

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 449 152

51 Int. CI.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 21.11.2008 E 08851071 (4)
 (97) Fecha y número de publicación de la concesión europea: 01.01.2014 EP 2220256

(54) Título: Procedimiento in vitro de diagnóstico del cáncer de piel

(30) Prioridad:

21.11.2007 FR 0759193

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 18.03.2014

(73) Titular/es:

ASSISTANCE PUBLIQUE - HÔPITAUX DE PARIS (100.0%) 3 AVENUE VICTORIA 75004 PARIS, FR

(72) Inventor/es:

SOUFIR, NADEM

(74) Agente/Representante: CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Procedimiento in vitro de diagnóstico del cáncer de piel.

40

45

50

- 5 La presente invención se refiere al diagnóstico del cáncer de piel y, más específicamente, a un procedimiento de diagnóstico *in vitro* del cáncer cutáneo para un sujeto sospechoso de tener o de estar predispuesto al cáncer cutáneo.
- El conocimiento de la predisposición genética al melanoma ha evolucionado considerablemente estos últimos quince años. Se han identificado dos genes importantes de predisposición al melanoma, correspondiendo dichos genes a CDKN2A y CDK4. Estos dos genes están esencialmente implicados en la predisposición familiar y en múltiples casos esporádicos de melanomas (HUSSUSSIAN *et al.*, Nat. Genet., vol. 8, p. 15-21, 1994; KAMB *et al.*, Nat. Genet., vol. 8, p. 23-6, 1994; ZUO *et al.*, Nat. Genet., vol. 12, p. 97-9, 1996).
- Unos estudios recientes han identificado unos sitios principales implicados en la susceptibilidad sobre los cromosomas 1p22 (GILLANDERS *et al.*, Am. J. Hum. Genet., vol. 73, p. 301-13, 2003) y 9q21 (JONSSON *et al.*, J. Natl. Cancer Inst., vol. 97, p. 1377-82, 2005).
- Por lo tanto, existen hoy día unas evidencias recurrentes de una implicación de múltiples factores genéticos en la 20 predisposición al melanoma, y está en progreso la identificación de otras variantes genéticas asociadas a una menor contribución al riesgo de melanoma. Entre estas nuevas variantes, se pueden citar así las variantes de tipo RHC del gen MC1R, para el cual se ha demostrado que constituye un gen del melanoma de baja penetrancia (PALMER et al., Am. J. Hum Genet., vol. 66, p. 176-86, 2000; KENNEDY et al., J. Invest. Dermatol., vol. 117, p. 294-300, 2001; MATICHARD et al., J. Med. Genet., vol. 41, p:e13, 2004; STRATIGOS et al., J. Invest. Dermatol., 2006; LANDI et al., J Natl. Cancer Inst., vol. 97, p:998-1007, 2005; DEBNIAK et al., Int. J. Cancer, vol. 119, p. 2597-602, 2006; HEALY, 25 Photodermatol. Photoimmunol. Photomed., vol. 20, p. 283-8, 2004) y que se trata como un elemento modificador del riesgo de melanoma en los individuos que tienen unas mutaciones de CDKN2A (BOX et al., Am. J. Hum. Genet., vol. 69, p:4, 2001; VAN DER VELDEN et al., Am. J. Hum. Genet., vol. 69, p:4, 2001; CHAUDRU et al., Cancer Epidemiol. Biomarkers Prev., vol. 14, p:2384-90, 2005.). Así, se han identificado cinco variantes alélicas de MC1R (D84E, 30 R142H, R151C, R160W y D294H) por estar muy asociadas con un fenotipo caracterizado por cabello pelirrojo, piel clara, pecas y sensibilidad al sol, y son conocidas ahora bajo el término de variantes RHC.
- Por lo tanto, existe también una necesidad importante de identificar otros genes implicados en la susceptibilidad al cáncer de piel con el fin de identificar claramente y completamente a los sujetos que presentan la mayor predisposición al melanoma, con el fin de seguir estos sujetos con prioridad.
 - La presente invención se basa en el descubrimiento de una asociación fuerte entre algunos alelos del gen *MATP/SLC45A2* y el melanoma y, más específicamente, entre el alelo *SLC45A2 374F* y un riesgo incrementado de melanoma, mientras que el alelo *SLC45A2 374L* presenta un efecto protector frente al melanoma. Además, se había demostrado previamente que el alelo *SLC45A2 374F* estaba asociado a una disminución de la cantidad de melanina fotoprotectora (eumelanina) en la epidermis (NORTON *et al.*, Mol Biol Evol., 24:710-22; 2007), lo cual sugiere o bien una disminución de la expresión, o bien una pérdida de función de la proteína *MATP/SLC45A2*. A partir de los resultados obtenidos por los inventores, es por tanto posible concluir asimismo que la presencia del alelo 374F del gen *MATP/SLC45A2* está también asociada a un riesgo incrementado de melanoma, y que la presencia del alelo *SLC45A2* 374L está asociada a un efecto protector contra el melanoma.
 - Por "gen *MATP/SLC45A2*" se entiende en la presente memoria el gen que codifica para la proteína transportadora asociada a las membranas (MATP) denominada originalmente AIM1, y renombrada recientemente "miembro 2 de la familia de los transportadores de soluto" (o SLC45A2). El gen *MATP/SLC45A2* está situado en el cromosoma 5p (Gen ID 51151) y presenta la secuencia tal como se describe en el número de acceso NT_006576.15 (SEC ID nº 1). La proteína MATP/SLC45A2 (Secuencia del ARNm: número de acceso NM_001012509) presenta la secuencia proteica SEC ID Nº 3 (número de acceso: NP_001012527).
- La proteína *MATP/SLC45A2* está designada en la presente memoria indistintamente por los términos "MATP", 55 "SLC45A2" o "MATP/SLC45A2".
 - Debido a su sobreexpresión establecida en ciertas líneas celulares de melanoma con respecto a su expresión en los melanocitos normales (ausencia de expresión en los tejidos normales), el gen *MATP/SLC45A2* se conocía como un antígeno de melanoma (Harada M *et al.*, Cancer Research, 1089-1094; 2001).
 - La presente invención se basa en el hecho de que el alelo *SLC45A2* 374F está asociado a un riesgo incrementado de melanoma, mientras que el alelo *SLC45A2* 374L presenta por el contrario un efecto protector frente al melanoma.
- El polimorfismo SLC45A2 L374F se conocía ya en la fecha de la invención. Este polimorfismo había sido descrito en efecto en la técnica anterior como uno de los numerosos polimorfismos identificados en individuos que padecen albinismo oculocutáneo. En dichos pacientes, esta variante parece bastante común y el 8,5% de los individuos

ensayados presentan esta variante de manera heterocigota (Rundshagen U. *et al.*, Human mutation; 23:106-110; 2004). Sin embargo, no se sugiere el paralelismo entre este polimorfismo y la pérdida de pigmentación relacionada con el albinismo. Asimismo, Newton *et al.* (Am, J. Hum. Genetic; 69: 981-988; 2001) habían identificado este polimorfismo en 67 individuos, incluso en individuos con pigmentación normal, y esto de manera homocigota. Según este último artículo, la mutación L374F de la proteína SLC45A2 es "neutra" frente a los mecanismos de hipopigmentación responsables del albinismo.

5

10

25

30

35

55

65

Por otra parte, otros estudios han puesto en evidencia la asociación entre el alelo L374F de *MATP/SLC45A2* y la pigmentación humana normal en algunas poblaciones, en particular en los afro-americanos (Norton HL *et al.*, Mol. Biol. Evol, 24(3):710-722, 2007; Graf *et al.*, Hum. Mutat., vol. 25, p. 278-84, 2005). Sin embargo, esta asociación no se podría sugerir en la presente invención, ya que varios centenares de genes influyen en la pigmentación sin por ello estar asociados a una predisposición al melanoma (véase por ejemplo Sulem P, Nature Genetics; volumen 39, número 12, 2007).

Así, los presentes inventores han podido demostrar por otro lado que, a pesar de que está asociada a la pigmentación, la variante de *MATP/SLC45A2* 374 identificada en la presente memoria predice el riesgo de melanoma de manera independiente de las características pigmentarias. Más particularmente, los presentes inventores han mostrado que el efecto *SLC45A2* L374F sobre la predisposición al melanoma persiste incluso después de la estratificación sobre las características de pigmentación o en un modelo de regresión logística que integra los 2 factores de riesgo genético (MATP L374F, variantes MC1R) y los factores de riesgo clínicos (color de los ojos, del cabello, fototipo y número de nevus). Esto sugiere que frente al riesgo de melanoma, la información relacionada con el genotipo SLC45A2 L374F no es redundante con las características de pigmentación, y que esta variante es por lo tanto un factor de riesgo de melanoma fuerte e independiente (véase también el artículo de los inventores Guedj M *et al.*, Human Mutation 29(9), 1154-1160, 2008).

En consecuencia, un primer objeto de la invención se basa en un procedimiento *in vitro* destinado a identificar a un sujeto que padece o que presenta una predisposición al cáncer de piel, caracterizado porque comprende la etapa de análisis de una muestra biológica que procede de dicho sujeto mediante:

a) la detección de un polimorfismo del gen *MATP/SLC45A2* (SEC ID n° 1), asociado a un solo nucleótido (SNP) se selecciona de entre el grupo que comprende la SNP rs 1689182 (nucleótido N en la posición 301 de la SEC ID n° 2, estando el nucleótido G asociado a un cáncer cutáneo) y que conduce a la presencia de una fenilalanina en la posición 374 de la proteína MATP/SLC45A2 (SEC ID n° 3) y el SNP rs26722 (nucleótido N en la posición 301 de la SEC ID n° 4, estando el nucleótido C asociado a un cáncer cutáneo) que conduce a la presencia de un residuo glutamato en la posición 272 de la proteína *MATP/SLC45A2* (SEC ID n° 3).

Tal como se utiliza en la presente memoria, el término "sujeto" se refiere a un mamífero, preferentemente a un ser humano.

Tal como se utiliza en la presente memoria, la expresión "muestra biológica" se refiere a cualquier muestra sólida o líquida procedente de un sujeto. A título de ejemplo de muestras sólidas, se puede citar una muestra de piel y, a título de ejemplo de muestras líquidas se puede citar una muestra de sangre.

Preferentemente, dicha muestra biológica es una muestra sanguínea cuando se efectúa una etapa de detección de un polimorfismo del gen *MATP/SLC45A2*.

Más preferentemente, dicha muestra biológica es una muestra de piel cuando se efectúa una etapa de análisis de la expresión del gen *MATP/SLC45A2*.

Tal como se utiliza en la presente memoria, la expresión "cáncer de piel" se refiere a un cáncer que implica un tipo celular de la epidermis o de la dermis, preferentemente dicho cáncer de piel es un melanoma.

Más ventajosamente, dicho polimorfismo del gen MATP/SLC45A2 está asociado a un nivel de expresión significativamente más bajo del gen MATP/SLC45A2.

Preferentemente, dicho SNP corresponde al SNP rs16891982 (nucleótido N en la posición 301 de la SEC ID nº 2, estando el nucleótido G asociado a un cáncer cutáneo) y que conduce a la presencia de una fenilalanina en la posición 374 de la proteína *MATP/SLC45A2* (SEC ID nº 3).

60 El experto en la materia, frente a sus conocimientos generales y a la presente descripción, podrá identificar simplemente otros polimorfismos del gen *MATP/SLC45A2* asociado a una predisposición al cáncer de piel.

En un modo de realización preferido, el procedimiento de la invención permite identificar a un sujeto que padece o que presenta una predisposición al cáncer de piel analizando, además de uno de los polimorfismos del gen *MATP/SLC45A2* y/o su expresión, un polimorfismo de otro gen de susceptibilidad al melanoma.

Este otro gen de susceptibilidad es, por ejemplo, el gen *MC1R* (gen que codifica para el receptor a la melanocortina 1). En efecto, los presentes inventores han podido demostrar que cuatro polimorfismos del gen del receptor a la melanocortina 1, o *MC1R* (NP 002377.4, SEC ID n° 5), están asociados a un riesgo incrementado de melanoma.

- La proteína MC1R está codificada por el gen humano MC1R (Gen ID 4157), que está transcrito en un ARNm de secuencia NM 002386.3 (SEC ID nº 10). Se han identificado cinco variantes alélicas de MC1R (D84E, R142H, R151C, R160W y D294H) por estar asociadas en gran medida con un fenotipo caracterizado por cabellos pelirrojo, piel clara, pecas y sensibilidad al sol. Estas variantes alélicas son conocidas ahora bajo el término "variantes RHC" (FLANAGAN et al., Hum Mol Genet, vol. 9, p. 2531-7, 2000; DUFFY et al., Hum. Mol. Genet., Vol. 13, p. 447-61, 2004; REES, Am. J. Hum. Genet., vol. 75, p. 739-51, 2004; Sulem P, Nature Genetics; volumen 39, número 12, 2007)
- Ya se han asociado estas variantes con el riesgo de melanoma en múltiples poblaciones (STURM *et al.*, Pigment Cell Res., vol. 16, p. 266-72, 2003; REES, Annu. Rev. Genet., vol. 37, p. 67-90, 2003), y todas se han identificado como generadoras de una pérdida de función en los estudios funcionales (BEAUMONT *et al.*, Hum. Mol. Genet., vol. 14, p. 2145-54, 2005; BEAUMONT *et al.*, Hum. Mol. Genet., 2007). Los inventores han mostrado en la presente memoria también que algunos de estos SNP de *MC1R* están asociados a un riesgo incrementado de melanoma, de manera independiente a los polimorfismos de *MATP/SLC45A2* identificados anteriormente.
- 20 En este modo de realización, el procedimiento de la invención es un procedimiento *in vitro* destinado a identificar a un sujeto que padece o que presenta una predisposición al cáncer de piel, caracterizado porque comprende, además, c) la detección de un polimorfismo del gen *MC1R* (SEC ID nº 10).
- En un modo de realización aún más preferido, la detección del polimorfismo del gen *MC1R* asociado a una predisposición al cáncer de piel corresponde a varios SNP seleccionados preferentemente de entre el grupo que comprende la SNP rs1805006 (nucleótido N en la posición 26 de la SEC ID nº 6 (ss2425919), estando el nucleótido A asociado a un cáncer cutáneo) y que conduce a la presencia de un glutamato en la posición 84 de la proteína MC1R (SEC ID nº 5), el SNP rs1805007 (nucleótido N en la posición 301 de la SEC ID nº 7, estando el nucleótido T asociado a un cáncer cutáneo) y que conduce a la presencia de una cisteína en la posición 151 de la proteína MC1R (SEC ID nº 5), el SNP rs1805008 (nucleótido N en la posición 301 de la SEC ID nº 8, estando el nucleótido T asociado a un cáncer cutáneo) y que conduce a la presencia de un triptófano en la posición 160 de la proteína MC1R (SEC ID nº :5), el SNP rs1805009 (nucleótido N en la posición 26 de la SEC ID Nº 9, estando el nucleótido C asociado a un cáncer cutáneo) y que conduce a la presencia de una histidina en la posición 294 de la proteína MC1R (SEC ID nº :5).
- Son bien conocidas por el experto en la materia unas técnicas para identificar un polimorfismo del gen *MATP/SLC45A2* o de *MC1R*, e incluyen en particular el polimorfismo de longitud de fragmentos de restricción (RFLP), una técnicas de hibridación, las técnicas de secuenciación del ADN, la resistencia a la exonucleasa, la microsecuenciación, la extensión en fase sólida que utiliza unos ddNTPs, la extensión en solución utilizando unos ddNTPs, unos métodos de ligadura de oligonucleótidos, los métodos para detectar los SNP tales como la hibridación dinámica específica de alelo, la reacción en cadena de la ligasa (LCR), la minisecuenciación, la utilización de chips de ADN o también la hibridación de oligonucleótidos específicos de alelo como complemento de una sonda que presenta un marcado simple o doble y con la ayuda de reacciones de PCR.

35

- 45 Preferentemente, dicha técnica para identificar un polimorfismo del gen MATP/SLC45A2 o de *MC1R* es una técnica que permite detectar un polimorfismo asociado a un solo nucleótido (SNP).
 - El análisis de la expresión del gen *MATP/SLC45A2* se puede realizar gracias a uno de los numerosos métodos bien conocidos por el experto en la materia y que permiten la detección del producto de expresión de dicho gen, tal como su ARN o su producto proteico.
- En un modo de realización preferido, la expresión del gen *MATP/SLC45A2* se efectúa por análisis de la expresión de transcritos de ARNm o de precursores de ARNm, tal como un ARN nativo, de dicho gen. Dicho análisis se puede realizar preparando el ARNm/ADNc de células de una muestra biológica de un paciente, e hibridación de ARNm/ADNc con un polinucleótido de referencia. El ARNm/ADNc preparado se puede utilizar en un análisis por hibridación o amplificación que incluye, sin limitarse a ellos, los análisis Southern y Northen, los análisis por PCR ("polymerase chain reaction"), tal como la PCR cuantitativa (TAQMAN) y la utilización de sondas ("probes arrays") tales como las matrices ADN GENECHIP[®] (AFFYMETRIX).
- Ventajosamente, el análisis de la expresión del nivel de ARNm transcrito a partir de un gen *MATP/SLC45A2* implica un procedimiento de amplificación de los ácidos nucleicos, como por ejemplo la RT-PCR (modo de realización experimental descrito en la patente US nº 4.683.202), la reacción en cadena por la ligasa (BARANY, Proc. Natl. Acad. Sci. USA, vol. 88, p. 189-193, 1991), la replicación de secuencias auto-sostenida ("self sustained sequence replication") (GUATELLI *et al.*, Proc. Natl. Acad. Sci. USA, vol. 87, p. 1874-1878, 1990), el sistema de amplificación transcripcional, (KWOH *et al.*, Proc. Natl. Acad. Sci. USA, vol. 86, p. 1173-1177, 1989), la "Q-Beta Replicase" (LIZARDÏ *et al.*, Biol. Technology, vol. 6, p. 1197, 1988), la "rolling circle replication" (Patente U.S. nº 5.854.033) o

cualquier otro método de amplificación de ácidos nucleicos, seguido de una etapa de detección de las moléculas amplificadas por técnicas bien conocidas por el experto en la materia. Estos modos de detección son particularmente útiles para la detección de moléculas de ácidos nucleicos en muy bajas cantidades. Tal como se utilizan en la presente memoria, los cebadores de amplificaciones se definen como un par de moléculas de ácidos nucleicos que pueden emparejarse respectivamente a las regiones 3' y 5' de manera específica (hebra positiva y negativa, o a la inversa) y encuadran una región corta de dicho gen. De manera general, los cebadores de amplificación tienen una longitud de 10 a 30 nucleótidos y permiten la amplificación de una región de una longitud comprendida entre 50 y 200 nucleótidos.

En otro modo de realización preferido, la medición de la expresión del gen *MATP/SLC45A2* se realiza por análisis de la expresión de la proteína traducida a partir de dicho gen. Dicho análisis se puede realizar utilizando un anticuerpo (por ejemplo un anticuerpo radiomarcado, marcado con un cromóforo, un fluoróforo, o una enzima), un derivado de anticuerpo (por ejemplo un anticuerpo conjugado a un sustrato o a una proteína o un ligando de una proteína de un par ligando/proteína (por ejemplo biotina-estreptavidina)) o un fragmento de anticuerpo (por ejemplo un anticuerpo de una sola cadena, una región hipervariable de un anticuerpo aislado, etc.) que se une específicamente a la proteína traducida a partir del gen *MATP/SLC45A2*.

Dichos análisis se pueden realizar mediante numerosas técnicas al alcance del experto en la materia que incluyen, sin limitarse a ellos, los ensayos inmunológicos basados en la utilización de la actividad enzimática ("enzyme immunoassay" EIA), los ensayos inmunológicos basados en la utilización de isotopos radioactivos (RIA), el análisis por transferencia Western y los ensayos ELISA ("enzyme linked immunoabsorbant assay").

A título de ejemplo de anticuerpos dirigidos contra la proteína *MATP/SLC45A2*, se pueden citar los anticuerpos disponibles en ABNOVA CORPORATION o en SANTA CRUZ BIOTECHNOLOGY.

Por lo tanto, unos anticuerpos policionales también pueden ser preparados por inmunización de un animal apropiado, tal como un ratón, un conejo o una cabra, con la proteína *MATP/SLC45A2* (Homo Sapiens; SEC ID n° 3) o un fragmento de ésta. La concentración de anticuerpos en el animal inmunizado puede estar seguida en el transcurso del tiempo por unas técnicas estándares, tales como un ensayo ELISA, utilizando un polipéptido inmovilizado. Un cierto tiempo después de la inmunización, por ejemplo cuando los títulos de anticuerpos específicos son más elevados, las células que producen los anticuerpos pueden ser extraídas del animal y ser utilizadas para preparar unos anticuerpos monoclonales (mAc) mediante las técnicas estándares, tales como la técnica de los hibridomas inicialmente descrita por KOHLER y MILSTEIN (Nature, vol. 256, p. 495-497, 1975), la técnica de los hibridomas de las células B humanas (KOZBOR *et al.*, Immunol., vol.4, p. 72, 1983), la técnica de los hibridomas EBV (COLE *et al.*, En Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., p. 77-96, 1985) o la técnica de los triomas. La técnica para la producción de hibridomas es bien conocida (véase: Current Protocols in Immunology, COLIGAN *et al.* ed., John Wilev & Sons, New York, 1994). Los hibridomas que producen el anticuerpo monoclonal deseado son detectados por cribado de los sobrenadantes de cultivo de hibridomas para los anticuerpos que se unen al polipéptido de interés, por ejemplo utilizando un ensayo ELISA estándar.

El procedimiento según la presente invención puede comprender además una etapa de comparación del nivel de expresión del gen *MATP/SLC45A2* en la muestra biológica de dicho sujeto con el nivel de expresión de dicho gen en una muestra control.

Como muestra control, se puede utilizar en particular una muestra biológica que procede de un sujeto sano, a saber que no padece y que no está predispuesto a un cáncer de piel.

Un nivel de expresión significativamente más bajo que el nivel de expresión del mismo gen en la muestra control indica que el paciente padece o está predispuesto a padecer un cáncer de piel.

Un "nivel de expresión significativamente más bajo del gen *MATP/SLC45A2*" se refiere a un nivel de expresión en una muestra biológica que es inferior a por lo menos el 20% del nivel normal de expresión de dicho gen, preferentemente inferior a por lo menos el 50% del nivel normal de expresión de dicho gen, y de manera particularmente preferida inferior en por lo menos el 90% al nivel normal de expresión de dicho gen.

El nivel "normal" de expresión del gen es el nivel de expresión de dicho gen en una muestra control que corresponde potencialmente a la muestra biológica de un paciente que no presenta cáncer de piel o, preferentemente, a la media del nivel de expresión de dicho gen en diferentes muestras control.

Otro objeto de la presente invención se basa en la utilización, para la preparación de una composición destinada al tratamiento y/o a la prevención de un cáncer de piel en un sujeto, de un compuesto que aumenta específicamente la expresión del gen MATP/SLC45A2 en una célula de la piel.

Por célula de la piel, se entiende una célula de la dermis o de la epidermis. Preferentemente, dicha célula de la piel tiene un melanocito.

5

40

20

25

30

35

50

Preferentemente, dicho compuesto que aumenta de manera específica la expresión del gen *MATP/SLC45A2* se selecciona de entre el grupo que comprende la proteína *MATP/SLC45A2* y sus derivados, un polinucleótido que codifica para dicha proteína o un vector que comprende dicho polinucleótido.

5 Por proteína *MATP/SLC45A2*, se entiende preferentemente la proteína *MATP/SLC45A2* de *Homo Sapiens* (NP 001012527; SEC ID nº 3).

10

15

20

25

30

40

45

Por "derivado" se entiende una proteína cuya secuencia presenta un porcentaje de identidad de por lo menos el 80%, por ejemplo de por lo menos el 85%, preferentemente de por lo menos el 90%, y de manera particularmente preferida de por lo menos el 95% con la secuencia polipeptídica de la proteína *MATP/SLC45A2*.

Por porcentaje de identidad entre dos secuencias polipeptídicas, se entiende el porcentaje de aminoácidos idénticos, entre dos secuencias que deben ser comparadas, obtenido con la mejor alineación posible de dichas secuencias. Este porcentaje es puramente estadístico y las diferencias entre las dos secuencias se reparten aleatoriamente en toda la longitud de las secuencias de aminoácidos. Por mejor alineación posible o alineación óptima, se entiende la alineación que permite obtener el porcentaje de identidad más elevado. Las comparaciones de secuencias entre dos secuencias de aminoácidos se realizan habitualmente comparando dichas secuencias después de que éstas hayan sido alineadas según la mejor alineación posible; la comparación se realiza entonces sobre segmentos de comparación con el fin de identificar y comparar unas regiones de similitud. La mejor alineación posible para efectuar una comparación se puede realizar utilizando el algoritmo de homología global desarrollado por SMITH y WATERMAN (Ad. App. Math., vol. 2, p. 482, 1981), utilizando el algoritmo de homología local desarrollado por NEDDLEMAN y WUNSCH (J. Mol. Biol., vol. 48, p. 443, 1970), utilizando el método de similitud desarrollado por PEARSON y LIPMAN (Proc. Natl. Acd. Sci. USA, vol. 85, p. 2444, 1988), utilizando unos programas de ordenadores basados en tales algoritmos (GAP, BESTFIT, BLAST P, BLAST N, FASTA, TFASTA, Genetics Computer Group, 575 Science Dr., Madison, WI USA), utilizando los algoritmos de alineación múltiples MUSCLE (Edgar, Robert C., Nucleic Acids Research, vol. 32, p. 1792, 2004). Para obtener la mejor alineación posible, se utilizará preferentemente el programa BLAST con la matriz BLOSUM 62 o la matriz PAM 30. El porcentaje de identidad se determina comparando las dos secuencias alineadas de manera óptima, dichas secuencias podrán comprender unas adiciones o deleciones con respecto a la secuencia de referencia con el fin de obtener la mejor alineación posible entre estas dos secuencias. El porcentaje de identidad se calcula determinando el número de posición idéntica entre las dos secuencias, dividiendo el número obtenido por el número total de posiciones comparadas y multiplicando el resultado obtenido por 100 para obtener el porcentaje de identidad entre estas dos secuencias.

Por polinucleótido, se entiende una secuencia de ARN o de ADN, preferentemente dicho polinucleótido es una secuencia de ADN.

Más ventajosamente, dicho polinucleótido está unido de manera operacional a una secuencia de expresión génica que dirige la expresión de dicho polinucleótido a una célula eucariota, preferentemente a una célula de la piel. Dicha secuencia de expresión génica corresponde a cualquier secuencia de regulación, tal como una secuencia promotora o una combinación entre una secuencia promotora y una secuencia activadora, que facilita la transcripción y la traducción eficaz del polipéptido tal como se ha descrito anteriormente. Dicha secuencia de expresión génica puede corresponder a una secuencia promotora viral o eucariota, constitutiva o inducible.

A título de ejemplo de vectores que comprenden dicho polinucleótido, se pueden citar los plásmidos, los cósmidos y los virus, en particular los adenovirus y los retrovirus.

Ventajosamente, dicho compuesto que aumenta específicamente la expresión del gen MATP/SLC45A2 puede estar asociado a un soporte farmacéuticamente aceptable.

- A título de ejemplo de soporte farmacéuticamente aceptable, la composición puede comprender unas emulsiones, unas microemulsiones, unas emulsiones aceite en agua, unos lípidos anhidros y unas emulsiones agua en aceite, u otros tipos de emulsiones.
- La composición descrita puede comprender además uno o varios aditivos tales como los diluyentes, los excipientes, los estabilizantes y los conservantes. Dichos aditivos son bien conocidos por el experto en la materia y están descritos en particular en "Ullmann's Encyclopedia of Industrial Chemistry, 6ª Ed." (diferentes editores, 1989-1998, Marcel Dekker); y en "Pharmaceutical Dosage Forms and Drug Delivery Systems" (ANSEL *et al.*, 1994, WILLIAMS & WILKINS).
- Otro objeto descrito se refiere a un procedimiento de selección *in vitro* de un compuesto susceptible de ser útil para el tratamiento del cáncer de piel, caracterizado porque comprende las etapas siguientes:
 - a) obtención de una célula que expresa el gen MATP/SLC45A2;
- b) puesta en contacto de dicha célula con por lo menos un compuesto a ensayar;

- c) comparación de la expresión del gen MATP/SLC45A2 entre las etapas a) y b);
- d) selección del compuesto que induce un aumento del nivel de expresión del gen MATP/SLC45A2 en la célula en la etapa b) con respecto al nivel de expresión de dicho gen en la etapa a).

Ventajosamente, dicha célula que expresa el gen MATP/SLC45A2 se obtiene a partir de un sujeto que presenta un cáncer de piel.

Preferentemente, dicha célula presenta un nivel de expresión significativamente más bajo del gen *MATP/SLC45A2*, por comparación con una célula extraída de un sujeto que no presenta cáncer de piel.

Preferentemente, dicha célula corresponde a una célula de la piel, y más preferentemente a una célula procedente o derivada de un melanoma.

Tal como se utiliza en la presente memoria, el término "compuesto" se refiere a cualquier tipo de moléculas tales como los polipéptidos, los polinucleótidos, los azúcares, los lípidos o cualquier otro compuesto químico.

Los métodos para determinar la expresión del gen *MATP/SLC45A2* son bien conocidos por el experto en la materia. Por ejemplo, se pueden utilizar los métodos descritos anteriormente.

La presente invención se describirá con mayor detalle ahora con la ayuda de los ejemplos que ilustran la invención sin limitar de ninguna manera su ámbito.

Ejemplos

5

10

20

25

50

Materiales y métodos

Estudio de la población

- Se incluyó prospectivamente en el estudio entre 2003 y 2003, 1019 pacientes y 1466 sujetos control, todos de origen caucásico. Los pacientes "melanoma" se reclutaron entre 2003 y 2006 en la cohorte del melanoma (MELAN-COHORT), una cohorte prospectiva que incluye a todos los pacientes con un melanoma del departamento dermatológico de todas las universidades afiliadas al hospital de París (Bichat, Percy, Ambroise Paré, Henri Mondor, Cochin y los hospitales de Saint Louis). El estudio de población está constituido por pacientes de 18 a 80 años de edad con melanomas malignos histológicamente probados. Los pacientes no eran incluidos si eran inmunodeficientes (VIH o trasplantados), o si sufrían de genodermatosis, que predispone a un cáncer de piel (albinismo, síndrome de Gorlin, o epiteliomatosis pigmentaria). El grupo control estaba compuesto por 1466 personas caucásicas, sin ningún antecedente de cáncer de piel.
- 40 El comité de ética médica local aprobó el protocolo de estudio. Se obtuvo un consentimiento informado de todos los pacientes y sujetos control inscritos para el estudio. Después de dicho consentimiento informado, el ADN genómico se aisló de los leucocitos de la sangre periférica de todos los participantes utilizando el QIAAMP BLOOD MINI KIT (QIAGEN).
- 45 Recogida de los datos sobre los factores de riesgo del melanoma

Los datos sobre las características de la pigmentación se han recogido para todos los pacientes y los 220 sujetos control. Se realizó una entrevista personal y estandarizada, y un examen de la piel del conjunto del cuerpo por un dermatólogo. El informe de los resultados utilizó un formulario de informe de examen estándar.

Las características de la piel se midieron por tipo de piel según la clasificación de FISTZPATRICK (FISTZPATRICK, Arch. Dermatol, vol.124, p. 869-71, 1988) y se evaluaron de la siguiente manera: siempre quemada, nunca morena (tipo de piel II); siempre morena a veces quemada (tipo de piel III); y siempre morena, nunca quemada (tipo de piel IV). El color de los ojos se clasificó como oscuro (marrón o negro) o claro (azul, verde/castaño o gris) y el color original del cabello (antes del cabello gris) se clasificó utilizando 5 categorías: pelirrojo, rubio, marrón claro u oscuro, y negro. También se han evaluado por medio de un examen físico el recuento total de los nevus del cuerpo (dividido en 4 categorías: <10, 10-50, 50-100, >100), la presencia o ausencia de síndrome del lunar atípico (SLADE et al., J Am. Acad. Dermatol., vol. 32, p. 479-94, 1995) y la presencia o ausencia de lentigos solares. Por otra parte, en el grupo de melanoma, también se han detallado la localización anatómica de los melanomas, la edad del paciente a diagnosticar y unos datos histopatológicos pertinentes.

Genotipo MC1R, SLC45A2 y OCA2 variables

Los polimorfismos de *MC1R* retenidos para el análisis genético eran los asociados con el fenotipo color de cabello pelirrojo (Alelos RHC) e incluyen c.252 C>A p.D84E, c425G>A p.R142H, c.p.R151C, c.476 C>T p.R160W y c.880G>C p.D294H (FLANAGAN *et al.* Hum Mol Genet, vol. 9, p. 2531-7, 2000; DUFFY *et al.*, Hum. Mol. Genet., vol

13, p. 447-61, 2004; REES, Am. J. Hum. Genet., vol. 75, p. 739-51, 2004). Estas variantes están también asociadas con el riesgo de melanoma en múltiples poblaciones (STURM *et al.*, Pigment Cell Res., vol. 16, p. 266-72, 2003; REES, Annu. Rev. Genet., vol. 37, p. 67-90, 2003), y han sido todas identificadas como generadoras de una pérdida de función en los estudios funcionales (BEAUMONT *et al.* Hum. Mol. Genet., vol. 14, p. 2145-54, 2005; BEAUMONT *et al.*, Hum. Mol. Genet., 2007). Las 2 variantes de *SLC45A2* estudiadas eran unos SNP no-sinónimos (C.1122 C>G, L374F y c.814G>A, E372K) que habían sido identificadas anteriormente como asociadas con la pigmentación humana normal (GRAF *et al.*, Hum. Mutat., vol. 25, p. 278-84, 2005). Las variantes de OCA2 estudiadas eran los 3 SNP intrónicos recientemente presentados por estar asociados en gran medida con el color de los ojos, del cabello y de la pigmentación de la piel (rs7495174, rs4778241 y rs4778138) en una población anglo-céltica de Queensland. (DUFFY *et al.*, Am. J. Hum. Genet., vol. 80, p. 241-52, 2007).

Todos los SNP han sido genotipados utilizando el sistema de genotipaje de SNP por PCR de KBIOSCIENCE. El sistema de genotipaje de SNP por PCR de KBIOSCIENCE es un nuevo sistema homogéneo y fluorescente de genotipaje, que utiliza una forma única de PCR específica de alelo que es distinta y diferente del método de discriminación alélica convencional. Este método de genotipaje se validó después por un método de genotipaje independiente, el método de genotipaje de discriminación alélica por ensayo TAQMAN de los SNP (APPLIED BIOSYSTEMS). Además, para los 2/3 de los SNP, la verificación de los genotipos correspondientes también se ha efectuado mediante la secuenciación de 50-100 muestras de ADN (ABRIPRISM 3130).

El genotipaje de las variantes de *MC1R* se efectuó con éxito en 828 pacientes (82%) y 1067 del control (72,78%). Las 2 variantes *SLC45A2* han podido ser genotipadas eficazmente en el 95% de los pacientes y de los control. El genotipaje de las variantes *OCA2* también se han efectuado para el 95% de los pacientes y de los control, salvo para OCA2-rs477824, que se ha podido genotipar sólo sobre el 81,2% de los pacientes.

25 Análisis estadístico

10

15

30

35

40

45

50

55

El elemento principal del análisis estadístico se realizó utilizando el COMPUTER R PACKAGE (versión 2.4.1). El nivel de significación para todos los ensayos se fijó a un nivel que corresponde a un porcentaje de error de tipo I de α = 5%. Tomando en consideración el número de ensayos realizados y el nivel de sus asociaciones, la mayoría de ellos habrían permanecido significativos si se hubiera aplicado una corrección de BONFERRONI para tomar en consideración el problema de ensayos múltiples. Todas las relaciones odds (OR) se han detallado con su intervalo de confianza del 95% (CI).

Asociación de los factores genéticos con el melanoma

La conformidad con el equilibrio HARDY-WEINBERG se ha ensayado en los controles utilizando un clásico, un grado de libertad, el ensayo chi al cuadrado. El análisis de la asociación individual de los factores genéticos con los melanomas (las variables MC1R, SLC45A2 y OCA2) se ha realizado comparando los casos y los controles utilizando un ensayo exacto de FISHER de genotipos (codificado con 0, 1 y 2, siendo 0 el genotipo más frecuente). Los OR correspondientes han sido fijados utilizando un análisis lógico estándar de regresión sobre los datos con, para cada polimorfismo, la referencia tomada como el genotipo más frecuente (0). Además, se realizó un análisis de la diversidad haplotípica sobre cada gen por el algoritmo de maximización de la esperanza (EM) utilizando el programa ARLEQUIN (Versión 3.01) (SCHNEIDER et al., Genetics and Biometry Lab, Dept of Anthropology, University of Geneva 2000). El desequilibrio de unión (LD) entre los pares de sitios polimórficos se midió en los controles utilizando las estadísticas comunes D, D' (LEWONTIN, Genetics, vol. 49, p. 49-67,1964) y r (HILL & ROBERTSON, Genetics, vol. 60, p. 615-28, 1968). Por último, las interacciones gen-gen se evaluaron utilizando el mismo sistema de regresión lógica.

Asociación de los factores clínicos con los melanomas

También se realizaron los análisis individuales de los factores clínicos habituales (color de la piel: pálida e intermedia frente a oscura, tipo de piel: I-II frente a III-IV, color del cabello: pelirrojo-rubio-marrón claro frente a marrón-negro, color de los ojos: claro/pálido frente a negro, el número de nevus: <50 frente a >50, las efelides y los lentigos dorsales: presencia frente a ausencia, comparando todos los casos y 220 del control con un ensayo exacto de genotipos de FISHER. Los OR correspondientes se han utilizado de nuevo utilizando un análisis de regresión lógica sobre los datos.

Asociación de los factores genéticos con los factores clínicos

60 En la medida en la que los tres genes analizados intervienen en la pigmentación, se realizaron también los análisis de asociación individual de los factores genéticos para cada factor clínico, adaptados al estatuto control-caso, de manera que ninguna asociación observada se debía a la asociación entre el melanoma y los factores clínicos considerados. Los OR correspondientes se examinaron por medio de las regresiones lógicas.

Integración de la genética y de los factores clínicos

Debido a que se han asociado con los 3 genes y con el melanoma, los factores clínicos pueden crear unas confusiones potenciales cuando se analiza la asociación de estos genes con la enfermedad. En esta parte de los análisis, se ha utilizado un modelo lógico basado en un grupo de factores clínicos y genéticos para verificar si las asociaciones genéticas con el melanoma se revelaban también en presencia de los factores clínicos. Por último, los OR se han recalculado para los factores genéticos y clínicos seleccionados finalmente por ser los más pertinentes para el melanoma.

10 Resultados

Asociación de los factores genéticos con el melanoma

Para los controles, las frecuencias de genotipo para todos los polimorfismos ensayados se sitúan en el equilibrio de HARDY-WEINBERG. 15

Los resultados para MC1R se presentan en la tabla I.

Tabla I

Genotipo MC1R	Caso	Control	Р	OR (CI)
0/0	510	841		referencia
1/0	280	202	< 2,2 x 10 ⁻¹⁶	2,29 (1,85-2,82)
1/1	48	24		3,3 (2-5,45)
Alelos RHC de MC1R	Caso	Control		OR (CI)
Sin alelos RHC	0,793	0,887		referencia
R151C	0,088	0,0042		2,35 (1,78-3,11)
R160W	0,065	0,038		1,88 (1,40-2,54)
D294H	0,042	0,019		2,49 (1,67-3,71)
R142H	0,013	0,008		1,73 (0,92-3,28)
D84E	0,0116	0,006		2,10 (1,04-4,25)

Los resultados han mostrado que la presencia de variantes RHC MC1R está asociada en gran medida con el riesgo de melanoma (P< 2,20 x 10⁻¹⁶). El riesgo de melanoma aumenta con el número de alelos RHC de OR = 2,29 con un alelo variante, a OR = 3,3 con dos alelos variantes. Por consiguiente, el efecto de estos polimorfismos sobre la enfermedad es prácticamente acumulativo. Los resultados muestran las frecuencias alélicas menores para los 5 polimorfismos RHC y, con una excepción (R142H), son todos significativamente, individualmente más elevados en los pacientes con un melanoma que en los control.

Además, la asociación de las variantes de MC1R con el melanoma sigue siendo significativa después del ajuste con el tipo de piel $(P = 1.6 \times 10^{-6})$, el color del cabello $(P = 9.3 \times 10^{-7})$, el color de los ojos $(P = 6.48 \times 10^{-7})$, el color del cabello (P = 8×10^{-7}) y el número de nevus (P = 3.3×10^{-8}).

Las tablas IIa y IIB resumen los resultados para las variantes de *SLC45A2*.

Tabla IIa: genotipo SLC45A2 para los sujetos y los control

CT TT		305 19 1,10 x	referencia (10 ⁻⁶ 0,39 (0,26-0, 0,93 (0,16-5,
TT	33 1	19 1,10 x	
TT	2	3	0.93 (0.16-5
		•	0,50 (0,10 5,
0,	,019 0,0	044	
GG 8	395 1,°		referencia
GC	65 24	46 2,12 x	10 ⁻¹⁵ 0,34 (0,26-0,
CC	5 2	20	0,32 (0,24-0,
0),39 0,	,10	
	GG 8 GC CC	GG 895 1, GC 65 2 CC 5 2	GG 895 1,160 GC 65 246 2,12 x CC 5 20 0,39 0,10

Tabla Ilb: genotipo SLC45A2 para los sujetos y los control

SLC45A	A2 haplotipos	Caso (n=1882)	Control (n=2794)	OR (CI)
1	C ₈₁₄ G ₁₁₂₂	1807 (96)	2509 (89,8)	referencia
2	C ₈₁₄ C ₁₁₂₂	39 (2,1)	164 (5,9)	0,33 (0,33-0,47)
3	T814C1122	30 (1.16)	112 (4)	0.37 (0.25-0.56)

20

25

30

35

SLC45/	A2 haplotipos	Caso (n=1882)	Control (n=2794)	OR (CI)
4	T ₈₁₄ G ₁₁₂₂	6 (0,32)	9 (0,34)	0,92 (0,34-2,5)
1/1	CG/CG	867 (92,1)	1,126(80,6)	Referencia
1/2	CG/CC	39 (4,1)	148(10,6)	0,34 (0,24-0,49)
1/3	CG/TC	28 (3)	100 (7,16)	0,36 (0,24-0,56)

Los resultados muestran que las 2 variantes de *SLC45A2* (L374F y E272K) están estrechamente asociadas con el melanoma (P=2,12 x 10⁻¹⁵ y 1,10 x 10⁻⁶ respectivamente), con un desequilibrio de unión prácticamente completo entre los dos polimorfismos (D = 0,036, D' = 0,92 y r =0,59). La frecuencia alélica *SLC45A2* 374F en los control es de 0,90, mientras que es de 0,96 para los pacientes (P=1,30 10 x 10⁻¹¹). El análisis del haplotipo ha confirmado la asociación entre *SLC45A2* y el melanoma (el ensayo exacto de FISHER aplicado a las frecuencias de Haplotipo da P=3,67 x 10⁻¹⁵, tabla 2b). El haplotipo C₈₁₄C₁₁₂₂ es el más frecuente, habiendo sido encontrado en el 96% de los pacientes y el 89,8% de los control, mientras que los haplotipos C₈₁₄C₁₁₂₂ y T₈₁₄C₁₁₂₂ son significativamente más frecuentes en los controles (una diferencia que era debida a la variante L374F, como se precisa en la tabla 2b) y tienen por tanto un efecto protector contra el melanoma. Un análisis similar de los diplotipos indica que 2 diplotipos (CG/CC y CG/TC) que están presentes hasta en el 17,76% de los controles procuran una protección contra el melanoma, mientras que el diplotipo más común (CG/CG) es significativamente más frecuente para los pacientes (92,1%) que para los control (80,1%) (el valor de P del ensayo exacto de FISHERS de los diplotipos = 1,89 x 10⁻¹³).

Por último, como los resultados han mostrado que el gen *MATP/SLC45A2* está unido en gran medida con el melanoma, la secuencia codificante entera (7 exones) de este gen se secuenció para 48 pacientes que padecen melanomas, pero no se han identificado ninguna otra variante no sinónima o mutación patógena del gen *SLC45A2*.

De manera interesante, la asociación de *MATP/SLC45A2* L374F con el melanoma sigue siendo significativa después de la adaptación con el tipo de piel (P = 1.6×10^{-6}), el color del cabello (P = 8.7×10^{-7}), el color de los ojos (P = 1.21×10^{-4}), y el número de nevus (P = 1×10^{-5}).

En el caso de *OCA2*, un solo SNP (OCA2-rs4778138) se mostró débilmente asociado con el melanoma (P = 6,93 x 10⁻³). Los análisis de haplotipos y de diplotipos inducido por los 3 SNP de OCA2 no indican ninguna asociación significativa más importante de este gen con el melanoma, a pesar de que el haplotipo TGT y el diplotipo anteriormente identificados como asociados en gran medida con el color de los ojos claros eran más frecuentemente observados en los pacientes que padecen melanoma que para los control. Sin embargo, la asociación de este SNP con el melanoma no era tampoco significativa después de la adaptación con el color de los ojos o después de la corrección para unos ensayos múltiples.

Se desarrolló un modelo logístico que incluye los factores genéticos, que presenta una asociación estadística con el melanoma (variable MC1R, SLC45A2, L374F, SLC45A2, E272 K. y OCA2-rs4778138). Se tuvo en cuenta MC1R en función del número de alelos RHC (0, 4 ó 2) y los otros tres se codificaron combinando los genotipos menos frecuentes para reducir el modelo genético de dos parámetros sin perder ninguna información. Las asociaciones de las variantes de *MC1R* y *SLC45A2* L374F con el melanoma son las únicas a ser mantenidas, lo que sugiere que estos factores genéticos desempeñan un papel fuerte e independiente en la enfermedad.

La tabla III muestra el cálculo combinado de OR de los genotipos MC1R y SLC45A2 L374F.

Tabla III: cálculo de OR combinado para los genotipos MC1R y SLC45A2 L374F

Genotipo MC1R	Genotipo SLC45A2	Caso	Control	OR
0	0	444	561	Referencia
0	1	32	118	0,34 (0,23-0,51)
0	2	3	13	0,29 (0,09-0,96)
1	0	249	130	2,42 (1,89-3,09)
1	1	20	30	0,84 (0,47-1,49)
1	2	2	3	1,26 (0,22-7,19)
2	0	39	11	4,48 (2,29-8,74)
2	1	3	2	1,89 (0,38-1,52)
2	2	0	0	na

El valor 0 designa los genotipos más frecuentes, que son tomados como referencia (en el caso de MC1R, la ausencia de variantes RHC, en el caso de *SLC45A2* L374F, el genotipo GG), 1 designa la presencia de por lo menos un alelo RHC para MC1R y del genotipo CG para *SLC45A2* L374F, y 2 designa la presencia de dos variantes RHC para MC1R y del genotipo CC para *SLC45A2* L374F.

"na" corresponde a "no aplicable".

5

10

25

30

35

40

45

50 La tabla III muestra los OR respectivos de todas las combinaciones de genotipos de los dos importantes factores

genéticos que predisponen al melanoma (MC1R y SLC45A2), e ilustra las diversas combinaciones de riesgo o protectoras.

Por último, se ha realizado un estudio de las interacciones potenciales entre la presencia de la variante de *MC1R* y cada variante de *SLC45A2* o de *OCA2*, pero no se ha podido identificar ninguna interacción gen-gen.

Asociación de los factores clínicos con el melanoma

5

15

35

40

Se han estudiado las características clínicas principales de la cohorte del melanoma y 220 del control. Este estudio ha puesto en evidencia que los factores de riesgo más importantes correspondían a un número de nevus > (o igual) a 50 (OR=5,91), a un color de los ojos claro (OR=2,55), al tipo de piel I o II (OR=2,35), a un color de cabello claro (OR=2,18) y a unos lentigos solares (OR=3,19).

Asociación de los factores genéticos con los factores clínicos

En la medida en la que se han identificado estos tres genes por actuar los tres en la pigmentación, se han realizado también unos análisis de asociación individual de los factores genéticos sobre os factores principales de riesgo clínico, y se han adaptado para permitir distinguir el estatuto del control del del paciente que padece melanoma.

La asociación más fuerte era aquella entre OCA2 y el color de los ojos (P<2,20 x 10⁻¹⁶ para cada uno de los tres SNP OCA2), lo que confirma la asociación recientemente demostrada entre estos SNP y el color de los ojos (DUFFY *et al.*, Am. J. Hum. Genet., vol. 80, p. 241-52, 2007). Se ha ensayado también la asociación específica del haplotipo TGT con el color de los ojos, y se ha encontrado también un valor de P muy significativo (P<2,20 x 10⁻¹⁶). Las tres variantes de OCA2 y el haplotipo TGT también estaban asociados en gran medida con el color del cabello (P<0,0001).

El SNP SLC45A2 L374F reveló estar estrechamente asociado con el color de los ojos (IP=2,09 x 10⁻⁵), con el color del cabello (P=6,96 x 10⁻⁸) y con el tipo de piel (P=6,2 x 10⁻⁸).

Por último, las variantes de *MC1R* han mostrado una asociación significativa con el color del cabello (P=1,49 x 10⁻⁸) y con el tipo de piel (P=1,30 x 10⁻⁸).

En resumen, el tipo de piel está asociado en gran medida con las variantes de *SLC45A2* y de *MC1R*, el color de los ojos con *OCA2* y en una menor medida con *SLC45A2*, y el color del cabello con los tres genes.

Notablemente, el número de nevus, que era el índice clínico del melanoma más importante en nuestro estudio, no estaba estadísticamente asociado a uno de estos genes de pigmentación.

Integración de la genética y de los factores clínicos

En base a unas asociaciones más fuertes identificadas en este estudio entre los factores clínicos y genéticos y el melanoma, se ha desarrollado un modelo lógico para ensayar la persistencia de las asociaciones con el melanoma y se recalcularon los OR correspondientes cuando los factores de riesgo estaban combinados.

- En este modelo, se incluyó sólo el número de nevus ya que se trata del único factor de riesgo que no mostraba ninguna asociación con cada uno de los 3 genes. Se ha observado que la asociación de las variantes de *MC1R* y *SLC45A2* L374F con el melanoma era aún altamente significativa en presencia de un número de nevos (P=1,14 x 10⁻⁷ y 3,32 x 10⁻⁶ respectivamente).
- Además, era fácil calcular los OR acumulativos que resultan de la combinación de estos factores. En este modelo, el OR de las personas que tienen un número de nevus > (o igual) a 50, un alelo RHC para MC1R y el genotipo más frecuente *SLC45A2* L374F (GG), OR = 5,26 x 3,85 = 20,25, da una aproximación del riesgo del melanoma para estas personas que es 20 veces más elevado que las que tienen un número de nevus <50, ningún alelo RHC, y uno de los genotipos *SLC45A2* protectores.

Por último, el presente estudio ha permitido determinar que el genotipo GG SLC45A2 L374F constituye un nuevo parámetro importante que permite apreciar el riesgo de melanoma en un paciente, estando el alelo SLC45A2 374F claramente asociado con el riesgo de melanoma, mientras que el alelo SLC45A2 374L protegería del melanoma.

Además, el hecho de que el efecto de esta variante de *SLC45A2* persiste después de la estratificación sobre las características de pigmentación o en un modelo de regresión lógica que integra los 2 factores de riesgo genético, y el número de nevus sugiere que con respecto al riesgo de melanoma la información relacionada al genotipo *SLC45A2* L374F no es redundante con las características de pigmentación, y que esta variante es por lo tanto un factor de riesgo de melanoma fuerte e independiente.

Los resultados que se refieren al marcador SLC45A2 L374F han sido confirmados después sobre una cohorte de

individuos españoles (Fernández LP et al., Human mutation 0,1-7, 2008).

Por otro lado, los presentes inventores han confirmado también los resultados que se refieren a los marcadores *SLC45A2* L374F y MC1R sobre una población italiana.

5

Estos resultados demuestran por lo tanto sin ambigüedad de que los marcadores *SLC45A2* L374F y también MC1R RHC son unos marcadores fiables de predisposición al melanoma, que pueden ser utilizados solos o en asociación para evaluar muy eficazmente el riesgo de predisposición al melanoma en el ser humano en general.

10 Listado de secuencias

<110> Assistance publique- Hôpitaux de Paris SOUFIR, Nadem

<120> Procedimiento in vitro de diagnóstico del cáncer de piel

15

<130> 353788

<150> FR 07/59193

<151> 21/11/2007

20

<160> 10

<170> Patentln versión 3.3

25 <210> 1

<211> 40060

<212> ADN

<213> Homo sapiens

30 <400> 1

60	aggaggtggt	aggaccacgc	cacagaccct	cagtttgaaa	acgtcaaatc	gccaggctcc
120	caggctggcc	caacagtggg	ccatgggtag	ctcccagtgg	gaaggttcct	gggctcgcag
180	ccgcctaaaa	ctctgtggag	gcccctttga	gctgatgatg	taaatcccta	gccacatcta
240	ttctgctacg	cggaagagag	tggccatgtt	atgcacagca	cagactcatc	gacccaccag
300	agcagcctgt	aggtctgccc	tgctcagcgt	accccagtcc	agcgtatgtg	cggtggaggc
360	gtggtcggat	gctgcagccc	tgggattcct	agccccatcc	gtggttcctc	acagcattgt
420	ctcaccctgg	accctacatc	gccgccggag	tccaggtggg	ccactgccgg	cggccagcga
480	gtagcaggta	ggctactgtt	acctcaatgg	atggctctgt	gctcgtgggc	gagtcatgat
540	tctgcaggag	agtgtgtacc	tatgtgtctt	cagacaggga	acaaggtggg	agtgggctgc
600	ctcctaggtt	gaattgatct	aaatttgtta	cctttcctag	atgtgtttga	gaggatgttc
660	gcctctactt	tggttgggga	ccagattctg	caaatttggc	tcccctttga	acaatgaact
720	ggattaaatt	tttaaaaata	gttgtgaaga	atgtttcatt	caaaataaat	ctagaaatat
780	acatatttat	gaatatttt	ttatcgaatt	tgtatctatt	ttattaaatt	tgtatctatt
840	aattgactgg	actcttatca	tctatttaat	cccattatgc	actttttgag	caattgagtt
900	taagttaatt	tgtatccaaa	aagtcacctg	tatttacaat	gctccataaa	ctgccaaata
960	atcagctcaa	gcataagccc	taggcgtagg	agcgttttaa	ttttatgtag	ctgttcatag
1020	ggcattttt	cctgagggta	caaaagcaaa	aaattctgga	ctggcattgc	gaggaccttt
1080	aagttgcatt	tagtacaata	taattgatgg	aattaatcag	atcagctacc	ctagccatta
1140	agctagcaga	ttaactctca	ttgtagatca	tagcacacat	tcgctaaaaa	gcaaaaagga
1200	agaaagcgta	catatttgaa	atcatttgta	ataatcaatt	atgaggcagg	atcggtgatt
1260	cattgttgac	agctgataag	atgaacaaaa	ttccaggaga	tgtaggatat	aatgtacaaa
1320	attgttcatt	gggtagactt	gagaagtggc	gacaggaggt	attactgaag	tctaaggagg
1380	aagtttaaaa	tgctattctt	atataatcta	taaaacgtgt	ctgcaatttt	taattttata
1440	taaacgatta	ggagattggg	atcttttata	acaacaatgt	aacaagagaa	agcaaatgga

cagcgtatcc g	tagaatgaa	aatccagctg	ttaaaaattg	tgaggagctg	aaattatatg	1500
aagaaagttg g	ttactgcat	cagtgctgtt	caaagatgtg	gcctctgacc	tgcccctcag	1560
catcagcaga g	accgttaga	gatgcagttt	ctcgggcccc	cttcaggccc	accaattgaa	1620
tcagagtctt g	ggaaatggg	gccagcaatc	tgtgttttaa	caagacatac	aagcgatagt	1680
tcaatatgcc a	gactttgag	aagcactgcg	tttgactacc	attgtacacg	tgtgtctgta	1740
tgtgcagaag t	gcgtaaaag	gaggccttaa	agcctgacct	ttgctggggc	tgggattgga	1800
agcatctccc to	cagcttttt	taatagaatt	ggaattgctt	gcgataagca	tgcatacttt	1860
tttatttaag g	agatatttt	acataccaga	aatttcacta	attaaaagtg	tacaattcag	1920
tgcctttagt a	tgttgtgca	accattacca	ctctctaatt	ctacaacatt	ttcatcaccc	1980
ccaaaataaa c	ccattacca	tcaatagtca	cgtccacttt	tcccctatgc	accagcccta	2040
agcaaccact a	atttacttt	gtgtctccat	agatttgtgt	tttctggaca	ttcgcttgca	2100
taatttttaa a	acctgaaaa	aaaatgtaaa	gctatttta	tttggaaaaa	agcaaaataa	2160
aagcaaggaa g	atgatttta	tggcaagaag	tttaggtgga	aattacaaaa	cgcggatgat	2220
tctaaaacag g	atttaggag	accaatgttt	atttttcttt	tagctttgat	tgctaaccca	2280
aggaggaagc t	ggtttgggc	cataagtgtc	accatgatag	gtgtcgttct	ctttgatttt	2340
gctgccgact to	cattgatgg	gcccatcaaa	gcctacttat	ttgatgtctg	ctcccatcag	2400
gacaaggaga a	gggcctcca	ctaccatgcc	ctcttcacag	gtagggaata	ttccagaaag	2460
tctctccttc a	gctccccag	acaatgaggc	acttccacta	aagccatcca	gtgtctctac	2520
acgtggagtt t	tttgaatga	acgggtcagc	tgatgggctg	ctcccgtcat	gcgggcactg	2580
tctccccgtg ca	atttctctg	aacagtcagc	ttgtgactag	tgctgcagtt	tctgcaaagg	2640
aagtttacag aa	agagctttc	ttaagaatgc	tttgtggaga	caattacaac	tgaaatggaa	2700
agaagccttg t	ggattgtac	ttttgcatta	gagcagagga	tctcaagcat	cagcaatgta	2760
gcatccacat to	ccttagaag	gtcattgaaa	atacagttgc	ctgggctcct	tctccagtta	2820
ttctgattca g	tgagtctaa	ggcggggccc	agacatttgt	attttattta	ataaagaccc	2880
cagatgattt t	gtggcaggt	ttaaaaaaca	aaaagagaaa	acaaaccaag	caaacaaaaa	2940
actcaacgtc t	tagaaattt	cttagttatg	taaaaggttg	gcatttcctc	aaccttgtgg .	3000
tttgaaaaag t	tcatgccag	gaggaaaatg	ggagctctct	tgatctcttg	ggactgttgc	3060
cagcctactt t	ggttactgt	tggtcaattg	tttagagcaa	tgctactcag	agcaccagtt	3120
aggactatgc ta	agaactagg	cattgaaata	taaggcgaca	ggaggatcct	ggcccaagag	3180
gatttttata to	ctaagaggg	ggactctatc	agcccacctt	atttgattgt	ctttgtagcc	3240
cagccaatgc ct	tttatttat	gttttgatgt	attctctctc	cttccatggc	caggtaggtc	3300
catgaaaagc aa	agatttçaa	gttttgctca	tagtttctgt	ctctagagct	aagactgctg	3360
cctgcccatg ga	aagccactg	gagccaatat	ttgtcatttg	agcaaacatt	tgaatagttg	3420
aaaacatgaa gg	gagtgaggc	cgttggagca	cagttggtag	atcctcctct	gtgtaaggaa	3480

ggcagagggg	caggagtgca	gccccgtctg	tcactggccc	ctgcccacta	tgtctccagg	3540
tgtttaaagg	cacctaagac	atggccaggg	cttgagactt	cccctgcctc	acctttgctc	3600
ttggcttccc	ttcccactgc	actttccacg	tgtgtctcct	cactcgggtg	ctcccacccc	3660
gctggcgtcc	ttctgtctct	ggggtcagcc	cagcccatca	tacctgcccc	agggtttggc	3720
atgagctctt	gccctgcctg	ggacaccctt	ccccatataa	tcccatagtc	atgcctttat	3780
tccactcaga	tttctcatca	gatatctctc	atcagtgagg	tctttcttgg	ctaccgtacc	3840
tggcatagta	tgaccactcc	tctttctcct	catccttatt	gggtttgatt	tttctttcta	3900
gtgcttatca	ataccagact	aactgactgg	ctatttattt	atctatcatc	tgtctctctc	3960
tctccttctc	ttttttcttt	ctggttgtct	ctcccattta	gaacatcaat	cccagctgag	4020
cagacctgtt	gttttgttct	ctgatgaatc	ttcagttcct	ggaagtgtct	gctgcatagt	4080
aggtgctcag	taaatactga	acaaacattt	ctcaaatacc	ccatgtatga	taataaccat	4140
gtattaggta	ttttctctta	cattatctcg	atcctgacaa	tggccatgtg	gaagtggtgt	4200
gattcccatt	tttcagatgt	ggaagctgag	ccttgaaagc	agtggtgtgc	ttacagctgg	4260
ctcatgctgg	ctt cttgag a	atcaattgtc	aaattttagg	aattcagtga	acttgttgac	4320
atcatattgc	tggcttgaaa	ctggccatga	tggcagtatt	aaaactctag	aaattggcaa	4380
agctataaat	catggttttt	tttttttct	tggaaagcca	gttgttaaat	atttacctga	4440
agtccactga	ttggagtagg	aggggggttc	ggtgattaag	tcacttgccc	atagtccata	4500
gccggaaagt	ctcattgaat	agattccaac	ttcattttcc	taacttgaat	ctgacaattc	4560
cttctgtttt	attataattt	gttgaaatta	attacaaggt	catgggagac	tttctggctt	4620
ttgaactcga	tattaagagt	ttattgatct	acaggacatt	ggacaatgtg	gccaccactt	4680
cccagcttac	aattgtatta	gatgtggcta	aaagacccat	gctttgctgc	cttgacatta	4740
aaagacaaaa	ctctgtgtta	gggaaacttt	tccaaggcca	atacatgata	gtattgtaaa	4800
ccagaattaa	aattctaacc	cccagctaac	tgaaggaccc	ttcctctcgg	ccaaggtcat	4860
cctaaagtaa	atctgaaata	ctagtttagg	ccatgatggg	aatgggtggt	tggacatgcc	4920
tcattatacc	tctgtccctt	tggaattcaa	gcacaattga	tcagcattaa	cattaaagca	4980
gagactttaa	aactgacaaa	acagactgtt	tgtagcaatt	aggtattaac	atgataacat	5040
agcaggccct	gaaagaaata	gaagtatttc	accccaatat	acatttattt	gatatatttt	5100
gaaatggccc	tgaaaagctg	tctcttatgg	ggaaaatcta	ccttctgtac	tcctcactct	5160
tccctttcca	gttattttcc	tgatttagga	tagaattaac	taaagtatct	ggcacctttt	5220
taagtctgat	aggaaacgít	tacagtctat	tctctctgaa	gcctgctaca	tggaggcttc	5280
atctgtataa	taagaacctt	ggttgccaca	accccttatt	ttaacccaga	cgctctcttc	5340
tattgcttcc	aagtctatag	ataactcttt	caaccaattg	ccaatcagga	aatctttgaa	5400
tcttcctatg	acctgggagc	cccactttga	tttgtcctgc	ctttccagac	caaaccaatg	5460
tacatcttac	atgtattgat	tgatgtctga	tgtctcccta	aaatgtataa	aaccaagctg	5520
tagccctact	gccttgggca	catgtttcag	gatctcctag	agctgcgtca	caggccatgg	5580

tcttcatatt	tggctcagaa	tatatctctt	caaatatttt	acagagtttg	actcttttca	5640
ttgacagtat	ttttatgagt	ttcagacaat	atatcccttt	tgagattttc	tgttgatatt	5700
agtatatggt	atggtgccag	caaacatcaa	taattttaat	attaccttca	ttcaggctct	5760
tagtacatct	catctgagct	ttagtactgt	tgatggaaaa	aaattaaaat	atttgaagaa	5820
gtttattctg	agccaaatat	gaatgactat	ggcttggaac	acaacctcaa	gaggtcctca	5880
gaacagttgc	ccaagttgtt	tgagttatag	cttggtttta	tatattttag	ggagctagaa	5940
gttacaggca	aagatataaa	tcaataaatg	taaggaatac	attggttcgg	cccagaaagt	6000
tggggcacct	tgaagagggg	ggctcacagg	ttataggtag	agtcaaaact	ttttcaattg	6060
gcaattgatt	cagagttaag	ctttgcctaa	agagttgaag	tcaacagaaa	gaaatgcttg	6120
agttaaggag	gattgtggaa	gccaaggttc	ttgttatgta	gatgaggcct	ccagatagca	6180
agtttcagag	agaatagatg	gtaaatgtct	ctttttgagt	cttagaaggt	gtcaggctct	6240
ctaaaaaaaa	actggtaagg	gaaggaggtt	ctctacagga	aaaaaaatcc	cccacaaaag	6300
atggctttgc	agggccattc	caagatatat	caaagaaata	tattttgggt	aaaatgcatt	6360
aattttcttc	agggtctgtt	atctgtcatg	tgatggtata	ccagagtcag	gttggaattt	6420
ggcatcctat	tgctatgaag	agtgttttgt	atggcagtct	taagatctct	attttaatgt	6480
taatgctggt	taattctgtc	taaactccaa	agggaagggt	tataacaggg	tatgtccaac	6540
acctcccttc	tcatcatggc	ctgaactagg	ttttcaggtt	tctttgggat	cctcttggcc	6600
aagaagggtg	tccactcagt	cagttggagg	ccttagaatt	ttattattgg	tttgcagtac	6660
tcatccttta	actgttctcc	agtctccagt	ttcttcccac	tccaattgag	ccaactgata	6720
gcttccagat	tcatattttt	aaaagccagc	cgtgatcagg	acactttcct	gcttgatgag	6780
cttcagtggc	tccctatgtg	cctcatgggt	aaataatatt	ttcctagaca	gaggttcaaa	6840
gctgccacaa	tctgttccca	tcctactctc	caagctttac	ttcccattac	tccttccaca	6900
ttctctgtgc	tctgaataat	ttttcatcat	gtttccagga	gcagcgggca	ggtctgtttt	6960
attccctgca	tccctcactc	ctctaccact	gccttgcata	ttgtaggtgt	tcaaaataaa	7020
taccaatggg	acaaatgaag	gagccagccc	ttccttcttc	aggttctggg	tctttgctca	7080
catcgaaagt	ttctttctcc	ttttctgcct	gtggagatca	aagctgcttg	gaaatgctca	7140
ctcattttct	aggaacaagg	gccctcattc	tcttcgaaac	tgcaggtata	cttaatttct	7200
aacttggtcg	gggactagat	ccacaaaata	atcaaagcac	aaaagtttat	tgagtagatg	7260
aacatgaagg	tgccagtgag	gtagataact	ccatcaggaa	gagaccattg	aggctgcagt	7320
tgatcacaca	tacatcctga	attttcatct	cctcctgggg	cctttatggt	ctgtttgggc	7380
tgccatgcca	gaatgtcact	gactaggtaa	acagaaattc	attttcccac	agttctggag	7440
tatggaaatc	caagatcaag	aagctgtcag	ggttggtttc	tggtgaggcc	tctcttcctg	7500
gctggcagac	agccgccttc	ttgctgtgtc	ctcatgtggc	ctttcttctg	tgcacctgca	7560
ccctcactgt	ctcttccttt	tcttacatga	acaccagtcc	tattggattt	gaattagggc	7620

tccacactta	cagtctcatt	taaccttaat	tacctcttta	aaggccttgt	cgacaaatac	7680
agtcccattg	agggttagag	tatcaacaca	ggaatcggga	gtacagggac	acaattgagc	7740
ccataattga	gccctttcac	ttttaccctt	gttgccgctg	agtccagctc	ctgaagcttg	7800
gatgggatgt	ggatggagca	cacatgcttt	tctctctctt	ccctcctccc	caatcccttt	7860
tgttttcctt	ctttgcataa	tgaagatatt	ctagaatttt	caaataaaca	agaaaaacac	7920
aaaaggtctt	tttgtgttca	taagagcagt	tatggaactg	gagtattgtg	ttccaatcta	7980
gctgttctca	ggttctcatg	cagaatgctc	cctttaagat	cttctaaaat	ccctccaccc	8040
ctgtcctgca	gggaggggaa	aaaaatctcc	cccacccccc	tcacccctcc	aacctccacc	8100
ccatccttgg	agggagggc	agttggtggc	aaagggaaag	ttggctcaca	ccctgaggaa	8160
aacattttac	cacctcccag	cttagataaa	cagtccagcc	ctaaagggct	actttcttat	8220
gtctctttct	tggcctttgc	cattttccac	cttccatgtt	agttatttga	atacatttct	8280
aatcatactc	attacaccat	aaacttcttg	agggaagggg	gctgtccaga	ggtaacatac	8340
gtgtgaatga	gtgagaggat	aagggatgtg	tgaatgagag	acaatgttat	atgcacttta	8400
atgatctttt	tgggggactg	gtactgccac	ccaaaaatcc	aggttgattt	ccttcagccc	8460
ttccccgtgt	tctcggcccc	ttccctatca	gcacttggta	tatgcttagg	gaatagagtg	8520
attaggaagg	ggttgtttgc	aagtcactaa	cgcccacaaa	acagtggctt	caaggcagat	8580
gtttatttt	cttatgtaac	aaaagtctg	ggagtacgtg	tctgctggct	ttcagtgagc	8640
tgctagatgt	cagagccaac	aatttaatgt	ttccttggca	gctttaagga	tgtattgcct	8700
cctggatgca	agacaattgc	tacgggtcca	tagctcttgt	ttgtttcaag	acaagaggag	8760
gggagaggag	ggtcagggag	aaggaagggg	gaatggggaa	agagcctaca	ttcactcttt	8820
aaatgaagaa	agcaaatctg	ccctagaaac	ctccctctc	ccagagctct	gcttgtttct	8880
cattaggcag	aattgggtta	tgtgagcatt	cagtggccta	aggaggttga	aaagtgaggg	8940
ttttgctggg	agttggtcat	gtatctccct	aaaccacatt	ggggttttat	tagcaaaaag	9000
gaaggagcaa	ttacaattga	atagacaaag	ctggtagcta	tcacataaaa	tgcaaacaca	9060
gttgaatgtt	agcttaataa	gaataattaa	agaccaagac	tattataaga	aaatgaatta	9120
gagcttttaa	agtcccatat	atgagtaaat	aattaaagga	taattatatt	ttggagtgat	9180
atacatgcct	gctcgcaatt	ttacctgatc	tgcacatttg	ttcactctct	cccctgtatt	9240
gtaatttaca	aggtatttat	ctacccctcc	tgcaagattc	gtaaactctc	ccatgagggt	9300
ttacctgcaa	attccccatg	gcttctaatt	cattgccttg	ctgttagcag	gcacttaaac	9360
atgttagttg	tgtaaaagga	gacccgaggg	ttacataacc	ctgtttataa	ttcatggttt	9420
taaatgacac	gacaaattgc	atcaattaga	caaatatgct	catttaatta	ctttgtctca	9480
tgaccagcac	tgaaccccga	acctcagccg	actgtctccc	gtgcatgtct	ttgctcatat	9540
ggaagcagca	gaggttgtgt	ggatggctca	gagcaatttc	tttccccaac	tagaaaaaca	9600
acttaaaaca	tcttcctctt	ttaggacagt	gc agtggagt	ctctcacttt	gtttaaggct	9660·
tagattctaa	agtccccaac	tcagtgacaa	tgacaatcga	cattattcgt	aaatatctct	9720

cagattactc ataaaataca	atatgctttg	ttttgtgtgt	acaaacctgc	acatatatat	9780
atgcagattt gtctctcctt	taatgtttac	tcctgaaatt	aatagaatta	cccatactat	9840
ttaaaatgtt actcttgtct	ttcttgcaat	ctctctcttt	ctccctgtgt	tcaaagtgtg	9900
aatagttgaa ttctggtgag	ttaaatgtgg	gatatgtgat	cccactgtgg	tatcctcact	9960
ctgaatgaaa aactgcatta	aaagatgagt	gaaaataaca	agcagggcct	tgtccctctg	10020
ccctgtcttt gcatacatgc	caaacttttt	gaatttacat	gcccttgaca	aagagataac	10080
tacagcattc cacttgaagc	aaacgttttc	cggcagaggc	atgttcagtg	tcagggccca	10140
ttttgatttt tcatcaacag	caaaatatta	ttcacccaag	gaatccaatc	atcccagtaa	10200
actgaaattc ttttttttt	tttgtttcac	tgctgtggtt	ctgttccagc	atttccaaat	10260
gcttcataaa taagcatcca	agggttcatt	accaaaatat	ttcccagcat	atttctgaca	10320
tttttttggg attttctaga	gaaaagactg	tactggctcc	tagggagaca	tttaattcct	10380
ctagcttcta tctttcatat	ttaaaggcaa	ctctatcctc	ctccatccct	ggcatatgtg	10440
gtagccatgg taggtttggt	gggtccaccc	gcatcttctc	accacacaga	tccttcactc	10500
ctgggtgcac ctgaggctgt	ggaaccgagt	gagctaacag	agtggtactc	accagggaag	10560
actggaaatc cttttgtgcc	cagggagtct	aaccaagcgt	atttctgcta	cttgaaccca	10620
agactttgct gttcttagca	gtgggctttc	ttgcttggcg	ggaggctggg	atcaggcatg	10680
acaggaaagg ccagccctgt	tcagctcctg	gttcctccta	ttcactgcag	agtagcctca	10740
gcatttctga gctttcttca	ttccttcaca	ggcttgcaaa	tctctgcacc	atgttagtta	10800
ataaccacct tgcaagggtc	acaggcacag	cacaatgaac	catctaaagg	atttcatcta	10860
acccaaagag atgaaacgcc	aaatgtttat	atttacttga	tttccgctat	cctcactacg	10920
cctgcaaaca ttttatttgt	aatgactcag	tgagaaactt	gccccattac	atccttggaa	10980
gaagaatggg taacttgtca	gatatcaact	tcttttaact	tttgtctttt	aatacttcaa	11040
agtatgcaca aaaaatgcga	acatgcaaca	aatgctctaa	atagcaaata	attaagggct	11100
aagaaaagag tcttaaaaac	gaaattgaaa	caagagactc	tttgactaaa	ccttttacac	11160
agaggaaagg agtcacttca	tgtttgagac	tgttttaacc	ttttctcttt	ttcatcttta	11220
gatgagtggt tttgtttcat	caaacaaaac	ctttgaagtt	ccacccatgg	tagactttca	11280
catctcctca ttcaggcagc	ttggaaagga	tatggccagg	gcagaaacca	aggatacagg	11340
gatttcagct tgtggataaa	aagggtgatt	tatgcaattt	agggtgatta	agtctccaaa	11400
ttgccatctc ttttccattc	aaatgggatc	aacacaactc	tcaaagaatc	tccaagtcag	11460
attagagaag tgggaatctg	ggggactttg	tcctccctgt	ttcctctgct	cgaaagtgct	11520
ttcccaggta ccaattggca	gttggctttt	ggcctccttg	ctttgttact	ctgatcgcaa	11580
acacacaccc ccagccctga	ctcccatcac	agaggtaccc	atcattactt	gacactgtat	11640
tattttttca tttatttatt	tctgtaggtc	tgaatcaaac	agattttatt	caactttta	11700
gaatgaggga aacaaatgat	ataaaataag	tcacaaaaat	gctttcttat	cctactacct	11760

caaaccattt	tcaatgtttt	acaaaatgct	cacctagcaa	atacgaaaag	tttcaacaca	11820
ttcttctctt	gtaacttctg	ctgcaataaa	tgcgatatta	gcaaacatac	atacttccat	11880
atcagtccta	aaagttggat	tactgaatta	ttatactaat	ttgtatgatg	ttactcatat	11940
ttttattcat	acacttttaa	tgagatcatt	ggcaatacgt	atagtatttt	ctttaacttc	12000
actttcacat	taagccaatg	tcttttatat	agccatcaaa	aagtaaatta	cacaggttta	12060
tagttcaatt	taagctctag	cgtcttagaa	tcagccactt	tctaaccttt	catgatgcct	12120
tcctgctttg	caaaaccatg	atcagcatga	attgcaaaca	tacctccttc	agtacaagca	12180
tttctcaggt	ctcctccatt	aaagtcatct	gcaaacttca	caattactcc	ataattaatt	12240
tcaccatact	ttgtaagggg	acttgcatgg	attttcaacg	tgtctaatct	tgctcgttca	12300
tttggcaaat	caatatgtat	ttttttctat	ctaatcttcc	tggatgcagc	aaagcaagat	12360
cccgtgtatt	tggtctgttg	tattttaact	ctgcgcagag	tatcaaatcc	atccatttga	12420
ttcagtaact	ccattaaagt	tctctgaatc	tctctgtcag	ctgaagtacc	cttggaaaac	12480
caacaaccat	caatagcatc	taattcatcc	ataaaaatga	tgcatggtgg	atggtccctg	12540
gcataattaa	acatttctct	gatccaatga	gccctttcac	caatgtgctt	gtctacaata	12600
gaactagata	caacctttaa	gaaattgcag	tcctggccag	gtgtggtggc	tcacacctgt	12660
aatcccaaca	ctgtgggagg	ccaaggcagg	tggacctggg	caccatggtg	aaaccccatc	12720
tctacagaag	atacaaaaat	tagctgggta	actgggtgtg	gtagctctca	cctgtaatcc	12780
cagtactttg	ggaggccaag	gtgggtggat	tacctgaggt	cgggagttcg	agaccagcct	12840
ggccaatgtg	gtgaaatctc	gtctgtacta	aaaacacaaa	aattagccag	gcatgggggt	12900
gcatgcctgt	aatcccagct	actcagaagg	ctgaggcagg	agaatcgctt	gaacccagaa	12960
ggtggaggtt	acagtgaacc	aagatcacgc	cactgcactc	catcctgggc	aacagatgag	13020
actccgtctc	aaaataaaaa	ataaaaaata	attaattaac	taattaaaaa	ttagttgggc	13080
atggtggtgc	acacctgtgg	tctgagccac	tccggaggct	gaggtggaag	gatcacctga	13140
gcctgggaga	tggaggttgc	agtgagccaa	gaccacagta	ctgcactcca	gcctggacaa	13200
tagagtgaga	ccctgtctcc	aaaaaacaaa	aaaaaaggaa	aaaagttgca	gtccagctgg	13260
ccagcaatag	cttgtgtgcc	aagagtgttt	ttcctgttta	tggtggtcca	cataacaaac	13320
agccttttgg	aggtattatt	cctacaagtt	ggaataactg	ggtttgtaag	tggtaacccc	13380
tcaattccca	catctattct	gatagccctc	caatctcaga	ataagaaaca	tcccaggatc	13440
ctcatgagac	atgttataaa	tcagtggctc	cacctctctt	ggtaaatatc	tcatgatagt	13500
tagtgtagcc	ctatccaaag	caactcttgt	tcctggcttc	agctactttt	gtgaagctgt	13560
cgacgacaac	tcccaacaca	tcttggtcca	tctgcagctt	taacaatgaa	tttttcttca	13620
gttaattgtt	taagcatgtt	actcacaatc	tgcccaacac	tttttagggc	cttcagatca	13680
ttttcagact	tttcatacgg	tttggtaaat	tctttgaatt	gttcccttag	ctccttaaga	13740
tggtgcccat	ctccatgcac	tctggcagct	tcttgctgta	gtcctgaaat	atcttatctc	13800
tagggtccac	catgatgaga	agtgctattt	gtttattgtt	tattgtctgt	ctctctaacc	13860

```
atcacataaa ctcctcaagt acaagaacat tgtgtttcct gttcattgac caccactatc
                                                                 13920
ttgaatagtg cttggaatat ggaaggtqct caaaaaatat tggtgagatg gatattcagt
                                                                 13980
                                                                 14040
tttaacatct taattttatt aatgattaag ctgtgttgtt gagaggtaaa gtggctaacc
caaggtcaca cagctggtta gtggtagact aggggtaaaa ccaaccaacc aaccaaccaa
                                                                 14100
ccaaccaaca agccagtcag ccaaccagct aaccaaagat gtggttcatg agttagtctg
                                                                 14160
                                                                 14220
gattcctcta aaagttgaac cccagaggtt tgtatacaga tagtttattt gggaagggat
                                                                 14280
tctagagagc aagagtaagg aaatggtgga caggaacagg ccaaacaata agcattacag
agctggctct gaggaggctt aggaagggca ccaaagaact ctccatgtag gggatgaatg
                                                                 14340
agggaagatt aatccagtct gtactgactg actaagggtg gtaccatggg ttttgtaagc
                                                                 14400
cctgaacccc agctgtttct gtcttccctc agtttaggca ccatccagat gcacctgtcc
                                                                 14460
agtgcaaagc tggccggagc tggcttagat ttggtcactg cagcagctgc tggagcaagg
                                                                 14520
gaggcaggtg gggaccgaga aggtttgcag tggctcacag gggctgtcta actcagctga
                                                                 14580
tgacttctag tctgcagctt tttcattcta gcatttgtgc cctgtgctcc ctggtcacca
                                                                 14640
ctaggaggag ttaaagcatt ttgcaaaacg cttcacggtg tgctgagcca ttacaactta
                                                                 14700
gaactggaaa tattagttct gtaaacttta agaaagctca agacagccat aaatggctcc
                                                                 14760
agaacgaggc caattaatgc ctgacctcct gcacagcctt ttcttcctgg gattcttact
                                                                 14820
gcctccatgg ggtctgacca ggaaatgagg cacctatctt cttgctcttg gatccctcaa
                                                                 14880
gccttccagg ggaggctctg ctcctctctt cccaccctcc aactctagct aggcccatca
                                                                 14940
                                                                 15000
agcaggcagc aagaccatcg ccgcctaaqg gatttaccaa tatgtgtgca cccatcatga
atgetetgte tageetggga ageetggtte ttaaageaca ttttetaatg aatetaetet
                                                                 15060
cgatgccttc gcagcctaag ggctttcgga actctgaagc aagacaaacc attcttattt
                                                                 15120
ctctgctctc tactgttaca tactgtcctc aaagcaacga ggcatcctgg cccagcttaa
                                                                 15180
atgtgaaaga agggcccaat gagagaaagg gatgccagga ttagaggtag gtggatggaa
                                                                 15240
acagtgagca atattttaaa tatattatct cagcatcttt gaagagaaaa gttgctttgt
                                                                 15300
aaacctaaag aaatatcaga tcagcttgtc tggtcaagct ggtctttgac cagagcatat
                                                                 15360
15420
acatgtatca ttttgactgc tttttctgta ctcagcctcc aagagggcag aggtcatgtc
                                                                 15480
tgtcttgctc attgatgtat ctcaagtgtt tagcacagtt cctggtgaag ataggtgctc
                                                                 15540
taacaatttc tattgataaa caaatgggtc aaggacacca cacacacaca cacacacaca
                                                                 15600
cacacacaca gagagagaga gagagagaga gtagCtggta cttatgttaa ctgtcCagga
                                                                 15660
tttagtatgt acctggtggg aataagtagg aagcatgcac ctaatctgac actttcattg
                                                                 15720
ctatttttt caacatgtag aaaagaatca gaacgacttt ctcatgaacc ccatgggaag
                                                                 15780
atgggagttc tttagtctgt cctccttcag aggtaaagta gcaaacagca catagctagc
                                                                 15840
tctcatgact tgagctgtgt cagccctggt gctgagcttg ccaagccaca cacctgatgc
                                                                 15900
```

ctgcaggcaa ttacaggcag	atggtaggtg	cagagtttga	tttagatgga	ctctcttgag	15960
tttcctttca tcctttagat	tccttggtac	tgacagttta	ccaatttccc	attttacctg	16020
tcatagttgt ggactaaaga	caattttta	catatttcta	tatatttgga	cttcttccag	16080
tatgggccac tgttcaagtt	gcatcattag	ttatgaaata	tgacatctgt	cttctaaagc	16140
catttattct gctgagtttg	acaacacagc	ctggcttggt	gaggaagggg	ccagctggac	16200
cacttctggc ccttctttgt	aaaagcttgt	tatctaatgt	ggcagcagat	gtcctccgaa	16260
tgctctggct tatggcttgc	ccaatagcct	ggtgattgat	tccagtggcc	tcacagaggc	16320
tgattttggc agcagaggta	aatacagtct	ggatgtaggt	gtgggaggtg	gtaaaatggt	16380
aaaactatca gcctttatca	tagcgcaatt	aggttttgtt	ggggagattg	tctttgaaga	16440
taaaaccctt ggcttaagaa	gaagaagcaa	aagaaaggcc	tttaatgaat	tcctgcagcc	16500
ctctactggc cctcatcata	tctgaggcag	caaatagata	aagtttaaat	attttttcc	16560
agtgtcttaa tattctgtta	ggataattcc	cccagtggcc	cactttgctt	tcctggcatg	16620
tcgtgttgta ctattctaac	ttgcagctac	aactacttca	aaacagtagc	tttgggacaa	16680
ataagacagt tcttcccttt	tttttttt	acccccttcc	ctaagataag	agagtgctaa	16740
taattctcta agttatagat	tatgtcaagg	ttttaaatta	acacattaat	aaaggaacca	16800
atggggaaga tataagaaga	gtttccccca	ggttcttgca	ggaaatgtgt	gtgtgtgtgt	16860
gtgtgtgtgt gtgtgtgtgt	gtgtgtgtgt	gtctagcaaa	ataaaaaatg	ctagactaaa	16920
tatgaacctg gttaaccttc	tacaagacaa	ggggttataa	aagtataacc	cctctgtaat	16980
acttttggag taatttccct	accaggcaac	aaaaacccta	ttcatatctg	caaactacct	17040
taattttaca ggactgcaaa	tcactgtgct	ttatcagtta	tgaattgtgg	gtcaaatatc	17100
ctgtgacaac aaagtaccat	ttctcaagaa	aggaagttag	ttagaaactg	ctgtcacctg	17160
gccactcaaa agagtgatgc	ttggcccagc	agcattggtg	tcagtggtga	gcttgaaaga	17220
aatgcagaat ctcaggctco	accttagacc	ttcagaatca	gaacttgcat	tttaacaagg	17280
tgcccacatg atttgcgtgc	acattaaagt	ttaagaaggc	tgctctagag	gaatatttta	17340
aaagtcaagc agttgcaatt	tttacacttt	ccaagtttga	gatatatttt	actttcttga	17400
tacttgctac atgccacaat	agggtcaggg	gtaagcccag	gtctcagccc	tcagaataat	17460
ccattagttc taatcactgg	gcctaaaatg	actaaatcct	ttcagcaagt	tccaggcagg	17520
ctgccttcag ccagttcagt	gcagtagcta	tcttctgctt	ctaggggagg	ctttggaatt	17580
agggttacta taggaagtca	gcagggagct	cagttttggg	tctggttctg	ccatggtatg	17640
tgctggggct tgacgtggat	tatttgcatt	aatcctcact	aaattcagat	gaggaggcag	17700
caccaccctt gtttctcaga	gaagtgccca	agagcatgtg	actagaaagc	acaaagatag	17760
gaatggaaat caggcacgat	tccaaatctc	ttcttccctc	tgtgtggtct	tccatcacag	17820
agtcactaaa gctcatagct	ttctgatcta	actcttcaaa	tctcctttta	catccaaaat	17880
ttttgaattc attgatatat	tgaactctta	taactttcat	tgctaatgaa	gagaaatcct	17940
gtcagattta ctaataatcg	acatcacctt	gttactatta	actagcacca	ațaatgactc	18000

```
tttgaaactc ctctgtactc tgagtaccca gctctgagtt ctagcttatc atttattact 18060
gttttgaaag tagcttctcc ggtggcgggc gcctgtagtc ccagctactt gggaggctga
                                                                 18120
ggcaggagaa tggcgtgaac ccgggaagcg gagcttgcag tgagccgaga ttgcgccact
                                                                 18180
gcagtccgca gtccggcctg ggcgacagag cgagactccg tctcaaaaaaa aaaaaaaaa
                                                                 18240
                                                                 18300
aaaaaaaaga aagtagcttc tcccattatg tgcttctccc acttgaaacc accttctggg
                                                                 18360
gaaaaaaatg ggaaactgtg tcttttttat gtttatatcc ccagaagttt gtagagtcat
ttacatatat ttagtgttcg atacatgttt attgaactaa agtaaaccag tagacatgca
                                                                 18420
actgcatcag gaaactcccc aattgtagga ctccattttc caaattagtc tctaatacaa
                                                                 18480
                                                                 18540
atccatcatt atatgcatat ccttatattt tttccataaa ataaaactac cattccattg
cacagtggag gatttatttc acatatcaat tctttcaaat gagcaggggt cttctgctct
                                                                 18600
atattcttcc aactgaggca atgagtaatg ctcagttgaa caaaaatttg aaagatagag
                                                                 18660
gcataagtga taagaaattg aatggcaatg tgaaaaccct tgatctgttt acaaatgata
                                                                 18720
gtttcgaaaa aggaatgtgt ctgtcatagg gttgacttag gtcaggggtt ctaaactagg
                                                                 18780
ggccactttt caacctcctt ccctcagaga tatttggcaa tatctagaga catttttggt
                                                                  18840
tgtcgtaatg ggttggggag cagacttaat acattcttat tggttgattg cttggcttga
                                                                 18900
                                                                 18960
cgcatgactt ctgatacctt ctgcctctct acaattgaat agtcattgtc taataataac
cagaggcact acaaatccca gaacattctt ctgaatcagt cgtagagtgt ggctgtttca
                                                                  19020
ggaccttctc tttctctcaa atcctgggca cttcaccatc atctgtcctt tatctgttta
                                                                  19080
tgtatatgct catcacatat aactaggcca taaatttctt gcttccagag actatatgtc
                                                                  19140
ttacttcact gtgccccatt ggccacagtt tcttgtaatt ctgccttaaa acacttcagc
                                                                 19200
attcaggaca tgctaatgat gctttatttt tggaatccaa tgattagatt gttggtcctc
                                                                 19260
cttaaatagg ctctatgtta aattgcaact aaccagaata tgaagtgacc aaaattgtct
                                                                 19320
acteteteae taatttgaat aaattaggat teatggtaet tgacatteag gtttgtgtte
                                                                  19380
ttgaggtcag agtttatgta actttagatg tttagggtta gagaggaact cctttagttc
                                                                  19440
19500
gagacttcac tcatacacac acacaaaaaa aatcaaaaac aaaaatgaaa gctgatctgt
                                                                 19560
tcagctagat aagttgtggt tggtaggcat gatgggagtt tgacgtttaa agaattttga
                                                                 19620
caggaggatc agtcctacat aagtttgtga catatgtagt ggatgtgtcc agcactcaac
                                                                  19680
                                                                 19740
tetttaatte cetegacate ceataatatg teeactgeee cetececaae catgetatet
ccccaccttt atcagaagtc actgatgtct gcaccagaag gaacatctga ggaacagtta
                                                                 19800
                                                                 19860
ctactttggt gctgagtaat ttcttgccca taccaggaac acgtgtattt taaaacagaa
                                                                 19920
actcaaaaaa ggaataacta ataatgggat tttaaatatc agataattag gattgaatag
                                                                 19980
attttgagga gcctttcctc agtatccctc aagtgacaca atgtttaagc ctgagaagat
aaaacaagca ccaaaaagac ctcaggttgg agtcctggga aacgataata ggatttttaa
                                                                 20040
```

aaattcatgt	ttaaactttt	gttctcatta	tttcctgttc	ccaġctatca	actgggaaca	20100
agtaccttga	gcttctaata	gaggaagaaa	gacagctttt	gagggtgttt	catctttgca	20160
agcttacgtc	atcccaggaa	gcttaataat	aagaaactgc	aagtcattta	attttattgc	20220
tgccagaaat	tggttttctt	tggggctttt	tctggtcaga	aatttaagtt	caaaagcagt	20280
ctagagaatg	cactttggaa	aggtcacagt	atctctgatg	gtagcaatac	ttagtaagcc	20340
cttgctatgt	gtctggcccc	atcctgaaca	ctttctattt	tcaaatcatg	accctactag	20400
taggttactc	ttttactatt	acctccatat	tctgggtgag	gaagcccaag	atcacagcaa	20460
gtaaatgcta	gagccaaaac	ttgaacccac	attgcctggc	tgtgtgtttt	tcagcctctt	20520
gctgtattgc	ttttccaatt	atatccaggt	tgcctctgct	gtcttcaggg	agttttccca	20580
ctgaagggga	gtgtctatgc	atgaggaaaa	tgaacgataa	tttgctaaat	atgctaacat	20640
agcttttctt	gctttccagg	ttttggaggt	gccctgggtt	accttttggg	tgctatagac	20700
tgggcccatc	tggagctggg	aagactgttg	ggtacagaat	tccaggtcat	gttcttcttc	20760
tctgcattgg	tgctcacttt	gtgttttact	gttcatctgt	gcagtatctc	tgaagcccca	20820
cttacagagg	ttgcaaaggg	cattccccca	cagcaaaccc	ctcaggaccc	tccattgtca	20880
tcagatggaa	tgtacgagta	tggttctatc	gagaaagtta	aaaatggtta	cgtaaatcca	20940
gagctggcaa	tgcagggagc	aaaaacaaa	aatcatgctg	aacaggtaaa	gatgcaacat	21000
tttttcttta	caagggaaaa	tattcttgct	ctttgttgtt	gttgttgttt	ttttaattgt	21060
ttgttttgtc	tgtttgacga	gaagagtttc	atggggtcta	actgaattcc	caaatccccc	21120
gtagctatca	tcccttggaa	ttaaaatttt	atatctcaaa	gaaaaatgtc	tgcattttcc	21180
tctggtcctc	ctgtctctta	ctcctctcag	gtagcatcca	accagggaag	atgaagccag	21240
ttgagaaagg	ttaggcaaca	agagaagcct	aaaatcatcc	ttaggccaga	agaaatatcc	21300
ccttagatta	ggatcataaa	ttagaaattt	tttcctccaa	atggtagcat	ccttgggttg	21360
gtgactgagt	tgggcatatc	gaatttgcct	gtcatgagtt	gattggatat	tttcgttcat	21420
tttcagcgaa	ctgcacagtg	aattcatcag	cttaaaattt	gaaataaaac	tcaactaact	21480
gccagagaaa	tgagaccatg	ttcagatgaa	atgatcagag	aagagactag	aattaagctg	21540
agcaatatag	tagctaataa	tcccgtgggg	ctatttaaat	taaaataaaa	ataaaattag	21600
aacttcattt	cttcagttgc	attagctaca	tttcaaatgc	tcaaaggccc	catagggctt	21660
ctagctaaaa	tataggacgt	gcagatgtaa	gacattccca	tcattgtaga	acgttctgtt	21720
ggacaacact	gatgaaataa	ttgcattttc	cttcaagcta	aaattgaatg	ccaaaacctc	21780
agggatatag	aacagaggat	ttcttgattg	acaaaatgtt	gtagaagact	taagttcaaa	21840
tcttggttcc	tctagctgct	gacttgtgtt	attcattcag	tgaatcacaa	atagctactt	21900
gctatagggt	aacctaaaga	ttaagagcac	agtgcttaaa	tcctggctgt	accacctctg	21960
gattgcatga	ctttgggcat	ttacatttgt	gttaaatgat	aaaataattc	catctaccta	22020
caagggtttc	gtgcaggttg	caggggctaa	ttcaggtaaa	gttacttaga	gtgtttgcaa	22080
ccacataata	agctgttggg	tttaggcctt	gttattttga	ccctggcaga	acactagagt	22140

```
gccttaagca caaacaggga acacaaatct ggactccaac aactttcaga caagctcagt 22200
gaatctcacc ttcctgtgag gtcaacttct tttgttggct tggccagtct attttctagg 22260
attattagga tgttcaacta agataaagca tacaaagaca ctttttcaaa cttcacataa 22320
gcaaagcact gtactagata tttggggacc ataaaactga caaatgtcca gtctctatgc
                                                                22440
ccaggaattt gcagcctaac acgtggcata tgccatttat accatgactc ataatccatg 22500
atagaacatg gtaaatgcta taaaacaatg tatcagttca gatcttttaa aaaggcacca 22560
agataggatt tgacatgtaa gagattcatt ggagaaaaca gcatgaaaga taaagtggag 22620
aaagcagaaa taggaaggga aagtcttctt atgttgatgc aagtcaaaca cctgtgaaag 22680
gagaaaggaa aggaaagagg atagggtagg aagcctctca gatgcagtga agtttcaaga 22740
aagcttcact caggccaaat gggagtcctc cagccaaagt tgctccttag aggagtccca 22800
actettgtag gaacaggeta acaetaatac cccccgtett gttagteact atetgggaac 22860
agccaggaaa ggggtaactt tggcaggaac aggtacagga acagagttcc ttggcaggaa 22920
caggaacagt ggatccagag aggcagcatt cagcgctgtc gatcaactgt gttttctctg 22980
gtaggtgacc caaacggcac atttccaagg tggccacaaa tggcaaaata gcaattgctt 23040
ttagttttaa agagggaagg attgtgccta aataaatgga gaaaagcgtt atggaagaga 23100
tcgcccctga gttgtgcctt gaatgatagt taggatttga atagagattt tggggggaaaa 23160
gtacttctga cagaagagca tcagcaaagc cacagacata aaaaattttt tttaaagcat 23220
gaagcatatt tgtagaaagt ataagtggta ccatagatca cagagtttgt aactttagaa 23280
ataaagttag gaaagcaaat tggagacaca ttttggaagc ttttgaatgc cagcatagga 23340
actaaaattt tattaggtgg atgatggagg tccatcaaaa ctagtggggc aaaggactcc 23400
ttgatgttag cttttttgg ttggtttttt gtttttgata ttaatccagc tgctgactac 23460
agggaataaa gaggtaccca ggagggttta tttgggtgaa taataagatg tcttggaatg 23520
agttgcactg tgtgcttggt tcattcactt gtgcattctt ttattcattc aatagctatt 23580
aattacacct gccagaccca gtgctgagca tcagaagact agtgaacacc acagcccttg 23640
ttctacccca tggagttgtc acctagaaaa gtgtgcctat gtgttatttt gctttcttaa 23700
tcaaagttta attagattta caaaaaagtt gcagatagta gagagagttc ctatgtatgc 23760
ttcaccagct tttctcttat gttaacatca tagagaacca tgtacatttg ttaaaattaa 23820
gaaattaaca ctgcttcaat actgttaggt aaacagcaga cttatttgaa tttcaccagt 23880
ttttctacta atgccctttt tttaaaaaaa atgtatttcc ataggctatt ggggaacagg 23940
tggtgtttgg ttacatgagt aagttcttta gtggtgattt gtgagacttt ggtgcaccca 24000
tcacctgage agtacacact gcacccaatt tgtagtcttt ttcccctcat cccctttcca 24060
cacttacccc ctgagtcccc aacgtctgtt gtgtcattct tatgcctttg catcctcata 24120
gcttagctcc cacttatgag ttagaacata caatgtttgg ttttccattc ctgagttact 24180
```

```
tcacttagaa taatattctt caatctcatc taggtcactg caaatgccat taattcattc
cttttatggc tgagtagtat tccatcatat atataaaaga tacctgcaca cacgtttaca
                                                                  24300
gcagcacaat tcgcaattgc aaaaacgtgg aaccaaccta aatgcccatc aatcaacaag 24360
tgaataaaaa aactatgata tatatatata tatatatgtc agatgaatgt ccataataaa 24420
aaaaatagat gttgacgtgg atgcaqtgaa caggggacac ttctaccctg ctggtgttga 24480
tataaacttg tacaaccact atggaaaaca gtgtggagat tcctgaaaga actgaaagta
                                                                  24540
gagctacgat ttgatccagc aatcctattc ctgggtaata tcctttttct gatccaatct
                                                                  24600
aggataccac attacattta gctaagcggt ttacaaaatt taaaaacggt actttatttt
                                                                  24660
aatggtattt taaggaattt tttttgctat gtatagtcag tagaaaacct catttttttg
                                                                  24720
tatacagtta tgtatataaa taaaagcaat acatcttagc tgttagttat aaaagtgtgt
                                                                  24780
aagtagtttt cccttgagat caagtgcttc ctccagtatt gtttactctg ttcatttgct
                                                                  24840
tagcattttt ccaaaataaa tgcaaaagta aacttcgaca ctgctcatgt ttgaattggc
                                                                  24900
aaaatggttg agtatgatct gctgaaacga ggcctcattc tataaacatg actgccttca
                                                                  24960
agttgagttg ccacagcgca tcaacctgcc tctcgccatg ccacttgata ggagaataca
                                                                  25020
gttgaagaga gtaatctatt catctgattc caacagtagc tcctatttta ggatgagtgc
                                                                  25080
agtgtttttc ataactgtaa gagtgcaacg aggaactaag aggtcattgg gataaagcct
                                                                  25140
tcattttatc tcaatcacac aagtagagaa aatttgagat tttaggtctc ctaatgcctg
                                                                  25200
gactcaaccc cctttcccta caccaggctg cctggaggag aatacttgta ctctttgact
                                                                  25260
ctccttcacc aagaagccag aactctaaga ttactagttg gactggagcc ctctgtgcat 25320
ttatgcagga cagccaaaga atcacggaat atctatatga taacattcat gcggtcatta
                                                                  25380
aaaatgtatg tttccgaagg tttactaaaa atatatcagg taaaatatac attacatgca
                                                                  25440
caaaaccatc tttttttggg agaaaacaaa gctgcataac atagaggaaa aaatggaaag 25500
gaaatataca aaaaatgaaa agtotggatg ataggotoac aggaagottt aattttotat 25560
ttttaaatcc tgcaatacat ccaaaatttc tataatagat aaaaaaaggg aaaaagtaat 25620
caaataatgt gaaagtgaaa attaaaaaat aatgtggtga tttggggaac aaaacaaggt 25680
gcggttttac taaataaaag tatatacgtg ataatagata acaccctgat agattatcta 25740
cctctttgat gtccccttcg atagactggg actcccctc caagagtcgc ataggacagg 25800
ggtcgtccca tccactcaga ggctgctgtg aggatcacat gaaatcaact gagtggaagc 25860
cttttgaaag tcatggaacť cccacacgag tacaaaaata aatacaacag atacaacgaa 25920
ctttctagta ggggccacat gaaaaatgtt gtagactctg aatgatcttg ttatttggtt 25980
taaaaaacaa attgagacca gtgcagtggc tcattcctgt aatcccagca actcatgagg 26040
ccaaqqtqqq aqqatccatt gaacccaaqt qtttqatqct qcaqtqaqct gtgatcatqc 26100
                                                                  26160
cgctgcacac ttgtcaaagc aacagagaga gaccccacct ctaaaaacat aaataaataa
gcaaataaaa taagacaaaa agttaaagta agaatatagc acagagtaat gcatcttact
                                                                  26220
ctcaaagcca tggatttgca cttctcttcc aaatgtgtgc cctgggaggt ctccagttaa
```

```
gcaaaggaag totgcactto cocagggtca qggccaaggc ttcagggctg tcattgcttg
                                                                  26340
                                                                  26400
ccaaagacat tgctttccaa aataagggtg gctgtgtaat ttaagaacaa atttttcttt
tttaatggca agagggctga attatttcag aagtttaaac cagatctcat aaaatctatc
                                                                  26460
tccaattcct ccatgtcgtc agttgctccc tttaacattt aaatagtctc cttttgaggg 26520
                                                                  26580
tatgtttgtg aagttttctt tctccctgat gactctgtac ctttttcgct tgtaaattca
tcactaccca gtctccagct gacagtggtg caaaataaat gcagtaaaac aactcccaag 26640
gtttcagaat cattgaaagg tttttaccaa gggaattgat gagtcaggaa taatatccca
                                                                  26700
gctgggtttt tattctgagt taaaatatac aaaggggctt tgaatattta cactctcagc
                                                                  26760
ttttacagaa atactatgca cattttgaaa gctcatattt atttttagaa gaaaggagaa
                                                                  26820
                                                                  26880
attaggctaa caatgaaagc aggctgaaaa ttatgtataa gtcagaagca tatattaata
tttagaatga ggctgagtac ttgctgacca gattcgcttt ctcagttttg catttttgga
                                                                  26940
aggagaggaa ggaaagtgat gacaaaccat ttagttggag gcatgaaaac caggctgttg
                                                                  27000
tttcttgggc tattgttagc tgcttctttc tgtggttgag gaaaaagtag taattctgca
                                                                  27060
cttcattttg gttataatca tttatttta caggtaccat attgaacttg cagaaaaaca
                                                                  27120
gttattttcc ttcaatccag ggagatgtct atagtgttta acactgatta tcagaaaatg
                                                                  27180
agtatagtta tggtcagtgg gctagatact gcaagactga tgaattttaa aaaatcaact
                                                                  27240
tacacaacaa aattaaaatg ggcgaatata attttccaca gcaaagaaga aaaaagcatg
                                                                  27300
attatataag gttaagaagt ataaaaaata tgctgttaca gttaaaatag aaaatctcag
                                                                  27360
tagactgtct tataaactag ccagtactca atgtcgtgat tcagaataaa taaaaatatg 27420
acaagaaaga ccaattacca aattgtgtct gatgtttatg gtctcagtgt cttcagggaa
                                                                  27480
gctaatcaat taatattccc aaggtttctt tcttctctta tatgacaaga tgctaaaagc
                                                                  27540
tattatcatt ttttgtattt caaaacagtt gtatcaatag tttaaagttt ctcattctct
                                                                  27600
caatgtttct gaaaccagaa aaactatagc ttctagtttt aacctaattt aaatctaaat
                                                                  27660
taaggaatcg gggcctatat attcattttt tacatatatg tgtgtgggat gggccttcct
                                                                  27720
aaagttaatg gaaaaataga attaaaagat aaaaattaaa aagaataaac tttattttt
                                                                  27780
aatgtaagct ccattgagtt cattgcttac ttttgtaagc aatgatacca gccgtttagc
                                                                  27840
ccatccctaa agaactgggg gtcctggaga tttagctatg tcaatgcagc cttttttaca 27900
atattaactg aaaaaccatg ggtgcccttt atagattttt taagattagg aaacagaagt 27960
cagaaggagc taaatcagga ctctgggatt gatgcctaaa gatattccat caaaattatc 28020
acaacattgc ccttgtttga tgataggaat gagcagaagc attgttatgg tggacaaaga
                                                                  28080
cttcctggtg aagcttttgt gtgtttttct gctaaagctt tggctaactt tctcaaaaca 28140
ctctcatagt aagtagatat tatcaatctt tggccttcca gaaagtcaac aagcaaaatg 28200
cctgagcatc cccaaaaaaa ctgttgtcat ggtcttttct cttgacctgt ctgcttttgc 28260
tttgactgga ccaattctac ctctcggtag ccattgctct gattgtgctt tgttttcagg
                                                                  28320
```

atcatactgg	taaggccatg	tttcatctcc	tgttacaact	ttttgaagaa	atgtttcagg	28380
atcttgatcc	tgcatgttta	aaattttcat	tgaaagctct	gctcttgtct	gcagttgatc	28440
tgggcacaat	acttttggta	cccattgagt	ggaaggtttg	ctgaacctta	acttttccat	28500
cagaattgtg	tgaactgaac	caactgagat	gtctatggtg	ttgactattg	tttctgccat	28560
taattgtcag	tcctcttcaa	ttagggcata	aacaagatta	acttttttat	ttgcaaactg	28620
atgtagatgg	tctgcccctg	aggacttcat	ccttaacacc	atctggttcc	ttcctaaaat	28680
gagttatcca	tttgtaaact	gctgatttct	ttgggacatt	gtcttcataa	agttaaaaaa	28740
aaatcagtgt	ttcaccattc	ttctactgaa	gcttcaccat	aaatttgatg	tttattctag	28800
cttcaatttt	agtagaattc	atgttgctct	gttaggggct	cttttcaaac	tgatgtctta	28860
tccttcttag	tgcctcaaac	taaatcttct	tcagacatgc	tataacaagt	tagtatgagt	28920
ttatattgct	tcaaaaaatt	tttggaatcc	atgcataatt	ttttcataat	atgcattttc	28980
cattaacata	ttgaagaccg	tgtgtgtgtg	tgtgtgtttg	tgtgtgtgtg	tgtataaaca	29040
tatatatttg	agttctacat	tgttcttact	tctaactcaa	tgtaaggctc	attaacatgt	29100
ttctgctatc	attaggattc	agagatataa	cctgggagga	gacatctggc	taagaacagg	29160
gagctgactg	gctctctgta	ttaatgttct	aatgaataaa	aaattttcac	aaacttagct	29220
gcttaaaaca	acatcagttt	attatctcac	agttctgtag	atcagaagcc	tgggtaagct	29280
gcactaggtt	ttctgcacag	ggtcttacaa	ggttgaagtc	aaagtgttag	cagagctgta	29340
ttctcatctg	gaagctcagt	gggaagagcc	cgcctcaaag	cacattcagg	atgttggcag	29400
aatgcagttc	catgtggtta	taggattgag	gtccctgctt	tcttgtggac	tgttggcctg	29460
gagttgctct	cagcccctaa	atgtcactct	caggtccttt	caagtggctt	cctccacctt	29520
caaagcagac	atttcttgtg	ctttgagttg	ctctgacttt	cccttctact	accagctgga	29580
gaaaattctg	tacttttcaa	gggctcatgg	aatttggtt a	ggatcaacca	ggtaatctcc	29640
ctttcaatta	actcaaagtg	agcgattaat	aaccttaatt	attaatatat	ctgcaaaatc	29700
cctttgccat	gtaacagcac	ataatcacag	ggatgacatc	aggggaccaa	gatcatgaca	29760
gacatcttgg	atttgcctac	tatgctctca	cagttaagag	acccaagaat	tataatcatc	29820
taagagctgg	cttatgtctg	tgagctttgt	ccttgtgcaa	cagttctgtc	attcagacat	29880
aggatgctca	atgtctccta	caccttggcc	tgaagctagc	accattctca	ttccctttgc	29940
ccttgtgtcc	aaagcctcat	tctgggcctg	aaactgccaa	gcagccactc	gtgcttaaca	30000
gaatacctcc	tgtgagtcta	ctccatggaa	acctagttcc	atgtccagga	aaagtgacac	30060
tttgtgtgat	ggctgactga	caaatacata	acatgtctgt	gtgttctggc	tcccttagct	30120
ggctgagttt	ctgcagtgaa	gatcacacct	ctgtttcatg	ttttatttca	gactcgcagg	30180
gcaatgacat	taaagtcact	gctgagagca	ctggtgaaca	tgcctcctca	ctaccgctac	30240
ctttgcatca	gccacctcat	tggatggaca	gccttcctgt	ccaacatgct	gttcttcaca	30300
gatttcatgg	gccaggtaat	gaacgtgtct	gtgcacacaa	tcactgttac	acatcatttc	30360
ctccattaac	acctgttgag	gttcttctgg	gctatcctct	aagattggca	cagtaagaat	30420

gtaggaaagg	gtaccatcaa	gaagctgact	tacagacagg	tgtagaaaaa	tgctactata	30480
ccctggacaa	ctagaggaca	ctacggagcc	tgccagtatt	taatcaaata	caacaaatag	30540
ttgacagtgg	ggtgttaaag	tctcccatta	ttaatgtgtg	ggagtctaag	tctctttgta	30600
ggtcactcag	gacttgcttt	atgaatctgg	gtgctcctgt	attaggtgca	taaatattta	30660
ggatagttag	ctcctcttgt	tgaattgatc	cctttaccat	tatgtaatgg	ccttctttgt	30720
ctcttttgat	ctttgttggt	ttaaagtctg	ttttatcaga	gactaggatt	gcaacccctg	30780
cctttttttg	ttttccattg	gcttggtaga	tcttcctcca	tccttttatt	ttgagcctat	30840
gtgtgtctct	gcacgtgaga	tgggtttcct	gaatacagca	cactgatggg	tcttgactct	30900
ttatccaact	tgccagtctg	tgtcttttaa	ttgcagaatt	tagtccattt	atatttaaag	30960
ttaatattgt	tatgtgtgaa	tttgatcctg	tcattatgat	gttagctggt	gattttgctc	31020
attagttgat	gcagtttctt	cctagtctcg	atggtcttta	cattttggca	tgattttgca	31080
gcggctggta	ccggttgttc	ctttccatgt	ttagcgcttc	cttcaggagc	tcttttaggg	31140
caggcctggt	ggtgacaaaa	tctgaacaga	cacttctcaa	aagaagacat	ttatgcagcc	31200
aaaaaacaca	tgaagaaatg	ctcatcatca	ctggccatca	gagaaatgca	aatcaaaacc	31260
actatgagat	atcatctcac	accagttaga	atggcaatca	ttaaaaagtc	aggaaacaac	31320
aggtgctgga	gaggatgtgg	agaaatagga	acacttttac	actgttggtg	ggactgtaaa	31380
ctagttcaac	cattgtggaa	gtcagtgtgg	tgattcctca	gggatctaga	actagaaata	31440
ccatttgacc	cagccatccc	attactgggt	atatacccaa	atgactataa	atcatgctgt	31500
ctataaagac	acatgcacac	gtatgtttac	tgcggcacta	ttcacaatag	caaagacttg	31560
gaaccaaccc	aaatgtccaa	caatgataga	ctggattaag	aaaatgtggc	acatatacac	31620
catggaatac	tatgcagcca	taaaaaatga	tgagttcatg	tcctttgtag	ggacatggat	31680
gaaattggaa	accatcattc	tcagtaaact	atcgcaagaa	caaaaaacca	aacaccgcat	31740
attctcactc	ataggtggga	attgaacaat	gagatcacat	ggacacagga	aggggaatat	31800
cacactctgg	ggactgtggt	ggggtcgggg	gagggggag	ggatagcatt	gggagatata	31860
cctaatgcta	gatgacatgt	tagtgggtgc	agcgcaccag	catggcacat	gtatacatat	31920
gtaactaacc	tgcacaatgt	gcacatgtac	cctaaaactt	agagtataat	aaaaaaaaa	31980
aaattaaaaa	aaaaaaaaa	acttttgctc	aatagaaatt	aacttgttag	ctccggcctg	32040
tatgaaatac	attaaaaatg	aaattcttac	agcctgcaaa	gtcttccaag	ggggtaaagt	32100
tccacattat	atcacacaca	tatgcatttt	tgtttgcttt	actgtgactt	ggatttacta	32160
cagagacctc	taatttctta	aatgactttt	cacttatcta	cagatggaag	aataggacac	32220
gtaaatgcat	cactcataat	tgagtgtttg	taatacctct	cacatcttga	atcaaaataa	32280
gaaataaaat	gctgaaacta	caaaaaaaaa	aaatacaaca	aatagggcca	attgatgtga	32340
gctgtagcaa	tcatggcagg	cttcaaaaag	gaggggtggg	gttcaggccg	ggcatggtgg	32400
atcatgcctg	taatctcagt	gctttcgagg	ccaaggtgga	gcaatcattt	gaggccaggg	32460

```
gttcaaggat gcggtgacct atgactgtgc cgctgtactc cattctgagt gacagaccaa
gaccctgtct cttaaaaaat aaaatatgat aataaataca cataaaaaag gaggtgcagt 32580
atggtctggg ccttgaaggg tgagtaggag ttagaggaat attagagagg gagaaaacat 32640
tccaagcagg aacaggaatg gcccatgtgg agatgagtca gaagccgatt ggctgtagca 32700
gaagatgagt ggtgggattt cctaagtcag gtggggccag ctgtgagatg gaaggaggaa 32760
tgttaaggat ccaagagagt gttgttgaga tctgatgcag caagcattag atttctgata 32820
ggtccttgaa tgaagatgtg ataggatgcg acttggtcat gacagcatca gctctgtact 32880
ctagaaaggg tccctcaggc agggacattt gctccccaga ggtggagaag cagagtgcat 32940
gagaagggtt cttactacat tgcatttgta cctcaacagc ctccaatctc tctttcagat 33000
tgtgtaccgc ggggatccct atagtgcaca caactccaca gagtttctca tctacgaaag 33060
aggagtcgag gttggatgtt ggggcttgtg catcaactcc gtgttttcct cactttattc 33120
ttgtaagtct ttctctctc taaggatgtc ttctaaaagt ttctggtcta gcacaacttg 33180
gatttgatat ttctatgtgt atttcctact gtttaaaaata ccagattctt aataaatcta
                                                                  33240
tggacgtcag gaaaaactat caccttaaaa aggaccatat aaagcatcct tttttcatca 33300
tgaattctag gtgtcatttc ctcactgatt actttgctct tggaatcagt gggttcctga 33360
tcaagtttct ctggaaaatg aaagggaatc tttacaagat gaagtgttgg atggatgagt 33420
cccagcaggt tcgtgttcta ctggagcaag atcattggta gcatttcata gataggctta 33480
tcagatttgt agatgataca gaagagaagc aatattaata tgacaggtga caaagtcagc 33540
atgcaaaatg accttagctc agatgtgtaa ctgggtgggt tataggagca ccacaccagg 33600
attggggaca gctggctttc cttcccaggt gccagctttt ctgagcctct taacctccac 33660
ttacctaagt tgcagctgtg aagacactga acaaagggat ttctgctatt gtctttatgt 33720
aagtccaggt ggctgtgcta taactccagg gcattgcaca ggctgcattg tacttgcgac 33780
tgtgtatgga tatctccaag ctctgtatac attgagttaa gtgaaacgtc tggcctgaaa 33840
aatgtatgca gttctcctaa ttataaagag ctcctataaa gagctcttct tctgcaagat 33900
tgtaagaata actgaccccc aattcagggc tctgggcttt ggacaggtcc aggggacagc 33960
agggatatgg cccaggtgaa ggaagtggga agagatgggg agaatccctg ttaccattct 34020
                                                                  34080
caggaggact cactctgtca ctgtcagcct gcttcttgtg aagggaaagt gtggatgtat
gtgagggccc cttccccttc cctttaccta gccatagcac agcaggaaac ctgcctcaag 34140
acctcttaaa aatttagccc aattgggaaa atgggacctc atataaacat gcaagttgat 34200
gageceaata ateaegtaae aacaaeatte attattttaa aatttatgat aeteaaagag 34260
tagtgcttaa agatcacatt tatttagcaa actcttttct tcctcttcga gtgtgcaaac 34320
taagaaaaaa tccaggagga agatttcaag cacttaaaat agaataaaag aatgttagac 34380
taaaagggtc tagtaaatta tccagcttaa gtccttcatg atttcaaggg ctgaggggac 34440
tatttaccac taccctcatg cttttttttg tttttcttct ttttttaaga caaagtctca 34500
ctctgccacc tgagctggag tgcagtggca tgatcatggc tcactgcagc ctcaaccttc 34560
```

tgggctcaag	caagtcccag	ccctctgagt	acccgggacc	acaagcacat	gccactgtgc	34620
ctggcttatt	aatttaaaaa	aaatttttt	tttagagatg	gggtctccct	acattgccca	34680
ggctggtctc	gatctcctgg	gctcaagtga	tcctcctgtc	tcagcctccc	acagtgctgg	34740
gattacaggc	atgaggcact	acatccagcc	ctaccttcat	ctttgtcaga	aagaaaagtg	34800
tcaatctaaa	cttatttttc	ctcagggaac	tcctactaga	taacattcca	ttagtcttgt	34860
ccgcataaat	tttatggcat	ttgaaacttt	aaagcatatt	atttttaggt	cccttctagt	34920
taaaagcgtt	tctagttaca	aaagaaatta	ttagttgaat	agttttccaa	agttttatta	34980
atgtataaat	ctatgggatc	cctaccattg	ttaattcaaa	tcaacatttt	atttataaaa	35040
taccagccag	ctctgctcaa	ggattttagg	gattccccat	gcccatagga	taaagtcaaa	35100
ttcctgagct	tttcacagtt	tggcctagtt	catactttgc	cctttttcac	tcccatatca	35160
attaaccacc	ctcaatgacc	cactatgcag	actttctcat	ttctgggtat	ttgccactgc	35220
ttttagtttc	ttctgcctga	actgctcttt	ctacttcccc	aactggacaa	cttctaataa	35280
tatttttaga	cccagcttaa	atattacttc	ctcagtgaaa	tcattcaagt	tttcttcccc	35340
ctgcacctca	acccactctg	ggcagaatca	atcctttcct	ttccttccag	agctcactat	35400
attaccctct	attttggatt	catcacataa	catcaggagc	agattcagag	tttctatcca	35460
catggaggtt	ggcaggacaa	tctggctgct	gaggtggaga	gtgctgatag	ggacttgttt	35520
ctaagctcct	tttgtataca	gcaggtacag	gtataccaat	tagaacaaca	acactgagta	35580
ctaagatatg	gcctattgtt	cataccataa	tatcatacac	tactagtcat	aactggtgct	35640
taaatctata	atttcccctc	agtcctgaag	agaggcattg	tgtgaggata	tgactaccac	35700
tgggtatcag	acccatcaga	gggcaattca	agcttggccc	tgaagttcac	tgaattatct	35760
ttgtgaataa	agtattcttt	gccagacttt	cagtctctgt	actgaagtta	cttatgtttc	35820
caaatacctc	tttgccctac	tttgccttct	cctctgctgg	catacacact	tggataagag	35880
catttcccta	atgggtattg	atggtatctt	ttaggtattg	agacacctta	gattacattt	35 9 40
tctgtataaa	tataattatt	aagcaagcag	aaactgttct	agctttattc	tcatttttgt	36000
attctcaacc	ttaacaacag	tcctccagtc	atggtataag	tttaatagag	gaagcaatgt	36060
tgcctacttg	tcatttccag	atctttgtct	tccatcagtg	tgagagtgtt	tagtttcata	36120
attgattcaa	atgtactgca	aataaggttg	cttgtctaca	aggtgtaagt	ccaataatta	36180
tatgaataga	tatggaaaat	gtcattctta	atagtcacgt	ttcaagtatc	tgttatttat	36240
cctctgattc	ttgtgttcca	ggagaatggg	gcagggaaga	gatgaggaat	gtgtggatta	36300
aaaacgactg	agggaagaag	ataaaaacaa	tttagagatt	ttccttgcca	ttgtagaaaa	36360
ccttgtaaaa	tgttttaaag	cagaatttt	catttttaaa	aattagttct	gccactatac	36420
tgatataagc	aagccaagtt	gacctgctag	aagaggaacc	cagttaaaag	tcaactgtct	36480
ccagctcagc	ctgtcttgtt	gcttaattgg	atgttttcta	catgctaggc	attaagctgg	36540
gtgatttcat	agacacttca	tctcacttga	tcctggcaac	aactccaaaa	gatggtttta	36600

```
ttattcccag ttttcagatg aggaagctgg ggttttgaga agtcaaggaa cttgtttacc
                                                                  36720
aagagttagg gagccagcga tgaggagatg ctgggtgctg tgggagcccc ttaccagtct
                                                                  36780
gggaaggatt ggcaagtcag ggaaggtgtc ttcagataat tgtacatctt ttacctcctt
ctcaggtgtg cagactccat tcagatgggg gctaagaaat catgaatgac ttagatcatt
                                                                  36840
                                                                   36900
ctgtaaattt tggttgtttc aattttcccc aacctgactt tgggttgtag ggccaagata
ggcctgtgtt attattttcg tcctatgggg ccacagccca tctgatttag aataacccac
                                                                  36960
actiticity aagccccagg ticccatagt taggicagat titccaccac cittcicgct
                                                                  37020
tctttttgct atccagctgt ctgctaaaca gtgccagatt cttctttgta gaaaaaaaa 37080
                                                                  37140
Cagcctacca aggcaatttc aagctgtcct ttatggaaag gtctttaaaa tggttccaaa
agccagctgt tttcaaccca cagataaggg gattcttttg ttcctggctc agtatcaaag 37200
gatgtctaaa aaggtgaatc ttcagaagaa aggattgtct gaaattatta aatgttatga 37260
ggcactgcca gctgtaattt ctccctctt tcttcccaca gactttcaga aagttttggt 37320
atcctacatt ggattaaagg gtctttactt cacgggatat ttgctgtttg gcctggggac
                                                                  37380
gggatttatt gggctcttcc cgaatgtcta ctccaccctg gtcctgtgca gcctgtttgg
                                                                  37440
tgtaatgtcc agcaccctgt acactgtgcc ctttaacctc attactgagt accaccgcga
                                                                  37500
ggaagaaaag gaggtgtgct gtcattgaac ctctgccttg ggtaacatcc agactcatct
                                                                  37560
gaaggctggg gaggatttgg tagcaatgtg tagagcagag ctggaaaata agggttcttg
                                                                  37620
aaacagcaac agtcaaatgc ccaaccaact gcaaccatga tctggtacag gcatgctcac 37680
                                                                  37740
cagcccagcc cagcccagct gtcctgtcct ccttattctc aactcctgct cacttaggga
                                                                  37800
gctgtagggc aagaagtgtt actcccattt ttctaattag aaaaaggctt ggtgaggctg
                                                                   37860
agaaaccagc ccacaattac acaaagacaa aaaaaggggg acccaggtct tctgtaacca
cctcataggt ctccctggtg ccacctgcag catttctaga taccgacaat aagggtctcc 37920
                                                                  37980
ctatccccaa ctttcagagg tacatagtgg aatttcttgg cattatttqc tgagggtagg
aaagtcctag gcaatggagt ccagatttta gtaagtcaga ccccatgtgt gagaaggaaa
                                                                  38040
                                                                  38100
gctggaatca tgggtggtaa tccccacttt gctgccctga gcgggacctg tgccatttaa
accttggaac gcaactagtg aacaagcgcc tatgcagtgc ttataacaga gttggtgttt 38160
ccactctaaa attaccacct cttcttatca aaatttgcaa ctttcttcct gtgaaaatag
                                                                  38220
gcttatagtt ccttaactgg agcaatgata taaaagctac agagataact ccaagtttaa
                                                                  38280
                                                                   38340
tccagctcag catgaaactg caaaaacact gaacatataa ccatcagact ataattctgg
ccatgttttt catcatttga tctggcagca gggcagaggt gcaccaggag taaaaacctt 38400
tcaaaaaaga ggtgtggctt tcctcatccc ctggcaaaca ttgtcaccaa ggtgggatgt
                                                                   38460
tgctgctaat gggagagtca tcataaaaaa ctgtccctac aaggagagtg ttacatggtg
                                                                   38520
ttgggggaag aaaacctacg cttcaggctc agagaaacct ggattcaaat cctgcctctc
                                                                   38580
tcacttggaa gctgtgttac actggggatg ttatttactt gtttattagt tagcacttag
                                                                   38640
aatgagttca tttttaggtg agataatata ttcacaatga tacacaaaag tgcacactgt
                                                                   38700
```

```
38760
gtgctccctt taccatttac tatctccctc cagccccaac gtgttaccac tcttactagt
tttttgttaa tctttccggc atttttaaat aaaaaccaag caaatgtaaa tctgttttct
                                                                    38820
tattttcctt tcttattcaa aggataatat gcgtttttca gcataatgct ttttttttgc
                                                                    38880
ctaatagtgt aggaaatcat catttaagct cgcaggccct cagtttcctc atgaggcaaa
                                                                    38940
                                                                    39000
tggaaagaat gttatttacc ttatagaaaa gcaaacaaat tagtggatgt gcttagcata
gtgcccccta gcacccgaca aagactcaaa atgtgatagc tagtattata attgttacca
                                                                    39060
                                                                    39120
tgggggtaat gataataaca tgtgcatcca gggaggtggt gaggttgaaa tacagtaaca
                                                                    39180
ggtaaaaaaa aaacccaggc ccagcacata agcgataccc aacaaatgac aaagttatca
gccagttcgg aagaatatc aagtattaac caaacattat tatattaatc aagtagcaac
                                                                    39240
                                                                    39300
catattttga aagattgaaa tgctttttaa agttgcttct cttaaggaca tcagcaattc
aacatccttc ttaaaatctt tgaattttta acactaagaa aggaaaagaa tgggatattt
                                                                    39360
                                                                    39420
attaagtatc cactacattg tattgattat ggcccgccac ttgtttttgt acagtctgcg
                                                                    39480
agctaagaat tccttttaat tgtttaaatg attgaaaaaa actttcaaaa gaaggttaat
                                                                    39540
atcttgtgac aggtgaaaat tacatgaaat caaatgctaa tacccatcaa tattcagttc
agttccacat caccaattca tgaaaattac atgaaatcaa atgctaataa tgtccatcaa
                                                                    39600
                                                                    39660
tatatattgg aaagccaact cagctccaca ttgcccctgc ttttgcacta cagcagcaga
gttgagtagt tatgaccagg gctgtataat ccacgaagcc aaaggtattt actatctggc
                                                                    39720
tggtcacaga aaaattttgc tgacctgtgc cctaaatgac agttccttgt aggtcaaatg
                                                                    39780
gtggttctgt gcttcctttg cagaggcagc aggccccagg aggggaccca gacaacagcg
                                                                    39840
tgagagggaa gggcatggac tgcgccaccc tcacatgcat ggtgcagctg gctcagatcc
                                                                    39900
tggtcggagg tggcctgggc tttctggtca acacagccgg gaccgttgtc gtcgtggtga
                                                                    39960
tcacagcgtc tgcggtggca ctgataggct gttgctttgt cgctctcttt gttagatatg
                                                                    40020
                                                                    40060
tggattaggt caataaagag acaatgaccc taacctcaga
<210> 2
<211>601
<212> ADN
<213> Homo sapiens
<220>
<221> misc feature
<222> (301)..(301)
<223> N= C o G
<400> 2
 ttccctttca ttttccagag aaacttgatc aggaacccac tgattccaag agcaaagtaa
                                                                        60
 tcagtgagga aatgacacct agaattcatg atgaaaaaag gatgctttat atggtccttt
                                                                       120
 ttaaggtgat agtttttcct gacgtccata gatttattaa gaatctggta ttttaaacag
                                                                       180
 taggaaatac acatagaaat atcaaatcca agttgtgcta gaccagaaac ttttagaaga
                                                                       240
                                                                       300
 catccttagg agagagaaag acttacaaga ataaagtgag gaaaacacgg agttgatgca
```

5

10

naagccccaa catccaacct cgactcctct ttcgtagatg agaaactctg tggagttgtg

tgcad	ctai	tag	ggat	cccc	gc g	gtac	acaa	t ct	gaaa	gaga	gat	tgga	ggc	tgtt	gaggta
çaaa	tgc	aat	gtag	taag	aa c	cctt	ctca	t gc	actc	tgct	tct	ccac	ctc	tggg	gagcaa
atgto	CCC	tgc	ctga	ggga	cc c	tttc	taga	g ta	caga	gctg	atg	ctgt	cat	gacc	aagtcg
catco	cta	tca	catc	ttca	tt c	aagg	acct	a tc	agaa	atct	aat	gctt	gct	gcat	cagatc
t															
<211> <212>	<210> 3 <211> 460 <212> PRT <213> Homo sapiens														
<400>	3														
Met G 1	ìЈу	Ser	Asn	ser 5	Gly	Gln	Ala	Gly	Arg 10	His	Ile	туг	Lys	Ser 15	Leu
Ala A	sp	Asp	G]y 20	Pro	Phe	Asp	Ser	va1 25	Glu	Pro	Pro	Lys	Arg 30	Pro	Thr
Ser A	rg	Leu 35	Ile	Met	His	Ser	Met 40	Αla	мet	Phe	Gly	Arg 45	Glu	Phe	Cys
Tyr A	1a 30	val	Glu	Ala	Ala	Tyr 55	Val	Thr	Pro	∨al	Leu 60	Leu	ser	val	Gly
Leu P 65	ro	Ser	Ser	Leu	Туг 70	Ser	Ile	Val	Trp	Phe 75	Leu	Ser	Pro	Ile	Leu 80
Gly P	he	Leu	Leu	Gln 85	Pro	va1	∨a1	Gly	Ser 90	Ala	Ser	Asp	His	Cys 95	Arg
Ser A	rg	Trp	Gly 100	Arg	Arg	Arg	Pro	Tyr 105	ıle	Leu	Thr	Leu	Gly 110	val	Met
Met L	.eu	val 115	Gly	Met	Ala	Leu	Tyr 120	Leu	Asn	Gly	Ala	Thr 125	∨a1	val	Ala
Ala L	.eu .30	Ile	Ala	Asn	Pro	Arg 135	Arg	Lys	Leu	val	Trp 140	Ala	Ile	Ser	∨al
Thr M 145	let	ıle	Gly	val	val 150	Leu	Phe	ASP	Phe	Ala 155	Ala	ASP	Phe	ıle	Asp 160
Gly P	ro	Ile	Lys	Ala 165	туг	Leu	Phe	Asp	Val 170	Cys	Ser	ніѕ	Gln	Asp 175	Lys
Glu L	ys	Gly	Leu 180	His	Туг	His	Ala	Leu 185	Phe	Thr	Gly	Phe	G]y 190	G1y	Ala

Leu Gly Tyr Leu Leu Gly Ala Ile Asp Trp Ala His Leu Glu Leu Gly 195 200 205 Arg Leu Leu Gly Thr Glu Phe Gln Val Met Phe Phe Ser Ala Leu 210 215 Val Leu Thr Leu Cys Phe Thr Val His Leu Cys Ser Ile Ser Glu Ala 225 230 240 Pro Leu Thr Glu Val Ala Lys Gly Ile Pro Pro Gln Gln Thr Pro Gln
245 250 255 Asp Pro Pro Leu Ser Ser Asp Gly Met Tyr Glu Tyr Gly Ser Ile Glu 260 265 270 Lys Val Lys Asn Gly Tyr Val Asn Pro Glu Leu Ala Met Gln Gly Ala 275 280 285 Lys Asn Lys Asn His Ala Glu Gln Thr Arg Arg Ala Met Thr Leu Lys 290 300 Ser Leu Leu Arg Ala Leu Val Ash Met Pro Pro His Tyr Arg Tyr Leu 305 310 320 Cys Ile Ser His Leu Ile Gly Trp Thr Ala Phe Leu Ser Asn Met Leu 325 330 Phe Phe Thr Asp Phe Met Gly Gln Ile Val Tyr Arg Gly Asp Pro Tyr 340 Ser Ala His Asn Ser Thr Glu Phe Leu Ile Tyr Glu Arg Gly Val Glu 355 360 365 Val Gly Cys Trp Gly Phe Cys Ile Asn Ser Val Phe Ser Ser Leu Tyr 370 380 Ser Tyr Phe Gln Lys Val Leu Val Ser Tyr Ile Gly Leu Lys Gly Leu 385 390 400 Tyr Phe Thr Gly Tyr Leu Leu Phe Gly Leu Gly Thr Gly Phe Ile Gly 405 415 Leu Phe Pro Asn Val Tyr Ser Thr Leu Val Leu Cys Ser Leu Phe Gly
420 425 430 Val Met Ser Ser Thr Leu Tyr Thr Val Pro Phe Asm Leu Ile Thr Glu
435
445 Tyr His Arg Glu Glu Glu Lys Glu Val Cys Cys His 450 460

<210> 4

<211>601

<212> ADN

<213> Homo sapiens

<220>

10

<221> misc_feature

<222> (301)..C301)

<223> N= C o T

<400> 4

tgctctgaga	ggagtaagag	acaggaggac	cagaggaaaa	tgcagacatt	tttctttgag	60
atataaaatt	ttaattccaa	gggatgatag	ctacggggga	tttgggaatt	cagttagacc	120
ccatgaaact	cttctcgtca	aacagacaaa	acaaacaatt	aaaaaacaa	caacaacaaa	180
gagcaagaat	attttccctt	gtaaagaaaa	aatgttgcat	ctttacctgt	tcagcatgat	240
ttttgtttt	tgctccctgc	attgccagct	ctggatttac	gtaaccattt	ttaactttct	300
ngatagaacc	atactcgtac	attccatctg	atgacaatgg	agggtcctga	ggggtttgct	360
gtgggggaat	gccctttgca	acctctgtaa	gtggggcttc	agagatactg	cacagatgaa	420
cagtaaaaca	caaagtgagc	accaatgcag	agaagaagaa	catgacctgg	aattctgtac	480
ccaacagtct	tcccagctcc	agatgggccc	agtctatagc	acccaaaagg	taacccaggg	540
cacctccaaa	acctggaaag	caagaaaagc	tatgttagca	tatttagcaa	attatcgttc	600
a						601

5 <210> 5 <211> 317 <212> PRT <213> homo sapiens

10 <400> 5

Met Ala Val Gln Gly Ser Gln Arg Arg Leu Leu Gly Ser Leu Asn Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Pro Thr Ala Ile Pro Gln Leu Gly Leu Ala Ala Asn Gln Thr Gly $20 \\ \hspace{1.5cm} 25$

Ala Arg Cys Leu Glu Val Ser Ile Ser Asp Gly Leu Phe Leu Ser Leu 35 40 45

Gly Leu Val Ser Leu Val Glu Asn Ala Leu Val Val Ala Thr Ile Ala 50 60

Lys Asn Arg Asn Leu His Ser Pro Met Tyr Cys Phe Ile Cys Cys Leu 65 70 75

Ala Leu Ser Asp Leu Leu Val Ser Gly Ser Asn Val Leu Glu Thr Ala 85 90

Val Ile Leu Leu Glu Ala Gly Ala Leu Val Ala Arg Ala Ala Val 100 105

```
Leu Gln Gln Leu Asp Asn Val Ile Asp Val Ile Thr Cys Ser Ser Met 115 120
      Leu Ser Ser Leu Cys Phe Leu Gly Ala Ile Ala Val Asp Arg Tyr Ile
130 140
      Ser Ile Phe Tyr Ala Leu Arg Tyr His Ser Ile Val Thr Leu Pro Arg
145 150 160
      Ala Arg Arg Ala Val Ala Ala Ile Trp Val Ala Ser Val Val Phe Ser
165 170
      Thr Leu Phe Ile Ala Tyr Tyr Asp His Val Ala Val Leu Leu Cys Leu
180 185
      Val Val Phe Phe Leu Ala Met Leu Val Leu Met Ala Val Leu Tyr Val
195 200 205
      His Met Leu Ala Arg Ala Cys Gln His Ala Gln Gly Ile Ala Arg Leu
210 220
      His Lys Arg Gln Arg Pro Val His Gln Gly Phe Gly Leu Lys Gly Ala 225 230 240
      Val Thr Leu Thr Ile Leu Leu Gly Ile Phe Phe Leu Cys Trp Gly Pro 245 255
      Phe Phe Leu His Leu Thr Leu Ile Val Leu Cys Pro Glu His Pro Thr 260 265 270
      Cys Gly Cys Ile Phe Lys Asn Phe Asn Leu Phe Leu Ala Leu Ile Ile 275 280 285
      Cys Asn Ala Ile Ile Asp Pro Leu Ile Tyr Ala Phe His Ser Gln Glu
290 295 300
      Leu Arg Arg Thr Leu Lys Glu Val Leu Thr Cys Ser Trp 310 315
      <210>6
      <211>51
      <212> ADN
 5
      <213> homo sapiens
      <220>
      <221> misc feature
10
      <222> (26)..(26)
      <223>N=AOC
      <400>6
      tcatctgctg cctggccttg tcgganctgc tggtgagcgg gagcaacgtg c
                                                                                       51
15
      <210>7
      <211>601
      <212> ADN
20
      <213> homo sapiens
      <220>
      <221> misc_feature
      <222> (301)..(301)
25
      <223>N=ToG
```

	<400> 7						
	gtgagcttgg	tggagaacgc	gctggtggtg	gccaccatcg	ccaagaaccg	gaacctgcac	60
	tcacccatgt	actgcttcat	ctgctgcctg	gccttgtcgg	acctgctggt	gagcgggagc	120
	aacgtgctgg	agacggccgt	catcctcctg	ctggaggccg	gtgcactggt	ggcccgggct	180
	gcggtgctgc	agcagctgga	caatgtcatt	gacgtgatca	cctgcagctc	catgctgtcc	240
	agcctctgct	tcctgggcgc	catcgccgtg	gaccgctaca	tctccatctt	ctacgcactg	300
	ngctaccaca	gcatcgtgac	cctgccgcgg	gcgcggcgag	ccgttgcggc	catctgggtg	360
	gccagtgtcg	tcttcagcac	gctcttcatc	gcctactacg	accacgtggc	cgtcctgctg	420
	tgcctcgtgg	téttetteet	ggctatgctg	gtgctcatgg	ccgtgctgta	cgtccacatg	480
	ctggcccggg	cctgccagca	cgcccagggc	atcgcccggc	tccacaagag	gcagcgcccg	540
	gtccaccagg	gctttggcct	taaaggcgct	gtcaccctca	ccatcctgct	gggcattttc	600
	t						601
5 10	<210> 8 <211> 601 <212> ADN <213> homo sa	apiens					
15	<220> <221> misc_fe <222> (301)(3 <223> N = C o	301)					
10	<400> 8						
	gtggccacca	tcgccaagaa	ccggaacctg	cactcaccca	tgtactgctt	catctgctgc	60
	ctggccttgt	cggacctgct	ggtgagcggg	agcaacgtgc	tggagacggc	cgtcatcctc	120
	ctgctggagg	ccggtgcact	ggtggcccgg	gctgcggtgc	tgcagcagct	ggacaatgtc	180
	attgacgtga	tcacctgcag	ctccatgctg	tccagcctct	gcttcctggg	cgccatcgcc	240
	gtggaccgct	acatctccat	cttctacgca	ctgcgctacc	acagcatcgt	gaccctgccg	300
	ngggcgcggc	gagccgttgc	ggccatctgg	gtggccagtg	tcgtcttcag	cacgctcttc	360
	atcgcctact	acgaccacgt	ggccgtcctg	ctgtgcctcg	tggtcttctt	cctggctatg	420
	ctggtgctca	tggccgtgct	gtacgtccac	atgctggccc	gggcctgcca	gcacgcccag	480
	ggcatcgccc	ggctccacaa	gaggcagcgc	ccggtccacc	agggctttgg	ccttaaaggc	540
	gctgtcaccc	tcaccatcct	gctgggcatt	ttcttcctct	gctggggccc	cttcttcctg	600
	С						601
20	<210> 9 <211> 51 <212> ADN <213> homo sa	apiens					
25	<220> <221> misc_fe <222> (26)(26 <223> N = G o	3)					
30	<400> 9						
	cctcatcatc	tgcaatgcca	tcatcmaccc	cctcatctac	gccttccaca	g	51

<210> 10 <211> 3115 <212> ADN <213> homo sapiens

<400> 10

60	ggaagatgcc	agtgaaccca	aacgccctgg	aagtgctggg	ttcagcaagg	agacgcagtc
120	cacgcccgac	gcttcggggc	tccctgctgg	ctctccaccg	gccagggccc	tgcagtgggt
180	tctgcctttg	aggcgagagg	cgacggctgg	gcaccacgtg	ggcctgcgga	tgctgtgaac
240	cgccgcccgg	ggaaatggcg	cttccgcagc	cctgtggtgc	tggtgcaggg	atgtggctgt
300	tgactggagg	agcgacgaga	tgtgaggatg	cgggtgcccc	agcagcgtcc	ggagggcggg
360	cgacaccccc	tcccaggaag	gccggtccgc	ggtgccccca	acctcactag	gtccctgaag
420	tgggcccttg	tgggcgaggc	ccactctggc	gagggggtcg	ggctgcagct	acagccccag
480	aacctctcca	tgaaaacacc	acaagatgcc	ctcaggctct	ccagagtggc	ggggcaggcg
540	ctcaccccgc.	cggaagcccc	ctgccctggc	ctttcacgct	gcattggacg	gggctcacta
600	ttggaaagtt	actttaatta	agtttccaga	gggctcactc	aactcctgca	gcgatgtgca
660	tgctccatgc	gctgagttgc	aacgttgaca	atctgccgtg	cagcccccaa	ctccctggtc
720	gaggggaggg	agctgctgac	gtcctccctg	ggggacccct	tgagagcaga	gtgctttggc
780	cctagagggg	gctccggact	tcccggggaa	agagggcagg	gggcctctgg	gtgaagggtg
840	gtaaaggaga	gttttttaac	agactgtggt	tgaccaggac	ggggccctgg	cggccaggtg
900	cgggccatgg	ggtggcaggc	cacgccgcct	ctgggtcctg	gagggacccc	tccgcggtgt
960	agaacgactt	aggggctctg	cctcagtggg	atgtggccgc	cgcccccggc	tgggtgctca
1020	tggcccagga	agcgcagccc	ccaggacctc	tccattcttc	agagaaaagc	tttaaaacgc
1080	gacctgagca	atgtcctggg	aggtgtcgaa	gacggtccag	cagaggccag	aggcaggaga
1140	tgagaatccc	ggcttggttg	ctgaggacca	agggagggag	gggaagaggc	gcagccacca
1200	ctgggctgac	tgggccatgc	ctggactggc	caggaggtgt	cggtagatgc	tgagcccagg
1260	gaaggaggca	tgcccagatg	gatctggggg	tgtgagggca	agggagaggg	ctgtccagcc
1320	cacctggagg	ctaagcagga	gcaccatgaa	ccccctggca	acacccaagg	ggcatggggg
1380	ggacaggact	cctgcttcct	acgactcctt	gaggcctcca	tggggacctg	ggaagaactg
1440	ccccacagcc	tcaactccac	ctgggctccc	gagaagactt	agggatccca	atggctgtgc
1500	ggtgtccatc	ggtgcctgga	acaggagccc	tgccaaccag	tggggctggc	atcccccagc

tctgacgggc	tcttcctcag	cctggggctg	gtgagcttgg	tggagaacgc	gctggtggtg	1560
gccaccatcg	ccaagaaccg	gaacctgcac	tcacccatgt	actgcttcat	ctgctgcctg	1620
gccttgtcgg	acctgctggt	gagcgggagc	aacgtgctgg	agacggccgt	catcctcctg	1680
ctggaggccg	gtgcactggt	ggcccgggct	gcggtgctgc	agcagctgga	caatgtcatt	1740
gacgtgatca	cctgcagctc	catgctgtcc	agcctctgct	tcctgggcgc	catcgccgtg	1800
gaccgctaca	tctccatctt	ctacgcactg	cgctaccaca	gcatcgtgac	cctgccgcgg	1860
gcgcggcgag	ccgttgcggc	catctgggtg	gccagtgtcg	tcttcagcac	gctcttcatc	1920
gcctactacg	accacgtggc	cgtcctgctg	tgcctcgtgg	tcttcttcct	ggctatgctg	1980
gtgctcatgg	ccgtgctgta	cgtccacatg	ctggcccggg	cctgccagca	cgcccagggc	2040
atcgcccggc	tccacaagag	gcagcgcccg	gtccaccagg	gctttggcct	taaaggcgct	2100
gtcaccctca	ccatcctgct	gggcattttc	ttcctctgct	ggggcccctt	cttcctgcat	2160
ctcacactca	tcgtcctctg	ccccgagcac	cccacgtgcg	gctgcatctt	caagaacttc	2220
aacctctttc	tcgccctcat	catctgcaat	gccatcatcg	accccctcat	ctacgccttc	2280
cacagccagg	agctccgcag	gacgctcaag	gaggtgctga	catgctcctg	gtgagcgcgg	2340
tgcacgcggc	tttaagtgtg	ctgggcagag	ggaggtggtg	atattgtgtg	gtctggttcc	2400
tgtgtgaccc	tgggcagttc	cttacctccc	tggtccccgt	ttgtcaaaga	ggatggacta	2460
aatgatctct	gaaagtgttg	aagcgcggac	ccttctgggt	ccagggaggg	gtccctgcaa	2520
aactccaggc	aggacttctc	accagcagtc	gtggggaacg	gaggaggaca	tggggaggtt	2580
gtggggcctc	aggctccggg	caccaggggc	caacctcagg	ctcctaaaga	gacattttcc	2640
gcccactcct	gggacactcc	gtctgctcca	atgactgagc	agcatccacc	ccaccccatc	2700
tttgctgcca	gctctcagga	ccgtgccctc	gtcagctggg	atgtgaagtc	tctgggtgga	2760
agtgtgtgcc	aagagctact	cccacagcag	ccccaggaga	aggggctttg	tgaccagaaa	2820
gcttcatcca	cagccttgca	gcggctcctg	caaaaggagg	tgaaatccct	gcctcaggcc	2880
aagggaccag	gtttgcagga	gccccctag	tggtatgggg	ctgagccctc	ctgagggccg	2940
gttctaaggc	tcagactggg	cactggggcc	tcagcctgct	ttcctgcagc	agtcgcccaa	3000
gcagacagcc	ctggcaaatg	cctgactcag	tgaccagtgc	ctgtgagcat	ggggccagga	3060
aagtctggta	ataaatgtga	${\tt ctcagcatca}$	cccaccttaa	aaaaaaaaa	aaaaa	3115

REIVINDICACIONES

- 1. Procedimiento *in vitro* destinado a identificar a un sujeto que padece o que presenta una predisposición al cáncer de piel, caracterizado porque comprende la etapa de análisis de una muestra biológica de dicho sujeto mediante:
 - a) la detección de un polimorfismo del gen *MATP/SLC45A2* de SEC ID nº 1, asociado a un solo nucleótido (SNP) se selecciona de entre el grupo que comprende la SNP rs16891982, que corresponde al nucleótido N en la posición 301 de la SEC ID nº 2, estando el nucleótido G asociado a un cáncer cutáneo y que conduce a la presencia de una fenilalanina en la posición 374 de la proteína MATP/SLC45A2 de SEC ID nº 3 y el SNP rs26722 que corresponde al nucleótido N en la posición 301 de la SEC ID nº 4, estando el nucleótido C asociado a un cáncer cutáneo y que conduce a la presencia de un residuo de glutamato en la posición 272 de la proteína MATP/SLC45A2 de SEC ID nº 3.
- 2. Procedimiento según la reivindicación 1, que comprende además la etapa b) de detección de un polimorfismo del gen *MC1R* de SEC ID nº 10.
 - 3. Procedimiento según cualquiera de las reivindicaciones 1 o 2, caracterizado porque dicho sujeto es un mamífero, preferentemente un ser humano.
- 4. Procedimiento según cualquiera de las reivindicaciones 1 a 3, caracterizado porque dicho cáncer de piel es un melanoma.
 - 5. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho polimorfismo del gen MATP/SLC45A2 asociado a un solo nucleótido (SNP) corresponde al SNP rs16891982 que corresponde al nucleótido N en la posición 301 de la SEC ID nº 2, estando el nucleótido G asociado a un cáncer cutáneo, y que conduce a la presencia de una fenilanalina en la posición 374 de la proteína MATP/SLC45A2 de SEC ID nº 3.
- 6. Procedimiento según cualquiera de las reivindicaciones 2 a 5, caracterizado porque dicho polimorfismo del gen *MC1R* asociado a una predisposición al cáncer de piel corresponde a un polimorfismo asociado a un solo nucleótido (SNP) seleccionado de entre el grupo que comprende el SNP rs1805006 que corresponde al nucleótido N en la posición 26 de la SEC ID nº 6, estando el nucleótido A asociado a un cáncer cutáneo, y que conduce a la presencia de un glutamato en la posición 84 de la proteína MC1R de SEC ID nº 5, correspondiendo el SNP rs1805007 al nucleótido N en la posición 301 de la SEC ID nº 7, estando el nucleótido T asociado a un cáncer cutáneo y que conduce a la presencia de una cisteína en la posición 151 de la proteína MC1R de SEC ID nº 5, correspondiendo el SNP rs1805008 al nucleótido N en la posición 301 de la SEC ID nº 8, estando el nucleótido T asociado a un cáncer cutáneo y que conduce a la presencia de un triptófano en la posición 160 de la proteína MC1R de SEC ID nº 5, correspondiendo el SNP rs1805009 al nucleótido N en la posición 26 de la SEC ID Nº 9, estando el nucleótido C asociado a un cáncer cutáneo y que conduce a la presencia de una histidina en la posición 294 de la proteína MC1R de SEC ID nº 5.
 - 7. Procedimiento según cualquiera de las reivindicaciones anteriores, que comprende además una etapa de análisis de la expresión del gen *MATP/SLC45A2* en dicha muestra biológica.
- 8. Procedimiento según la reivindicación 7, caracterizado porque comprende además una etapa de comparación del nivel de expresión del gen *MATP/SLC45A2* en dicha muestra biológica con el nivel de expresión del gen *MATP/SLC45A2* en una muestra control.

5

10