

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 455 197

(51) Int. CI.:

C07D 401/14 (2006.01) A61K 31/496 (2006.01) A61K 31/4545 (2006.01) A61P 3/10 (2006.01) A61P 7/02 A61P 9/00 (2006.01) A61P 25/00

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 05.12.2008 E 08857372 (0) (97) Fecha y número de publicación de la concesión europea: 15.01.2014 EP 2231644

(54) Título: Derivados de oxindol 5,6-disustituidos y el uso de los mismos para la preparación de un medicamento para el tratamiento de enfermedades dependientes de vasopresina

(30) Prioridad:

07.12.2007 US 12265

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 14.04.2014

(73) Titular/es:

ABBVIE DEUTSCHLAND GMBH & CO KG (100.0%)Max-Planck-Ring 2a 65205 Wiesbaden, DE

(72) Inventor/es:

BRAJE. WILFRIED: OOST, THORSTEN; NETZ, ASTRID; WERNET, WOLFGANG; **UNGER, LILIANE;** HORNBERGER, WILFRIED y LUBISCH, WILFRIED

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Derivados de oxindol 5,6-disustituidos y el uso de los mismos para la preparación de un medicamento para el tratamiento de enfermedades dependientes de vasopresina

5

20

45

50

55

- La presente invención se refiere a nuevos derivados de oxindol sustituidos, a agentes farmacéuticos que los contienen, y a su uso para la preparación de un medicamento para el tratamiento de enfermedades dependientes de vasopresina.
- La vasopresina es una hormona endógena que ejerce varios efectos en los órganos y tejidos. Se sospecha que el sistema de vasopresina está involucrado en diversos estados patológicos tales como, por ejemplo, insuficiencia cardiaca e hipertensión. En la actualidad, se conocen tres receptores (V1a, V1b o V3 y V2) por medio de los cuales la vasopresina media sus numerosos efectos. Los antagonistas de estos receptores por lo tanto están siendo investigados como posibles nuevos planteamientos terapéuticos para el tratamiento de enfermedades (M. Thibonnier, Exp. Opin. Invest. Drugs 1998, 7(5), páginas 729 a 740).
 - En el presente documento se describen nuevos oxindoles sustituidos que tienen un grupo fenilsulfonilo en la posición 1. Las 1-fenilsulfonil-1,3-dihidro-2*H*-indol-2-onas se han descrito previamente como ligando de los receptores de vasopresina. Los documentos WO 93/15051, WO 95/18105, WO 98/25901, WO 01/55130, WO 01/55134, WO 01/164668 y WO 01/98295 también describen derivados que tienen grupos arilsulfonilo en la posición 1 de la estructura de oxindol. Estos compuestos difieren de los compuestos de acuerdo con la invención esencialmente a través de los sustituyentes en la posición 3.
- De este modo, en los documentos WO 93/15051 y WO 98/25901 describen 1-fenilsulfonil-1,3-dihidro-2*H*-indol-2onas como ligandos de los receptores de vasopresina, en los que la estructura de oxindol está substituida en la posición 3 por dos restos alquilo que también pueden formar juntos un resto cicloalquilo (enlace espiro). Como alternativa, el anillo espiro puede contener heteroátomos tales como oxígeno y nitrógeno (opcionalmente con sustituyentes).
- 30 El documento WO 95/18105 describe 1-fenilsulfonil-1,3-dihidro-2*H*-indol-2-onas como ligandos de los receptores de vasopresina, que tienen un átomo de nitrógeno en la posición 3. Además, los restos seleccionados de restos alquilo, cicloalquilo, fenilo o bencilo opcionalmente sustituidos están unidos en la posición 3.
- El documento WO 03/008407 describe 1-fenilsulfoniloxindoles en los que las piridilpiperazinas en la posición 3 están unidas por medio de un grupo urea, carbamato o 2-oxoetilo al oxindol. Sin embargo, los oxindoles 5,6-disustituidos no se describen en concreto.
- Además de la afinidad de unión hacia el receptor V1b de vasopresina, las propiedades adicionales pueden ser ventajosas para el tratamiento y/o profilaxis de enfermedades dependientes de vasopresina, tales como, por eiemplo:
 - 1.) una selectividad para el receptor V1b de vasopresina en comparación con el receptor V1a de vasopresina, por ejemplo, el cociente de la afinidad de unión para el receptor V1a (Ki(V1a) (determinado en la unidad "nanomolar (nM)"), y la afinidad de unión para el receptor V1b (Ki(V1b)) (determinado en la unidad "nanomolar (nM)"). Cuanto mayor es el cociente Ki(V1a)/Ki(V1b) mayor es la selectividad para el V1b;
 - 2.) una selectividad para el receptor V1b de vasopresina en comparación con el receptor V2 de vasopresina, es decir, el cociente de la afinidad de unión para el receptor V2 (Ki(V2) (determinado en la unidad "nanomolar (nM)"), y la afinidad de unión para el receptor V1b (Ki(V1b)) (determinado en la unidad "nanomolar (nM)"). Cuanto mayor es el cociente Ki(V2)/Ki(V1b) mayor es la selectividad para el V1b;
 - 3.) una selectividad para el receptor V1b de vasopresina en comparación con el receptor OT de oxitocina, es decir, el cociente de la afinidad de unión para el receptor OT (Ki(OT) (determinado en la unidad "nanomolar (nM)"), y la afinidad de unión para el receptor V1b (Ki(V1b)) (determinado en la unidad "nanomolar (nM)"). Cuanto mayor es el cociente Ki(OT)/Ki(V1b) mayor es la selectividad para el V1b;
 - 4.) la estabilidad metabólica, por ejemplo, determinada a partir de las vidas medias, medidas *in vitro*, en microsomas de hígado de diferentes especies (por ejemplo, ratas o seres humanos);
- 5.) nada de inhibición o una inhibición baja de las enzimas de citocromo P450 (CYP): citocromo P450 (CYP) es el nombre para una superfamilia de hemoproteínas que tienen actividad enzimática (oxidasa). Estas son particularmente importantes para la degradación (metabolismo) de sustancias extrañas tales como fármacos y xenobióticos en los organismos de mamíferos. Los representantes principales de los tipos y subtipos de CYP en el cuerpo humano son: CYP 1A2, CYP 2C9, CYP 2D6 y CYP 3A4. Con el uso simultáneo de inhibidores CYP 3A4 (por ejemplo, el jugo de pomelo, cimetidina, eritromicina) y fármacos que se degradan a través de este sistema enzimático y por lo tanto compiten por el mismo sitio de unión en la enzima, su degradación puede

ralentizarse y por lo tanto los efectos y efectos secundarios del fármaco administrado pueden reforzarse de manera indeseable.

6.) una solubilidad adecuada en agua (en mg/ml);

5

10

- 7.) una farmacocinética adecuada (desarrollo temporal de la concentración del compuesto de la invención en el plasma o en tejidos, por ejemplo, el cerebro). La farmacocinética puede describirse por los siguientes parámetros: vida promedio (en horas), volumen de distribución (en l·kg⁻¹), aclaramiento del plasma (en l·h⁻¹·kg⁻¹), AUC (área bajo la curva, área debajo de la curva de concentración-tiempo en ng·h·l⁻¹), biodisponibilidad oral (la relación normalizada de la dosis de AUC después de administración oral y AUC después de administración intravenosa), la denominada razón de cerebro-plasma (la relación de AUC en el tejido cerebral y AUC en el plasma);
- 8.) nada de bloqueo o muy bajo bloqueo del canal de hERG: compuestos que bloquean el canal de hERG pueden ocasionar una prolongación del intervalo QT y por lo tanto conducir a perturbaciones serias del ritmo cardiaco (por ejemplo, las denominadas "torsade de pointes"). El potencial de los compuestos para bloquear el canal de hERG también puede determinarse por medio de un ensayo de desplazamiento con dofetilida radioetiquetada la cual se describe en la bibliografía (G.J. Diaz y col., Journal of Pharmacological and Toxicological Methods, 50 (2004), páginas 187 a 199). Cuanto menor es la Cl₅₀ en este "ensayo de dofetilida" mayor es la probabilidad de un bloqueo potente de hERG. Además, el bloqueo del canal de hERG puede medirse mediante experimentos electrofisiológicos en células que han sido transfectadas con el canal de hERG, por medio de la denominada "sujeción del parche de célula completa" (G.J. Diaz y col., Journal of Pharmacological and Toxicological Methods, 50 (2004), 187 a 199).
- Era objetivo de la presente invención proporcionar compuestos para el tratamiento o la profilaxis de distintas enfermedades dependientes de vasopresina. Los compuestos presentarán una alta actividad y selectividad, especialmente una alta afinidad y selectividad con respecto al receptor V1b de vasopresina. Además, la sustancia de acuerdo con la invención presentará una o varias de las ventajas mencionadas anteriormente en los puntos 1.) a 8.).
- 30 El objetivo se resuelve mediante compuestos de fórmula I.A

$$R^{6}$$
 R^{4}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{5}
 R^{7}
 R^{7}

en la que

R¹ representa hidrógeno, metoxilo o trifluorometoxilo;

R² representa hidrógeno o metoxilo;

R³ representa hidrógeno o alquilo C₁-C₄;

R⁴ representa etoxilo o etoxilo fluorado;

R⁵ representa hidrógeno;

R⁶ representa Br, Cl, F o CN;

40 R² representa Cl o F;

X¹ representa O, NH o CH₂;

X² y X³ representa N o CH, con la condición de que X² y X³ no representen N al mismo tiempo; y

x⁴ representa N o CH; así como sales farmacéuticamente aceptables de los mismos.

De manera correspondiente la presente invención se refiere a compuestos de fórmula I.A (a continuación también "compuestos I.A") así como a las sales farmacéuticamente aceptables de los compuestos I.A.

Las sales farmacéuticamente aceptables de compuestos de fórmula I.A, que también se denominan sales fisiológicamente aceptables, pueden obtenerse por regla general mediante la reacción de la base libre de los compuestos de acuerdo con la invención I.A (es decir de los compuestos I.A de acuerdo con la fórmula estructural I.A) con ácidos adecuados. Ácidos adecuados se exponen por ejemplo en "Fortschritte der Arzneimittelforschung", 1966, Birkhäuser Verlag, vol.10, páginas 224-285. Entre ellos se encuentran por ejemplo ácido clorhídrico, ácido cítrico, ácido tartárico, ácido láctico, ácido fosfórico, ácido metanosulfónico, ácido acético, ácido fórmico, ácido maleico y ácido fumárico.

Alquilo C₁-C₃ representa en el contexto de la presente invención un resto alquilo lineal o ramificado con 1 a 3 átomos de carbono, tal como metilo, etilo, n-propilo o isopropilo.

Alquilo C₁-C₄ representa en el contexto de la presente invención un resto alquilo lineal o ramificado con 1 a 4 átomos de carbono, tal como metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo o terc-butilo.

Fluoroalquilo C₁-C₃ representa en el contexto de la presente invención un resto alquilo lineal o ramificado con 1 a 3 átomos de carbono, tal como se definió anteriormente, en el que al menos un átomo de hidrógeno, por ejemplo 1, 2, 3, 4 o 5 átomos de hidrógeno, pueden estar sustituidos por átomos de flúor. Ejemplo de ello son fluorometilo, difluorometilo, trifluorometilo, 1- y 2-fluoroetilo, 1,1-, 1,2- y 2,2-difluoroetilo, 1,1,2-, 1,2,2 y 2,2,2-trifluoroetilo, 1,1,2,2-tetrafluoroetilo, 1,2,2,2- tetrafluoroetilo, pentafluoroetilo, 1-, 2- y 3-fluoroprop-1-ilo, 1,1-, 1,2-, 1,3-, 2,2-, 2,3-y 3,3-difluoroprop-1-ilo, 1,1,2-, 1,2,2-, 1,1,3-, 2,2,3-, 1,2,3- y 3,3,3-trifluoroprop-1-ilo, 1-y 2-fluoroprop-2-ilo, 1,1,1-trifluoroprop-2-ilo y similares.

Alcoxilo C_1 - C_3 representa en el contexto de la presente invención un resto alquilo lineal o ramificado unido a través de un átomo de oxígeno con 1 a 3 átomos de carbono. Ejemplos son metoxilo, etoxilo, n-propoxilo e isopropoxilo.

Fluoroalcoxilo C₁-C₃ representa en el contexto de la presente invención un resto alquilo lineal o ramificado unido a través de un átomo de oxígeno con 1 a 3 átomos de carbono, tal como se definió anteriormente, en el que al menos un átomo de hidrógeno, por ejemplo 1, 2, 3, 4 o 5 átomos de hidrógeno, están sustituidos por átomos de flúor. Ejemplo de ello son fluorometoxilo, difluorometoxilo, trifluorometoxilo, 1- y 2-fluoroetoxilo, 1,1-, 1,2- y 2,2-difluoroetoxilo, 1,1,2-, 1,2,2 y 2,2-trifluoroetoxilo, 1,1,2,2-tetrafluoroetoxilo, 1,2,2,2-tetrafluoroetoxilo, pentafluoroetoxilo, 1-, 2- y 3-fluoroprop-1-oxilo, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- y 3,3-difluoroprop-1-oxilo, 1,1,2-, 1,2-, 1,3-, 2,2-, 2,3-, 1,2,3- y 3,3,3-trifluoroprop-1-oxilo, 1- y 2- fluoroprop-2-oxilo, 1,1- y 1,3-difluoroprop-2-oxilo, 1,1,1-trifluoroprop-2-oxilo y similares.

Etoxilo fluorado representa en el contexto de la presente invención etoxilo, en el que 1, 2, 3, 4 o 5 de los átomos de hidrógeno están sustituidos por átomos de flúor. Ejemplos son 1-fluoroetoxilo, 2-fluoroetoxilo, 1,1-difluoroetoxilo, 1,2-difluoroetoxilo, 2,2-difluoroetoxilo, 1,1,2-trifluoroetoxilo, 1,2,2-trifluoroetoxilo, 2,2-trifluoroetoxilo, 1,1,2,2-tetrafluoroetoxilo, 1,1,2,2-pentafluoroetoxilo.

Halógeno representa en el contexto de la presente invención flúor, cloro, bromo o yodo.

Los compuestos de acuerdo con la invención de fórmula IA y sus sales farmacológicamente aceptables pueden encontrarse también en forma de solvatos o hidratos. Por solvatos se entiende en el contexto de la presente invención formas cristalinas de los compuestos I.A o sus sales farmacéuticamente aceptables, que contienen incorporados en la red cristalina de la molécula de disolvente. Preferentemente, las moléculas de disolvente están incorporadas en relaciones estequiométricas. Los hidratos son una forma especial de los solvatos; el disolvente es en este caso aqua.

Los datos que figuran a continuación y características preferidas de la invención, en particular con respecto a las variables R¹, R², R³, R⁴, R⁵, R⁶, R⁷, X¹, X², X³ y X⁴, en el compuesto I.A, pero también con respecto a las características del procedimiento de acuerdo con la invención y del uso de acuerdo con la invención sirven tanto por sí solos en general como preferentemente en cualquier combinación posible.

Los compuestos I.A se proporcionan preferentemente en forma de la base libre (es decir de acuerdo con la fórmula estructural I.A) o en forma de sus sales de adición de ácido.

60 En una forma de realización preferida R¹ representa hidrógeno o metoxilo y en especial representa metoxilo.

En una forma de realización preferida R² representa metoxilo.

10

25

40

55

En una forma de realización especialmente preferida al menos uno de los restos R¹ y R² representa metoxilo. En especial R¹ y R² representan metoxilo.

En una forma de realización preferida R³ representa hidrógeno, metilo, etilo, n-propilo o isopropilo, de manera especialmente preferida representa hidrógeno, metilo o etilo, en particular representa metilo o etilo y en especial representa metilo.

En una forma de realización preferida R⁴ representa etoxilo y R⁵ representa H. A este respecto X⁴ representa N o CH y preferentemente representa N.

En una forma de realización alternativamente preferida R4 representa etoxilo fluorado, preferentemente representa 2,2-difluoroetoxilo o 2,2,2-trifluoroetoxilo y de manera especialmente preferida representa 2,2-difluoroetoxilo, y R⁵ representa H. A este respecto X⁴ representa N o CH y en especial representa CH. 10

De manera especialmente preferente X⁴ representa N.

De manera especialmente preferente R⁴ representa etoxilo y R⁵ representa H. A este respecto X⁴ representa N o CH 15 y preferentemente representa N.

En una forma de realización preferida R⁶ y R⁷ no representan al mismo tiempo CN.

Preferentemente al menos uno de los restos R⁶ y R⁷ representa flúor. De manera especialmente preferente a este respecto R⁷ representa flúor y R⁶ representa flúor, cloro, bromo o CN, preferentemente representa flúor, cloro o CN y 20 de manera especialmente preferida representa CI o CN.

En una forma de realización preferida X' representa NH.

25 En una forma de realización alternativamente preferida X¹ representa O.

En una forma de realización alternativamente preferida X¹ representa CH₂.

De manera especialmente preferente X¹ representa NH u O y en particular representa NH.

En una forma de realización preferida una de las variables X², X³ representa N y la otra representa CH.

En una forma de realización especialmente preferida a este respecto X² representa N v X³ representa CH.

En una forma de realización alternativamente especialmente preferida X² representa CH v X³ representa N. 35

En una forma de realización alternativamente preferida las dos variables X², X³ representan CH.

Un objeto preferido de la invención son compuestos de fórmula I.A, en la que

- R^1 es hidrógeno, metoxilo o trifluorometoxilo, preferentemente hidrógeno o metoxilo;
- R² R³ es hidrógeno o metoxilo;
- es hidrógeno, metilo, etilo, n-propilo o isopropilo; preferentemente hidrógeno, metilo o etilo, de manera especialmente preferida metilo o etilo;
- 45 es etoxilo;

30

40

- es hidrógeno;
- es CI, F o CN, preferentemente CI o CN;
- es F o Cl, preferentemente F; es NH, O o CH₂; X² es N o CH;
- 50 es N o CH;

no representando X² y X³ N al mismo tiempo; así como las sales farmacéuticamente aceptables de los mismos.

- 55 Un objeto alternativamente preferido de la invención son compuestos de fórmula I.A. en la que
 - es hidrógeno, metoxilo o trifluorometoxilo, preferentemente hidrógeno o metoxilo;
 - R^2 es hidrógeno o metoxilo;
- es hidrógeno, metilo etilo, n-propilo o isopropilo; preferentemente hidrógeno, metilo o etilo, de manera 60 especialmente preferida metilo o etilo;
 - es 2,2-difluoroetoxilo o etoxilo;
 - es hidrógeno:
 - es CI, F o CN, preferentemente CI o CN;
 - es F o CI, preferentemente F;
- 65 es NH, O o CH₂;
 - es N o CH;

```
X^3
X^4
              es N o CH;
              es CH
      no representando X<sup>2</sup> y X<sup>3</sup> N al mismo tiempo; así como las sales farmacéuticamente aceptables de los mismos.
 5
      Un objeto especialmente preferido de la invención son compuestos de fórmula I.A, en la que
              es hidrógeno o metoxilo;
      R^2
              es hidrógeno o metoxilo;
      R^3
              es metilo o etilo;
10
      R4 es etoxilo:
              es hidrógeno;
              es CI, F o CN, preferentemente CI o CN;
              es F o Cl, preferentemente F;
15
              es NH, O o CH<sub>2</sub>;
              es N o CH;
              es N o CH;
      no representando X<sup>2</sup> y X<sup>3</sup> N al mismo tiempo; así como las sales farmacéuticamente aceptables de los mismos.
20
      Un objeto alternativamente preferido especialmente de la invención son compuestos de fórmula I.A, en la que
              es hidrógeno o metoxilo;
      R<sup>2</sup>
              es hidrógeno o metoxilo;
25
      R^3
              es metilo o etilo;
              es 2,2-difluoroetoxilo o etoxilo;
              es hidrógeno;
              es CI, F o CN, preferentemente CI o CN;
30
              es F o CI, preferentemente F;
              es NH, O o CH<sub>2</sub>;
              es N o CH;
              es N o CH:
35
      no representando X<sup>2</sup> y X<sup>3</sup> N al mismo tiempo; así como las sales farmacéuticamente aceptables de los mismos.
      Un objeto más preferido de la invención son compuestos de fórmula I.A, en la que
40
              es metoxilo o H;
      R^2
              es metoxilo;
      R^3
              es metilo o etilo;
              es etoxilo:
              es hidrógeno;
45
              es CI, F o CN, preferentemente CI o CN;
              es F:
              es NH, O o CH<sub>2</sub>;
              es N o CH;
              es N o CH;
50
              es N:
      no representando X<sup>2</sup> y X<sup>3</sup> N al mismo tiempo; así como las sales farmacéuticamente aceptables de los mismos.
      Un objeto alternativamente más preferido de la invención son compuestos de fórmula I.A, en la que
55
              es metoxilo o H;
      R^2
R^3
              es metoxilo;
              es metilo o etilo;
              es etoxilo:
60
              es hidrógeno;
              es CI, F o CN, preferentemente CI o CN;
es F; X<sup>1</sup> es NH, O o CH<sub>2</sub>;
es N o CH; X<sup>3</sup> es N o CH;
65
```

no representando X² y X³ N al mismo tiempo; así como las sales farmacéuticamente aceptables de los mismos.

Un objeto aún más preferido de la invención son compuestos de fórmula I.A, en la que

```
R^1
                es metoxilo;
       R^2
                es metoxilo;
       R^3
                es metilo o etilo;
       R^4
                es etoxilo;
       R<sup>5</sup>
R<sup>6</sup>
               es hidrógeno;
               es Cl o CN;
                es F;
10
                es NH;
               es N;
                es CH;
               es N;
```

15 así como las sales farmacéuticamente aceptables de los mismos.

Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que

```
es metoxilo;
20
       R^2
               es metoxilo;
       R^3
               es metilo o etilo;
       R<sup>4</sup>
R<sup>5</sup>
               es etoxilo;
               es hidrógeno;
               es CI o CN;
25
               es F;
               es NH;
               es CH;
               es N;
               es N;
30
```

así como las sales farmacéuticamente aceptables de los mismos.

Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que

```
R^1
35
              es metoxilo;
      R^2
              es metoxilo:
       R^3
              es metilo o etilo:
              es etoxilo;
              es hidrógeno;
40
              es Cl o CN;
              es F;
              es CH<sub>2</sub>;
              es N;
              es CH;
45
              es N;
```

así como las sales farmacéuticamente aceptables de los mismos.

Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que

```
50
              es metoxilo;
      R^2
              es metoxilo:
              es metilo o etilo:
              es etoxilo;
      R^5
55
              es hidrógeno;
       R^6
              es CI o CN;
       R^7
              es F;
              es CH<sub>2</sub>;
              es CH;
60
              es N;
              es N;
```

así como las sales farmacéuticamente aceptables de los mismos.

65 Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que

```
es metoxilo o hidrógeno;
      R^2
              es metoxilo;
      R^3
              es metilo o etilo;
      R<sup>5</sup> R<sup>6</sup> R<sup>7</sup> X<sup>1</sup> X<sup>2</sup> X<sup>3</sup>
              es etoxilo;
              es hidrógeno;
              es Cl o CN;
              es F;
              es O;
              es N;
10
              es CH;
              es N;
      así como las sales farmacéuticamente aceptables de los mismos.
15
      Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que
      R^1
              es metoxilo o hidrógeno;
      R<sup>2</sup>
R<sup>3</sup>
              es metoxilo:
              es metilo o etilo;
      R^4
20
              es etoxilo;
              es hidrógeno;
              es CI o CN;
              es F;
              es O;
25
              es CH;
              es N;
              es N;
      así como las sales farmacéuticamente aceptables de los mismos.
30
      Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que
      R^1
              es metoxilo o hidrógeno;
      R<sup>2</sup>
R<sup>3</sup>
              es metoxilo:
35
              es metilo o etilo;
      R_{.}^{4}
              es etoxilo;
              es hidrógeno;
              es CI o CN;
              es F;
40
              es NH;
              es N;
              es CH;
              es CH;
45
      así como las sales farmacéuticamente aceptables de los mismos.
      Un objeto alternativamente aún más preferido de la invención son compuestos de fórmula I.A, en la que
              es metoxilo o hidrógeno;
      R^2
50
              es metoxilo;
      R^3
              es metilo o etilo;
              es etoxilo:
              es hidrógeno:
              es CI o CN;
55
              es F;
              es NH;
              es CH;
              es N;
              es CH;
60
      así como las sales farmacéuticamente aceptables de los mismos.
      En particular son objeto de la invención compuestos de fórmula I.A, en la que
65
              es metoxilo;
      R<sup>2</sup>
```

es metoxilo;

```
es metilo o etilo;
      R<sup>4</sup>
R<sup>5</sup>
              es etoxilo;
              es hidrógeno;
              es CI;
              es F;
              es NH;
              es N;
              es CH;
              es N;
10
      así como las sales farmacéuticamente aceptables de los mismos.
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
15
              es metoxilo;
      R<sup>2</sup>
R<sup>3</sup>
              es metoxilo;
              es metilo o etilo:
              es etoxilo:
      R^5
              es hidrógeno;
20
              es CI;
              es F;
              es NH;
              es CH;
              es N;
25
              es N;
      así como las sales farmacéuticamente aceptables de los mismos.
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
30
              es metoxilo;
      R<sup>2</sup>
R<sup>3</sup>
              es metoxilo;
              es metilo o etilo;
              es etoxilo;
35
              es hidrógeno;
              es CI;
              es F;
              es CH<sub>2</sub>;
              es N;
40
              es CH;
              es N;
      así como las sales farmacéuticamente aceptables de los mismos.
45
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
      R^1
R^2
R^3
              es metoxilo;
              es metoxilo;
              es metilo o etilo;
50
              es etoxilo;
              es hidrógeno;
              es CI;
              es F;
              es CH<sub>2</sub>;
55
              es CH;
              es N;
              es N;
      así como las sales farmacéuticamente aceptables de los mismos.
60
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
              es metoxilo;
      \dot{R}^2
              es metoxilo;
65
              es metilo o etilo;
              es etoxilo;
```

```
es hidrógeno;
             es CN;
             es F;
             es NH;
             es N;
             es CH;
             es N;
      así como las sales farmacéuticamente aceptables de los mismos.
10
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
      R^1
             es metoxilo;
      R^2
             es metoxilo:
15
             es metilo o etilo;
             es etoxilo;
             es hidrógeno;
             es CN:
             es F;
20
             es NH;
             es CH;
             es N;
             es N;
25
     así como las sales farmacéuticamente aceptables de los mismos.
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
             es metoxilo o hidrógeno;
      R^2
30
             es metoxilo;
      R^3
             es metilo o etilo;
             es etoxilo;
             es hidrógeno;
             es CN:
35
             es F;
             es O:
             es N:
             es CH;
             es N;
40
     así como las sales farmacéuticamente aceptables de los mismos.
      En particular son también objeto de la invención compuestos de fórmula I.A, en la que
      R^1
45
             es metoxilo o hidrógeno;
     {\rm R}^{\rm 2}
             es metoxilo;
      R^3
             es metilo o etilo;
             es etoxilo;
             es hidrógeno;
50
             es CN;
             es F;
             es O:
             es CH:
             es N;
55
             es N:
```

así como las sales farmacéuticamente aceptables de los mismos.

Ejemplos de formas de realización preferidas de la presente invención son compuestos de fórmula I.1 a 1.60 así como las sales farmacéuticamente aceptables de los mismos, en los que los restos X², X³, R¹, R² y R³ adoptan en cada caso los significados mencionados en la siguiente tabla 1 por filas.

$$\begin{array}{c} C_{2}H_{5}O \\ F \\ \end{array}$$

$$\begin{array}{c} C_{2}H_{5}O \\ \end{array}$$

$$\begin{array}{c} R^{2} \\ \end{array}$$

$$\begin{array}{c} (I.1) \\ \end{array}$$

$$\begin{array}{c} C_{2}H_{5}O \\ \end{array}$$

$$\begin{array}{c} R^{2} \\ \end{array}$$

$$\begin{array}{c} R^{2} \\ \end{array}$$

$$\begin{array}{c} R^{3} \\ \end{array}$$

$$\begin{array}{c} C_{2}H_{5}O \\ \end{array}$$

$$\begin{array}{c} R^{2} \\ \end{array}$$

$$\begin{array}{c} R^{2} \\ \end{array}$$

$$\begin{array}{c} R^{3} \\ \end{array}$$

$$\begin{array}{c} R^{3} \\ \end{array}$$

$$\begin{array}{c} C_{2}H_{5}O \\ \end{array}$$

$$\begin{array}{c} R^{3} \\ \end{array}$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{2}H_{5}O$$

$$C_{3}H_{5}O$$

$$C_{4}H_{5}O$$

$$C_{5}H_{5}O$$

$$C_{5}H_{5}O$$

$$C_{7}H_{5}O$$

$$C_{7}H_{5}O$$

$$C_{8}H_{7}O$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{C} \\ \text$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{O} \\ \text{R}^2 \end{array}$$

$$(I.36)$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{NC} \\ \text{R}^3 \end{array}$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{R}^3 \end{array}$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{C$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{F} \\ \text{CH} \\ \text{$$

$$\begin{array}{c} \mathsf{CHF_2CH_2O} \\ \mathsf{F} \\ \mathsf{CI} \\ \mathsf{F} \\ \mathsf{CI} \\ \mathsf{CI} \\ \mathsf{F} \\ \mathsf{CI} \\ \mathsf{$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{O} \\ \text{CH}_2\text$$

$$\begin{array}{c} \text{CHF}_2\text{CH}_2\text{O} \\ \text{CHF}_2\text{CH}_2$$

Tabla 1:

Nº de ejemplo	X ²	X³	R¹	R^2	R^3
A-1.	Ν	CH	metoxilo	metoxilo	metilo
A-2.	N	CH	metoxilo	Н	metilo
A-3.	N	CH	etoxilo	Н	metilo
A-4.	N	CH	Η	Н	metilo
A-5.	Ν	H	Η	metoxilo	metilo
A-6.	N	CH	etoxilo	metoxilo	metilo
A-7.	N	CH	metoxilo	metoxilo	etilo
A-8.	Ν	H	metoxilo	Η	etilo
A-9.	N	CH	etoxilo	I	etilo
A-10.	N	CH	Н	Н	etilo

Nº de ejemplo	X ²	X^3	R ¹	R ²	\mathbb{R}^3
A-11.	N	CH	H	metoxilo	etilo
A-12.	N	CH	etoxilo	metoxilo	etilo
A-13.	N	CH	metoxilo	metoxilo	n-propilo
A-14.	N	CH	metoxilo	Н	n-propilo
A-15.	N	CH	etoxilo	Н	n-propilo
A-16.	N	CH	Н	Н	n-propilo
A-17.	N	CH	H	metoxilo	n-propilo
A-18.	N	СН	etoxilo	metoxilo	n-propilo
A-19.	N	СН	metoxilo	metoxilo	isopropilo
A-20.	N	СН	metoxilo	Н	isopropilo
A-21.	Ν	СН	etoxilo	Н	isopropilo
A-22.	N	CH	Н	Н	isopropilo
A-23.	Ν	CH	I	metoxilo	isopropilo
A-24.	N	CH	etoxilo	metoxilo	isopropilo
A-25.	Ν	CH	metoxilo	metoxilo	Н
A-26.	Ν	CH	metoxilo	Н	Н
A-27.	N	CH	etoxilo	Н	Н
A-28.	N	CH	Н	Н	Н
A-29.	N	CH	H	metoxilo	Н
A-30.	N	CH	etoxilo	metoxilo	Н
A-31.	CH	N	metoxilo	metoxilo	metilo
A-32.	CH	N	metoxilo	Η:	metilo
A-33. A-34.	CH CH	N N	etoxilo H	H	metilo
	CH	N	Н	metoxilo	metilo metilo
A-35. A-36.	СН	N	etoxilo	metoxilo	metilo
A-30.	CH	N	metoxilo	metoxilo	etilo
A-37.	CH	N	metoxilo	H	metilo
A-39.	CH	N	etoxilo	H	etilo
A-40.	CH	N	Н	Н	etilo
A-41.	CH	N	H	metoxilo	etilo
A-42.	CH	N	etoxilo	metoxilo	etilo
A-43.	СН	N	metoxilo	metoxilo	n-propilo
A-44.	СН	N	metoxilo	Н	n-propilo
A-45.	СН	Ν	etoxilo	Н	n-propilo
A-46.	CH	N	Н	Н	n-propilo
A-47.	CH	Ν	Н	metoxilo	n-propilo
A-48.	CH	N	etoxilo	metoxilo	n-propilo
A-49.	СН	Ν	metoxilo	metoxilo	isopropilo
A-50.	CH	N	metoxilo	Н	isopropilo
A-51.	CH	N	etoxilo	Н	isopropilo
A-52.	CH	N	H	H	isopropilo
A-53.	CH	N	H	metoxilo	isopropilo
A-54.	CH	N	etoxilo	metoxilo	isopropilo
A-55. A-56.	CH	N N	metoxilo	metoxilo H	H
A-56. A-57.	CH	N	metoxilo etoxilo	H	H
A-57. A-58.	CH	N	H	Н	Н
A-59.	CH	N	H	metoxilo	H
A-60.	CH	N	etoxilo	metoxilo	H
A-61.	CH	CH	metoxilo	metoxilo	metilo
A-62.	CH	CH	metoxilo	Н	metilo
A-63.	CH	CH	etoxilo	H	metilo
A-64.	CH	CH	Н	Н	metilo
A-65.	СН	СН	Н	metoxilo	metilo
A-66.	СН	СН	etoxilo	metoxilo	metilo
A-67.	СН	CH	metoxilo	metoxilo	metilo
A-68.	CH	CH	metoxilo	Н	etilo
A-69.	CH	CH	etoxilo	Н	etilo
A-70.	СН	CH	Н	Н	etilo
A-71.	СН	CH	Η	metoxilo	etilo
A-72.	CH	CH	etoxilo	metoxilo	etilo
•					

Nº de ejemplo	X^2	X^3	R ¹	\mathbb{R}^2	R^3
A-73.	СН	CH	metoxilo	metoxilo	n-propilo
A-74.	СН	CH	metoxilo	Н	n-propilo
A-75.	СН	CH	etoxilo	Н	n-propilo
A-76.	СН	CH	Н	Н	n-propilo
A-77.	СН	CH	Н	metoxilo	n-propilo
A-78.	СН	CH	etoxilo	metoxilo	n-propilo
A-79.	CH	CH	metoxilo	metoxilo	isopropilo
A-80.	СН	H	metoxilo	Н	isopropilo
A-81.	CH	CH	etoxilo	Н	isopropilo
A-82.	CH	CH	Н	Н	isopropilo
A-83.	СН	H	Н	metoxilo	isopropilo
A-84.	СН	H	etoxilo	metoxilo	isopropilo
A-85.	СН	H	metoxilo	metoxilo	H
A-86.	СН	CH	metoxilo	Н	Н
A-87.	CH	CH	etoxilo	Н	Н
A-88.	CH	CH	Н	Н	Н
A-89.	CH	CH	Н	metoxilo	Н
A-90.	CH	CH	etoxilo	metoxilo	Н

Entre los compuestos mencionados anteriormente 1.1 a 1.60 se prefieren compuestos de fórmulas I.1, I.2, I.5, I.6, I.7, I.10, I.11, I.12, I.15, I.16, I.17, I.20, I.21, I.22, I.25, I.26, I.27, I.30, I.31, 1.32, 1.35, 1.36, 1.37, 1.40, I.41, 1.42, 1.45, 1.46, 1.47, 1.50, I.51, I.52, I.55, 1.56, 1.57 y I.60, en las que los restos X², X³, R¹, R² y R³ adoptan en cada caso los significados mencionados en la tabla 1 por fila. Entre ellos se prefieren a su vez los compuestos de fórmulas 1.1, I.2, I.6, I.7, 1.11, I.12, 1.16, 1.17, I.21, 1.22, I.26, I.27, I.31, I.32, I.36, I.37, I.41, I.42, I.46, I.47, I.51, I.52, I.56 y 1.57, en las que los restos X², X³, R¹, R² y R³ adoptan en cada caso los significados mencionados en la tabla 1 por fila. Entre ellos se prefieren más los compuestos de fórmulas 1.1, I.2, I.6, I.7, 1.11, I.12, 1.16, 1.17, 1.21, 1.22, I.26 y 1.27, en las que los restos X², X³, R¹, R² y R³ adoptan en cada caso los significados mencionados en la tabla 1 por fila. Entre ellos se prefieren especialmente los compuestos de fórmulas 1.1, I.2, I.6, I.7, I.11 y 1.12, en las que los restos X², X³, R¹, R² y R³ adoptan en cada caso los restos X², X³, R¹, R² y R³ adoptan en cada caso los restos X², X³, R¹, R² y R³ adoptan en cada caso los restos X², X³, R¹, R² y R³ adoptan en cada caso los significados mencionados en la tabla 1 por fila. Entre ellos se prefieren muy especialmente los compuestos de fórmulas I.1 y 1.2, en las que los restos X², X³, R¹, R² y R³ adoptan en cada caso los significados mencionados en la tabla 1 por fila.

Los compuestos de acuerdo con la invención I.A presentan en la posición 3 del anillo de 2-oxindol un centro de quiralidad. Los compuestos de acuerdo con la invención pueden encontrarse por lo tanto como una mezcla 1:1 de enantiómeros (racemato) o como una mezcla no racémica de enantiómeros, en la que uno de los dos enantiómeros, o bien el enantiómero de giro hacia la izquierda (es decir levógiro) el plano de vibración de luz polarizada (a continuación enantiómero (-)) o el enantiómero que gira hacia la derecha (es decir, dextrógiro) el plano de vibración de luz polarizada (a continuación enantiómero (+)), está enriquecido, o se encuentran como compuestos enantioméricamente puros esencialmente, es decir, como enantiómero (-) o enantiómero (+) enantioméricamente puro esencialmente. Dado que en el caso de los compuestos de acuerdo con la invención existe un único centro de asimetría y ningún eje/plano de quiralidad, puede definirse una mezcla no racémica también como una mezcla de enantiómeros, en la que predomina o bien el enantiómero R o bien el enantiómero S. Los compuestos enantioméricamente puros esencialmente pueden definirse de manera correspondiente también como enantiómero R enantioméricamente puro esencialmente o enantiómero S enantioméricamente puro esencialmente.

Por "compuestos enantioméricamente puros esencialmente" se entienden en el contexto de la presente invención aquellos compuestos, que presentan un exceso enantiomérico (*enantiomeric excess*, ee; % de ee = (R-S)/(R+S) x 100 o (S-R)/(S+R) x 100) de al menos el 80 % de ee, preferentemente al menos el 85 % de ee, más preferentemente al menos el 90 % de ee, aún más preferentemente al menos el 95 % de ee y en particular al menos el 98 % de ee.

30

35

40

En una forma de realización de la invención los compuestos de acuerdo con la invención se encuentran como compuestos enantioméricamente puros esencialmente. Se prefieren especialmente compuestos que presentan un exceso enantiomérico de al menos el 85 % de ee, más preferentemente de al menos el 90 % de ee, aún más preferentemente de al menos el 95 % de ee y en particular de al menos el 98 % de ee.

Por lo tanto, son objeto de la invención tanto los enantiómeros puros como también sus mezclas, por ejemplo mezclas en las que un enantiómero se encuentra en forma enriquecida, pero también los racematos. Son también objeto de la invención también las sales farmacéuticamente aceptables de los enantiómeros puros de compuestos I.A así como las mezclas de enantiómeros racémicas y no racémicas en forma de las sales farmacéuticamente aceptables de compuestos I.A.

Las indicaciones realizadas en el contexto de la presente invención en cuanto al sentido de giro de la luz polarizada se refieren preferentemente a los signos [(+) o (-)] tal como se determinan en cloroformo como disolvente o en mezclas de disolvente que contienen cloroformo, en particular en cloroformo.

A continuación se describen rutas de síntesis a modo de ejemplo para la preparación de los derivados de oxindol de acuerdo con la invención.

La preparación de los compuestos de acuerdo con la invención puede tener lugar con el uso de las instrucciones descritas en los documentos WO 2005/030755 y WO 2006/005609 para la síntesis de compuestos análogos y se esboza a modo de ejemplo en los esquemas de síntesis 1 a 3. En estos esquemas de síntesis las variables tienen los mismos significados que en la fórmula I.A.

Las 3-hidroxi-1,3-dihidroindol-2-onas IV pueden obtenerse mediante adición de heterociclos o bencenos metalizados

III en el grupo 3-ceto de las isatinas II. Los heterociclos o benzoles metalizados, tales como por ejemplo el
compuesto de Grignard (Mg) o de organo-litio correspondiente, pueden obtenerse de manera habitual a partir de
compuestos halogenados o de hidrocarburo. Instrucciones a modo de ejemplo están contenidas en Houben-Weilo,
Methoden der Organischen Chemie, vol. 13, 1-2, cap. Mg- o Li-Verbindungen. Las isatinas II o bien se encuentran
comercialmente disponibles o bien se prepararon de manera análoga a los métodos descritos en la bibliografía

(Advances in Heterocyclic Chemistry, A.R. Katritzky and A.J. Boulton, Academic Press, Nueva York, 1975, 18, 2-58;
J. Brazil. Chem. Soc. 12, 273-324, 2001).

Los 3-hidroxioxindoles IV, que en los compuestos aromáticos de 6 anillos por ejemplo en la posición 5 o 6, es decir en la posición de los restos R⁶ o R⁷ contienen un yodo, pueden convertirse con KCN o Zn(CN)₂ con catálisis de Pd(0) en disolventes tales como dimetilformamida o tetrahidrofurano, opcionalmente también con la adición de bases tales como K₂CO₃ u otros carbonatos o aminas, a temperatura más alta, en el 3-hidroxioxindol IV análogo que contiene ciano. Como sales de Pd(0) pueden tomarse por ejemplo complejos de metal de transición, que se preparan *in situ* a partir de PdCl₂ o PdOAc₂ mediante adición de fosfinas tales como tris(ortotolil)fosfina. Así mismo pueden utilizarse complejos de paladio comerciales tales como por ejemplo el catalizador tetrakis(trifenilfosfina)-paladio(0) y / o adiciones de ligandos de fosfina.

Los 3-hidroxioxindoles IV pueden convertirse en los compuestos V, que portan un grupo saliente LG' en posición 3, siendo el grupo saliente LG' un grupo saliente habitual, tal como por ejemplo cloruro o bromuro. El producto intermedio V con por ejemplo LG' = cloro puede prepararse mediante tratamiento del alcohol IV con cloruro de tionilo en presencia de una base, tal como por ejemplo piridina, en un disolvente adecuado, tal como por ejemplo diclorometano.

30

35

50

Los compuestos V pueden hacerse reaccionar a continuación con aminas, tal como por ejemplo amoniaco, en una reacción de sustitución para dar las aminas VI. Los compuestos VI pueden convertirse a continuación mediante tratamiento con cloruros de ácido sulfónico VII tras desprotonación con una base fuerte, tal como por ejemplo *terc*-butilato de potasio o hidruro de sodio en DMF, en el producto sulfonado VIII. Los cloruros de ácido utilizados VII pueden o bien adquirirse comercialmente o bien prepararse según procedimientos conocidos (por ejemplo J. Med. Chem. 40, 1149 (1997)).

40 La preparación de los compuestos de acuerdo con la invención de fórmula general I.A, que portan un grupo urea en la posición 3, puede tener lugar tal como se describe en los documentos WO 20051030755 y WO 2006/005609 y se muestra en el esquema de síntesis 1 en un procedimiento de dos etapas: en primer lugar se hacen reaccionar los compuestos VIII con éster fenílico del ácido clorofórmico en presencia de una base, tal como por ejemplo piridina, para dar el fenilcarbamato IX correspondiente.

La reacción posterior con aminas X, opcionalmente a temperatura elevada y con la adición de bases auxiliares tales como por ejemplo trietilamina o diisopropiletilamina lleva a los compuestos de acuerdo con la invención de fórmula general (I.A) con puentes de urea (X¹ = NH). Las aminas X o bien pueden adquirirse comercialmente o bien prepararse según métodos conocidos en la bibliografía. La representación de los compuestos de acuerdo con la invención, I.A con R³ = H puede tener lugar mediante el uso de aminas protegidas con Boc correspondientes X (R³ = Boc). El grupo protector de Boc puede retirarse a continuación, por ejemplo mediante tratamiento con ácido trifluoroacético en diclorometano.

ESQUEMA DE SÍNTESIS 1

LG' = Grupo saliente (leaving group) tal como por ejemplo Cl

Ph = Fenilo

La preparación de los compuestos de acuerdo con la invención de fórmula general I.A, que portan un grupo carbamato en la posición 3 (X¹ = O), puede tener lugar tal como se describe en el documento WO 20061005609 y se muestra en el esquema de síntesis 2: En primer lugar se hace reaccionar el compuesto de 3-hidroxilo IV con éster fenílico del ácido clorofórmico para dar los derivados de fenilcarbonato XIa y / o XIb. Con un exceso de amina X se obtienen los derivados de carbamato XII, que a continuación, en las condiciones habituales (desprotonación con una

base fuerte, tal como por ejemplo hidruro de sodio o *terc*-butilato de potasio en un disolvente adecuado, tal como por ejemplo DMF, seguido del tratamiento con cloruros de ácido sulfónico VII) en los compuestos de acuerdo con la invención I.A con puentes de carbamato.

ESQUEMA DE SÍNTESIS 2

5

Ph = Fenilo

La preparación de los compuestos de acuerdo con la invención de fórmula general I.A, que portan un grupo 2oxoetilo en la posición 3 (X¹ = CH₂), puede tener lugar tal como se muestra en el esquema de síntesis 3. La introducción de la agrupación de ácido acético puede tener lugar tal como se describe en el documento WO 2006/005609 en una secuencia de 4 etapas (1ª sustitución del grupo saliente LG' en V con la sal de sodio de malonato de dimetilo, 2ª saponificación del primer grupo éster, 3ª descarboxilación térmica, 4ª saponificación del segundo grupo éster). La cadena lateral de amina X puede acoplarse con el uso de los reactivos de acoplamiento convencionales de la química de péptidos, tal como por ejemplo EDC (clorhidrato de N-(3-dimetilaminopropil)-N'-etil-carbodiimida) y HOBT (1-hidroxi-benzotriazol) en un disolvente, tal como por ejemplo N,N-dimetilformamida, o BOP (hexafluorofosfato de 1-benzotriazoliloxi-tris-(dimetilamino)-fosfonio) en presencia de una base, tal como trietilamina o diisopropiletilamina, al ácido carboxílico XV. La sulfonación puede tener lugar mediante la desprotonación de los productos de acoplamiento XVI con una base fuerte, tal como por ejemplo hidruro de sodio o *terc*-butilato de potasio, y posterior tratamiento con cloruros de ácido sulfónico VII en un disolvente, tal como por ejemplo DMF, y lleva a los compuestos de acuerdo con la invención I con puentes de amida.

10

ESQUEMA DE SÍNTESIS 3

SO₂CI
$$R^{1}$$

$$VII$$

$$R^{2}$$

$$VII$$

$$R^{2}$$

$$VII$$

$$R^{2}$$

$$X^{1}$$

$$X^{1}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{4}$$

$$X^{4}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^$$

15

Un objeto adicional de la presente invención se refiere a un agente farmacéutico, que contiene al menos un compuesto de fórmula general I.A y/o una sal farmacéuticamente aceptable del mismo, tal como se expuso anteriormente, y un vehículo farmacéuticamente aceptable. Los vehículos adecuados dependen entre otras cosas de la forma farmacéutica del agente y son conocidos en principio por el experto. Algunos vehículos adecuados se describen más adelante.

20 Un objeto adicional de la presente invención se refiere al uso de compuestos de fórmula I.A y/o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento y/o la profilaxis de enfermedades dependientes de vasopresina.

Enfermedades dependientes de vasopresina son aquellos en los que el desarrollo de la enfermedad depende al menos parcialmente de vasopresina, es decir enfermedades, que muestran un nivel elevado de vasopresina, que puede contribuir directa o indirectamente al cuadro clínico. En otras palabras, son enfermedades dependientes de vasopresina aquellos que pueden influirse mediante la modulación del receptor de vasopresina, por ejemplo mediante adición de un ligando de receptores de vasopresina (agonista, antagonista, antagonista/agonista parcial, agonista inverso, etc.).

En una forma de realización preferida la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables para la preparación de un medicamento para el tratamiento y/o la profilaxis de enfermedades, que se seleccionan entre diabetes, resistencia a insulina, enuresis nocturna, incontinencia y enfermedades, en las que aparecen trastornos de la coagulación sanguínea, y/o para el retardo de la micción. Por el término "diabetes" se entienden todas las formas de diabetes, sobre todo diabetes mellitus (incluyendo el tipo I y en particular el tipo II), diabetes renalis y en particular diabetes insipidus. Preferentemente en el caso de las formas de diabetes se trata de diabetes mellitus del tipo II (con resistencia a insulina) o diabetes insipidus.

10

15

20

25

30

35

45

50

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento y/o la profilaxis de enfermedades, que se seleccionan entre hipertonía, hipertonía pulmonar, insuficiencia cardiaca, infarto de miocardio, espasmo coronario, angina inestable, ACTP (angioplastia coronaria transluminal percutánea), isquemias del corazón, trastornos del sistema renal, edemas, vasoespasmo renal, necrosis de la corteza renal, hiponatremia, hipopotasemia, síndrome de Schwartz-Bartter, trastornos del tracto gastrointestinal, vasoespasmo gástrico, cirrosis hepática, úlcera gástrica e intestinal, emesis, emesis que aparece durante la quimioterapia, y enfermedad del viajero.

Los compuestos de acuerdo con la invención de fórmula I.A o sus sales farmacéuticamente aceptables o el agente farmacéutico de acuerdo con la invención pueden usarse también para el tratamiento de distintas molestias dependientes de vasopresina, que presentan causas del sistema nervioso central o alteraciones en el eje HPA (hypothalamic pituitary adrenal axis), por ejemplo en trastornos afectivos, tales como trastornos depresivos y trastornos bipolares. Entre ellos figuran por ejemplo trastornos distímicos, fobias, trastornos por estrés postraumático, fobias generales, trastornos de pánico, depresiones estacionales y trastornos del sueño.

Así mismo, los compuestos de acuerdo con la invención de fórmula I.A o sus sales farmacéuticamente aceptables o el agente farmacéutico de acuerdo con la invención pueden utilizarse para el tratamiento en el caso de trastornos de ansiedad y trastornos de ansiedad dependientes de estrés, tal como por ejemplo trastornos de ansiedad generalizados, fobias, trastornos de estrés postraumático, trastornos de ansiedad obsesivo-compulsivos, trastornos de ansiedad agudos dependientes de estrés y fobia social.

Además, los compuestos de acuerdo con la invención pueden utilizarse también para el tratamiento de trastornos de capacidad de memoria, enfermedad de Alzheimer, psicosis, trastornos psicóticos, trastornos del sueño y/o el síndrome de Cushing así como todas las enfermedades dependientes de estrés.

De manera correspondiente una forma de realización preferida adicional de la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de trastornos afectivos.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de trastornos de ansiedad y/o trastornos de ansiedad dependientes de estrés.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de trastornos de capacidad de memoria y/o enfermedad de Alzheimer.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de psicosis y/o trastornos psicóticos.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento del síndrome de Cushing u otras enfermedades dependientes de estrés.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de trastornos del sueño.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de enfermedades depresivas. Una forma particular de enfermedades depresivas son los denominados trastornos del estado de ánimo de aparición en la infancia, es decir trastornos depresivos que ya se utilizan en la infancia.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento de síntomas vasomotores y/o funciones erróneas termorreguladoras, tal como por ejemplo el síntoma de "sofocos".

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento y/o la profilaxis de dependencias mediadas por drogas, fármacos y/o por otros factores, para el tratamiento y/o la profilaxis de estrés debido a la abstinencia de uno o varios factores que median en la dependencia y/o para el tratamiento y/o la profilaxis de recaídas inducidas por estrés en las dependencias mediadas por drogas, fármacos y/o por otros factores.

En una forma de realización preferida adicional la presente invención se refiere al uso de compuestos de acuerdo con la invención de fórmula I.A o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento y/o la profilaxis de esquizofrenia y/o psicosis.

En el caso de los pacientes que van a tratarse de manera profiláctica o terapéutica con el procedimiento de acuerdo con la invención se trata preferentemente de un mamífero, por ejemplo de un ser humano o de un mamífero no humano o de un mamífero transgénico no humano. En especial se trata de un ser humano.

Los compuestos de fórmula general I.A y sus sales farmacéuticamente aceptables, tal como se expuso anteriormente, pueden prepararse por un experto que conoce la enseñanza técnica de acuerdo con la invención en una realización y/o en una realización análoga de etapas de procedimiento en sí conocidos.

Los compuestos I.A o sales farmacéuticamente aceptables de los mismos se caracterizan por que presentan una selectividad hacia el tipo de receptor de vasopresina V1b con respecto a al menos uno de los tipos de receptor de vasopresina/oxitocina estrechamente relacionados (por ejemplo vasopresina V1a, vasopresina V2 y/u oxitocina).

35 Como alternativa o preferentemente los compuestos I.A o sales farmacéuticamente aceptables de los mismos se caracterizan adicionalmente porque presentan una estabilidad metabólica meiorada.

La estabilidad metabólica de un compuesto puede medirse por ejemplo, incubándose una disolución de este compuesto con microsomas de hígado de especies determinadas (por ejemplo rata, perro o ser humano) y determinándose la vida media del compuesto en estas condiciones (RS Obach, Curr Opin Drug Discov Devel. 2001, 4, 36-44). A este respecto, a partir de una mayor vida media observada puede deducirse una estabilidad metabólica mejorada del compuesto. La estabilidad en presencia de microsomas de hígado humanos es de interés particular, dado que permite un pronóstico para la degradación metabólica del compuesto en el hígado humano. Los compuestos con una estabilidad metabólica elevada (medida en la prueba de microsoma de hígado) se degradan más lentamente por lo tanto probablemente también en el hígado. La degradación metabólica más lenta en el hígado puede llevar a concentraciones más altas y/o que se mantienen durante más tiempo (nivel de acción) del compuesto en el organismo, de modo que se eleva la vida media de eliminación de los compuestos de acuerdo con la invención. Niveles de acción elevados y/o que se mantienen durante más tiempo pueden llevar a una mejor eficacia del compuesto en el tratamiento o la profilaxis de distintas enfermedades dependientes de vasopresina. Además, una estabilidad metabólica mejorada puede llevar a una biodisponibilidad elevada tras administración oral, dado que el compuesto, después de tener lugar la reabsorción en el intestino, experimenta una baja degradación metabólica en el hígado (denominado "first pass effect"). Una biodisponibilidad oral elevada puede llevar, debido a una concentración elevada (nivel de acción) del compuesto a una mejor eficacia del compuesto después de administración oral.

Como alternativa o preferentemente los compuestos I.A o sales farmacéuticamente aceptables de los mismos se caracterizan adicionalmente porque en pacientes o modelos animales relevantes, que permitan afirmaciones de pronóstico para la aplicación en el tratamiento, con respecto a los compuestos de oxindol conocidos por el estado de la técnica, presentan una actividad farmacológica mejorada.

Los compuestos de acuerdo con la invención son eficaces tras la administración en distintas vías. La administración puede tener lugar por ejemplo por vía intravenosa, por vía intramuscular, por vía subcutánea, por vía tópica, por vía intratraqueal, por vía intranasal, por vía transdérmica, por vía vaginal, por vía rectal, por vía sublingual, por vía bucal o por vía oral y tiene lugar con frecuencia por vía intravenosa, por vía intramuscular o en particular por vía oral.

65

10

15

25

30

40

45

50

55

60

La presente invención se refiere también a composiciones farmacéuticas, que contienen una dosis efectiva de un compuesto de acuerdo con la invención I.A o de una sal farmacéuticamente aceptable del mismo y de vehículos farmacéuticos adecuados (excipientes).

5 Estos excipientes se seleccionan de manera correspondiente a la forma farmacéutica y al tipo de aplicación deseado y se conocen en principio por el experto.

Los compuestos de acuerdo con la invención de fórmula I.A o sales opcionalmente adecuados de estos compuestos pueden usarse para la preparación de composiciones farmacéuticas para la administración oral, sublingual, bucal, subcutánea, intramuscular, intravenosa, tópica, intratraqueal, intranasal, transdérmica, vaginal o rectal y animales o seres humanos en formas de administración unitarias, mezcladas con vehículos farmacéuticos convencionales, para la profilaxis o el tratamiento de los trastornos o enfermedades anteriores.

Las formas de administración adecuadas (unidades de dosificación) comprenden formas para la administración oral, tales como comprimidos, cápsulas de gelatina, polvos, gránulos y disoluciones o suspensiones para la toma oral, formas para la administración sublingual, bucal, intratraqueal o intranasal, aerosoles, implantes, formas de administración subcutánea, intramuscular o intravenosa y formas de la administración rectal.

Para la administración tópica los compuestos de acuerdo con la invención pueden usarse en cremas, pomadas o lociones.

Para obtener el efecto profiláctico o terapéutico deseado, la dosis del principio activo puede variar entre 0,01 y 50 mg por kg de peso corporal y por día.

25 Cada dosis unitaria puede contener de 0,05 a 5000 mg, preferentemente de 1 a 1000 mg, del principio activo en combinación con un vehículo farmacéutico. Esta dosis unitaria puede administrarse de 1 a 5 veces al día, de modo que se administra una dosis diaria de 0,5 a 25000 mg, preferentemente de 1 a 5000 mg.

En caso de que se administre una composición sólida en forma de comprimidos, se mezcla el principio activo con un vehículo farmacéutico sólido, tal como gelatina, almidón, lactosa, estearato de magnesio, talco, dióxido de silicio o similares.

35

50

60

Los comprimidos pueden recubrirse con sacarosa, un derivado de celulosa u otra sustancia adecuada distinta o tratarse de otro modo, para presentar una actividad sostenida o retardada y para liberar una cantidad predeterminada del principio activo continuamente.

Una preparación en forma de cápsulas de gelatina se obtiene mediante mezclado del principio activo con un diluyente e introducción de la mezcla resultante en cápsulas de gelatina blanda o dura.

Una preparación en forma de un jarabe o elixir o para la administración en forma de gotas puede contener principios activos junto con un edulcorante, que preferentemente es sin calorías, metilparabeno o propilparabeno como antisépticos, un aromatizante y un colorante adecuado.

Los polvos o gránulos dispersables en agua pueden contener los principios activo, mezclados con agentes dispersantes, agentes humectantes o agentes de suspensión, tales como polivinilpirrolidonas, así como edulcorantes o correctores del sabor.

Una administración rectal o vaginal se consigue mediante el uso de supositorios, que se preparan con aglutinantes, que funden a la temperatura rectal, por ejemplo manteca de cacao o polietilenglicoles. Una administración parenteral tiene lugar con el uso de suspensiones acuosa, soluciones salinas isotónicas o disoluciones estériles e inyectables, que contienen los agentes de dispersión y/o agentes de humectación farmacológicamente aceptables, por ejemplo propilenglicol o polietilenglicol.

El principio activo puede formularse también como microcápsulas o centrosomas, en caso adecuado con uno o varios vehículos o aditivos.

Además de los compuestos de acuerdo con la invención, los agentes de acuerdo con la invención pueden contener otros principios activos, que pueden ser útiles para el tratamiento de los trastornos o enfermedades indicados anteriormente.

Por lo tanto, la presente invención se refiere además a agentes farmacéuticos, en los que están presentes conjuntamente varios principios activos, siendo al menos uno de estos un compuesto de acuerdo con la invención I.A o una sal del mismo.

La invención se explica en detalle a continuación por medio de ejemplos, no debiendo entenderse los ejemplos como limitantes.

La preparación de los compuestos de acuerdo con la invención puede tener lugar a través de distintas rutas de síntesis. Las instrucciones mencionadas, tal como se describen en los esquemas de síntesis 1, 2 y 3, se explican en detalle sólo a modo de ejemplo por medio de los ejemplos mencionados, sin limitarse exclusivamente a las rutas de síntesis mencionadas 1, 2 o 3 o instrucciones análogas.

5

10

PARTE EXPERIMENTAL

Abreviaturas usadas:

THF: tetrahidrofurano
DMSO: dimetilsulfóxido
TFA: ácido trifluoroacético

BOP: hexafluorofosfato de 1-benzotriazoliloxi-tris-(dimetilamino)-fosfonio

p: pseudo (por ejemplo pt pseudo triplete) a: ancho (por ejemplo sa singlete ancho)

15 s: singlete
d: doblete
t: triplete
m: multiplete
dd: doble doblete

20 dt: doble triplete tt: triple triplete

I. Preparación de los compuestos intermedios

5,6-Difluoroisatina se encuentra comercialmente disponible por ejemplo del proveedor ASYMCHEM, BUTT PARK, TIMECHEM y UKRORGSYN- BB.

5-Bromo-6-fluoro-isatina se encuentra comercialmente disponible por ejemplo del proveedor BUTT PARK y UKRORGSYN-BB.

30

50

- 5-Cloro-6-fluoro-isatina se encuentra comercialmente disponible por ejemplo del proveedor UKRORGSYN-BB.
- 5-Fluoro-6-cloro-isatina se encuentra comercialmente disponible por ejemplo del proveedor BUTT PARK.
- 35 <u>a) 3-Hidroxi-1,3-dihidroindol-2-ona de fórmula IV</u>
 - a.1 5-Bromo-3-(2-etoxipiridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidroindol-2-ona
- Formación de la sal de sodio de isatina: a 12,5 g (51,2 mmoles) de 5-bromo-6-fluoroisatina en 250 ml de THF se añadieron a 0 °C en porciones 2,46 g (51,2 mmoles) de hidruro de sodio (60 % en aceite mineral) y se agitó durante una hora a 0 °C.

Formación del reactivo de Grignard: a una disolución de 2-etoxi-3-yodopiridina (12,76 g, 51,2 mmoles) en 250 ml de THF se añadieron gota a gota bromuro de etilmagnesio (61,5 mmoles, 61,5 ml de una disolución 1 M en THF), manteniéndose la temperatura entre 15 y 22 °C. A continuación se agitó la mezcla de reacción durante 15 min a temperatura ambiente.

Adición de Grignard: Se bombeó la disolución del reactivo de Grignard a la disolución helada de la sal de sodio de isatina y se agitó la mezcla de reacción a continuación durante tres horas a temperatura ambiente. Se vertió la mezcla madre en disolución al 10 % de cloruro de amonio y se extrajo tres veces con acetato de etilo. Las fases orgánicas reunidas se lavaron con agua y solución salina saturada, se secaron con sulfato de magnesio y se concentraron a presión reducida. El precipitado cristalino formado después de reposar durante la noche a temperatura ambiente se aspiró y se lavó con acetato de etilo. Se obtuvieron 10,0 g del compuesto del título como sólido.

- 55 ESI-EM: 367,00/369,00 [M+H]⁺
 - a.2 5-Cloro-3-(2-etoxipiridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidro-indol-2-ona
- Se preparó el compuesto del título de manera análoga al ejemplo a.1 con el uso de 5-cloro-6-fluoroisatina como isatina II. ESI-EM: 323,05 [M+H][†]
 - a.3 5-Cloro-3-[2-(2,2-difluoroetoxi)-fenil]-6-fluoro-3-hidroxi-1,3-dihidro-indol-2-ona
- Se preparó el compuesto del título de manera análoga al ejemplo a.1 con el uso de 5-cloro-6-fluoroisatina como isatina II y 2,2-difluoroetoxiyodobenceno (para la formación del reactivo de Grignard).

a.4 5-cloro-3-(2-etoxi-fenil)-6-fluoro-3-hidroxi-1,3-dihidro-indol-2-ona

Se preparó el compuesto del título de manera análoga al ejemplo a.1 con el uso de 5-cloro-6-fluoroisatina como isatina II y etoxiyodobenceno (para la formación del reactivo de Grignard).

a.5 3-(2-Etoxi-piridin-3-il)-6-fluoro-3-hidroxi-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo

A una disolución de 1,7 g (4,63 mmoles) de 5-bromo-3-(2-etoxi-piridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidroindol-2-ona del ejemplo a.1 y 544 mg (4,63 mmoles) de cianuro de zinc en 18 ml de dimetilformamida (DMF) se añadieron 161 mg (0,14 mmoles) de tetrakis(trifenilfosfina)-paladio (0) y se agitó durante 1 h a 150 °C en un aparato de microondas de Biotage. Para el tratamiento posterior se diluyó la disolución de reacción con 300 ml de agua, se extrajo con éster etílico de ácido acético (3x) y se lavó con disolución saturada de cloruro de sodio (1 x). Las fases orgánicas reunidas se secaron sobre sulfato de magnesio, se filtraron y el disolvente se retiró a vacío. Se obtuvieron 1,67 g de 3-(2-etoxi-piridin-3-il)-6-fluoro-3-hidroxi-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo.

15 ESI-EM: 313,10 [M+H]

5

20

40

45

50

55

60

RMN de 1 H (400 MHz, d₆-DMSO): δ [ppm] 7,85 (d, 1 H); 7,30 (t, 1 H); 7,25 (d, 1 H); 7,05 (t, 1 H); 6,95 (d, 1 H); 6,85 (d, 1 H); 6,80 (s, 1 H); 3,75 (m, 2H); 0,95 (t, 3H).

II. Preparación de los compuestos de fórmula I.A

II.1 Compuestos de fórmula I.A, en la que X¹ representa NH (Ejemplos 1 bis 37)

EJEMPLO 1:

25 [5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil)-piperidin-4-il)-piperazin-1-carboxílico

1.1 3-Cloro-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo

A 1,3 g (4,15 mmoles) de 3-(2-etoxi-piridin-3-il)-6-fluoro-3-hidroxi-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo en 30 ml de diclorometano se añadieron 0,47 ml (5,81 mmoles) de piridina. Después de enfriar la mezcla de reacción hasta 0 °C se añadieron gota a gota 0,42 ml (5,81 mmoles) de cloruro de tionilo. Se agitó la mezcla a temperatura ambiente durante una hora y se vertió a continuación en agua helada. Después de 15 minutos de agitación se separó la fase orgánica. La fase acuosa se extrajo varias veces con diclorometano. Se secó la fase orgánica reunida sobre sulfato de magnesio, se filtró y se retiró el disolvente a vacío. Se obtuvieron 1,13 g de 3-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo como sólido, que se utilizó sin purificación adicional en la etapa siguiente.

ESI-EM: 332,00 [M+H]⁺

 $1.2\ 3-Amino-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2, 3-dihidro-1 H-indol-5-carbon itrilo$

A una disolución enfriada de 1,13 g (3,41 mmoles) de 3-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo en 20 ml de diclorometano se añadieron gota a gota bajo atmósfera de nitrógeno 2,4 ml (17,0 mmoles) de una disolución 7 N metanólica de amoniaco y se agitó después la mezcla de reacción durante la noche a temperatura ambiente. La mezcla de reacción se mezcló con disolución saturada de NaCl y se extrajo con éster etílico de ácido acético (3x). Se secaron las fases orgánicas reunidas sobre sulfato de magnesio, se filtraron y se retiró el disolvente a vacío. El residuo se mezcló con 20 ml de dietil éter. Después de 5 min de agitación precipitó un sólido blanco, que se separó por filtración y se secó en estufa de secado de vacío. Se obtuvieron 800 mg del compuesto del título como sólido blanco. ESI-EM: 313,05 [M+H]⁺

LOI LIVI. 010,00 [W111]

1.3 3-Amino-1-(2,4-dimetoxifenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo

A una disolución de 350 mg (1,12 mmoles) de 3-amino-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo en 15 ml de dimetilformamida anhidra se añadieron bajo atmósfera de nitrógeno y con enfriamiento mediante un baño de hielo 80 mg (1,68 mmoles) de hidruro de sodio (60 % dispersión en aceite mineral) en porciones. Se agitó durante 10 min a 0 °C y después se añadieron 398 mg (1,68 mmoles) de cloruro de 2,4-2,4-dimetoxifenilsulfonilo y se agitó posteriormente durante 15 min a temperatura ambiente. La mezcla de reacción se vertió en agua helada y a continuación se extrajo con éster acético. Se lavó la fase orgánica con disolución saturada de cloruro de sodio, se secó sobre sulfato de magnesio y se evaporó el disolvente. El residuo se purificó cromatográficamente sobre gel de sílice (cartucho Redisep, gradiente de eluyente del 0 al 3 % de metanol en éster acético). Se obtuvieron 236 mg del compuesto del título como sólido blanco. ESI-EM: 513,15 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,25 (d, 1 H); 8,10 (m, 1 H); 7,95 (d, 1 H); 7,75 (d, 1 H); 7,45 (d, 1 H); 7,10 (m, 1 H); 6,75 (m, 2H); 4,00 (m, 2H); 3,90 (s, 3H); 3,75 (s, 3H); 3,40 (m, 2H); 0,85 (t, 3H).

65

1.4 Éster fenílico del ácido [5-ciano-1-(2,4-dimetoxifenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-carbámico

A una disolución enfriada hasta 0 °C de 226 mg (0,44 mmoles) de 3-amino-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo en 4 ml de piridina se añadieron gota a gota lentamente 61 μl (0,49 mmoles) de éster fenílico del ácido clorofórmico. Después de 5 minutos se evaporó el disolvente. El residuo se mezcló con 20 ml de agua y se extrajo con dietil éter (2x). La fase orgánica se lavó con agua y solución salina saturada, se secó sobre sulfato de magnesio y se concentró a presión reducida. El residuo se purificó cromatográficamente sobre gel de sílice (cartucho Redisep, gradiente de eluyente del 0 al 5 % de metanol en acetato de etilo). Se obtuvieron 200 mg del compuesto del título. ESI-EM: 633,15 [M+H]⁺

1.5 [5-Ciano-1-(2,4-dimetoxifenilsulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

se agitó una mezcla de 50 mg (0,07 mmoles) éster fenílico del ácido [5-ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-carbámico, 26 mg (0,14 mmoles) de 1-(1-metilpiperidin-4-il)-piperazina y 5 ml de THF anhidro durante 2 horas a temperatura ambiente. Se diluyó la mezcla de reacción con diclorometano, se lavó con agua y solución salina saturada, se secó la fase orgánica sobre sulfato de magnesio y se concentró a presión reducida. El residuo se purificó cromatográficamente sobre gel de sílice (cartucho Redisep, gradiente de eluyente del 0 al 20 % de metanol en diclorometano). Se obtuvieron 27 mg del compuesto del título como sólido blanco.

ESI-EM: 722,25 [M+H]

10

15

20

35

40

45

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1 H); 7,85 (d, 1 H); 7,80 (d, 1 H); 7,70 (m, 2H); 7,65 (s, 1 H); 7,05 (m, 1 H); 6,70 (m, 2H); 4,15 (m, 2H); 3,85 (s, 3H); 3,50 (s, 3H); 3,20 (m, 4H); 2,80 (m, 2H); 2,35 (m, 4H); 2,15 (m, 4H); 1,85 (m, 2H); 1,65 (m, 2H); 1,40 (m, 2H); 1,10 (t, 3H).

Separación de racemato de compuestos de fórmula I.A

30 La separación de compuestos racémicos de fórmula I.A puede tener lugar por ejemplo mediante separación en una columna guiral preparativa, por ejemplo Chiracel OD.

Los valores de giro se determinaron a una longitud de onda de 589 nm a 22 °C en cloroformo como disolvente y a una concentración de la sustancia de prueba de 1 mg/ml.

EJEMPLO 1A v EJEMPLO 1B:

Separación de racemato de [5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

[5-Ciano-1-(2,4-dimetoxifenil-sulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico del ejemplo 1 se separó a través de una columna preparativa quiral (Chiralcel OD, flujo 45 ml/min) con heptano : etanol : terc-butanol en la relación 14:6:1 como eluyente. Se obtuvieron el enantiómero (Ejemplo 1A) con valor dextrógiro (valor de giro determinado en cloroformo) y el enantiómero (Ejemplo 1 B) con valor levógiro (valor de giro determinado en cloroformo).

EJEMPLO 1A:

[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido (+)-4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

 α (CHCl₃): dextrógiro ESI-EM: 722,25 [M+H]⁺

55 EJEMPLO 1B:

(-)-[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

60 α (CHCl₃): levógiro ESI-EM: 722,25 [M+H]⁺

EJEMPLOS 2 a 37:

Los compuestos de fórmula I.A de acuerdo con los ejemplos 2 a 37 se prepararon de manera análoga al ejemplo 1 con el uso de las isatinas II correspondientes, cloruros de ácido sulfónico VII y aminas X.

Los compuestos de acuerdo con la invención I.A, en la que X¹ representa NH, pueden purificarse también mediante cristalización y / o mediante HPLC preparativa (RP, eluyentes acetonitrilo / agua, TFA al 0,1 % o ácido acético al 0,1 %). Los compuestos I.A precipitan entonces opcionalmente como sal de ácido trifluoroacético, sal de bis(ácido trifluoroacético) o sal de ácido acético.

EJEMPLO 2:

5

10

15

[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 736,15 [M+H]⁺

EJEMPLO 3:

20 [5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 722,25 [M+H]

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1H); 7,90 (d, 1H); 7,80 (d, 1 H); 7,70 (m, 2H); 7,65 (s, 1 H); 7,05 (m, 1 H); 6,70 (m, 2H); 4,20 (m, 2H); 3,85 (s, 3H); 3,80 (m, 2H); 3,50 (s, 3H); 2,65 (m, 2H); 2,45-2,25 (m, 9H); 2,15 (s, 3H); 1,60 (m, 2H); 1,15 (m, 5H).

EJEMPLO 4:

30 [5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 736,20 [M+H]⁺

35 <u>EJEMPLO 5</u>:

[5-Ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

40 5.1 3-Amino-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo

El compuesto del título se preparó con el uso de 3-(2-etoxi-piridin-3-il)-6-fluoro-3-hidroxi-2-oxo-2,3-dihidro-1H-indol5-carbonitrilo como 3-hidroxi-1,3-dihidroindol-2-ona IV y cloruro de 4-metoxifenilsulfonilo como cloruro de ácido sulfónico VII de manera análoga al ejemplo 1.1 a 1.3.

45 ESI-EM: 483,10 [M+H]

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,25 (d, 1 H); 8,15 (d, 2H); 8,10 (m, 1 H); 7,90 (d, 1 H); 7,45 (d, 1H); 7,25 (d, 2H); 7,15 (m, 1 H); 3,95 (m, 1 H); 3,90 (s, 3H); 3,55 (m, 1 H); 3,05 (m, 2H); 0,55 (t, 3H).

5.2 éster fenílico del ácido [5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-carbámico

La preparación tuvo lugar de manera análoga al ejemplo 1.4. ESI-EM: 603,15 [M+H]⁺

55 5.3 [5-Ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

La preparación tuvo lugar de manera análoga al ejemplo 1.5. ESI-EM: 692,20 [M+H]⁺

60 RMN de ¹H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1 H); 8,00 (d, 2H); 7,95 (d, 1 H); 7,75 (d, 1 H); 7,65 (m, 2H); 7,15 (d, 2H); 7,05 (m, 1 H); 4,10 (m, 1 H); 4,05 (m, 1 H); 3,85 (s, 3H); 3,75 (m, 2H); 2,60 (m, 2H); 2,45 (m, 4H); 2,30 (m, 4H); 2,15 (m, 4H); 1,65 (m, 2H); 1,15 (m, 2H); 1,05 (t, 3H).

EJEMPLO 6:

[5-Ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 706,25 [M+H]⁺

EJEMPLO 7:

10 [5-Ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 692.15 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1 H); 8,05 (d, 2H); 8,00 (d, 1 H); 7,75 (d, 1 H); 7,70 (s, 1 H); 7,65 (m, 1 H); 7,15 (d, 2H); 7,05 (m, 1 H); 4,10 (m, 1 H); 4,05 (m, 1H); 3,85 (s, 3H); 3,20 (m, 4H); 2,80 (m, 4H); 2,35 (m, 2H); 2,15 (m, 4H); 1,90 (m, 2H); 1,65 (m, 2H); 1,40 (m, 2H); 1,05 (t, 3H).

EJEMPLO 8:

20 [5-Ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 706,15 [M+H]⁺

25 EJEMPLO 9:

[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-fenil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico como sal de ácido trifluoroacético

30 ESI-EM: 721,20 [M+H]

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 10,35 (sa, 1 H); 8,00 (s, 1H); 7,90 (d, 1H); 7,75 (m, 2H); 7,45 (d, 1 H); 7,35 (t, 1 H); 7,00 (m, 2H); 6,70 (m, 2H); 4,05 (m, 1 H); 3,90 (m, 4H); 3,65-3,40 (m, 9H); 3,30-2,95 (m, 7H); 2,80 (s, 3H); 2,30 (m, 2H); 1,90 (m, 2H); 1,15 (t, 3H).

35 EJEMPLO 10:

[5-Ciano-3-(2-etoxifenil)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico como sal de ácido trifluoroacético.

40 ESI-EM: 691,20 [M+H]

RMN de 1 H (500 MHz, CH₃OD): δ [ppm] 8,05 (d, 2H); 7,85 (d, 1 H); 7,55 (d, 1 H); 7,45 (d, 1 H); 7,35 (t, 1 H); 7,10 (d, 2H); 7,05 (t, 1H); 7,00 (d, 1 H); 4,05 (m, 1 H); 3,95 (m, 1 H); 3,90 (s, 3H); 3,70 (m, 2H); 3,60 (m, 4H); 3,45 (m, 1H); 3,25 (m, 4H); 3,15 (m, 2H); 2,95 (s, 3H); 2,40 (m, 2H); 2,10 (m, 2H); 1,25 (t, 3H).

45 EJEMPLO 11:

[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxifenil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico

50 RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 7,90 (d, 1 H); 7,70 (m, 2H); 7,60 (s, 1 H); 7,35 (m, 2H); 6,95 (m, 2H); 6,70 (m, 2H); 4,05 (m, 1H); 3,90 (m, 4H); 3,50 (sa, 3H); 3,20 (m, 4H); 3,00 (m, 2H); 2,45 (m, 2H); 2,35 (m, 4H); 2,20 (m, 1 H); 2,05 (m, 2H); 1,75 (m, 2H); 1,45 (m, 2H); 1,15 (t, 3H); 1,05 (t, 3H).

EJEMPLO 12:

55

[5-Ciano-3-(2-etoxifenil)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido como sal del ácido trifluoroacético

ESI-EM: 705,20 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 10,05 (sa, 1H); 8,05 (m, 3H); 7,75 (d, 1 H); 7,65 (m, 2H); 7,35 (t, 1H); 7,15 (d, 2H); 7,00 (t, 1H); 6,95 (d, 1H); 3,95-2,90 (m, 20H); 2,30 (m, 2H); 1,90 (m, 2H); 1,25 (t, 3H); 1,10 (t, 3H).

EJEMPLO 13:

[1-Fenilsulfonil-5-ciano-3-(2-etoxi-fenil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico como sal de ácido trifluoroacético

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 10,10 (sa, 1 H); 8,10 (d, 2H); 8,05 (s, 1 H); 7,80 (m, 2H); 7,65 (m, 4H); 7,35 (t, 1 H); 7,05 (t, 1 H); 6,95 (d, 1 H); 3,95-3,75 (m, 3H); 3,65 (m, 3H); 3,45-2,90 (m, 11H); 2,30 (m, 2H); 1,95 (m, 2H); 1,25 (t, 3H); 1,10 (t, 3H).

10 EJEMPLO 14:

5

[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxifenil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

15 ESI-EM: 721,20 [M+H]⁺

RMN de 1 H (500 MHz, CH₃OD): δ [ppm] 8,00 (d, 1 H); 7,85 (d, 1 H); 7,65 (d, 1 H); 7,35 (t, 1 H); 7,25 (d, 1 H); 7,00 (d, 1 H); 6,95 (t, 1 H); 6,65 (d, 1 H); 6,60 (s, 1 H); 4,15 (m, 1 H); 4,05 (m, 3H); 3,90 (s, 3H); 3,65 (m, 4H); 3,55 (m, 6H); 3,35 (m, 2H); 2,95 (s, 3H); 2,80 (m, 2H); 2,05 (m, 2H); 1,55 (m, 2H); 1,30 (t, 3H).

20 EJEMPLO 15:

[5-Ciano-3-(2-etoxifenil)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-Metil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

25 ESI-EM: 691,20 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,00 (d, 2H); 7,75 (m, 2H); 7,60 (m, 2H); 7,35 (t, 1H); 7,15 (d, 2H); 7,00 (t, 1 H); 6,95 (d, 1H); 3,95-3,80 (m, 7H); 3,55-3,05 (m, 8H); 2,85 (m, 4H); 2,60 (m, 2H); 1,90 (m, 2H); 1,30 (m, 2H); 1,10 (t, 3H).

30 EJEMPLO 16:

[5-Ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxifenil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

35 ESI-EM: 735,25 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 7,90 (d, 1H); 7,75 (m, 3H); 7,40 (d, 1 H); 7,35 (t, 1 H); 6,95 (m, 2H); 6,70 (m, 2H); 4,05 (m, 1 H); 3,95-3,85 (m, 6H); 3,55-2,95 (m, 14H); 2,65 (m, 2H); 1,85 (m, 2H); 1,30 (m, 2H); 1,20 (m, 6H).

EJEMPLO 17:

40

[5-Ciano-3-(2-etoxifenil)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

ESI-EM: 705,20 [M+H]⁺

45 RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,00 (d, 2H); 7,80 (s, 1 H); 7,75 (d, 1 H); 7,60 (m, 2H); 7,35 (t, 1 H); 7,15 (d, 2H); 7,00 (t, 1 H); 6,95 (d, 1 H); 3,95-3,80 (m, 7H); 3,70-3,15 (m, 11H); 2,65 (m, 2H); 1,95 (m, 2H); 1,25 (t, 3H); 1,10 (t, 3H).

EJEMPLO 18:

50

[1-Fenilsulfonil-5-ciano-3-(2-etoxi-fenil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,10 (d, 2H); 7,85 (s, 1 H); 7,80 (m, 2H); 7,65 (m, 4H); 7,35 (t, 1 H); 7,00 (t, 1 H); 6,95 (d, 1 H); 4,25 (m, 2H); 3,95 (m, 2H); 3,85 (m, 2H); 3,70-3,15 (m, 11H); 2,65 (m, 2H); 1,95 (m, 2H); 1,35 (m, 2H); 1,25 (t, 3H); 1,10 (t, 3H).

EJEMPLO 19:

- 60 [5-Cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico
 - 19.1 3-Amino-5-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-1,3-dihidro-indol-2-ona

Se preparó 3-amino-5-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-1,3-dihidro-indol-2-ona de manera análoga al ejemplo 1.1 a 1.3 con el uso de 5-cloro-3-(2-etoxipiridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidroindol-2-ona IV y cloruro de 2,4-2,4-dimetoxifenilsulfonilo como cloruro de ácido sulfónico VII. 5-cloro-3-(2-etoxipiridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidroindol-2-ona se preparó de manera análoga al ejemplo a.1.

ESI-EM: 522,10 [M+H]⁺

19.2 Éster fenílico del ácido [5-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-carbámico

10

Se preparó el compuesto del título de manera análoga al ejemplo 1.4. ESI-EM: $642,10 \text{ [M+H]}^{+}$

19.3 [5-Cloro-1-(2,4-dimetoxifenilsulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida de ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

Se preparó el compuesto del título de manera análoga al ejemplo 1.5. ESI-EM: 731,20 [M+H]⁺

20 EJEMPLO 20:

[1-Fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

25 20.1 3-Amino-1-fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-1,3-dihidro-indol-2-ona

Se preparó el compuesto del título de manera análoga al ejemplo 1.1 a 1.3 con el uso de 5-cloro-3-(2-etoxipiridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidroindol-2-ona IV y cloruro de fenilsulfonilo como cloruro de ácido sulfónico VII. 5-cloro-3-(2-etoxipiridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidroindol-2-ona se preparó de manera análoga al ejemplo a.1.

ESI-EM: 462,00 [M+H]

20.2 Éster fenílico del ácido [1-fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-carbámico

35

30

Se preparó el compuesto del título de manera análoga al ejemplo 1.4. ESI-EM: 582.00 [M+H]⁺

20.3 [1-Fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-40 piperidin-4-il)-piperazin-1-carboxílico

Se preparó el compuesto del título de manera análoga al ejemplo 1.5. ESI-EM: 671,05 [M+H]⁺

45 EJEMPLO 21:

[5-Cloro-1-(2,4-dimetoxi-fenil-sulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico

50 RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1 H); 7,90 (d, 1 H); 7,65 (m, 2H); 7,60 (s, 1 H); 7,50 (d, 1H); 7,00 (m, 1 H); 6,70 (m, 2H); 4,20 (m, 2H); 3,85 (s, 3H); 3,50 (s, 3H); 3,25 (m, 4H); 2,90 (m, 2H); 2,35 (m, 6H); 2,15 (m, 1H); 1,85 (m, 2H); 1,65 (m, 2H); 1,35 (m, 2H); 1,15 (t, 3H); 0,95 (t, 3H).

EJEMPLO 22:

55

 $[1-Fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida \quad del \quad \'acido \quad 4-(1-etil-piperidin-4-il)-piperazin-1-carbox\'(lico)$

ESI-EM: 685,20 [M+H]+

60

EJEMPLO 23:

[5-Cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico

65

ESI-EM: 731,20 [M+H]⁺

EJEMPLO 24:

[1-Fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico

, ESI-EM: 671,10 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1H); 8,10 (d, 2H); 7,90 (d, 1H); 7,80-7,60 (m, 5H); 7,40 (d, 1 H); 7,05 (m, 1 H); 4,15 (m, 1 H); 4,05 (m, 1 H); 3,80 (m, 2H); 2,60 (m, 2H); 2,50-2,25 (m, 9H); 2,20 (s, 3H); 1,65 (m, 2H); 1,15 (m, 2H); 1,05 (t, 3H).

10 EJEMPLO 25:

15

[1-Fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 685,20 [M+H]⁺

EJEMPLO 26:

20 [5-Cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 1'-metil-[4,4']bipiperidinil-1-carboxílico

ESI-EM:

25 EJEMPLO 27:

[5-Cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 1'-etil-[4,4']bipiperidinil-1-carboxílico

30 ESI-EM: 744,15 [M+H]

EJEMPLO 28:

[5-Cloro-3-[2-(2,2-difluoro-etoxi)-fenil]-1-(2,4-dimetoxi-fenilsulfonil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 766,20 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,00 (d, 1 H); 7,75 (m, 2H); 7,65 (s, 1 H); 7,45 (m, 1 H); 7,20 (d, 1 H); 7,05 (d, 1 H); 7,00 (t, 1 H); 6,80 (m, 2H); 6,45 (t, J = 70 Hz, 1 H); 4,55 (m, 1 H); 4,40 (m, 1 H); 3,95 (s, 3H); 3,90 (m, 2H); 3,55 (s, 3H); 2,70 (m, 2H); 2,55 (m, 4H); 2,40 (m, 5H); 2,20 (s, 3H); 1,70 (m, 2H); 1,25 (m, 2H).

EJEMPLO 29:

40

[5-Cloro-3-[2-(2,2-difluoro-etoxi)-fenil]-1-(2,4-dimetoxi-fenilsulfonil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 766,20 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 7,95 (d, 1H); 7,65 (m, 2H); 7,60 (s, 1H); 7,35 (t, 1 H); 7,10 (d, 1 H); 6,95 (m, 1 H); 6,90 (t, 1 H); 6,75 (d, 1 H); 6,70 (m, 1 H); 6,35 (t, J = 70 Hz, 1H); 4,45 (m, 1H); 4,30 (m, 1H); 3,85 (s, 3H); 3,45 (s, 3H); 3,20 (m, 4H); 2,75 (m, 2H); 2,35 (m, 4H); 2,15 (m, 4H); 1,85 (m, 2H); 1,65 (m, 2H); 1,40 (m, 2H).

EJEMPLO 30:

[5-Cloro-3-[2-(2,2-difluoroetoxi)-fenil]-1-(2,4-dimetoxi-fenilsulfonil)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida de ácido 1'-metil-[4,4']bipiperidinil-1-carboxílico

ESI-EM: 765,20 [M+H]+

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 7,90 (d, 1 H); 7,65 (m, 2H); 7,55 (s, 1 H); 7,35 (t, 1 H); 7,10 (d, 1 H); 6,95 (m, 1 H); 6,90 (t, 1 H); 6,75 (d, 1 H); 6,70 (s, 1 H); 6,35 (t, J = 70 Hz, 1 H); 4,45 (m, 1 H); 4,30 (m, 1 H); 3,90 (s, 3H); 3,85 (m, 2H); 3,45 (s, 3H); 2,80 (m, 2H); 2,55 (m, 2H); 2,15 (s, 3H); 1,85 (m, 2H); 1,55 (m, 4H); 1,15 (m, 3H), 0,95 (m, 3H).

EJEMPLO 31:

65 [1-(2,4-Dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico como sal del ácido trifluoroacético

ESI-EM: 715,20 [M+H]+

RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,05 (m, 2H); 7,85 (m, 1H); 7,25 (t, 1H); 7,10 (m, 2H); 6,75 (m, 1 H); 6,60 (d, 1 H); 6,40 (s, 1 H); 4,55 (m, 2H); 3,85 (s, 3H); 3,75-3,50 (m, 10H); 3,10 (m, 4H); 2,90 (m, 2H); 2,80 (s, 3H); 2,45 (m, 4H); 2,15 (m, 2H); 1,45 (t, 3H).

EJEMPLO 32:

10

15

20

25

30

[1-Fenilsulfonil-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 655,20 [M+H]⁺

RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,10 (m, 3H); 7,80 (m, 1 H); 7,65 (m, 1 H); 7,50 (m, 2H); 7,20 (d, 1 H); 7,15 (t, 1 H); 6,80 (m, 1 H); 6,70 (s, 1 H); 4,55 (m, 2H); 3,20 (m, 4H); 2,90 (m, 2H); 2,45 (m, 4H); 2,25 (m, 4H); 1,95 (m, 2H); 1,75 (m, 2H); 1,60 (m, 2H); 1,45 (t, 3H).

EJEMPLO 33:

[1-(2,4-Dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 729,30 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,10 (m, 1 H); 7,90 (d, 1 H); 7,75 (m, 2H); 7,70 (s, 1 H); 7,35 (t, 1 H); 7,00 (m, 1 H); 6,70 (d, 1 H); 6,65 (m, 1 H); 4,20 (m, 2H); 3,85 (s, 3H); 3,50 (s, 3H); 3,20 (m, 4H); 2,90 (m, 2H); 2,35 (m, 6 H); 2,15 (m, 1 H); 1,85 (m, 2H); 1,70 (m, 2H); 1,35 (m, 2H); 1,10 (t, 3H); 0,95 (t, 3H).

EJEMPLO 34:

[1-Fenilsulfonil-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(1-etil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 669,20 [M+H]⁺

EJEMPLO 35:

35 [1-(2,4-Dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

ESI-EM: 715,20 [M+H]⁺

RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,05 (m, 2H); 7,80 (m, 1 H); 7,25 (t, 1 H); 7,00 (m, 2H); 6,75 (m, 1 H); 6,60 (d, 40 H); 6,40 (s, 1 H); 4,50 (m, 2H); 3,95 (m, 2H); 3,85 (s, 3H); 3,60 (m, 8H); 3,55 (s, 3H); 3,25 (m, 1 H); 3,35 (s, 3H); 2,25 (m, 2H); 2,00 (m, 2H); 1,60 (m, 2H); 1,45 (t, 3H).

EJEMPLO 36:

45 [1-Fenilsulfonil-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del 4-(4-metil-piperazin-1-il)-piperidin-1-carboxílico

ESI-EM: 655,20 [M+H]+

RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,10 (m, 3H); 7,80 (m, 1 H); 7,65 (m, 1 H); 7,55 (m, 2H); 7,30 (d, 1 H); 7,25 (t, 1 H); 6,80 (m, 1 H); 6,70 (s, 1 H); 4,55 (m, 2H); 3,75 (m, 2H); 2,70 (m, 2H); 2,60-2,40 (m, 8H); 2,35 (m, 1 H); 2,30 (s, 3H); 1,75 (m, 2H); 1,45 (t, 3H); 1,35 (m, 2H).

EJEMPLO 37:

55 [1-(2,4-Dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-amida del ácido 4-(4-etil-piperazin-1-il)-piperidin-1-carboxílico como sal del ácido trifluoroacético

ESI-EM: 729,20 [M+H]⁺ RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1H); 7,90 (d, 1 H); 7,70 (s, 1H); 7,65 (m, 1 H); 7,60 (d, 1 H); 7,35 (t, 1 H); 7,00 (m, 1 H); 6,70 (m, 2H); 4,20 (m, 2H); 3,95 (m, 2H); 3,85 (s, 3H); 3,55-2,85 (m, 14H); 2,65 (m, 2H); 1,85 (m, 2H); 1,30 (m, 2H); 1,20 (t, 3H); 1,15 (t, 3H).

II.2 Compuestos de fórmula I-A, en la que X¹ representa O (Ejemplos 38 a 55)

EJEMPLO 38:

10

- 5 Éster [5-ciano-1-(2,4-dimetoxi-bencenosulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazina-1-carboxílico
 - 38.1 Éster fenílico del ácido 5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-3-fenoxicarboniloxi-2,3-dihidro-indol-1-carboxílico
- A una disolución enfriada hasta 0 °C de 342 mg (0,66 mmoles; 60 % de pureza) de 3-(2-etoxi-piridin-3-il)-6-fluoro-3-hidroxi-2-oxo-2,3-dihidro-1H-indol-5-carbonitrilo (aguas madre del ejemplo a.2) en 8 ml de piridina se añadieron gota a gota lentamente 330 μl (2,62 mmoles) de éster fenílico del ácido clorofórmico y se agitó posteriormente la mezcla de reacción durante la noche a temperatura ambiente. Se diluyó la mezcla de reacción con diclorometano y se extrajo con agua. Se lavó la fase orgánica con agua y solución salina saturada, se secó sobre sulfato de magnesio y se concentró a presión reducida. El residuo se purificó cromatográficamente sobre gel de sílice (cartucho Redisep, gradiente de eluyente del 0 al 5 % de metanol en diclorometano). Se obtuvieron 291 mg del compuesto del título. ESI-EM: 554,15 [M+H]⁺
- 20 38.2 Éster [5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico
- Una mezcla de 291 mg (0,53 mmoles) de éster fenílico del ácido 5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-3-fenoxicarboniloxi-2,3-dihidro-indol-1-carboxílico, 289 mg (1,58 mmoles) de 1-(1-metilpiperidin-4-il)-piperazina y 6 ml de tetrahidrofurano seco (THF) se agitó durante la noche a temperatura ambiente. La mezcla de reacción se concentró a presión reducida y se trata en metanol. El sólido precipitado se separó por filtración y se secón en estufa de secado de vacío. Se obtuvieron 158 mg del compuesto del título como sólido blanco. ESI-EM: 523,20 [M+H]⁺
- 30 38.3 Éster [5-ciano-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxipiridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico
- A una disolución de 50 mg (0,10 mmoles) de éster 5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico en 2 ml de dimetilformamida anhidra se añadieron bajo atmósfera de nitrógeno y con enfriamiento mediante un baño de hielo 9,2 mg (0,19 mmoles) de hidruro de sodio (50 % de dispersión en aceite mineral). Se agitó durante 10 min a 0 °C, se añadieron a continuación 29 mg (0,12 mmoles) de cloruro de 2,4-2,4-dimetoxifenilsulfonilo y se agitó durante 30 min más a temperatura ambiente. Se vertió la mezcla de reacción en agua helada y se extrajo a continuación con acetato de etilo. La fase orgánica se lavó con disolución saturada de cloruro de sodio, se secó sobre sulfato de magnesio y se evaporó el disolvente. El residuo se purificó cromatográficamente sobre gel de sílice (cartucho Redisep, gradiente de eluyente del 0 al 20 % de metanol en diclorometano). Se obtuvieron 34 mg del compuesto del título como sólido blanco.
- ESI-EM: 723,25 [M+H][†] RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 2H); 7,90 (d, 1H); 7,85 (m, 2H); 7,15 (m, 1 H); 6,70 (m, 2H); 4,15 (m, 2H); 3,85 (s, 3H); 3,55 (s, 3H); 3,05 (m, 2H); 2,80 (m, 2H); 2,45 (m, 2H); 2,30 (m, 2H); 2,15 (m, 4H); 1,90 (m, 2H); 1,65 (m, 2H); 1,40 (m, 2H); 1,05 (t, 3H).

EJEMPLOS 39 a 55:

Los compuestos de fórmula I, en la que X¹ representa O, de acuerdo con los ejemplos 39 a 55 se prepararon de manera análoga al ejemplo 38 con el uso de la 3-hidroxi-1,3-dihidroindol-2-ona correspondiente de fórmula IV, cloruros de ácido sulfónico VII y aminas X.

EJEMPLO 39:

55 Éster [5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4- (1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 693,25 [M+H]+

RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 1 H); 8,05 (d, 2H); 7,95 (d, 1 H); 7,90 (d, 1 H); 7,20 (d, 1 H); 7,00 (m, 3H); 4,25 (m, 2H); 3,85 (s, 3H); 3,55 (m, 2H); 3,10 (m, 1 H); 3,05 (m, 1 H); 2,95 (m, 2H); 2,60 (m, 1 H); 2,50 (m, 1 H); 2,40 (m, 2H); 2,30 (m, 4H); 2,05 (m, 2H); 1,75 (m, 2H); 1,65 (m, 2H); 1,20 (t, 3H).

EJEMPLO 40:

65 Éster [1-fenilsulfonil-5-ciano-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 663,25 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1 H); 8,10 (d, 2H); 7,90 (d, 1 H); 7,85 (d, 1 H); 7,70 (m, 2H); 7,60 (m, 1 H); 7,30 (m, 1 H); 7,15 (m, 1 H); 4,10 (m, 1 H); 3,95 (m, 1 H); 3,60 (m, 2H); 3,30 (m, 2H); 3,00 (m, 2H); 2,75 (m, 1 H); 2,65 (s, 3H); 2,45 (m, 3H); 2,35 (m, 2H); 1,85 (m, 2H); 1,65 (m, 2H); 0,95 (t, 3H).

)

EJEMPLO 41:

Éster 5-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

10

41.1 Éster fenílico del ácido 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-3-fenoxicarboniloxi-2,3-dihidro-indol-1-carboxílico

ESI-EM: 563.10 [M+H]⁺

15

41.2 Éster 5-cloro-3-(2-toxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM:

20

41.3 Éster 5-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 732,25 [M+H]⁺

25 RMN de 1 H (400 MHz, CH₃OD): δ [ppm] 8,15 (m, 2H); 7,95 (d, 1 H); 7,85 (d, 1 H); 7,20 (d, 1 H); 7,10 (t, 1 H); 6,65 (m, 2H); 4,25 (m, 2H); 3,90 (s, 3H); 3,65 (m, 5H); 3,20 (m, 2H); 2,95 (m, 2H); 2,60 (m, 2H); 2,45 (m, 2H); 2,30 (m, 4H); 2,05 (m, 2H); 1,85 (m, 2H); 1,55 (m, 2H); 1,20 (t, 3H).

EJEMPLO 42:

30

Éster 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 702,20 [M+H]⁺

35 RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 1H); 8,05 (m, 2H); 7,95 (d, 1H); 7,85 (d, 1 H); 6,95 (m, 4H); 4,25 (m, 2H); 3,85 (s, 3H); 3,55 (m, 2H); 3,10 (m, 2H); 2,90 (m, 2H); 2,65-2,35 (m, 4H); 2,25 (m, 4H); 1,95 (m, 2H); 1,75 (m, 2H); 1,55 (m, 2H); 1,25 (t, 3H).

EJEMPLO 43:

40

Éster 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(2-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 702,15 [M+H]⁺

45 RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 2H); 7,90 (m, 2H); 7,55 (t, 1 H); 7,05 (t, 1 H); 7,00 (d, 1 H); 6,95 (m, 2H); 4,30 (m, 2H); 3,65 (s, 3H); 3,55 (m, 2H); 3,10 (m, 2H); 2,90 (m, 2H); 2,60-2,20 (m, 8H); 1,90 (m, 2H); 1,70 (m, 2H); 1,55 (m, 2H); 1,25 (m, 3H).

EJEMPLO 44:

50

Éster 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-1-(4-metoxi-2-trifluorometoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 786,15 [M+H]⁺

55 RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,20 (d, 1 H); 8,15 (m, 1 H); 7,90 (m, 2H); 6,95 (m, 2H); 6,85 (m, 2H); 4,25 (m, 2H); 3,85 (s, 3H); 3,55 (m, 2H); 3,20-2,85 (m, 4H); 2,60-2,35 (m, 4H); 2,35 (m, 4H); 1,95 (m, 2H); 1,70 (m, 2H); 1,60 (m, 2H); 1,25 (t, 3H).

EJEMPLO 45:

60

Éster 1-fenilsulfonil-5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 672,25 [M+H]⁺ RMN de ¹H (500 MHz, d₆-DMSO): δ [ppm] 8,15 (m, 1 H); 8,10 (d, 2H); 7,80 (m, 1 H); 7,65 (m, 3H); 7,45 (d, 1 H); 7,30 (m, 1 H); 7,15 (m, 1 H); 4,10 (m, 1 H); 3,95 (m, 1 H); 3,60 (m, 2H); 3,20 (m, 2H); 3,00 (m, 2H);

2,85 (m, 2H); 2,65 (s, 3H); 2,45 (m, 3H); 2,30 (m, 2H); 1,85 (m, 2H); 1,65 (m, 2H); 0,95 (t, 3H).

EJEMPLO 46:

- 5 Éster 6-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico
 - 46,1 Éster fenílico del ácido 6-cloro-3-(2-etoxi-piridin-3-il)-5-fluoro-2-oxo-3-fenoxicarboniloxi-2,3-dihidro-indol-1-carboxílico

ESI-EM: 563,50 [M+H]⁺

10

15

20

25

30

35

40

46.2 Éster 6-cloro-3-(2-etoxi-piridin-3-il)-5-fluoro-2-oxo-2,3-dihidro-1H-indol-3-flico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 532,20 [M+H]⁺

46.3 Éster 6-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 732,20 [M+H]⁺

RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,10 (m, 2H); 8,05 (d, 1 H); 7,90 (d, 1H); 6,95 (m, 1 H); 6,80 (d, 1 H); 6,55 (d, 1 H); 6,40 (s, 1 H); 4,25 (m, 2H); 3,85 (s, 3H); 3,60 (s, 3H); 3,55 (m, 2H); 3,15 (m, 2H); 2,90 (m, 2H); 2,60-2,35 (m, 4H); 2,25 (m, 4H); 1,95 (m, 2H); 1,70 (m, 2H); 1,55 (m, 2H); 1,25 (t, 3H).

EJEMPLO 47:

Éster 6-cloro-3-(2-etoxi-piridin-3-il)-5-fluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 702,20 [M+H]⁺

RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 1 H); 8,05 (m, 3H); 7,90 (d, 1 H); 6,95 (m, 3H); 6,80 (d, 1H); 4,25 (m, 2H); 3,85 (s, 3H); 3,55 (m, 2H); 3,10 (m, 2H); 2,90 (m, 2H); 2,65-2,35 (m, 4H); 2,25 (m, 4H); 1,95 (m, 2H); 1,75 (m, 2H); 1,55 (m, 2H); 1,25 (t, 3H).

EJEMPLO 48:

Éster 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico del ácido 6-cloro-3-(2-etoxi-piridin-3-il)-5-fluoro-1-(4-metoxi-2-trifluorometoxi- fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico]

ESI-EM: 786,15 [M+H]⁺ RMN de 1 H (500 MHz, MeOD): δ [ppm] 8,15 (d, 1 H); 8,10 (m, 2H); 8,05 (d, 1 H); 7,05 (m, 3H); 6,95 (s, 1H); 4,25 (m, 2H); 3,90 (s, 3H); 3,60 (m, 2H); 3,10 (m, 2H); 2,90 (m, 2H); 2,55 (m, 2H); 2,40 (m, 2H); 2,25 (m, 4H); 2,00 (m, 2H); 1,80 (m, 2H); 1,55 (m, 2H); 1,20 (t, 3H).

45 EJEMPLO 49:

Éster 1-fenilsulfonil-6-cloro-3-(2-etoxi-piridin-3-il)-5-fluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

50 ESI-EM: 672,20 [M+H]⁺

RMN de 1 H (400 MHz, CDCl₃): δ [ppm] 8,15 (m, 3H); 8,05 (d, 1 H); 7,90 (d, 1H); 7,85 (d, 1 H); 7,65 (t, 1 H); 7,55 (m, 2H); 6,95 (m, 1 H); 6,75 (d, 1 H); 4,25 (m, 2H); 3,55 (m, 2H); 3,00 (m, 4H); 2,60-2,25 (m, 8H); 2,05 (m, 2H); 1,75 (m, 2H); 1,65 (m, 2H); 1,25 (t, 3H).

55 <u>EJEMPLO 50</u>:

Éster 6-cloro-3-(2-etoxi-piridin-3-il)-5-fluoro-1-(2-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

60 ESI-EM: 702,20 [M+H]⁺

RMN de 1 H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 3H); 7,90 (d, 1H); 7,55 (t, 1H); 7,05 (t, 1 H); 6,95 (m, 2H); 6,80 (d, 1 H); 4,30 (m, 2H); 3,65 (s, 3H); 3,55 (m, 2H); 3,10 (m, 2H); 2,90 (m, 2H); 2,60-2,20 (m, 8H); 1,90 (m, 2H); 1,70 (m, 2H); 1,55 (m, 2H); 1,25 (m, 3H).

EJEMPLO 51:

Éster 1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

51.1 Éster 3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 516,25 [M+H]⁺

10

5

51.2 Éster 1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 716,30 [M+H]+

15 RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 1H); 8,05 (d, 1 H); 7,95 (m, 2H); 6,95 (m, 1 H); 6,85 (t, 1 H); 6,55 (d, 1 H); 6,40 (s, 1 H); 4,30 (m, 2H); 3,85 (s, 3H); 3,65 (s, 3H); 3,55 (m, 2H); 3,15 (m, 2H); 2,90 (m, 2H); 2,65-2,35 (m, 4H); 2,25 (m, 4H); 1,95 (m, 2H); 1,75 (m, 2H); 1,55 (m, 2H); 1,25 (m, 3H).

EJEMPLO 52:

20

Éster 3-(2-etoxi-piridin-3-il)-5,6-difluoro-1-(4-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 686,20 [M+H]⁺

25 RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 1 H); 8,05 (d, 2H); 7,90 (d, 1 H); 7,85 (m, 1 H); 6,95 (m, 3H); 6,80 (t, 1 H); 4,25 (m, 2H); 3,85 (s, 3H); 3,55 (m, 2H); 3,20-3,00 (m, 2H); 2,90 (m, 2H); 2,65-2,35 (m, 4H); 2,25 (m, 4H); 1,95 (m, 2H); 1,75 (m, 2H); 1,55 (m, 2H); 1,25 (m, 3H).

EJEMPLO 53:

30

Éster 3-(2-etoxi-piridin-3-il)-5,6-difluoro-1-(2-metoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 686,20 [M+H]⁺

35 RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,15 (m, 2H); 7,95 (m, 1 H); 7,90 (d, 1H); 7,55 (t, 1 H); 7,05 (t, 1 H); 6,95 (m, 2H); 6,85 (t, 1 H); 4,30 (m, 2H); 3,65 (s, 3H); 3,55 (m, 2H); 3,10 (m, 2H); 2,90 (m, 2H); 2,65-2,20 (m, 8H); 1,95 (m, 2H); 1,75 (m, 2H); 1,55 (m, 2H); 1,30 (m, 3H).

EJEMPLO 54:

40

Éster 3-(2-etoxi-piridin-3-il)-5,6-difluoro-1-(4-metoxi-2-trifluorometoxi-fenilsulfonil)-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: 770,20 [M+H]⁺

45 RMN de ¹H (500 MHz, CDCl₃): δ [ppm] 8,25 (d, 1 H); 8,15 (m, 1 H); 7,90 (m, 2H); 6,95 (m, 1 H); 6,85 (m, 3H); 4,25 (m, 2H); 3,85 (s, 3H); 3,55 (m, 2H); 3,20-2,90 (m, 4H); 2,65-2,35 (m, 4H); 2,30 (m, 4H); 1,95 (m, 2H); 1,55 (m, 2H); 1,25 (m, 3H).

EJEMPLO 55:

50

Éster 1-fenilsulfonil-3-(2-etoxi-piridin-3-il)-5,6-difluoro-2-oxo-2,3-dihidro-1H-indol-3-ílico] del ácido 4-(1-metil-piperidin-4-il)-piperazin-1-carboxílico

ESI-EM: $656,25 \text{ [M+H]}^+ \text{ RMN de }^1 \text{H } (500 \text{ MHz}, \text{ CDCI}_3): \delta \text{ [ppm] } 8,15 \text{ (m, 3H)}; 7,90 \text{ (m, 1H)}; 7,85 \text{ (m, 1H)}; 7,65 \text{ (m, 1 H)}; 7,55 \text{ (m, 2H)}; 6,95 \text{ (m, 1 H)}; 6,80 \text{ (t, 1H)}; 4,20 \text{ (m, 2H)}; 3,55 \text{ (m, 2H)}; 3,10-2,95 \text{ (m, 4H)}; 2,55 \text{ (m, 1 H)}; 2,35 \text{ (m, 2H)}; 2,30 \text{ (m, 4H)}; 2,05 \text{ (m, 2H)}; 1,75 \text{ (m, 2H)}; 1,65 \text{ (m, 2H)}; 1,20 \text{ (t, 3H)}.$

II.3 Compuestos de fórmula I-A, en la que X¹ representa CH₂

60 EJEMPLO 56:

- (+)-5-Cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-3-{2-[4-(1-metil-piperidin-4-il)-piperazin-1-il]-2-oxo-etil}-1,3-dihidro-indol-2-ona como sal del ácido trifluoroacético
- 65 56.1 Éster dimetílico del ácido 2-[5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-malónico

A una suspensión enfriada hasta 10 °C de 2,311 g (57,8 mmoles, 60 % p/p) de hidruro de sodio en 150 ml de dimetilformamida se añadieron gota a gota lentamente 7,26 ml (63,5 mmoles) de malonato de dimetilo. A continuación se agitó la mezcla de reacción durante 30 minutos a temperatura ambiente y se añadieron después 6,57 g (19,26 mmoles) de 3,5-dicloro-3-(2-etoxi-piridin-3-il)-6-fluoro-1,3-dihidro-indol-2-ona (preparada con el uso de 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-3-hidroxi-1,3-dihidro-indol-2-ona de manera análoga al ejemplo 1.1) en porciones en sustancia. La disolución de reacción se agitó durante 15 minutos más a temperatura ambiente. El desarrollo de la reacción se controló por cromatografía de capa fina (gel de sílice, heptano / acetato de etilo 1:1). La mezcla madre se agitó para el tratamiento posterior en HCl 1 N frío y se mezcló con diclorometano. Las fases se separaron, y la fase acuosa se extrajo con diclorometano (1 x). La fase orgánica reunida se lavó en primer lugar con agua (1 x) y a continuación con disolución saturada de cloruro de sodio (1 x), se secó sobre sulfato de magnesio, se filtró y el disolvente se retiró a vacío. El residuo se disolvió de nuevo en un poco de diclorometano y se mezcló con pentano. Precipitaron varias fracciones de cristalizado. Se obtuvieron en total 3,23 g del compuesto del título como sólido blanco y 1,62 g como sólido de color beige. ESI-EM: 437,10 [M+H]⁺

15

10

56.2 Éster metílico del ácido [5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-acético

A una disolución de 4,85 g (11,10 mmoles) de éster dimetílico del ácido 2-[5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-malónico en 5 ml de etanol se añadieron 50 ml de hidróxido de sodio 2 N y se agitó durante 1 hora a temperatura ambiente. Después, según controles de CCF (gel de sílice, heptano / acetato de etilo 1:1) ya no podía detectarse ningún educto. La mezcla de reacción se agitó en ácido clorhídrico 1 N helado y se mezcló con diclorometano. Se separaron las fases y se extrajo la fase acuosa una vez con diclorometano. La fase orgánica reunida se lavó en primer lugar con agua (1 x) y a continuación con disolución saturada de cloruro de sodio (1 x), se secó sobre sulfato de magnesio, se filtró y el disolvente se retiró a vacío.

25

20

El sólido obtenido, éster monometílico del ácido 2-[5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-malónico (4,58 g), se secó en estufa de secado de vacío a 40 °C. ESI-EM: 423,10 [M+H]⁺

30 El éster monometílico del ácido 2-[5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-malónico obtenido (4,58 g) se calentó hasta 150 °C en un matraz de una boca inertizado con nitrógeno. A este respecto se formó con desprendimiento de gas CO₂ éster metílico del ácido [5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-acético. La mezcla madre de reacción se enfrió hasta temperatura ambiente, y se mezcló la sustancia con metanol. Se formó un cristalizado, que se mantuvo en el frigorífico a 5 °C durante la noche. El sólido se aspiró y se lavó con poco metanol. Se obtuvieron 3,286 g (8,68 mmoles, 80 % de rendimiento) del compuesto del título como sólido blanco.

ESI-EM: 379,05 [M+H]⁺

56.3 Ácido 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-acético

40

A una disolución de 3,28 g (8,66 mmoles) de éster metílico del ácido [5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-acético en 70 ml de etanol se añadieron en primer lugar 5 ml de agua y a continuación 2,3 ml de hidróxido de sodio al 50 %. Se agitó la mezcla de reacción durante 5 horas a temperatura ambiente. Según controles de CCF (gel de sílice, diclorometano / metanol 9:1) la reacción había tenido lugar por completo. Para el tratamiento posterior se concentró la mezcla de reacción en el evaporador rotatorio y se ajustó a pH 1-2 con ácido clorhídrico 1 N. La suspensión blanca se mantuvo durante 4 horas en el frigorífico, el sólido precipitado se separó por filtración y el sólido obtenido se secó a estufa de secado de vacío a 40 °C. Se obtuvieron 3,12 g (8,55 mmoles, 99 % del rendimiento teórico) del compuesto del título. ESI-EM: 365,15 [M+H]⁺

50

55

60

45

Separación de enantiómeros

A una disolución de 3,12 g (8,55 mmoles) de ácido [5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol3-il]-acético en 30 ml de metanol se añadieron 2,518 g (8,55 mmoles) de (+)-cinconidina (valor de giro en CHCl3: +218°). La mezcla de reacción se agitó durante 30 minutos a 64 °C y a continuación se enfrió lentamente. El sólido precipitado se separó por filtración a ~ 40 °C, se lavó con metanol caliente y dietil éter y a continuación se secó en estufa de secado de vacío a 40 °C (288 mg). Se separó por filtración una fracción de cristalización adicional a temperatura ambiente, se lavó con metanol caliente y dietil éter y a continuación se secó en estufa de secado de vacío a 40 °C (1,24 g). La disolución de reacción se mantuvo durante algunas horas en el frigorífico y a continuación se lavó el sólido precipitado con metanol caliente y dietil éter y se secó en estufa de secado de vacío a 40 °C (175 mg). Después de haberse concentrado las aguas madre hasta 50 ml, se separó por filtración de nuevo el sólido precipitado, se lavó con metanol caliente y dietil éter y a continuación se secó a estufa de secado de vacío a 40 °C (355 mg).

Las 4 fracciones de cristalización se disolvieron en cada caso en una mezcla 1:1 de éster etílico de ácido acético y agua y a continuación con se ajustó con HCl concentrado a pH 1-0. Después de 15 minutos de agitación se

separaron las fases. La fase acuosa se extrajo con éster etílico de ácido acético. La fase orgánica reunida se lavó en primer lugar con agua (1 x) y a continuación con disolución saturada de cloruro de sodio (1 x), se secó sobre sulfato de magnesio, se filtró y el disolvente se retiró a vacío.

- 1ª fracción de cristalización: 175 mg (valor de giro en CHCl₃: +70°)
- 2ª fracción de cristalización: 749 mg (valor de giro en CHCl₃: +65°)
- 3ª fracción de cristalización: 109 mg (valor de giro en CHCl₃: +74°)
- 4ª fracción de cristalización: 208 mg (valor de giro en CHCl₃: +72°)
- 10 ESI-EM: 365,15 [M+H]

5

- 56.4 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-3-{2-[4-(1-metil-piperidin-4-il)-piperazin-1-il]-2-oxo-etil}-1,3-dihidroindol-2-ona
- A una disolución de 150 mg (0,41 mmoles) de ácido [5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-2-oxo-2,3-dihidro-1H-indol-3-il]-acético en 2 ml de diclorometano se añadieron 200 mg (0,45 mmoles) de BOP, 1,07 ml (6,17 mmoles) de diisopropiletilamina y a continuación 79 mg (0,43 mmoles) de 1-(1-metilpiperidin-4-il)-piperazina. La mezcla de reacción se agitó a temperatura ambiente durante la noche. A la disolución de reacción se añadieron 6 ml de NaOH 2 molar y se agitó durante 15 minutos a temperatura ambiente. La mezcla madre de reacción se diluyó con acetato de etilo. Las fases se separaron y la fase acuosa se extrajo con acetato de etilo (1 x). La fase orgánica reunida se lavó de nuevo con agua (1 x) y disolución saturada de cloruro de sodio (1 x), se secó sobre sulfato de magnesio, se filtró y el disolvente se evaporó a vacío. El residuo se purificó cromatográficamente sobre gel de sílice (cartucho Redisep, gradiente de eluyente del 2 al 50 % de metanol en diclorometano). Se obtuvieron 181 mg del compuesto del título como sólido blanco.
- 25 ESI-EM: 530,50 [M+H]
 - 56.5 (+)-5-cloro-1-(2,4-dimetoxi-fenilsulfonil)-3-(2-etoxi-piridin-3-il)-6-fluoro-3-{2-[4-(1-metil-piperidin-4-il)-piperazin-1-il]-2-oxo-etil}-1,3-dihidro-indol-2-ona
- A una disolución enfriada hasta 0 °C de 180 mg (0,34 mmoles) de 5-cloro-3-(2-etoxi-piridin-3-il)-6-fluoro-3-{2-[4-(1-metil-piperidin-4-il)-piperazin-1-il]-2-oxo-etil}-1,3-dihidro-indol-2-ona en 2 ml de dimetilformamida se añadieron 16,3 mg (0,41 mmoles, 60 % p/p) hidruro de sodio y después 10 minutos 96 mg (0,41 mmoles) de cloruro de 2,4-2,4-dimetoxifenilsulfonilo. Se dejó calentar la mezcla madre de reacción hasta temperatura ambiente y se agitó posteriormente durante 50 minutos. El desarrollo de la reacción se siguió mediante cromatografía de capa fina (gel de sílice, diclorometano / metanol 15 : 5). A la mezcla de reacción se añadieron agua y acetato de etilo. Las dos fases se separaron a continuación y la fase acuosa se extrajo una vez más con acetato de etilo (1 x). La fase orgánica reunida se lavó con agua (1 x) y con cloruro de sodio saturado (1 x), se secó sobre sulfato de magnesio, se filtró y el disolvente se evaporó a vacío. El residuo se purificó a través de HPLC preparativa (RP, eluyentes acetonitrilo / agua, 0,01 % de TFA). Se obtuvieron 116 mg (0,16 mmoles, 46 %, 99 % de pureza) del compuesto del título como sólido blanco.

Valor de giro α (CHCl₃): dextrógiro

ESI-EM: 730,55 [M+H]⁺

RMN de 1 H (500 MHz, d₆-DMSO): δ [ppm] 10,20 (sa, 1 H); 8,10 (m, 1 H); 7,95 (m, 1 H); 7,85 (d, 1H); 7,70 (d, 1H); 7,35 (d, 1H); 7,05 (t, 1H); 6,65 (m, 2H); 4,10 (m, 2H); 3,95 (m, 2H); 3,85 (s, 3H); 3,65 (s, 3H); 3,60 (m, 2H); 3,35 (m, 4H); 3,00 (m, 5H); 2,80 (s, 3H); 2,50 (s, 2H); 2,25 (m, 2H); 1,85 (m, 2H); 1,00 (t, 3H).

III. DETERMINACIÓN DE LA ACTIVIDAD BIOLÓGICA

1. Ensayo de receptor V1b de vasopresina:

Sustancias:

45

50

55

Las sustancias de prueba se disolvieron en una concentración de 10⁻² M en DMSO y se diluyeron adicionalmente en DMSO hasta de 5x10⁻⁴ M a 5x10⁻⁹ M. Esta serie de dilución previa con DMSO se diluyó 1:10 con tampón de ensayo. En la mezcla madre de ensayo se diluyó de nuevo 1:5 la concentración de sustancia (2 % de DMSO en la mezcla madre).

Preparación de membrana:

Se recogieron células CHO-K1 con receptor V1b de vasopresina humano expresado de manera estable (clon 3H2) y se homogeneizaron en Tris-HCl 50 mM y en presencia de inhibidores de proteasa (Roche complete Mini Nº 1836170) con un homogeneizador Polytron en la posición media 2x10 segundos y a continuación se separó por centrifugación durante 1 h a 40.000 x g. El sedimento de membrana se homogeneizó de nuevo tal como se describió y se centrifugó y a continuación se llevó a en Tris-HCl 50 mM, pH 7,4, se homogeneizó y se conservó congelado en alícuotas a -190 °C en nitrógeno líquido.

Ensayo de unión:

El tampón de unión se realizó conforme al método de Tahara y col. (Tahara A y col., Brit. J. Pharmacol. 125, 1463-1470 (1998)).

El tampón de incubación era: Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4.

En la mezcla madre de ensayo (250 μl) se incubaron membranas (proteína 50 μg/ml en tampón de incubación) de células CHO-K1 con receptores V1b humanos expresados de manera estable (línea celular hV1b_3H2_CHO) con ³H-AVP 1,5 nM (8-Arg-vasopresina, PerkinElmer Nº 18479) en tampón de incubación (Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4) (unión total) o adicionalmente con concentraciones crecientes de sustancia de prueba (experimento de desplazamiento). La unión no específica se determinó con AVP 1 M (Bachem Nº H1780). Todas las determinaciones se realizaron como determinaciones triples. Después de la incubación (60 minutos a temperatura ambiente), se separó por filtración el radioligando libre por medio de filtración de vacío (Skatron cell harvester 7000) a través de esteras de filtro de fibra de vidrio Wathman GF/B y los filtros se transfirieron a recipientes de centelleo. La medición del centelleo líquido tuvo lugar en un aparato Tricarb modelo 2000 o 2200CA (Packard). La conversión de cpm medido en dpm se realizó con ayuda de una serie de extinción convencional.

Evaluación:

20

5

10

25

Los parámetros de unión se calcularon mediante regresión no lineal en SAS. Los algoritmos del programa trabajan de manera análoga al programa de evaluación LIGAND (Munson PJ y Rodbard D, Analytical Biochem. 107, 220-239 (1980)). El valor de Kd de ³H-AVP con respecto a los receptores V1b humanos recombinantes asciende a 0,4 nM y se utilizó para la determinación del valor de Ki.

2. Ensayo de unión de receptor V1a de vasopresina:

Sustancias:

Las sustancias de prueba se disolvieron en una concentración de 10⁻² M en DMSO. La dilución adicional de estas disoluciones en DMSO tuvo lugar en tampón de incubación (Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4).

Preparación de membrana:

Se recogieron células CHO-K1 con receptor V1a de vasopresina humano expresado de manera estable (clon 5) y se homogeneizaron en Tris 50 mM-HCl y en presencia de inhibidores de proteasa (Roche complete Mini Nº 1836170) con un homogenizador Polytron en la posición media 2x10 segundos y a continuación se separó por centrifugación durante 1 h a 40.000 x g. El sedimento de membrana se homogeneizó y centrifugó de nuevo tal como se describe y a continuación se llevó a Tris 50 mM-HCl, pH 7,4, se homogeneizó y se conservó congelado en alícuotas a -190 °C en nitrógeno líquido.

Ensayo de unión:

En ensayo de unión se realizó conforme al método de Tahara y col. (Tahara A y col., Brit. J. Pharmacol. 125, 1463-1470 (1998)).

El tampón de incubación era: Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4.

En la mezcla madre de ensayo (250 ml) se incubaron membranas (proteína 20 μg/ml en tampón de incubación) de células CHO-K1 con receptores V1a humanos expresados de manera estable (línea celular hV1a_5_CHO) con ¹²⁵l-AVP 0,04 nM (8-Arg-vasopresina, NEX 128) en tampón de incubación (Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4) (unión total) o adicionalmente con concentraciones crecientes de sustancia de prueba (experimento de desplazamiento). La unión no específica se determinó con AVP 1 μM (Bachem Nº H1780). Se realizaron determinaciones triples.

Después de la incubación (60 minutos a temperatura ambiente), se separó por filtración el radioligando libre por medio de filtración de vacío (Skatron cell harvester 7000) a través de esteras de filtro de fibra de vidrio Wathman GF/B y se transfirieron los filtros a recipientes de centelleo.

La medición de centelleo líquido tuvo lugar en un aparato Tricarb modelo 2000 o 2200CA (Packard). La conversión de cpm medido en dpm se realizó con ayuda de una serie de extinción convencional.

Evaluación:

65 Los parámetros de unión se calcularon mediante regresión no lineal en SAS. Los algoritmos del programa trabajan de manera análoga al programa de evaluación LIGAND (Munson PJ y Rodbard D, Analytical Biochem. 107, 220-239

(1980)). El valor de Kd de ¹²⁵I-AVP con respecto a los receptores hV1a recombinantes se determinó en experimentos de saturación. Se utilizó un valor de Kd de 1,33 nM para la determinación del valor de Ki.

3. Ensayo de unión de receptor V2 de vasopresina:

Sustancias:

5

10

15

30

40

45

Las sustancias de prueba se disolvieron en una concentración de 10⁻² M en DMSO. La dilución adicional de esta disolución en DMSO tuvo lugar en tampón de incubación (Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4).

Preparación de membrana:

Se recogieron células CHO-K1 con receptor V2 de vasopresina humano expresado de manera estable (clon 23) y se homogeneizaron en Tris 50 mM-HCl y en presencia de inhibidores de proteasa (Roche complete Mini Nº 1836170) con un homogenizador Polytron en la posición media 2x10 segundos y a continuación se separaron por centrifugación durante 1 h a 40.000 x g. El sedimento de membrana se homogeneizó y centrifugó de nuevo tal como se describe y a continuación se llevó a Tris 50 mM-HCl, pH 7,4, se homogeneizó y se conservó congelado en alícuotas a -190 °C en nitrógeno líquido.

20 Ensayo de unión:

En ensayo de unión se realizó conforme al método de Tahara y col. (Tahara A y col., Brit. J. Pharmacol. 125, 1463-1470 (1998)).

25 El tampón de incubación era: Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4.

En la mezcla madre de ensayo (250 μ l) se incubaron membranas (proteína 50 μ g/ml en tampón de incubación) de células CHO-K1 con receptores V2 humanos expresados de manera estable (línea celular hV2_23_CHO) con 3 H-AVP 1-2 nM (8-Arg-vasopresina, PerkinElmer N°18479) en tampón de incubación (Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4) (unión total) o adicionalmente con concentraciones crecientes de sustancia de prueba (experimento de desplazamiento). La unión no específica se determinó con AVP 1 μ M (Bachem N° H1780). Se realizaron determinaciones triples.

Después de la incubación (60 minutos a temperatura ambiente), se separó por filtración el radioligando libre por medio de filtración de vacío (Skatron cell harvester 7000) a través de esteras de filtro de fibra de vidrio Wathman GF/B y se transfirieron los filtros a recipientes de centelleo.

La medición de centelleo líquido tuvo lugar en un aparato Tricarb modelo 2000 o 2200CA (Packard). La conversión de cpm medido en dpm se realizó con ayuda de una serie de extinción convencional.

Evaluación:

Los parámetros de unión se calcularon mediante regresión no lineal en SAS. Los algoritmos del programa trabajan de manera análoga al programa de evaluación LIGAND (Munson PJ y Rodbard D, Analytical Biochem. 107, 220-239 (1980)). El valor de Kd de ³H-AVP con respecto a los receptores hV2 recombinantes asciende a 2,4 nM y se utilizó para la determinación del valor de Ki.

4. Ensayo de unión de receptor de oxitocina

50 Sustancias:

Las sustancias se disolvieron en una concentración de 10^{-2} M en DMSO y se diluyeron con tampón de incubación (Tris 50 mM, MgCl₂ 10 mM, BSA al 0,1 %, pH 7,4).

55 Preparación celular:

Se centrifugaron células HEK-293 confluentes con receptores de oxitocina humanos recombinantes expresados de manera transitoria a 750 x g durante 5 minutos a temperatura ambiente. El residuo se llevó a tampón de lisis helado (Tris 50 mM-HCl, 10 % de glicerol, pH 7,4 e inhibidor de proteasa Roche Complete Protease-Inhibitor) y se sometió durante 20 minutos a 4 °C a un choque osmótico. Después se centrifugaron las células lisadas a 750 x g durante 20 minutos a 4 °C, se llevó el residuo a tampón de incubación y se prepararon alícuotas de 10⁷ células/ml. Las alícuotas se congelaron para su uso a -80 °C.

Ensayo de unión:

En el día del ensayo se descongelaron las células, se diluyeron con tampón de incubación y se homogeneizaron con un Multipette Combitip (Eppendorf, Hamburgo). La mezcla madre de reacción de 0,250 ml se componía de 2 a 5x10⁴ células recombinantes, ³H-oxitocina 3-4 nM (PerkinElmer, NET 858) en presencia de sustancia de prueba (curva de inhibición) o sólo tampón de incubación (unión total). La unión no específica se determinó con oxitocina 10⁻⁶ M (Bachem AG, H2510). Se aplicaron determinaciones triples. El radioligando unido y libre se separó por filtración a vacío con filtros de fibra de vidrio Whatman GF/B con ayuda de un colector de células Skatron Cell Harvester 7000. La radioactividad unida se determinó mediante medición de centelleo líquido en un aparato de recuento Tricarb Beta, modelo 2000 o 2200CA (Packard).

Evaluación:

10

15

Los parámetros de unión se calcularon mediante análisis de regresión no lineal (SAS), de manera análoga al programa LIGAND de Munson y Rodbard (Analytical Biochem 1980; 107: 220-239). El valor de Kd de ³H-oxitocina con respecto a los receptores de hOT recombinantes asciende a 7,6 nM y se utilizó para la determinación del valor de Ki.

5. Determinación de la vida media microsómica:

20

La estabilidad metabólica de los compuestos de acuerdo con la invención se determinó en el siguiente ensayo.

Las sustancias de prueba se incuban en una concentración de 0,5 µM tal como sigue:

en placas de microtitulación se incubaron previamente 0,5 μM de sustancia de prueba junto con microsomas de hígado de distintas especies (de rata, ser humano u otra especie) (0,25 mg de proteína microsómica/ml) en tampón fosfato de potasio 0,05 M, pH 7,4 a 37 °C durante 5 min. El inicio de la reacción tiene lugar mediante la adición de NADPH (1 mg/ml). Después de 0, 5, 10, 15, 20 y 30 min se toman alícuotas de 50 μl y la reacción se detiene inmediatamente con el mismo volumen de acetonitrilo y se enfría. Las muestras se congelan hasta el análisis. Por medio de MSMS se determina la concentración restante de sustancia de prueba no degradada. A partir de la pendiente de la curva de señal de sustancia de prueba/unidad de tiempo se determina la vida media (T1/2), pudiendo calcularse la vida media de la sustancia de prueba suponiendo una cinética de primer orden a partir de la disminución temporal de la concentración del compuesto. El aclaramiento microsómico (mCl) se calcula a partir de mCl= ln2/T1/2 / (contenido en proteína microsómica en mg/ml) x 1000 [ml/min/mg] (modificado según referencias bibliográficas: Di, The Society for Biomoleculaur Screening, 2003, 453-462; Obach, DMD, 1999 vol 27. N 11, 1350-1359).

6. Métodos para la determinación in vitro de la inhibición del citocromo P450 (CYP)

40 Sustratos de luminiscencia para 2C9 y 3A4:

Microsomas de hígado humano 0,4 mg/ml se incuban previamente durante 10 min con las sustancias de prueba (0-20 µM) que van a examinarse, los sustratos específicos de CYP, en tampón fosfato de potasio 0,05 M, pH 7,4 a 37 °C. El sustrato específico de Cyp para CYP 2C9 es luciferina H, para CYP 3A4 luciferina BE. La reacción se inicia agregando NADPH. Después de 30 min de incubación a TA se agrega el reactivo de detección de luciferina, y se mide la señal de luminiscencia generada (modificado según referencias bibliográficas: Promega, Technical Bulletin P450-GLO ™ Assays).

Inhibición dependiente del tiempo de Midazolam CYP 3A4

El ensayo se compone de 2 partes. Una vez se incuba previamente la sustancia de prueba con los microsomas de hígado (con NADPH = preincubación, después adición del sustrato, en la 2ª parte se añade el sustrato y la sustancia de prueba al mismo tiempo = co-incubación.

55 Preincubación:

45

50

60

Proteína microsómica 0,05 mg/ml (microsomas de hígado humano) se incuban previamente con 0-10 μ M (o 50 μ M) de sustancia de prueba en 50 mM de tampón fosfato de potasio durante 5 min. La reacción se inicia con NADPH. Después de 30 min se agrega Midazolam 4 μ M (concentración final) y se incuba durante 10 min más. Se toman 75 μ l de la disolución de reacción después de 10 min y se detiene con 150 μ l de disolución de acetonitrilo.

Co-incubación:

Proteína microsómica 0,05 mg/ml (microsomas de hígado humano) se incuban previamente con Midazolam 4 μ M (concentración final) y 0-10 μ M (o 50 μ M) de sustancia de prueba en 50 mM de tampón fosfato de potasio durante 5

min. La reacción se inicia con NADPH. Se toman 75 μ l de la disolución de reacción después de 10 min y se detiene con 150 μ l de disolución de acetonitrilo. Las muestras se congelan hasta el análisis por MSMS (modificado según las referencias bibliográficas: Obdach, Journal of Pharmacology & Experimental Therapeutics, Vol 316, 1, 336-348, 2006; Walsky, Drug Metabolism and Disposition Vol 32, 6, 647-660, 2004).

7. Método para la determinación de la solubilidad en agua (en mg/ml)

La solubilidad en agua de los compuestos de acuerdo con la invención puede determinarse por ejemplo de acuerdo con el denominado método de "shake flask" (frasco agitado) (de acuerdo con la norma ASTM internacional: E 1148-02, Standard test methods for measurement of aqueous solubility, Book of Standards Volumen 11.05.). A este respecto se añade un exceso del compuesto sólido a una disolución tampón con un valor de pH determinado (por ejemplo tampón fosfato pH 7,4) y se sacude o agita la mezcla generada, hasta que se ha ajustado el equilibrio (normalmente 24 o 48 horas, en ocasiones también hasta 7 días). A continuación se separa el sólido no disuelto mediante filtración o centrifugación y se determina la concentración del compuesto disuelto mediante espectroscopía UV o cromatografía líquida de alta resolución (HPLC) por medio de una curva de calibración correspondiente.

8. Resultados

5

10

15

25

Los resultados de los ensayos de unión de receptor se expresan como constantes de unión de receptor $[K_i(V1b)]$ o selectividades $[K_i(V1a)/K_i(V1b)]$. Los resultados del ensayo de estabilidad metabólica están indicados como aclaramiento microsómico (mCl).

En estos ensayos, los compuestos de acuerdo con la invención muestran afinidades muy altas por el receptor V1b (como máximo 100 nM, o como máximo 10 nM, con frecuencia < 1 nM). Además, los compuestos muestran también altas selectividades con respecto al receptor V1a y el receptor de oxitocina (OT) y una estabilidad metabólica adecuada, medida como aclaramiento microsómico.

Los resultados se exponen en la tabla 2. Los números de los compuestos se refieren a los ejemplos de síntesis.

30 Tabla 2

Ejemplo	K _i (h-V1b)* [nM]	K _i (h-V1a)/K _i (h-V1b)*	$K_i(h-OT)/K_i(h-V1b)^*$
1	+++	+++	+++
2	+++	+++	+++
3	+++	++	+++
4	+++	++	+++
5	++	+++	+++
6	++	+++	+++
7	++	+	+++
8	++	++	+++
10	++	++	+
11	+++	+++	+++
12	++	+++	+++
13	++	++	+++
14	++	+	+++
15	++	+	+++
16	+++	+	+++
17	++	+	+++
18	++	+	+++
19	+++	++	++
20	++	+	++
21	+++	++	+++
22	++	+	+++
23	+++	+	+++
26	+++	+	+++
31	+	+++	+
33	++	+++	+++
35	++	+	+
38	+++	+++	+++
39	+++	++	+++
40	++	+	+++
41	+++	+	+
42	+++	+	+
43	+++	++	+++
45	++	+	+++

Ejemplo	K _i (h-V1b)* [nM]	K _i (h-V1a)/K _i (h-V1b)*	$K_i(h-OT)/K_i(h-V1b)^*$		
46	++	++	+		
50	+	+	++		
51	++	+++	++		
52	++	++	+		
53	++	++	++		
h = humano					

Códigos:

	K _i (V1b)	K _i (h-V1a)/K _i (h-V1b)	$K_i(h-OT)/K_i(h-V1b)$
+	> 10 -100 nM	10 -<25	10 -<25
++	1 - 10 nM	25 -75	25 -75
+++	< 1 nM	> 75	> 75

REIVINDICACIONES

1. Compuestos de fórmula I.A

$$R^6$$
 R^7
 R^5
 R^5
 R^6
 R^7
 R^7
 R^5
 R^7
 R^7

en la que

5

R¹ representa hidrógeno, metoxilo o trifluorometoxilo;

R² representa hidrógeno o metoxilo; R³ representa hidrógeno o alquilo C₁-C₄;

R⁴ representa etoxilo o etoxilo fluorado;

representa hidrógeno; 10

representa Br, Cl, F o CN;

R⁷ representa Cl o F; X¹ representa O, NH o CH₂;

 X^2 y X^3 representan N o CH, con la condición de que X^2 y X^3 no representen N al mismo tiempo; y X^4 representa N o CH;

así como sales farmacéuticamente aceptables de los mismos.

2. Compuestos de acuerdo con la reivindicación 1, en la que R¹ y R² representan metoxilo.

- 3. Compuestos de acuerdo con una de las reivindicaciones anteriores, en el que R3 representa hidrógeno, metilo o
- 4. Compuestos de acuerdo con la reivindicación 3, en el que R³ representa metilo o etilo.

25

15

20

- 5. Compuestos de acuerdo con una de las reivindicaciones anteriores, en el que R⁴ representa etoxilo y R⁵ representa H.
- 6. Compuestos de acuerdo con una de las reivindicaciones 1 a 4, en los que R4 representa 2,2-difluoroetoxilo o 2,2,2-trifluoroetoxilo y R⁵ representa H. 30
 - 7. Compuestos de acuerdo con una de las reivindicaciones anteriores, en los que al menos uno de los restos R⁶ y R⁷ representa F.
- 8. Compuestos de acuerdo con la reivindicación 7, en los que R⁷ representa F y R⁶ representa F, Cl, Br o CN. 35
 - 9. Compuestos de acuerdo con la reivindicación 8, en los que R⁷ representa F y R⁶ representa Cl o CN.
 - 10. Compuestos de acuerdo con una de las reivindicaciones anteriores, en los que X¹ representa O o NH.

- 11. Compuestos de acuerdo con una de las reivindicaciones anteriores, en los que X⁴ representa N.
- 12. Compuestos de acuerdo con una de las reivindicaciones 1-5 y 7-11, en los que
- 45 R¹ representa metoxilo:

```
R<sup>2</sup> representa metoxilo;
R<sup>3</sup> representa metilo o etilo;
                 R<sup>4</sup> representa etoxilo;
                 R<sup>5</sup> representa H;
R<sup>6</sup> representa CI o CN;
R<sup>7</sup> representa F;
  5
                 X<sup>1</sup> representa NH;
X<sup>2</sup> representa N;
                 X<sup>3</sup> representa CH; y
10
                 X<sup>4</sup> representa N.
          13. Compuestos de acuerdo con una de las reivindicaciones 1-5 y 7-11, en los que
                  R<sup>1</sup> representa metoxilo;
                  R<sup>2</sup> representa metoxilo;
15
                 R<sup>3</sup> representa metilo o etilo;
                 R<sup>4</sup> representa etoxilo;
R<sup>5</sup> representa H;
                 R<sup>8</sup> representa Cl o CN;
20
                 R<sup>7</sup> representa F;
                  X1 representa NH;
                 X<sup>2</sup> representa CH;
X<sup>3</sup> representa N; y
                 X<sup>4</sup> representa N.
25
          14. Compuestos de acuerdo con una de las reivindicaciones 1-5, 7-9 y 11 en los que
                  R<sup>1</sup> representa metoxilo;
                 R<sup>2</sup> representa metoxilo;
R<sup>3</sup> representa metilo o etilo;
R<sup>4</sup> representa etoxilo;
30
                 R<sup>5</sup> representa H;
                  R<sup>6</sup> representa Cl o CN;
                  R<sup>7</sup> representa F;
                 X<sup>1</sup> representa CH<sub>2</sub>;
35
                 X<sup>2</sup> representa N;
X<sup>3</sup> representa CH; y
X<sup>4</sup> representa N.
40
          15. Compuestos de acuerdo con una de las reivindicaciones 1-5, 7-9 y 11, en los que
                 R¹ representa metoxilo;
R² representa metoxilo;
R³ representa metilo o etilo;
                 R<sup>4</sup> representa etoxilo;
45
                 R<sup>5</sup> representa H;
                  R<sup>6</sup> representa Cl o CN;
                  R<sup>7</sup> representa F;
                 X<sup>1</sup> representa CH<sub>2</sub>;
X<sup>2</sup> representa CH;
                      representa CH<sub>2</sub>;
50
                 X<sup>3</sup> representa N; y
                 X<sup>4</sup> representa N.
          16. Compuestos de acuerdo con una de las reivindicaciones 1-5 y 7-11, en los que
55
                  R<sup>1</sup> representa metoxilo o H;
                 R<sup>2</sup> representa metoxilo;
                 R<sup>3</sup> representa metilo o etilo;
                  R<sup>4</sup> representa etoxilo;
                  R<sup>5</sup> representa H;
60
                 R<sup>6</sup> representa CI o CN;
                  R<sup>7</sup> representa F;
                 X<sup>1</sup> representa O;
X<sup>2</sup> representa N;
X<sup>3</sup> representa CH; y
65
                 X<sup>4</sup> representa N.
```

- 17. Compuestos de acuerdo con una de las reivindicaciones 1-5 y 7-11, en los que
 - R¹ representa metoxilo o H;
 - R² representa metoxilo:
- R³ representa metilo o etilo; 5
 - R⁴ representa etoxilo;
 - R⁵ representa H;
 - R⁶ representa CI o CN;
 - R⁷ representa F;
- 10
- X¹ representa O; X² representa CH;
 - X³ representa N; y
 - X⁴ representa N.
- 18. Compuestos de acuerdo con una de las reivindicaciones 1-5 y 7-10, en los que 15
 - R¹ representa metoxilo:
 - R² representa metoxilo;
 - R³ representa metilo o etilo;
- R⁴ representa etoxilo; 20
 - R⁵ representa H;
 - R⁶ representa CI o CN;
 - R⁷ representa F;
 - representa NH;
- X² representa N; 25
 - X³ representa CH; y
 - X4 representa CH.
- 19. Agente farmacéutico, que contiene al menos un compuesto de fórmula I.A de acuerdo con la definición en una 30 de las reivindicaciones anteriores y/o al menos una sal farmacéuticamente aceptable del mismo y al menos un vehículo farmacéuticamente aceptable.
- 20. Uso de compuestos de fórmula I.A de acuerdo con la definición en una de las reivindicaciones 1 a 18 o de sales farmacéuticamente aceptables de los mismos para la preparación de un medicamento para el tratamiento y/o la 35 profilaxis de enfermedades dependientes de vasopresina.
 - 21. Uso de acuerdo con la reivindicación 20, para la preparación de un medicamento para el tratamiento y/o la profilaxis de enfermedades que se seleccionan entre diabetes, resistencia a insulina, enuresis nocturna, incontinencia, enfermedades, en las que aparecen trastornos de la coagulación sanguínea,
- 40 hipertonía, hipertonía pulmonar, insuficiencia cardiaca, infarto de miocardio, espasmo coronario, angina inestable, ACTP (angioplastia coronaria transluminal percutánea), isquemias del corazón, trastornos del sistema renal, edemas, vasoespasmo renal, necrosis de la corteza renal, hiponatremia, hipopotasemia, síndrome de Schwartz-Bartter, trastornos del tracto gastrointestinal, vasoespasmo gástrico, cirrosis hepática, úlcera gástrica e intestinal, emesis, emesis que aparece durante la quimioterapia, enfermedad del viajero,
- 45 trastornos afectivos.
 - trastornos de ansiedad, trastornos de ansiedad dependientes de estrés, trastornos de capacidad de memoria, enfermedad de Alzheimer,
 - psicosis, trastornos psicóticos,
 - síndrome de Cushina, otras enfermedades dependientes de estrés, trastornos del sueño.
- 50 enfermedades depresivas, preferentemente trastornos del estado de ánimo de aparición en la infancia, síntomas vasomotores, funciones erróneas termorreguladoras, dependencias mediadas por drogas, fármacos y/o por otros factores, recaídas inducidas por estrés debido a la abstinencia de uno o varios factores que median en la dependencia; y/o inducidos por estrés en las dependencias mediadas por drogas, fármacos y/o por otros factores, esquizofrenia, y psicosis,
- 55 y/o para el retardo de la micción.