores no idénticos.
 - 29. pLA513 tal como se identifica por la SEC ID Nº 16.
 - 30. JY2004-tTA tal como se identifica por la SEC ID № 14.
 - 31. Un vector que comprende el sistema de cualquiera de las reivindicaciones 1 a 28.
- 35 32. Un vector de acuerdo con la reivindicación 31, que comprende además un marcador de expresión.
 - 33. Un vector de acuerdo con la reivindicación 32, en el que el marcador de expresión es una proteína fluorescente o un marcador de resistencia.
- 40 34. Un vector de acuerdo con cualquiera de las reivindicaciones 31 a 33, que comprende además un gen de transposasa que se puede expresar.
 - 35. Un insecto que comprende, en su genoma, un sistema de acuerdo con cualquiera de las reivindicaciones 1 a 28.
- 45 36. Un insecto de acuerdo con la reivindicación 35, que sustancialmente no está amenazado por el sistema bajo condiciones tolerantes cuando el gen factor de control no se expresa.
 - 37. Un insecto de acuerdo con las reivindicaciones 35 o 36 que forma parte de una especie dañina.
- 38. Un insecto de acuerdo con cualquiera de las reivindicaciones 35 a 37, que se selecciona de entre: mosquito, gusano rosado, mosca mediterránea de la fruta y *Drosophila*.
 - 39. Un insecto de acuerdo con cualquiera de las reivindicaciones 35 a 38, en el que la expresión del gen de factor de control es bloqueable o controlable por medio de suplementos de la dieta.
 - 40. Un procedimiento para establecer la compatibilidad de un promotor mínimo de insecto con una especie de insecto, que comprende:
 - 1) Transformar dicha especie con un plásmido, u otro vector, comprendiendo el plásmido o el otro vector:
 - un sistema, de acuerdo con cualquiera de las reivindicaciones 1 a 26, que incluye el promotor mínimo de insecto que hay que ensayar unido operativamente al gen de interés de dicho sistema; y
 - un marcador de transformación, bajo el control de un promotor de marcador de insecto apropiado a dicha especie:
 - 2) Ensayar la expresión del marcador de los individuos transgénicos putativos; y

65

97

60

55

5

20

30

- 3) Ensayar la expresión del gen de interés en los individuos que expresan el marcador.
- 41. El uso del sistema de expresión génica de insectos de acuerdo con cualquiera de las reivindicaciones 10-14 en el control de una población de insectos dañinos.

5

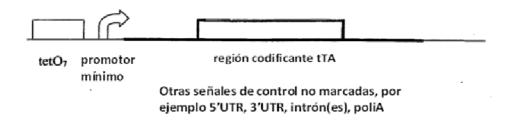


Fig.1

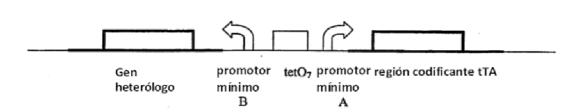


Fig.2

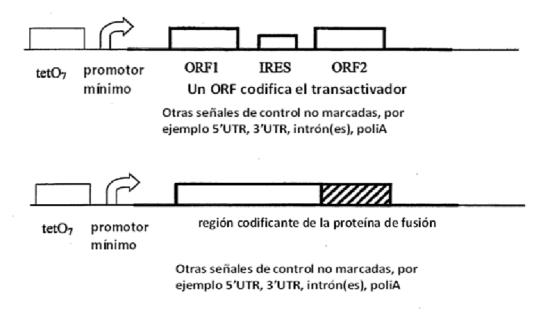
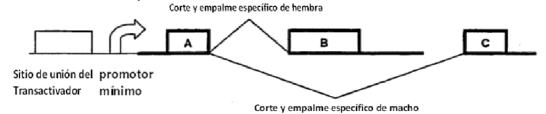
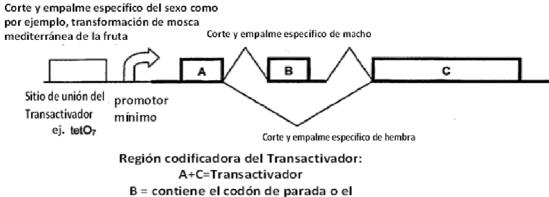



Fig.3

Corte y empalme específico del sexo como por ejemplo, doble sexo de mosca mediterránea de la fruta o Drosophila


Región codificadora del Transactivador:

A = dominio de unión de ADN

B=dominio de activación

C= dominio de represión o neutro

Otras señales de control no marcadas, por ejemplo 5'UTR, 3'UTR, intrón(es), poliA

desplazamiento de marco de lectura

A = dominio de unión de ADN B=aominio de represion

C= dominio de activación

Otras señales de control no marcadas, por ejemplo 5'UTR, 3'UTR, intrón(es), poliA

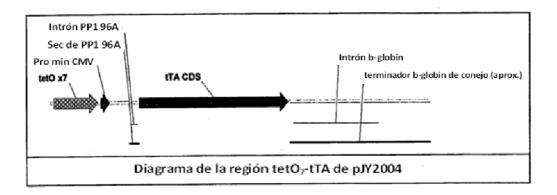


Fig.5

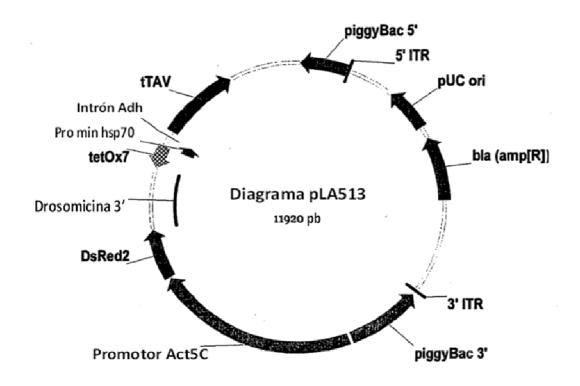


Fig.6

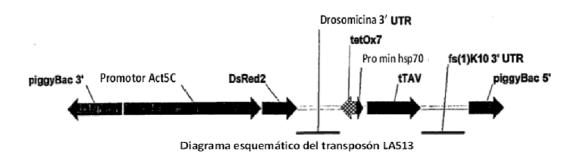


Fig.7

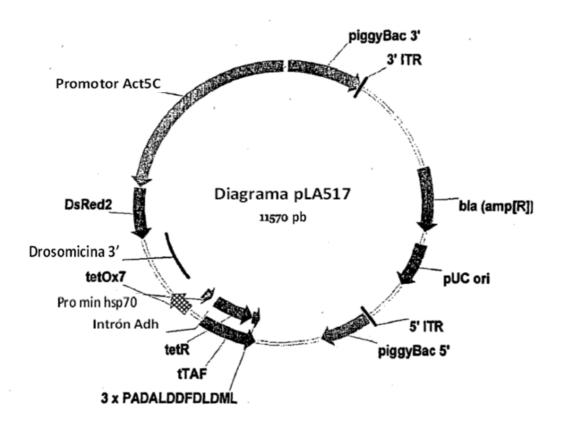


Fig.8



Fig.9

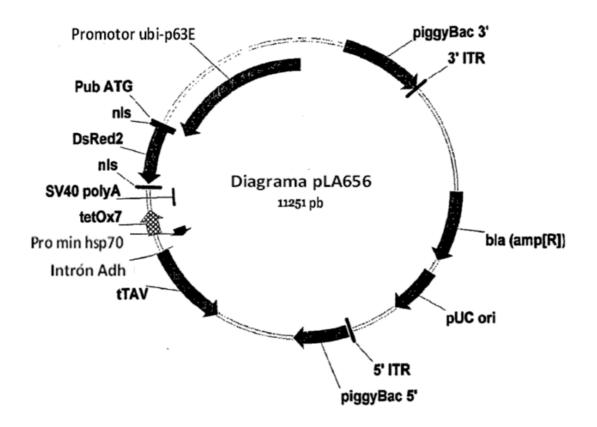


Fig.10

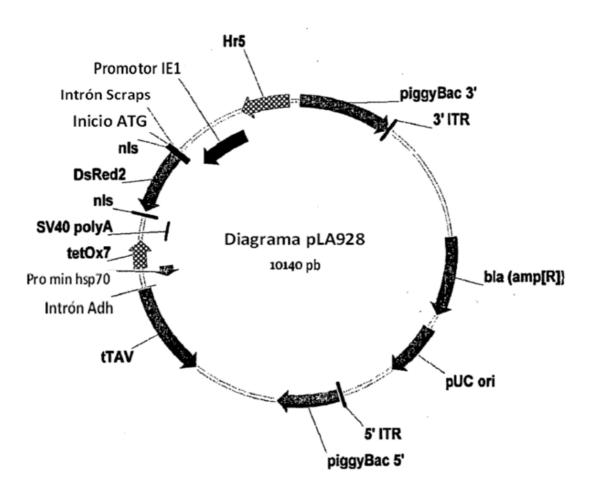


Fig.11

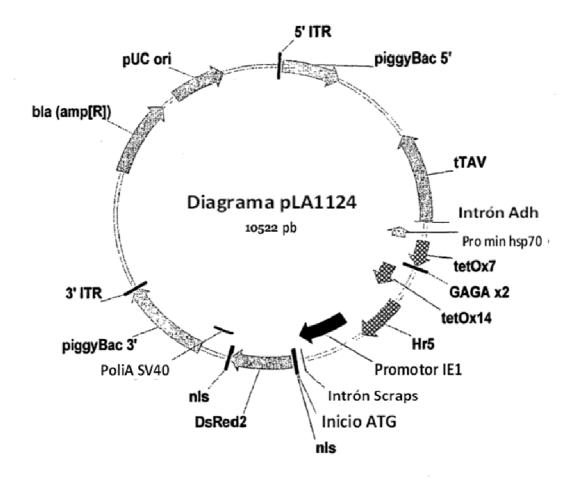


Fig.12

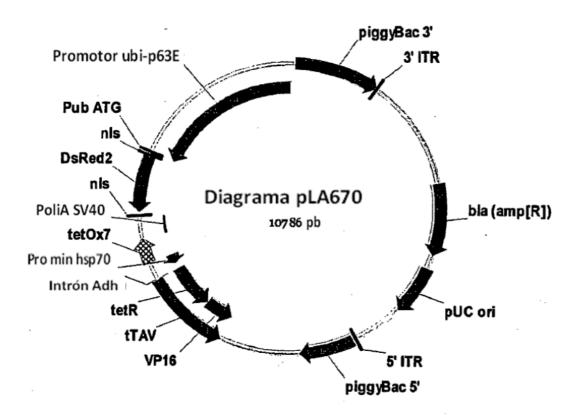


Fig.13

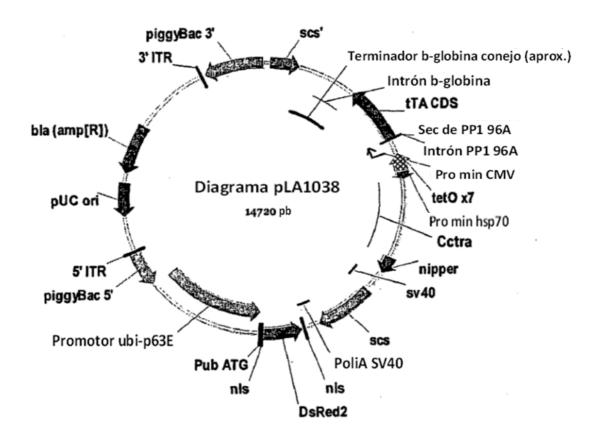


Fig.14

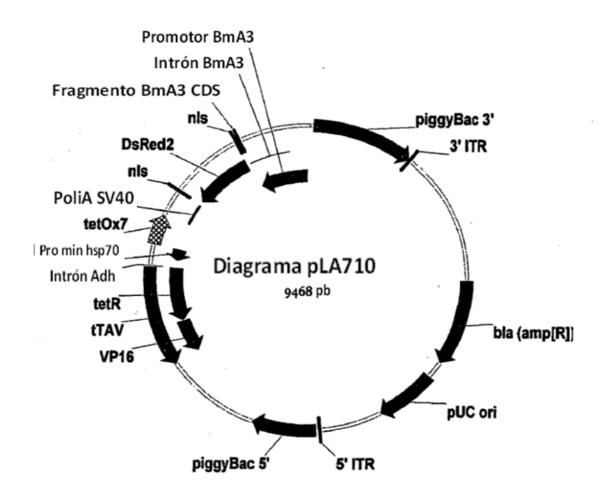


Fig.15

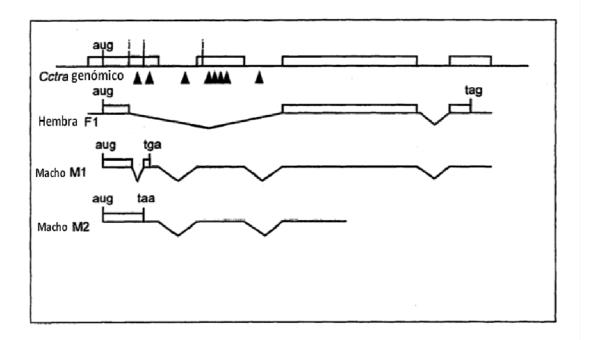


Fig.16

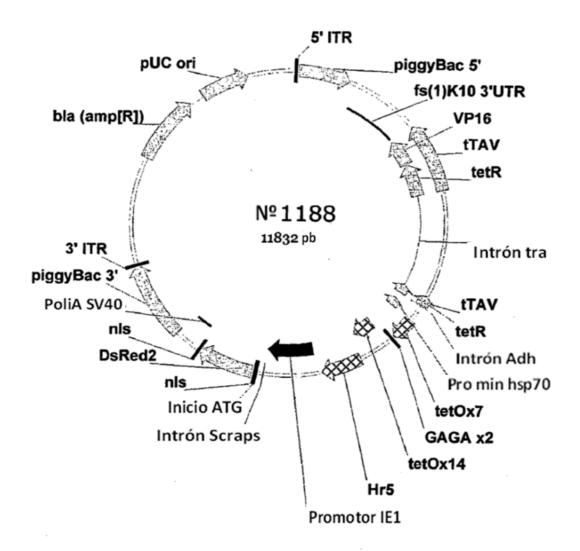
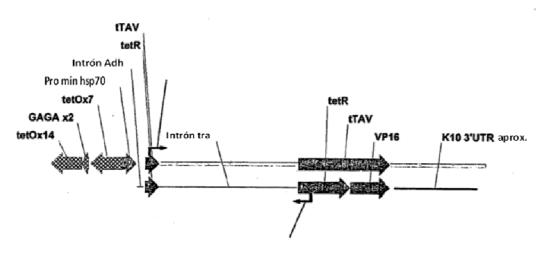



Fig.17

Productos potenciales generados por PCR:

- 1. Si el intrón no se escinde→~1550 pb
- Si el intrón se corta y empalma en forma masculina (M1 o M2)→~600 pb
- Si el intrón se corta y empalma en forma femenina→~200 pb

Fig.18