

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 453 317

51 Int. Cl.:

C07K 4/00 (2006.01) A61K 31/7105 (2006.01) A61K 31/713 (2006.01) A61K 47/42 (2006.01) A61K 47/48 (2006.01) A61K 48/00 (2006.01) C08G 69/48 C08F 212/00 (2006.01) C08G 69/10 (2006.01) C12N 15/11 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 23.02.2011 E 11740552 (2) (97) Fecha y número de publicación de la concesión europea: 25.12.2013 EP 2397487
- (54) Título: Poliaminoácido catiónico de cadena corta y uso del mismo
- (30) Prioridad:

23.02.2010 JP 2010037014

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 07.04.2014 (73) Titular/es:

NANOCARRIER CO., LTD. (50.0%) 4-19, Kashiwanoha 5-chome Kashiwa-shi, Chiba 277-0882, JP y THE UNIVERSITY OF TOKYO (50.0%)

(72) Inventor/es:

KATO, YASUKI; ISHII, ATSUSHI; SHIBATA, NAOYA; HAYASHI, TATSUYUKI; KATAOKA, KAZUNORI; MIYATA, KANJIRO y NISHIYAMA, NOBUHIRO

(74) Agente/Representante:

FÚSTER OLAGUIBEL, Gustavo Nicolás

DESCRIPCIÓN

Poliaminoácido catiónico de cadena corta y uso del mismo

5 Campo técnico

La presente invención se refiere a un poliaminoácido catiónico de cadena corta, un copolímero de bloque que tiene el poliaminoácido y una composición de partículas de polímeros y un complejo obtenido cada uno usando el poliaminoácido y/o el copolímero de bloque.

Técnica anterior

La aplicación de ARNip a tratamientos médicos es cada vez más esperado debido a que el ARNip puede silenciar específicamente y eficazmente ARNm diana. Sin embargo, el desarrollo de un sistema de administración eficaz es indispensable para aplicar el ARNip a tratamientos médicos. En los últimos años se ha aclarado que un efecto terapéutico de ARNip desnudo sobre la degeneración macular senil (DMS) mediante su administración intraocular bajo un ensayo clínico no resulta de un efecto de silenciamiento de genes específico de secuencia inducido por ARNip, sino que resulta de un efecto específico de no secuencia mediante el reconocimiento por receptor 3 similar a Toll (TLR-3) sobre la superficie celular. Se ha considerado importante desarrollar un vehículo que sea estable fuera de células y pueda administrar con exactitud ARNip a las células en cualquiera de las aplicaciones de ARNip *in vivo*.

Hasta ahora se ha proporcionado una variedad de polímeros catiónicos como vehículos para formar un complejo poliiónico (CPI) con ADN e introducir y expresar el ácido nucleico en células eucariotas. Por ejemplo, se sabe que un derivado de poli(L-lisina) en el que un grupo hidrófilo (por ejemplo, polietilenglicol) y un grupo hidrófobo (por ejemplo, un grupo palmitoílo) se han introducido mediante un grupo ε-amino de poli(L-lisina) forma una vesícula en presencia de colesterol en un medio acuoso y la vesícula agrega ADN de plásmido que contiene gen para formar un complejo estable (Documento de patente 1). Además, se sabe que un CPI formado de ADN de plásmido con un copolímero derivado cuya carga de cationes y densidad de reticulación de disulfuro se han ajustado por la tiolación de un grupo ε-amino de poli(L-lisina) en un copolímero de poli(L-lisina)-poli(etilenglicol) muestra alta estabilidad en un medio extracelular y libera eficazmente el ADN en un compartimento intracelular (Documento de no patente 1). Además, se ha confirmado que cuando se producen poli(N-[N-(2-aminoetil)-2-aminoetil]aspartamida (pAsp (DET))) que tiene una estructura de etilendiamina en una cadena lateral y un copolímero de bloque que incluye la pAsp (DET) como uno de los componente de bloque del copolímero de bloque, tales polímeros muestran baja citotoxicidad e introducen ADN de plásmido en células con alta eficiencia para expresar un gen incorporado en el ADN eficientemente (véase el Documento de no patente 2, Documento de patente 3).

Como se ha descrito anteriormente, aunque se ha desarrollado un vehículo eficaz para un ácido nucleico de alto peso molecular tal como ADN, todavía no se ha proporcionado un vehículo que pueda formar un complejo estable tal como un CPI con un ácido nucleico de bajo peso molecular tal como ARNip también bajo una condición fisiológica, y liberar adecuadamente el ácido nucleico de bajo peso molecular en células.

Documentos de la técnica anterior

Documentos de patente

45

[Documento de patente1] WO 99/61512 A1

[Documento de patente2] WO 2006/085664 A1

50 [Documento de patente3] WO 2007/099660 A1

Documentos de no patente

[Documento de no patente1] K. Miyata y col., J. Am. Chem. Soc. 2004, 126, 2355-2361

55

[Documento de no patente2] K. Miyata y col., J. Am. Chem. Soc. 2008, 130, 16287-16294

Resumen de la invención

60 Problemas a resolver por la invención

La presente invención se ha hecho con el fin de resolver los problemas convencionales. Un objetivo principal de la presente invención es proporcionar un vehículo que pueda formar un complejo estable con un ácido nucleico bajo una condición fisiológica y liberar el ácido nucleico en células adecuadamente.

65

Medios para resolver los problemas

La presente invención proporciona un poliaminoácido catiónico. El poliaminoácido catiónico puede asociarse con un ácido nucleico e incluye un residuo de aminoácido catiónico que tiene un grupo catiónico en una cadena lateral y un residuo de aminoácido hidrófobo que tiene un grupo hidrófobo en una cadena lateral. El poliaminoácido catiónico 5 incluye 1 a 20 unidades del residuo de aminoácido catiónico y se representa por la siguiente fórmula (1).

[Quím. 1]

10

en la que: R¹ representa un grupo hidroxilo o un grupo alquiloxi lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono, un grupo alqueniloxi lineal o ramificado sin sustituir o sustituido que tiene 2 a 12 átomos de carbono, un grupo alquiniloxi lineal o ramificado sin sustituir o sustituido que tiene 2 a 12 átomos de carbono, o un grupo alquillimino sustituido lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono; R² representa un átomo de hidrógeno, un grupo alquillo lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono, o un grupo alquilcarbonilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 24 átomos de carbono; R³a, R³b, R⁴a y R⁴b representan cada uno independientemente un grupo metileno o un grupo etileno; R⁵a y R⁵b representan cada uno independientemente -O- o -NH-; R⁶a y R⁶b representan cada uno independientemente un grupo de hidrocarburo alifático lineal o ramificado saturado o insaturado que tiene 6 a 27 átomos de carbono, un grupo de hidrocarburo aromático que tiene 6 a 27 átomos de carbono, o un grupo esterilo; R³a y R³b se eligen cada uno independientemente de los mismos grupos o grupos diferentes en el grupo que consiste en los siguientes grupos: -NH-(CH₂)_{p1}-[NH-(CH₂)_{q1}-]_{r1}NH₂ (i); -NH-(CH₂)_{p2}-N[-(CH₂)_{q2}-NH₂]₂ (ii); -NH-(CH₂)_{p3}-N{[(CH₂)_{q3}-NH₂][-(CH₂)_{q4}-NH₋]_{r2}H} (iii); y -NH-(CH₂)_{p4}-N{-(CH₂)_{q5}-N[-(CH₂)_{q6}-NH₂]₂ (iv) en las que: p1 a p4, q1 a q6 y r1 y r2 representan cada uno independientemente un número entero de 1 a 5; R³ representa una cadena lateral de un aminoácido seleccionado del grupo que consiste en lisina, ornitina, arginina, homoarginina e histidina; m representa un número entero de 5 a 80; n representa un número entero de 0 a m; x representa un número entero de 1 a 20; y representa un número entero de 0 a x; y z representa un número entero de 0 a 20, a condición de que una suma de x y z z sea 1 o más a 20 o menos, las unidades de repet

30

Según otro aspecto, la presente invención proporciona un copolímero de bloque. El copolímero de bloque incluye el segmento de cadena del polimero hidrófilo.

Según todavía otro aspecto, la presente invención proporciona una composición de partículas de polímeros. La 35 composición de partículas de polímeros incluye el poliaminoácido catiónico y/o el copolímero de bloque.

Según todavía otro aspecto, la presente invención proporciona un complejo. El complejo incluye el poliaminoácido catiónico y/o el copolímero de bloque, y un ácido nucleico.

40 Efectos ventajosos de la invención

Según la presente invención, puede proporcionarse el vehículo que puede formar un complejo estable con un ácido nucleico bajo una condición fisiológica y liberar adecuadamente el ácido nucleico en células.

45 Breve descripción de los dibujos

[FIGS. 1] Las FIGS. 1 muestran imágenes de geles después de la electroforesis de composiciones de partículas de polímeros que encapsulan cada una ARNip (Luc).

50 [FIGS. 2] Las FIGS. 2 muestran imágenes de geles después de la electroforesis de composiciones de partículas de polímeros que encapsulan cada una ARNip (Luc).

[FIG. 3] La FIG. 3 es una gráfica que ilustra una actividad de una composición de partículas de polímeros que encapsula ARNip (Plk1) de un ejemplo comparativo en células MDA-MB-231.

55

Descripción de realizaciones

A. Poliaminoácido catiónico

45

Un poliaminoácido catiónico de la presente invención incluye un residuo de aminoácido catiónico que tiene un grupo catiónico en una cadena lateral y un residuo de aminoácido hidrófobo que tiene un grupo hidrófobo en una cadena lateral, y puede asociarse con un ácido nucleico. El "que puede asociarse con un ácido nucleico" como se usa en el presente documento significa que puede interaccionar con un ácido nucleico para formar un complejo (por ejemplo, un complejo poliiónico (CPI)) bajo una condición fisiológica a pH 7,4. Además, el ácido nucleico significa un poli- u oligonucleótido que incluye nucleótidos formados de una base de purina o pirimidina, una pentosa y ácido fosfórico como unidades básicas. Además, un aminoácido del que se deriva el residuo de aminoácido puede ser cualquier compuesto adecuado en tanto que el aminoácido tenga tanto grupos funcionales de un grupo amino como un grupo carboxilo, y el aminoácido pueda formar un poliaminoácido mediante un enlace amida (enlace peptídico).

El número de residuos de aminoácidos catiónicos incluidos en el poliaminoácido catiónico de la presente invención es 1 a 20. preferentemente 1 a 15. más preferentemente 1 a 10. particularmente preferentemente 1 a 5. El número 15 de residuos de aminoácidos hidrófobos incluidos en el poliaminoácido catiónico es preferentemente 1 a 80, más preferentemente 5 a 70, particularmente preferentemente 10 a 60. Según el poliaminoácido catiónico de la presente invención, el poliaminoácido catiónico tiene un residuo de aminoácido catiónico y de ahí que pueda unirse electrostáticamente a un ácido nucleico como una molécula aniónica, y adicionalmente el número de residuos de aminoácidos se fija a 20 o menos, y de ahí que el enlace pueda prevenirse de estar excesivamente reforzado. Como 20 resultado, el ácido nucleico puede liberarse apropiadamente. En otras palabras, en una realización, la presente invención se refiere a un material base de poliaminoácido catiónico que puede asociarse con un ácido nucleico, incluyendo el material base de poliaminoácido catiónico: un residuo de aminoácido catiónico que tiene un grupo catiónico en una cadena lateral; y un residuo de aminoácido hidrófobo que tiene un grupo hidrófobo en una cadena lateral, en el que el número de residuos de aminoácidos catiónicos está limitado en el intervalo de 1 a 20 para 25 promover la desorción (liberación) de un ácido nucleico del material base. Si el número de residuos de aminoácidos catiónicos incluidos en el poliaminoácido catiónico está limitado en el intervalo de 15 o menos, adicionalmente 10 o menos, y se selecciona un tipo dado de residuo de aminoácido catiónico, el ácido nucleico tiende a ser liberado apropiadamente. El tipo dado de residuo de aminoácido catiónico puede ejemplificarse por un grupo catiónico que excluye L-lisina, más específicamente, un grupo derivado de dietilentriamina que se representa por cada uno de R7 en la fórmula química (1) descrita más adelante. En otras palabras, el material base de poliaminoácido catiónico según la presente invención es un material base de poliaminoácido catiónico que puede asociarse con un ácido nucleico, incluyendo el material base de poliaminoácido catiónico: un residuo de aminoácido catiónico que tiene un grupo catiónico en una cadena lateral; y un residuo de aminoácido hidrófobo que tiene un grupo hidrófobo en una cadena lateral, en el que el residuo de aminoácido catiónico se forma de un grupo catiónico que excluye L-35 lisina (por ejemplo, un grupo derivado de dietilentriamina que se representa por cada uno de R^{7a} y R^{7b} en la fórmula química (1) descrita después) y el número de residuos de aminoácidos catiónicos puede limitarse en el intervalo de 1 a 15. adicionalmente 1 a 10. Si el número de residuos de aminoácidos catiónicos incluidos en el poliaminoácido catiónico es 2 o más, la estabilidad del complejo puede mejorarse. Además, según el poliaminoácido catiónico de la presente invención, el poliaminoácido catiónico tiene un residuo de aminoácido hidrófobo y por tanto da una 40 interacción hidrófoba, y como resultado, mejora la estabilidad de un complejo con un ácido nucleico, que permite la formación de un complejo estable con también un ácido nucleico de peso molecular pequeño. Además, el residuo de aminoácido hidrófobo se pega a un resto hidrófobo sobre una membrana celular y puede servir de ancla para fijar un material base sobre una membrana celular, conduciendo a una mejora en la tasa de introducción de ácido nucleico en las células.

Un aminoácido del que se deriva el residuo de aminoácido catiónico es, por ejemplo, un aminoácido que tiene un valor de pKa, que se define debido a un grupo amino en una estructura de cadena lateral que excluye un esqueleto principal de un aminoácido, de, por ejemplo, 3 a 13, preferentemente 4 a 12, más preferentemente 5 a 11.

50 Un aminoácido del que se deriva el residuo de aminoácido hidrófobo se ejemplifica preferentemente por un aminoácido que tiene solubilidad en 100 g de agua a 25 °C de 5 g o menos, más preferentemente 4 g o menos. Ejemplos de tal aminoácido incluyen un aminoácido natural no polar tal como leucina, isoleucina, fenilalanina, metionina o triptófano y un derivado hidrófobo de un aminoácido en el que un grupo hidrófobo se ha introducido en una cadena lateral. Un ejemplo preferido de derivado hidrófobo de un aminoácido es un derivado hidrófobo de un aminoácido ácido tal como ácido aspártico o ácido glutámico. En otras palabras, el material base de poliaminoácido catiónico que puede asociarse con un ácido nucleico, incluyendo el material base de poliaminoácido catiónico: un residuo de aminoácido catiónico que tiene un grupo catiónico en una cadena lateral; y un residuo de aminoácido hidrófobo que tiene un grupo hidrófobo en una cadena lateral, en que el residuo de aminoácido hidrófobo se forma de un grupo derivado de i) un 60 aminoácido natural no polar elegido de leucina, isoleucina, fenilalanina, metionina y triptófano o ii) un derivado hidrófobo de un aminoácido ácido elegido de ácido aspártico y ácido glutámico, el residuo de aminoácido catiónico se forma de un grupo catiónico que excluye L-lisina (por ejemplo, un grupo derivado de dietilentriamina que se representa por cada uno de R^{7a} y R^{7b} en la fórmula química (1) descrita más adelante), y el número de residuos de aminoácidos catiónicos puede limitarse en el intervalo de 1 a 15, adicionalmente 1 a 10.

El grupo hidrófobo que va a introducirse puede ejemplificarse preferentemente por un grupo de hidrocarburo alifático

lineal o ramificado saturado o insaturado que tiene 6 a 27 átomos de carbono, un grupo de hidrocarburo aromático que tiene 6 a 27 átomos de carbono, o un grupo esterilo.

El poliaminoácido catiónico de la presente invención puede incluir, según sea necesario, cualquier otro residuo de 5 aminoácido (por ejemplo, un residuo de aminoácido ácido tal como un residuo de ácido aspártico o un residuo de ácido glutámico) que excluye el residuo de aminoácido catiónico y el residuo de aminoácido hidrófobo.

El número de moles de los grupos amino incluidos en 1 g de poliaminoácido catiónico de la presente invención puede ser, por ejemplo, 0,1 mmoles a 10 mmoles, por ejemplo, 0,2 mmoles a 5 mmoles, o, por ejemplo, 0,4 mmoles 10 a 3 mmoles.

El poliaminoácido catiónico de la presente invención puede representarse preferentemente por la siguiente fórmula (1):

15 [Quím. 2]

45

en la fórmula: R¹ representa un grupo hidroxilo, un grupo alquiloxi lineal o ramificado sin sustituir o sustituido que 20 tiene 1 a 12 átomos de carbono, un grupo alqueniloxi lineal o ramificado sin sustituir o sustituido que tiene 2 a 12 átomos de carbono, un grupo alquiniloxi lineal o ramificado sin sustituir o sustituido que tiene 2 a 12 átomos de carbono o un grupo alquil-imino sustituido lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono:

25 R² representa un átomo de hidrógeno, un grupo alquilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono o un grupo alquilcarbonilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 24 átomos de carbono;

R^{3a}, R^{3b}, R^{4a} y R^{4b} representan cada uno independientemente un grupo metileno o un grupo etileno;

30 R^{5a} y R^{5b} representan cada uno independientemente -O- o -NH-;

R^{6a} y R^{6b} representan cada uno independientemente un grupo de hidrocarburo alifático lineal o ramificado saturado o insaturado que tiene 6 a 27 átomos de carbono, un grupo de hidrocarburo aromático que tiene 6 a 27 átomos de 35 carbono o un grupo esterilo derivado de un esterol;

R^{7a} y R^{7b} se eligen cada uno independientemente de los mismos grupos o grupos diferentes en el grupo que consiste en los siguientes grupos:

40 -NH-
$$(CH_2)_{p1}$$
- $[NH-(CH_2)_{q1}$ - $]_{r1}NH_2$ (i);

$$-NH-(CH_2)_{02}-N[-(CH_2)_{02}-NH_2]_2$$
 (ii);

$$-NH-(CH_2)_{p3}N\{[-(CH_2)_{q3}NH_2][-(CH_2)_{q4}-NH-]_{r2}H\}$$
 (iii); y

$$-NH-(CH_2)_{p4}-N\{-(CH_2)_{q5}-N[-(CH_2)_{q6}-NH_2]_2\}_2 \hspace{1.5cm} (iv), \\$$

en las que p1 a p4, q1 a q6 y r1 y r2 representan cada uno independientemente un número entero de 1 a 5;

50 R⁸ representa una cadena lateral de un aminoácido seleccionado del grupo que consiste en lisina, ornitina, arginina, homoarginina e histidina;

m representa un número entero de 5 a 80;

55 n representa un número entero de 0 a m;

x representa un número entero de 1 a 20;

y representa un número entero de 0 a x;

15

z representa un número entero de 0 a 20, a condición de que la suma de x y z sea 1 o más a 20 o menos, las 5 unidades de repetición respectivas estén unidas entre sí en cualquier orden adecuado.

En la fórmula (1), un resto alquilo en el grupo alquiloxi lineal o ramificado que tiene 1 a 12 átomos de carbono, grupo alquil-imino sustituido que tiene 1 a 12 átomos de carbono y grupo alquilo que tiene 1 a 12 átomos de carbono, que se definen por los grupos R¹ y R², pueden ser, por ejemplo, un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo isopropilo, un grupo n-butilo, un grupo sec-butilo, un grupo terc-butilo, un grupo n-hexilo, un grupo decilo y un grupo undecilo. Un resto alquenilo o alquinilo en el grupo alqueniloxi lineal o ramificado que tiene 2 a 12 átomos de carbono o el grupo alquiniloxi lineal o ramificado que tiene 2 a 12 átomos de carbono puede ejemplificarse por uno que incluye un doble enlace o un triple enlace en el grupo alquilo que tiene 2 o más átomos de carbono como se ejemplifica anteriormente.

Para tal grupo o resto, un sustituyente en un caso "sustituido" puede ejemplificarse por, pero no se limita a, un grupo alcoxi C₁₋₆, un grupo ariloxi, un grupo ariloxi C₁₋₃, un grupo ciano, un grupo carboxilo, un grupo amino, un grupo alcoxi C₁₋₆-carbonilo, un grupo acil C₂₋₇-amida, un grupo tri-alquil C1-6-siloxi, un grupo siloxi o un grupo siliamino, o puede ejemplificarse por un grupo formilo acetalizado, un grupo formilo o un átomo de halógeno tal como cloro o flúor. En este contexto, por ejemplo, la expresión "C₁₋₆" significa 1 a 6 átomos de carbono y se usa con el mismo significado en la siguiente descripción. Además, un resto alquilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono en el grupo alquilcarbonilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 24 átomos de carbono puede seleccionarse con referencia a los ejemplos, y un resto alquilo que tiene 13 o más átomos de carbono puede ser, por ejemplo, un grupo tridecilo, un grupo tetradecilo, un grupo pentadecilo, un grupo

25 nonadecilo, un grupo docosanilo y un grupo tetracosilo.

Las unidades de repetición que tienen los grupos R^{3a}, R^{3b}, R^{4a} y R^{4b} están unidas entre sí en cualquier orden adecuado, y puede aplicarse una estructura al azar o una estructura de bloques. Cuando ambos de R^{3a} y R^{3b} representan un grupo etileno, un poliaminoácido en el que n representa un número entero de 0 o un poliaminoácido en que m-n representa un número entero de 0 se representa normalmente. Lo anterior representa, por ejemplo, ácido poli-α-glutámico, que se obtiene por la polimerización de un anhídrido N-carboxílico de éster γ-bencílico de ácido glutámico, y el último representa, por ejemplo, ácido poli-γ-glutámico, que se produce por una cepa bacteriana del género de bacterias *Bacillus* tal como *Bacillus natto*. Mientras tanto, cuando ambos de R^{3a} y R^{3b} representan cada uno un grupo metileno, se entiende que las unidades de repetición respectivas que tienen aquellos grupos pueden coexistir entre sí. Lo mismo se mantiene cierto para R^{4a} y R^{4b}. Se prefiere que R^{3a} y R^{3b} representen cada uno un grupo etileno y R^{4a} y R^{4b} representen cada uno un grupo metileno desde el punto de vista de la eficiencia de producción.

Cuando el grupo de hidrocarburo alifático, que se define para cada uno de los grupos R^{6a} y R^{6b}, está saturado, el grupo es equivalente a un grupo alquilo que tiene 6 a 27 átomos de carbono y se ejemplifica por un grupo pentacosilo, un grupo hexacosilo o un grupo heptacosilo, además del grupo alquilo. El grupo de hidrocarburo alifático insaturado se corresponde con un grupo en el que 1 a 5 enlaces sencillos carbono-carbono en una cadena del grupo alquilo están sustituidos con dobles enlaces carbono-carbono. Un hidrocarburo alifático insaturado del que se deriva tal grupo puede ejemplificarse por, pero no se limita a, ácido láurico (o ácido dodecanoico), ácido mirístico (o ácido tetradecanoico), ácido palmítico (o ácido hexadecanoico), ácido palmitoleico (o ácido 9-hexadecenoico), ácido esteárico (o ácido octadecanoico), ácido oleico, ácido linoleico, ácido linolénico, ácido eleoesteárico (o ácido 9,11,13-octadecatrienoico), ácido araquídico, ácido araquidónico, ácido behénico, ácido lignocérico, ácido nervónico, ácido cerótico o ácido montánico.

50 Ejemplos del grupo de hidrocarburo aromático que tiene 6 a 27 átomos de carbono, que se definen para cada uno de los grupos R^{6a} y R^{6b}, incluyen tales como un grupo arilo y un grupo aralquilo. Ejemplos específicos preferidos de los mismos incluyen tales como un grupo fenilo, un grupo naftilo, un grupo tolilo, un grupo xililo, un grupo bencilo y un grupo fenetilo.

55 Un esterol del que se deriva un grupo esterilo, que se define para cada uno de los grupos R^{6a} y R^{6b}, significa un compuesto natural, un compuesto semisintético o un compuesto sintético basado en un anillo de ciclopentanonahidrofenantreno (C₁₇H₂₈) y derivados del mismo. Por ejemplo, un esterol natural se ejemplifica por, pero no se limita a, colesterol, colestanol, dihidrocolesterol, ácido cólico, campesterol o sitosterol. Compuestos semisintéticos o sintéticos de los mismos pueden ser, por ejemplo, precursores sintéticos de los anteriores productos naturales (como sea necesario, englobando un compuesto en el que parte o todos de, si está presente, ciertos grupos funcionales, grupos hidroxi se han protegido con un grupo protector de hidroxi conocido en la técnica, o un compuesto en el que un grupo carboxilo se ha protegido con protección de carboxilo). Además, el derivado de esterol significa que, por ejemplo, sin afectar adversamente el objetivo de la presente invención, un grupo alquilo C₁₋₁₂, un átomo de halógeno tal como cloro, bromo, o flúor puede introducirse en un anillo de ciclopentanonahidrofenantreno, y el sistema de anillo puede estar saturado o parcialmente insaturado. Un esterol del que se deriva el grupo esterilo es preferentemente un esterol de un origen de aceite animal o vegetal tal como

colesterol, colestanol, dihidrocolesterol, ácido cólico, campesterol o sitosterol, más preferentemente colesterol, colestanol o dihidroxicolesterol, particularmente preferentemente colesterol.

El grupo elegido del grupo que consiste en:

5
-NH-(CH₂)_{p1}-[NH-(CH₂)_{q1}-]_{r1}NH₂ (i);
-NH-(CH₂)_{p2}-N[-(CH₂)_{q2}-NH₂]₂ (ii);

10 -NH-(CH₂)_{p3}-N{[-(CH₂)_{q3}-NH₂][-(CH₂)_{q4}-NH-]_{r2}H} (iii); y
-NH-(CH₂)_{p4}-N{-(CH₂)_{q5}-N[-(CH₂)_{q6}-NH₂]₂} (iv),

que se define para cada uno de los grupos R^{7a} y R^{7b}, es preferentemente el mismo grupo, más preferentemente el grupo de fórmula (i). Además, p1 a p4 y q1 a q6 representan cada uno independientemente preferentemente 2 ó 3, más preferentemente 2. Mientras tanto, se prefiere que r1 y r2 representen cada uno independientemente un número entero de 1 a 3.

m-n y n representan cada uno el número de repetición de residuos de aminoácidos hidrófobos, x-y, y y z cada uno representan el número de repetición de residuos de aminoácidos catiónicos. x representa preferentemente 1 a 20, preferentemente 1 a 15, más preferentemente 1 a 10, particularmente preferentemente 1 a 5. Si x representa 1 o más, el poliaminoácido de la presente invención tiene al menos el grupo R^{7a} o R^{7b}. El grupo R^{7a} o R^{7b} tiene una pluralidad de diferentes grupos funcionales amina y de ahí que muestre una pluralidad de etapas de pKa, y una pluralidad de grupos funcionales amina están parcialmente protonados bajo una condición fisiológica a pH 7,4 y pueden interaccionar con un ácido nucleico para formar adecuadamente un complejo (por ejemplo, un CPI). Además, el complejo así formado se integra en un endosoma (pH 5,5) para reducir el pH, la protonación del poliaminoácido catiónico avanza adicionalmente y el escape endosómico puede promoverse basándose en un efecto tampón (o un efecto de esponja de protones). Como resultado, es posible reducir lesiones en las células.

30 Las unidades de repetición respectivas en la fórmula (1) están unidas entre sí en cualquier orden adecuado, y puede aplicarse una estructura al azar o una estructura de bloque. El poliaminoácido catiónico es de tipo bloque que incluye el segmento formado de un residuo de aminoácido catiónico y el segmento formado de un residuo de aminoácido hidrófobo. De ahí que, cuando el poliaminoácido catiónico de tipo bloque se use como material base para formar un complejo con un ácido nucleico, la introducción del ácido nucleico en células se promueva y pueda 35 garantizarse una capacidad para retener un ácido nucleico en un material base mientras que se promueve la liberación del ácido nucleico del material base.

El poliaminoácido catiónico representado por la fórmula (1) puede producirse, por ejemplo, produciendo un éster de poliaminoácido mediante la polimerización de un anhídrido N-carboxílico (NCA) de un aminoácido protegido tal como 40 β-bencil-L-aspartato, γ-bencil-L-glutamato, ο Nε-Z-L-lisina por sí conocidos, y luego se lleva a cabo la aminólisis usando una poliamina correspondiente a los grupos R^{7a}, R^{7b} y R⁸ para introducir un grupo catiónico en una cadena lateral de un poliaminoácido.

En una realización, cuando un polímero obtenido por la polimerización de γ-bencil-L-glutamato y la posterior polimerización de β-bencil-L-aspartato se somete a una reacción con un compuesto de amina tal como dietilentriamina (DET), una reacción de intercambio de éster-amida se produce preferencialmente para el poli(β-bencil-L-aspartato) y un residuo de amina tal como un grupo DET se introduce en una cadena lateral de ácido aspártico. Como resultado, puede obtenerse un poliaminoácido catiónico tipo bloque formado de un segmento de residuo de aminoácido catiónico derivado de ácido aspártico que tiene un grupo catiónico introducido en una cadena lateral y un segmento de residuo de aminoácido hidrófobo derivado de ácido glutámico que tiene un grupo bencilo introducido en una cadena lateral. Mientras tanto, β-bencil-L-aspartato y β-bencil-L-glutamato se polimerizan simultáneamente y luego se someten a una reacción con un compuesto de amina tal como dietilentriamina (DET), puede obtenerse un poliaminoácido catiónico tipo aleatorio en el que un residuo de aminoácido catiónico derivado de ácido aspártico que tiene un grupo catiónico introducido en una cadena lateral y un residuo de aminoácido hidrófobo derivado de ácido glutámico que tiene un grupo bencilo introducido en una cadena lateral están opcionalmente ordenados.

Una parte de residuos de éster de aminoácido puede someterse a cambio estructural por ataque nucleófilo de una amina (por ejemplo, formación de anillo de imida mediante la desalcoholización de un residuo de éster de aminoácido) durante el procedimiento de síntesis. En esta descripción, un poliaminoácido catiónico que incluye adicionalmente residuos que han experimentado tal cambio estructural también se incluye en la fórmula general (1). En este caso, el número de residuos que han experimentado un cambio estructural se excluye del número de residuos de aminoácidos catiónicos y el número de residuos de aminoácidos hidrófobo. Además, parte de los grupos NH y grupos NH₂ en los residuos de aminoácidos catiónicos pueden convertirse en una sal (principalmente un 65 clorhidrato) usando un ácido (principalmente ácido clorhídrico) durante el procedimiento de síntesis. En esta

descripción, un poliaminoácido catiónico que incluye tal estructura también se incluye en la fórmula general (1). En otras palabras, parte de los grupos NH y grupos NH₂ en los grupos R^{7a} , R^{7b} y R^{8} pueden estar en una forma de una sal (por ejemplo, un clorhidrato).

5 B. Copolímero de bloque

El copolímero de bloque de la presente invención incluye un segmento formado del poliaminoácido catiónico descrito en la sección A y un segmento de cadena del polímero hidrófilo. Tal configuración permite que el copolímero de bloque de la presente invención forme partículas de polímeros (por ejemplo, micelas de polímero) cada una de las 10 cuales tiene capacidad de retención potenciada en sangre circulante mientras que se retienen al menos las características poseídas por el propio poliaminoácido catiónico.

Cualquier polímero hidrófilo apropiado puede emplearse como polímero hidrófilo. Ejemplos del polímero hidrófilo incluyen poli(etilenglicol), polisacárido, poli(vinilpirrolidona), poli(alcohol vinílico), poli(amida acrílica), poli(ácido acrílico), poli(éster de ácido metacrílico), poli(éster de ácido acrílico), poliaminoácido, poli(ácido málico) y derivados de los mismos. Ejemplos específicos del polisacárido incluyen almidón, dextrano, fructano y galactano. De aquellos, para poli(etilenglicol), polietilenglicoles reactivos en el extremo que tienen una variedad de grupos funcionales en sus extremos son comercializados en el mercado. Además, polietilenglicoles que tienen una variedad de pesos moleculares son comercializados en el mercado y están 20 fácilmente disponibles, y de ahí que puedan usarse preferentemente.

El copolímero de bloque de la presente invención puede representarse preferentemente por la siguiente fórmula (2) o (3):

25 [Quím. 3]

en cada una de las fórmulas: R^{1 a} R⁸, m-n, n, x-y, y y z tienen los mismos significados que aquellos definidos para la 30 fórmula (1);

L¹ y L³ representan cada uno independientemente -S-S- o un enlace de valencia;

L² representa -NH-, -O- -O(CH₂)_{p1}-NH- o -L²a-(CH₂)_{q1}-L²b- en las que p1 y q1 representan cada uno 35 independientemente un número entero de 1 a 5, L²a representa OCO, OCONH, NHCO, NHCOO, NHCONH, CONH, o COO y L²b representa NH o O;

L⁴ representa -OCO- (CH₂)_{p2}-CO-, -NHCO- (CH₂)_{p3}-CO- o -L^{4a}-(CH₂)_{q2}-CO- en las que p2, p3 y q2 representan cada uno independientemente un número entero de 1 a 5 y L^{4a} representa OCONH, -CH₂NHCO-, NHCOO, NHCONH, 40 CONH o COO;

R⁹ y R¹⁰ representan cada uno independientemente un átomo de hidrógeno o un grupo alquilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono; y

45 k representa un número entero de 30 a 20.000.

 L^1 y L^3 anteriormente representan cada uno independientemente -S-S- o un enlace de valencia. Mientras tanto, L^2 representa -NH-, -O-, -O(CH₂)_{p1}-NH- o -L^{2a}-(CH₂)_{q1}-L^{2b}- en las que p1 y q1 representan cada uno independientemente un número entero de 1 a 5, L^{2a} representa OCO, OCONH, NHCO, NHCOO, NHCONH, CONH, 50 o COO y L^{2b} representa NH o O. Además, L^4 representa -OCO-(CH₂)_{p2}-CO-, -NHCO-(CH₂)_{p3}-CO- o - L^{4a} -(CH₂)_{q2}-CO- en las que p2, p3 y q2 representan cada uno independientemente un número entero de 1 a 5, L^{4a} representa

OCONH, -CH₂NHCO-, NHCOO, NHCONH, CONH o COO. En la definición, ambos de L¹ y L² y ambos de L³ y L⁴ necesitan cada uno combinarse juntos de manera que se forme un grupo de enlace. Por ejemplo, cuando L² representa -NH-, L¹ no representa -S-S-, pero sí un enlace de valencia. Un ejemplo preferible de la combinación incluye una combinación que puede formar un grupo de enlace cuando L¹ o L³ representa -S-S-.

Ejemplos del grupo alquilo lineal o ramificado que tiene 1 a 12 átomos de carbono, que se define por cada uno de los grupos R⁹ y R¹⁰, incluyen el mismo grupo que el resto alquilo del grupo alquiloxi lineal o ramificado que tiene 1 a 12 átomos de carbono, grupo alquil-imino sustituido que tiene 1 a 12 átomos de carbono y grupo alquilo que tiene 1 a 12 átomos de carbono, que se definen por cada uno de los grupos R¹ y R² en la fórmula (1). Además, lo mismo se 10 mantiene cierto para el sustituyente.

k, que representa el número de repetición de etilenglicol (u oxietileno), representa un número entero de 30 a 20.000, preferentemente 40 a 2.000, más preferentemente 50 a 1.000.

15 El copolímero de bloque de la presente invención puede formarse, por ejemplo, acoplando juntos el poliaminoácido catiónico y el polímero hidrófilo mediante un procedimiento conocido sin ningún tratamiento adicional o según sea necesario después de la purificación para estrechar la distribución de peso molecular. Además, por ejemplo, el copolímero de bloque de fórmula general (2) puede producirse formando una cadena de polietilenglicol por polimerización viva de aniones usando un iniciador que puede proporcionar R⁹, luego introduciendo un grupo amino en el lado extremo en crecimiento, polimerizando a partir del extremo amino un anhídrido N-carboxílico (NCA) de un aminoácido protegido tal como β-bencil-L-aspartato, γ-bencil-L-glutamato o Nε-Z-L-lisina, e introduciendo un grupo catiónico en una cadena lateral del poliaminoácido resultante. Como se ha mencionado anteriormente, un cambio de estructura (por ejemplo, formación de anillo de imida debido a la desalcoholización de residuos de éster de aminoácido puede producirse por el ataque nucleófilo de una poliamina en parte de residuos de éster de aminoácido durante el procedimiento de síntesis de un poliaminoácido catiónico. En esta descripción, un copolímero de bloque que incluye residuos que han experimentado tal cambio estructural también se incluyen en las fórmulas generales (2) y (3). Además, parte de los grupos NH y grupos NH₂ en el residuo de aminoácido catiónico pueden formarse en una sal (principalmente un clorhidrato) usando un ácido (principalmente ácido clorhídrico) durante el procedimiento de síntesis. En esta descripción, un copolímero de bloque que incluye tal estructura también se incluye en las fórmulas generales (2) y (3).

C. Composición de partículas de polímeros

La composición de partículas de polímeros de la presente invención incluye el poliaminoácido catiónico descrito en 35 la sección A y/o el copolímero de bloque descrito en la sección B. El poliaminoácido catiónico (tipo bloque/tipo al azar) y el copolímero de bloque pueden asociarse en una disolución acuosa para formar adecuadamente partículas de polímeros cuando la relación de un residuo de aminoácido hidrófobo en un poliaminoácido catiónico se vuelve alta. En la presente invención, un ensamblaje en el que una pluralidad de moléculas se ensamblan para formar partículas también está englobado en partículas y tal ensamblaje de polímero también se denomina partículas de 40 polímeros. Las partículas de polímeros tienen cada una un diámetro de partícula promedio de, por ejemplo, 5 nm a 5 µm, preferentemente 5 a 500 nm, más preferentemente 10 a 300 nm.

La composición de partículas de polímeros de la presente invención puede incluir cualquier otro polímero que excluya el poliaminoácido catiónico y el copolímero de bloque en tanto que pueda obtenerse el efecto de la presente invención. Ejemplos de cualquier otro polímero incluye un copolímero de bloque que tiene un segmento de cadena del polímero hidrófobo. Tal copolímero de bloque puede asociarse adecuadamente en una disolución acuosa para formar partículas de polímeros estables (por ejemplo, micelas de polímero) y la coexistencia de los mismos puede proporcionar una composición de partículas de polímeros de excelente estabilidad. Tal efecto puede ejercerse particularmente adecuadamente en una composición de partículas de polímeros que incluye un poliaminoácido catiónico libre de un segmento de cadena del polímero hidrófilo. El otro copolímero de bloque es, por ejemplo, el polímero descrito en el documento WO 2004/082718 A1.

La relación de peso del poliaminoácido catiónico y el copolímero de bloque con el otro polímero en la composición de partículas de polímeros de la presente invención puede ajustarse apropiadamente dependiendo del carácter del 55 polímero. La relación de peso puede ser, por ejemplo, 20:1 a 1:20, preferentemente 10:1 a 1:10, más preferentemente 1:5 a 5:1.

Un procedimiento de preparación de la composición de partículas de polímeros de la presente invención no está particularmente limitado y la composición de partículas de polímeros puede prepararse, por ejemplo, añadiendo un medio acuoso tal como agua o un tampón a un polímero de interés, agitando la mezcla, aplicando ultrasonidos, presión, fuerza de cizallamiento o energía física que es una combinación de los mismos, o disolviendo el polímero de interés en un disolvente orgánico volátil, luego evaporando el disolvente orgánico a sequedad, añadiendo el medio acuoso al mismo y aplicando tal energía física como se ha descrito anteriormente. Alternativamente, la composición de partículas de polímeros también puede prepararse añadiendo a un polímero de interés un disolvente orgánico soluble en agua que pueda disolver el polímero para disolver el polímero, y llevando a cabo diálisis contra el medio acuoso. En el contexto, ejemplos del disolvente orgánico volátil pueden incluir metanol, etanol, acetona,

cloroformo, acetonitrilo, tetrahidrofurano y diclorometano. Además, ejemplos de disolvente orgánico soluble en agua incluyen metanol, etanol, acetonitrilo, sulfóxido de dimetilo, N,N-dimetilformamida y N,N-dimetilacetamida.

D. Complejo

5

El complejo de la presente invención incluye el poliaminoácido catiónico descrito en la sección A y/o el copolímero de bloque descrito en la sección B, y un ácido nucleico. El poliaminoácido catiónico y el copolímero de bloque tienen cada uno un grupo catiónico y de ahí que puedan formar un complejo (por ejemplo, un CPI) con un compuesto cargado con anión bajo una condición fisiológica. Ejemplos del compuesto cargado con anión incluyen una proteína, un lípido, un péptido y un ácido nucleico. De aquellos, el poliaminoácido catiónico y el copolímero de bloque pueden formar adecuadamente un complejo con un ácido nucleico. Como se describe en los ejemplos después, un complejo formado del poliaminoácido catiónico o copolímero de bloque y ácido nucleico libera el ácido nucleico durante el tratamiento con SBF de diferentes formas dependiendo de si la estructura del poliaminoácido catiónico es o no de tipo bloque o de tipo al azar, y de ahí que un polímero que tiene una estructura apropiada pueda seleccionarse dependiendo de los fines.

Como se ha descrito anteriormente, el poliaminoácido catiónico tiene un grupo hidrófobo en una cadena lateral, y de ahí que el poliaminoácido catiónico y un copolímero de bloque que tiene el poliaminoácido también puedan formar un complejo con un ácido nucleico de peso molecular pequeño bajo una condición fisiológica para proporcionar una vesícula estable o asociado. El ácido nucleico que puede formar un complejo con el poliaminoácido catiónico o copolímero de bloque significa un poli- u oligonucleótido que incluye como unidades básicas nucleótidos formados de una base de purina o pirimidina, una pentosa y ácido fosfórico, y ejemplos de los mismos pueden incluir ARN oligo- o poli-bicatenario, ADN oligo- o poli-monocatenario y ARN oligo- o poli-monocatenario. Además, también están incluidos ácido nucleico oligo- o poli-bicatenario y ácido nucleico oligo- o poli-monocatenario en cada uno de los cuales existen ARN y ADN en un estado mezclado en la misma cadena. Además, el nucleótido contenido en el ácido nucleico puede ser de tipo natural o de tipo no natural químicamente modificado, o puede habérsele añadido un grupo amino, un grupo tiol, un compuesto fluorescente o cualquier otra molécula. El ácido nucleico no está limitado, pero puede estar formado de 4 a 20.000 bases, preferentemente 10 a 10.000 bases, más preferentemente 18 a 30 bases. Además, en consideración de las funciones o acciones, puede añadirse ADN de plásmido, ARNip, micro ARN, ARNhp, un ácido nucleico antisentido, un ácido nucleico señuelo, un aptámero y una ribozima.

Como ARNip pueden usarse, por ejemplo, todos aquellos designados para un gen diana o un polinucleótido diana mediante un procedimiento conocido. Para la longitud de cadena de ARNip, un resto para formar una doble hebra 35 puede tener una longitud de preferentemente 15 a 50 bases, más preferentemente 18 a 30 bases, y están englobados compuestos conocidos en la técnica y todos los nucleótidos que tienen las mismas acciones o funciones que aquellos compuestos. Ejemplos específicos del ARNip pueden diseñarse con referencia a un gen que puede servir de diana de una terapia génica, pero no se limita a éste. Ejemplos de tal gen pueden incluir, pero no se limitan a, PKCα relacionado con una enfermedad tal como carcinoma de pulmón de células no pequeñas, BCL-2 40 relacionado con una enfermedad tal como melanoma maligno, ICAM-1 relacionado con enfermedad de Crohn, VHC relacionado con hepatitis C, TNFα relacionado con artritis reumatoide o psoriasis, receptor de adenosina Al relacionado con asma, c-raf cinasa relacionada con una enfermedad tal como cáncer de ovario, H-ras relacionado con una enfermedad tal como cáncer de páncreas, c-myc relacionado con enfermedad de las arterias coronarias, PKA Ria relacionado con cáncer del intestino grueso, VIH relacionado con SIDA, ADN metil transferasa relacionada 45 con cáncer sólido, receptor de VEGF relacionado con cáncer, enzima de reducción de ribonucleótidos relacionada con cáncer de riñón, CMV IE 2 relacionado con retinitis por CMV, MMP-9 relacionado con cáncer de próstata, TGFβ2 relacionado con glioma maligno, CD 49 d relacionado con esclerosis múltiple, PTP-1B relacionado con diabetes, cmyb relacionado con cáncer, EGFR relacionado con una enfermedad tal como cáncer de mama, mdr1 relacionado con cáncer, autotaxina y gen GLUT-1. Del mismo modo que para el ácido nucleico antisentido, aquellos conocidos 50 en la técnica o todos los que tienen las mismas funciones o acciones que aquellos pueden emplearse como una diana para formar un complejo según la presente invención.

El complejo de la presente invención cuando el ácido nucleico es ARNip tiene preferentemente una relación de N/P de 2 o más desde el punto de vista de mejorar la estabilidad bajo una condición fisiológica, y la relación de N/P es preferentemente 200 o menos desde el punto de vista de inhibir la toxicidad debida a un polímero. El significado de la relación de N/P se describe después.

Cuando el poliaminoácido catiónico se usa para proporcionar un complejo con ARNip, una relación de N/P óptima no puede especificarse debido a que varía dependiendo de la relación de grupos hidrófobos en los grupos amino totales, pero la relación de N/P es generalmente 5 o más, preferentemente 7 o más. Cuando un complejo con ARNip se forma a tal relación de N/P, pueden proporcionarse asociados estables que tienen cada uno un diámetro de partícula promedio que oscila de aproximadamente 5 nm a aproximadamente 300 nm bajo una condición fisiológica tal como sangre circulante. Tal complejo puede prepararse mezclando el poliaminoácido catiónico y ARNip de manera que se logre la relación de N/P, según sea necesario, en una disolución acuosa tamponada. Además, tal complejo puede prepararse, por ejemplo, mezclando ARNip con una composición de partículas de polímeros que incluye el poliaminoácido catiónico descrito en la sección C de manera que se logre una relación de N/P deseada y

dejando reposar la mezcla de manera que el ARNip se encapsule en partículas de polímeros.

Cuando un complejo con ARNip se obtiene usando el copolímero de bloque y la relación de un residuo de aminoácido hidrófobo en el segmento de poliaminoácido catiónico del copolímero de bloque se vuelve alta, puede 5 formarse un complejo estable a una relación de N/P más amplia con respecto al caso de uso del propio poliaminoácido catiónico. Esto es debido a que tal copolímero tiende a formar partículas de polímeros (por ejemplo, micelas de polímero) en una disolución acuosa por auto-asociación. Tal complejo puede prepararse, por ejemplo, mezclando ARNip con una composición de partículas de polímeros que incluye el copolímero de bloque descrito en la sección C de manera que se logre una relación de N/P deseada y dejando la mezcla reposar para encapsular 10 ARNip en partículas de polímeros.

El complejo puede usarse como está, o puede usarse encapsulándose en cualquier vehículo apropiado que pueda usarse como vehículo para un sistema de administración de fármaco (SAF). Ejemplos típicos de tal vehículo incluyen micelas y liposomas de polímero. La encapsulación en un vehículo de SAF previene, por ejemplo, que componentes de la sangre se agrupen alrededor de un complejo, que permite adecuadamente la apropiada liberación de un ácido nucleico. Tal efecto puede ejercerse particularmente adecuadamente en un complejo que incluye el poliaminoácido catiónico y ácido nucleico.

Ejemplos

20

En los siguientes ejemplos, estructuras de polímero se describen en el orden del peso molecular (kMw) de PEG, el grado de polimerización de PBLG y el grado de polimerización de PBLA o su derivado. Por ejemplo, si el PEG tenía un peso molecular de 10.000, PBLG tenía un grado de polimerización de 35 y PBLA tenía un grado de polimerización de 5, el polímero se abrevia "PEG-PBLG-PBLA 10-35-5". En este contexto, el grado de polimerización de cada residuo de aminoácido es un valor estadístico y puede tener un intervalo de valores. Así, el valor abreviado como se ha descrito anteriormente puede tener una variación de algunas unidades (por ejemplo, aproximadamente ± 2 unidades) de un valor realmente medido. Además, un polímero que tiene una secuencia de residuos de aminoácido regular en un poliaminoácido, que se obtiene por la polimerización de PBLG y la posterior polimerización de PBLA, se abrevia polímero de bloque basado en su estructura. Además, un polímero que tiene una secuencia de residuos de aminoácido al azar en un poliaminoácido, que se obtiene por la adición y polimerización simultánea de PBLG y PBLA, se abrevia polímero al azar basado en su estructura de polímero. A menos que se indique lo contrario, los procedimientos de análisis de las características respectivas en los ejemplos son como se describen a continuación.

35 (1) Espectro de resonancia magnética nuclear (RMN ¹H)

La medición se realizó usando un aparato de resonancia magnética nuclear (fabricado por JEOL Ltd., JEOL AL300 (300 MHz)) en condiciones de disolvente: DMSO-d₆ y temperatura de medición: 25 °C.

40 (2) Análisis de aminoácidos

Como se describe más adelante, las concentraciones de poli(β-bencil-L-glutamato) (PBLG) y poli(N-[N-(2-aminoetil)-2-aminoetil]aspartamida (pAsp (DET)) en un polímero se determinaron sometiendo al polímero a hidrólisis ácida y midiendo un ácido glutámico (Glu) y un ácido aspártico (Asp) según el manual de procedimiento de análisis de 45 aminoácidos Waters AccQ·Tag™ (Nihon Waters K.K.).

(2-1) Hidrólisis ácida

10 mg de un polímero se fraccionaron en un tubo de ensayo de vidrio equipado con una tapa roscada, y se añadió ácido clorhídrico 6 N de manera que se lograra una concentración de polímero de 5 mg/ml. La hidrólisis ácida del polímero se realizó sometiendo la disolución a tratamiento térmico a 105 °C durante 19 horas. Entonces, a un microtubo de 1,5 ml se añadieron 300 μl de NaOH 4 N, 500 μl de agua ultrapura y 200 μl de la disolución de hidrólisis ácida resultante para neutralización, y la mezcla se filtró con un filtro de 0,22 μm (Nihon Millipore K.K., marca registrada "Millex" GV 13 mmΦ). El filtrado se diluyó entonces 50 veces con agua ultrapura para preparar una 55 disolución de muestra.

(2-2) Análisis de aminoácidos

A un microtubo de 1,5 ml se añadieron 70 µl de un tampón de borato AccQ·Fluor y 10 µl de la disolución de muestra 60 obtenida en la sección (2-1), y la mezcla se agitó con una mezcladora de vórtex. Entonces se añadieron 20 µl del reactivo AccQ·Fluor y la mezcla se agitó con una mezcladora de vórtex durante 15 segundos inmediatamente después de la adición para preparar un muestra de medición de HPLC. Las condiciones de HPLC son como se describen más adelante. Además, a menos que se indique lo contrario, todos los análisis de HPLC se llevaron a cabo bajo las mismas condiciones.

65

[Condiciones de HPLC]

Sistema: Sistema de HPLC Waters (Waters Alliance System, 2695, 2475, 2996)

Columna: Columna AccQ·Tag™ para el análisis de aminoácidos hidrolizados

(Φ3,9×250 mm, Waters)

Fase móvil: Eluyente AccQ·Tag™ A/Acetonitrilo=gradiente

10 Velocidad de flujo: 1 ml/min

Temperatura: 37 °C

Volumen de invección: 10 µl

15

5

Detección: Fluorescencia (250/395 nm)

Material de referencia para la determinación cuantitativa: Mezcla de aminoácidos estándar, tipo H (Wako Pure

Chemical Industries, Ltd.)

«Grupo de prueba A: Síntesis de polímero»

[Ejemplo A-1] Síntesis del polímero de bloque PEG-PBLG-pAsp (DET) 10-35-5

25 (1) Síntesis del polímero de bloque PEG-PBLG-PBLA 10-35-5

Bajo argón, a un recipiente de reacción se añadieron 2 g (0,2 mmoles) de polietilenglicol que tenía un grupo aminopropilo en un extremo (MeO-PEG10K-NH₂, peso molecular promedio: 10.000) y 25 ml de sulfóxido de dimetilo (DMSO) deshidratado para preparar una disolución. Se añadieron 2,03 g (7,7 mmoles) de β-bencil-L-glutamato-30 anhídrido N-carboxílico (BLG-NCA, Mw=263,25) en una cantidad de 38,5 veces con respecto al número de moles de MeO-PEG10K-NH₂ y la mezcla se sometió a una reacción a 40 °C todo el día y la noche. Después de enfriarse a temperatura ambiente se añadieron 0,3 g (1,2 mmoles) de β-bencil-L-aspartato-anhídrido N-carboxílico (BLA-NCA, Mw=249,22) en una cantidad de 6 veces y la mezcla se sometió a una reacción a 40 °C todo el día y la noche. Después de la reacción, la mezcla de reacción se filtró con succión con papel de filtro Kiriyama (Φ40 mm. 5B) 35 usando 20 ml de N.N-dimetilformamida (DMF) y el filtrado se añadió gota a gota a 500 ml de una disolución mixta de hexano/acetato de etilo (6/4) para la cristalización. El polímero precipitado se filtró con succión con papel de filtro Kiriyama (Φ60 mm, 5C), adicionalmente se añadieron 500 ml de una disolución de hexano/acetato de etilo (5/5) pura v la misma operación de lavado se repitió dos veces. Después de eso, el secado a presión reducida proporcionó un polvo de polímero. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de 40 aminoácidos. En un polímero (PEG-PBLG-PBLA) como compuesto intermedio, el número total de ésteres de bencilo se calcula basándose en un valor integral de una cadena de PEG en el espectro de RMN ¹H. Los grados de polimerización de PBLG y PBLA se calcularon a partir de las fracciones molares de ácido glutámico (Glu) y ácido aspártico (Asp) en un polímero obtenido por análisis de aminoácidos. Como resultado, PBLG tuvo un grado de polimerización de 36 y PBLA tuvo un grado de polimerización de 5. El polímero de bloque PEG-PBLG-PBLA así 45 sintetizado tuvo un peso molecular de aproximadamente 18.700 (3,53 g, rendimiento del 94 %).

(2) Síntesis del polímero de bloque PEG-PBLG-pAsp (DET) 10-35-5

Bajo argón, a 1,5 g (0,080 mmoles) del polímero de bloque PEG-PBLG-PBLA 10-35-5 se añadieron 15 ml de DMF 50 deshidratada para preparar una disolución. Bajo argón, a otro recipiente de reacción se añadieron 2,18 ml (20,1 mmoles) de dietilentriamina (DET) en una cantidad de 50 veces (250 equivalentes) con respecto a PBLA. Cada una de las disoluciones de reacción se enfrió a 10 °C o menos en un baño de agua con hielo. Después del enfriamiento, la disolución de polímero se añadió a la disolución de DET mientras que se aclaraba con 5 ml de DMF deshidratada y la disolución mixta se sometió a una reacción a 5 °C durante 1 hora. A otro recipiente se añadieron 6,7 ml (40,1 55 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET y la disolución se enfrió preliminarmente a -20 °C. Después de la reacción, la disolución de reacción se añadió a la disolución de ácido clorhídrico que se había enfriado a -20 °C, mientras que la disolución de reacción se enfrió en un baño de aqua con hielo, de manera que la temperatura no superara 10 °C. La disolución resultante se transfirió entonces a una membrana de diálisis (MWCO: 3.500) y se sometió a diálisis contra 3 l de ácido clorhídrico 0,01 N a 5 °C durante 1 60 día (el intercambio de disolución externa se realizó dos veces) y adicionalmente diálisis contra 3 l de agua a 5 °C durante 1 día (el intercambio de disolución externa se realizó cinco veces) (todas las disoluciones externas para diálisis se enfriaron preliminarmente a 5 °C). La disolución dializada se trató con un filtro (Nihon Millipore K. K., Sterivex™ GP 0,22 µm) y luego se liofilizó proporcionando un polvo de polímero. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos. Cuando ambos de PBLG y PBLA como 65 derivados de éster de bencilo de aminoácido están presentes en una estructura de polímero como un polímero (PEG-PBLG-PBLA) como compuesto intermedio, una reacción de intercambio de éster-amida se produce preferencialmente para PBLA en una reacción de tal polímero con dietilentriamina (DET) como compuesto de amina, y como resultado, un grupo DET se introduce en una cadena lateral de ácido aspártico. En el polímero PEG-PBLG-pAsp (DET), el número de ésteres de bencilo de PBLG, que se corresponde con el grado de polimerización de PBLG, en el polímero se calcula basándose en el espectro de RMN ¹H. El grado de polimerización de pAsp (DET) se calculó a partir de las fracciones molares de ácido glutámico (Glu) y ácido aspártico (Asp) en el polímero obtenido por análisis de aminoácidos. Como resultado, PBLG tuvo un grado de polimerización de 36 y pAsp (DET) tuvo un grado de polimerización de 5. El polímero de bloque PEG-PBLG-pAsp (DET) 10-35-5 así sintetizado tuvo un peso molecular de aproximadamente 19.000 (1,4 g, rendimiento del 92 %).

10 [Ejemplo A-2] Síntesis del polímero de bloque PEG-PBLG-pAsp (DET) 10-25-5

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1 excepto que: usando 1,45 g (5,5 mmoles) de BLG-NCA y 0,3 g (1,2 mmoles) de BLA-NCA en cantidades de 27,5 y 6 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; y usando éter dietílico como disolvente pobre para la primera cristalización. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 24 y pAsp (DET) tuvo un grado de polimerización de 5. El polímero de bloque PEG-PBLG-pAsp (DET) 10-25-5 así sintetizado tuvo un peso molecular de aproximadamente 16.800 (1,43 g, rendimiento del 94 %).

20 [Ejemplo A-3] Síntesis del polímero de bloque PEG-PBLG-pAsp (DET) 10-20-10

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1 excepto que: usando 1,16 g (4,4 mmoles) de BLG-NCA y 0,6 g (2,4 mmoles) de BLA-NCA en cantidades de 22 y 12 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; y usando éter dietílico como disolvente pobre para la primera cristalización. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 19 y pAsp (DET) tuvo un grado de polimerización de 11. El polímero de bloque PEG-PBLG-pAsp (DET) 10-20-10 así sintetizado tuvo un peso molecular de aproximadamente 17.100 (1,41 g, rendimiento del 90 %).

30 [Ejemplo A-4] Síntesis del polímero al azar PEG-PBLG-pAsp (DET) 10-35-5

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1 excepto que: añadiendo simultáneamente 2,03 g (7,7 mmoles) de BLG-NCA y 0,3 g (1,2 mmoles) de BLA-NCA en cantidades de 38,5 y 6 veces, respectivamente, con respecto a un número de moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; y sometiendo la mezcla a una reacción a 40 °C todo el día y la noche. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 36 y pAsp (DET) tuvo un grado de polimerización de 5. El polímero al azar PEG-PBLG-pAsp (DET) 10-35-5 así sintetizado tuvo un peso molecular de aproximadamente 19.000 (1,4 g, rendimiento del 92 %).

[Ejemplo A-5] Síntesis del polímero al azar PEG-PBLG-pAsp (DET) 10-25-5

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-4 excepto que usando 1,45 g (5,5 mmoles) de BLG-NCA y 0,3 g (1,2 mmoles) de BLA-NCA en cantidades de 27,5 y 6 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 26 y pAsp (DET) tuvo un grado de polimerización de 5. El polímero al azar PEG-PBLG-pAsp (DET) 10-25-5 así sintetizado tuvo un peso molecular de aproximadamente 16.800 (1,37 g, rendimiento del 90 %).

[Ejemplo A-6] Síntesis del polímero al azar PEG-PBLG-pAsp (DET) 10-20-10

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-4 excepto que usando 1,16 g (4,4 mmoles) de BLG-NCA y 0,6 g (2,4 mmoles) de BLA-NCA en cantidades de 22 y 12 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 18 y pAsp (DET) tuvo un grado de polimerización de 10. El polímero al azar PEG-PBLG-pAsp (DET) 10-20-10 así sintetizado tuvo un peso molecular de aproximadamente 17.100 (1,42 g, rendimiento del 91 %).

[Ejemplo A-7] Síntesis del polímero de bloque PBLG-pAsp (DET) 35-5

(1) Síntesis del polímero de bloque PBLG-PBLA 35-5

40

50

65 Bajo argón, 40 µl (0,40 mmoles) de n-butilamina se añadieron a 15 ml de DMSO deshidratado para preparar una disolución. Se añadieron 4,1 g (15,6 mmoles) de BLG-NCA en una cantidad de 38,5 veces con respecto a varios

moles de una n-butilamina y la mezcla se sometió a una reacción a 40 °C todo el día y la noche. Después de enfriarse a temperatura ambiente se añadieron 0,61 g (2,43 mmoles) de BLA-NCA en una cantidad de 6 veces y la mezcla se sometió a una reacción a 40 °C todo el día y la noche. Después de la reacción, la mezcla de reacción se filtró con succión con papel de filtro Kiriyama (Φ40 mm, 5B) usando 20 ml de DMF y el filtrado se añadió gota a gota a 1 l de éter dietílico para la cristalización. El polímero precipitado se filtró con succión con papel de filtro Kiriyama (Φ60 mm, 5B), adicionalmente se añadió 1 l de una disolución de hexano/acetato de etilo (8/2) pura y la misma operación de lavado se repitió dos veces. Después de eso, el secado a presión reducida proporcionó un polvo de polímero (polímero de bloque PBLG-PBLA 35-5).

10 (2) Síntesis del polímero de bloque PBLG-pAsp (DET) 35-5

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1 excepto que: usando 1,5 g (0,171 mmoles) del polímero de bloque PBLG-PBLA 35-5 y una membrana de diálisis (MWCO: 1.000); y sin realizar tratamiento de filtración después de la purificación por diálisis. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 35 y pAsp (DET) tuvo un grado de polimerización de 6. El polímero de bloque PBLG-pAsp (DET) 35-5 así sintetizado tuvo un peso molecular de aproximadamente 9.110 (1,22 g, rendimiento del 78 %).

[Ejemplo A-8] Síntesis del polímero de bloque PBLG-pAsp (DET) 30-10

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-7 excepto que usando 3,52 g (13,4 mmoles) de BLG-NCA y 1,21 g (4,9 mmoles) de BLA-NCA en cantidades de 33 y 12 veces, respectivamente, con respecto a varios moles de 40 µl (0,41 mmoles) de n-butilamina. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 12. El polímero de bloque PBLG-pAsp (DET) 30-10 así sintetizado tuvo un peso molecular de aproximadamente 9.380 (1,19 g, rendimiento del 74 %).

[Ejemplo A-9] Síntesis del polímero de bloque PBLG-pAsp (DET) 25-5

30 Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-7 excepto que usando 3,66 g (13,9 mmoles) de BLG-NCA y 0,76 g (3,0 mmoles) de BLA-NCA en cantidades de 27,5 y 6 veces, respectivamente, con respecto a varios moles de 50 µl (0,51 mmoles) de n-butilamina. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 25 y pAsp (DET) tuvo un grado de polimerización de 6. El polímero de bloque PBLG-35 pAsp (DET) 25-5 así sintetizado tuvo un peso molecular de aproximadamente 6.920 (1,23 g, rendimiento del 78 %).

[Ejemplo A-10] Síntesis del polímero de bloque PBLG-pAsp (DET) 20-10

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-7 excepto que usando 2,93 g (11,1 mmoles) de BLG-NCA y 1,51 g (6,1 mmoles) de BLA-NCA en cantidades de 22 y 12 veces, respectivamente, con respecto a varios moles de 50 µl (0,51 mmoles) de n-butilamina. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 19 y pAsp (DET) tuvo un grado de polimerización de 10. El polímero de bloque PBLG-pAsp (DET) 20-10 así sintetizado tuvo un peso molecular de aproximadamente 7.190 (1,26 g, rendimiento del 76 %).

[Ejemplo A-11] Síntesis del polímero al azar PBLG-pAsp (DET) 35-5

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-7 excepto que: añadiendo simultáneamente 4,1 g (15,6 mmoles) de BLG-NCA y 0,61 g (2,43 mmoles) de BLA-NCA en cantidades de 38,5 y 6 veces, 50 respectivamente, con respecto a varios moles de 40 µl (0,41 mmoles) de n-butilamina; y sometiendo la mezcla a una reacción a 40 °C todo el día y la noche. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 34 y pAsp (DET) tuvo un grado de polimerización de 5. El polímero al azar PBLG-pAsp (DET) 35-5 así sintetizado tuvo un peso molecular de aproximadamente 9.110 (1,26 g, rendimiento del 81 %).

[Ejemplo A-12] Síntesis del polímero al azar PBLG-pAsp (DET) 30-10

55

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-11 excepto que usando 3,52 g (13,4 mmoles) de BLG-NCA y 1,21 g (4,9 mmoles) de BLA-NCA en cantidades de 33 y 12 veces, respectivamente, con respecto a varios moles de 40 µl (0,41 mmoles) de n-butilamina. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 28 y pAsp (DET) tuvo un grado de polimerización de 10. El polímero al azar PBLG-pAsp (DET) 30-10 así sintetizado tuvo un peso molecular de aproximadamente 9.380 (1,08 g, rendimiento del 67 %).

65 [Ejemplo A-13] Síntesis del polímero al azar PBLG-pAsp (DET) 25-5

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-11 excepto que usando 3,66 g (13,9 mmoles) de BLG-NCA y 0,76 g (3,0 mmoles) de BLA-NCA en cantidades de 27,5 y 6 veces, respectivamente, con respecto a varios moles de 50 µl (0,51 mmoles) de n-butilamina. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un 5 grado de polimerización de 26 y pAsp (DET) tuvo un grado de polimerización de 5. El polímero al azar PBLG-pAsp (DET) 25-5 así sintetizado tuvo un peso molecular de aproximadamente 6.920 (1,08 g, rendimiento del 68 %).

[Ejemplo A-14] Síntesis del polímero al azar PBLG-pAsp (DET) 20-10

10 Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-11 excepto que usando 2,93 g (11,1 mmoles) de BLG-NCA y 1,51 g (6,1 mmoles) de BLA-NCA en cantidades de 22 y 12 veces, respectivamente, con respecto a varios moles de 50 µl (0,51 mmoles) de n-butilamina. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 20 y pAsp (DET) tuvo un grado de polimerización de 11. El polímero al azar PBLG-pAsp 15 (DET) 20-10 así sintetizado tuvo un peso molecular de aproximadamente 7.190 (1,11 g, rendimiento del 67 %).

[Ejemplo A-15] Síntesis del polímero de bloque PEG-PBLG-pAsp (DET) 10-20-15

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1 excepto que: usando 1,16 g (4,4 mmoles) de BLG-NCA y 0,9 g (3,6 mmoles) de BLA-NCA en cantidades de 22 y 18 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; usando 2,79 ml (25,7 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (300 equivalentes) con respecto a PBLA; y usando 8,6 ml (51,4 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 20 y pAsp (DET) tuvo un grado de polimerización de 17. El polímero de bloque PEG-PBLG-pAsp (DET) 10-20-15 así sintetizado tuvo un peso molecular de aproximadamente 18.500 (1,44 g, rendimiento del 91 %).

[Ejemplo A-16] Síntesis del polímero de bloque PEG-PBLG-pAsp (DET) 10-20-20

30

40

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1 excepto que: usando 1,16 g (4,4 mmoles) de BLG-NCA y 1,2 g (4,8 mmoles) de BLA-NCA en cantidades de 22 y 24 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; usando 3,52 ml (32,4 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (400 equivalentes) con respecto a PBLA; y usando 10,8 ml (64,9 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 20 y pAsp (DET) tuvo un grado de polimerización de 20. El polímero de bloque PEG-PBLG-pAsp (DET) 10-20-20 así sintetizado tuvo un peso molecular de aproximadamente 19.900 (1,49 g, rendimiento del 93 %).

[Ejemplo A-17] Síntesis del polímero al azar PEG-PBLG-pAsp (DET) 10-20-15

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-4 excepto que: usando 1,16 g (4,4 mmoles) de BLG-NCA y 0,9 g (3,6 mmoles) de BLA-NCA en cantidades de 22 y 18 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; usando 2,79 ml (25,7 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (300 equivalentes) con respecto a PBLA; y usando 8,6 ml (51,4 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 20 y pAsp (DET) tuvo un grado de polimerización de 17. El polímero al 32ar PEG-PBLG-pAsp (DET) 10-20-15 así sintetizado tuvo un peso molecular de aproximadamente 18.500 (1,39 g, rendimiento del 87 %).

[Ejemplo A-18] Síntesis del polímero al azar PEG-PBLG-pAsp (DET) 10-20-20

55 Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-4 excepto que: usando 1,16 g (4,4 mmoles) de BLG-NCA y 1,2 g (4,8 mmoles) de BLA-NCA en cantidades de 22 y 24 veces, respectivamente, con respecto a varios moles de 2 g (0,2 mmoles) de MeO-PEG10K-NH₂; usando 3,52 ml (32,4 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (400 equivalentes) con respecto a PBLA; y usando 10,8 ml (64,9 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un 60 producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 19 y pAsp (DET) tuvo un grado de polimerización de 21. El polímero al azar PEG-PBLG-pAsp (DET) 10-20-20 así sintetizado tuvo un peso molecular de aproximadamente 19.900 (1,46 g, rendimiento del 91 %).

65 [Ejemplo A-19] Síntesis del polímero de bloque PBLG-pAsp (DET) 20-20

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-7 excepto que: usando 2,34 g (8,9 mmoles) de BLG-NCA y 2,42 g (9,7 mmoles) de BLA-NCA en cantidades de 22 y 24 veces, respectivamente, con respecto a varios moles de 40 µl (0,41 mmoles) de n-butilamina; usando 7,61 ml (70,1 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (400 equivalentes) con respecto a PBLA; y usando 23,4 ml (140,2 mmoles) de ácido 5 clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 19 y pAsp (DET) tuvo un grado de polimerización de 20. El polímero de bloque PBLG-pAsp (DET) 20-20 así sintetizado tuvo un peso molecular de aproximadamente 9.920 (1,48 g, rendimiento del 85 %).

[Ejemplo A-20] Síntesis del polímero al azar PBLG-pAsp (DET) 20-15

Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-11 excepto que: usando 2,34 g (8,9 mmoles) de BLG-NCA y 1,82 g (7,3 mmoles) de BLA-NCA en cantidades de 22 y 18 veces, respectivamente, con respecto a varios moles de 40 µl (0,41 mmoles) de n-butilamina; usando 6,48 ml (59,7 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (300 equivalentes) con respecto a PBLA; y usando 19,9 ml (119,4 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 19 y pAsp (DET) tuvo un grado de polimerización de 15. El polímero al 20 azar PBLG-pAsp (DET) 20-15 así sintetizado tuvo un peso molecular de aproximadamente 8.560 (1,51 g, rendimiento del 89 %).

[Ejemplo A-21] Síntesis del polímero al azar PBLG-pAsp (DET) 20-20

25 Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-11 excepto que: usando 2,34 g (8,9 mmoles) de BLG-NCA y 2,42 g (9,7 mmoles) de BLA-NCA en cantidades de 22 y 24 veces, respectivamente, con respecto a varios moles de 40 μl (0,41 mmoles) de n-butilamina; usando 7,61 ml (70,1 mmoles) de dietilentriamina (DET) en una cantidad de 20 veces (400 equivalentes) con respecto a PBLA; y usando 23,4 ml (140,2 mmoles) de ácido clorhídrico 6 N en una cantidad de 2 veces con respecto a DET. El compuesto resultante se confirmó como un 30 producto diana por RMN ¹H y análisis de aminoácidos del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 19 y pAsp (DET) tuvo un grado de polimerización de 22. El polímero al azar PBLG-pAsp (DET) 20-20 así sintetizado tuvo un peso molecular de aproximadamente 9.920 (1,42 g, rendimiento del 82 %).

35 [Ejemplo de referencia A-1] Síntesis del PEG-PBLG-Ac 10-40

Bajo argón, a 18 g (1,8 mmoles) de polietilenglicol que tiene un grupo aminopropilo en un extremo (MeO-PEG10K-NH₂, peso molecular promedio: 10.000) se añadieron 200 ml de N,N-dimetilformamida (DMF) deshidratada para preparar una disolución. Se añadieron 19,89 g (75,6 mmoles) de BLG-NCA en una cantidad de 42 veces con respecto a varios moles de MeO-PEG10K-NH₂ y la mezcla se sometió a una reacción a 40 °C todo el día y la noche. A la disolución de reacción se añadieron 1,7 ml (18 mmoles) de anhídrido acético en una cantidad de 10 veces con respecto a varios moles de MeO-PEG10K-NH₂ y la mezcla se sometió adicionalmente a una reacción a 40 °C durante 6 horas. Después de la reacción, la mezcla de reacción se filtró con succión con papel de filtro Kiriyama (Φ60 mm, 5B) usando 20 ml de N,N-dimetilformamida (DMF) y el filtrado se añadió gota a gota a 2,5 l de una 45 disolución mixta de hexano/acetato de etilo (1/1) para la cristalización. El polímero precipitado se filtró con succión con papel de filtro Kiriyama (Φ95 mm, 5B) y la misma operación de lavado se repitió adicionalmente dos veces con 2,5 l de una disolución de hexano/acetato de etilo (1/1) pura. Después de eso, el secado a presión reducida proporcionó un polvo de polímero. El compuesto resultante se confirmó como un producto diana por RMN ¹H del mismo modo que en el Ejemplo A-1. Como resultado, PBLG tuvo un grado de polimerización de 40. El PEG-PBLG-50 Ac 10-40 así sintetizado tuvo un peso molecular de aproximadamente 18.800 (33,18 g, rendimiento del 98 %).

[Ejemplo comparativo A-1] Síntesis del tipo de cadena larga PEG-pAsp (DET ST 20 %)

(1) Síntesis de estearil-NHS

Bajo argón, 3 g (10,55 mmoles) de ácido esteárico, 1,456 g (12,65 mmoles) de imida de ácido N-hidroxisuccínico en una cantidad de 1,2 veces con respecto a ácido esteárico, 2,426 g (12,65 mmoles) de clorhidrato de 1-etil-3-(3-dimetilaminopropil)carbodiimida (EDC) en una cantidad de 1,2 veces con respecto a ácido esteárico y 40 ml de cloroformo deshidratado se añadieron para preparar una disolución y la disolución se sometió a una reacción a temperatura ambiente todo el día y la noche. Después de la reacción, el cloroformo se eliminó con un evaporador y el residuo se disolvió en éter dietílico. La extracción se realizó con un embudo de decantación junto con agua destilada y se dividió varias veces, la fase acuosa se eliminó y entonces se recogió la fase de éter dietílico. A la fase de éter dietílico recogida se añadió sulfato de magnesio anhidro y el conjunto se agitó durante aproximadamente 30 minutos y luego se filtró con succión con papel de filtro Kiriyama (Φ40 mm, 5B). Se eliminó éter dietílico del filtrado con un evaporador y el residuo se disolvió en 30 ml de cloroformo. La disolución resultante se añadió gota a gota a 300 ml de EtOH para la cristalización y luego se filtró con succión. El resultado se agitó entonces con 300 ml de

EtOH durante aproximadamente 10 minutos, luego se filtró con succión con papel de filtro Kiriyama (Φ40 mm, 5B) y se secó a presión reducida para recoger cristales. El compuesto resultante se confirmó como un producto diana por RMN ¹H (CDCl₃-d, T=20 °C). La tasa de esterificación activa, que se calculó basándose en el pico atribuido a ácido esteárico (R-CH₂-COOH: 2,4 ppm) y el pico atribuido a estearil-NHS (R-CH₂-NHS: 2,6 ppm), fue del 86 %. La cantidad de adición del compuesto usado para una reacción se calculó a partir de la tasa de esterificación activa y el compuesto se añadió en una cantidad de 1,16 veces en la medida de la cantidad de adición prevista. El estearil-NHS así sintetizado tuvo un peso molecular de aproximadamente 381,55 (1,9 g, rendimiento del 47 %).

(2) Síntesis de PEG-PBLA 10-100

10

Bajo argón, a 1 g (0,1 mmoles) de PEG10K-NH₂ se añadieron 15 ml de diclorometano (CH₂Cl₂) deshidratado para preparar una disolución. Bajo argón, a otro recipiente se añadieron 2,74 g (11 mmoles) de BLA-NCA en una cantidad de 110 veces con respecto a varios moles de PEG10K-NH₂, 6 ml de DMF deshidratada y 30 ml de CH₂Cl₂ deshidrato para preparar una disolución. La disolución de PEG10K-NH₂ se añadió a la disolución de BLA-NCA mientras que se aclaraba con 15 ml de CH₂Cl₂ deshidratado (finalmente CH₂Cl₂/DMF=10/1) y la disolución mixta se sometió a una reacción a 35 °C durante 2 días. Después de la reacción se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1. El compuesto resultante se confirmó como un producto diana por RMN ¹H (DMSO-d₆, T=60 °C) (2,73 g, rendimiento del 90 %).

20 (3) Síntesis de PEG-pAsp (DET) 10-100

Bajo argón, a 1,21 g (0,0397 mmoles) de PEG-PBLA 10-100 se añadieron 50 ml de N-metil-2-pirrolidona (NMP) deshidratada para preparar una disolución. Bajo argón, a otro recipiente de reacción se añadieron 21,5 ml (198,4 mmoles) de dietilentriamina (DET) en una cantidad de 50 veces con respecto a varios moles de PBLA y 10 ml de 25 NMP deshidratada. Se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1, excepto por las operaciones. El compuesto resultante se confirmó como un producto diana por RMN ¹H (D₂O, T=70 °C) (1,0 g, rendimiento del 68 %).

(4) Síntesis de PEG-pAsp (DET ST 20 %) 10-100

30 Bajo argón, a 400 mg (0,0107 mmoles) de PEG-pAsp (DET) 10-100 se añadieron 15 ml de metanol y 1,49 ml (10,72 mmoles) de trietilamina (TEA) en una cantidad de 10 veces con respecto a varios moles de DET para preparar una disolución. Bajo argón, a otro recipiente se añadieron 95,1 mg (0,214 mmoles) de estearil-NHS en una cantidad de 0,2 veces con respecto a varios moles de ácido aspártico y la mezcla se disolvió con 5 ml de CH₂Cl₂. Cada una de 35 las disoluciones se enfrió en un baño de aqua con hielo. La disolución de estearil-NHS se añadió a la disolución de polímero mientras que se aclaraba con 10 ml de CH2Cl2 (finalmente: 15 ml de MeOH/15 ml de CH2Cl2) y la disolución mixta se sometió a una reacción a 5 °C todo el día y la noche. Después de la reacción, la mezcla de reacción se añadió gota a gota a 270 ml de éter dietílico para la cristalización. Se llevó a cabo una operación de centrifugación (2,380 g, 10 min, 4 °C) para recoger un polímero. El lavado por la misma operación de centrifugación 40 se repitió dos veces con 90 ml de éter dietílico puro para eliminar el sobrenadante. El residuo se disolvió entonces en 40 ml de una disolución acuosa al 50 % de MeOH, se transfirió a una membrana de diálisis (MWCO: 3.500) y se sometió a diálisis contra 3 I de ácido clorhídrico 0,01 N a 5 °C durante 1 día (el intercambio de disolución externa se realizó dos veces) y adicionalmente diálisis contra 3 I de agua a 5 °C durante 1 día (el intercambio de disolución externa se realizó dos veces) (todas las disoluciones externas para diálisis se enfriaron preliminarmente a 5 °C) . La 45 disolución dializada se trató con un filtro (Nihon Millipore K. K., Sterivex™ GP 0,22 μm) y luego se liofilizó para proporcionar un polvo de polímero. El compuesto resultante se confirmó como un producto diana por RMN ¹H (D₂O₂). T=70 °C). Como resultado, pAsp (DET) tuvo un grado de polimerización de 99 y la tasa de introducción del grupo estearoílo (ST) fue del 21 %. PEG-pAsp (DET ST 20 %) 10-100 así sintetizado tuvo un peso molecular de aproximadamente 42.700 (432 mg, rendimiento del 95 %).

[Ejemplo comparativo A-2] Síntesis del tipo de cadena larga pAsp (DET ST 20 %)

(1) Síntesis del PBLA 100

50

- 55 Bajo argón, a 2,77 g (11,13 mmoles) de BLA-NCA en una cantidad de 110 veces con respecto a n-butilamina se añadieron 4 ml de DMF deshidratada y 30 ml de CH₂Cl₂ deshidratado para preparar una disolución. Bajo argón, a otro recipiente se añadieron 10 μl (0,101 mmoles) de n-butilamina y 1 ml de CH₂Cl₂. La disolución de n-butilamina se añadió a la disolución de BLA-NCA mientras que se agitaba con 9 ml de CH₂Cl₂ deshidratado (finalmente CH₂Cl₂/DMF=10/1) y la disolución mixta se sometió a una reacción a 35 °C durante 2 días. Después de la reacción se obtuvo un polvo de polímero del mismo modo que en el Ejemplo A-1. El compuesto resultante se confirmó como un producto diana por RMN ¹H (DMSO-d₆, T=60 °C) (1,78 g, rendimiento del 86 %).
 - (2) Síntesis del pAsp (DET) 100
- 65 Bajo argón, se obtuvo un polvo de polímero del mismo modo que en el Ejemplo comparativo A-1, excepto que se usaron 1,2 g (0,0585 mmoles) de PBLA 100 en lugar de PEG-PBLA 10-100. El compuesto resultante se confirmó

como un producto diana por RMN ¹H (D₂O, T=70 °C) (1,29 g, rendimiento del 81 %).

- (3) Síntesis del pAsp (DET ST 20 %) 100
- 5 Bajo argón, se obtuvo un polvo de polímero del mismo modo que en el Ejemplo comparativo A-1, excepto que se usaron 400 mg (0,0147 mmoles) de pAsp (DET) 100 en lugar de PEG-pAsp (DET) 10-100. El compuesto resultante se confirmó como un producto diana por RMN ¹H (D₂O, T=70 °C). La tasa de introducción del grupo estearoílo (ST) fue del 21 %. pAsp (DET ST 20 %) 100 así sintetizado tuvo un peso molecular de aproximadamente 32.700 (471 mg, rendimiento del 98 %).

<< Grupo de prueba B: Preparación de composición de partículas de polímeros>>

[Ejemplos B-1 a B-10 y B-18 a B-24 y Ejemplos comparativos B-1 y B-2]

15 A 30 mg cada uno de los polímeros descritos en las Tablas 1 y 2 se añadieron 2 ml de un tampón HEPES 10 mM (pH 7,4) y las mezclas se agitaron a 4 °C durante 1 hora para preparar las suspensiones. Las suspensiones se sometieron a ultrasonicación (130 W, pulso de 1 segundo, 5 minutos) para proporcionar las composiciones de partículas de polímeros 1 a 10, 18 a 24 y C1 y C2, conteniendo cada una un componente de polímero en una concentración de polímero de 15 mg/ml.

[Ejemplos B-11 a B-14]

A 40 mg de cada uno de los polímeros descritos en la Tabla 1 se añadieron 2 ml de sulfóxido de dimetilo para preparar disoluciones. Las disoluciones se transfirieron a una membrana de diálisis (MWCO: 3.500) y se sometió a 25 diálisis usando 500 ml de un tampón HEPES 10 mM (pH 7,4) como disolución externa a temperatura ambiente durante 2 horas. Después de eso se realizó el intercambio de disolución externa y la diálisis se llevó a cabo a 5 °C durante 12 horas, y luego se realizó el intercambio de disolución externa una vez más y la diálisis se llevó a cabo a 5 °C durante 2 horas. Las disoluciones dializadas se recogieron y la cantidad total de cada una de las disoluciones se ajustó a 5,3 ml con un tampón HEPES 10 mM (pH 7,4) para proporcionar las composiciones de partículas de 30 polímeros 11 a 14, conteniendo cada una un componente de polímero a un concentración de polímero de 15 mg/ml.

[Ejemplos B-15 a B-17]

A 20 mg de cada uno de los polímeros descritos en la Tabla 1 se añadieron 2 ml de acetona y 2 ml de metanol para preparar disoluciones. Se evaporó un disolvente burbujeando gas nitrógeno sobre las disoluciones, seguido del secado a presión reducida con una bomba de vacío durante 6 horas. A cada una de las películas de polímero resultantes se añadieron 2,7 ml de un tampón HEPES 10 mM (pH 7,4) y las mezclas se agitaron a 4 °C durante 1 hora para preparar suspensiones. Las suspensiones se sometieron a ultrasonicación (130 W, pulso de 1 segundo, 5 minutos) para proporcionar las composiciones de partículas de polímeros 15 a 17, conteniendo cada una un 40 componente de polímero a una concentración de polímero de 15 mg/ml.

<Evaluación del diámetro de partícula de la composición de partículas de polímeros>

A 50 µl de cada una de las composiciones de partículas de polímeros 1 a 24 y C1 y C2 obtenidas anteriormente se 45 añadieron 700 µl de un tampón HEPES 10 mM (pH 7,4) para preparar muestras. Aquellas muestras se midieron para sus diámetros de partícula promedio acumulados por un procedimiento de dispersión de la luz dinámica usando un aparato de medición del diámetro de partícula de la dispersión de la luz (Malvern Instruments, Zetasizer Nano ZS). Las Tablas 1 y 2 muestran los resultados.

[Tabla 1]

		Composition		Contidoo	Diámotro do
		COLLIDOSICIOLI		Callinan	טופווופוס מפ
		de partículas	Polímero	usada	partícula
		de polímeros		(mg)	promedio (nm)
	B1	1	Polímero de bloque PEG-PBLG-pAsp (DET) 10-35-5: (Ejemplo A-1)	30	49
	B2	2	Polímero de bloque PEG-PBLG-pAsp (DET) 10-25-5: (Ejemplo A-2)	30	46
	B3	3	Polímero de bloque PEG-PBLG-pAsp (DET) 10-20-10: (Ejemplo A-3)	30	34
	B4	4	Polímero al azar PEG-PBLG-pAsp (DET) 10-35-5: (Ejemplo A-4)	30	56
	B5	2	Polímero al azar PEG-PBLG-pAsp (DET) 10-25-5: (Ejemplo A-5)	30	20
	B6	9	Polímero al azar PEG-PBLG-pAsp (DET) 10-20-10: (Ejemplo A-6)	30	28
	B7	7	Polímero de bloque PBLG-pAsp (DET) 30-10: (Ejemplo A-8)	30	112
	B8	8	Polímero de bloque PBLG-pAsp (DET) 20-10: (Ejemplo A-10)	30	103
	B9	6	Polímero al azar PBLG-pAsp (DET) 30-10: (Ejemplo A-12)	30	109
	B10	10	Polímero al azar PBLG-pAsp (DET) 20-10: (Ejemplo A-14)	30	77
	77	7	Polímero de bloque PBLG-pAsp (DET) 35-5: (Ejemplo A-7)	40	7 7
i	_	=	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	40	- - - -
Ejemplo	2,0	Ç	Polímero de bloque PBLG-pAsp (DET) 30-10: (Ejemplo A-8)	40	C
	7 0	7	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	40	60
	010	7	Polímero de bloque PBLG-pAsp (DET) 25-5: (Ejemplo A-9)	40	C
	2	2	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	40	36
	770	7 7	Polímero de bloque PBLG-pAsp (DET) 20-10: (Ejemplo A-10)	40	C
	0 4	<u>†</u>	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	40	55
	210	7,	Polímero de bloque PBLG-pAsp (DET) 25-5: (Ejemplo A-9)	20	99
	2	2	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	20	00
	910	94	Polímero al azar PBLG-pAsp (DET) 30-10: (Ejemplo A-12)	20	F.4
	0 0	10	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	20	0.4
	712	17	Polímero al azar PBLG-pAsp (DET) 25-5: (Ejemplo A-13)	20	57
	1	1.7	PEG-PBLG 10-40: (Ejemplo de referencia A-1)	20	70
onitorogamoo olamoid	B1	C1	PEG-pASP (DET ST 20 %) 10-100: (Ejemplo comparativo A-1)	30	25
Ejempio comparativo	B2	C5	pASP (DET ST 20 %) 100: (Ejemplo comparativo A-2)	30	54

[Tabla 2]

Diámetro de	partícula	promedio (nm)	38	38	31	19	02	28	28
Cantidad	usada	(mg)	30	30	30	30	30	30	30
	Polímero		Polímero de bloque PEG-PBLG-pAsp (DET) 10-20-15: (Ejemplo A-15)	Polímero de bloque PEG-PBLG-pAsp (DET) 10-20-20: (Ejemplo A-16)	Polímero al azar PEG-PBLG-pAsp (DET) 10-20-15: (Ejemplo A-17)	Polímero al azar PEG-PBLG-pAsp (DET) 10-20-20: (Ejemplo A-18)	Polímero de bloque PBLG-pAsp (DET) 20-20: (Ejemplo A-19)	Polímero al azar PBLG-pAsp (DET) 20-15: (Ejemplo A-20)	Polímero al azar PBLG-pAsp (DET) 20-20: (Ejemplo A-21)
Composición	de partículas	de polímeros	18	19	20	21	22	23	24
			B18	B19	B20		B22	B23	B24
			Ejemplo						

<<Grupo de prueba C: Preparación de complejo>>

Los siguientes ARNip se usaron para la preparación de los complejos descritos más adelante. Aquellos ARNip están disponibles de Nippon EGT Co., Ltd.

5

(1) ARNip (Luc): ARNip que se diseña usando un gen luciferasa de Vargula como diana y tiene una doble hebra formada mediante un procedimiento convencional usando 5'-CUUACGCUGAGUACUUCGAdTdT-3' (SEQ ID NO: 1) como hebra codificante y usando 5'-UCGAAGUACUCAGCGUAAGdTdT-3' (SEQ ID NO: 2) como hebra no codificante.

10

(2) ARNip (Plk1): ARNip que se diseña usando un gen cinasa 1 similar a Polo humano (Plk1) como diana y tiene una doble hebra formada mediante un procedimiento convencional usando 5'-CCAUUAACGAGCUGCUUAAdTdT-3' (SEQ ID NO: 3) como hebra codificante y usando 5'-UUAAGCAGCUCGUUAAUGGdTdT-3' (SEQ ID NO: 4) como hebra no codificante. El gen Plk1 es una cinasa importante en la fase M de la división celular. Cuando el ARNip (Plk1) se introduce en células, el ARNip (Plk1) induce apoptosis.

[Ejemplo C-1] Composición de partículas de polímeros que encapsula ARNip (Luc)

Se disolvió ARNip (Luc) en un tampón HEPES 10 mM (pH 7,4) para preparar una disolución de ARNip 80 µM. A 12,5 20 µl de la disolución de ARNip se añadieron y mezclaron 87,5 µl de cada una de las composiciones de partículas de polímeros 1 a 24 y C1 y C2 que tenían concentraciones ajustadas de manera que la relación de N/P fuera 16 y las mezclas se dejaron entonces reposar a 4 °C durante 2 horas para encapsular ARNip en partículas de polímeros. Esto proporcionó las composiciones de partículas de polímeros 1 a 24 y C1 y C2 que encapsulan cada una ARNip (Luc) como complejos de polímero-ARNip. La "relación de N/P" como se usa en el presente documento significa [Concentración de grupo amino en cadena lateral de poliminoácido en polímero contenido en la composición de partículas de polímeros]/[Concentración de grupo fosfato en ácido nucleico].

<Evaluación del diámetro de partícula>

30 A 70 µl de cada una de las composiciones de partículas de polímeros 1 a 24 y C1 y C2 que encapsulan cada una ARNip (Luc) obtenidas anteriormente se añadieron 630 µl de un tampón HEPES 10 mM (pH 7,4) para preparar muestras que contenían cada una ARNip 1 µM. Las muestras se midieron para sus diámetros de partícula promedio acumulados por un procedimiento de dispersión de la luz dinámica usando un aparato de medición del diámetro de partícula de la dispersión de la luz (Malvern Instruments, Zetasizer Nano ZS). Las Tablas 3 y 4 muestran los resultados.

[Tabla 3]

Composición de partículas de polímeros que encapsula ARNip (Luc)	1	2	3	4	5	6	
Diámetro de partícula promedio (nm)	49	46	34	56	50	33	
Composición de partículas de polímeros que encapsula ARNip (Luc)	7	8	9	10	11	12	
Diámetro de partícula promedio (nm)	114	106	127	80	149	92	
Composición de partículas de polímeros que encapsula ARNip (Luc)	13	14	15	16	17	C1	C2
Diámetro de partícula promedio (nm)	124	112	69	74	63	69	157

40

[Tabla 4]

Composición de partículas de polímeros que encapsula ARNip (Luc)	18	19	20	21	22	23	24
Diámetro de partícula promedio (nm)	33	32	32	31	91	103	137

<Evaluación de la tasa de liberación de ARNip>

45 A 5 μl (concentración de ARNip: 10 μM) de cada una de las composiciones de partículas de polímeros 1 a 6, 11 a 24 y C1 y C2 que encapsulan cada una ARNip (Luc) obtenidas anteriormente se añadieron 90 μl de suero bovino fetal (SBF) y 5 μl de EDTA 0,5 M y la mezcla se dejó reposar a 37 °C durante 24 horas (tratamiento con SBF). Como control, el mismo tratamiento se llevó a cabo, excepto que se usaron 95 μl de un tampón HEPES 10 mM (pH 7,4) en lugar de SBF y EDTA 0,5 M (tratamiento de control).

50

La tasa de liberación de ARNip en cada composición después del tratamiento con SBF o tratamiento de control se analizó por un procedimiento de electroforesis como se describe a continuación. Cada composición que contenía 100 ng de ARNip se cargó a un gel de poliacrilamida (gel al 20 % de TBE Novex, Invitrogen) y la electroforesis se

llevó a cabo usando una disolución de TBE como tampón de electroforesis en condiciones de un voltaje aplicado de 100 V y un tiempo de electroforesis de 1 hora. Después de la electroforesis, el gel se tiñó con bromuro de etidio, y una imagen del gel se capturó en un transiluminador de UV. Después de eso, la intensidad de las bandas se analizó con software de análisis de imágenes (Imagen J, NIH) para determinar cuantitativamente la tasa de liberación de ARNip. Las Tablas 5 y 6 muestran los resultados de la determinación cuantitativa de la tasa de liberación de ARNip. La tasa de liberación de ARNip de cada composición se calculó a partir de un valor relativo de la intensidad de bandas cuando la intensidad de bandas evaluada para ARNip solo se definió como el 100 %.

Además, las FIGS. 1 muestran imágenes de geles después de la electroforesis obtenida para composiciones de 10 partículas de polímeros 1 a 6 y C1 que encapsulan cada una ARNip (Luc) y las FIGS. 2 muestran imágenes de geles después de la electroforesis obtenida para composiciones de partículas de polímeros 11 a 17 y C2 que encapsulan cada una ARNip (Luc). En las FIGS. 1 y 2, la imagen (A) significa los resultados de las muestras sometidas al tratamiento con SBF y la imagen (B) significa los resultados de las muestras sometidas al tratamiento de control.

15 [Tabla 5]

Composición de partículas de polímeros que encapsula	Polímero catiónico	Tasa de liberación de
ARNip (Luc)	Polímero de bloque PEG-PBLG-pAsp (DET) 10-35-5	ARNip (%) 4,5
2	Polímero de bloque PEG-PBLG-pAsp (DET) 10-25-5	9,3
3	Polímero de bloque PEG-PBLG-pAsp (DET) 10-20-10	10,7
18	Polímero de bloque PEG-PBLG-pAsp (DET) 10-20-15	8,8
19	Polímero de bloque PEG-PBLG-pAsp (DET)10-20-20	10,8
4	Polímero al azar PEG-PBLG-pAsp (DET) 10-35-5	75,5
5	Polímero al azar PEG-PBLG-pAsp (DET) 10-25-5	82,1
6	Polímero al azar PEG-PBLG-pAsp (DET) 10-20-10	72,3
20	Polímero al azar PEG-PBLG-pAsp (DET) 10-20-15	77,1
21	Polímero al azar PEG-PBLG-pAsp (DET) 10-20-20	88,0
C1	PEG-pAsp (DET-ST 20 %) 10-100	1,1

Como se muestra en la Tabla 5, cada composición formada de un material base de polímero tipo cadena corta que tenía una cadena de PEG tuvo una tasa de liberación de ARNip del 4 % o más. Además, cada composición de los ejemplos formada de un material base de polímero tipo aleatorio que tenía un segmento de cadena del poliaminoácido catiónico tuvo una tasa de liberación de ARNip del 70 % o más. Además, cada composición de los ejemplos formada de un material base de polímero tipo bloque que tenía un segmento de cadena del poliaminoácido catiónico tenía una tasa de liberación de ARNip reducida al 15 % o menos. Como se entiende de este hecho, el material base de polímero tipo bloque puede retener el ARNip residual en el material base para la posterior 25 liberación y es más adecuado para un material base de tipo liberación sostenida a largo plazo que el material base de polímero tipo aleatorio.

[Tabla 6]

Composición de partículas de		Tasa de
polímeros que encapsula	Polímero catiónico	liberación de
ARNip (Luc)		ARNip (%)
11	Polímero de bloque PBLG-pAsp (DET) 35-5	17,0
12	Polímero de bloque PBLG-pAsp (DET) 30-10	12,8
13	Polímero de bloque PBLG-pAsp (DET) 25-5	26,1
14	Polímero de bloque PBLG-pAsp (DET) 20-10	9,26
15	Polímero de bloque PBLG-pAsp (DET) 25-5	4,64
22	Polímero de bloque PBLG-pAsp (DET) 20-20	3,3
16	Polímero al azar PBLG-pAsp (DET) 30-10	47,9
17	Polímero al azar PBLG-pAsp (DET) 25-5	45,7
23	Polímero al azar PBLG-pAsp (DET) 20-15	36,3
24	Polímero al azar PBLG-pAsp (DET) 20-20	53,1
C2	pAsp (DET-ST 20 %) 100	1,3

30

Como se muestra en la Tabla 6, cada composición formada de un material base de polímero tipo cadena corta libre de una cadena de PEG también tuvo una tasa de liberación de ARNip del 3 % o más. Además, cada composición de los ejemplos formada de un material base de polímero tipo aleatorio tuvo una tasa de liberación de ARNip del 35 % o más. Además, cada composición de los ejemplos formada de un material base de polímero tipo bloque tuvo una tasa de liberación de ARNip reducida al 30 % o menos. Como se entiende de este hecho, el material base de polímero tipo bloque puede retener ARNip residual en el material base para la posterior liberación, y también en este caso es más adecuado para un material base tipo liberación sostenida a largo plazo que el material base de polímero tipo al

azar independientemente de la presencia o ausencia de una cadena de PEG.

[Ejemplo C-2] Composición de partículas de polímeros que encapsula ARNip (Plk1)

- 5 Las composiciones de partículas de polímeros 7 a 10 y C2 que encapsulan cada una ARNip (Plk1) se obtuvieron del mismo modo que en el Ejemplo C-1, excepto que: usando ARNip (Plk1) como ARNip; y usando las composiciones de partículas de polímeros 7 a 10 y C2 que tenían concentraciones ajustadas de manera que las relaciones de N/P fueran 4, 8, 16 y 32.
- 10 < Evaluación de la actividad en células MDA-MB-231>

Un tampón HEPES 10 mM (pH 7,4) se añadió a cada una de las composiciones de partículas de polímeros 7 a 10 y C2 que encapsulan cada una ARNip (Plk1) obtenidas anteriormente de manera que la concentración de ARNip se ajustó a 1 μM/ml. Se sembraron células MDA-MB-231 derivadas de cáncer de mama humano en una placa de 96 pocillos a una relación de 2.000 células por pocillo, y después de 24 horas, cada composición se añadió al medio. El ajuste se hizo de manera que la concentración final de ARNip en el medio fuera 100 nM. Después del cultivo durante 96 horas adicionales, la tasa de supervivencia celular se evaluó usando un kit de medición de la cifra de células Cell Counting Kit-8 (DOJINDO LABORATORIES). El mismo experimento se llevó a cabo usando ARNip (Luc) como secuencia de control inactiva.

20

Como resultado de la evaluación se observaron sorprendentes disminuciones en la cifra de células en las composiciones de partículas de polímeros 7 a 10 que encapsulan cada una ARNip (Plk1) con respecto a las composiciones de partículas de polímeros 7 a 10 que encapsulan cada una ARNip (Luc). Específicamente, las tasas de supervivencia celular (%) a relaciones de N/P de 4, 8, 16 y 32 fueron 48,2 (d.e.=1,1), 26,5 (d.e.=1,2), 12,4 25 (d.e.=1,6) y 6,7 (d.e.=0,8), respectivamente, en la composición de partículas de polímeros 7 que encapsula ARNip (Plk1), mientras que las tasas de supervivencia celular fueron 67,1 (d.e.=3,6), 45,5 (d.e.=1,9), 33,8 (d.e.=1,6) y 36,1 (d.e.=0,7), respectivamente, en la composición de partículas de polímeros 7 que encapsula ARNip (Luc). Además, las tasas de supervivencia celular (%) a relaciones de N/P de 4, 8, 16 y 32 fueron 60,0 (d.e.=9,0), 23,2 (d.e.=5,0), 2,6 (d.e.=0,3) y 3,3 (d.e.=1,2), respectivamente, en la composición de partículas de polímeros 8 que encapsula ARNip 30 (Plk1), mientras que las tasas de supervivencia celular fueron 88,3 (d.e.=2,2), 66,4 (d.e.=1,7), 24,9 (d.e.=1,8) y 29,4 (d.e.=1,5), respectivamente, en la composición de partículas de polímeros 8 que encapsula ARNip (Luc). Además, las tasas de supervivencia celular (%) a relaciones de N/P de 8 y 16 fueron 48,8 (d.e.=8,5) y 0,9 (d.e.=1,5), respectivamente, en la composición de partículas de polímeros 9 que encapsula ARNip (Plk1 mientras que las tasas de supervivencia celular fueron 79,0 (d.e.=11,6) y 16,9 (d.e.=3,9), respectivamente, en la composición de partículas 35 de polímeros 9 que encapsula ARNip (Luc). Además, la tasa de supervivencia celular a una relación de N/P de 16 fue 13,9 (d.e.=10,7) en la composición de partículas de polímeros 10 que encapsula ARNip (Plk1), mientras que la tasa de supervivencia celular fue 52.8 (d.e.=3,9) en la composición de partículas de polímeros 10 que encapsula ARNip (Luc). Aquellos resultados significan que las composiciones de partículas de polímeros 7 a 10 que encapsulan cada una ARNip (Plk1) funcionaron normalmente. A diferencia, como se ilustra en la FIG. 3, no hubo 40 sorprendente diferencia entre la encapsulación de ARNip (Plk1) y la encapsulación de ARNip (Luc) en la composición de partículas de polímeros C2.

Listado de secuencias

45 NC0905W (NCR09194PCT).ST25.txt

REIVINDICACIONES

1. Un poliaminoácido catiónico que puede asociarse con un ácido nucleico, comprendiendo el poliaminoácido catiónico:

un residuo de aminoácido catiónico que tiene un grupo catiónico en una cadena lateral; y

un residuo de aminoácido hidrófobo que tiene un grupo hidrófobo en una cadena lateral,

10 en el que el poliaminoácido catiónico comprende 1 a 20 unidades del residuo de aminoácido catiónico y se representa por la siguiente fórmula (1) :

[Quím. 1]

15

5

en la que: R¹ representa un grupo hidroxilo o un grupo alquiloxi lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono, un grupo alqueniloxi lineal o ramificado sin sustituir o sustituido que tiene 2 a 12 átomos de carbono, un grupo alquiniloxi lineal o ramificado sin sustituir o sustituido que tiene 2 a 12 átomos de carbono o un 20 grupo alquil-imino sustituido lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono;

R² representa un átomo de hidrógeno, un grupo alquilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 12 átomos de carbono o un grupo alquilcarbonilo lineal o ramificado sin sustituir o sustituido que tiene 1 a 24 átomos de carbono;

25 R^{3a}, R^{3b}, R^{4a} y R^{4b} representan cada uno independientemente un grupo metileno o un grupo etileno;

R^{5a} y R^{5b} representan cada uno independientemente -O- o -NH-;

30 R^{6a} y R^{6b} representan cada uno independientemente un grupo de hidrocarburo alifático lineal o ramificado saturado o insaturado que tiene 6 a 27 átomos de carbono, un grupo de hidrocarburo aromático que tiene 6 a 27 átomos de carbono o un grupo esterilo derivado de un esterol;

R^{7a} y R^{7b} se eligen cada uno independientemente de los mismos grupos o grupos diferentes en el grupo que 35 consiste en los siguientes grupos:

 $-NH-(CH_2)_{p1}-[NH-(CH_2)_{q1}-]_{r1}NH_2$ (i);

 $-NH-(CH_2)_{p2}-N[-(CH_2)_{q2}-NH_2]_2$ (ii);

 $-NH-(CH_2)_{p3}-N\{[-(CH_2)_{q3}-NH_2][-(CH_2)_{q4}-NH-]_{r2}H\}$

(iii); y

 $-NH-(CH₂)_{p4}-N{-(CH₂)_{q-5}-N[-(CH₂)_{q6}-NH₂]₂}₂$ (iv),

45 en las que: p1 a p4, q1 a q6 y r1 y r2 representan cada uno independientemente un número entero de 1 a 5;

R⁸ representa una cadena lateral de un aminoácido seleccionado del grupo que consiste en lisina, ornitina, arginina, homoarginina e histidina;

50 m representa un número entero de 5 a 80;

n representa un número entero de 0 a m;

x representa un número entero de 1 a 20;

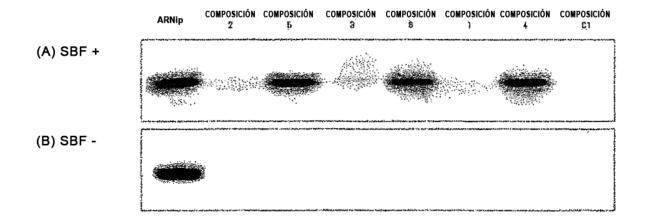
55

40

y representa un número entero de 0 a x; y

z representa un número entero de 0 a 20,

a condición de que una suma de x y z sea 1 o más a 20 o menos, las unidades de repetición respectivas estén 5 unidas entre sí en cualquier orden adecuado.


- 2. Un poliaminoácido catiónico según la reivindicación 1, en el que el poliaminoácido catiónico comprende un poliaminoácido tipo bloque que incluye un segmento formado del residuo de aminoácido bidrófobo.
- 3. Un copolímero de bloque, que comprende el segmento de cadena del poliaminoácido catiónico según la reivindicación 1 ó 2 y el segmento de cadena del polímero hidrófilo.
- 4. Una composición de partículas de polímeros, que comprende el poliaminoácido catiónico según la 15 reivindicación 1 ó 2 y/o el copolímero de bloque según la reivindicación 3.
 - 5. Un complejo, que comprende el poliaminoácido catiónico según la reivindicación 1 ó 2 y/o el copolímero de bloque según la reivindicación 3, y un ácido nucleico.

20

10

Figuras

FIGS. 1

FIGS. 2

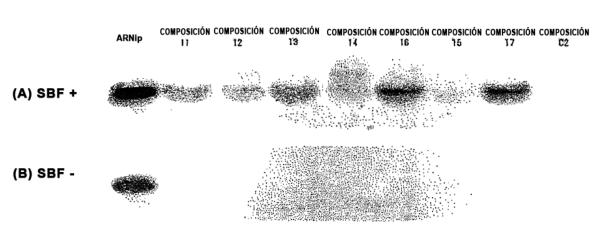
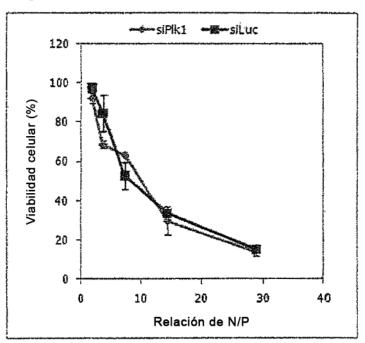



Fig.3

