

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

Т3

1 Número de publicación: 2 450 541

51 Int. CI.:	
A61K 31/70	(2006.01)
A01N 43/04	(2006.01)
C07K 1/00	(2006.01)
C07K 14/00	(2006.01)
C07K 17/00	(2006.01)

(12)	TRADUCCIÓN DE P	ATENTE EU	IROPEA	
96 Fecha de presentación	y número de la solicitud europea:	06.06.2005	E 12002027 (6)	
(97) Fecha v número de pul	olicación de la concesión europea:	19.02.2014	EP 2484364	

54 Título: Composiciones para el tratamiento de enfermedades neovasculares

30 Prioridad:	Titular/es:
04.06.2004 US 577156 P 01.07.2004 US 585273 P 24.02.2005 US 655801 P	THE SCRIPPS RESEARCH INSTITUTE (100.0%) 10550 North Torrey Pines Road La Jolla, CA 92037, US
2	(72) Inventor/es:
 (45) Fecha de publicación y mención en BOPI de la traducción de la patente: 25.03.2014 	FRIEDLANDER, MARTIN; AGUILAR, HILDA EDITH y DORRELL, MICHAEL I.
	(74) Agente/Representante:
	CURELL AGUILÁ, Mireia
	1

ES 2 450 541 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Composiciones para el tratamiento de enfermedades neovasculares.

5 Campo de la invención

10

La presente invención se refiere al tratamiento de enfermedades neovasculares, tales como enfermedades neovasculares retinianas. Más particularmente, la presente invención se refiere a procedimientos destinados al tratamiento de enfermedades neovasculares mediante la administración de una combinación de fármacos angiostáticos y angiogénicos a un paciente, y a composiciones para su utilización en dichos procedimientos.

Antecedentes de la invención

- La inmensa mayoría de enfermedades que producen pérdida muy grave de la visión lo hacen como resultado de la neovascularización ocular. Por ejemplo, la degeneración macular por la edad (ARMD) afecta a 12 a 15 millones de norteamericanos con más de 65 años de edad y produce la pérdida de visión en el 10 a 15% de ellos como efecto directo de la neovascularización coroidea (subretiniana). La causa principal de la pérdida de visión para los norteamericanos menores de 65 años de edad es la diabetes; 16 millones de personas en los Estados Unidos son diabéticos y 40.000 al año padecen complicaciones oculares de la enfermedad, con frecuencia como resultado de la
- 20 neovascularización retiniana. Aunque la fotocoagulación con láser ha sido eficaz para prevenir la pérdida grave de visión en subgrupos de pacientes diabéticos en alta situación de riesgo, la frecuencia general de 10 años de la retinopatía continúa permaneciendo sustancialmente inalterada. Para los pacientes con neovascularización coroidea debido a ARMD o la enfermedad ocular inflamatoria tales como la histoplasmosis ocular, la fotocoagulación, con pocas excepciones es ineficaz para prevenir la pérdida de visión. Aunque se han desarrollado recientemente, las
- 25 terapias fotodinámicas no destructivas continúan siendo prometedoras para la pérdida individual con reducción temporal en pacientes con neovascularización coroidea no tratable anteriormente, solamente el 61,4% de los pacientes tratados cada 3 a 4 meses ha mejorado o estabilizado la visión en comparación con el 45,9% del grupo tratado con placebo.
- 30 La ARMD y la retinopatía diabética son las causas principales de la pérdida de visión en las naciones industrializadas y es así como resultado de la neovascularización retiniana anormal. Dado que la retina consta de capas bien definidas de elementos neuronales, gliales y vasculares, alteraciones relativamente pequeñas tales como las observadas en la proliferación vascular o el edema pueden conducir a la pérdida significativa de la función visual. Las degeneraciones retinianas hereditarias, tales como la retinosis pigmentaria (RP), están también asociadas a
- 35 anomalías vasculares tales como el estenosis arteriolar y la atrofia vascular. Aunque se ha hecho un avance significativo en la identificación de los factores que estimulan e inhiben la angiogenia, actualmente no existe ningún tratamiento disponible para tratar específicamente la vasculopatía ocular.
- Las degeneraciones hereditarias de la retina afectan como mucho a 1 de cada 3.500 personas y se caracterizan por
 la ceguera nocturna progresiva, la pérdida de campo visual, la atrofia del nervio óptico, la atenuación arteriolar, la permeabilidad vascular alterada y la pérdida central de la visión con frecuencia evolucionando hasta la ceguera completa (Heckenlively, J. R., editor, 1988; Retinitis Pigmentosa, Filadelfia: JB Lippincott Co.) El análisis genético molecular de estas enfermedades ha identificado mutaciones en más de 110 genes diferentes lo que explica solamente un porcentaje relativamente pequeño de las personas afectadas conocidas (Humphries *et al.*, 1992, *Science* 256:804-808; Farrar *et al.* 2002, *EMBO J.* 21:857-864). Muchas de estas mutaciones están asociadas a
- componentes enzimáticos y estructurales del sistema de fototransducción incluyendo rodopsina, GMPc fosfodiesterasa, *rds* periferina y RPE65. A pesar de estas observaciones, existen todavía tratamientos ineficaces para ralentizar o invertir la evolución de las enfermedades retinianas degenerativas. Los avances recientes en terapia génica han conducido a la inversión lograda de los fenotipos *rds* (Ali *et al.* 2000, *Nat. Genet.* 25:306-310) y *rd*
- 50 (Takahashi *et al.* 1999, *J. Virol.* 73:7812-7816) en ratones y el fenotipo de RPE65 en perros (Acland *et al.* 2001, *Nat.* Genet. 28:92-95) cuando el transgén natural es suministrado a fotorreceptores o al epitelio retiniano pigmentado (ERP) en animales con una mutación específica.

La angiogenia es el procedimiento mediante el cual se forman nuevos vasos sanguíneos. En respuesta a señales químicas específicas, los capilares salen de los vasos existentes, aumentando de tamaño finalmente según necesita el organismo. Inicialmente, las células endoteliales, que recubren los vasos sanguíneos, dividen en una dirección octogonal al vaso existente, formando un brote sólido. Las células endoteliales adyacentes forman a continuación grandes vacuolas y las células se reordenan de modo que las vacuolas se orientan unidas por los extremos y finalmente emergen para forman la luz de un nuevo capilar (formación tubular).

60

La angiogenia es estimulada por numerosas condiciones, tal como en respuesta a una herida, y acompaña casi todo el crecimiento tisular en los organismos vertebrados tales como de los mamíferos. La angiogenia también desempeña una función en determinadas enfermedades tales como determinados cánceres. El crecimiento de tumores, por ejemplo, requiere crecimiento de los vasos sanguíneos para proporcionar oxígeno y nutrientes al tejido del tumor en desarrollo. Además, la neovascularización ocular está asociada a la inmensa mayoría de las enfermedades oculares que conducen a la pérdida muy grave de la visión.

La angiogenia puede detenerse o inhibirse interfiriendo con las señales químicas que estimulan el proceso angiogénico. Por ejemplo, las células endoteliales angiogénicas producen proteasas para digerir la lámina basal que rodea los vasos sanguíneos, eliminando de este modo un camino para el nuevo capilar. La inhibición de estas

- 5 proteasas, o su inhibición, puede evitar que se formen nuevos vasos. Así mismo, las células endoteliales proliferan en respuesta a señales químicas. Las señales de proliferación particularmente importantes incluyen el factor de crecimiento endotelial vascular (VEGF) y las familias del factor de crecimiento de fibroblastos (FGF) de proteínas. Se ha demostrado que VEGF está implicado en la vascularización de determinados tumores. La interferencia con estos procesos de señalización de la proliferación pueden también inhibir la angiogenia.
- 10

60

En la angiogenia están implicados varios factores. Las moléculas del factor de crecimiento de fibroblastos tanto ácidas como básicas son mitógenos para las células endoteliales y otros tipos de células. Un mitógeno muy selectivo para las células endoteliales vasculares es el VEGF.

- 15 En el adulto normal, la angiogenia está estrictamente regulada, y se limita a la cicatrización de heridas, el embarazo y el ciclo uterino. La angiogenia se pone en marcha por moléculas angiogénicas específicas tales como el factor de crecimiento de fibroblastos básico y ácido (FGF), el VEGF, la angiogenina, el factor de crecimiento transformante (TGF), el factor α de la necrosis tumoral (FNT-α) y el factor de crecimiento derivado de plaquetas (PDGF). La angiogenia puede ser suprimida por moléculas inhibidoras tales como interferón-α, trombospondina-1, angioestatina y endostatina. Es el equilibrio de estos estimulantes e inhibidores naturales el que controla el sistema vascular
- 20 y endostatina. Es el equilibrio de estos estimulantes e innibidores naturales el que controla el sistema vascular capilar normalmente inactivo. Cuando este equilibrio se altera, como en determinadas enfermedades, las células endoteliales capilares están inducidas a proliferar, emigrar y por último diferenciarse.
- La angiogenia desempeña una función principal en una variedad de enfermedades incluyendo el cáncer y la neovascularización ocular. El crecimiento mantenido y la metástasis de una variedad de tumores se ha demostrado también que depende del crecimiento de nuevos vasos sanguíneos del hospedador en el tumor en respuesta a factores angiogénicos procedentes del tumor. La proliferación de nuevos vasos sanguíneos en respuesta a una variedad de estímulos se produce como el descubrimiento dominante en la mayoría de las enfermedades oculares y que ciegan incluyendo la retinopatía diabética proliferante, ARMD, el glaucoma rubeótico, la queratitis intersticial y la
- 30 retinopatía precoz. En estas enfermedades, el daño tisular puede ocasionar la liberación de factores angiogénicos produciendo la proliferación capilar. El VEGF desempeña una función dominante en la neovascularización del iris y en las retinopatías neovasculares. Aunque los informes demuestran claramente una correlación entre los niveles de VEGF intraoculares y la neovascularización ocular retinopática isquémica, FGF desempeña probablemente también una función. Los FGF ácido y básico son conocidos porque están presentes en la retina del adulto normal, aún
- 35 cuando niveles detectables no se correlacionan sistemáticamente con la neovascularización. Esto puede ser en gran medida debido a que el FGF se une muy fuertemente a los componentes cargados de la matriz extracelular y puede no estar fácilmente disponible en una forma libremente difundible que se detectaría mediante ensayos normalizados de los fluidos intraoculares.
- 40 Una ruta frecuente final en la respuesta angiogénica implica el cambio de información mediado por la integrina entre una célula endotelial vascular proliferante y la matriz extracelular. Esta clase de receptores de adhesión, denominados integrinas, se expresan como heterodímeros con una subunidad α y β en todas las células. Dicha integrina, α_vβ₃, es el miembro más promiscuo de esta familia y permite a las células endoteliales interactuar con una amplia variedad de componentes de la matriz extracelular. Los antagonistas de péptidos y de anticuerpos de esta
- 45 integrina inhiben la angiogenia provocando de manera selectiva la apoptosis de las células endoteliales vasculares proliferantes. Existen dos rutas de angiogenia dependientes de citocinas y pueden definirse por su dependencia de distintas integrinas de las células vasculares, α_νβ₃ y α_νβ₅. Específicamente, la angiogenia inducida por el FGF básico y el VEGF depende de la integrina α_νβ₃ y α_νβ₅, respectivamente, ya que los antagonistas de anticuerpos de cada integrina bloquean selectivamente una de estas rutas angiogénicas en los modelos de de la córnea de conejo y de la
- 50 membrana corioalantoica de pollo (CAM). Los antagonistas de péptidos que bloquean todas las integrinas α_v inhiben la angiogenia estimulada por FGF y VEGF. Aunque los vasos sanguíneos oculares humanos normales no presentan una de las dos integrinas, α_vβ₃ y α_vβ₅ las integrinas se presentan selectivamente en los vasos sanguíneos en los tejidos de los pacientes con enfermedad ocular neovascular activa. Aunque solamente α_vβ₃ se observó sistemáticamente en el tejido de los pacientes con ARMD, tanto α_vβ₃ como α_vβ₅ estaban presentes en los tejidos de 55 pacientes con retinopatía diabética proliferante. Los antagonistas de integrinas de péptidos administrados en todo el
- sistema bloquearon la formación de nuevos vasos sanguíneos en un modelo de ratón de vasculogenia retiniana.

El documento US 2003/0191098 divulga una composición inhibidora de la angiogénesis que comprende un compuesto inhibidor de la angiogénesis y un fármaco antiinflamatorio.

El documento US 2003/0017564 divulga un polipéptido soluble en agua derivado de la triptofanil-ARNt sintetasa que resulta útil para la inhibición de la angiogénesis.

Por consiguiente, los agentes antiangiogénicos desempeñan una función en el tratamiento de la degeneración retiniana al evitar los efectos dañinos de estos factores tróficos y del crecimiento. Los agentes angiogénicos, desempeñan también una función en la estimulación deseable de la vascularización al retardar la degeneración retiniana aumentando la circulación sanguínea a las células.

Inmensos esfuerzos de investigación han contribuido a la comprensión de los autores de los mecanismos de la angiogenia durante la evolución de la enfermedad, y como resultado de estos estudios, un gran número de moléculas angiostáticas ha sido, o está siendo actualmente, probado en pruebas clínicas. Sin embargo, hasta la fecha, los resultados de estas pruebas clínicas han sido decepcionantes, y los beneficios de estos tratamientos antiangiogénicos en los pacientes han sido mínimos en el mejor de los casos.

Muchos factores pueden necesitar consideración antes de que las terapias angiostáticas lleguen a tener éxito finalmente. Los mecanismos compensadores naturales pueden finalmente hacer obsoletas las monoterapias angiogénicas. Los fármacos angiostáticos generalmente se dirigen a una sola citocina o ruta angiogénica intracelular. La angiogenia *in vivo* es probable que se inicie mediante la señalización combinada de múltiples rutas. Por lo tanto, el bloqueo de una sola ruta puede ser insuficiente para prevenir la angiogenia durante el tratamiento de enfermedades neovasculares. Lo que complica más las cosas, es también probable que al bloquear una sola ruta provoque la compensación y aumento de las funciones de otras rutas angiogénicas.

Se ha descubierto ahora que una administración simultánea de una combinación de compuestos angiostáticos que se dirigen a diferentes rutas aumenta la potencia angiostática y además interfiere con los mecanismos compensadores naturales.

Sumario de la invención

La presente invención proporciona unas composiciones para su utilización en el tratamiento de una enfermedad neovascular, tal como una enfermedad neovascular retiniana, al administrar a un mamífero que padece una enfermedad neovascular una cantidad de una combinación de fármacos supresores de angiogenia suficiente para inhibir la nueva formación de vasos sanguíneos. Estos fármacos son una combinación de un fragmento angiostático de la triptofanil-ARNt sintetasa (TrpRS), un agente antiinflamatorio y un inhibidor de señalización de integrina. Adicionalmente, el agente terapéutico puede comprender un esteroide angiostático, un agente antineoplásico, un agente antibacteriano, un agente antiviral, y similares. Preferentemente el mamífero es humano.

30

60

20

5

Un procedimiento relacionado comprende la administración a un mamífero que padece una enfermedad neovascular de una cantidad inhibidora del desarrollo vascular de una mezcla de fármacos que comprende un fragmento angiostático de TrpRS (por ejemplo, el fragmento T1, el fragmento T2, o el fragmento mini- TrpRS descrito en la presente memoria) y por lo menos un compuesto seleccionado de entre un inhibidor de señalización de VEGF y un

- inhibidor de señalización de integrina. Otra forma de realización en este contexto es la combinación triple del fragmento angiostático T2-TrpRS, un inhibidor de señalización de VEGF tal como un aptámero VEGF, y un inhibidor de señalización de integrina α_vβ₃, y α_vβ₅. Una combinación triple particularmente preferida comprende el fragmento T2 de la TrpRS, un aptámero VEGF específico para VEGF-165 (por ejemplo, el pegaptanib sódico), y un inhibidor de señalización de integrina α_vβ₃, y α_vβ₅ peptidomimético (por ejemplo, el compuesto (1) descrito en la presente memoria). Esta combinación triple particular presenta un efecto
- sinérgico fuerte sobre la inhibición de la neovascularización en el ojo del mamífero.

Las enfermedades neovasculares que pueden tratarse mediante los procedimientos comprenden, de manera no limitativa, enfermedades oculares tales como las enfermedades degenerativas retinianas, las enfermedades degenerativas vasculares, la fuga vascular, y coroidopatías en mamíferos neonatos, infantiles, juveniles, o completamente desarrollados. Los procedimientos pueden ser utilizados para tratar enfermedades neovasculares tales como cánceres con tumor sólido (por ejemplo, cáncer de pulmón, cáncer de mama y cáncer de próstata) y la artritis reumatoide, por ejemplo.

- 50 Una composición terapéutica útil para la inhibición de la angiogénesis, y por lo tanto para el tratamiento de las enfermedades neovasculares, comprende una mezcla de un fragmento angiostático de la triptofanil-ARNt sintetasa (TrpRS), un inhibidor de señalización de VEGF, y un inhibidor de señalización de integrina, junto con un excipiente y portador farmacéuticamente aceptables para la misma. Opcionalmente, las composiciones terapéuticas presentes pueden comprender asimismo uno o más de entre un esteroide angiostático, un agente antineoplásico, un agente antibacteriano, un agente antiviral, un agente antiinflamatorio, y agentes terapéuticos similares. En particular, la presente invención pertenece a:
 - 1. Composición que comprende (i) un fragmento angiostático de triptofanil-ARNt sintetasa (TrpRS); (ii) un agente antiangiogénico que es un inhibidor de señalización de la integrina; y (iii) un agente terapéutico en la que el agente terapéutico es un agente antiinflamatorio.
 - 2. Composición según el punto 1, en la que el fragmento angiostático de TrpRS presenta un tamaño molecular de más de aproximadamente 48 KDa.
- Composición según el punto 1, en la que el fragmento angiostático de TrpRS presenta un tamaño molecular de más de aproximadamente 46 KDa.

- 4. Composición según el punto 1, en la que el fragmento angiostático de TrpRS presenta un tamaño molecular de más de aproximadamente 43 KDa.
- Composición según el punto 1, en la que el fragmento angiostático de TrpRS presenta una secuencia de restos de aminoácidos seleccionada de entre el grupo constituido por la SEC ID Nº: 1, SEC ID Nº: 2, SEC ID Nº: 3 y SEC ID Nº: 4.
 - Composición según cualquiera de los puntos 1 a 5, en la que el inhibidor de señalización de integrina es un antagonista de integrina angiostática.
 - 7. Composición farmacéutica que comprende una composición según cualquiera de los puntos 1 a 6 y un portador farmacéuticamente aceptable para la misma.
- 15 8. Composición según cualquiera de los puntos 1 a 6 para su utilización en un procedimiento para el tratamiento de una enfermedad neovascular.
 - 9. Composición según el punto 8, en la que la enfermedad neovascular se selecciona de entre el grupo constituido por enfermedades neovasculares oculares, glaucoma rubeótico, pterigión, cánceres con tumor sólido, artrosis, artritis reumatoide, anomalías vasculares, malformaciones vasculares y psoriasis.

Breve descripción de los dibujos

La Figura 1 representa las secuencias de aminoácidos de fragmentos angiostáticos de triptofanil-ARNt sintetasa denominada T2-TrpRS, SEC ID nº 1 y T2-TrpRS-GD, SEC ID nº 2 (un mutante de la misma).

La Figura 2 representa las secuencias de aminoácidos de fragmentos angiostáticos de triptofanil-ARNt sintetasa denominada mini-TrpRS, SEC ID nº 3 y T1-TrpRS, SEC ID nº 4

30 La Figura 3 representa la secuencia de aminoácidos de TrpRS completa (SEC ID nº 5) e indica la posición de T1, T2 y minifragmentos de la misma.

La Figura 4 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 1 inyectados por vía intravítrea con PBS.

35

40

45

55

65

10

20

La Figura 5 representa microfotografias de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 1 inyectados por vía intravítrea con (**A**) una concentración 0,5 x (10 mg/ml) del compuesto 1 inhibidor de señalización peptidomimético de la integrina; (**B**) una concentración 1 x (2 mg/ml) del compuesto (2) aptámero VEGF; y (**C**) una combinación del compuesto (1) inhibidor de señalización de integrina y el compuesto (2) aptámero VEGF.

La Figura 6 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 2 inyectados por vía intravítrea con solución salina tamponada con fosfato (PBS).

- La Figura 7 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 2 inyectados por vía intravítrea con una concentración 0,1 x (0,05 mg/ml) de T2-TrpRS.
- La Figura 8 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 2 inyectados por vía intravítrea con una concentración 0,1 x del compuesto (2) aptámero VEGF.

La Figura 9 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 2 inyectados por vía intravítrea con una combinación de una concentración 0,1 x de T2-TrpRS y una concentración 0,1 x del compuesto (2) aptámero VEGF.

La Figura 10 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 3 inyectados por vía intravítrea con PBS.

60 La Figura 11 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 3 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS.

La Figura 12 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 3 inyectados por vía intravítrea con una concentración 1 x del compuesto (2) aptámero VEGF.

La Figura 13 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 3 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS y una concentración 1 x del compuesto (2) aptámero VEGF.

5 La Figura 14 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 4 inyectados por vía intravítrea con solución salina tamponada con fosfato (PBS).

La Figura 15 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 4 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS.

La Figura 16 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 4 inyectados por vía intravítrea con una concentración 0,5 x del compuesto (2) aptámero VEGF.

La Figura 17 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 4 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS y una concentración 0,5 x del compuesto (2) aptámero VEGF.

20 La Figura 18 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 5 inyectados por vía intravítrea con PBS.

La Figura 19 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 5 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS.

- 25 La Figura 20 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 5 inyectados por vía intravítrea con una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina.
- 30 La Figura 21 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 5 inyectados por vía intravítrea con una combinación de una concentración 1 x de T2-TrpRS y una concentración 0,5x del compuesto (1) inhibidor peptidomimético de señalización de integrina.
- La Figura 22 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 6 inyectados por vía intravítrea con PBS.

La Figura 23 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 6 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS.

- 40 La Figura 24 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 6 inyectados por vía intravítrea con una concentración 1 x del compuesto (2) aptámero VEGF.
- La Figura 25 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 6 inyectados por vía intravítrea con una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina.

La Figura 26 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 6 inyectados por vía intravítrea con una combinación de una concentración 1 x de T2-TrpRS y una concentración 1 x del compuesto (2) aptámero VEGF.

La Figura 27 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 6 inyectados por vía intravítrea con una combinación de una concentración 1 x de T2-TrpRS y una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina.

55

60

50

15

La Figura 28 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 6 inyectados por vía intravítrea con una combinación de una concentración 1 x de T2-TrpRS, una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina y una concentración normal del compuesto (2) aptámero VEGF.

- La Figura 29 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 7 inyectados por vía intravítrea con PBS.
- La Figura 30 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 7 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS.

La Figura 31 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 7 inyectados por vía intravítrea con una concentración 1 x del compuesto (2) aptámero VEGF.

5 La Figura 32 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 7 inyectados por vía intravítrea con una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina.

La Figura 33 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 7 inyectados por vía intravítrea con una combinación de una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina y una concentración 1 x del compuesto (2) aptámero VEGF.

La Figura 34 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 7 inyectados por vía intravítrea con una combinación de una concentración 1 x de T2-TrpRS, una concentración 0,5 x del compuesto (1) inhibidor peptidomimético de señalización de integrina y una concentración 1 x del compuesto (2) aptámero VEGF.

20

35

40

60

La Figura 35 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones de referencia del ejemplo 9 inyectados por vía intravítrea con PBS.

La Figura 36 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una concentración 1 x del compuesto (1) inhibidor peptidomimético de señalización de integrina.

- 25 La Figura 37 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una concentración 1 x del compuesto (2) aptámero VEGF.
- 30 La Figura 38 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS.

La Figura 39 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una concentración 1 x de T2-TrpRS y del compuesto (1) inhibidor peptidomimético de señalización de integrina.

La Figura 40 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una concentración 1 x del compuesto (1) inhibidor peptidomimético de señalización de integrina y del compuesto (2) aptámero VEGF.

La Figura 41 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una combinación de una concentración 1 x de T2-TrpRS y del compuesto (2) aptámero VEGF.

- 45 La Figura 42 representa fotomicrografías de las capas vasculares primaria y secundaria de las retinas de los ratones del ejemplo 9 inyectados por vía intravítrea con una combinación de una concentración 1 x de cada uno de los inhibidores T2-TrpRS, del compuesto (1) inhibidor peptidomimético de señalización de integrina y del compuesto (2) aptámero VEGF.
- 50 La Figura 43 es una representación gráfica de los datos de un experimento de dosificación de T2-TrpRS.

La Figura 44 es una representación gráfica de los datos de un experimento de dosificación del aptámero VEGF.

La Figura 45 es una representación gráfica de los datos que presentan la inhibición de la formación del plexo vascular profundo en función de la concentración óptima administrada del aptámero VEGF y del compuesto T2-TrpRS, solo y en combinación.

La Figura 46 es una representación gráfica de los datos del experimento de dosificación del antagonista de integrina $\alpha_{\nu}\beta_3$, y $\alpha_{\nu}\beta_5$.

La Figura 47 es una representación gráfica de los datos que presentan la inhibición de la formación del plexo vascular profundo en función de la concentración óptima administrada de una pequeña molécula antagonista de integrina $\alpha_v\beta_3$, y $\alpha_v\beta_5$ y T2-TrpRS, solo y en combinación.

65 La Figura 48 es un resumen gráfico de los datos que presentan la inhibición de la formación del plexo vascular profundo en varias combinaciones de terapias.

La Figura 49 es un resumen gráfico de los datos que presentan el grado de inhibición de la formación del plexo vascular profundo en varias combinaciones de terapias.

5 La Figura 50 es un serie de fotomicrografías de las capas vasculares primaria y profunda (secundaria) en varias terapias y combinaciones de las mismas a los niveles de dosificación mostrados en la figura 49.

La Figura 51 es una representación gráfica de los niveles de inhibición de la formación del plexo vascular con triple terapia a varios niveles de dosificación.

- La Figura 52 es una representación gráfica similar a la Figura 51 pero mostrando la inhibición de >75%, >90% y 100%.
- La Figura 53 es una representación gráfica de los niveles de inhibición de la formación del plexo vascular comparando las monoterapias con las politerapias a varios niveles de dosificación.

La Figura 54 es una representación gráfica de los niveles de inhibición >75%, >90% y 100% de la formación del plexo vascular comparando las monoterapias con las politerapias a varios niveles de dosificación.

- 20 La Figura 55 es una representación gráfica de los datos que muestran una zona de ovillos neovasculares en función de varias monoterapias así como una politerapia triple utilizando una sola inyección de un agente o agentes terapéuticos.
- La Figura 56 es similar a la Figura 55 pero muestra los datos de una inyección doble de un agente o agentes terapéuticos.

La Figura 57 es una representación gráfica de los datos que muestra zonas de ovillos neovasculares en función de varias monoterapias, terapias dobles y una terapia triple.

30 La Figura 58 es un serie de fotomicrografías que muestra las retinas de ratón tratadas con compuestos angiostáticos individualmente y en combinación.

La Figura 59 presenta la estructura del compuesto (2) aptámero VEGF (SEC ID nº 6), pegaptanib sódico.

35 La Figura 60 muestra un gráfico de supervivencia de ratas que tienen tumor tratadas con una composición de la invención (cuadrados) frente a ratas de referencia tratadas solamente con PBS (triángulos).

Descripción detallada de las formas de realización preferidas

10

- 40 Una composición apropiada para el tratamiento de una enfermedad neovascular comprende un fragmento angiostático de la triptofanil-ARNt sintetasa (TrpRS), un agente antiangiogénico que es un inhibidor de señalización de integrina (por ejemplo, un antagonista de la integrina angiostática), y un agente terapéutico es un agente antiinflamatorio.
- 45 Los fragmentos angiostáticos preferidos de TrpRS incluyen un fragmento de 43 kDa (es decir, el fragmento T2, "T2-TrpRS", SEC ID nº 1, un mutante de T2-TrpRS, "T2-TrpRS-GD", SEC ID nº 2; ambos se muestran en la Figura 1), un fragmento de 48 kDa tal como la TrpRS truncada conocido como mini-TrpRS (SEC ID nº 3, mostrado en la Figura 2) y un fragmento de 46 kDa tal como la TrpRS truncada conocido como T1-TrpRS (SEC ID nº 4, mostrado en la Figura 2). La secuencia de restos de aminoácidos de T2-TrpRS-GD (SEC ID nº 2) difiere de la SEC ID. nº 1 en dos
- 50 aminoácidos (es decir, S121G e Y122D). La secuencia de restos de aminoácidos de TrpRS humano completo (SEC ID nº 5) se muestra en la figura 3, junto con una indicación de la posible posición de los T1, T2 y minifragmentos de la misma. Sin vincularse a la teoría, se cree que los fragmentos angiostáticos de TrpRS pueden formar dímeros no covalentes (véase p. ej., Yu *et al. J. Biol. Chem.* 2004, 279:8378-8388), que pueden contribuir a la actividad biológica de los fragmentos. Por consiguiente, cualquier referencia en la presente memoria y en las reivindicaciones adjuntas
- 55 a un fragmento angiostático de TrpRS (p. ej., T1-TrpRS, T2-TrpRS, mini-TrpRS) debe considerarse como una referencia a la forma monómero, a la forma dímero o a una mezcla de las mismas.

Los inhibidores de señalización de integrina preferidos son los antagonistas de α_vβ₃, y α_vβ₅, que incluyen los péptidos RGD, tales como los descritos en la patente US n° 5.693.612, la patente US n° 5.766.591, la patente US n° 5.767.071, la patente US n° 5.780.426 y la patente US n° 6.610.826, y los antagonistas de integrina peptidomiméticos tales como los descritos en la patente US n° 5.614.531, la patente US n° 5.614.535, la patente US n° 6.326.403, la patente US n° 6.455.529, la patente US n° 6.521.646, la patente US n° 6.559.144, la patente US n° 6.576.637, la patente US n° 6.602.876, la patente US n° 6.645.991, y la patente US n° 6.649.613. Un inhibidor de señalización de integrina peptidomimético particularmente preferido es un compuesto que presenta la fórmula del compuesto (1), disponible en Merck KGaA (Darmstad, Alemania) como EMD 472523.

Compuesto (1)

- 5 Los inhibidores de señalización de VEGF preferidos incluyen aptámeros selectivos de VEGF (oligonucleótidos de unión a proteína), preferentemente aptámeros resistentes a la nucleasa que se unen a VEGF-165, tales como aptámeros a base de 2'-fluoropirimidina ARN que se unen a VEGF-165 descritos por Ruckman et al. J. Biol. Chem. 1998, 273: 20556-20567, y similares; anticuerpos anti-VEGF y sus fragmentos que se unen a VEGF, tales como el anticuerpo Rhu disponible en Genentech (San Francisco, CA) y un fragmento Fab del mismo (RhuFab V2);
- 10 receptores de VEGF solubles tales como VEGFR1 soluble; y los ARN pequeños de interferencia (siRNA) que dianizan VEGF o sus receptores, tales como los siRNA descritos por Reich et al. Mol. Vis. 2003; 9:210-216. Los inhibidores de señalización de VEGF preferidos son los aptámeros de VEGF resistentes a la nucleasa, más preferentemente aptámeros a base de 2'-fluoropirimidina ARN, tal como pegaptanib sódico (Compuesto (2)) que es un oligonucleótido polietoxilado que tiene la fórmula siguiente (SEC ID nº 6, Figura 59, R en la Figura 59 es una cadena de polietilenglicol (PEG) de 40 kiloDaltons):

rs cadena de polietilenglicol (PEG) de 40 kiloDaltons):

PEG de 5'-40K-aminoenlazador C5-CfGmGmArArUfCfAmGmUfGmAmAmUfGmCfUfUfAmUfAmCfAmUfCfCfGm3'-3'dT

20 en la que

	Cf = 2'fluoro C	Ar = 2' OH (ribo) A
	Uf = 2'fluoro U	3'-3'dT = desoxiT invertido
	Am = 2'OMe A	aminoenlazador de C5 = enlazador pentil amino
25	Gm = 2'OMe G	PEG 40K = polietilenglicol amida de 40K.

Un oligonucleotido polietoxilado de la SEC ID nº 6 se comercializa bajo la marca registrada MACUGEN® por Eyetech Pharmaceuticals, Inc., y es conocido también como NX1838 o pegaptanib sódico.

30 En una forma de realización la combinación de fármacos incluye también por lo menos un agente terapéutico adicional tal como un esteroide angiostático, un agente antineoplásico, un agente antibacteriano, un agente antivírico, un agente antinflamatorio y similares.

Los ejemplos de esteroides angiostáticos adecuados incluyen acetato de anecortave y triamcinolona acetónido.

35 Los ejemplos de agentes antineoplásicos adecuados incluyen Aclarrubicina; Hidrocloruro de Acodazol; Acronina; Adozelesina; Aldesleucina; Altretamina; Ambomicina; Acetato de Ametrantona; Aminoglutetimida; Amsacrina; Anastrazol; Antramicina; Asparaginasa; Asperlina; Azacitidina; Azetepa; Azotomicina; Batimastat; Benzodepa; Bicalutamida; Hidrocloruro de Bisantremo; Dimesilato de Bisnafida; Bizelesina; Sulfato de Bleomicina; Brequinar

- 40 Sódico; Bromopirimina; Busalfán; Cactinomicina; Calusterona; Caracemida; Carbetimer; Carboplatino; Carmustina; Hidrocloruro de Carubicina; Carzelesina; Cedefingol; Clorambucilo; Cirolemicina; Cisplatino; Cladribina; Melisato de Crisnatol; Ciclofosfamida; Citarabina; Dacarbazina; Dactinomicina; Hidrocloruro de Daunorrubicina; Decitabina; Dexormaplatino; Dezaguanina; Mesilato de Dezaguanina; Diazicuona; Docetaxel; Doxorrubicina; Hidrocloruro de Doxorrubicina; Droloxifeno; Citrato de Droloxifeno; Propionato de Dromostanolona; Duazomicina; Edatrexato;
- 45 Hidrocloruro de Eflornitina; Elsamitrucina; Enloplatino; Enpromato; Epipropidina; Hidrocloruro de Epirrubicina; Erbulozol; Hidrocloruro de Esorrubicina; Estramustina; Estramustina Fosfato de de Sodio; Etanidazol; Aceite I 131 de Etiodized; Etopósido; Fosfato de Etopósido; Etoprina; Hidrocloruro de Fadrozol; Fazarabina; Fenretinida; Floxuridina; Fosfato de Fludarabina; Fluorouracilo; Fluorocitabina; Fosquidona; Fostriecina Sódica; Gemcitabina; Hidrocloruro de Gemcitabina; Oro Au 198; Hidroxiurea; Hidrocloruro de Idarrubicina; Ifosfamida; Imofosina; Interferón Alfa-2a;
- 50 Interferón Alfa-2b; Interferón Alfa-n1; Interferón Alfa-n3; Interferón Beta-la; Interferón Gamma-lb; Iproplatino; Hidrocloruro de Irinotecán; Acetato de Lanreotido; Letrozol; Acetato de Leuprolida; Hidrocloruro de Liarozol; Lometrexol Sódico; Lomustina; Hidrocloruro de Losoxantona; Masoprocol; Maytansina; Hidrocloruro de Mecloretamina; Acetato de Megestrol; Acetato de Melengestrol; Melfalán; Menogaril; Mercaptopurina; Metotrexato; Metotrexato Sódico; Metoprina; Meturedepa; Mitindomida; Mitocarcina; Mitocromina; Mitogillina; Mitomalcina;
- 55 Mitomicina; Mitosper; Mitotano; Hidrocloruro de Mitoxantrona; Ácido Micofenólico; Nocodazol; Nogalamicina; Ormaplatino; Oxisurano; Paclitaxel; Pegaspargasa; Peliomicina; Pentamustina; Sulfato de Peplomicina; Perfosfamida; Pipobromano; Piposulfano; Hidrocloruro de Piroxantrona; Plicamicina; Plomestano; Porfimer Sódico;

Porfiromicina; Prednimustina; Hidrocloruro de Procarbazina; Puromicina; Hidrocloruro de Puromicina; Pirazofurina; Riboprina; Rogletimida; Safingol; Hidrocloruro de Safingol; Semustina; Simtraceno; Esparfosato Sódico; Esparsomicina; Hidrocloruro de Espirogermanio; Espiromustina; Espiroplatino; Estreptonigrina; Estreptozocina; Cloruro de Estroncio Sr 89; Sulofenur; Talisomicina; Taxano; Taxoide; Tecogalán Sódico; Tegafur; Hidrocloruro de

- Teloxantrona; Temoporfina; Tenipósido; Teroxirona; Testolactona; Tiamiprina; Tioguanina; Tiotepa; Tiazofurina; Tirapazamina; Hidrocloruro de Topotecán; Citrato de Toremifeno; Acetato de Trestolona; Fosfato de Triciribina; 5 Trimetrexato; Glucuronato de Trimetrexato; Triptorelina; Hidrocloruro de Tubulozol; Mostaza de Uracilo; Uredepa; Vapreotida; Verteporfina; Sulfato de Vinblastina; Sulfato de Vincristina; Vindesina; Sulfato de Vindesina; Sulfato de Vinepidina; Sulfato de Vinglicinato; Sulfato de Vinleurosina; Tartrato de Vinorelbina; Sulfato de Vinrosidina; Sulfato de Vinzolidina; Vorozol; Zeniplatino; Zinostatina e Hidrocloruro de Zorubicina. 10

Los ejemplos de agentes antibacterianos adecuados comprenden de manera no limitativa penicilinas, aminoglucósidos, macrólidos, monobactamos, rifamicinas, tetraciclinas, cloranfenicol, clindamicina, lincomicina, imipenem, ácido fusídico, novobiocina, fosfomicina, fusidato sódico, neomicina, polimixina, capreomicina, colistimetato, colistina, gramicidina, minociclina, doxiciclina, vanomicina, vacitracina, kanamicina, gentamicina, eritromicina y cefalosporinas.

Los ejemplos de agentes antinflamatorios adecuados comprenden de manera no limitativa aspirina (ácido acetil salicílico), indometacina, indometacina sódica trihidratada, salicilamida, naproxeno, colquicina, fenoprofeno, sulindaco, diflunisal, diclofenaco, indoprofeno y salicilamida sódica.

Ejemplos de agentes antivíricos adecuados comprenden de manera no limitativa alfa-metil-P-adamantano metilamina, 1-D-ribofuranosil-1,2,4-triazol-3-carboxamida, 9-(2-hidroxi-etoxi)metilguanina, adamantanamina, 5-yodo-2'-desoxiuridina, trifluorotimidina, interferón, adenina arabinósido, CD4, 3'-azido-3'-desoxitimidina (AZT), 9-(2hidroxietoximetil)-guanina (aciclovir), ácido fosfonofórmico, 1-adantanamina, péptido T y 2',3'-didesoxicitidina.

Un procedimiento particularmente preferido para el tratamiento de enfermedades neovasculares comprende la administración a un mamífero que padece una enfermedad neovascular de una cantidad inhibidora del desarrollo vascular de una combinación de fármacos que comprende T2-TrpRS, por lo menos un inhibidor de señalización de VEGF-165, y opcionalmente, por lo menos un inhibidor de señalización de integrina $\alpha_{v}\beta_{3}$, y $\alpha_{v}\beta_{5}$.

Las enfermedades neovasculares tratables por las composiciones de la presente invención comprenden de manera no limitativa enfermedades neovasculares de los ojos (por ejemplo, enfermedades neovasculares retinianas y coroideas), glaucoma rubeotico, pterigión, cánceres con tumor sólido (p. ej., cáncer de pulmón, cáncer de mama y cáncer de próstata, artrosis, artritis reumatoide, anomalías y malformaciones vasculares (p. ej., hemangiomas, linfangiomas y similares) y psoriasis.

Las composiciones de la presente invención pueden utilizarse en un procedimiento de tratamiento de enfermedades neovasculares retinianas en un mamífero. Preferentemente, el procedimiento comprende inyectar por vía intravítrea 40 dentro del ojo de un mamífero que padece una enfermedad neovascular una cantidad inhibidora de desarrollo vascular de una combinación de composiciones antiangiogénicas y angiostáticas que proporcionan un fragmento angiostático de TrpRS, como se describió anteriormente, el inhibidor de señalización VEGF, como se describió anteriormente, y el inhibidor de señalización de integrina, pegaptanib sódico.

El presente procedimiento para el tratamiento de enfermedades neovasculares retinianas en un mamífero 45 comprende preferentemente invectar de manera intravítrea en el ojo de un mamífero que padece una enfermedad neovascular una cantidad inhibidora del desarrollo vascular de una combinación de unas composiciones angiostáticas y antiangiogénica que proporcionan un fragmento angiostático de TrpRS, un inhibidor de señalización de VEGF, y un inhibidor de señalización de integrina.

50

65

15

20

25

30

35

Este procedimiento puede utilizarse para tratar enfermedades oculares tales como las enfermedades vasculares degenerativas, retinopatías isquémicas, hemorragias vasculares, fuga vascular y coroidopatías en mamíferos recién nacidos, jóvenes o muy maduros. Ejemplos de dichas enfermedades incluyen la degeneración macular por la edad. la retinopatía diabética, la presunta histoplasmosis ocular, la retinopatía precoz, la anemia depranocítica; el hemangioma, la pterigión, la oclusión de la vena retiniana central isquémica, la oclusión de la vena retiniana

55 difuminada, el melanoma ocular, el blastoma retiniano y la retinosis pigmentaria así como lesiones retinianas.

Otro aspecto consiste en una composición terapéutica útil para el tratamiento de enfermedades neovasculares, que comprende un fragmento angiostático de TrpRS como se describió anteriormente, el inhibidor de señalización de VEGF pegaptanib sódico y el inhibidor de señalización de integrina, compuesto (1), junto con uno o más excipientes 60 farmacéuticamente aceptables.

En una forma de realización preferida, la composición comprende además por lo menos un agente terapéutico adicional tal como un esteroide angiostático, un agente antineoplásico, un agente antibacteriano, un agente antivírico, un agente antinflamatorio y similares.

Un procedimiento de tratamiento de una enfermedad neovascular comprende administrar a un mamífero que padece una enfermedad neovascular una cantidad inhibidora del desarrollo vascular de una combinación de fármacos que comprende un fragmento angiostático de la triptofanil-ARNt sintetasa (TrpRS) y por lo menos un compuesto seleccionado de entre el grupo constituido por un inhibidor de señalización de factor de crecimiento endotelial vascular (VEGF) y un inhibidor de señalización de integrina.

Generalmente, una cantidad inhibidora de desarrollo vascular de una composición de la presente invención es por lo menos aproximadamente 10 µg/kg de peso corporal y, en la mayoría de los casos, no excede de aproximadamente 8 mg/kg de peso corporal al día para tratamientos generales. Preferentemente la dosis está comprendida en el

- 10 intervalo de aproximadamente 10 µg/kg de peso corporal a aproximadamente 1 mg/kg de peso corporal al día. Para tratamiento ocular, intravítreo de pacientes humanos, la dosis preferida está comprendida en el intervalo de aproximadamente 0,1 a aproximadamente 5 miligramos por ojo para un tratamiento dado. Las composiciones pueden administrarse en una sola dosis o en dosis múltiples a lo largo del tiempo. Cualquier experto en la materia puede determinar la dosis terapéutica eficaz óptima de una composición de la presente invención, teniendo en cuenta el paciente específico, los fármacos presentes en la invención, la enfermedad y otros factores que son muy
- cuenta el paciente específico, los farmacos presentes en la invención, la enfermedad y otros factores que son mu conocidos en la técnica.

Las composiciones terapéuticas de la presente invención pueden incorporarse en varias formas físicas. Estas formas incluyen, por ejemplo, formas galénicas sólidas, semisólidas y líquidas, tales como comprimidos, píldoras, polvos, soluciones o suspensiones líquidas, aerosoles, liposomas, supositorios, soluciones inyectables e infusibles y formas de liberación prolongada. Cualquier experto en la materia seleccionará una forma galénica adecuada dependiendo del modo de administración deseado y de la enfermedad que va a tratarse, utilizando principios farmacológicos bien conocidos en la técnica.

Una composición terapéutica según la presente invención puede administrarse por vías de administración convencionales tales como las vías parenteral, subcutánea, intravenosa, intramuscular, intralesional, intraesternal, intravítrea, intracraneal o en aerosol. Pueden utilizarse también vías tópicas de administración, con aplicación de las composiciones localmente a una parte específica del cuerpo (p. ej., ojos, piel, tubo intestinal inferior, vagina, recto) según proceda. Las composiciones terapéuticas incluyen también vehículos y excipientes convencionales farmacéuticamente aceptables que son conocidos por los expertos en esta materia.

Generalmente, las composiciones terapéuticas de la presente invención pueden formularse y administrarse utilizando procedimientos y composiciones similares a las utilizadas para cada una de las clases de principios activos presentes en las composiciones. Un experto en la materia entenderá que las dosis convencionales variarán en función de los principios activos específicos en la composición, así como con la salud, el peso, la edad, el sexo, la dolencia o enfermedad del paciente y del modo deseado de administración.

Las composiciones terapéuticas de la presente invención incluyen portadores, excipientes y vehículos farmacológicamente apropiados y farmacéuticamente aceptables. En general, estos portadores incluyen soluciones, emulsiones o suspensiones acuosas o alcohólico/acuosas, incluyendo la solución salina y medios tamponados tales como solución salina tamponada con fosfato (PBS). Los vehículos parenterales pueden incluir solución de cloruro sódico, dextrosa de Ringer, dextrosa y cloruro sódico, solución lacteada de Ringer o aceites fijados. Además, los vehículos intravenosos pueden incluir reforzadores fluidos y nutritivos, y reforzadores de electrólitos, tales como aquellos a base de dextrosa de Ringer. Pueden estar presentes también excipientes tales como conservantes y otros aditivos tales como, por ejemplo, antimicrobianos, antioxidantes, agentes quelantes y gases inertes. Los adyuvantes, vehículos, otros excipientes de formulación adecuados y procedimientos de formulación de composiciones farmacéuticas se dan a conocer en *Remington's Pharmaceutical Sciences*, 14^a Ed., Mack Publishing Co., 1970, particularmente la parte VIII, "Pharmaceutical Preparations and Their Manufacture", páginas 1461-1762.

- 50 Las composiciones terapéuticas de la presente invención pueden envasarse en frascos o viales esterilizados apropiadamente, ya sea en forma de multidosis o en dosis unitaria. Los recipientes se sellan preferentemente herméticamente después de rellenarse con una composición de la invención. Preferentemente, la composiciones se envasan en un recipiente que presenta una etiqueta fijada al mismo, etiqueta que identifica los fármacos presentes en la invención, y lleva una nota en una forma prescrita por una agencia gubernamental como la United States Food
- 55 and Drug Administration, que refleja la aprobación de la composición en leyes apropiadas, la posología y similares. La etiqueta contiene preferentemente información acerca de la composición que es útil para que un profesional de atención sanitaria administre la composición a un paciente. El paquete también contiene preferentemente materiales de información impresos referentes a la administración de la composición, instrucciones, indicaciones y algunas advertencias necesarias requeridas.

Procedimientos

5

35

Modelo de angiogenia retiniana en ratón recién nacido

65 Descripción del modelo. Inmediatamente después del nacimiento (día cero tras el nacimiento "P0"), el sistema vascular retiniano falta prácticamente en el ratón. Cuatro semanas después del nacimiento (P28) la retina ha

alcanzado un modelo adulto de vasos retinianos coincidente con el comienzo de la visión. La neovascularización fisiológica de la retina tiene lugar durante este periodo mediante un modelo de angiogenia de desarrollo bifásico, estereotípico. Durante la fase primaria del desarrollo vascular retiniano, vasos peripapilares escalonados crecen radialmente desde la arteria y vena retiniana central, llegando a estar progresivamente interconectados por un plexo intercapilar que se forma entre ellos. Este "plexo retiniano interno" se desarrolla en superficie, volumen y complejidad, de manera centrífuga, como una monocapa dentro de la capa de fibra nerviosa durante los primeros

- complejidad, de manera centrifuga, como una monocapa dentro de la capa de fibra nerviosa durante los primeros siete a diez días después del nacimiento. La segunda fase de formación de vasos retinianos comienza entre los días 7 (P7) y 10 (P10) después del nacimiento
- 10 cuando las ramificaciones colaterales brotan de los capilares del plexo superficial y penetran en la retina donde sus puntas se ramifican y anastomosan lateralmente para formar un "plexo vascular profundo plano". Mientras el plexo vascular profundo está en su lugar por P14, experimenta una extensa remodelación desde P14 hasta P21. Es de interés señalar que la formación de estas redes vasculares en el ratón recién nacido son sorprendentemente similares a los casos que ocurren en el feto humano del tercer trimestre.
- 15

5

Ventajas y cuantificación del modelo. La reproducibilidad del proceso de desarrollo retiniano murino y su fácil accesibilidad en los animales neonatales proporcionan una oportunidad para evaluar la eficacia de los compuestos antiangiogénicos en un modelo de angiogenia fisiológicamente relevante. Las ventajas adicionales del modelo de ratón recién nacido son la capacidad para evaluar cualitativa y cuantitativamente el efecto angiostático de supuestos

- 20 antagonistas de angiogenia. Se evaluó la actividad angiostática basándose en el grado de angiogenia en la capa vascular retiniana profunda, más externa (capa secundaria) que se desarrolla entre P8 y P12. El aspecto de la red de vasos sanguíneos internos (capa primaria) se evaluó para el desarrollo normal y signos de toxicidad. No se observaron anomalías en la capa vascular más interna en algunos de los ensayos realizados y descritos en la presente memoria. La evaluación cualitativa de la vascularización de la capa secundaria puede realizarse
- fotografiando al microscopio las capas superficial y profunda teñidas de manera apropiada de las retinas escindidas y determinando el porcentaje de ojos en los que está inhibida completa o parcialmente la formación de la capa vascular profunda. Todos los datos presentados en la presente memoria se basan en análisis cualitativos del porcentaje de ojos que demostraron un 75 a 100% de inhibición de la formación de la red vascular retiniana profunda después del tratamiento. En la mayoría de los casos, se proporcionan también el porcentaje de ratones que presentaba >95% y 100% de inhibición de la red vascular retiniana profunda.

presentaba >95% y 100% de infinibición de formación de la red vascular retiniana profunda.

Preparación de composiciones. El compuesto (1) inhibidor de señalización de integrina peptidomimético se disuelve en PBS a una concentración de aproximadamente 20 mg/ml en PBS (concentración 1 x). T2-TrpRS se disuelve en PBS a una concentración de aproximadamente 0,5 mg/ml (concentración 1 x). El aptámero VEGF (pegaptanib sódico; compuesto (2)) se disuelve en PBS a una concentración de aproximadamente 2 mg/ml (1 x concentración)

- 35 sódico; compuesto (2)) se disuelve en PBS a una concentración de aproximadamente 2 mg/ml (1 x concentración) para conseguir una inyección de aproximadamente 1 μg/ojo a la concentración 1 x. Para todos los ensayos de la combinación los compuestos se prepararon en 2 ó 3 veces a la concentración 1 x de cada material y a continuación se combinaron para producir una solución final que contenía cada uno de los compuestos a la misma concentración que se utilizaban solos (p. ej., 1 x, 0,5 x, 0,25 o 0,1 x como puede darse el caso). Para todos los ensayos, se administró por vía intravítrea una sola inyección de 0,5 μl de soluciones de PBS de los fármacos con relación al
- número de compuestos que se inyectó. Tal como se utiliza en la presente memoria, la expresión "0,1 x" se refiere a un décimo de la concentración 1 x de un material dado, "0,25 x" se refiere a un cuarto de la concentración 1 x de un material dado, "0,5 x" se refiere a un medio de la concentración 1 x de un material dado, y así sucesivamente para designaciones similares.

Modelo en ratón de retinopatía producida por oxígeno (OIR). Este modelo es descrito por Smith, L., Invest. Ophthalmol. Vis. Sci. **35**, 101-111 (1994). Se colocaron ratones en hiperoxia (75% de O₂) en P7-P12, seguido de retorno a normoxia. Mientras que bajo hiperoxia se destruyen los vasos retinianos centrales y el sistema vascular profundo no puede formarse. En la vuelta a la normoxia, la retina se vuelve hipóxica y se produce neovascularización patológica.

- La cuantificación de la neovascularización en el modelo OIR implicaba la cuantificación de la formación del ovillo neovascular, así como la cuantificación de la obliteración. Se preparan preparaciones microscópicas de toda la retina y los vasos sanguíneos de la misma se tiñen con isolectina GS-IB₄. Se lleva a cabo la detección por la imagen
- confocal, que se enfoca justo por encima del plexo vascular superficial, y se hace un montaje de cuatro cuadrantes. Se identifican los ovillos neovasculares (Adobe PHOTOSHOP®) y se cuantifica la superficie de pixelación. Además, se hace el seguimiento de las zonas de obliteración (Adobe PHOTOSHOP®), y se cuantifica la superficie de pixelación. Se aplica a continuación en factor de conversión basándose en la obtención de la imagen (resolución, tamaño, etc...) para obtener un valor en µm².
- 60

50

Procedimiento general del ensayo de angiogenia

Para evaluar la actividad angiostática del compuesto (1) inhibidor de señalización de integrina, T2-TrpRS, y del compuesto (2) aptámero VEGF se utilizó un ensayo de angiogenia *in vivo* en el ratón recién nacido (Balb/C, The Jackson Laboratory, Bar Harbor, ME). Se efectuó la inyección intravítrea y el aislamiento de la retina con un microscopio de disección (SMZ 645, Nikon, Japón). Se practicó una fisura en el párpado el día 7 tras el nacimiento

(P7) con una cuchilla fina para exponer el globo para la inyección. Se inyectaron las muestras (0,5 μl) con una jeringuilla Hamilton provista de una aguja del calibre 32 (Hamilton Company, Reno, NV). La inyección se efectuó entre el ecuador y el limbo de la córnea. Durante la inyección, la posición de la punta de la aguja se controló por observación directa para determinar que estaba en la cavidad vítrea. Los ojos con lesión en los cristalinos o en la retina producida por la aguja se excluyeron del estudio. Después de la inyección, se volvieron a colocar los párpados para cerrar la fisura.

El día 12 después del nacimiento (P12) se practicó la eutanasia a los animales y se extirparon los núcleos de los ojos. Después de aproximadamente 10 minutos en paraformaldehído (PFA) al 4% se escindieron la córnea, los cristalinos, la esclerótica y el humor vítreo mediante una incisión en el limbo. La retina aislada se preparó para la tinción agitando en metanol durante aproximadamente 10 minutos en hielo, seguido de bloqueo en suero bovino fetal al 50% (Gibco, Grand Island, NY) con suero de cabra normal al 20% (The Jackson Laboratory, Bar Harbor, ME) en PBS durante aproximadamente una hora en hielo. Se observaron específicamente los vasos sanguíneos tiñendo la retina durante aproximadamente 18 horas a aproximadamente 4°C con un anticuerpo de colágeno IV antiratón en conejo (Chemicon, Temecula, CA) diluido 1:200 en tampón de bloqueo o con una isolectina fluorescente conjugada (*Griffonia simplicifolia*, Molecular Probes). Se incubó anticuerpo IgG anticonejo en cabra (Molecular Probes, Eugene, OR) conjugado con ALEXA FLUOR[®] (Alexa) 594 (dilución 1:200 en tampón de bloqueo) con la retina durante aproximadamente 2 horas a aproximadamente 4°C. Las retinas se prepararon a continuación para evaluación microscópica con un medio de preparación microscópica de decoloración lenta (Molecular Probes, Eugene, OR).

Ejemplo 1. Tratamiento de los ojos de ratón recién nacido con una combinación de un inhibidor de señalización de integrina peptidomimético y un inhibidor de señalización de VEGF.

Siguiendo el procedimiento general de ensayo de angiogenia ("Procedimiento General") descrito anteriormente en la presente memoria, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el día 8 después del nacimiento (P8) con una concentración 0,25 x del compuesto (1) inhibidor de señalización de integrina (cinco ratones), una concentración 0,5 x de compuesto (2) de aptámero VEGF (cinco ratones) o una combinación de compuesto (1) de 0,25x y una concentración de 0,5 x de compuesto (2) (seis ratones). Como referencia, otro grupo de seis ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 1 y en las figuras 4 y 5.

			Tabla 1			
	% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%
-	PBS	100	0	0	0	0
	0,5x Compuesto (2)	20	20	20	20	40
	0,1x Compuesto (1)	40	0,5	20	20	20
	Combinación	0	17	0	0	83

Ejemplo 2. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS y un inhibidor de señalización de VEGF.

40

35

5

20

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4 con una concentración 0,1 x de T2-TrpRS (ocho ratones), una concentración 0,1 x de compuesto (2) de aptámero VEGF (ocho ratones) o una combinación de T2-TrpRS a una concentración 0,1 x y una concentración 0,1 x de compuesto (2) (diez ratones). Como referencia, otro grupo de ocho ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 2 y en las figuras 6, 7, 8 y 9.

Tabla 2							
% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS	100	0	0	0	0	0	0
0,1 x Comp. (2)	87,5	12,5	0	0	0	0	0
0,1x T2-TrpRS	50	37,5	12,5	0	0	0	0
Combinación	10	30	20	20	20	0	0

⁵⁰

Ejemplo 3. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS y un inhibidor de señalización de VEGF.

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4
 con una concentración 1 x de T2-TrpRS (ocho ratones), una concentración 1 x de compuesto (2) aptámero VEGF (ocho ratones), o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,1 x de compuesto (2) (diez ratones). Como referencia, otro grupo de seis ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el
 Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en

el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 3 y en las figuras 10, 11, 12 y 13.

15

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS	100	0	0	0	0	0	0
1 x Comp. (2)	37,5	12,5	12,5	12,5	25	0	0
1x T2-TrpRS	12,5	12,5	0	12,5	62,5	12,5	12,5
Combinación	0	30	10	10	80	40	20

Tabla 3

Ejemplo 4. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS y un inhibidor de señalización de VEGF.

- Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4 con una concentración 1 x de T2-TrpRS (ocho ratones), una concentración 0,5 x de compuesto (2) aptámero VEGF (diez ratones), o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,5 x de compuesto (2) (diez ratones). Como referencia, otro grupo de seis ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el
- Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 4 y en las figuras 14, 15, 16 y 17.

	l abia 4								
% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%		
PBS	66,6	16,7	16,7	0	0	0	0		
0,5 x Comp. (2)	60	30	0	0	10	0	0		
1x T2-TrpRS	12,5	37,5	12,5	12,5	25	0	0		
Combinación	0	0	10	10	70	30	20		

T.....

Ejemplo 5. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS y un inhibidor de señalización de integrina.

35

40

30

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4 con una concentración 1 x de T2-TrpRS, una concentración 0,5 x de compuesto (1) inhibidor de señalización de integrina o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,5 x de compuesto (1), en grupos de seis ratones para cada régimen de tratamiento. Como referencia, otro grupo de cuatro ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 5 y en las figuras 18, 19, 20 y 21.

⁴⁵

Tabla 5							
% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS	50	25	25	0	0	0	0
0,5 x Comp. (1)	50	33,3	16,7	0	0	0	0
1x T2-TrpRS	33,3	16,7	33,3	0	16,7	16,7	0
Combinación	0	33,3	16,7	0	50	16,7	0

Ejemplo 6. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS, un inhibidor de señalización de VEGF y un inhibidor de señalización de integrina.

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4
con una concentración 1 x de T2-TrpRS, una concentración 0,5 x de compuesto (1) inhibidor de señalización de integrina, una concentración 1 x del compuesto (2) aptámero VEGF, una combinación de T2-TrpRS a una concentración 1 x y una concentración de 0,5 x de compuesto (1), una combinación de T2-TrpRS a una concentración de 1 x y una concentración 1 x de compuesto (2), o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,5 x de compuesto (2), o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,5 x de compuesto (2), o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,5 x de compuesto (1), una concentración 1 x de compuesto (2), en grupos de ocho ratones para cada régimen de tratamiento. Como referencia, otro grupo de ocho ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 6 y en las figuras 22, 23, 24, 25, 26, 27 y 28.

Tabla 6

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS	100	0	0	0	0	0	0
0,5 x Comp. (1)	50	12,5	12,5	12,5	12,5	0	0
1 x Comp. (2)	37,5	25	12,5	25	0	0	0
1 x T2-TrpRS	50	25	12,5	12,5	0	0	0
T2-TrpRS + Comp. (2)	25	25	25	0	25	25	12,5
T2-TrpRS + Comp. (1)	50	0	0	0	50	37,5	25
T2-TrpRS + (1) y (2)	0	0	0	0	100	87,5	75

20 **Ejemplo 7**. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS, un inhibidor de señalización de VEGF y un inhibidor de señalización de integrina.

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4 con una concentración 1 x de T2-TrpRS, una concentración 0,5 x de compuesto (1) inhibidor de señalización de
integrina, una concentración 1 x del compuesto (2) aptámero VEGF, una combinación de compuesto (1) a una concentración 0,5 x y una concentración de 1 x de compuesto (2), o una combinación de T2-TrpRS a una concentración 1 x, una concentración 0,5 x de compuesto (1) y una concentración 1 x de compuesto (2), en grupos de ocho ratones para cada régimen de tratamiento. Como referencia, otro grupo de seis ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se

30 inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 7 y en las figuras 29, 30, 31, 32, 33 y 34.

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%	
PBS	100	0	0	0	0	0	0	
0,5 x Comp. (1)	12,5	25	12,5	12,5	37,5	0	0	
1 x Comp. (2)	25	25	0	12,5	37,5	0	0	
1 x T2-TrpRS	25	12,5	12,5	0	50	12,5	0	
Comp. (1) + Comp. (2)	0	12,5	12,5	25	50	25	25	
T2-TrpRS + (1) y (2)	0	0	0	0	100	62,5	50	

Tabla 7

Ejemplo 8. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS y un inhibidor de señalización de VEGF.

40

45

35

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos se inyectaron por vía intravítrea el P4 con una concentración 1 x de T2-TrpRS (diez ratones), una concentración 0,25 x de compuesto (2) aptámero VEGF (once ratones), o una combinación de T2-TrpRS a una concentración de 1 x y una concentración de 0,25 x de compuesto (2) (once ratones). Como referencia, otro grupo de ocho ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 8.

Tabla 8

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS	100	0	0	0	0	0	0
0,25 x Comp. (2)	54,5	36,4	0	0	9,1	0	0
1x T2-TrpRS	30	30	20	10	10	0	0
Combinación	18,2	18,2	9,1	18,2	27,3	0	0

Ejemplo 9. Tratamiento de los ojos de ratón recién nacido con una combinación de un fragmento angiostático de TrpRS, un inhibidor de señalización de VEGF y un inhibidor de señalización de integrina.

Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos (en grupos de ocho ratones cada uno) se invectaron por vía intravítrea el P4 con una concentración 1 x de T2-TrpRS, una concentración 1 x de compuesto (1) inhibidor de señalización de integrina, una concentración 1 x del compuesto (2) aptámero VEGF, una combinación de compuesto (1) a una concentración 1 x y una concentración de 1 x de compuesto (2), o una combinación de T2-TrpRS a una concentración 1 x, una concentración 1 x de compuesto (2) y una concentración 1 x de compuesto (2). Como referencia, otro grupo de ocho ratones recibió solamente una invección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos invectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de

15 vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 9 y en las figuras 35 a 42.

\sim	\sim
• •	()
_	v

5

10

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS	75	25	0	0	0	0	0
1 x Comp. (1)	25	12,5	12,5	37,5	12,5	0	0
1 x Comp. (2)	25	0	12,5	12,5	50	25	12,5
1 x T2-TrpRS	12,5	0	25	12,5	50	12,5	0
Comp. (1) + T2-TrpRS	0	12,5	12,5	25	50	25	12,5
Comp. (1) + (2)	12,5	12,5	0	12,5	62,5	62,5	50
T2-TrpRS + Comp. (2)	0	12,5	12,5	12,5	62,5	37,5	25
T2-TrpRS + (1) + (2)	0	25	0	0	75	75	62,5

Tabla 9

Ejemplo 10. Tratamiento de los ojos de ratón recién nacido con dosis variables de un fragmento angiostático de TrpRS.

- 25 Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos (en grupos de ocho a doce ratones cada uno) se inyectaron por vía intravítrea el P4 con T2-TrpRS, a las concentraciones de 0,1 x (8 ratones), 0,3 x (12 ratones), 1 x (12 ratones), 2 x (12 ratones) y 3 x (12 ratones). Como referencia, otro grupo de 10 ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como
- 30 se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 10.

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%
PBS	100	0	0	0	0
0,1 x Comp. (2)	75	25	0	0	0
0,3 x T2-TrpRS	33,3	16,7	8,3	16,7	25
1 x T2-TrpRS	8,3	16,7	25	8,7	41,7
2 x T2-TrpRS	8,3	25	0	16,7	41,7
3 x T2-TrpRS	66,7	25	8,7	0	0

Tabla 10

Ejemplo 11. Tratamiento de los ojos de ratón recién nacido con dosis variables de un fragmento angiostático de TrpRS.

40 Siguiendo el Procedimiento General, los ojos de ratones Balb/C recién nacidos (en grupos de seis a catorce ratones cada uno) se inyectaron por vía intravítrea el P4 con T2-TrpRS, a las concentraciones de 0,3 x (6 ratones), 1 x (14 ratones), 2 x (8 ratones), 3 x (7 ratones) y 5 x (6 ratones). Como referencia, otro grupo de 10 ratones recibió solamente una inyección intravítrea de PBS. El P12, se practicó la eutanasia a los ratones y se extirparon las retinas de los ojos inyectados, se tiñeron, se montaron las preparaciones microscópicas y se evaluaron al microscopio como se describe en el Procedimiento General. Se evaluó la vascularidad de la capa secundaria (vascular retiniana

45

externa) basándose en el porcentaje de vascularización comparado con los ojos de referencia. Los resultados se muestran en la tabla 11.

Tabla 11

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%
PBS	60	40	0	0	0
0,3 x Comp. (2)	33,3	16,7	0	0	50
1 x T2-TrpRS	14,3	14,3	7,1	14,3	50
2 x T2-TrpRS	12,5	12,5	12,5	12,5	50
3 x T2-TrpRS	14,3	14,3	14,3	28,5	28,5
5 x T2-TrpRS	16,6	33,3	33,3	16,6	0

Los datos para los ratones que presentan >95% y 100% de inhibición en los ejemplos anteriores demuestran que incluso las composiciones que comprenden por lo menos dos materiales seleccionados del grupo consistente en un fragmento angiostático de TrpRS, un inhibidor de señalización de VEGF y un inhibidor de señalización de integrina

- 10 proporcionan inesperadamente mayor eficacia para la inhibición de neovascularización en el modelo de ojo de ratón recién nacido que los niveles esperados de inhibición de los efectos aditivos simples de la combinación de los componentes individuales. Esto es también evidente cuando se combinan los resultados de varios ejemplos como en la tabla 12, que compila los resultados de los ejemplos a concentraciones de 1 x a 2 x del compuesto (1) inhibidor de integrina, 0,5 x a 1 x del compuesto (2) aptámero de VEGF y 1 x de T2-TrpRS así como composiciones de la
- 15 presente invención (valores de inhibición en negrita en la tabla 12) que comprenden combinaciones de por lo menos dos de entre el compuesto (1), compuesto (2) y T2-TrpRS. El número de ratones en cada grupo se indica entre paréntesis para cada grupo. Los datos en la tabla 12 presentan claramente un mayor nivel de inhibición inesperadamente de formación del vaso sanguíneo en la capa vascular profunda para los ojos de ratones tratados con las composiciones que comprenden combinaciones de por lo menos dos de entre el compuesto (1), el compuesto (2) y T2-TrpRS comparadas con los niveles de inhibición de los tratamientos con los inhibidores
- 20 compuesto (2) y T2-TrpRS comparadas con los niveles de inhibición de los tratamientos individuales por ellos mismos o la suma numérica de los mismos.

Tabla 12. Datos	de los	compuestos	de los	ejemplos.
-----------------	--------	------------	--------	-----------

% Inhibición	0-10%	10-25%	25-50%	50-75%	75-100%	>95%	100%
PBS (38 ratones)	84,2	10,5	5,3	0	0	0	0
1 x-2 x Comp. (1) (30 ratones)	33,3	20	13,3	16,7	16,7	0	0
1x Comp. (2) (30 ratones)	39,1	20	7,6	11,9	21,4	4,7	2,4
1x T2-TrpRS (46 ratones)	23,9	17,4	15,2	8,7	34,8	8,7	2,2
Comp. (1) + T2-TrpRS (22 ratones)	18,2	13,6	9,1	9,1	50	27,3	13,6
Comp. (1) +(2) (16 ratones)	6,3	12,5	6,3	18,8	56,3	43,7	37,5
T2-TrpRS + Comp. (2) (36 ratones)	5,6	11,1	13,9	8,3	61,1	33,3	19,4
T2-TrpRS + (1) + (2) (24 ratones)	0	8,3	0	0	91,7	79,2	62,5

²⁵

30

Los resultados de los ejemplos 10 y 11 (tablas 10 y 11) demuestran que la eficacia de T2-TrpRS alcanzó un máximo a aproximadamente 1 x a 2 x de concentración y no proporcionaban ninguna más del 50% de ratones con una inhibición de 75-100% en la capa vascular profunda. La eficacia comenzó a disminuir a 2 x y mayor concentración. Por lo tanto aún con dosis crecientes, T2 no proporcionó más de aproximadamente 50% de eficacia al nivel de inhibición de 95 a 100%.

Ejemplo 12. Efectos sinérgicos de la administración del fragmento angiostático T2-TrpRS, del aptámero VEGF y del inhibidor peptidomimético de señalización de integrina $\alpha_{\nu}\beta_3$ y $\alpha_{\nu}\beta_5$.

- 35 Para estudiar el efecto de la combinación de diferentes moléculas angiostáticas, se utilizaron tres compuestos angiostáticos conocidos por identificar rutas angiogénica, críticas, pero independientes: una pequeña molécula antagonista de integrina α_νβ₃ y α_νβ₅ (compuesto (1)), "EMD 472523" adquirido en Merck KGaA, Darmstadt, Alemania, un antagonista de VEGF₁₆₅ (compuesto (2); pegaptanib sódico) y una forma truncada de triptófano ARNt sintetasa (T2-TrpRS, adquirida en Angiosyn Inc., La Jolla, CA). Aunque el mecanismo exacto de actuación para T2-TrpRS no se ha aclarado completamente, su mecanismo de actuación no está directamente ligado a VEGF o al antagonismo
- 40 se ha aclarado completamente, su mecanismo de actuación no está directamente ligado a VEGF o al antagoonismo de integrina.

El modelo de angiogenia retiniana de ratón recién nacido se utilizó para probar la eficacia de cada monoterapia, y varias combinaciones de estos compuestos individuales. Como se expuso anteriormente en la presente memoria, los ratones nacen sin un sistema vascular retiniano. Durante las tres primeras semanas después del nacimiento se desarrolla un sistema vascular similar al del adulto. El sistema vascular retiniano forma tres plexos planos distintos desarrollando el plexo vascular superficial durante la primera semana después del nacimiento. El día 8 después del nacimiento (P8), los vasos del plexo superficial se ramifican y emigran hacia el plexo profundo en el borde externo de

⁵

la capa nuclear interna. Para demostrar las propiedades angiostáticas de cada monoterapia como solución de combinación, se realizaron inyecciones intravítreas el P7, cuando la formación de la red superficial está próxima a la terminación, pero antes de que haya comenzado la formación de los plexos profundos. Los efectos sobre la formación del plexo vascular profundo se analizaron a continuación cinco días después (P12). El grado de inhibición de cada retina inyectada se puntuó como 0-10%, 10-25%, 25-50%, 50-75% o 75-100% (figura 48) con el grupo de

- 5 de cada retina inyectada se puntuó como 0-10%, 10-25%, 25-50%, 50-75% o 75-100% (figura 48) con el grupo de inhibición 75-100% más separado en los niveles de inhibición >90% y 100% (figura 49). El aspecto del plexo vascular primario formado anteriormente, así como la morfología retiniana total, se evaluaron para los signos de toxicidad.
- 10 Preparación de muestras. El antagonista de integrina α_νβ₃ y α_νβ₅ (compuesto (1)) se almacenó en forma de polvo liofilizado en un desecador a temperatura ambiente (I.A.) o -20°C (V.A.) y se disolvió en 1x PBS sin ARNasa estéril inmediatamente antes de uso. Se sintetizó el aptámero VEGF (compuesto (1)) como compuesto conjugado de PEG 40kDa (Transgenomic Inc., Boulder, CO) basándose en la información publicada, Bridonneau, *et al., J. Chromatogr. B. Diomed. Sci. App.* 726:237-47 (1999). Se determinó que el compuesto era puro por cromatografía líquida en fase
- 15 inversa. Las concentraciones publicadas en la presente memoria se refieren a la concentración final del aptámero VEGF activo en lugar de la concentración total del compuesto conjugado PEG y se determinaron por análisis espectrofotométrico a 260/280 nm. El péptido T2-TrpRS se preparó como compuesto recombinante como se describe en Otani, *et al., Proc. Nat'l. Acad. Sci., USA.* 99: 178-183 (2002) y en la solicitud provisional US de la patente nº de serie 60/598.019 presentada el 2 de agosto de 2004, incorporados a la presente memoria como
- 20 referencia en su totalidad. El producto purificado se almacenó en glicerol al 50% a -20°C y se dializó en 1 x PBS estéril inmediatamente antes de su uso. Se prepararon soluciones de la combinación creando inicialmente 3 x soluciones madre de cada compuesto individual. Los compuestos se mezclaron a continuación y con PBS cuando procedía, para hacer una solución final que contenía cada compuesto deseado a una concentración equivalente a cada concentración de monoterapia correspondiente.
- 25

Inyecciones intravítreas. Todo el trabajo en animales contempla las directrices estrictas del protocolo para la atención humana y la utilización de animales. Se llevaron a cabo inyecciones intravítreas, se disecaron las retinas y se observó el sistema vascular. Se indujo OIR según el protocolo descrito por Smith, *et al., Invest. Ophtalmol. Vis. Sci.*, **35**:101-111 (1994), exponiendo crías 7 días (P7) después del nacimiento y a sus madres a un medio de 75% de

- 30 oxígeno (hiperoxia) durante 5 días, seguido por un retorno al aire ambiente (normoxia). Se realizaron inyecciones intravítreas el P12, inmediatamente después del retorno a la normoxia y las retinas se analizaron el P17. Se tiñeron los vasos sanguíneos utilizando isolectina GS-IB4 de *Griffonia simplicifolia* (lectina GS), conjugada con Alexa Fluor 594 (Molecular Probes, dilución 1:150 en PBS). Se toman imágenes confocales utilizando una lente objetivo 4x, enfocando minuciosamente justo antes de la membrana del límite interno de la retina, haciendo prominentes los
- ovillos neovasculares prelaminares. Se tomaron cuatro imágenes superpuestas de cada retina y cada una de las imágenes se convirtió en un tamaño de 2 x 2 pulgadas con 300 píxeles por pulgada. Las zonas del ovillo neovascular fueron cuantificadas por individuos enmascarados utilizando preparaciones microscópicas completas de la retina. Los ovillos se seleccionaron específicamente basándose en su aspecto característico y la intensidad mayor de la tinción con isolectina, utilizando la herramienta varita mágica en el programa Adobe PHOTOSHOP®. Se determinó a continuación la zona total en píxeles. Las zonas de formación del ovillo neovascular se normalizaron para las retinas
- OIR de referencia invectadas con PBS.

Dosificación. Se realizaron en primer lugar experimentos de dosificación para determinar la dosis eficaz máxima para cada compuesto. Se observó que cada compuesto tiene una curva de eficacia en forma de campana con dosis 45 eficaces máximas de 5 a 10 µg (10 a 20 nmoles) por ojo para el antagonista de integrina (figura 46), 1,0-2,0 µg (108-215 pmoles) por ojo para el aptámero VEGF (figura 44) y 0,25-0,5 µg (5,2-10,4 pmoles) por ojo para T2-TrpRS (figura 43). Las inyecciones individuales de cada monoterapia a la dosis óptima, y soluciones que contienen combinaciones apropiadas de cada compuesto a dosis equivalentes se realizaron a continuación para comparar las actividades angiostáticas. A las dosis individuales máximas, aproximadamente 35% de las retinas resultaron inafectadas por la invección del antagonista de integrina o del aptámero VEGF. El otro 67% de las retinas estaba 50 comprendido básicamente uniformemente dentro del intervalo 10-25%, 25-50%, 50-75% o 75%-100 (tabla 13A más adelante). La inhibición de la red vascular profunda con el péptido T2-TrpRS fue ligeramente mejor. El 24% de las retinas invectadas con el T2-TrpRS desarrolló un plexo vascular profundo normal y completo mientras que el 35% de las retinas inyectadas con el péptido T2-TrpRS presentaba más del 75% de inhibición en comparación con el 17 y el 55 21% para el antagonista de integrina y el aptámero VEGF respectivamente (tabla 13A a continuación). Cuando los

21% para el antagonista de integrina y el aplanero VEGF respectivamente (tabla 13A a commución). Cuando los compuestos angiostáticos se inyectaban en combinación, los efectos angiostáticos sobre la neovascularización eran sorprendentes. Cada combinación doble, antagonista de integrina + T2-TrpRS, antagonista de integrina + aptámero VEGF y T2-TrpRS + aptámero VEGF, demostraban la mejora significativa de la actividad angiostática sobre las monoterapias. Significativamente pocas retinas eran resistentes al tratamiento angiostático utilizando las politerapias. La neovascularización fue inhibida por más del 75% en una mayoría de las retinas tratadas con alguna de las combinaciones dobles (tabla 13A a continuación).

Cuando los tres compuestos se inyectaron conjuntamente a las mismas dosis óptimas que las inyecciones de monoterapias correspondientes (1x triple combinación) más del 90% de las retinas tenía >75% de inhibición. A diferencia de la monoterapia o de las retinas tratadas con la combinación doble, todas las retinas tratadas con la combinación triple presentaban algún grado de inhibición neovascular. Además, solamente el 8% de las retinas

inyectadas tenían todavía algunos niveles significativos de neovascularización en absoluto. Se observó inhibición casi completa de la angiogenia en otro 92% de las retinas inyectadas con el compuesto de triple combinación (tabla 13A más adelante; figura 48). Las diferencias en la eficacia angiostática se volvieron aún más pronunciadas cuando >75% de la categoría de inhibición se subclasificó dentro de los niveles del >90% de inhibición y del 100% de

- 5 inhibición (figura 49). Más del 80% de las retinas inyectadas con la combinación triple presentaban más del 90% de inhibición de formación del plexo vascular profundo y el 63% presentaban 100% de inhibición de neovascularización donde ni incluso un sólo brote neovascular pudo observarse. Esta es una mejora sustancial sobre ambas monoterapias que demuestra 100% de inhibición en <5% de las retinas tratadas y las politerapias dobles. Además, el plexo vascular superficial de muchas de las retinas tratadas por triple combinación recordaba el de una retina P7</p>
- 10 normal en lugar de las retinas P12, lo que indica que más crecimiento vascular dentro del plexo superficial había sido evitado también por la triple combinación inmediatamente después de la combinación. La inhibición del crecimiento del plexo superficial no se observó en ninguna retina tratada con monoterapia o terapia doble. Los vasos más centrales del plexo superficial que ya se habían formado antes de la inyección permanecieron normales, lo que indica niveles despreciables de toxicidad para el sistema vascular preexistente. Además, no se observaron señales
- 15 de actividad neuronal, y la morfología retiniana permaneció inalterada, lo que indica que no había ocurrido ningún efecto secundario negativo observable por la inyección de la solución de triple combinación. Las imágenes de los plexos vasculares superficial y profundo de un experimento representativo completo se presentan en la figura 50.
- Para analizar la sinergia, y para probar si actividad angiostática potente podría mantenerse utilizando dosis menores de la triple combinación, se probaron diluciones en serie. La combinación triple fue todavía muy eficaz para inhibir la angiogenia cuando se diluyó hasta 100 veces (0,01x triple combinación) (tabla 13B más adelante; figuras 52 y 53). Cuando se preparó la triple combinación combinando los compuestos individuales a un décimo de su dosis óptima, casi el 80 de las retinas tratadas todavía presentaban >75% de inhibición y el 50% de las retinas presentaban inhibición completa (100%) de neovascularización. A 0,1 x concentraciones (1 µg/antagonista de integrina en el ojo,
- 0,2 µg/aptámero VEGF en el ojo y 0,025 µg/T2-TrpRS en el ojo), la inhibición de neovascularización por cada uno de los compuestos angiostáticos fue insignificante (tabla 13C más adelante; figura 54). Se observó alguna eficacia después de la inyección de la combinación doble 0,1 x T2-TrpRS y 0,1 x aptámero VEGF. Sin embargo, a pesar de que esta combinación era el angiostático más eficaz de todas las combinaciones dobles probadas, la actividad angiostática era todavía mínima en comparación con los niveles de inhibición observados por la inyección de la 0,1 x 30

TABLA 13

A. Experimento de combinación del modelo de angiogenia en ratón recién nacido

35

Porcentale de retinas con los niveles de inhibición neovascular indicado	dos
--	-----

Inyección	<u>N</u>	<u>0-10%</u>	<u>10-25%</u>	<u>25-50%</u>	<u>50-75%</u>	<u>>75%</u>	<u>>90%</u>	<u>100%</u>
PBS	38	84,2	10,5	5,3	0,0	0,0	0,0	0,0
5-10 μg antagonista de integrina	30	33,3	20,0	13,3	16,7	16,7	0,0	0,0
1-2 μg aptámero VEGF	42	39,1	20,0	7,6	11,9	21,4	4,7	2,4
0,25 μg T2-TrpRS	46	23,9	17,4	15,2	8,7	34,8	8,7	2,2
T2-TrpRS + ant. de integrina	22	18,2	13,6	9,1	9,1	50,0	27,3	13,6
Ant. de integrina + apt. VEGF	21	6,3	12,5	6,3	18,8	56,3	43,7	28,5
T2-TrpRS + apt. CEGF	36	5,6	11,1	13,9	8,3	61,1	38,3	19,4
Triple combinación	24	0	8,3	0	0	91,7	83,2	62,6

40

B. Experimento de dilución en serie de la triple combinación

Invección	N	<u>0-10%</u>	10-25%	<u>25-50%</u>	<u>50-75%</u>	<u>>75%</u>	<u>>90%</u>	100%
PBS	14	71,4	14,3	14,3	0,0	0,0	0,0	0,0
1x triple combinación	16	0,0	0,0	0,0	7,1	92,8	71,4	57,1
0,5x triple combinación	16	0,0	0,0	0,0	0,5	100,0	87,5	50,0
0,25x triple combinación	16	0,0	0,0	0,0	0,5	100,0	68,8	43,8
0,1x triple combinación	18	0,0	5,5	11,1	5,5	77,8	61,1	44,4
0,05x triple combinación	10	0,0	10,0	20,0	20,0	50,0	30,0	20,0
0,01x triple combinación	10	10,0	10,0	30,0	30,0	20,0	20,0	10,0

C. Monoterapia a baja dosis frente a experimento de combinación

Niveles de inhibición:	N	<u>0-10%</u>	10-25%	25-50%	<u>50-75%</u>	>75%	>90%	100%
PBS	8	100	0	0	0	0	0	0
0,1x ant. de integrina (1,0µg)	10	90	10	0	0	0	0	0
0,1x apt. VEGF (0,20µg)	8	75	25	0	0	0	0	0
0,1x T2-TrpRS (0,025µg)	10	50	37,5	12,5	0	0	0	0

Niveles de inhibición:	N	0-10%	10-25%	25-50%	50-75%	>75%	>90%	100%
0,1x T2-TrpRS + apt. VEGF	10	10	30	20,0	20	20	0	0
0,1x triple combinación	18	0	5,5	11,1	5,5	77,8	61,1	44,4

Ejemplo 13. Efectos sinérgicos de una "terapia triple"

- 10 la neovascularización patológica en el modelo OIR en ratón. Para los experimentos iniciales, se utilizaron las dosis óptimas obtenidas en el modelo de angiogenia en recién nacidos. En cada caso, las politerapias demostraron actividades angiostáticas mejoradas en comparación con las monoterapias. Sin embargo, debido a las actividades angiostáticas de cada monoterapia, fue difícil determinar si los resultados de combinar varios compuestos eran sinérgicos o sencillamente aditivos. De este modo basándose en los resultados observados utilizando el modelo de
- 15 angiogenia retiniana en ratón recién nacido que demostraba eficacias equivalentes de las politerapias a dosis relativamente bajas, cada monoterapia y varias terapias de combinación se probaron a un décimo de las dosis óptimas.
- De nuevo, la concentración de compuesto en las soluciones de la combinación fue equivalente a la concentración correspondiente de la monoterapia. A concentraciones inferiores, no se observó ninguna inhibición significativa de la formación patológica del ovillo neovascular después de los tratamientos de monoterapia. Sin embargo, se observaron reducciones significativas en las formaciones del ovillo neovascular utilizando cada combinación doble (figura 57). Cuando el antagonista de integrina se combinaba con el péptido T2-TrpRS, la formación patológica del ovillo se redujo >50%. Combinando el antagonista de integrina con el aptámero VEGF se reducía la formación del 25 ovillo >40%. Cuando el péptido T2-TrpRS se combinaba con el aptámero VEGF, se redujo la neovascularización
- 25 ovillo >40%. Cuando el peptido 12-TrpRS se combinaba con el aptamero VEGF, se redujo la neovascularización patológica casi el 80% en comparación con las retinas tratadas con la referencia. Muchas de las retinas tratadas con la combinación doble T2-TrpRS/aptámero VEGF parecían casi normales con prácticamente ninguna neovascularización patológica evidente (figura 58).
- 30 Se ha demostrado un aumento drástico en la actividad angiostática por los compuestos angiostáticos de múltiple combinación que se dirigen a distintas rutas de angiogenia. Se observaron actividades angiostáticas potentes tanto en un modelo de desarrollo como en uno patológico de angiogenia incluso después de combinar los compuestos a dosis que no tienen actividad monoterapeutica. Esto sugiere un efecto sinérgico en lugar de simplemente un efecto aditivo. Estos datos sugieren también que rutas de direccionamiento múltiple pueden ser necesarias para la terapia antiangiogénica clínica eficaz y puede proporcionar un nuevo paradiama para el tratamiento de enfermedades
- 35 antiangiogénica clínica eficaz y puede proporcionar un nuevo paradigma para el tratamiento de enfermedades neovasculares. Preferentemente, por lo menos dos terapias angiogénicas se combinan (p. ej., una combinación del inhibidor de señalización de VEGF, tal como un aptámero VEGF, combinado con un fragmento angiostático de TrpRS, tal como el fragmento T2 de TrpRS y opcionalmente un antagonista de integrina).
- 40 Al dirigir e inhibir tres rutas angiogénicas independientes, se consiguió la inhibición casi completa de la angiogenia en dos modelos independientes de angiogenia. La inhibición completa de la neovascularización puede ser importante para el tratamiento eficaz de las enfermedades relacionadas con la angiogenia utilizando terapias angiostáticas. En el modelo de los autores, incluso los mejores resultados en las inyecciones de monoterapia generalmente solo bloquearon el 50 al 75% de desarrollo de nuevos vasos. Esto significa que en la mayoría de los
- 45 casos, todavía se desarrollaba una cantidad significativa de neovascularización. Por el contrario, dos tercios de las retinas del ratón recién nacido inyectadas con la terapia de triple combinación presentaban la inhibición completa del 100% de formación neovascular (tabla13). Así mismo, en el modelo OIR de angiogenia patológica, una gran parte de los ratones tratados demostraron poca o ninguna formación del ovillo neovascular patológica (figura 58). Durante el tratamiento del cáncer, pueden ser necesarios altos niveles de inhibición de angiogenia para dar lugar a la inanición
- 50 completa de las células tumorales y a evitar más crecimiento del tumor. Las monoterapias que solamente inhiben el 50% del crecimiento neovascular sólo es probable que reduzcan, en lugar de eliminar, el oxígeno y los nutrientes disponibles para que crezcan rápidamente las células tumorales. Aunque esto puede inicialmente ralentizar el crecimiento, puede no ser suficiente para evitar más crecimiento del tumor. En estos casos, las politerapias que pueden conseguir la inhibición completa de la neovascularización mejorarían en gran medida los resultados de las
- 55 terapias antiangiogénicas durante los tratamientos del cáncer. Además, utilizando dosis relativamente bajas mientras se mantiene un fuerte potencial angiostático, la posibilidad de efectos secundarios desfavorables generados por tratamientos angiostáticos puede minimizarse. Conjuntamente, los datos anteriores demuestran la utilidad beneficiosa de combinar diferentes moléculas angiostáticas para el tratamiento de la neovascularización asociado a la enfermedad.
- 60

Las composiciones de la presente invención, que comprenden un fragmento angiostático de triptofanil de ARNt sintetasa (TrpRS), un inhibidor de señalización del factor de crecimiento endotelial vascular (VEGF) y un inhibidor de señalización de integrina, y sus procedimientos de utilización, proporcionan un régimen de tratamiento nuevo y

El modelo para ratón de retinoterapia provocada por oxígeno (OIR) descrito anteriormente en la presente memoria es un modelo muy aceptado de neovascularización provocada por hipoxia en la retina. Los cambios vasculares asociados son consecuentes, reproducibles y cuantificables. En los últimos años la utilización de este modelo se ha extendido al estudio general de las vasculopatías isquémicas relacionadas con la enfermedad y a las intervenciones antiangiogénicas relacionadas. Para estudiar las propiedades sinérgicas de estos compuestos angiostáticos en un modelo más patológico de angiogenia, se probaron los efectos de monoterapias y politerapias sobre la formación de

sorprendentemente eficaz para las enfermedades neovasculares, particularmente para las enfermedades neovasculares de los ojos.

Ejemplo 14. Tratamiento de un tumor

El glioblastoma multiforme es un tumor cerebral maligno incurable normalmente mortal al año de diagnóstico. La estirpe celular 9L de gliosarcoma de rata se utiliza como modelo para gliomas malignos. En ambas formas de glioma, el tumor está muy vascularizado y se infiltra en el tejido cerebral normal. El animal no tratado que recibe una inyección de células 9L por vía intracerebral tiene un vínculo de supervivencia de aproximadamente 3 semanas, una vez se ban implantado las células del tumor. El día 0, se crearon tumores 9L intracerebrales por inoculación

- 10 vez se han implantado las células del tumor. El día 0, se crearon tumores 9L intracerebrales por inoculación estereostática de aproximadamente 50.000 células en aproximadamente 2 µl de medio de Eagle modificado por Dulbecco (MEMD; Life Technologies, Gaithersburg, MD) en el lóbulo frontal derecho de ratas Fisher CD 344 que habían sido previamente anestesiadas con ketamina y xilacina.
- 15 El día 6, se inyectó por vía estereotáctica una inyección intravenosa rápida de 10μl de una composición de la invención (4,5 mg/l de T2-TrpRS, 30 ml/l de compuesto (1) y 6 mg/l de compuesto (2); pegaptanib sódico) durante aproximadamente 2 minutos en la misma región del cerebro que se habían implantado las células 9L. Después de la inyección intravenosa rápida, se insertó una bomba en la bolsa subcutánea entre las escápulas. Se insertó un catéter conectado por tubuladura a la bomba en el mismo orificio de la arandela practicado para la introducción de
- 20 las células 9L y se fijó en el sitio. Cada bomba tenía un caudal de aproximadamente 8µl por hora. Una cantidad adicional de la composición de la invención se bombeaba continuamente dentro del cerebro de cada animal durante aproximadamente 24 horas. El bombeo continuo distribuyó la composición en todo el hemisferio del cerebro en el que se habían implantado las células tumorales. Nueve ratas recibieron la composición de la invención y otras nueve recibieron PBS convencional como grupo de referencia.
- 25

30

5

El día 13, se hizo una incisión entre las escápulas, se retiró la bomba y se sustituyó por una bomba nueva. El tratamiento con la composición de la invención o PBS se reanudó durante 24 horas más con la nueva bomba a los mismos caudales de bombeo. Hubo un aumento del 21 por ciento de supervivencia en las ratas tratadas con la composición de la invención con el grupo de referencia tratado con PBS (véase la figura 60).

Listado de secuencias

<110> The Scripps Research Institute

35 <120> COMPOSICIONES Y PROCEDIMIENTOS PARA EL TRATAMIENTO DE ENFERMEDADES NEOVASCULARES

<130> 18-209 T2

40 <140> EP <141> 2005-06-06

> <150> US 60/577,156 <151> 2004-06-04

45

<150> US 60/585,273 <151> 2004-07-01

<150> US 60/655,801 50 <151> 2005-02-24

<160> 6

<170> FastSEQ para la versió windows 4.0

55

<210> 1 <211> 379 <212> PRT <213> homo sapiens

60

<400> 1

Met Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly 1 5 10 15 Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr 20 25 Cly Cla Arg Phe His Phe Lys Cly The The The The The Company 20 25 Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe 50 Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly 65 His Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn 85 Val Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys 100 Asp Leu Thr Leu Asp Gln Ala Tyr Ser Tyr Ala Val Glu Asn Ala Lys Asp Leu Thr Leu Asp Gln Ala Tyr Ser Tyr Ala Val Glu Asn Ala Lys Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser 130 135 140 Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val 145 150 155 160 Lys Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly 165 170 175 Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln 180 185 190 Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr 245 250 250 255 Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val290295300 Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys 305 310 315 320 Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly 330 Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu 340 His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe 355 360 360 365 Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln 370 375

5

<211> 379 <212> PRT

<213> homo sapiens

<400> 2

<210> 2

Met Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly 1 5 10 15 1 5 Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr 20 Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His 30 Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His 40 Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe 50 Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly 65 70 80 75 80 His Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn 85 Val Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys 105 100 100 Asp Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys 115 Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser 130 135 140 140 Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val 145 150 Lys Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly 165 Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln 180 185 190 190 190 Ala Ala Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg 195 Thr Asp Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr 210 Phe Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro 235 Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr 245 Lys Met Ser Ala Ser Asp Pro Asp Ser Ser Ile Phe Leu Thr Asp Thr Lys Met Ser Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr 260 265 270 Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly 325 330 335 Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu 340 His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe 360 365 365 Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln 370 375

<210> 3

<211> 424

5

<212> PRT

<213> homo sapiens

<400> 3

Met Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro 1 5 10 15 151015Pro Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu
202530Ala Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala
4045Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys
5060Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
7080Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met 85 90 95 Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro Leu 130 135 140 130135140Val Ile Gln Met Thr Asp Asp Glu Lys Tyr LeuTrp Lys Asp Leu Thr145150Leu Asp Gln Ala Tyr Ser Tyr Ala Val Glu Asn Ala Lys Asp Ile Ile165Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp180Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln195Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr Asp210Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro225Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile 225230235240Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile
245250255Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met
260265270Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu
275280285His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met Ser
295295300Ala Ser Asp Pro Asp Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln 305 310 315 315 320 305310310315320Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr
325330335Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser
340345350Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln
355360365The transition of the transition of th Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys 370 375 380 Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala 385 Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro 405 410 410 Arg Lys Leu Ser Phe Asp Phe Gln 420

<210> 4 <211> 401 <212> PRT

5

<213> homo sapiens

<400> 4

Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp Phe Val Asp 1 5 10 15 Pro Trp Thr Val Gin Thr Ser Ser Ala Lys Gly Ile Asp Tyr Asp Lys 20 Leu Ile Val Arg Phe Gly Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn 35 40 40 45 Arg Ile Glu Arg Ala Thr Gly Gln Arg Pro His His Phe Leu Arg Arg 50 Gly Ile Phe Phe Ser His Arg Asp Met Asn Gln Val Leu Asp Ala Tyr 65 Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser 90 Glu Ala Met His Val Gly His Leu Ile Pro Phe Ile Phe Thr Lys Trp 100 Leu Gln Asp Val Phe Asn Val Pro Leu Val Ile Gln Met Thr Asp Asp 115 Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu Asp Gln Ala Tyr Ser Tyr 130 Ala Val Glu Asn Ala Lys Asp Tle Tle Ala Cys Gly Phe Asp Ile Asn 130135140Ala Val Glu Asn Ala Lys Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn150145150150Lys Thr Phe Ile Phe Ser Asp Leu Asp Tyr Met Gly Met Ser Ser Gly160165170170Phe Tyr Lys Asn Val Val Lys Ile Gln Lys His Val Thr Phe Asn Gln180Val Lys Gly Ile Phe Gly Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile190Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser Phe Ser Asn Ser Phe Pro210215Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln Cys Leu Ile Pro Cys Ala Gln

<210> 5 <211> 471 <212> PRT

<213> homo sapiens

<400> 5

Met Pro Asn Ser Glu Pro Ala Ser Leu Leu Glu Leu Phe Asn Ser Ile 1 5 10 15 Ala Thr Gln Gly Glu Leu Val Arg Ser Leu Lys Ala Gly Asn Ala Ser 20 25 30 Lys Asp Glu Ile Asp Ser Ala Val Lys Met Leu Val Ser Leu Lys Met 35 40 45 Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro

10

	50					55					60				
Gly 65	Asn	Pro	Ala	Pro	Thr 70	Ser	Asn	His	Gly	Pro 75	Asp	Ala	Thr	Glu	Ala 80
Glu	Glu	Asp	Phe	Va1 85	Asp	Pro	тгр	Thr	val 90	Gln	Thr	Ser	Ser	Ala 95	Lys
Gly	Ile	ASP	Tyr 100	Asp	Lys	Leu	Ile	Va] 105	Arg	Phe	Gly	Ser	Ser 110	Lys	Ile
Asp	Lys	Glu 115	Leu	Ile	Asn	Arg	I]e 120	Glu	Arg	Ala	Thr	Gly 125	Gln	Arg	Pro
ніѕ	ніs 130	Phe	Leu	Arg	Агд	Gly 135	Ile	Phe	Phe	Ser	His 140	Arg	Asp	Met	Asn
Gln 145	Val	Leu	Asp	Ala	Tyr 150	Glu	Asn	Lys	Lys	Pro 155	Phe	Tyr	Leu	Tyr	Thr 160
Gly	Arg	Gly	Pro	Ser 165	Ser	Glu	Ala	Met	His 170	val	Gly	His	Leu	Ile 175	Pro
Phe	IJG	Phe	Thr 180	Lys	тгр	Leu	Gln	ASP 185	val	Phe	Asn	val	Рго 190	Leu	Val
Ile	Gln	Met 195	Thr	Asp	Asp	Glu	Lys 200	Tyr	Leu	тгр	Lys	ASP 205	Leu	Thr	Leu
Asp	Gln 210	Ala	Tyr	Ser	Туг	Ala 215	Val	Glu	Asn	Ala	Lys 220	Asp	Ile	IJe	Ala
Cys 225	Gly	Phe	Asp	Ile	Asn 230	Lys	Thr	Phe	Ile	Phe 235	Ser	Asp	Leu	Asp	туг 240
Met	Gly	Met	Ser	Ser 245	Gly	Phe	⊤уг	Lys	Asn 250	Val	Val	Lys	IJe	G]n 255	Lys
His	Val	Thr	Phe 260	Asn	Gln	Val	Lys	G]y 265	Ile	Phe	Gly	Phe	Thr 270	Asp	Ser
Asp	Cys	Ile 275	Gly	Lys	Ile	Ser	Phe 280	Pro	Ala	Ile	Gln	A]a 285	Ala	Pro	Ser
Phe	Ser 290	Asn	Ser	Phe	Pro	Gln 295	Ile	рће	Arg	Asp	Arg 300	Thr	Asp	I]e	Gln
Cys 305	Leu	Ile	Pro	Cys	A]a 310	Ile	Asp	Gln	Asp	Pro 315	Туг	Phe	Arg	Met	Thr 320
Arg	Asp	val	Ala	Pro 325	Arg	IJe	Gly	Tyr	Pro 3 <u>3</u> 0	Lys	Pro	Ala	Leu	Leu 335	His
Ser	Thr	Phe	Phe 340	Pro	Ala	Leu	Gln	G1y 345	Ala	Gln	Thr	Lys	Met 350	Ser	Ala -
Ser	Asp	Pro 355	Asn	Ser	Ser	Ile	Phe 360	Leu	Thr	Asp	Thr	A I a 365	Lys	GIn 	Ile
Lys	Thr 370	Lys	Val	Asn	Lys	H1S 375	Ala	Phe	Ser	Gly	G I y 380	Arg	Asp	Thr	Ile
Glu 385	Glu _	His	Arg	GIN	Phe 390	Gly	Gly	Asn	Cys	Asp 395	Val	Asp	val	ser	Phe 400
Met	туг	Leu	Thr	Phe 405	Phe	Leu	Glu	ASP	ASP 410	Asp	Lys	Leu	Glu	G In 415	Ile
Arg	Lys	Asp	420	Thr	Ser	Gly	Ala	Met 425	Leu	Thr	Gly	GIU	430	Lys	Lys
Ala	Leu	11e 435	Glu	Val	Leu	GIn	Pro 440	Leu	Ile	Ala	Glu	H15 445	Gin	Ala	Arg
Arg	Lys 450	Glu	val	Thr	ASP	G I U 455	Ile	val	Lys	Glu	Phe 460	Met	Thr	Pro	Arg
Lys 465	Leu	Ser	Phe	Asp	Phe 470	GIN									

<210> 6

<211>27

<212> ADN <213> Secuencia artificial

.

<220>

<223> Oligonucleótido sintético

10

15

5

<220> <221> misc_feature

<222> (1)..(1)

<223> 2'fluoro C enlazado en la posición 5' mediante un enlazador pentil amino a una cadena de polietilenglicol de 40 kiloDalton

<220> <221> misc_feature <222> (2), C3), (9), (11), (15) <223> 2'OMe G

<220> <221> misc_feature <222> (4), (5) 5 <223> 2'OH (ribo) A <220> <221> misc_feature <222> (6), (10), (14), (17), (18), (20), (24) <223> 2'fluoro U 10 <220> <221> misc_feature <222> (7), (16), (22), (25), (26) 15 <223> 2'fluoro C <220> <221> misc_feature <222> (8), (12), (13), (19), (21), (23) 20 <223> 2'OMe A <220> <221> misc_feature <222> (27)..(27) 25 <223> 2'OMe G enlazado en la posición 3' al extremo 3' de desoxi T <400> 6 cggaaucagu gaaugcuuau acauccg 27

REIVINDICACIONES

1. Composición que comprende (i) un fragmento angiostático de triptofanil-ARNt sintetasa (TrpRS); (ii) un agente antiangiogénico que es un inhibidor de señalización de la integrina; y (iii) un agente terapéutico en la que el agente terapéutico es un agente antiinflamatorio.

2. Composición según la reivindicación 1, en la que el fragmento angiostático de TrpRS presenta un tamaño molecular de más de aproximadamente 48 KDa.

10 3. Composición según la reivindicación 1, en la que el fragmento angiostático de TrpRS presenta un tamaño molecular de más de aproximadamente 46 KDa.

4. Composición según la reivindicación 1, en la que el fragmento angiostático de TrpRS presenta un tamaño molecular de más de aproximadamente 43 KDa.

15

5

5. Composición según la reivindicación 1, en la que el fragmento angiostático de TrpRS presenta una secuencia de restos de aminoácidos seleccionada de entre el grupo constituido por la SEC ID N^o: 1, SEC ID N^o: 2, SEC ID N^o: 3 y SEC ID N^o: 4.

20 6. Composición según cualquiera de las reivindicaciones 1 a 5, en la que el inhibidor de señalización de integrina es un antagonista de integrina angiostática.

7. Composición farmacéutica que comprende una composición según cualquiera de las reivindicaciones 1 a 6 y un portador farmacéuticamente aceptable para la misma.

25

8. Composición según cualquiera de las reivindicaciones 1 a 6 para su utilización en un procedimiento para el tratamiento de una enfermedad neovascular.

9. Composición según la reivindicación 8, en la que la enfermedad neovascular se selecciona de entre el grupo
 30 constituido por enfermedades neovasculares oculares, glaucoma rubeótico, pterigión, cánceres con tumor sólido, artrosis, artritis reumatoide, anomalías vasculares, malformaciones vasculares y psoriasis.

T2-TrpRS (SEC ID N°: 1)

HVGHLIPFIFTKWLQDVFNVPLVIQMTDDEKYLWKDLTLDQAYSXAVENAKDIIACGFDINKTFIFSDLDYMGMSSG A PRIGY PKPALLHSTFFPALOGAOTKMSASDPNSSIFLTDTAKOIKTKVNKHAFSGGRDTIEEHROFGGNCDVDVSF MSAKGIDYDKLIVRFGSSKIDKELINRIERATGQRPHHFLRRGIFFSHRDMNQVLDAYENKKPFYLYTGRGPSSEAM FYKNVVKIQKHVTFNQVKGIFGFTDSDCIGKISFPAIQAAPSFSNSFPQIFRDRTDIQCLIPCAIDQDPYFRMTRDV WYLTFFLEDDDKLEQIRKDYTSGAMLTGELKKALIEVLQPLIAEHQARRKEVTDEIVKEFMTPRKLSFDFQ

T2-TrpRS-GD (SEC ID N°: 2)

APRIGYPKPALLHSTFFPALQGAQTKMSASDPNSSIFLTDTAKQIKTKVNKHAFSGGRDTIEEHRQFGGNCDVDVSF MSAKGIDYDKLIVRFGSSKIDKELINRIERATGORPHHFLRRGIFFSHRDMNQVLDAYENKKPFYLYTGRGPSSEAM HVGHLIPFIFTKWLQDVFNVPLVIQMTDDEKYLWKDLTLDQAYGDAVENAKDIIACGFDINKTFIFSDLDYMGMSSG FYKNVVKIQKHVTFNQVKGIFGFTDSDCIGKISFPAIQAAPSFSNSFPQIFRDRTDIQCLIPCAIDQDPYFRMTRDV MYLTFFLEDDDKLEQIRKDYTSGAMLTGELKKALIEVLQPLIAEHQARRKEVTDEIVKEFMTPRKLSFDFQ

FIG. 1

Mini TrpRS (SEC ID Nº: 3)

MSYKAAAGEDYKADCPPGNPAPTSNHGPDATEAEEDFVDPWTVQTSSAKGIDYDKLIVRFGSSKIDKELINRIERAT SFPAIQAAPSFSNSFPQIFRDRTDIQCLIPCAIDQDPYFRMTRDVAPRIGYPKPALLHSTFFPALQGAQTKMSASDP GORPHHFLRRGIFFSHRDMNOVLDAYENKKPFYLYTGRGPSSEAMHVGHLIPFIFTKWLODVFNVPLVIOMTDDEKY LWKDLTLDQAYSYAVENAKDIIACGFDINKTFIFSDLDYMGMSSGFYKNVVKIOKHVTFNOVKGIFGFTDSDCIGKI NSSIFLTDTAKQIKTKVNKHAFSGGRDTIEEHRQFGGNCDVDVSFMYLTFFLEDDDKLEQIRKDYTSGAMLTGELKK AL I EVLOPL I A EHOARRKEVTDE I VKEFMT PRKLSFDFO

T1-TrpRS (SEC ID N°: 4)

DIQCLIPCAIDQDPYFRMTRDVAPRIGYPKPALLHSTFFPALQGAQTKMSASDPNSSIFLTDTAKQIKTKVNKHAFS SNHGPDATEAEEDFVDPWTVQTSSAKGIDYDKLIVRFGSSKIDKELINRIERATGQRPHHFLRRGIFFSHRDMNQVL DAYENKKPFYLYTGRGPSSEAMHVGHLIPFIFTKWLQDVFNVPLVIQMTDDEKYLWKDLTLDQAYSYAVENAKDIIA CGFDINKTFIFSDLDYMGMSSGFYKNVVKIQKHVTFNQVKGIFGFTDSDCIGKISFPAIQAPSFSNSFPQIFRDRT GGRDTI EEHRQFGGNCDVDVSFMYLTFFLEDDDKLEQIRKDYTSGAMLTGELKKALI EVLQPLIAEHQARRKEVTDE IVKEFMTPRKLSFDFQ

Primario

ES 2 450 541 T3

ES 2 450 541 T3

ES 2 450 541 T3

ES 2 450 541 T3

ES 2 450 541 T3

79

81

Inyección única en P13, analizada en P17

83

