

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 456 325

(51) Int. CI.:

C07K 7/02 (2006.01) A61K 47/48 (2006.01) A61K 38/00 (2006.01) A61K 38/06 (2006.01) C07K 16/46 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 05.11.2004 E 04821486 (0) (97) Fecha y número de publicación de la concesión europea: 08.01.2014 EP 1725249
- (54) Título: Compuestos de monometilvalina capaces de conjugación con ligandos
- (30) Prioridad:

06.11.2003 US 518534 P 26.03.2004 US 557116 P 04.08.2004 US 598899 P 27.10.2004 US 622455 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 22.04.2014

(73) Titular/es:

SEATTLE GENETICS, INC. (100.0%) 21823 30TH DRIVE, S.E. BOTHELL, WA 98021, US

(72) Inventor/es:

DORONINA, SVETLANA O.; SENTER, PETER D.; TOKI, BRIAN E.; EBENS, ALLEN J.; KLINE, TONI BETH; POLAKIS, PAUL; SLIWKOWSKI, MARK X. y SPENCER, SUSAN D.

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Compuestos de monometilvalina capaces de conjugación con ligandos

1. Campo de la invención

5

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se refiere a un Compuesto de Fármaco y más particularmente a Conjugados de Fármaco-Conector-Ligando, Compuestos de Fármaco-Conector, y Conjugados de Fármaco-Ligando, y a composiciones que los incluyen. Además, en el presente documento se describen métodos para uso de los mismos para tratar cáncer, una enfermedad autoinmune o una enfermedad infecciosa. La presente invención también se refiere a conjugados de anticuerpo-fármaco, y la composición es que los incluyen. Además como en el presente documento se describen métodos para su uso de los mismos para tratar cáncer, una enfermedad autoinmune o una enfermedad infecciosa. Además, en el presente documento se describen métodos para usar compuestos de conjugados de anticuerpo-fármaco para diagnóstico o tratamiento *in vitro, in situ*, e *in vivo* de células de mamífero, o afecciones patológicas asociadas.

2. Antecedentes de la invención

La mejora de la administración de fármacos y de otros agentes a células, tejidos y tumores diana para conseguir una eficacia máxima y una toxicidad mínima ha sido el foco de una investigación considerable durante muchos años. Aunque se han hecho muchos intentos para desarrollar métodos eficaces para importar moléculas biológicamente activas en células, tanto *in vivo* como *in vitro*, ninguno ha demostrado ser totalmente satisfactorio. La optimización de la asociación del fármaco con su diana intracelular, a la vez que se minimiza la redistribución intercelular del fármaco, *por ejemplo*, a células vecinas, a menudo es difícil o ineficaz.

La mayoría de los agentes administrados actualmente a un paciente por vía parenteral no son dirigidos, lo que da como resultado la administración sistémica del agente a células y tejidos del organismo en los que no es necesario, y a menudo indeseable. Ésto puede dar como resultado efectos secundarios adversos del fármaco, y a menudo limita la dosis que se puede administrar de un fármaco (por ejemplo, agentes quimioterapeúticos (anticáncer), citotóxicos, inhibidores de enzimas y fármacos antivirales o antimicrobianos). Por comparación, aunque se considera que la administración oral de fármacos es un modo de administración conveniente y económica, ésta comparte las mismas preocupaciones de toxicidad no específica a células sin afectar una vez que el fármaco se ha absorbido en la circulación sistémica. Complicaciones adicionales implican problemas con la biodisponibilidad oral y la permanencia de fármaco en el intestino lo que conduce a una exposición adicional del intestino al fármaco y por lo tanto riesgo de toxicidades intestinales. Por consiguiente, un objetivo fundamental ha sido desarrollar métodos para dirigir específicamente agentes a células y tejidos. Los beneficios de dicho tratamiento incluyen evitar los efectos psicológicos generales de una administración inapropiada de dichos agentes a otras células y tejidos, tales como células sin infectar. La dirección intracelular se puede conseguir con métodos, compuestos y formulaciones que permitan acumulación o retención de agentes biológicamente activos, *es decir* metabolitos activos, dentro de células.

Se ha establecido terapia de anticuerpos monoclonales para el tratamiento dirigido de pacientes con trastornos como cáncer, inmunológicos y angiogénicos.

El uso de conjugados de anticuerpo-fármaco para la administración local de agentes citotóxicos o citostáticos, por ejemplo, fármacos para eliminar o inhibir células tumorales en el tratamiento del cáncer (Syrigos y Epenetos (1999) Anticancer Research 19: 605-614; Niculescu-Duvaz y Springer (1997) Adv. Drg. Del. Rev. 26: 151-172; Patente de Estados Unidos Nº 4975278) permite teóricamente una administración dirigida del resto de fármaco a tumores, y acumulación intracelular en el mismo, a la vez que una administración sistémica de estos agentes de fármaco sin conjugar puede dar como resultado niveles inaceptables de toxicidad en las células tumorales que se buscan para su eliminación (Baldwin et al., 1986 Lancet pp. (15 Mar., 1986): 603-05; Thorpe, 1985, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, A. Pinchera et al. (ed.s), páginas 475-506). De este modo se busca eficacia máxima con toxicidad mínima. Se informado tanto de anticuerpos policionales como de anticuerpos monocionales útiles en estas estrategias (Rowland et al., 1986, Cancer Immunol. Immunother. 21: 183-87). Los fármacos usados en estos métodos incluyen daunomicina, doxorrubicina, metotrexato, y vindesina (Rowland et al., 1986, mencionado anteriormente). Toxinas usadas en conjugados de anticuerpo-toxina incluyen toxinas bacterianas tales como toxina de difteria, toxina de plantas tales como ricino, toxinas de molécula pequeña tales como geldanamicina (Kerr et al., 1997, Bioconjugate Chem. 8 (6): 781-784; Mandler et al. (2000) Jour. of the Nat. Cancer Inst. 92 (19): 1573-1581; Mandler et al. (2000) Bioorganic & Med. Chem. Letters 10: 1025-1028; Mandler et al. (2002) Bioconjugate Chem. 13: 786-791), maitansinoides (documento EP 1391213; Liu et al., (1996) Proc. Natl. Acad. Sci. USA 93: 8618-8623), y caliqueamicina (Lode et al. (1998) Cancer Res. 58: 2928; Hinman et al. (1993) Cancer Res. 53: 3336-3342). Las toxinas pueden afectar a sus efectos citotóxicos y citostáticos mediante mecanismos que incluyen unión a tubulinas, unión al ADN, o inhibición de la topoisomerasa (Meyer, D.L. y Senter, P.D. "Recent Advances in Conjugado de Anticuerpo Fármacos for Cancer Therapy" en Annual Reports in Medicinal Chemistry, Vol 38 (2003) Capítulo 23, 229-237). Algunos fármacos citotóxicos tienden a ser inactivos o menos activos cuando se conjugan con anticuerpos grandes o con ligandos receptores de proteínas.

ZEVALIN® (ibritumomab tiuxetan, Biogen/Idec) es un conjugado de anticuerpo-radioisótopo compuesto por un anticuerpo monoclonal de IgG1 kappa de murino dirigido frente al antígeno CD20 que se encuentra en la superficie de linfocitos B normales y malignos y en radioisótopo ¹¹¹In o ⁹⁰Y unido mediante un quelante-conector de tiourea (Wiseman et al. (2000) Eur. Jour. Nucl. Med. 27 (7): 766-77; Wiseman et al. (2002) Blood 99 (12): 4336-42; Witzig et al. (2002) J. Clin. Oncol. 20 (10): 2453-63; Witzig et al. (2002) J. Clin. Oncol. 20 (15): 3262-69). A pesar de que ZEVALIN tiene actividad frente al Linfoma no Hodgkin de linfocitos B (NHL), su administración da como resultado citopenias graves y prolongadas en la mayoría de los pacientes. MYLOTARG™ (gemtuzumab ozogamicina, Wyeth Pharmaceuticals), un conjugado de fármaco y anticuerpo compuesto por un anticuerpo hu CD33 unido a caliqueamicina, se aprobó en 2000 para el tratamiento de leucemia mieloide aguda mediante inyección (Drugs of the Future (2000) 25 (7): 686; Patentes de Estados Unidos Nº 4970198; Nº 5079233; Nº 5585089; Nº 5606040; Nº 5693762; Nº 5739116; Nº 5767285; Nº 5773001). Cantuzumab mertansina (Immunogen, Inc.), un conjugado de fármaco y anticuerpo compuesto por el anticuerpo huC242 unido a través del conector disulfuro SPP al resto de fármaco maitansinoide, DM1, está avanzando en ensayos en Fase II para el tratamiento de cánceres que expresan CanAg, tales como colon, pancreático, gástrico y otros. MLN-2704 (Millennium Pharm., BZL Biologics, Immunogen Inc.), conjugado de fármaco y anticuerpo ah compuesto por el anticuerpo monoclonal de antígeno de membrana específico antipróstata (PSMA) unido al resto de fármaco maitansinoide, DM1, está en desarrollo para el tratamiento potencial de tumores de próstata. El mismo resto de fármaco maitansinoide, DM1, se unió a través de un conector no disulfuro, SMCC, la un anticuerpo monoclonal murino de ratón, TA.1 (Chari et al. (1992) Cancer Research 52: 127-131). Se informó que este conjugado era 200 veces menos potente que el correspondiente conjugado de conector disulfuro. Se consideró que el conector SMCC en el mismo era "no escindible".

10

15

20

25

30

45

50

55

60

65

Se han aislado varios compuestos peptídicos cortos a partir del molusco marino *Dolabella auricularia* y se ha encontrado que tienen actividad biológica (Pettit et al. (1993) Tetrahedron 49: 9151; Nakamura et al. (1995) Tetrahedron Letters 36: 5059-5062; Sone et al. (1995) Jour. Org Chem. 60: 4474). También se han preparado análogos de estos compuestos, y se encontró que algunos tienen actividad biológica (para una revisión, véase Pettit et al. (1998) Anti-Cancer Drug Design 13: 243-277). Por ejemplo, auristatina E (Patente de Estados Unidos Nº 5635483) es un análogo sintético del producto natural marino Dolastatina 10, un agente que inhibe la polimerización de la tubulina mediante unión al mismo dominio en la tubulina que el fármaco anticáncer vincristina (G. R. Pettit, (1997) Prog. Chem. Org. Nat. Prod. 70: 1-79). Dolastatina 10, auristatina PE, y auristatina E son péptidos lineales que tienen cuatro aminoácidos, tres de los cuales son únicos esta clase de compuestos de dolastatina, y una amida C-terminal.

Los péptidos auristatina, auristatina E (AE) y monometilauristatina (MMAE), análogos sintéticos de dolastatina, se conjugaron con: (i) anticuerpos monoclonales quiméricos cBR96 (específicos de Lewis Y en carcinomas); (ii) cAC10 que es específico de CD30 en neoplasias hematológicas (Klussman, et al. (2004), Bioconjugate Chemistry 15 (4): 765-773; Doronina et al. (2003) Nature Biotechnology 21 (7): 778-784; "Monometilvaline Compounds Capable of Conjugation to Ligands"; Francisco et al. (2003) Blood 102 (4): 1458-1465; Publicación de Estados Unidos Nº 2004/0018194; (iii) anticuerpos anti-CD20 tales como RITUXAN® (documento WO 04/032828) para el tratamiento de cánceres que expresan CD20 y trastornos inmunes; (iv) anticuerpos anti-EphB2 2H9 y anti-IL-8 para el tratamiento de cáncer colorrectal (Mao, et al. (2004) Cancer Research 64 (3): 781-788); (v) anticuerpo E-selectina (Bhaskar et al. (2003) Cancer Res. 63: 6387-6394); y (vi) otros anticuerpos anti-CD30 (documento WO 03/043583).

La auristatina E conjugada con anticuerpos monoclonales se desvela en Senter et al, Proceedings of the American Association for Cancer Research, Volumen 45, Resumen Número 623, presentado el 28 de marzo de 2004.

A pesar de los datos *in vitro* para compuestos de la clase dolastatina y sus análogos, toxicidades generales significativas a dosis necesarias para conseguir un efecto terapéutico comprometen su eficacia en estudios clínicos. Por consiguiente, existe una clara necesidad en la técnica de derivados de dolastatina/auristatina que tengan una toxicidad significativamente menor, y que sin embargo tengan eficacia terapéutica útil. Éstas y otras limitaciones y problemas del pasado se abordan con la presente invención.

La familia ErbB de tirosina quinasas son mediadores importantes del crecimiento, diferenciación y supervivencia celular. La familia de receptores incluye cuatro miembros distintos que incluyen receptor del factor de crecimiento epidérmico (EGFR, ErbB1, HER1), HER2 (ErbB2 o p 185^{neu}), HER3 (ErbB3) y HER4 (ErbB4 o tiro2). Se ha caracterizado un panel de anticuerpos anti-ErbB2 usando la línea celular de tumor de mama humano SKBR3 (Hudziak et al., (1989) Mol. Cell. Biol. 9 (3): 1165-1172. La inhibición máxima se obtuvo con el anticuerpo denominado 4D5 que inhibió la proliferación celular en un 56 %. Otros anticuerpos en el panel redujeron la proliferación celular en menor grado en este ensayo. Se encontró adicionalmente que el anticuerpo 4D5 sensibilizada líneas celulares de tumores de mama que sobreexpresan ErbB2 a los efectos citotóxicos de TNF-a (Patente de Estados Unidos № 5677171). Los anticuerpos anti-ErbB2 analizados en Hudziak *et al.* se caracterizan adicionalmente en Fendly et al. (1990) Cancer Research 50: 1550-1558; Kotts et al. (1990) In vitro 26 (3): 59A; Sarup et al. (1991) Growth Regulation 1: 72-82; Shepard et al. J. (1991) Clin. Immunol. 11 (3): 117-127; Kumar et al. (1991) Mol. Cell. Biol. 11 (2) 979-986; Lewis et al. (1993) Cancer Immunol. Immunother. 37: 255-263; Pietras et al. (1994) Oncogene 9: 1829-1838; Vitetta et al. (1994) Cancer Research 54: 5301-5309; Sliwkowski et al. (1994) J. Biol. Chem. 269 (20): 14661-14665; Scott et al. (1991) J. Biol. Chem. 266: 14300-5; D'souza et al. Proc. Natl. Acad. Sci.

(1994) 91: 7202-7206; Lewis et al. (1996) Cancer Research 56: 1457-1465; y Schaefer et al. (1997) Oncogene 15: 1385-1394.

Se han descrito otros anticuerpos anti-ErbB2 con diversas propiedades en Tagliabue et al. Int. J. Cancer 47: 933-937 (1991); McKenzie et al. Oncogene 4: 543-548 (1989); Maier et al. Cancer Res. 51: 5361-5369 (1991); Bacus et al. Molecular Carcinogenesis 3: 350-362 (1990); Stancovski et al. Proc. Natl. Acad. Sci. USA 88: 8691-8695 (1991); Bacus et al. Cancer Research 52: 2580-2589 (1992); Xu et al. Int. J. Cancer 53: 401-408 (1993); documento WO94/00136; Kasprzyk et al. Cancer Research 52: 2771-2776 (1992); Hancock et al. (1991) Cancer Res. 51: 4575-4580; Shawver et al. (1994) Cancer Res. 54: 1367-1373; Arteaga et al. (1994) Cancer Res. 54: 3758-3765; Harwerth et al. (1992) J. Biol. Chem. 267: 15160-15167; Patente de Estados Unidos Nº 5783186; y Klapper et al. (1997) Oncogene 14: 2099-2109.

10

15

20

25

30

35

40

45

50

55

El cribado de homología ha dado como resultado la identificación de otros dos miembros de la familia de receptores ErbB; ErbB3 (Patente de Estados Unidos Nº 5.183.884; Patente de Estados Unidos Nº 5.480.968; KraU.S. et al. (1989) Proc. Natl. Acad. Sci. USA 86: 9193-9197) y ErbB4 (documento EP 599274; Plowman et al. (1993) Proc. Natl. Acad. Sci. USA 90: 1746-1750; y Plowman et al. (1993) Nature 366: 473-475). Ambos de estos receptores presentan mayor expresión en al menos algunas líneas celulares de cáncer de mama.

HERCEPTIN® (Trastuzumab) es un anticuerpo monoclonal humanizado derivado de ADN recombinante que se une selectivamente con alta afinidad en un ensayo basado en células (Kd = 5 nM) al dominio extracelular de la proteína del receptor 2 del factor de crecimiento epidérmico humano, HER2 (ErbB2) (Patente de Estados Unidos Nº 5821337; Patente de Estados Unidos Nº 6054297; Patente de Estados Unidos Nº 6407213; Patente de Estados Unidos Nº 6639055; Coussens L, et al. (1985) Science 230: 1132-9; Slamon DJ, et al. (1989) Science 244: 707-12). Trastuzumab es un anticuerpo IgG1 kappa que contiene regiones marco humanas con las regiones que determinan la complementariedad de un anticuerpo de murino (4D5) que se une a HER2. Trastuzumab se une al antígeno de HER2 y de este modo inhibe el crecimiento de células cancerosas. Debido a que Trastuzumab es un anticuerpo humanizado, éste minimiza cualquier respuesta de HAMA en pacientes. El anticuerpo humanizado frente a HER2 se produce mediante un cultivo de suspensión de células de mamífero (Ovario de Hámster Chino, CHO). El protooncogen de HER2 (o c-erbB2) codifica una proteína receptora transmembrana de 185 kDa, que está relacionado estructuralmente con el receptor del factor de crecimiento epidérmico. La sobreexpresión de la proteína HER2 se observa en un 25 %-30 % de cánceres primarios de mama y se puede determinar usando una evaluación basada en inmunohistoquímica de bloques tumorales fijados (Press MF, et al. (1993) Cancer Res 53: 4960-70. Se ha mostrado que, tanto en ensayos in vitro como en animales, inhibe la proliferación de células tumorales humanas que sobreexpresan HER2 (Hudziak RM, et al. (1989) Mol Cell Biol 9: 1165-72; Lewis GD, et al. (1993) Cancer Immunol Immunother; 37: 255-63; Baselga J, et al. (1998) Cancer Res. 58: 2825-2831). Trastuzumab es un mediador de citotoxicidad celular dependiente de anticuerpos, ADCC (Hotaling TE, et al. (1996) [resumen]. Proc. Annual Meeting Am Assoc Cancer Res; 37:471; Pegram MD, et al. (1997) [resumen]. Proc Am Assoc Cancer Res; 38:602). In vitro. se ha mostrado que ADCC mediado por Trastuzumab se ejerce preferentemente sobre células cancerosas que sobreexpresan HER2 en comparación con células cancerosas que no sobreexpresan HER2. HERCEPTIN® como un agente individual está indicado para el tratamiento de pacientes con cáncer metastásico de mama cuyos tumores sobreexpresa la proteína HER2 y que han recibido uno o más regímenes de quimioterapia para su enfermedad metastásica. HERCEPTIN® en combinación con paclitaxel está indicado para el tratamiento de pacientes con cáncer metastásico de mama cuyos tumores sobreexpresan la proteína HER2 y que no han recibido quimioterapia para su enfermedad metastásica. HERCEPTIN® es clínicamente activo en pacientes con cánceres metastásicos de mama que sobreexpresan ErbB2 que han recibido anteriormente una terapia anticáncer extensa (Baselga et al, (1996) J. Clin. Oncol. 14: 737-744).

El anticuerpo anti-HER2 monoclonal de murino inhibe el crecimiento de líneas celulares de cáncer de mama que sobreexpresan HER2 en el nivel 2+ y 3+ (1-2 x 10⁶ receptores de HER2 por célula), pero no tiene actividad sobre células que expresan niveles más bajos de HER2 (Lewis et al., (1993) Cancer Immunol. Immunother. 37: 255-263). Basándose en esta observación, se humanizó anticuerpo 4D5 (huMAb4D5-8, rhuMAb HER2, Patente de Estados Unidos Nº 5821337; Carter et al., (1992) Proc. Natl. Acad. Sci. USA 89: 4285-4289) y se sometió a ensayo en pacientes con cáncer de mama cuyos tumores sobreexpresaban HER2 pero que habían progresado después de quimioterapia convencional (Cobleigh et al., (1999) J. Clin. Oncol. 17: 2639-2648).

A pesar de que HERCEPTIN es un gran avance en el tratamiento de pacientes con cánceres de mama que sobreexpresan ErbB2 que han recibido anteriormente terapia anticáncer extensa, algunos pacientes de esta población no responden a o solamente responden muy poco al tratamiento con HERCEPTIN.

60 El documento WO01/18032 A2 describe péptidos de dolastatina de fórmula (I)

El documento WO2004/073656 A2 describe anticuerpos anti-CD70 y derivados de los mismos conjugados con agentes citotóxicos, inmunosupresores u otros agentes terapéuticos, para el tratamiento de cánceres y trastornos inmunológicos que expresan CD70.

El documento WO2004/010957 A2 describe conjugados de fármaco-conector-ligando en los que un fármaco se une a un ligando a través de una unidad de Conector basada en péptidos. El ligando puede ser un anticuerpo. Se describen métodos para tratar cáncer, una enfermedad autoinmune o una enfermedad infecciosa.

Por lo tanto, existe una necesidad clínica significativa para desarrollar terapias adicionales frente al cáncer dirigidas por HER2 para los pacientes con tumores que sobreexpresan HER2 u otras enfermedades asociadas con la expresión de HER2 que no responden, o responden muy poco, al tratamiento con HERCEPTIN.

15 La relación de cualquier referencia en la presente solicitud no es una admisión de que la referencia sea técnica anterior a la presente solicitud.

3. Sumario de la invención

5

10

25

35

40

45

20 En un aspecto, la presente invención proporciona Compuestos Fármaco que tienen la Fórmula **Ib**:

o sales o solvatos farmacéuticamente aceptables de los mismos,

independientemente de cada posición:

R² se selecciona entre H y alquilo C₁-C₈;

R³ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈), heterociclo C₃-C₈, y alquil C₁-C₈-(heterociclo C₃-C₈);

R⁴ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈). 30 heterociclo C₃-C₈, y alquil C₁-C₈-(heterociclo C₃-C₈); en la que R⁵ se selecciona entre -H y -metilo; o R⁴ y R⁵ forman de manera conjunta un anillo carbocíclico y tienen la fórmula -(CRaRb)n- en la que Ra y Rb se seleccionan independientemente entre -H, -alquilo C₁-C₈ y -carbociclo C₃-C₈ y n se selecciona entre 2, 3, 4, 5 y 6; R^6 se selecciona entre H y -alquilo C_1 - C_8 ;

R' se selecciona entre H, -alquilo C₁-C₈, -carbociclo C₃-C₈, arilo, -alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃- C_8), -heterociclo C_3 - C_8 y -alquil C_1 - C_8 -(heterociclo C_3 - C_8);

cada R⁸ se selecciona independientemente entre H, -OH, alquilo C₁-C₈, -carbociclo C₃-C₈ y -O-(alquilo C₁-C₈); R^9 se selecciona entre H y -alquilo $C_1\text{-}C_8;$ R^{10} se selecciona entre grupo arilo o -heterociclo $C_3\text{-}C_8;$

Z es -O-; y R¹¹ es H.

Los compuestos de Fórmula (Ib) son útiles para tratar cáncer, una enfermedad autoinmune o una enfermedad infecciosa en un paciente o útiles como un compuesto intermedio para la síntesis de un Fármaco-Conector. Conjugado de Fármaco-Conector-Ligando, y Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco.

En otro aspecto, la presente invención proporciona un conjugado tal como se define en la reivindicación 2, que tiene la siguiente fórmula:

L-(LU-D_F)_p

o una sal o un solvato farmacéuticamente aceptables del mismo en la que:

5

L- es una unidad de Ligando,

LU es una unidad de Conector que puede estar presente o ausente,

p varía de 1 a 20, y

D_F es un grupo de la siguiente fórmula:

10

El conjugado que se define en la reivindicación 2 puede ser un conjugado de anticuerpo-fármaco que tiene la Fórmula la'

15

$$Ab - \left(-A_{\overline{a}} - W_{\overline{w}} - Y_{\overline{y}} - D_{F}\right)_{p}$$

o una sal o un solvato farmacéuticamente aceptables del mismo en la que:

20

25

Ab es un anticuerpo,

-Aa-Ww-Yv- es una unidad de Conector,

A es una unidad Bastidor,

a es 0 o 1,

cada W es independientemente una unidad de Aminoácido,

w es un número entero que varía de 0 a 12,

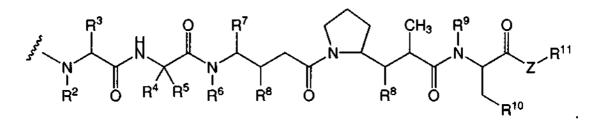
Y es a unidad Espaciadora,

y es 0, 1 o 2, y

p varía de 1 a 20.

30

En otro aspecto, la presente invención proporciona un conjugado tal como se define en la reivindicación 3, que tiene la siguiente fórmula:


LU-D_F

35

40

o una sal o un solvato farmacéuticamente aceptables del mismo en la que:

LU- es una Unidad de Conector que comprende un grupo funcional capaz de unirse a una unidad de ligando, y D_F es un grupo de la siguiente fórmula:

Además, en otro aspecto, la invención proporciona composiciones farmacéuticas que comprenden una cantidad eficaz de un conjugado de anticuerpo-fármaco de la invención y un vehículo o excipiente farmacéuticamente aceptable.

Además, en el presente documento se describen composiciones que comprenden una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando y un vehículo o excipiente farmacéuticamente aceptable.

- Además, en el presente documento se describen métodos para eliminar o inhibir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.
- Además, en el presente documento se describen métodos para eliminar o inhibir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Coniugado de Fármaco-Conector-Ligando.

5

35

40

50

60

- Además, en el presente documento se describen métodos para eliminar o inhibir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.
- Además, en el presente documento se describen métodos para tratar el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.
 - Además, en el presente documento se describen métodos para tratar el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.
- Además, en el presente documento se describen métodos para tratar el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.
- Además, en el presente documento se describen métodos para eliminar o inhibir la replicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.
 - Además, en el presente documento se describen métodos para eliminar o inhibir la replicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.
 - Además, en el presente documento se describen métodos para eliminar o inhibir la replicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.
 - Además, en el presente documento se describen métodos para tratar una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.
- 45 Además, en el presente documento se describen métodos para tratar una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.
 - Además, en el presente documento se describen métodos para tratar una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.
 - Además, en el presente documento se describen methods para tratar una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.
- Además, en el presente documento se describen métodos para tratar una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.
 - Además, en el presente documento se describen métodos para tratar una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.
 - Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.
 - Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula tumoral o

célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.

Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.

Además, en el presente documento se describen métodos para prevenir el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.

Además, en el presente documento se describen métodos para prevenir el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.

Además, en el presente documento se describen métodos para prevenir el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.

Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.

Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.

Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.

Además, en el presente documento se describen métodos para prevenir una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.

Además, en el presente documento se describen métodos para prevenir una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.

Además, en el presente documento se describen métodos para prevenir una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.

Además, en el presente documento se describen métodos para prevenir una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Compuesto de Fármaco-Conector.

Además, en el presente documento se describen métodos para prevenir una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Ligando.

Además, en el presente documento se describen métodos para prevenir una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando.

Además, en el presente documento se describe un Compuesto de Fármaco que se puede usar como un compuesto intermedio para la síntesis de un Compuesto de Fármaco-Conector que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando,

Además, en el presente documento se describe un Compuesto de Fármaco-Conector que se puede usar como un compuesto intermedio para la síntesis de un Conjugado de Fármaco-Conector-Ligando.

En una realización de los compuestos de Fórmula la', Ab no es un anticuerpo que se une a un receptor ErbB receptor o que se une a uno o más receptores (1)-(35):

- (1) BMPR1B (receptor de proteína morfogenética ósea de tipo IB, № de acceso en Genbank NM_001203);
 - (2) E16 (LAT1, SLC7A5, Nº de acceso en Genbank NM_003486);
- (3) STEAP1 (antígeno epitelial de seis dominios transmembrana de próstata, № de acceso en Genbank NM_012449);

8

10

5

25

20

30

40

35

45

50

60

	(4) 0772P (CA125, MUC16, Nº de acceso en Genbank AF361486);
5	(5) MPF (MPF, MSLN, SMR, factor de potenciación de megacariocitos, mesotelina, N^{ϱ} de acceso en Genbank NM_005823);
10	(6) Napi3b (NAPI-3B, NPTIIb, SLC34A2, familia de transportadores de soluto 34 (fosfato sódico), miembro 2, transportador de fosfato dependiente de sodio de tipo II 3b, N° de acceso en Genbank NM_006424);
	(7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMA5B, SEMAG, Semaforina 5b Hlog, dominio sema, siete repeticiones de trombospondina (de tipo 1 y similar al tipo 1), dominio transmembrana (TM) y dominio citoplasmático corto, (semaforina) 5B, N° de acceso en Genbank AB040878);
15	(8) genes PSCA hlg (2700050C12Rik, C530008O16Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, N° de acceso en Genbank AY358628);
	(9) ETBR (Receptor de endotelina de tipo B, Nº de acceso en Genbank AY275463);
20	(10) MSG783 (RNF124, proteína hipotética FLJ20315, № de acceso en Genbank NM_017763);
25	(11) STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, gen 1 asociado al cáncer de próstata, proteína 1 asociada al cáncer de próstata, antígeno epitelial de seis dominios transmembrana de próstata 2, proteína de próstata de seis dominios transmembrana, Nº de acceso en Genbank AF455138);
	(12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, canal catiónico potencial de receptores transitorios, subfamilia M, miembro 4, N° de acceso en Genbank NM_017636);
30	(13) CRIPTO, (CR, CR1, CRGF, CRIPTO, TDGF1, factor de crecimiento derivado de teratocarcinoma, N° de acceso en Genbank NP_003203 o NM_003212);
35	(14) CD21 (CR2 (Receptor de complemento2) o C3DR (receptor de C3d/virus de Epstein Barr) o Hs.73792, N^{ϱ} de acceso en Genbank M26004);
	(15) CD79b (IGb (asociado a inmunoglobulina beta), B29, № de acceso en Genbank NM_000626);
40	(16) FcRH2 (IFGP4, IRTA4, SPAP1A (proteína de anclaje 1a de fosfatasa que contiene el dominio SH2), SPAP1B, SPAP1C, N° de acceso en Genbank $NM_{0}30764$);
	(17) HER2 (Nº de acceso en Genbank M11730);
	(18) NCA (Nº de acceso en Genbank M18728);
45	(19) MDP (N^{ϱ} de acceso en Genbank BC017023);
	(20) IL20R α (N $^{\circ}$ de acceso en Genbank AF184971);
50	(21) Brevican (Nº de acceso en Genbank AF229053);
	(22) Ephb2R (№ de acceso en Genbank NM_004442);
	(23) ASLG659 (Nº de acceso en Genbank AX092328);
55	(24) PSCA (Nº de acceso en Genbank AJ297436);
	(25) GEDA (Nº de acceso en Genbank AY260763);
60	(26) BAFF-R (№ de acceso en Genbank NP_443177.1);
	(27) CD22 (Nº de acceso en Genbank NP-001762.1);
65	(28) CD79a (CD79A, CD79 α , asociado a inmunoglobulina alfa, una proteína específica de linfocitos B que interactúa covalentemente con Ig beta (CD79B) y forma un complejo sobre la superficie de moléculas de IgM, transduce una señal implicada en la diferenciación de linfocitos B, N $^{\circ}$ de acceso en Genbank NP_001774.1);

- (29) CXCR5 (receptor del linfoma de Burkitt 1, un receptor acoplado a la proteína G que se activa con la quimioquina CXCL13, funciona en la migración de linfocitos y en la defensa humoral, desempeña un papel en la infección por VIH-2 y quizá en el desarrollo de SIDA, linfoma, mieloma, y leucemia, № de acceso en Genbank NP 001707.1);
- (30) HLA-DOB (Subunidad beta de la molécula MHC de clase II (antígeno la) que se une a péptidos y los presenta a linfocitos T CD4+, Nº de acceso en Genbank NP_002111.1);
- 10 (31) P2X5 (Canal iónico 5 abierto por el ligando receptor purinérgico P2X, un canal aniónico abierto por ATP extracelular, puede estar implicado en la transmisión y en la neurogénesis sináptica, la deficiencia puede contribuir a la patofisiología de inestabilidad, Nº de acceso en Genbank NP 002552.2);

5

15

20

40

45

- (32) CD72 (antígeno CD72 de diferenciación de linfocitos B, Lyb-2, № de acceso en Genbank NP 001773.1);
- (33) LY64 (Antígeno 64 de linfocitos (RP105), proteína de membrana de tipo I de la familia de repetición rica en leucina (LRR), regula la activación y apoptosis de linfocitos B, la pérdida de función está asociada con mayor actividad de la enfermedad en pacientes con lupus sistémico eritematoso, Nº de acceso en Genbank NP 005573.1);
- (34) FCRH1 (proteína 1 de tipo receptor de Fc,1 supuesto receptor para el dominio Fc de la inmunoglobulina que contiene los dominios similar a lg de tipo C2 e ITAM, puede tener un papel en la diferenciación de linfocitos B, № de acceso en Genbank NP_443170.1); o
- 25 (35) IRTA22 (Translocación asociada al receptor 2 de la superfamilia de inmunoglobulinas, un supuesto inmunoreceptor con posibles papeles en el desarrollo y la linfomagénesis de linfocitos B; la desregulación de los genes por translocación se produce en algunas neoplasias de linfocitos B, Nº de acceso en Genbank NP_112571.1).
- Además, en el presente documento se describen composiciones farmacéuticas que comprenden una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo y un vehículo o excipiente farmacéuticamente aceptable.
- Además, en el presente documento se describen composiciones que comprenden una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco (resto) que se puede escindir del Conjugado de Fármaco-Anticuerpo y un vehículo o excipiente farmacéuticamente aceptable.
 - Además, en el presente documento se describen métodos para eliminar o inhibir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
 - Además, en el presente documento se describen métodos para eliminar o inhibir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
 - Además, en el presente documento se describen métodos para tratar el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
- Además, en el presente documento se describen métodos para tratar el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
- Además, en el presente documento se describen métodos para eliminar o inhibir la replicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
 - Además, en el presente documento se describen métodos para eliminar o inhibir la replicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
 - Además, en el presente documento se describen métodos para tratar una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
- Además, en el presente documento se describen métodos para tratar una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene

una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.

Además, en el presente documento se describen métodos para tratar una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.

5

- Además, en el presente documento se describen métodos para tratar una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
- Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
- Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula tumoral o célula cancerosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
- Además, en el presente documento se describen métodos para prevenir el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
 - Además, en el presente documento se describen métodos para prevenir el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.

25

- Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
- Además, en el presente documento se describen métodos para prevenir la multiplicación de una célula que expresa un anticuerpo autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
- Además, en el presente documento se describen métodos para prevenir una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
 - Además, en el presente documento se describen métodos para prevenir una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
 - Además, en el presente documento se describen métodos para prevenir una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Conector-Anticuerpo.
- Además, en el presente documento se describen métodos para prevenir una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado de Fármaco-Anticuerpo que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
- En el presente documento, se proporciona un Compuesto de Fármaco que se puede usar como un compuesto intermedio para la síntesis de un Compuesto de Fármaco-Conector que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Anticuerpo.
 - En el presente documento, se proporciona un Compuesto de Fármaco-Conector que se puede usar como un compuesto intermedio para la síntesis de un Conjugado de Fármaco-Conector-Anticuerpo.

55

40

- En los Conjugados de Fármaco-Conector-Anticuerpo (también denominados conjugados de anticuerpo-fármaco) que se describen en el presente documento
- Ab puede ser un anticuerpo que se une a uno o más de los antígenos (1)-(35):

60

- (1) BMPR1B (receptor de proteína morfogenética ósea de tipo IB, № de acceso en Genbank NM_001203);
- (2) E16 (LAT1, SLC7A5, Nº de acceso en Genbank NM_003486);
- (3) STEAP1 (antígeno epitelial de seis dominios transmembrana de próstata, Nº de acceso en Genbank NM 012449);
- (4) 0772P (CA125, MUC16, Nº de acceso en Genbank AF361486);
 - (5) MPF (MPF, MSLN, SMR, factor de potenciación de megacariocitos, mesotelina, № de acceso en Genbank

NM 005823);

5

15

40

45

50

- (6) Napi3b (NAPI-3B, NPTIIb, SLC34A2, familia de transportadores de soluto 34 (fosfato sódico), miembro 2, transportador de fosfato dependiente de sodio de tipo II 3b, Nº de acceso en Genbank NM_006424);
- (7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMA5B, SEMAG, Semaforina 5b Hlog, dominio sema, siete repeticiones de trombospondina (de tipo 1 y similar al tipo 1), dominio transmembrana (TM) y dominio citoplasmático corto, (semaforina) 5B, Nº de acceso en Genbank AB040878);
 - (8) PSCA hlg (2700050C12Rik, C530008O16Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, Nº de acceso en Genbank AY358628);
 - (9) ETBR (Receptor de endotelina de tipo B, Nº de acceso en Genbank AY275463);
- (10) MSG783 (RNF124, proteína hipotética FLJ20315, Nº de acceso en Genbank NM_017763); 10
 - (11) STEAP2 (HGNC 8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, gen 1 asociado al cáncer de próstata, proteína 1 asociada al cáncer de próstata, antígeno epitelial de seis dominios transmembrana de próstata 2, proteína de próstata de seis dominios transmembrana, № de acceso en Genbank AF455138);
 - (12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, canal catiónico potencial de receptores transitorios. subfamilia M, miembro 4, Nº de acceso en Genbank NM 017636);
 - (13) CRIPTO (CR, CR1, CRGF, CRIPTO, TDGF1, factor de crecimiento derivado de teratocarcinoma, Nº de acceso en Genbank NP 003203 o NM 003212);
 - (14) CD21 (CR2 (Receptor de complemento2) o C3DR (receptor de C3d/virus de Epstein Barr) o Hs.73792, Nº de acceso en Genbank M26004);
- 20 (15) CD79b (IGb (asociado a inmunoglobulina beta), B29, № de acceso en Genbank NM 000626);
 - (16) FcRH2 (IFGP4, IRTA4, SPAP1A (proteína de anclaje 1a de fosfatasa que contiene el dominio SH2), SPAP1B, SPAP1C, Nº de acceso en Genbank NM 030764);
 - (17) HER2 (Nº de acceso en Genbank M11730);
 - (18) NCA (Nº de acceso en Genbank M18728);
- (19) MDP (Nº de acceso en Genbank BC017023); 25
 - (20) IL20Rα (Nº de acceso en Genbank AF184971);
 - (21) Brevican (Nº de acceso en Genbank AF229053);
 - (22) Ephb2R (Nº de acceso en Genbank NM 004442);

 - (23) ASLG659 (Nº de acceso en Genbank AX092328);
- (24) PSCA (Nº de acceso en Genbank AJ297436); 30
 - (25) GEDA (Nº de acceso en Genbank AY260763);
 - (26) BAFF-R (Nº de acceso en Genbank NP 443177.1);
 - (27) CD22 (Nº de acceso en Genbank NP-001762.1);
- (28) CD79a (CD79A, CD79α, asociado a inmunoglobulina alfa, una proteína específica de linfocitos B que 35 interactúa covalentemente con la beta (CD79B) y forma un complejo sobre la superficie de moléculas de IgM. transduce una señal implicada en la diferenciación de linfocitos B, Nº de acceso en Genbank NP 001774.1);
 - (29) CXCR5 (receptor del linfoma de Burkitt 1, un receptor acoplado a la proteína G que se activa con la quimioquina CXCL13, funciona en la migración de linfocitos y en la defensa humoral, desempeña un papel en la infección por VIH-2 y quizá en el desarrollo de SIDA, linfoma, mieloma, y leucemia, Nº de acceso en Genbank NP 001707.1);
 - (30) HLA-DOB (Subunidad beta de la molécula MHC de clase II (antígeno la) que se une a péptidos y los presenta a linfocitos T CD4+, Nº de acceso en Genbank NP_002111.1);
 - (31) P2X5 (Canal iónico 5 abierto por el ligando receptor purinérgico P2X, un canal aniónico abierto por ATP extracelular, puede estar implicado en la transmisión y en la neurogénesis sináptica, la deficiencia puede contribuir a la patofisiología de inestabilidad, Nº de acceso en Genbank NP 002552.2);
 - (32) CD72 (antígeno CD72 de diferenciación de linfocitos B, Lyb-2, № de acceso en Genbank NP_001773.1);
 - (33) LY64 (Antígeno 64 de linfocitos (RP105), proteína de membrana de tipo I de la familia de repetición rica en leucina (LRR), regula la activación y apoptosis de linfocitos B, la pérdida de función está asociada con mayor actividad de la enfermedad en pacientes con lupus sistémico eritematoso, Nº de acceso en Genbank NP 005573.1);
 - (34) FCRH1 (proteína 1 de tipo receptor de Fc.1 supuesto receptor para el dominio Fc de la inmunoglobulina que contiene los dominios similar a lg de tipo C2 e ITAM, puede tener un papel en la diferenciación de linfocitos B, № de acceso en Genbank NP 443170.1); o
- (35) IRTA2 (Translocación asociada al receptor 2 de la superfamilia de inmunoglobulinas, un supuesto 55 inmunoreceptor con posibles papeles en el desarrollo y la linfomagénesis de linfocitos B; la desregulación de los genes por translocación se produce en algunas neoplasias de linfocitos B, Nº de acceso en Genbank NP 112571.1).
- En otro aspecto, el anticuerpo del conjugado de anticuerpo-fármaco (ADC) de la invención se une específicamente a 60 un receptor codificado por un gen ErbB2.
 - En otro aspecto, el anticuerpo del conjugado de anticuerpo-fármaco es un anticuerpo humanizado seleccionado entre huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 y huMAb4D5-8 (Trastuzumab).
 - Además, en el presente documento se describe un artículo de fabricación que comprende un compuesto de

conjugado de anticuerpo-fármaco de la invención; un envase; y un prospecto o etiqueta que indica que el compuesto se puede usar para tratar cáncer caracterizado por la sobreexpresión de un receptor de ErbB2.

Además, en el presente documento se describe un método para el tratamiento de cáncer en un mamífero, el cáncer se caracteriza por la sobreexpresión de un receptor de ErbB2 y no responde, o responde muy poco, al tratamiento con un anticuerpo anti-ErbB2, que comprende administrar al mamífero una cantidad terapéuticamente eficaz de un compuesto de conjugado de anticuerpo-fármaco de la invención.

En algunos casos, una cantidad básica del resto de fármaco no se escinde del el anticuerpo hasta que el compuesto de conjugado de anticuerpo-fármaco entra en una célula con un receptor de superficie celular específico para el anticuerpo del conjugado de anticuerpo-fármaco, y el resto de fármaco se escinde del anticuerpo cuando el conjugado de anticuerpo-fármaco entra en la célula.

En algunos casos, la biodisponibilidad del compuesto de conjugado de anticuerpo-fármaco o un metabolito intracelular del compuesto en un mamífero mejora cuando se compara con un compuesto de fármaco que comprende el resto de fármaco del compuesto de conjugado de anticuerpo-fármaco, o cuando se compara con un análogo del compuesto que no tiene el resto de fármaco.

El resto de fármaco se puede escindir intracelularmente en un mamífero a partir del anticuerpo del compuesto, o un metabolito intracelular del compuesto.

En otro aspecto, la invención incluye una composición farmacéutica que comprende una cantidad eficaz del compuesto de conjugado de anticuerpo-fármaco de la invención, o una sal farmacéuticamente aceptable del mismo, y un diluyente, vehículo o excipiente farmacéuticamente aceptable. La composición puede comprender adicionalmente una cantidad terapéuticamente eficaz de agente quimioterapeútico tal como un inhibidor de la formación de tubulina, un inhibidor de la topoisomerasa, y un aglutinante de ADN.

Además, en el presente documento se describe un método para eliminar o inhibir la proliferación la proliferación de células tumorales o de células cancerosas que comprende tratar células tumorales o células cancerosas con una cantidad del compuesto de conjugado de anticuerpo-fármaco de la invención, o una sal o un solvato farmacéuticamente aceptables del mismo, que es eficaz para eliminar o inhibir la proliferación la proliferación de células tumorales o de células cancerosas.

Además, en el presente documento se describe un método para inhibir la proliferación celular que comprende exponer células de mamífero en una medio de cultivo celular a un compuesto de conjugados de fármaco de anticuerpo de la invención, en el que el compuesto de conjugado del fármaco de anticuerpo entra en las células y el fármaco se escinde del resto del compuesto de conjugado del fármaco de anticuerpo; mediante el cual se inhibe la proliferación de las células.

Además, en el presente documento se describe es método para tratar cáncer que comprende administrar a un paciente una formulación de un compuesto de conjugado de anticuerpo-fármaco de la invención y un diluyente, vehículo o excipiente farmacéuticamente aceptable.

Además, en el presente documento se describe un ensayo para detectar células cancerosas que comprende:

- (a) exponer células a un compuesto de conjugado de anticuerpo-fármaco de la invención; y
- (b) determinar el alcance de unión del compuesto de conjugado de anticuerpo-fármaco con las células.

La invención se entenderá mejor por referencia a la siguiente descripción detallada de las realizaciones a modo de ejemplo, tomada de manera conjunta con los dibujos, figuras, y esquemas adjuntos. El análisis que sigue a continuación es descriptivo, ilustrativo y a modo de ejemplo y no se debe considerar como limitante del alcance que se define con cualquiera de las reivindicaciones adjuntas.

Breve descripción de los dibujos

5

20

25

30

45

55

60

65

La Figura 1 muestra un ensayo de eficacia, de una sola dosis, *in vivo* de cAC10-mcMMAF en xenoinjertos subcutáneos de Karpas-299 ALCL.

La Figura 2 muestra un ensayo de eficacia, de una sola dosis, *in vivo* de cAC10-mcMMAF en L540cy subcutáneas. Para este estudio había 4 ratones en el grupo sin tratar y 10 en cada uno de los grupos de tratamiento.

Las Figuras 3a y 3b muestran la eficacia *in vivo* de cBR96-mcMMAF en L2987 subcutáneas. Los triángulos que están fuera de la Figura 3a y las flechas en la Figura 3b indican los días de terapia.

Las Figuras 4a y 4b muestran la actividad *in vitro* de conjugados de cAC10-anticuerpo-fármaco frente a líneas celulares CD30⁺.

Las Figuras 5a y 5b muestran la actividad in vitro de conjugados de cBR96-anticuerpo-fármaco frente a líneas

celulares Ley+.

5

10

20

35

40

55

60

65

Las Figuras 6a y 6b muestran la actividad *in vitro* de conjugados de c1F6-anticuerpo-fármaco frente a líneas celulares de carcinoma de células renales CD70⁺.

La Figura 7 muestra un ensayo de proliferación celular, *in vitro* con células SK-BR-3 tratadas con conjugados de anticuerpo y fármaco (ADC): -•- Trastuzumab-MC-vc-PAB-MMAF, 3,8 MMAF/Ab, -o- Trastuzumab-MC-MMAF, 4,1 MMAF/Ab, y -Δ- Trastuzumab-MC-MMAF, 4,8 MMAF/Ab, medido en Unidades de Fluorescencia Relativa (RLU) frente a concentración en μg/ml de ADC. H = Trastuzumab cuando H se une a través de una cisteína [cys]. La Figura 8 muestra un ensayo de proliferación celular, *in vitro* con células BT-474 tratadas con ADC: -•- Trastuzumab-MC-vc-PAB-MMAF, 3,8 MMAF/Ab, -o-Trastuzumab-MC-MMAF, 4,1 MMAF/Ab, y -Δ- Trastuzumab-MC-MMAF, 4,8 MMAF/Ab.

La Figura 9 muestra un ensayo de proliferación celular, *in vitro* con células MCF-7 tratadas con ADC: -•-Trastuzumab-MC-vc-PAB-MMAF, 3,8 MMAF/Ab, -o-Trastuzumab-MC-(N-Me)vc-PAB-MMAF, 3,9 MMAF/Ab, y -Δ-Trastuzumab-MC-MMAF, 4,1 MMAF/Ab.

La Figura 10 muestra un ensayo de proliferación celular, *in vitro* con células MDA-MB-468 tratadas con ADC: -•15 Trastuzumab-MC-vc-PAB-MMAE, 4,1 MMAE/Ab, -o-Trastuzumab-MC-vc-PAB-MMAE, 3,3 MMAE/Ab, y -ΔTrastuzumab-MC-vc-PAB-MMAF, 3,7 MMAF/Ab.

La Figura 11 muestra un estudio de aclaramiento de la concentración de plasma después de la administración de H-MC-vc-PAB-MMAF-TEG y H-MC-vc-PAB-MMAF a ratas Sprague-Dawley: La dosis administrada fue de 2 mg de ADC por kg de ratas. Las concentraciones de anticuerpo total y de ADC se midieron con el tiempo. (H = Trastuzumab).

La Figura 12 muestra un estudio de aclaramiento de la concentración de plasma después de la administración de H-MC-vc-MMAE a monos Cynomolgus a diferentes dosis: 0,5, 1,5, 2,5, y 3,0 mg/kg administradas el día 1 y el día 21. Las concentraciones de anticuerpo total y de ADC se midieron con el tiempo. (H = Trastuzumab).

La Figura 13 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con aloinjertos de tumor de Mama MMTV-HER2 Fo5 dosificados el Día 0 con Vehículo, Trastuzumab-MC-vc-PAB-MMAE (1250 μ g/m²) y Trastuzumab-MC-vc-PAB-MMAF (555 μ g/m²). (H = Trastuzumab).

La Figura 14 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con aloinjertos de tumor de Mama MMTV-HER2 Fo5 dosificados el Día 0 con 10 mg/kg (660 μ g/m²) de Trastuzumab-MC-MMAE y 1250 μ g/m² de Trastuzumab-MC-vc-PAB-MMAE.

30 La Figura 15 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con aloinjertos de tumor de Mama MMTV-HER2 Fo5 dosificados el Día 0 con Vehículo y 650 μg/m² de trastuzumab-MC-MMAF.

La Figura 16 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con aloinjertos de tumor de Mama MMTV-HER2 Fo5 dosificados el Día 0 con Vehículo y 350 μ g/m² de cuatro conjugados de trastuzumab-MC-MMAF cuando la relación de MMAF/trastuzumab (H) es 2, 4, 5,9 y 6.

La Figura 17 muestra el Cambio medio en el grupo, con barras de error, en pesos corporales de animales (rata) (Media ± DT) después de la administración de Vehículo, trastuzumab-MC-val-cit-PAB-MMAF, trastuzumab-MC(Me)-val-cit-PAB-MMAF, trastuzumab-MC-MMAF y trastuzumab-MC-val-cit-PAB-MMAF.

La Figura 18 muestra el Cambio medio en el grupo en pesos corporales de animales (rata) (Media ± DT) después de la administración de 9,94 mg/kg de H-MC-vc-MMAF, 24,90 mg/kg de H-MC-vc-MMAF, 10,69 mg/kg de H-MC(Me)-vc-PAB-MMAF, 26,78 mg/kg de H-MC (Me)-vc-PAB-MMAF, 10,17 mg/kg de H-MC-MMAF, 25,50 mg/kg de H-MC-MMAF, y 21,85 mg/kg de H-MC-vc-PAB-MMAF. H = trastuzumab. Conector MC se une a través de una cisteína de trastuzumab para cada conjugado.

La Figura 19 muestra el Cambio medio en el grupo, con barras de error, en pesos corporales de rata Sprague
45 Dawley (Media ± DT) después de la administración de trastuzumab (H)-MC-MMAF a dosis de 2105, 3158, y 4210
μg/m². El conector MC se une a través de una cisteína de trastuzumab para cada conjugado.

4. Descripción detallada de las realizaciones a modo de ejemplo

50 4.1 DEFINICIONES Y ABREVIATURAS

A menos que se indique de otro modo, los siguientes términos y expresiones tal como se usan en el presente documento pretenden tener los siguientes significados:

Cuando se usan nombres comerciales en el presente documento, los solicitantes pretenden incluir de forma independiente la formulación del producto del nombre comercial, el fármaco genérico, y el ingrediente o ingredientes farmacéuticos del producto del nombre comercial.

El término "anticuerpo" se usa en el presente documento en el sentido más amplio y cubre específicamente anticuerpos monoclonales intactos, anticuerpos policlonales, anticuerpos multiespecíficos (por ejemplo, anticuerpos biespecíficos) formados a partir de al menos dos anticuerpos intactos, y fragmentos de anticuerpo, siempre y cuando muestren la actividad biológica deseada. Un anticuerpo es una proteína generada por el sistema inmune que es capaz de reconocer y unirse a un antígeno específico. Descrito en términos de su estructura, un anticuerpo tiene por lo general una proteína con forma de Y que consiste en cuatro cadenas de aminoácidos, dos pesadas y dos ligeras. Cada anticuerpo tiene principalmente dos regiones: una región variable y una región constante. La región variable,

situada en los extremos de los brazos de la Y, se une a e interactúa con el antígeno diana. Esta región variable incluye una región de determinación de la complementariedad (CDR) que reconoce y se une un sitio de unión específico en un antígeno en particular. La región constante, situada en la cola de la Y, es reconocida por e interactúa con el sistema inmune (Janeway, C., Travers, P., Walport, M., Shlomchik (2001) Immuno Biology, 5ª Ed., Garland Publishing, Nueva York). Un antígeno diana generalmente tiene numerosos sitios de unión, también denominados epítopos, reconocidos por las CDR en múltiples anticuerpos. Cada anticuerpo que se une específicamente a un epítopo diferente tiene una estructura diferente. Por lo tanto, un antígeno puede tener más de un anticuerpo correspondiente.

5

25

30

35

50

55

60

65

El término "anticuerpo", tal como se usa en el presente documento, también se refiere a una molécula de 10 inmunoglobulina de longitud total o una porción inmunológicamente activa de una molécula de inmunoglobulina de longitud total, es decir, una molécula que contiene un sitio de unión antígenos que se une de forma inmunoespecífica a un antígeno de una diana de interés o parte de la misma, incluyendo dichas dianas pero no limitadas a, célula o células cancerosas que producen anticuerpos autoinmunes asociados con una enfermedad autoinmune. La 15 inmunoglobulina que se desvela en el presente documento puede ser de cualquier tipo (por ejemplo, IgG, IgE, IgM, IgD, e IgA), clase (por ejemplo, IgG1, IgG2, IgG3, IgG4, IgA1 e IgA2) o subclase de molécula de inmunoglobulina. Las inmunoglobulinas se pueden derivar de cualquier especie. En un aspecto, sin embargo, la inmunoglobulina es de origen humano, murino, o de conejo. En otro aspecto, los anticuerpos son anticuerpos policionales, monoclonales, biespecíficos, humanos, humanizados o quiméricos, anticuerpos de una sola cadena, Fv, fragmentos 20 de Fab, fragmentos de F(ab'), fragmentos de F(ab')2, fragmentos producidos con una biblioteca de expresión de Fab, anticuerpos anti-idiotípicos (anti-Id), CDR, y fragmentos de unión a epítopos de cualquiera de los anteriores que se unen de forma inmunoespecífica a antígenos de células cancerosas, antígenos virales o antígenos microbianos.

La expresión "anticuerpo monoclonal", tal como se usa en el presente documento, se refiere a un anticuerpo obtenido a partir de una población de anticuerpos básicamente homogéneos, es decir, los anticuerpos individuales que comprenden la población son idénticos excepto por las posibles mutaciones de origen natural que pueden estar presentes en cantidades menores. Los anticuerpos monoclonales son altamente específicos, siendo dirigidos frente a un solo sitio antigénico. Además, al contrario que las preparaciones de anticuerpo policlonal que incluyen diferentes anticuerpos dirigidos frente a determinantes diferentes (epítopos), capa anticuerpo monoclonal se dirige frente a un solo determinante en el antígeno. Además de su especificidad, los anticuerpos monoclonales son ventajosos en que se pueden sintetizar sin ser contaminados por otros anticuerpos. El modificador "monoclonal" indica el carácter del anticuerpo tal como si se obtuviera a partir de una población de anticuerpos básicamente homogéneos, y no se debe interpretar como que se necesite la producción del anticuerpo mediante cualquier método en particular. Por ejemplo, los anticuerpos monoclonales a usar de acuerdo con la presente invención se pueden preparar con el método del hibridoma descrito primero por Kohler et al. (1975) Nature 256: 495, o se pueden preparar con métodos de ADN recombinante (véase, Patente de Estados Unidos Nº 4816567). Los "anticuerpos monoclonales" también se pueden aislar de fagotecas de anticuerpos usando las técnicas que se describen, por ejemplo, en Clackson et al. (1991) Nature, 352: 624-628 y Marks et al. (1991) J. Mol. Biol., 222:581-597.

En el presente documento, los anticuerpos monoclonales incluyen específicamente anticuerpos "quiméricos" en los que una porción de la cadena pesada y/o ligera es idéntica a u homóloga a secuencias correspondientes en anticuerpos derivados de una especie en particular o que pertenecen a una clase o subclase de anticuerpo en particular, mientras que el resto de la cadena o cadenas es idéntico u homólogo a secuencias correspondientes en anticuerpos derivados de otras especies que pertenecen a otra clase o subclase de anticuerpo, así como fragmentos de dichos anticuerpos, siempre y cuando muestren la actividad biológica deseada (Patente de Estados Unidos Nº 4816567; y Morrison et al. (1984) Proc. Natl. Acad. Sci. USA, 81: 6851-6855).

Se han usado diversos métodos para producir anticuerpos monoclonales (MAb). La tecnología del hibridoma, que se refiere a una línea celular clonada que produce un solo tipo de anticuerpo, usa las células de diversas especies, incluyendo ratones (murino), hámsters, ratas, y seres humanos. Otro método para preparar los MAb usa ingeniería genética que incluye técnicas de ADN recombinante. Los anticuerpos monoclonales preparados a partir de estas técnicas incluyen, entre otros, anticuerpos quiméricos y anticuerpos humanizados. Un anticuerpo quimérico combina regiones de codificación del ADN a partir de más de un tipo de especie. Por ejemplo, un anticuerpo quimérico puede proceder de la región variable de un ratón y la región constante de un ser humano. Un anticuerpo humanizado procede predominantemente de un ser humano, incluso aunque contenga porciones no humanas. Al igual que un anticuerpo quimérico, un anticuerpo humanizado puede contener una región constante totalmente humana. Pero a diferencia de un anticuerpo quimérico, la región variable puede proceder parcialmente de un ser humano. Las porciones sintéticas, no humanas de un anticuerpo humanizado a menudo provienen de las CDR en anticuerpos de murino. En cualquier caso, estas regiones son cruciales para permitir que el anticuerpo reconozca y se una a un antígeno específico.

Tal como se ha indicado, se pueden usar anticuerpos de murino. Aunque son útiles para diagnóstico y terapias a corto plazo, los anticuerpos de murino no se pueden administrar a personas a largo plazo sin aumentar el riesgo de una respuesta inmunogénica perjudicial. Esta respuesta, denominada Anticuerpo Anti-Ratón Humano (HAMA), se produce cuando un sistema inmune humano reconoce el anticuerpo de murino como extraño y lo ataca. Una respuesta HAMA shock tóxico o incluso la muerte.

Los anticuerpos quiméricos y humanizados reducen la probabilidad de una respuesta HAMA al minimizar las porciones no humanas de anticuerpos administrados. Además, los anticuerpos quiméricos y humanizados tienen el beneficio adicional de activar respuestas inmunes humanas secundarias, tales como citotoxicidad celular dependiente de anticuerpos.

5

10

15

20

25

30

35

"Fragmentos de anticuerpo" comprende una porción de un anticuerpo intacto, que comprende preferentemente la región de unión al antígeno o variable del mismo. Ejemplos de fragmentos de anticuerpo incluyen fragmentos de Fab, Fab', F(ab')₂, y Fv; diacuerpos; anticuerpos lineales; moléculas anticuerpo de una sola cadena; y anticuerpos multiespecíficos formados a partir de un fragmento o fragmentos de anticuerpo.

Un anticuerpo "intacto" es uno que comprende una región variable de unión a antígeno así como un dominio constante de cadena ligera (CL) y dominios constantes de cadena pesada, CH1, CH2 y CH3. Los dominios constantes pueden dominios constantes de secuencia nativa (por ejemplo, dominios constantes de secuencia nativa humana) o variante de secuencia de aminoácidos de los mismos.

El anticuerpo intacto puede tener una o más "funciones efectuadas" que se refieren a las actividades biológicas que se pueden atribuir a la región Fc (una región Fc de secuencia narrativa o región Fc variante de secuencia de aminoácidos) de un anticuerpo. Ejemplos defunciones efectoras de anticuerpo incluyen unión a C1q; citotoxicidad y pendiente de complementos; unión al receptor Fc; citotoxicidad mediada por células dependiente de anticuerpos (ADCC); fagocitosis; regulación negativa de receptores de la superficie celular (*por ejemplo*, receptor de linfocitos B; BCR), etc.

Dependiendo de la secuencia de aminoácidos del dominio constante de sus cadenas pesadas, se pueden asignar anticuerpos intactos a diferentes "clases". Existen cinco clases principales de anticuerpos intactos: IgA, IgD, IgE, IgG, e IgM, y varias de éstas se pueden dividir adicionalmente en "subclases" (isotipos), *por ejemplo*, IgG1, IgG2, IgG3, IgG4, IgA, e IgA2. Los dominios constantes de cadena pesada que corresponden a las diferentes clases de anticuerpos se denominan α , δ , ϵ , γ , γ μ , respectivamente. Se conocen bien estructuras de subunidades y configuraciones tridimensionales de diferentes clases de inmunoglobulinas.

Las expresiones "ErbB2" y "HER2" se usan indistintamente en el presente documento y se refieren a proteína HER2 humana que se describe, por ejemplo, en Semba et al., Proc. Natl. Acad. Sci. USA, 82: 6497-6501 (1985) e Yamamoto et al., (1986) Nature, 319: 230-234 (número de acceso en Genbank X03363). El término "erbB2" se refiere al gen que codifica ErbB2 humano y "neu" se refiere al gen que codifica p185neu de rata. ErbB2 preferente es ErbB2 humano de secuencia nativa.

En el mercado están disponibles anticuerpos para receptores ErbB a partir de un número de fuentes, que incluyen, por ejemplo, Santa Cruz Biotechnology, Inc., California, USA.

40 Por "ligando ErbB" se hace referencia a un polipéptido que se une a y/o activa un receptor ErbB. El ligando ErbB puede ser un ligando ErbB humano de secuencia narrativa tal como factor de crecimiento epidérmico (EGF) (Savage et al. (1972) J. Biol. Chem., 247:7612-7621); factor de crecimiento de transformación alfa (TGF-α) (Marquardt et al. (1984) Science 223: 1079-1082); anfiregulina también conocida como factor de crecimiento autocrino de schwanoma o de queratinocitos (Shoyab et al. (1989) Science 243: 1074-1076; Kimura et al., Nature, 348: 257-260 (1990); y 45 Cook et al., Mol. Cell. Biol., 11:2547-2557 (1991)); betacelulina (Shing et al., Science, 259: 1604-1607 (1993); y Sasada et al., Biochem. Biophys. Res. Commun., 190: 1173 (1993)); factor de crecimiento epidérmico de unión a heparina (HB-EGF) (Higashiyama et al., Science, 251: 936-939 (1991)); epiregulina (Toyoda et al., J. Biol. Chem., 270: 7495-7500 (1995); y Komurasaki et al., Oncogene, 15: 2841-2848 (1997)); una heregulina (véase a continuación); neuregulina-2 (NRG-2) (Carraway et al., Nature, 387: 512-516 (1997)); neuregulina-3 (NRG-3) (Zhang 50 et al., Proc. Natl. Acad. Sci., 94: 9562-9567 (1997)); neuregulina-4 (NRG-4) (Harari et al., Oncogene, 18: 2681-89 (1999)) o cripto (CR-1) (Kannan et al., J. Biol. Chem., 272 (6): 3330-3335 (1997)). Ligandos ErbB que se unen a EGFR incluyen EGF, TGF-α, anfiregulina, betacelulina, HB-EGF y epiregulina. Ligandos ErbB que se unen a ErbB3 incluyen heregulinas. Ligandos ErbB capaces de unirse a ErbB4 incluyen betacelulina, epiregulina, HB-EGF, NRG-2, NRG-3, NRG-4 y heregulinas. El ligando ErbB también puede ser un ligando ErbB sintético. El ligando sintético 55 puede ser específico para un receptor ErbB en particular, o puede reconocer complejos de receptor ErbB en particular. Un ejemplo de un ligando sintético es la biregulina quimera de heregulina/EGF sintética (véase, por ejemplo, Jones et al., (1999) FEBS Letters, 447: 227-231, que se incorpora por referencia).

"Heregulina" (HRG) se refiere a un polipéptido codificado por el producto genético de heregulina tal como se desvela en la Patente de Estados Unidos Nº 5641869 o en Marchionni et al., Nature, 362: 312-318 (1993). Ejemplos de heregulinas incluyen heregulina-α, heregulina-β1, heregulina-β2 y heregulina-β3 (Holmes et al., Science, 256: 1205-1210 (1992); y Patente de Estados Unidos Nº 5641869); factor de diferenciación neu (NDF) (Peles et al., Cell 69: 205-216 (1992)); actividad de inducción de receptores de acetilcolina (ARIA) (Falls et al. (1993) Cell 72: 801-815); factores de crecimiento glial (GGF) (Marchionni et al., Nature, 362: 312-318 (1993)); factor derivado de neuronas sensoriales y motoras (SMDF) (Ho et al., J. Biol. Chem., 270: 14523-14532 (1995)); γ-heregulina (Schaefer et al.,

Oncogene, 15: 1385-1394 (1997)). El término incluye fragmentos biológicamente activos y/o variantes de secuencias de aminoácidos de un polipéptido HRG de secuencia nativa, tal como un fragmento de dominio de tipo EGF de los mismos (por ejemplo, HRGβ1177-244).

El "hetero-oligómero de ErbB" es un oligómero asociado de forma no covalente que comprende al menos dos receptores ErbB diferentes. Un "dímero de ErbB" es un oligómero asociado de forma no covalente que comprende dos receptores ErbB diferentes. Dichos complejos se pueden formar cuando una célula que expresa dos o más receptores ErbB se expone a un ligando ErbB. Oligómeros de ErbB, tales como dímeros de ErbB, se pueden aislar por inmunoprecipitación y analizar por SDS-PAGE tal como se describe, por ejemplo, en Sliwkowski et al., J. Biol. Chem., 269 (20): 14661-14665 (1994). Ejemplos de dichos hetero-oligómeros de ErbB incluyen complejos EGFR-ErbB2 (también denominado HER1/HER2), ErbB2-ErbB3 (HER2/HER3) y ErbB3-ErbB4 (HER3/HER4). Además, el ErbB hetero-oligómero puede comprender dos o más receptores ErbB2 combinados con un receptor ErbB diferente, tal como ErbB3, ErbB4 o EGFR (ErbB1). Otras proteínas, tales como una subunidad receptora de citoquinas (por ejemplo, gp130) se pueden incluir en el hetero-oligómero.

15

20

25

30

35

55

60

65

Un polipéptido de "secuencia nativa" es uno que tiene la misma secuencia de aminoácidos que un polipéptido, *por ejemplo*, receptor de antígeno asociado a tumores, procedente de la naturaleza. Dichos polipéptidos de secuencia narrativa se pueden aislar de la naturaleza o se pueden producir por medios recombinantes o sintéticos. Por lo tanto, un polipéptido de secuencia narrativa puede tener la secuencia de aminoácidos de polipéptido humanos de origen natural, polipéptido de murino, o polipéptido a partir de cualquier otra especie de mamífero.

La expresión "variante de secuencia de aminoácidos" se refiere a polipéptidos que tienen secuencias de aminoácidos que difieren hasta cierto punto de un polipéptido de secuencia nativa. Habitualmente, las variantes de secuencias de aminoácidos poseerán al menos una homología de aproximadamente un 70 % con al menos un dominio de unión a receptores de un ligando nativo, o con al menos un dominio de unión ligandos de un receptor nativo, tal como un antígeno asociado a tumores, y preferentemente, serán homólogos en al menos aproximadamente un 80 %, más preferentemente, al menos aproximadamente un 90 % con dichos dominios de unión a receptores o a ligandos. Las variaciones secuencias de aminoácidos poseen sustituciones, supresiones, y/o inserciones en determinadas posiciones dentro de la secuencia de aminoácidos de la secuencia de aminoácidos nativa.

La "identidad de secuencia" se define como el porcentaje de restos en la variante de la secuencia de aminoácidos que son idénticos después de alinear las secuencias e introducir huecos, si fuera necesario, para conseguir el porcentaje máximo de identidad de secuencia. En la técnica se conocen bien métodos y programas de ordenador para el alineamiento. Uno de dichos programas de ordenador es "Align 2", creado por Genentech, Inc., que se presentó con documentación de usuario en la Oficina de Derechos de Autor de Estados Unidos, Washington, DC 20559, el 10 de diciembre de 1991.

"Citotoxicidad mediada por células dependientes de anticuerpos" y "ADCC" se refieren a una reacción mediada por células en la que células citotóxicas no específicas que expresan receptores Fc (FcR) (*por ejemplo*, linfocitos Citolíticos Naturales (NK), neutrófilos, y macrófagos) reconocen anticuerpo unido en una célula diana y posteriormente provocan la lisis de la celular diana. Las células primarias para mediar ADCC, linfocitos NK, expresan solamente FcγRIII, mientras que los monocitos expresan FcγRI, FcγRIII y FcγRIII. La expresión de FcR en células hematopoyéticas se resumen en la Tabla 3 en la página 464 de Ravetch y Kinet, (1991) Annu. Rev. Immunol, 9: 457-92. Para evaluar la actividad de ADCC de una molécula de interés, se puede realizar un ensayo de ADCC *in vitro*, tal como el que se describe en la Patente de Estados Unidos Nº 5500362 o Nº 5821337. Células efectoras útiles para dichos ensayos incluyen células mononucleares de sangre periférica (PBMC) y linfocitos Citolíticos Naturales (NK). Como alternativa, o adicionalmente, la actividad de ADCC de la molécula de interés se puede evaluar *in vivo, por ejemplo*, en un modelo animal tal como el que se desvela en Clynes et al., Prco. Natl. Acad. Sci. USA, 95: 652-656 (1998).

Los términos "receptor Fc" o "FcR" se usan para describir un receptor que se une a la región Fc de un anticuerpo. El FcR preferente es un FcR humano de secuencia nativa. Además, un FcR preferente es uno que se une a un anticuerpo IgG (un receptor gama) e incluye receptores de las subclases FcγRI, FcγRII, y FcγRIII, que incluyen variantes alélicas y formas empalmadas alternativamente de estos receptores. Los receptores FcγRII incluyen FcγRIIA (un "receptor de activación") y FcγRIIB (un "receptor de inhibición"), que tienen secuencias de aminoácidos similares y difieren principalmente en los dominios citoplasmáticos de las mismas. El receptor de activación FcγRIIA contiene un motivo de activación basado en tirosina inmunoreceptora (ITAM) en su dominio citoplasmático. El receptor de inhibición FcγRIIB contiene un motivo de inhibición basado en tirosina inmunoreceptora (ITIM) en su dominio citoplasmático. (Véase revisión M. in Daëron, Annu. Rev. Immunol., 15: 203-234 (1997)). Los FcR se revisan en Ravetch y Kinet, Annu. Rev. Immunol., 9: 457-92 (1991); Capel et al., Immunomethods, 4: 25-34 (1994); y de Haas et al., J. Lab. Clin. Med., 126: 330-41 (1995). Otros FcR, que incluyen los que se van a identificar en el futuro, están incluidos con el término "FcR" en el presente documento. El término también incluye el receptor neonatal, FcRn, que es responsable de la transferencia de IgG maternales al feto. (Guyer et al., J. Immunol., 117:587 (1976) y Kim et al., J. Immunol., 24:249 (1994)).

"Citotoxicidad dependiente de complemento" o "CDC" se refiere a la capacidad de una molécula para lisar una diana más en presencia de complemento. La ruta de activación del complemento se inicia mediante la unión del primer componente el sistema complemento (C1q) a una molécula (por ejemplo, un anticuerpo) formando complejo con un antígeno semejante. Para evaluar la activación del complemento, se puede realizar un ensayo de CDC, por ejemplo, tal como se describe en Gazzano-Santoro et al., J. Immunol. Methods, 202:163 (1996).

5

10

15

20

25

30

35

40

45

50

El término "variable" se refiere al hecho de que determinadas porciones de los dominios variables difieren extensamente en la secuencia entre anticuerpos y se usan en la unión y especificidad de cada anticuerpo en particular para su antígeno en particular. Sin embargo, la variabilidad no se distribuye uniformemente a través de los dominios variables de anticuerpos. Se concentra en tres segmentos denominados regiones hipervariables en los dominios variables tanto de cadena ligera como de cadena pesada. Las porciones más altamente conservadas de dominios variables se denominan regiones marco (FR). Cada uno de los dominios variables de cadenas pesadas y ligeras nativas comprende cuatro FR, que adoptan en gran medida una configuración en lámina β, conectada por tres regiones hipervariables, que forman bucles que conectan, y en algunos casos forman parte de, la estructura en lámina β. Las regiones hipervariables en cada cadena se mantienen en conjunto en proximidad cercana mediante las FR y, con las regiones hipervariables de la otra cadena, contribuyen a la formación del sitio de unión a antígeno de anticuerpos (véase Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5ª Ed. Public Health Service, National Institutes of Health, Bethesda, MD). Los dominios constantes no están implicados directamente en la unión de un anticuerpo a un antígeno, pero presentan diversas funciones efectoras, tales como participación del anticuerpo en la citotoxicidad celular dependiente de anticuerpos (ADCC).

La expresión "región hipervariable" cuando se usa en el presente documento se refiere a los restos de aminoácidos de un anticuerpo que son responsables de la unión a antígeno. La región hipervariable comprende generalmente restos de aminoácidos de una "región de determinación de la complementariedad" o "CDR" (por ejemplo, los restos 24-34 (L1), 50-56 (L2) y 89-97 (L3) en el dominio variable de cadena ligera y 31-35 (H1), 50-65 (H2) y 95-102 (H3) en el dominio variable de cadena pesada; Kabat *et al. mencionado anteriormente*) y/o los restos de un "bucle hipervariable" (por ejemplo, los restos 26-32 (L1), 50-52 (L2) y 91-96 (L3) en el dominio variable de cadena ligera y 26-32 (H1), 53-55 (H2) y 96-101 (H3) en el dominio variable de cadena pesada; Chotia y Lesk (1987) J. Mol. Biol., 196: 901-917). Los restos de la "Región Marco" o "FR" son los restos de dominio variable distintos de los restos de la región hipervariable tal como se define en el presente documento.

La digestión con papaína de anticuerpos produce dos fragmentos idénticos de unión a antígeno, denominados fragmentos "Fab", cada uno con un solo sitio de unión a antígeno, y un fragmento de "Fc" residual, cuyo nombre refleja su capacidad para cristalizar fácilmente. El tratamiento con pepsina produce un fragmento F(ab')₂ que tiene dos sitios de unión a antígeno y que además es capaz de reticular antígenos.

"Fv" es el fragmento de anticuerpo mínimo que contiene un sitio completo de reconocimiento de antígenos y de unión a antígeno. Esta región consiste en un dímero de un dominio variable de cadena pesada y uno de cadena ligera en asociación no covalente, estrecha. Es en esta configuración en la que las tres regiones hipervariables de cada dominio variable interactúan para definir un sitio de unión a antígeno en la superficie del dímero VH-VL. En conjunto, las seis regiones hipervariables transmiten al anticuerpo una especificidad de unión a antígeno. Sin embargo, incluso un solo dominio variable (o la mitad de un Fv que comprende solamente tres regiones hipervariables específicas para un antígeno) tiene la capacidad de reconocer y unirse a antígenos, aunque a una afinidad más baja que la de todo el sitio de unión.

El fragmento de Fab también contiene el dominio constante de la cadena ligera y el primer dominio constante (CH1) de la cadena pesada. Los fragmentos de Fab' de diferencia de los fragmentos de Fab mediante la adición de unos pocos restos en el extremo carboxi del dominio CH1 de cadena pesada que incluye una o más cisteínas de la región bisagra del anticuerpo. El presente documento, Fab'-SH es la denominación para Fab' en la que el resto o restos de cisteína de los dominios constantes soportan al menos un grupo tiol libre. Los fragmentos de anticuerpo F(ab')₂ se producían originalmente como pares de fragmentos de Fab' que tienen cisternas bisagra entre ellos. Además, se conocen otros acoplamientos químicos de fragmentos de anticuerpo.

55 Las "cadenas ligeras" de anticuerpos de cualquier especie de vertebrado se pueden asignar a uno o dos tipos claramente distintos, denominados kappa (κ) y lambda (λ), basándose en las secuencias de aminoácidos de sus dominios constantes.

Fragmentos de anticuerpo "Fv de una sola cadena" o "scFv" comprenden los dominios VH y VL de anticuerpo, en los que estos dominios están presentes en una sola cadena de polipéptidos. Preferentemente, el polipéptido de Fv comprende adicionalmente un conector polipeptídico entre los dominios VH y VL que permite que el scFv forme la estructura deseada para la unión a antígenos. Para una revisión de scFv, véase Plückthun en The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg y Moore eds., Springer-Verlag, Nueva York, páginas 269-315 (1994).

65 El término "diacuerpos" se refiere un fragmento pequeño de anticuerpos con dos sitios de unión a antígenos, fragmentos que comprenden un dominio pesado variable (VH) conectado a un dominio ligero variable (VL) en la

misma cadena de polipéptidos (VH - VL). Mediante el uso de un conector que es demasiado corto para permitir el emparejamiento entre los dos dominios en la misma cadena, los dominios se ven forzados a emparejarse con los dominios complementarios de otra cadena y crear dos sitios de unión a antígenos. Los diacuerpos se describen más completamente, por ejemplo, en el documento EP 404.097; en el documento WO 93/11161; y Hollinger et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6444-6448.

5

10

15

20

25

45

50

65

Las formas "humanizadas" de anticuerpos no humanos (*por ejemplo*, roedores) son anticuerpos quiméricos que contienen secuencias mínimas derivadas de inmunoglobulina no humana. En su mayor parte, los anticuerpos humanizados son inmunoglobulinas humanas (anticuerpo receptor) en las que restos de una región hipervariable del receptor se reemplazan con restos de una región hipervariable de una especie no humana (anticuerpo donante) tal como ratón, rata, conejo o primate lo humano que tienen la especificidad, afinidad, y capacidad deseadas. En algunos casos, restos de la región marco (FR) de la inmunoglobulina humana se reemplazan con restos no humanos correspondientes. Además, los anticuerpos humanizados pueden comprender restos que no se encuentran en el anticuerpo receptor o en el anticuerpo donante. Estas modificaciones se hacen para refinar adicionalmente el rendimiento del anticuerpo. En general, el anticuerpo humanizado comprenderá básicamente todos de al menos uno, y por lo general todos, dominios variables, en los que todos o básicamente todos los bucles hipervariables corresponden con los de una inmunoglobulina no humana y todas o básicamente todas los de las FR son los de una secuencia de inmunoglobulina humana. El anticuerpo humanizado también comprenderá opcionalmente al menos una porción de una región constante de inmunoglobulina (Fc), por lo general la de una inmunoglobulina humana. Para detalles adicionales, véase Jones et al. (1986) Nature, 321: 522-525; Riechmann et al. (1988) Nature 332: 323-329; y Presta, (1992) Curr. Op. Struct. Biol., 2: 593-596.

Anticuerpos anti-ErbB2 humanizados incluyen huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 y huMAb4D5-8 (HERCEPTIN®) tal como se describe en la Tabla 3 de la Patente de Estados Unidos Nº 5821337 que se incorpora expresamente en el presente documento por referencia; 520C9 humanizado (documento WO 93/21319) y anticuerpos 2C4 humanizados tal como los que se describen a continuación en el presente documento.

Un anticuerpo "aislado" es uno que se ha identificado y separado y/o recuperado a partir de un componente de su entorno natural. Los componentes contaminantes de su entorno natural son materiales que interferirían con usos diagnósticos o terapéuticos para el anticuerpo, y pueden incluir enzimas, hormonas, y otros absolutos proteináceos o no proteináceos. En realizaciones preferentes, el anticuerpo estará purificado (1) hasta más de un 95 % en peso del anticuerpo tal como se determina con el método de Lowry, y lo más preferentemente más de un 99 % en peso, (2) hasta un grado suficiente para obtener al menos 15 restos de secuencias de aminoácidos N-terminales o internos mediante el uso de un secuenciador de taza giratoria, o (3) hasta homogeneidad por SDS-PAGE en condiciones reductoras o no reductoras usando azul de Coomassie o, preferentemente, tinción de plata. El anticuerpo aislado incluye el anticuerpo *in situ* dentro de células recombinantes dado que al menos un componente del entorno natural del anticuerpo no estará presente. Normalmente, sin embargo, el anticuerpo aislado se preparará mediante al menos una etapa de purificación.

Un anticuerpo "que se une" a un antígeno de intereses uno capaz de unirse a ese antígeno con una afinidad suficiente de modo que el anticuerpo es útil para dirigirse a una célula que expresa el antígeno.

Un anticuerpo que "induce apoptosis" es una que induce muerte celular programada tal como se determina mediante unión de anexina V, fragmentación del ADN, encogimiento celular, dilatación del retículo endoplasmático, fragmentación celular, y/o formación de vesículas de membrana (denominadas cuerpos apoptóticos). Las células una célula tumoral, por ejemplo, una célula de mama, ovario, estómago, endometrio, glándula salivar, pulmón, riñón, colon, tiroides, pancreática o de vejiga. Diversos métodos están disponibles para evaluar los sucesos celulares asociados con la apoptosis. Por ejemplo, la translocación de la fosfatidil serina (PS) se puede medir mediante unión de anexina; la fragmentación del ADN se puede evaluar a través de marcado del ADN; y la condensación nuclear/cromatina junto con la fragmentación del ADN se puede evaluar mediante cualquier aumento de células hipodiploides.

Un "trastorno" es cualquier afección que se beneficiaría del tratamiento de la presente invención. Éste incluye trastornos o enfermedades, crónicos y agudos, que incluyen las afecciones patológicas que predisponen al mamífero al trastorno en cuestión. Los ejemplos no limitantes de trastornos a tratar en el presente documento incluyen tumores benignos y malignos; leucemia y neoplasias linfoides, en particular cáncer mama, ovarios, estómago, endometrio, glándula salivar, pulmón, riñón, colon, tiroides, pancreático, cáncer de próstata o vejiga; trastornos neuronales, gliales, astrocíticos, hipotalámicos y otros trastornos glandulares, macrofágicos, epiteliales, estromales y blastocoélicos; y trastornos inflamatorios, angiogénicos e inmunológicos.

La expresión "cantidad terapéuticamente eficaz" se refiere a una cantidad de un fármaco eficaz para tratar una enfermedad o trastorno en un mamífero. En el caso de cáncer, la cantidad terapéuticamente eficaz el fármaco puede reducir el número de células cancerosas; reducir el tamaño del tumor; inhibir (*es decir*, ralentizar hasta cierto punto y preferentemente detener) la infiltración de células cancerosas en órganos periféricos; inhibir (*es decir*, ralentizar hasta cierto punto y preferentemente detener) metástasis tumorales; inhibir, hasta cierto punto, el crecimiento

tumoral; y/o aliviar hasta cierto punto uno o más de los síntomas asociados con el cáncer. En la medida en la que el fármaco puede prevenir el crecimiento y/o eliminación de las células cancerosas existentes, éste puede ser citostático y/o citotóxico. Para el tratamiento del cáncer, la eficacia, por ejemplo, se puede medir por evaluación del tiempo de progresión de la enfermedad (TTP) y/o determinar la velocidad de respuesta (RR).

La expresión "cantidad básica" se refiere a una mayoría, *es decir* > 50 % de una población, de una colección o de una muestra.

La expresión "metabolito intracelular" se refiere a un compuesto que resulta de un proceso metabólico o de una reacción dentro de una célula en un conjugado de fármaco de anticuerpo (ADC). El proceso metabólico o la reacción de ser un proceso enzimático tal como escisión proteolítica y un conector etílico del ADC, o hidrólisis de un grupo funcional tal como una hidrazona, éster, o amida. Los metabolitos intracelulares incluyen, pero no se limitan a, anticuerpos y fármacos libres que han experimentado escisión intracelular después de entrada, difusión, absorción o transporte en una célula.

15

20

25

30

10

5

Las expresiones "escindido intercelularmente" y "escisión intracelular" se refieren a un proceso metabólico o reacción dentro de la célula en un Conjugado de Fármaco-Ligando, un Conjugado de Fármaco-Conector-Ligando, un conjugado de fármaco y anticuerpo (ADC) o similares a través de los cuales la unión covalente, *por ejemplo*, el conector, entre el resto de fármaco (D) y el anticuerpo (Ab) se rompe, dando como resultado el fármaco libre disociado a partir del anticuerpo dentro de la célula. Los restos escindidos del Conjugado de Fármaco-Ligando, un Conjugado de Fármaco-Conector-Ligando o ADC son por lo tanto metabolitos intracelulares.

El término "biodisponibilidad" se refiere a la disponibilidad sistémica (es decir, niveles en sangre/plasma) de una cantidad cada de fármaco administrada a un paciente. La biodisponibilidad es un término absoluto que indica la medida tanto del tiempo (velocidad) como de la cantidad total (alcance) de fármaco que alcanza la circulación general de una forma de fármaco administrada.

La expresión "actividad citotóxica" se refiere a un efecto de eliminación de células, citostático o antiproliferación de un compuesto de conjugado de fármaco de anticuerpo o un metabolito intracelular de un compuesto de conjugado de fármaco de anticuerpo. La actividad citotóxica se puede expresar como el valor de Cl₅₀ que es la concentración (molar o másica) por unidad de volumen a la que sobreviven la mitad de las células.

Los términos "cáncer" y " canceroso" se refieren a o describen la afección fisiológica en mamíferos que por lo general se caracteriza por un crecimiento celular sin regular. Un "tumor" comprender una o mas células cancerosas.

Los ejemplos de cáncer incluyen, pero no se limitan a, carcinoma, linfoma, blastoma, sarcoma, y leucemia o neoplasias linfoides. Los ejemplos más particulares de dichos cánceres incluyen cáncer de células escamosas (*por ejemplo*, cáncer de células escamosas epiteliales), cáncer de pulmón que incluye cáncer de pulmón de células pequeñas, cáncer de pulmón de células no pequeñas ("NSCLC"), adenocarcinoma del pulmón y carcinoma escamoso del pulmón, cáncer del peritoneo, cáncer hepatocelular, cáncer gástrico o de estómago que incluye cáncer gastrointestinal, cáncer de páncreas, glioblastoma, cáncer de cuello del útero, cáncer de ovarios, cáncer de hígado, cáncer de vejiga, hepatoma, cáncer de mama, cáncer de colon, cáncer rectal, cáncer colorrectal, carcinoma de endometrio o de útero, carcinoma de glándulas salivares, cáncer de riñón o renal, cáncer de próstata, cáncer vulvar, cáncer de tiroides, carcinoma hepático, carcinoma anal, carcinoma del pene, así como cáncer de cabeza y

45

65

Un "cáncer que expresa ErbB" es uno que produce niveles suficientes de ErbB2 en la superficie de células del mismo, de modo que un anticuerpo anti-ErbB2 se puede unir al mismo y puede tener un efecto terapéutico con respecto al cáncer.

Un cáncer "caracterizado por una activación excesiva" de un receptor ErbB2 es uno en el que la extensión de la activación del receptor ErbB2 en células cancerosas supera significativamente el nivel de activación de ese receptor en células no cancerosas del mismo tipo de tejido. Dicha activación excesiva puede dar como resultado una sobreexpresión del receptor ErbB2 y/o niveles superiores a los normales de un ligando ErbB2 disponible para la activación del receptor ErbB2 en las células cancerosas. Dicha activación excesiva puede provocar y/o ser provocada por un estado maligno de una célula cancerosa. En algunas realizaciones, el cáncer estará sometido a un ensayo de diagnóstico o de pronóstico para determinar si se está produciendo una amplificación y/o sobreexpresión de un receptor ErbB2 lo que da como resultado dicha activación excesiva del receptor ErbB2. Como alternativa, o adicionalmente, el cáncer se puede someter a un ensayo de diagnóstico o de pronóstico para determinar si se está produciendo una amplificación y/o sobreexpresión de un ligando ErbB2 en el cáncer que se atribuye a una activación excesiva del receptor. En un subconjunto de dichos cánceres, una activación excesiva del receptor puede dar como resultado una ruta de estimulación autocrina.

Un cáncer que "sobreexpresa" un receptor ErbB2 es uno que tiene niveles significativamente más elevados de un receptor ErbB2 en la superficie celular del mismo, en comparación con una célula no cancerosa del mismo tejido. Dicha sobreexpresión se puede y por amplificación genética o por transcripción o traducción aumentada. La sobreexpresión del receptor ErbB2 se puede determinar en un ensayo de diagnóstico o de pronóstico mediante la

evaluación de mayores niveles de la proteína ErbB2 presente en la superficie de una célula (por ejemplo, mediante un ensayo inmunohistoquímico; IHC). Como alternativa, o adicionalmente, se pueden medir niveles de ácidos nucleicos que codifican ErbB2 en la célula, por ejemplo, mediante hibridación in situ con fluorescencia (FISH; véase el documento WO 98/45479), transferencia de southern, o técnicas reacción en cadena de la polimerasa (PCR), tales como PCR cuantitativa en tiempo real (RT-PCR). La sobreexpresión del ligando ErbB2, se puede determinar de forma diagnóstica evaluando los niveles del ligando (o ácido nucleico que los codifica) en el paciente, por ejemplo, en una biopsia de tumor o mediante diversos ensayos de diagnóstico tales como los ensayos de IHC, FISH, transferencia de southern, PCR o in vivo que se han descrito anteriormente. Además se puede estudiar la sobreexpresión del receptor ErbB2 midiendo el antígeno desprendido (por ejemplo, dominio extracelular de ErbB2) en un fluido biológico tal como suero (véase, por ejemplo, Patente de Estados Unidos № 4933294; documento WO 91/05264; Patente de Estados Unidos № 5401638; y Sias et al., (1990) J. Immunol. Methods, 132: 73-80). Aparte de los ensayos que se han mencionado anteriormente, otros diversos ensayos in vivo assays están disponibles para el experto en la materia. Por ejemplo, se pueden exponer células dentro del organismo del paciente a un anticuerpo que opcionalmente está marcado con una marca detectable, por ejemplo, un isótopo radiactivo, y se puede evaluar la unión del anticuerpo a células en el paciente, por ejemplo, mediante exploración externa de radiactividad o por análisis de una biopsia tomada de un paciente expuesto previamente al anticuerpo.

5

10

15

20

25

30

35

40

45

50

55

60

65

Los tumores que sobreexpresan HER2 se clasifican mediante puntuaciones inmunohistoquímicas que corresponden al número de copias de moléculas de HER2 expresadas por célula, y se pueden determinar de forma bioquímica: 0 = 0-10,000 copias/célula, 1+ = al menos aproximadamente 200.000 copias/célula, 2+ = al menos aproximadamente 500.000 copias/célula, 3+ = aproximadamente 1-2 x 10⁶ copias/célula. La sobreexpresión de HER2 en el nivel 3+, que conduce a la activación independiente de ligamentos de la tirosina quinasa (Hudziak et al., (1987) Proc. Natl. Acad. Sci. USA, 84: 7159-7163), se produce en aproximadamente un 30 % de los cánceres de mama, y en estos pacientes, disminuye la supervivencia sin recaída o toda la supervivencia (Slamon et al., (1989) Science, 244: 707-712; Slamon et al., (1987) Science, 235: 177-182).

Por el contrario, a un cáncer que "no se puede caracterizar mediante sobreexpresión del receptor ErbB2" es uno que, en un ensayo de diagnóstico, no expresa niveles más elevados que los normales de receptor ErbB2 en comparación con células no cancerosas del mismo tipo de tejido.

La expresión "agente citotóxico", tal como se usa en el presente documento, se refiere a una sustancia que inhibe o evita la función de células y/o causa la destrucción de células. El término pretende incluir isótopos radiactivos (por ejemplo, 211 At, 131 I, 125 I, 90 Y, 186 Re, 188 Re, 153 Sm, 212 Bi, 32 P, 60 C, e isótopos radiactivos de Lu), agentes quimioterapéuticos, y toxinas tales como toxinas de molécula pequeña o toxinas enzimáticamente activas de origen bacteriano, fúngico, vegetal o animal, que incluyen análogos y derivados de las mismas. En un aspecto, la expresión no pretende incluir isótopos radiactivos.

Un "agente quimioterapeútico" es un compuesto químico útil en el tratamiento del cáncer. Ejemplos de agentes quimioterapeúticos incluyen agentes de alquilación tales como tiotepa y ciclosfosfamida CYTOXAN®; alquil sulfonatos tales como busulfán, improsulfán y piposulfán; aziridinas tales como benzodopa, carbocuona, meturedopa, y uredopa; etileniminas y metilamelaminas que incluyen altretamina, trietilenmelamina, trietilenfosforamida, trietilentiofosforamida y trimetilolmelamina; TLK 286 (TELCYTA™); acetogeninas (especialmente bullatacina y bullatacinona); delta-9-tetrahidrocannabinol (dronabinol, MARINOL®); beta-lapachona; lapachol; colchicinas; ácido betulínico; una camptotecina (que incluye el análogo sintético topotecán (HYCAMTIN®), CPT-11 (irinotecán, CAMPTOSAR®), acetilcamptotecina, escopolectina, y 9-aminocamptotecina); briostatina; callistatina; CC-1065 (incluyendo sus análogos sintéticos adozelesina, carzelesina y bizelesina); podofilotoxina; ácido podofilínico; tenipósido; criptoficinas (particularmente criptoficina 1 y criptoficina 8); dolastatina; duocarmicina (que incluyen los análogos sintéticos, KW-2189 y CB1-TM1); eleuterobina; pancratistatina; una sarcodictina; espongistatina; mostazas de nitrógeno tales como clorambucilo, clornafazina, colofosfamida, estramustina, ifosfamida, mecloretamina, clorhidrato de óxido de mecloretamina, melfalano, novembiguina, fenesterina, prednimustina, trofosfamida, mostaza de uracilo; nitrosureas tales como carmustina, clorozoticina, fotemustina, lomustina, nimustina y ranimustina; bisfosfonatos, tales como clodronato; antibióticos tales como los antibióticos de enedina (por ejemplo, caliqueamicina, especialmente caliqueamicina gamma11 y caliqueamicina omegal1 (véase, por ejemplo, Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)) y antraciclinas tales como annamicina, AD 32, alcarubicina, daunorubicina, dexrazoxano, DX-52-1, epirubicina, GPX-100, idarubicina, KRN5500, menogarilo, dinemicina, que incluye dinemicina A, una esperamicina, cromóforo de neocarzinostatina y cromóforos relacionados de antibiótico de enedina cromoproteínas, aclacinomisinas, actinomicina, autramicina, azaserina, bleomicinas, cactinomicina, carabicina, carminomicina, carzinofilina, cromomicinas, dactinomicina, detorubicina, 6-diazo-5-oxo-Lnorleucina, doxorubicina ADRIAMYCIN® (que incluye morfolino-doxorubicina, cianomorfolino-doxorubicina, 2pirrolino-doxorubicina, liposomal doxorubicina, y desoxidoxorrubicina), esorrubicin, marcelomicina, mitomicinas tales como mitomicina C, ácido micofenólico, nogalamicina, olivomicinas, peplomicina, potfiromicina, puromicina, quelamicina, rodotrubicina, estreptonigrina, estreptozocina, tubercidina, ubenimex, zinostatina, y zorrubicina; análogos de ácido fólico tales como denopterina, pteropterina, y trimetrexato; análogos de purina tales como fludarabina, 6-mercaptopurina, tiamiprina, y tioguanina; análogos de pirimidina tales como ancitabina, azacitidina, 6azauridina, carmofur, citarabina, didesoxiuridina, doxifluridina, enocitabina, y floxuridina; andrógenos tales como calusterona, propionato de dromoestanolona, epitiostanol, mepitiostano, y testolactona; antiadrenales tales como

5

10

15

20

25

30

35

40

45

50

55

60

65

aminoglutetimida, mitotano, y trilostano; reforzadores de ácido fólico tales como ácido folínico (leucovorina); aceglatona; agentes antineoplásicos de antifolato tales como ALIMTA®, LY231514 pemetrexed, inhibidores de la dihidrofolato reductasa tales como metotrexato, antimetabolitos tales como 5-fluorouracilo (5-FU) y sus profármacos tales como UFT, S-1 y capecitabina, y inhibidores de la timidilato sintasa e inhibidores de la glicinamida ribonucleótido formiltransferasa tales como raltitrexed (TOMUDEX^{RM}, TDX); inhibidores de la dihidropirimidina deshidrogenasa tales como eniluracilo; glicósido de aldofosfamida; ácido aminolevulínico; amsacrina; bestrabucilo; bisantreno; edatraxato; defofamina; demecolcina; diaziquona; elfornitina; acetato de eliptinio; una epotilona; etoglúcido; nitrato de galio; hidroxiurea; lentinano; lonidainina; maitansinoides tales como maitansine y ansamitocinas; mitoguazona; mitoxantrona; mopidanmol; nitraerina; pentostatina; fenamet; pirarubicina; losoxantrona; 2-etilhidrazida; procarbazina; complejo de polisacáridos PSK® (JHS Natural Products, Eugene, OR); razoxano; rizoxina; sizofirán; espirogermanio; ácido tenuazónico; triazicuona; 2,2',2"-triclorotrietilamina; tricotecenos (especialmente toxina T-2, verracurina A, roridina A y anguidina); uretano; vindesina (ELDISINE®, FILDESIN®); dacarbazina; mannomustina; mitobronitol; mitolactol; pipobromano; gacitosina; arabinósido ("Ara-C"); ciclofosfamida; tiotepa; taxoides y taxano, por ejemplo, TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE™ sin Cremophor, formulación de nanopartículas modificadas por ingeniería con albúmina de paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), y TAXOTERE® doxetaxel (Rhône-Poulenc Rorer, Antony, Francia); cloranbucilo; gemcitabina (GEMZAR®); 6-tioguanina; mercaptopurina; platino; análogos de platino o análogos a base de platino tales como cisplatino, oxaliplatino y carboplatino; vinblastina (VELBAN®); etopósido (VP-16); ifosfamida; mitoxantrona; vincristina (ONCOVIN®); alcaloides de la vinca; vinorelbina (NAVELBINE®); novantrona; edatrexato; daunomicina; aminopterina; xeloda; ibandronato; RFS 2000 inhibidor de la topoisomerasa; difluorometilornitina (DMFO); retinoides tales como ácido retinoico; sales farmacéuticamente aceptables, ácidos o derivados de cualquiera de los mencionados anteriormente; así como combinaciones de dos o más de los anteriores tales como CHOP, una abreviatura para una terapia combinada de ciclofosfamida, doxorrubicina, vincristina, y prednisolona, y FOLFOX, una abreviatura para un régimen de tratamiento con oxaliplatino (ELOXATIN™) combinado con 5-FU y leucovorina.

Además, en esta definición se incluyen agentes antihormonales que actúan para regular o inhibir la acción de hormonas en tumores tales como antiestrógenos y moduladores selectivos de receptores de estrógenos (SERM), que incluyen, por ejemplo, tamoxifeno (que incluye tamoxifeno NOLVADEX®), raloxifeno, droloxifeno, 4-hidroxitamoxifeno, trioxifeno, queoxifeno, LY117018, onapristona, y FARESTON® toremifeno; inhibidores de aromatasas que inhiben la enzima aromatasa, que regula la producción de estrógenos en las glándulas adrenales, tales como, por ejemplo, 4(5)-imidazoles, aminoglutetimida, acetato de megestrol MEGASE®, exemestano AROMASIN®, formestano, fadrozol, vorozol RIVISOR®, FEMARA® letrozol, y anastrozol ARIMIDEX®; y antiandrógenos tales como flutamida, nilutamida, bicalutamida, leuprolida, y goserelina; así como troxacitabina (un análogo de 1,3-dioxolano nucleósido citosina); Oligonucleótidos antisentido, particularmente los que inhiben la expresión de genes en rutas de señalización implicadas en proliferación celular anómala, por ejemplo, PKC-alfa, Raf, H-Ras, y receptor del factor de crecimiento epidérmico (EGF-R); vacunas tales como vacunas para terapia genética, por ejemplo, vacuna ALLOVECTIN®, vacuna LEUVECTIN®, y vacuna VAXID®; PROLEUKIN® rIL-2; inhibidor de la topoisomerasa 1 LURTOTECAN®; ABARELIX® rmRH; y sales, ácidos o derivados farmacéuticamente aceptables de cualquiera de los mencionados anteriormente.

Tal como se usa en el presente documento, la expresión "fármaco dirigido a EGFR" se refiere a un agente terapéutico que se une a EGFR y, opcionalmente, inhibe la activación de EGFR. Ejemplos de dichos agentes incluyen anticuerpos y moléculas pequeñas que se unen a EGFR. Ejemplos científicos que se unen a EGFR incluyen MAb 579 (Nº CRL HB 8506 de la ATCC), MAb 455 (Nº CRL HB8507 de la ATCC), MAb 225 (Nº CRL 8508 de la ATCC), MAb 528 (Nº CRL 8509 de la ATCC) (véase, Patente de Estados Unidos Nº 4943533, Mendelsohn et al.) y variantes de los mismos, tales como 225 quimerizado (C225 o Cetuximab; ERBITUX®) y 225 humano reconformado (H225) (véase, documento WO 96/40210, Imclone Systems Inc.); anticuerpos que se unen a EGFR mutante de tipo II (Patente de Estados Unidos Nº 5.212.290); anticuerpos humanizados y quiméricos que se unen a EGFR tal como se describe en la Patente de Estados Unidos Nº 5891996; y anticuerpos humanos que se unen a EGFR, tales como ABX-EGF (véase el documento WO 98/50433, Abgenix). El anticuerpo anti-EGFR se puede conjugar con un agente citotóxico, generando de este modo un inmunoconjugado (véase, *por ejemplo*, el documento EP 659.439A2, Merck Patent GmbH). Ejemplos de moléculas pequeñas que se unen a EGFR incluyen ZD1839 o Gefitinib (IRESSA™; Astra Zeneca), Erlotinib HCI (CP-358774, TARCEVA™; Genentech/OSI) y AG1478, AG1571 (SU 5271: Sugen).

Un "inhibidor de la tirosina quinasa" es una molécula que inhibe hasta cierto punto la actividad de tirosina quinasa de una tirosina quinasa como un receptor ErbB. Ejemplos de dichos inhibidores incluyen los fármacos dirigidos a EGFR indicados en el párrafo precedente así como quinazolinas tales como PD 153035, 4-(3-cloroanilino) quinazolina, piridopirimidinas, pirimidopirimidinas, pirrolopirimidinas, tales como CGP 59326, CGP 60261 y CGP 62706, y pirazolopirimidinas, 4-(fenilamino)-7H-pirrolo[2,3-d]pirimidinas, curcumina (diferuloíl metano, 4,5-bis(4-fluoroanilino)ftalimida), tirfostinas que contienen restos de nitrotiofeno; PD-0183805 (Warner-Lambert); moléculas antisentido (por ejemplo, las que se unen a ácidos nucleicos que codifican ErbB); quinoxalinas (Patente de Estados Unidos Nº 5.804.396); trifostinas (Patente de Estados Unidos Nº 5804396); ZD6474 (Astra Zeneca); PTK-787 (Novartis/Schering AG); inhibidores de pan-ErbB tales como CI-1033 (Pfizer); Affinitac (ISIS 3521; Isis/Lilly); mesilato de Imatinib (Gleevac; Novartis); PKI 166 (Novartis); GW2016 (Glaxo SmithKline); CI-1033 (Pfizer); EKB-569 (Wyeth);

Semaxanib (Sugen); ZD6474 (AstraZeneca); PTK-787 (Novartis/Schering AG); INC-1C11 (Imclone); o tal como se describe en cualquiera de las siguientes publicaciones de patente: Patente de Estados Unidos Nº 5804396; documento WO 99/09016 (American Cyanamid); documento WO 98/43960 (American Cyanamid); documento WO 97/38983 (Warner Lambert); documento WO 99/06378 (Warner Lambert); documento WO 99/06396 (Warner Lambert); documento WO 96/30347 (Pfizer, Inc); documento WO 96/33978 (Zeneca); documento WO 96/33980 (Zeneca).

5

10

15

20

25

30

35

40

45

50

65

Un "agente antiangiogénico" se refiere a un compuesto que bloquea, o interfiere con, hasta cierto punto, el desarrollo de vasos sanguíneos. El factor antiangiogénico, por ejemplo, puede ser una molécula pequeña o anticuerpo que se une a un factor de crecimiento o a un receptor del factor de crecimiento implicado en la estimulación de la angiogénesis. En una realización, el factor antiangiogénico es un anticuerpo que se une al Factor de Crecimiento Endotelial Vascular (VEGF).

El término "citoquina" es un término genérico para proteínas liberadas por la población celular que actúan sobre otras células como mediadores intercelulares. Ejemplos de dichas citoquinas son linfoquinas, monoquinas, y hormonas politécnicas tradicionales. Entre las citoquinas se incluyen hormonas de crecimiento tales como hormona de crecimiento humano, hormona de crecimiento humano N-metionilo, y hormona de crecimiento bovino; hormona paratiroidea; tiroxina; insulina; proinsulina; relaxina; prorelaxina; hormonas glicoproteicas tales como hormona de estimulante de folículos (FSH), hormona estimulante de tiroides (TSH), y hormona luteinizante (LH); factor de crecimiento hepático; factor de crecimiento de fibroblastos; prolactina; lactógeno placentario; factor-α y -β de necrosis tumoral; sustancia inhibidora mulleriana; péptido asociado a gonadotropina de ratón; inhibina; activina; factor de crecimiento endotelial vascular; integrina; trombopoyetina (TPO); factores de crecimiento nervioso tales como NGF-β; factor de crecimiento de plaquetas; factores de crecimiento de transformación (TGF) tales como TGF- α y TGF- β ; factor de crecimiento de tipo insulinínico I y II; eritropoyetina (EPO); factores osteoinductores; interferones tales como interferón- α , - β , and - γ ; factores de estimulación de colonias (CSF) tales como macrófago-CSF (M-CSF); granulocito-macrófago-CSF (GM-CSF); y granulocito-CSF (G-CSF); interleuquinas (IL) tales como IL-1, IL-1 α , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12; un factor de necrosis tumoral tal como TNF- α o TNF-β; y otros factores polipeptídicos que incluyen LIF y ligando kit (KL). Tal como se usa en el presente documento, el término citoquina incluye proteínas a partir de fuentes naturales o a partir de cultivo celular recombinante y equivalentes biológicamente activos de las citoquinas de secuencia nativa.

El término "profármaco" tal como se usa en la presente solicitud se refiere a un precursor o forma de derivados de una sustancia farmacéuticamente activa que es menos citotóxica para las células tumorales en comparación con el fármaco precursor y destapar de ser activada o convertida de forma enzimática o hidrolítica en la forma precursora más activa. véanse, *por ejemplo*, Wilman, "Prodrugs in Cancer Chemotherapy" Biochemical Society Transactions, 14, páginas 375-382, 615º Meeting Belfast (1986) y Stella et al., "Prodrugs: A Chemical Approach to Targeted Drug Delivery," Directed Drug Delivery, Borchardt et al., (ed.), páginas 247-267, Humana Press (1985). Los profármacos de la presente invención incluyen, pero no se limitan a, profármacos que contienen fosfato, profármacos que contienen tiofosfato, profármacos que contienen sulfato, profármacos que contienen péptidos, profármacos modificados con D-aminoácidos, profármacos glicosilados, profármacos que contienen β-lactama, profármacos que contienen fenoxiacetamida opcionalmente sustituida o profármacos que contienen fenilacetamida opcionalmente sustituida, 5-fluorocitosina y otros profármacos de 5-fluorouridina que se pueden convertir en el fármaco sin citotóxicos más activo. Ejemplos de fármacos citotóxicos que se pueden derivatizar en una forma de profármaco para uso en la presente invención incluyen, pero no se limitan a, los agentes quimioterapeúticos que se han descrito anteriormente.

Un "liposoma" es una vesícula pequeña compuesta de diversos tipos de lípidos, fosfolípidos y/o tensioactivo que es útil para administrar un fármaco (tal como se incluyen los anticuerpos anti-CD30, CD40, CD70 o Lewis Y y, opcionalmente, un agente quimioterapeútico) a un mamífero. Los componentes del liposoma se colocan normalmente en una formación de bicapa, similar a la colocación lipídica de membranas biológicas. El término "prospecto" se usa para hacer referencia a instrucciones incluidas habitualmente en envases comerciales de productos terapéuticos, que contienen información sobre las indicaciones, uso, dosificación, administración,

Una molécula "aislada" de ácido nucleico es una molécula de ácido nucleico que se identifica y se separa a partir de al menos una molécula de ácido nucleico contaminante con la que está asociada normalmente en la fuente natural de ácido nucleico del anticuerpo. Una molécula aislada de ácido nucleico es distinta en la forma o configuración en la que se encuentra en la naturaleza. Por lo tanto, las moléculas aisladas de ácido nucleico se distinguen de la molécula de ácido nucleico tal como existe en células naturales. Sin embargo, una molécula aislada de ácido nucleico incluye una molécula de ácido nucleico contenida en células que normalmente expresan el anticuerpo cuando, por ejemplo, la molécula de ácido nucleico esta en una localización cromosómica diferente de la de las células naturales.

contraindicaciones y/o advertencias con respecto al uso de dichos productos terapéuticos.

La expresión "secuencias de control" se refiere a secuencias de ADN necesarias para la expresión de una secuencia de codificación unida operativamente en un organismo huésped en particular. Las secuencias de control que son

adecuadas para procariotas incluyen, por ejemplo, un promotor, opcionalmente una secuencia operadora, y un sitio de unión a ribosomas. Se sabe que las células eucariotas usan promotores, señales de poliadenilación, y potenciadores.

Un ácido nucleicos está "unido operativamente" cuando se coloca en una relación funcional con otra secuencia de ácidos nucleicos. Por ejemplo, el ADN para una secuencia previa o directora de secreción está unido operativamente al ADN para un polipéptido si se expresa como una proteína previa que participa en la secreción del polipéptido; un promotor o potenciador está unido operativamente a una secuencia de codificación si afecta a la transcripción de la secuencia; o un sitio de unión a ribosomas está unido operativamente a una secuencia de codificación si está colocado de modo que se facilite la traducción. Generalmente, "unido operativamente" Server las secuencias de ADN que se están uniendo son contiguas, y, en el caso de una directora de secreción, contiguas y en fase de lectura. Sin embargo, los potenciadores no tienen por qué ser contiguos. La unión se puede realizar por ligadura en los sitios de restricción convenientes. Si dichos sitios no existen, los adaptadores o conectores de oligonucleótidos sintéticos se pueden usar de acuerdo con la práctica convencional.

15

20

25

30

35

40

45

50

55

60

65

Tal como se usa en el presente documento, las expresiones "célula", "línea celular", y "cultivo celular" se usan indistintamente y todas las denominaciones incluyen progenie. Por lo tanto, las palabras "transformantes" y "células transformadas" incluyen la célula sujeto primaria y cultivos derivados de las mismas sin tener en cuenta el número de transferencias. También se entiende que toda la progenie pues de no ser exactamente idéntica en el contenido del ADN, debido a mutaciones deliberadas o inadvertidas. Se incluye la progenie mutante que tiene la misma función o actividad biológica tal como se identifica sistemáticamente en la célula transformada originalmente. Siempre que se pretenden denominaciones distintas, éstas serán evidentes a partir del contexto.

En el presente documento, una "enfermedad autoinmune" es una enfermedad o trastorno que se deriva de y que se dirige frente a tejidos propios de un individuo o un cosegregado o manifestación de la misma o afección resultante de la misma. Ejemplos de enfermedades o trastornos autoinmunes incluyen, pero no se limitan a artritis (artritis reumatoide, artritis reumatoide juvenil, osteoartritis, artritis psoriática, y espondilitis anquilosante), psoriasis, dermatitis que incluye dermatitis atópica; urticaria idiopática crónica, que incluye urticaria autoinmune crónica, polimiositis/dermatomiositis, necrólisis epidérmica tóxica, esclerodermia sistémica y esclerosis, respuestas asociadas con enfermedad inflamatoria del intestino (IBD) (enfermedad de Crohn, colitis ulcerosa), e IBD con cosegregado de pioderma gangrenoso, eritema nodoso, colangitis esclerosante primaria, y/o epiescleritis), síndrome de dificultad respiratoria, que incluye síndrome de dificultad respiratoria del adulto (ARDS), meningitis, enfermedades mediadas por IgE tales como anafilaxis y rinitis alérgica, encefalitis tales como encefalitis de Rasmussen, uveítis, colitis tal como colitis microscópica y colitis colágena, glomerulonefritis (GN) tal como GN membranosa, GN membranosa idiopática, GN membranosa proliferativa (MPGN), que incluye Tipo I y Tipo II, y GN rápidamente progresiva, afecciones alérgicas, eccema, asma, afecciones que implican infiltración de linfocitos T y respuestas inflamatorias crónicas, aterosclerosis, miocarditis autoinmune, deficiencia de adhesión de leucocitos, lupus sistémico eritematoso (SLE) tal como SLE cutáneo, lupus (que incluye nefritis, cerebritis, pediátrica, no renal, discoide, alopecia), diabetes de inicio juvenil, esclerosis múltiple (MS) tal como MS espino-óptica, encefalomielitis alérgica, respuestas inmunes asociadas con hipersensibilidad aguda y retardada mediada por citoquinas y por linfocitos T, tuberculosis, sarcoidosis, granulomatosis que incluye granulomatosis de Wegener, agranulocitosis, vasculitis (incluyendo vasculitis de Vasos Grandes (que incluye Polimialgia Reumática y Arteritis de Células Gigantes (de Takayasu)), vasculitis de Vasos Medios (que incluye Enfermedad de Kawasaki y Poliarteritis Nodosa), vasculitis del SCN, y vasculitis asociada a ANCA, tales como vasculitis o síndrome de Churg-Strauss (CSS)), anemia aplásica, anemia positiva de Coombs, anemia de Diamond Blackfan, anemia hemolítica inmune que incluye anemia hemolítica autoinmune (AIHA), anemia perniciosa, aplasia pura de glóbulos rojos (PRCA), deficiencia del Factor VIII, hemofilia A, neutropenia autoinmune, pancitopenia, leucopenia, enfermedades que implican diapédesis de leucocitos, trastornos inflamatorios del SCN, síndrome de disfunción orgánica múltiple, miastenia gravis, enfermedades mediadas por complejos antígeno-anticuerpo, enfermedad de la membrana basal antiglomerular, síndrome de anticuerpos antifosfolípido, neuritis alérgica, enfermedad de Bechet, síndrome de Castleman, Síndrome de Goodpasture, Síndrome Miasténico de Lambert-Eaton, síndrome de Reynaud, síndrome de Sjorgen, síndrome de Stevens-Johnson, rechazo al transplante de órganos sólidos (que incluye tratamiento previo para títulos de anticuerpos de panel reactivo alto, depósito de IgA en tejidos, y rechazo que surge del transplante renal, transplante de hígado, trasplante de intestino, trasplante de corazón, etc.), enfermedad de injerto frente a huésped (GVHD), penfigoide bulloso, pénfigo (que incluye pénfigo vulgaris, foliáceo, y penfigoide de la membrana mucosa), poliendocrinopatías autoinmunes, enfermedad de Reiter, síndrome del hombre rígido, nefritis por complejos inmunes, polineuropatías de IgM o neuropatía mediada por IgM, púrpura trombocitopénica idiopática (ITP), púrpura trombocitopénica trombótica (TTP), trombocitopenia (como la desarrollada por pacientes con infarto de miocardio, por ejemplo), que incluye trombocitopenia autoinmune, enfermedad autoinmune de los testículos y ovarios que incluye orquitis y ooforitis, hipotiroidismo primario; enfermedad endocrina autoinmunes que incluye tiroiditis autoinmune, tiroiditis crónica (Tiroiditis de Hashimoto), tiroiditis subaguda, hipotiroidismo idiopático, enfermedad de Addison, enfermedad de Grave, síndromes poliglandulares autoinmunes (o síndromes de endocrinopatía poliglandular), diabetes de Tipo I también denominada diabetes mellitus dependiente de insulina (IDDM), que incluye IDDM pediátrica, y síndrome de Sheehan; hepatitis autoinmune, neumonitis intersticial Linfoide (HIV), bronquiolitis obliterante (no trasplante) frente a NSIP, Síndrome de Guillain-Barré, Enfermedad de Berger (nefropatía por IgA), cirrosis biliar primaria, esprúe celíaco (enteropatía por gluten), esprúe refractario con dermatitis herpetiforme

cosegregada, crioglobulinemia, esclerosis lateral amiotrófica (ALS; enfermedad de Lou Gehrig), enfermedad arterial coronaria, enfermedad autoinmune del oído interno (AIED), pérdida de audición autoinmune, síndrome de opsoclono mioclono (OMS), policondritis tal como policondritis refractaria, proteinosis alveolar pulmonar, amiloidosis, hepatitis de células gigantes, escleritis, gammapatía monoclonal de significado incierto/desconocido (MGUS), neuropatía periférica, síndrome paraneoplásico, canalopatías tales como epilepsia, migraña, arritmia, trastornos musculares, sordera, severa, parálisis periódica, y canalopatías del SCN; autismo, miopatía inflamatoria, y glomeruloesclerosis segmentaria focal (FSGS).

- "Alquilo" es hidrocarburo C₁-C₁₈ que contiene átomos de carbono, normales, secundarios, terciarios o cíclicos. Son ejemplos metilo (Me, -CH₃), etilo (Et, -CH₂CH₃), 1-propilo (n-Pr, n-propilo, -CH₂CH₂CH₃), 2-propilo (i-Pr, i-propilo, -CH(CH₃)₂), 1-butilo (n-Bu, n-butilo, -CH₂CH₂CH₂CH₃), 2-metil-1-propilo (i-Bu, i-butilo, -CH₂CH(CH₃)₂), 2-butilo (s-Bu, s-butilo, -CH(CH₃) CH₂CH₃), 2-metil-2-propilo (t-Bu, t-butilo, -C(CH₃)₃), 1-pentilo (n-pentilo, -CH₂CH₂CH₂CH₂CH₂CH₃), 2-pentilo (-CH(CH₃) CH₂CH₂CH₃), 3-pentilo (-CH(CH₂CH₃)₂), 2-metil-2-butilo (-C(CH₃)₂CH₂CH₃), 3-metil-2-butilo (-CH₂CH₂CH₂CH₂CH₂CH₃), 1-hexilo (-CH₂CH₂CH₂CH₂CH₂CH₃), 2-hexilo (-CH(CH₃)CH₂CH₂CH₃), 3-hexilo (-CH(CH₃)CH₂CH₃)), 2-metil-2-pentilo (-C(CH₃)₂CH₂CH₂CH₃), 3-metil-2-pentilo (-CH(CH₃)CH(CH₃)₂), 2-metil-3-pentilo (-CH(CH₃)CH(CH₃)₂), 2,3-dimetil-2-butilo (-CH(CH₃)₂CH(CH₃)₂), 3,3-dimetil-2-butilo (-CH(CH₃)C(CH₃)₃).
- "Alquenilo" es hidrocarburo C₂-C₁₈ que contiene átomos de carbono, normales, secundarios, terciarios o cíclicos con al menos un sitio de insaturación, *es decir* un doble enlace *sp*², carbon-carbono. Los ejemplos incluyen, pero no se limitan a: etileno o vinilo (-CH=CH₂), alilo (-CH₂CH=CH₂), ciclopentenilo (-C₅H₇), y 5-hexenilo (-CH₂CH₂CH₂CH₂CH₂CH=CH₂).
- "Alquinilo" es hidrocarburo C₂-C₁8 que contiene átomos de carbono, normales, secundarios, terciarios o cíclicos con al menos un sitio de insaturación, es decir un triple enlace sp, carbon-carbono. Los ejemplos incluyen, pero no se limitan a: acetilénico (-C=CH) y propargilo (-CH₂C=CH).
- "Alquileno" se refiere un radical hidrocarburo saturado, de cadena ramificada o lineal o cíclico de 1-18 átomos de carbono, y que tiene dos centros de radical monovalente que se obtiene por la retirada de dos átomos de hidrógeno a partir del mismo o dos átomos de carbono diferentes de un alcano precursor. Los radicales alquileno habituales incluyen, pero no se limitan a: metileno (-CH₂-) 1,2-etilo (-CH₂CH₂-), 1,3-propilo (-CH₂CH₂-), 1,4-butilo (-CH₂CH₂CH₂-), y similares.
- "Alquenileno" se refiere a un radical hidrocarburo insaturado, de cadena ramificada o lineal o cíclico de 2-18 átomos de carbono, y que tiene dos centros de radical monovalente que se obtiene por la retirada de dos átomos de hidrógeno a partir del mismo o dos átomos de carbono diferentes de un alqueno precursor. Los radicales alquenileno habituales incluyen, pero no se limitan a: 1,2-etileno (-CH=CH-).
- "Alquinileno" se refiere a un radical hidrocarburo insaturado, de cadena ramificada o lineal o cíclico de 2-18 átomos de carbono, y que tiene dos centros de radical monovalente que se obtiene por la retirada de dos átomos de hidrógeno a partir del mismo o dos átomos de carbono diferentes de un alquino precursor. Los radicales alquinileno habituales incluyen, pero no se limitan a: acetileno (-C≡C-), propargilo (-CH₂C≡C-), y 4-pentinilo (-CH₂CH₂C≡CH-).
 45

50

- "Arilo" significa un radical hidrocarburo aromático monovalente de 6-20 átomos de carbono que se obtiene por la retirada de un átomo de hidrógeno de un solo átomo de carbono de un sistema de anillo aromático precursor. Algunos grupos arilo se representan en las estructuras a modo de ejemplo como "Ar". Los grupos arilo habituales incluyen, pero no se limitan a, radicales derivados de benceno, benceno sustituido, naftaleno, antraceno, bifenilo, y similares.
- "Arilalquilo" se refiere a un radical alquilo acíclico en el que uno de los átomos de hidrógeno unido a un átomo de carbono, por lo general un átomo de carbono terminal o sp^3 , está reemplazado con un radical arilo. Los grupos arilalquilo habituales incluyen, pero no se limitan a, bencilo, 2-feniletan-1-ilo, 2-fenileten-1-ilo, naftileten-1-ilo, naftobencilo, 2-naftiletan-1-il y similares. El grupo arilalquilo comprende de 6 a 20 átomos de carbono, por ejemplo, el resto alquilo, que incluye grupos alcanilo, alquenilo o alquinilo, del grupo arilalquilo es de 1 a 6 átomos de carbono y el resto arilo este 5 a 14 átomos de carbono.
- "Heteroarilalquilo" se refiere a un radical alquilo acíclico en el que uno de los átomos de hidrógeno unido a un átomo de carbono, por lo general un átomo de carbono terminal o sp^3 , está reemplazado con un radical heteroarilo. Los grupos heteroarilalquilo habituales incluyen, pero no se limitan a, 2-benzoimidazolilmetilo, 2-furiletilo, y similares. El grupo heteroarilalquilo comprende de 6 a 20 átomos de carbono, *por ejemplo*, el resto alquilo, que incluye grupos alcanilo, alquenilo o alquinilo, del grupo heteroarilalquilo es de 1 a 6 átomos de carbono y el resto heteroarilo es de 5 a 14 átomos de carbono y de 1 a 3 heteroátomos seleccionados entre N, O, P, y S. El resto heteroarilo del grupo heteroarilalquilo puede ser un monociclo que tiene de 3 a 7 miembros en el anillo (de 2 a 6 átomos de carbono o un biciclo que tiene de 7 a 10 miembros en el anillo (de 4 a 9 átomos de carbono y de 1 a 3 heteroátomos

seleccionados entre N, O, P, y S), por ejemplo: un sistema biciclo [4,5], [5,5], [5,6], o [6,6].

5

10

15

50

65

"Alquilo sustituido", "arilo sustituido", y "arilalquilo sustituido" se refieren a alquilo, arilo, y arilalquilo respectivamente, en el que uno o más átomos de hidrógeno cada uno está reemplazado independientemente con un sustituyente. Los sustituyentes habituales incluyen, pero no se limitan a, -X, -R, -O, -OR, -SR, -S, -NR₂, -NR₃, =NR, -CX₃, -CN, -OCN, -SCN, -N=C=O, -NCS, -NO, -NO₂, =N₂, -N₃, NC(=O)R, -C(=O)R, -C(=O)NR₂, -SO₃, -SO₃H, -S(=O)₂R, -OS(=O)₂OR, -S(=O)₂NR, -S(=O)₂R, -OP(=O)(OR)₂, -P(=O)(OR)₂, -PO₃, -PO₃H₂, -C(=O)R, -C(=O)X, -C(=S)R, -CO₂R, -CO₂R, -C(=S)OR, -C(=S)SR, -C(=S)SR, -C(=S)NR₂, -C(=S)NR₂, -C(=NR)NR₂, en los que cada X es independientemente un halógeno: F, Cl, Br, o I; y cada R es independientemente -H, alquilo C₂-C₁₈, arilo C₆-C₂₀, heterociclo C₃-C₁₄, grupo protector o resto de profármaco. Los grupos alquileno, alquenileno, y alquinileno tal como se ha descrito anteriormente también pueden estar sustituidos de forma similar.

"Heteroarilo" y "Heterociclo" se refieren a un sistema de anillo en el que uno o más átomos en el anillo es un heteroátomo, *por ejemplo*, nitrógeno, oxígeno, y azufre. El radical heterociclo comprende de 1 a 20 átomos de carbono y de 1 a 3 heteroátomos seleccionados entre N, O, P, y S. Un heterociclo puede ser un monociclo que tienen de 3 a 7 miembros en el anillo (de 2 a 6 átomos de carbono y de 1 a 3 heteroátomos seleccionados entre N, O, P, y S) o un biciclo que tiene de 7 a 10 miembros en el anillo (de 4 a 9 átomos de carbono y de 1 a 3 heteroátomos seleccionados entre N, O, P, y S), por ejemplo: un sistema biciclo [4,5], [5,6], o [6,6].

- Se describen heterociclos en Paquette, Leo A.; "Principles of Modern Heterociclic Chemistry" (W.A. Benjamin, Nueva York, 1968), particularmente en los Capítulos 1, 3, 4, 6, 7, y 9; "The Chemistry of Heterociclic Compounds, A series of Monographs" (John Wiley & Sons, Nueva York, 1950 hasta la actualidad), en particular los Volúmenes 13, 14, 16, 19, y 28; y J. Am. Chem. Soc. (1960) 82: 5566.
- 25 Ejemplos de heterociclos incluyen, a modo de ejemplo y no de limitación, piridilo, dihidropiridilo, tetrahidropiridilo (piperidilo), tiazolilo, tetrahidrotiofenilo, tetrahidrotiofenilo oxidado con azufre, pirimidinilo, furanilo, tienilo, pirrolilo, pirazolilo, imidazolilo, tetrazolilo, benzofuranilo, tianaftalenilo, indolilo, indolenilo, quinolinilo, isoquinolinilo, benzoimida-zolilo, piperidinilo, 4-piperidonilo, pirrolidinilo, 2-pirrolidonilo, pirrolinilo, tetrahidrofuranoílo, bistetrahidropiranilo, bis-tetrahidropiranilo, tetrahidroquinolinilo, tetrahidrofuranoílo, tetrahidroisoquinolinilo, 30 decahidroquinolinilo, octahidroisoquinolinilo, azocinilo, triazinilo, 6H-1,2,5-tiadiazinilo, 2H,6H-1,5,2-ditiazinilo, tienilo, tiantrenilo, piranilo, isobenzofuranilo, cromenilo, xantenilo, fenoxatinilo, 2H-pirrolilo, isotiazolilo, isoxazolilo, pirazinilo, piridazinilo, indolizinilo, isoindolilo, 3H-indolilo, 1H-indazolilo, purinilo, 4H-quinolizinilo, ftalazinilo, naftiridinilo, quinoxalinilo, quinazolinilo, cinnolinilo, pteridinilo, 4aH-carbazolilo, carbazolilo, β-carbolinilo, fenantridinilo, acridinilo, pirimidinilo, fenantrolinilo, fenazinilo, fenoziazinilo, furazanilo, fenoxazinilo, isocromanilo, cromanilo, imidazolidinilo, 35 imidazolinilo, pirazolidinilo, pirazolinilo, piperazinilo, indolinilo, isoindolinilo, quinuclidinilo, morfolinilo, oxazolidinilo, benzotriazolilo, benzoisoxazolilo, oxindolilo, benzoxazolinilo, e isatinoílo.

A modo de ejemplo y no de limitación, los heterociclos unidos a carbono están unidos en la posición 2, 3, 4, 5 o 6 de una piridina, en la posición 3, 4, 5 o 6 de una piridina, en la posición 3, 4, 5 o 6 de una piridina, en la posición 2, 3, 5 o 6 de una piridina, en la posición 2, 3, 4 o 5 de un furano, tetrahidrofurano, tiofurano, tiofeno, pirrol o tetrahidropirrol, en la posición 2, 4 o 5 de un oxazol, imidazol o tiazol, en la posición 3, 4 o 5 de un isoxazol, pirazol, o isotiazol, en la posición 2 o 3 de una aziridina, en la posición 2, 3 o 4 de una azetidina, en la posición 2, 3, 4, 5, 6, 7, o 8 de una quinolina o en la posición 1, 3, 4, 5, 6, 7, o 8 de una isoquinolina. Además de forma más habitual, los heterociclos unidos a carbono incluyen 2-piridilo, 3-piridilo, 4-piridilo, 6-piridilo, 3-piridazinilo, 4-piridazinilo, 5-piridazinilo, 6-piridazinilo, 2-piridazinilo, 4-tiazolilo, o 5-tiazolilo.

A modo de ejemplo y no de limitación, los heterociclos unidos a nitrógeno están unidos en la posición 1 de una aziridina, azetidina, pirrol, pirrolidina, 2-pirrolina, 3-pirrolina, imidazol, imidazolidina, 2-imidazolina, 3-imidazolina, pirazol, pirazolina, 2-pirazolina, 3-pirazolina, piperidina, piperazina, indol, indolina, 1H-indazol, en la posición 2 de un isoindol, o isoindolina, en la posición 4 de una morfolina, y que la posición 9 de un carbazol, o β-carbolina. Still Además de forma más habitual, los heterociclos unidos a nitrógeno incluyen 1-aziridilo, 1-azetedilo, 1-pirrolilo, 1-imidazolilo, 1-pirazolilo, y 1-piperidinilo.

- "Carbociclo" se refiere a un anillo saturado por insaturado que tiene de 3 a 7 átomos de carbono como un monociclo o de 7 a 12 átomos de carbono como un biciclo. Dos carbociclos monocíclicos tienen de 3 a 6 átomos en el anillo, además de forma más habitual 5 o 6 átomos en el anillo. Los carbociclos bicíclicos tienen de 7 a 12 átomos en el anillo, por ejemplo, colocados con un sistema biciclo [4,5], [5,5], [5,6] o [6,6], o 9 o 10 átomos en el anillo colocados con un sistema biciclo [5,6] o [6,6]. Ejemplos carbociclos monocíclicos incluyen ciclopropilo, ciclobutilo, ciclopentilo, 1-ciclopent-1-enilo, 1-ciclopent-2-enilo, 1-ciclopent-3-enilo, ciclobexilo, 1-ciclohex-1-enilo, 1-ciclohex-2-enilo, 1-ciclohex-3-enilo, cicloheptilo, y ciclooctilo.
 - "Conector", "Unidad de Conector", o "conectar" se refiere un resto químico que comprende un enlace covalente o una cadena de átomos que une covalentemente un anticuerpo a un resto de fármaco. En diversas realizaciones, conectó se especifica como LU. Los conectores incluyen un radical divalente tal como un alquildiilo, un arildiilo, un heteroarildiilo, restos tales como: -(CR₂)_nO(CR₂)_n-, unidades repetición de alquiloxi (*por ejemplo*, polietilenoxi, PEG,

polimetilenoxi) y alquilamino (*por ejemplo*, polietilenamino, Jeffamina™); y éster diácido y amidas que incluyen succinato, succinamida, diglicolato, malonato, y caproamida.

El término "quiral" se refiere a moléculas que tienen la propiedad de no superposición del compañero en la imagen especular, mientras que el término "aquiral" se refiere a moléculas que se superponen en su compañero en la imagen especular.

5

10

15

40

45

50

55

El término "estereoisómeros" se refiere a compuestos que tienen constitución química idéntica, pero que difieren con respecto a la colocación de los átomos o grupos en el espacio.

"Diastereómero" se refiere a un estereoisómero con dos o más centros de quiralidad y cuyas moléculas no son imágenes especulares entre sí. Los diastereómeros tienen propiedades físicas diferentes, *por ejemplo*, puntos de fusión, puntos de ebullición, sociedades espectrales, de actividades. Las mezclas de diastereómeros se pueden separar con procedimientos analíticos de alta resolución tales como electroforesis y cromatografía.

"Enantiómeros" se refiere a dos estereoisómeros de un compuesto que son imágenes especulares no superponibles entre sí.

Las definiciones y convenciones estereoquímicas usadas en el presente documento por lo general siguen S. P. 20 Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, Nueva York; y Eliel, E. y Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, IncNueva York. Muchos compuestos orgánicos existen en formas ópticamente activas, es decir, tienen la capacidad de girar el plano de luz polarizada en un plano. Al describir un compuesto ópticamente activo, los prefijos D y L, o R y S, se usan para indicar la configuración absoluta de la molécula alrededor de su centro o centros quirales. Los prefijos d y I o (+) y (-) se usan 25 para designar el signo de rotación de la luz polarizada en el plano por el compuesto, con (-) o I significando que el compuesto es levógiro. Un compuesto con el prefijo (+) o d es dextrógiro. Para una estructura química dada, estos estereoisómeros son idénticos excepto en que son imágenes especulares entre sí. Un estereoisómero específico también se puede denominar enantiómero, y una mezcla de dichos isómeros a menudo se denomina una mezcla de enantiomérica. Una mezcla de enantiómeros a 50:50 se denomina una mezcla racémica o un racemato, que se 30 puede producir cuando no se ha producido estereoselección ni estereoespecificidad en una reacción o proceso químico. Las expresiones "mezcla racémica" y "racemato" se refieren a una mezcla equimolar de dos especies enantioméricas, desprovistas de actividad óptica.

Ejemplos de un "paciente" incluyen, pero no se limitan a, un ser humano, rata, ratón, cobaya, mono, cerdo, cabra, vaca, caballo, perro, gato, pájaro y ave de corral. En una realización a modo de ejemplo, el paciente es un ser humano.

"Arilo" se refiere a un grupo aromático carbocíclico. Ejemplos de grupos arilo incluyen, pero no se limitan a, fenilo, naftilo y antracenilo. Un grupo aromático carbocíclico o un grupo aromático heterocíclico pueden estar sin sustituir o sustituidos con uno o más grupos que incluyen, pero no se limitan a, -alquilo C₁-C₈, -O-(alquilo C₁-C₈), -arilo, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂ -NHC(O)R', -S(O)₂R',-S(O)R', -OH, -halógeno, -N₃, -NH₂, -NH(R'), -N(R')₂ y -CN; en los que cada R' se selecciona independientemente entre H, -alquilo C₁-C₈ y arilo.

El término "alquilo C₁-C₈", tal como se usa en el presente documento, se refiere a un hidrocarburo saturado o insaturado, de cadena lineal o ramificada que tiene de 1 a 8 átomos de carbono. Grupos "alquilo C₁-C₈" representativos incluyen, pero no se limitan a, -metilo, -etilo, -n-propilo, -n-butilo, -n-pentilo, -n-hexilo, -n-hexilo, -n-octilo, -n-nonilo y -n-decilo; mientras que los alquilos C₁-C₈ ramificados incluyen, pero no se limitan a, -isopropilo, -sec-butilo, -isobutilo, - terc-butilo, -isopentilo, 2-metilbutilo, los alquilos C₁-C₈ insaturados incluyen, pero no se limitan a, -vinilo, -alilo, -1-butenilo, -2-butenilo, -isobutilenilo, -1-pentenilo, -2-pentenilo, -3-metil-1-butenilo, -2-metil-2-butenilo, -2,3-dimetil-2-butenilo, 1-hexilo, 2-hexilo, 3-hexilo,-acetilenilo, -propinilo, -1-butinilo, -2-butinilo, -1-pentinilo, -2-pentinilo, -3-metil-1 butinilo, metilo, etilo, propilo, isopropilo, n-butilo, isobutilo, sec-butilo, terc-butilo, n-pentilo, isopentilo, neopentilo, n-hexilo, isohexilo, 2-metilpentilo, 3-metilpentilo, 2,2-dimetilbutilo, 2,3-dimetil-butilo, 2,2-dimetilpentilo, 2,3-dimetilpentilo, 3,3-dimetilpentilo, 2,3-dimetilpentilo, 3-metilhexilo, 2,2-dimetilhexilo, 2,4-dimetilpentilo, 2-metilheptilo, 3-metilhexilo, 2,2-dimetilhexilo, 2,4-dimetilhexilo, 2,5-dimetilhexilo, 3,5-dimetilhexilo, 2,4-dimetilpentilo, 2-metilheptilo, 3-metilheptilo, n-heptilo, isoheptilo, n-octilo, y isooctilo. Un grupo alquilo C₁-C₈ puede estar sin sustituir o sustituido con uno o más grupos que incluyen, pero no se limitan a, -alquilo C₁-C₈, -O-(alquilo C₁-C₈), -arilo, -C(O)R', -OC(O)R', -C(O)OR',-C(O)NH₂, -C(O)NHR', -C(O)N(R')₂ -NHC(O)R', -SO₃R', -S(O)₂R', -S(O)R', -OH, - halógeno, -N₃, -NH₂, -NH(R'), -N(R')₂ y -CN; en los que cada R' se selecciona independientemente entre H, -alquilo C₁-C₈ y arilo.

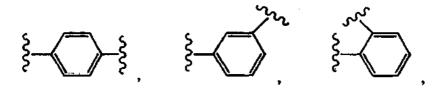
Un "carbociclo C₃-C₈" es un anillo carbocíclico no aromático saturado o insaturado de 3, 4, 5, 6, 7 o 8 miembros. Los carbociclos C₃-C₈ representativos incluyen, pero no se limitan a, -ciclopropilo, -ciclobutilo, -ciclopentilo, -ciclopentadienilo, -ciclohexilo, -ciclohexenilo, -1,3-ciclohexadienilo, -1,4-ciclohexadienilo, -cicloheptilo,-1,3-cicloheptadienilo, -1,3,5-cicloheptatrienilo, -ciclooctilo, y -ciclooctadienilo. Un grupo carbociclo C₃-C₈ puede estar sin sustituir o sustituido con uno o más grupos que incluyen, pero no se limitan a, -alquilo C₁-C₈, -O-(alquilo C₁-C₈), -arilo, -C(O)R', -OC(O)R', -C(O)NH₂, -C(O)NH₂, -C(O)NH₃, -C(O)N(R')₂ -NHC(O)R', -S(O)₂R', -S(O)R', -OH, -halógeno, -N₃, -NH₂, -NH(R'), -N(R')₂ y -CN; en los que cada R' se selecciona independientemente entre H, -alquilo

C₁-C₈ y arilo.

5

40

45


50

60

Un "carbociclo C_3 - C_8 " se refiere a un grupo carbociclo C_3 - C_8 que se ha definido anteriormente en el que uno de los átomos de hidrógeno de los grupos carbociclo está reemplazado con un enlace.

Un "alquileno C_1 - C_{10} " es un grupo hidrocarburo saturado, de cadena lineal de fórmula - $(CH_2)_{1-10}$ -. Ejemplos de un alquileno C_1 - C_{10} incluyen metileno, etileno, propileno, butileno, pentileno, hexileno, heptileno, ocitileno, nonileno y decaleno.

10 Un "arileno" es un grupo arilo que tiene dos enlaces covalentes y puede estar en las configuraciones orto, meta, o para tal como se muestra en las siguientes estructuras

- en las que el grupo fenilo puede estar sin sustituir o sustituido con hasta cuatro grupos que incluyen, pero no se limitan a, -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -arilo, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂ NHC(O)R', -S(O)₂R', -S(O)R', -OH, halógeno, -N₃, -NH₂, -NH(R'), -N(R')₂ y -CN; en los que cada R' se selecciona independientemente entre H, -alquilo C_1 - C_8 y arilo.
- Un "heterociclo C₃-C₈" se refiere a un carbociclo C₃-C₈ aromático o no aromático en el que de uno a cuatro de los átomos de carbono en el anillo están reemplazados independientemente con un heteroátomo del grupo que consiste en O, S y N. Los ejemplos representativos de un heterociclo C₃-C₈ incluyen, pero no se limitan a, benzofuranilo, benzotiofeno, indolilo, benzopirazolilo, coumarinilo, isoquinolinilo, pirrolilo, tiofenilo, furanilo, tiazolilo, imidazolilo, pirazolilo, triazolilo, quinolinilo, pirimidinilo, piridinilo, piridinilo, piridazinilo, piridazinilo, isotiazolilo, isoxazolilo y tetrazolilo. Un heterociclo C₃-C₈ puede estar sin sustituir o sustituido con hasta siete grupos que incluyen, pero no se limitan a, -alquilo C₁-C₈, -O-(alquilo C₁-C₈), -arilo, -C(O)R', -OC(O) R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂ NHC(O)R', -S(O)₂R', -S(O)R', -OH, -halógeno, -N₃, -NH₂, -NH(R'),-N (R')₂ y -CN; en los que cada R' se selecciona independientemente entre H, -alquilo C₁-C₈ y arilo.
- 30 "Heterociclo C₃-C₈" se refiere a un grupo heterociclo C₃-C₈ que se ha definido anteriormente en el que uno de los átomos de hidrógeno del grupo heterociclo está reemplazado con un enlace. Un heterociclo C₃-C₈ puede estar sin sustituir o sustituido con hasta seis grupos que incluyen, pero no se limitan a, -alquilo C₁-C₈, -O-(alquilo C₁-C₈), -arilo, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NHR', -C(O)NHR', -C(O)N(R')₂ -NHC(O)R', -S(O)₂R', -S(O)R', -OH, -halógeno, -N₃, -NH₂, -NH(R'), -N(R')₂ y -CN; en los que cada R' se selecciona independientemente entre H, -alquilo C₁-C₈ y arilo.

Un "Compuesto a modo de Ejemplo" es un Compuesto de Fármaco o un Compuesto de Fármaco-Conector.

Un "Conjugado a modo de Ejemplo" es un Conjugado de Fármaco-Ligando que tiene una unidad de Fármaco que se puede escindir del Conjugado de Fármaco-Ligando o un Conjugado de Fármaco-Conector-Ligando.

En algunas realizaciones, los Compuestos a modo de Ejemplo y los Conjugados a modo de Ejemplo están en forma aislada o purificada. Tal como se usa en el presente documento, "aislado" se refiere a separado de los otros componentes de (a) una fuente natural, tal como una célula o cultivo celular vegetal o animal, o (b) una mezcla de reacción química orgánica sintética. Tal como se usa en el presente documento, "purificado" se refiere que cuando está aislado, el aislado contiene al menos un 95 %, y en otro aspecto al menos un 98 %, de Compuesto o Conjugado a modo de Ejemplo en peso del aislado.

- Ejemplos de un "grupo protector hidroxilo" incluyen, pero no se limitan a, metoximetil éter, 2-metoxietoximetil éter, éter tetrahidropiranílico, éterbencílico, éter p-metoxibencílico, éter trimetilsilílico, éter trietilsilílico, triisopropil silil éter, t-butildimetil silil éter, trifenilmetil silil éter, éster de acetato, ésteres de acetato sustituido, pivaloato, benzoato, metanosulfonato y p-toluenosulfonato.
- "Grupo saliente" se refiere a un grupo funcional que se puede sustituir con otro grupo funcional. Dichos grupos salientes son bien conocidos en la técnica, y ejemplos incluyen, pero no se limitan a, un haluro (*por ejemplo*, cloruro, bromuro, yoduro), metanosulfonilo (mesilo), p-toluenosulfonilp (tosilo), trifluorometilsulfonilo (triflato), y trifluorometilsulfonato.
 - La expresión "sal farmacéuticamente aceptable", tal como se usa en el presente documento, se refiere a sales orgánicas o inorgánicas farmacéuticamente aceptables de un Compuesto a modo de Ejemplo o Conjugado a modo

de Ejemplo. Los Compuestos a modo de Ejemplo y los Conjugados a modo de Ejemplo contienen al menos un grupo amino, y en consecuencia se pueden formar sales de adición ácida con este grupo amino. Las sales a modo de ejemplo incluyen, pero no se limitan a, sulfato, citrato, acetato, oxalato, cloruro, bromuro, yoduro, nitrato, bisulfato, fosfato, fosfato ácido, isonicotinato, lactato, salicilato, citrato ácido, tartrato, oleato, tanato, pantotenato, bitartrato, ascorbato, succinato, maleato, gentisinato, fumarato, gluconato, glucuronato, sacarato, formiato, benzoato, glutamato, metanosulfonato, etanosulfonato, bencenosulfonato, p-toluenosulfonato, y pamoato (es decir, sales de 1,1'-metil-en-bis-(2-hidroxi-3-naftoato)). Una sal farmacéuticamente aceptable puede implicar la inclusión de otra molécula tal como un ión de acetato, un ión de succinato otro contraión. El contraión puede ser cualquier resto orgánico o inorgánico que estabilice la carga en el compuesto precursor. Además, una sal farmacéuticamente aceptable puede tener más de un átomo cargado en su estructura. Ejemplos en los que múltiples átomos cargados son parte de la sal farmacéuticamente aceptable puede tener uno o más átomos cargados y/o uno o más contraiones.

"Solvato farmacéuticamente aceptable" o "solvato" se refiere a una asociación de una o más moléculas de disolvente y un compuesto de la invención, *por ejemplo*, un Compuesto a modo de Ejemplo o Conjugado a modo de Ejemplo. Ejemplos de disolventes que forman solvatos farmacéuticamente aceptables incluyen, pero no se limitan a, agua, isopropanol, etanol, metanol, DMSO, acetato de etilo, ácido acético, y etanolamina.

10

15

40

En el presente documento se usan las siguientes abreviaturas y tienen las definiciones que se indican: AE es auristatina E, Boc es N-(t-butoxicarbonilo), cit es citrulina, dap es dolaproína, DCC es 1,3-diciclohexilcarbodiimida, 20 DCM es diclorometano, DEA es dietilamina, DEAD es dietilazodicarboxilato, DEPC es dietilfosforilcianidato, DIAD es diisopropilazodicarboxilato, DIEA es N,N-diisopropiletilamina, dil es dolaisoleucina, DMAP es 4-dimetilaminopiridina, DME es etilenglicol dimetil éter (o 1,2-dimetoxietano), DMF es N,N-dimetilformamida, DMSO es dimetilsulfóxido, doe es dolafenina, dov es N,N-dimetilvalina, DTNB es ácido 5,5'-ditiobis(2-nitrobenzoico), DTPA es ácido dietilentriaminpentaacético, DTT es ditiotreitol, EDCI es clorhidrato de 1-(3-dimetilaminopropil)-3-etilcarbodiimida, 25 EEDQ es 2-etoxi-1-etoxicarbonil-1,2-dihidroquinolina, ES-MS es espectrometría de masas por electronebulización, EtOAc es acetato de etilo, Fmoc es N-(9-fluorenilmetoxicarbonilo), gly es glicina, HATU es hexafluorofosfato de O-(7azabenzotriazol-1-il)-N,N,N',N'-tetrametiluronio, HOBt es 1-hidroxibenzotriazol, HPLC es cromatografía líquida de alta presión, ile es isoleucina, lys es lisina, MeCN (CH3CN) es acetonitrilo, MeOH es metanol, Mtr es 4-30 anisildifenilmetilo (o 4-metoxitritilo), nor es (1S, 2R)-(+)-norefedrina, PAB es p-aminobencilo, PBS es solución salina tamponada con fosfato (pH 7,4), PEG es polietilenglicol, Ph es fenilo, Pnp es p-nitrofenilo, MC es 6maleimidocaproílo, phe es L-fenilalanina, PyBrop es hexafluorofosfato de bromo tris-pirrolidino fosfonio, SEC es cromatografía de exclusión por tamaño, Su es succinimida, TBTU es tetrafluoroborato de O-benzotriazol-1-il-N,N,N,N-tetrametiluronio, TFA es ácido trifluoroacético, TLC es cromatografía en capa fina, UV es ultravioleta, y val 35 es valina.

En el presente documento se usan las siguientes abreviaturas para conectores y tienen las definiciones que se indican: Val Cit es una valina-citrulina, sitio dipeptídico en el conector de escisión de proteasa; PAB es paminobencilcarbamoílo; (Me)vc es N-metil-valina citrulina, en la que el enlace peptídico del conector se ha modificado para evitar su escisión por la catepsina B; MC(PEG)6-OH es maleimidocaproílo-polietilenglicol; SPP es Pentanoato de N-succinimidil-4-(2-piridiltio); y SMCC es N-Succinimidil 4-(N-maleimidometil)ciclohexano-1 carboxilato.

Los términos "tratar" o "tratamiento", a menos que se indique de otro modo en el contexto, se refieren a tratamiento tanto terapéutico como profiláctico o medidas preventivas, en los que el objetivo es prevenir o ralentizar (disminuir) un cambio o trastorno fisiológico no deseado, tal como el desarrollo o propagación del cáncer. Para fines de la presente invención, los resultados clínicos beneficiosos o deseados beneficial incluyen, pero no se limitan a, alivio de síntomas, disminución del alcance de la enfermedad, estado de enfermedad estabilizado (*es decir*, que no empeora), retraso o disminución del avance de una enfermedad, mejora o alivio del estado de enfermedad, y remisión (tanto parcial como total), tanto detectable como indetectable. "Tratamiento" también se puede referir a prolongar la supervivencia en comparación con la supervivencia esperada sino se recibiera tratamiento. Los individuos que tienen necesidad de tratamiento incluyen los que ya padecen la afección o trastorno así como los propensos a tener la afección o trastorno o aquéllos en los que se va a prevenir la afección o trastorno.

- En el contexto del cáncer, el término " que trata" incluye cualquiera o todos de: prevenir el crecimiento de células tumorales, células cancerosas, o de un tumor; prevenir la replicación de células tumorales o de células cancerosas, disminuir la carga tumoral global o disminuir el número de células cancerosas, y mejorar uno o más síntomas asociados con la enfermedad.
- 60 En el contexto de una enfermedad autoinmune, el término "que trata" incluye cualquiera o todos de: prevenir la replicación de células asociadas con un estado de enfermedad autoinmune que incluyen, pero no se limitan a, células que producen un anticuerpo autoinmune, disminución de la carga de anticuerpo autoinmune y mejorar uno o más síntomas de una enfermedad autoinmune.
- 65 En el contexto de una enfermedad infecciosa, el término "que trata" incluye cualquiera o todos de: prevenir el crecimiento, multiplicación o replicación del agente patógeno que causa la enfermedad infecciosa y mejorar uno o

más síntomas de una enfermedad infecciosa.

En el presente documento se usan las siguientes abreviaturas para fármacos citotóxicos y tienen las definiciones que se indican: MMAE es mono-metil auristatina E (Pm 718); MMAF es N-metilvalina-valina-dolaisoleucina-dolaproína-fenilalanina (Pm 731,5); MMAF-DMAEA es MMAF con DMAEA (dimetilaminoetilamina) en una unión amida con la fenilalanina C-terminal (Pm 801,5); MMAF-TEG es MMAF con tetraetilenglicol esterificado a la fenilalanina; MMAF-NtBu es N-t-butilo, unido como una amida al extremo C de MMAF; AEVB es auristatina E valeril bencilhidrazona, conector lábil ácido a través del extremo C de AE (Pm 732); y AFP es Monoamida de p-fenilen diamina con Fenilalanina C-terminal de Auristatina F (Pm 732).

4.2 Los compuestos de la invención

4.2.1 LOS COMPUESTOS DE FÓRMULA (Ia)

15 En un aspecto, la invención proporciona Conjugados Fármaco-Conector-Ligando que tienen la Fórmula la:

$$L - (A_a - W_w - Y_y - D)_p$$

o una sal o un solvato farmacéuticamente aceptables del mismo en la que,

L- es una unidad de Ligando;

 $-A_a$ - W_w - Y_y - es una unidad de Conector (LU), en la que la unidad de Conector incluye: -A- es a unidad Bastidor,

25 a es 0 o 1,

5

10

20

cada -W- es independientemente una unidad de Aminoácido,

w es un número entero que varía de 0 a 12,

-Y- es a unidad Espaciadora, y

y es 0, 1 o 2;

30 p varía de 1 a aproximadamente 20; y

-D es una unidad de Fármaco que tiene la Fórmula D_F:

35 tal como se define en la reivindicación 2.

En otra realización, la presente invención proporciona Compuestos de Fármaco que tienen la Fórmula **Ib:**

o sales o solvatos farmacéuticamente aceptables de los mismos, tal como se define en la reivindicación 1.

En otra realización más, la invención proporciona Conjugados Fármaco-Conector-Ligando que tienen la Fórmula la':

$$Ab - (A_a - W_w - Y_y - D)_p$$

Fórmula Ia'

o sales o solvatos farmacéuticamente aceptables de los mismos, tal como se define en la reivindicación 4.

Ab es cualquier anticuerpo unido covalentemente a una o más unidades de fármaco. Ab incluye un anticuerpo que se une a antígeno CD30, CD40, CD70, Lewis Y. En otra realización, Ab no incluyen un anticuerpo que se une a un receptor ErbB o a uno o más receptores (1)-(35):

10

15

20

25

30

35

45

55

- (1) BMPR1B (receptor de proteína morfogenética ósea de tipo IB, № de acceso en Genbank NM_001203);
- (2) E16 (LAT1, SLC7A5, Nº de acceso en Genbank NM_003486);
- (3) STEAP1 (antígeno epitelial de seis dominios transmembrana de próstata, Nº de acceso en Genbank NM 012449);
- (4) 0772P (CA125, MUC16, Nº de acceso en Genbank AF361486);
 - (5) MPF (MPF, MSLN, SMR, factor de potenciación de megacariocitos, mesotelina, N° de acceso en Genbank NM 005823):
 - (6) Napi3b (NAPI-3B, NPTIIb, SLC34A2, familia de transportadores de soluto 34 (fosfato sódico), miembro 2, transportador de fosfato dependiente de sodio de tipo II 3b, Nº de acceso en Genbank NM 006424);
 - (7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMA5B, SEMAG, Semaforina 5b Hlog, dominio sema, siete repeticiones de trombospondina (de tipo 1 y similar al tipo 1), dominio transmembrana (TM) and dominio citoplasmático corto. (semaforina) 5B, Nº de acceso en Genbank AB040878):
 - (8) PSCA hlg (2700050C12Rik, C530008O16Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, Nº de acceso en Genbank AY358628);
- (9) ETBR (Receptor de endotelina de tipo B, Nº de acceso en Genbank AY275463);
 - (10) MSG783 (RNF124, proteína hipotética FLJ20315, Nº de acceso en Genbank NM 017763);
 - (11) STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, gen 1 asociado al cáncer de próstata, proteína 1 asociada al cáncer de próstata, antígeno epitelial de seis dominios transmembrana de próstata 2, proteína de próstata de seis dominios transmembrana, Nº de acceso en Genbank AF455138);
 - (12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, canal catiónico potencial de receptores transitorios, subfamilia M, miembro 4, № de acceso en Genbank NM_017636);
 - (13) CRIPTO (CR, CR1, CRGF, CRIPTO, TDGF1, factor de crecimiento derivado de teratocarcinoma, N° de acceso en Genbank NP_003203 o NM_003212);
 - (14) CD21 (CR2 (Receptor de complemento2) o C3DR (receptor de C3d/virus de Epstein Barr) o Hs.73792, N^{ϱ} de acceso en Genbank M26004);
 - (15) CD79b (IGb (asociado a inmunoglobulina beta), B29, № de acceso en Genbank NM_000626);
 - (16) FcRH2 (IFGP4, IRTA4, SPAP1Ā (proteína de anclaje 1a de fosfatasa que contiene el dominio SH2), SPAP1B, SPAP1C, № de acceso en Genbank NM 030764);
 - (17) HER2 (Nº de acceso en Genbank M11730);
- 40 (18) NCA (Nº de acceso en Genbank M18728);
 - (19) MDP (Nº de acceso en Genbank BC017023);
 - (20) IL20R α (N $^{\circ}$ de acceso en Genbank AF184971);
 - (21) Brevican (Nº de acceso en Genbank AF229053);
 - (22) Ephb2R (Nº de acceso en Genbank NM_004442);
 - (23) ASLG659 (Nº de acceso en Genbank AX092328);
 - (24) PSCA (Nº de acceso en Genbank AJ297436);
 - (25) GEDA (Nº de acceso en Genbank AY260763);
 - (26) BAFF-R (Nº de acceso en Genbank NP 443177.1);
 - (27) CD22 (Nº de acceso en Genbank NP-001762.1);
- (28) CD79a (CD79A, CD79α, asociado a inmunoglobulina alfa, una proteína específica de linfocitos B que interactúa covalentemente con Ig beta (CD79B) y forma un complejo sobre la superficie de moléculas de IgM, transduce una señal implicada en la diferenciación de linfocitos B, № de acceso en Genbank NP 001774.1);
 - (29) CXCR5 (receptor del linfoma de Burkitt 1, un receptor acoplado a la proteína G que se activa con la quimioquina CXCL13, funciona en la migración de linfocitos y en la defensa humoral, desempeña un papel en la infección por VIH-2 y quizá en el desarrollo de SIDA, linfoma, mieloma, y leucemia, № de acceso en Genbank NP 001707.1);
 - (30) HLA-DOB (Subunidad beta de la molécula MHC de clase II (antígeno la) que se une a péptidos y los presenta a linfocitos T CD4+, Nº de acceso en Genbank NP 002111.1);
- (31) P2X5 (Canal iónico 5 abierto por el ligando receptor purinérgico P2X, un canal aniónico abierto por ATP extracelular, puede estar implicado en la transmisión y en la neurogénesis sináptica, la deficiencia puede contribuir a la patofisiología de inestabilidad, Nº de acceso en Genbank NP 002552.2);
 - (32) CD72 (antígeno CD72 de diferenciación de linfocitos B , Lyb-2, Nº de acceso en Genbank

NP 001773.1);

5

10

30

(33) LY64 (Antígeno 64 de linfocitos (RP105), proteína de membrana de tipo I de la familia de repetición rica en leucina (LRR), regula la activación y apoptosis de linfocitos B, la pérdida de función está asociada con mayor actividad de la enfermedad en pacientes con lupus sistémico eritematoso, Nº de acceso en Genbank NP 005573.1);

(34) FCRH1 (proteína 1 de tipo receptor de Fc,1 supuesto receptor para el dominio Fc de la inmunoglobulina que contiene los dominios similar a Ig de tipo C2 e ITAM, puede tener un papel en la diferenciación de linfocitos B, Nº de acceso en Genbank NP_443170.1); y/o

(35) IRTA2 (Translocación asociada al receptor 2 de la superfamilia de inmunoglobulinas, un supuesto inmunoreceptor con posibles papeles en el desarrollo y la linfomagénesis de linfocitos B; la desregulación de los genes por translocación se produce en algunas neoplasias de linfocitos B, Nº de acceso en Genbank NP 112571.1).

En una realización -Ww- es -Val-Cit-.

En otra realización, R³, R⁴ y R⁵ son independientemente isopropilo o sec-butilo y R⁵ es -H. En una realización a modo de ejemplo, R³ y R⁴ son cada uno isopropilo, R⁵ es -H, y R⁵ es sec-butilo. En otra realización más, R² y R⁶ son cada uno metilo, y R⁰ es -H.

20 Además, en otra realización, cada aparición de R⁸ es -OCH₃.

En una realización a modo de ejemplo, R^3 y R^4 son cada uno isopropilo, R^2 y R^6 son cada uno metilo, R^5 es -H, R^7 es sec-butilo, cada aparición de R^8 es -OCH₃, y R^9 es -H.

25 En una realización, R¹⁰ es arilo.

En una realización a modo de ejemplo, R¹⁰ es -fenilo.

En un aspecto, Ab es cAC10, cBR96, cS2C6, c1F6, c2F2, hAC10, hBR96, hS2C6, h1F6, y h2F2.

Ejemplos de conjugados de fármaco-anticuerpo que se desvelan en el presente documento incluyen los que tienen las siguientes fórmulas:

L-MC-vc-PAB-MMAF

L-MC-ve-PAB-MMAE

L-MC-MMAE

35 O

L-MC-MMAF

en las que L es un anticuerpo, Val es valina, y Cit es citrulina.

La carga del fármaco drug se representa con p, el número medio de moléculas de fármaco por anticuerpo en una molécula (por ejemplo, de Fórmula la, la' e lc). La carga del fármaco puede variar de 1 a 20 fármacos (D) por Ligando (por ejemplo, Ab o mAb). Las composiciones de Fórmula la y de Fórmula la' incluyen colecciones de anticuerpos conjugados con un intervalo de fármacos, de 1 a 20. El número medio de fármacos por anticuerpo en la preparación de reacciones de conjugación se puede caracterizar por medios convencionales tales como espectroscopía de masas, ensayo de ELISA, y HPLC. Además, se puede determinar la distribución cuantitativa de Conjugados de Ligando-Fármaco en términos de p. En algunos casos, la separación, purificación, y caracterización de conjugados de Ligando-Fármaco en los que p es un valor determinado para Conjugados de Ligando-Fármaco con otras cargas de fármaco se pueden conseguir por cualquier medio tal como HPLC en fase inversa o electroforesis.

4.2.2 LOS COMPUESTOS DE FÓRMULA (Ib)

En otro aspecto, la presente invención proporciona Compuestos de Fármaco que tienen la Fórmula (Ib):

20

o una sal o un solvato farmacéuticamente aceptables del mismo, tal como se define en la reivindicación 1.

En una realización, R³, R⁴ y R⁵ son independientemente isopropilo o sec-butilo y R⁵ es -H. En una realización a modo de ejemplo, R³ y R⁴ son cada uno isopropilo, R⁵ es -H, y R⁵ es sec-butilo.

En otra realización, R² y R⁶ son cada uno metilo, y R⁹ es -H.

Además, en otra realización, cada aparición de R8 es -OCH3.

En una realización a modo de ejemplo, R^3 y R^4 son cada uno isopropilo, R^2 y R^6 son cada uno metilo, R^5 es -H, R^7 es sec-butilo, cada aparición de R^8 es -OCH₃, y R^9 es -H.

En una realización, R¹⁰ es arilo.

En una realización a modo de ejemplo, R¹⁰ es -fenilo.

Los Compuestos Ilustrativos que se desvelan en el presente documento, cada uno de los cuales se puede usar como restos de fármaco (D) en ADC, incluyen compuestos que tienen las siguientes estructuras:

40

30

у

y sales o solvatos farmacéuticamente aceptables de los mismos.

5 LOS COMPUESTOS DE FÓRMULA (Ic)

10

25

30

45

En otro aspecto, la invención proporciona compuestos de conjugado anticuerpo-fármaco (ADC) que tienen la Fórmula **lc**:

$$Ab - (A_a - W_w - Y_y - D)_p$$
 Ic

que comprenden un anticuerpo unido covalentemente a uno o más unidades de fármaco (restos). Los compuestos de conjugados de anticuerpo-fármaco incluyen sales o solvatos farmacéuticamente aceptables de los mismos.

15 Se definen compuestos de Fórmula **Ic**, en la que:

Ab es un anticuerpo que se une a uno o más receptores de antígenos asociados a tumor (1)-(35):

- (1) BMPR1B (receptor de proteína morfogenética ósea de tipo IB, № de acceso en Genbank NM 001203):
- 20 (2) E16 (LAT1, SLC7A5, Nº de acceso en Genbank NM 003486);
 - (3) STEAP1 (antígeno epitelial de seis dominios transmembrana de próstata, Nº de acceso en Genbank NM 012449);
 - (4) 0772P (CA125, MUC16, № de acceso en Genbank AF361486);
 - (5) MPF (MPF, MSLN, SMR, factor de potenciación de megacariocitos, mesotelina, № de acceso en Genbank NM 005823);
 - (6) Napi3b (NAPI-3B, NPTIIb, SLC34A2, familia de transportadores de soluto 34 (fosfato sódico), miembro 2, transportador de fosfato dependiente de sodio de tipo II 3b, Nº de acceso en Genbank NM 006424);
 - (7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMA5B, SEMAG, Semaforina 5b Hlog, dominio sema, siete repeticiones de trombospondina (de tipo 1 y similar al tipo 1), dominio transmembrana (TM) and dominio citoplasmático corto, (semaforina) 5B, Nº de acceso en Genbank AB040878);
 - (8) PSCA hlg (2700050C12Rik, C530008O16Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, N^2 de acceso en Genbank AY358628);
 - (9) ETBR (Receptor de endotelina de tipo B, Nº de acceso en Genbank AY275463);
 - (10) MSG783 (RNF124, proteína hipotética FLJ20315, № de acceso en Genbank NM_017763);
- 35 (11) STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, gen 1 asociado al cáncer de próstata, proteína 1 asociada al cáncer de próstata, antígeno epitelial de seis dominios transmembrana de próstata 2, proteína de próstata de seis dominios transmembrana, Nº de acceso en Genbank AF455138);
 - (12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, canal catiónico potencial de receptores transitorios, subfamilia M, miembro 4, Nº de acceso en Genbank NM 017636);
- 40 (13) CRIPTO, (CR, CR1, CRGF, CRIPTO, TDGF1, factor de crecimiento derivado de teratocarcinoma, Nº de acceso en Genbank NP_003203 o NM_003212);
 - (14) CD21 (CR2 (Receptor de complemento2) o C3DR (receptor de C3d/virus de Epstein Barr) o Hs.73792 Nº de acceso en Genbank M26004);
 - (15) CD79b (CD79B, CD79β, IGb (asociado a inmunoglobulina beta), B29, Nº de acceso en Genbank NM_ 000626);
 - (16) FcRH2 (IFGP4, IRTA4, SPAP1A (proteína de anclaje 1a de fosfatasa que contiene el dominio SH2), SPAP1B, SPAP1C, № de acceso en Genbank NM 030764);
 - (17) HER2 (Nº de acceso en Genbank M11730);
 - (18) NCA (Nº de acceso en Genbank M18728);
- 50 (19) MDP (Nº de acceso en Genbank BC017023);

- (20) IL20Rα (Nº de acceso en Genbank AF184971);
- (21) Brevican (Nº de acceso en Genbank AF229053);
- (22) Ephb2R (Nº de acceso en Genbank NM_004442);
- (23) ASLG659 (Nº de acceso en Genbank AX092328);
- (24) PSCA (Nº de acceso en Genbank AJ297436);
- (25) GEDA (Nº de acceso en Genbank AY260763;
- (26) BAFF-R (receptor del factor de activación de linfocitos B, receptor 3 de BLyS, BR3, NP 443177.1);
- (27) CD22 (isoforma CD22-B de receptores de linfocitos B, NP-001762.1);
- (28) CD79a (CD79A, CD79α, asociado a inmunoglobulina alfa, una proteína específica de linfocitos B que interactúa covalentemente con Ig beta (CD79B) y forma un complejo sobre la superficie de moléculas de IgM, transduce una señal implicada en la diferenciación de linfocitos B, Nº de acceso en Genbank NP 001774.1);
 - (29) CXCR5 (receptor del linfoma de Burkitt 1, un receptor acoplado a la proteína G que se activa con la quimioquina CXCL13, funciona en la migración de linfocitos y en la defensa humoral, desempeña un papel en la infección por VIH-2 y quizá en el desarrollo de SIDA, linfoma, mieloma, y leucemia, № de acceso en Genbank NP 001707.1):
 - (30) HLA-DOB (Subunidad beta de la molécula MHC de clase II (antígeno la) que se une a péptidos y los presenta a linfocitos T CD4+, Nº de acceso en Genbank NP 002111.1);
 - (31) P2X5 (Canal iónico 5 abierto por el ligando receptor purinérgico P2X, un canal aniónico abierto por ATP extracelular, puede estar implicado en la transmisión y en la neurogénesis sináptica, la deficiencia puede contribuir a la patofisiología de inestabilidad, Nº de acceso en Genbank NP_002552.2);
 - (32) CD72 (antígeno CD72 de diferenciación de linfocitos B, Lyb-2, № de acceso en Genbank NP 001773.1);
 - (33) LY64 (Antígeno 64 de linfocitos (RP105), proteína de membrana de tipo I de la familia de repetición rica en leucina (LRR), regula la activación y apoptosis de linfocitos B, la pérdida de función está asociada con mayor actividad de la enfermedad en pacientes con lupus sistémico eritematoso, Nº de acceso en Genbank NP 005573.1);
 - (34) FCRH1 (proteína 1 de tipo receptor de Fc,1 supuesto receptor para el dominio Fc de la inmunoglobulina que contiene los dominios similar a lg de tipo C2 e ITAM, puede tener un papel en la diferenciación de linfocitos B, № de acceso en Genbank NP_ 443170.1); y
 - (35) IRTA2 (Translocación asociada al receptor 2 de la superfamilia de inmunoglobulinas, un supuesto inmunoreceptor con posibles papeles en el desarrollo y la linfomagénesis de linfocitos B; la desregulación de los genes por translocación se produce en algunas neoplasias de linfocitos B, Nº de acceso en Genbank NP 112571.1).

A es a unidad Bastidor,

a es 0 o 1,

5

10

15

20

25

30

35

45

50

cada W es independientemente una unidad de Aminoácido.

40 w es un número entero que varía de 0 a 12,

Y es a unidad Espaciadora, e

y es 0, 1 o 2,

p varía de 1 a aproximadamente 8, y

D es un resto de Fármaco que tiene la Fórmula D_F:

tal como se define en la reivindicación 2,

en la que la línea ondulada de D_E y D_F indica el sitio de unión covalente para A, W, o Y.

55 En una realización -Ww- es -Val-Cit-.

En otra realización, R3, R4 y R7 son independientemente isopropilo o sec-butilo y R5 es -H. En una realización a

modo de ejemplo, R³ y R⁴ son cada uno isopropilo, R⁵ es -H, y R⁷ es sec-butilo.

En otra realización más, R² y R⁶ son cada uno metilo, y R⁹ es -H.

5 Además, en otra realización, cada aparición de R⁸ es -OCH₃.

En una realización a modo de ejemplo, R^3 y R^4 son cada uno isopropilo, R^2 y R^6 son cada uno metilo, R^5 es -H, R^7 es sec-butilo, cada aparición de R^8 es -OCH₃, y R^9 es -H.

10 En una realización, R¹⁰ es arilo.

15

20

25

En una realización a modo de ejemplo, R¹⁰ es -fenilo.

Los conjugados ilustrativos de anticuerpo-fármaco que se describen en el presente documento incluyen:

Ab-S Val-Cit-N Val-Cit-N)

Ab-MC-vc-PAB-MMAF

Ab-MC-vc-PAB-MMAE

Ab-MC-MMAE

Ab-MC-MMAF

en los que Ab es un anticuerpo que se une a uno o más receptores de antígenos asociados a tumor (1)-(35); Val es valina; y Cit es citrulina.

La carga de fármacos se representa por p, el número medio de fármacos por anticuerpo en una molécula de Fórmula I. La carga del fármaco puede variar de 1 a 20 fármacos (D) por anticuerpo (Ab o mAb). Las composiciones de ADC de Fórmula I incluyen colecciones de anticuerpos conjugados con un intervalo de fármacos, de 1 a 20. El número medio de fármacos por anticuerpo en las preparaciones de ADC a partir de reacciones de conjugación se puede caracterizar por medios convencionales tales como espectroscopía de UV/visible, espectrometría de masas, ensayo de ELISA, y HPLC. También se puede determinar la distribución cuantitativa de ADC en términos de p. en algunos casos, la separación purificación, y caracterización de ADC homogéneos en los que p es un determinado valor a partir de ADC con otras cargas de fármaco se pueden conseguir por medios tales como HPLC de fase

inversa o electroforesis.

Para algunos conjugados de fármaco de anticuerpo, p puede estar limitado por el número de sitios de unión en el anticuerpo. Por ejemplo, cuando la unión es un tiol de la cisteína, tal como las realizaciones a modo de ejemplo mencionadas anteriormente, un anticuerpo puede tener solamente uno o varios grupos tiol de la cisteína, o por detener solamente uno o varios grupos tiol suficientemente reactivos a través los que se puede unir un conector.

Por lo general, menos del máximo teórico de restos de fármaco se conjugan con un anticuerpo durante una reacción de conjugación. Un anticuerpo puede contener, por ejemplo, muchos restos de lisina que no reaccionan con el compuesto intermedio de fármaco-conector o reactivo conector. Solamente los grupos lisina más reactivos pueden reaccionar con un reactivo conector de amina-reactivo. Generalmente, los anticuerpos no contienen muchos, si los hubiera, grupos tiol de la cisteína libres y reactivos que se pueden unir a un resto de fármaco. La mayoría de los restos tiol de la cisteína en los anticuerpos de los compuestos de la invención existen como puentes disulfuro se deben reducir con un agente reductor tal como ditiotreitol (DTT). Además, el anticuerpo se debe someter a condiciones de desnaturalización para dejar al descubierto grupos nucleófilos reactivos tales como lisina o cisteína. La carga (relación de fármaco/anticuerpo) de un ADC se puede controlar diferentes maneras, que incluyen: (i) limitar el exceso molar de compuesto intermedio de fármaco-conector o reactivo conector con respecto al anticuerpo, (ii) limitar el tiempo o la temperatura de la reacción de conjugación, y (iii) hacer parciales o limitar las condiciones de reducción para la modificación del tiol de la cisteína.

20

25

30

40

50

60

65

5

10

15

Se debe observar que cuando más de un grupo nucleófilo reacciona con un compuesto intermedio de fármacoconector, o reactivo conector seguido de reactivo de resto de fármaco, entonces el producto resultante es una
mezcla de compuestos de ADC con una distribución de uno o más restos de fármaco unidos a un anticuerpo. El
número medio de fármacos por anticuerpo se puede calcular a partir de la mezcla mediante ensayos de anticuerpos
por ELISA doble, específicos para anticuerpos y específicos para el fármaco. Se pueden identificar moléculas
individuales de ADC en la mezcla por espectroscopía de masas, y separa por HPLC, por ejemplo, cromatografía de
interacción hidrófoba ("Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30
antibody-drug conjugate", Hamblett, K.J., et al, Resumen Nº 624, American Association for Cancer Research; Annual
Meeting de 2004, 27-31 de marzo de 2004, Proceedings of the AACR, Volumen 45, marzo de 2004; "Controlling the
Location of Drug Attachment in Antibody-Drug Conjugates", Alley, S.C., et al, Resumen Nº 627, American
Association for Cancer Research; Annual Meeting de 2004, 27-31 de marzo de 2004, Proceedings of the AACR,
Volumen 45, marzo de 2004). Por lo tanto, un ADC homogéneo con un solo valor de carga se puede aislar a partir
de la mezcla de conjugación mediante electroforesis o cromatografía.

35 4.3 LA UNIDAD DE CONECTOR

Una "unidad de Conector" (LU) es un compuesto bifuncional, que se puede usar para unir una unidad de Fármaco y una unidad de Ligando para formar Conjugados de Fármaco-Conector-Ligando, o que son útiles en la formación de inmunoconjugados dirigidos frente a antígenos asociados a tumores. Dichos inmunoconjugados permiten la administración selectiva de fármacos tóxicos a células tumorales. En una realización, la unidad de Conector del Compuesto de Fármaco-Conector y Conjugado de Fármaco-Conector-Ligando tiene la fórmula:

 $-A_a-W_w-Y_v-$

45 en la que:

-A- es a unidad Bastidor; a es 0 por 1; cada -W- es independientemente una unidad de Aminoácido; w es independientemente un número entero que varía de 0 a 12; -Y- es a unidad Espaciadora; y y es 0, 1 o 2.

En el Conjugado de Fármaco-Conector-Ligando, el Conector es capaz de unirse al resto Fármaco y a la unidad de Ligando.

4.3.1 LA UNIDAD BASTIDOR

La unidad Bastidor (-A-), cuando está presente, es capaz de unirse a una unidad de Ligando para formar una unidad de aminoácido (-W-). A este respecto, un Ligando (L) tiene un grupo funcional que puede formar un enlace con grupo funcional de un Bastidor. Los grupos funcionales útiles que pueden estar presentes en un ligando, bien naturales o a través de manipulación química incluyen, pero no se limitan a, sulfhidrilo (-SH), amino, hidroxilo, carboxi, el grupo hidroxilo anómero de un hidrato de carbono, y carboxilo. En un aspecto, los grupos funcionales de Ligando son sulfhidrilo y amino. Los grupos sulfhidrilo se pueden generar por reducción de un enlace disulfuro intramolecular de un Ligando. Como alternativa, los grupos sulfhidrilo se pueden generar por reacción de un grupo amino de un resto de lisina de un Ligando usando 2-iminotiolano (reactivo de Traut) u otro reactivo que genere

sulfhidrilo.

10

En una realización, la unidad Bastidor forma un enlace con un átomo de azufre de la unidad de Ligando. El átomo de azufre puede provenir de un grupo sulfhidrilo de un Ligando. Las unidades Bastidor representativas de la presente realización se representan dentro de los corchetes de las Fórmulas **IIIa** y **IIIb**, en las que L-, -W-, -Y-, -D, w e y son tal como se han definido anteriormente, y R^{17} se selecciona entre -alquileno C_1 - C_{10} -, -carbociclo C_3 - C_8 -, -O-(alquilo C_1 - C_8)-, -arileno-, -alquilen C_1 - C_{10} -arileno-, -arileno-, -arileno-, -alquileno C_1 - C_{10} -, -(leterociclo C_3 - C_8)-, -(carbociclo C_3 - C_8)-alquileno C_1 - C_1 -, -heterociclo C_3 - C_8 -, -alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -, -(C_1 -, -(C_1 -, -(C_1 -)-(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -, -(C_1 -)-(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -)-(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -)-(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -)-(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(C_1 -)-(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-alquileno C_1 - C_1 -, -(heterociclo C_3 - C_8)-, -(heterociclo C_3 - C_8 -)--(

$$H_{17}$$
-C(O) W_{w} -Y_y-D

 H_{18}
 H_{17} -C(O) W_{w} -Y_y-D

 H_{18}

Una unidad Bastidor ilustrativa es la de Fórmula **Illa** en la que R¹⁷ es -(CH₂)₅-:

Otra unidad Bastidor ilustrativa es la de Fórmula **Illa** en la que R¹⁷ es -(CH₂CH₂O)_r-CH₂-; y r es 2:

Además, otra unidad Bastidor ilustrativa es la de Fórmula IIIb en la que R¹⁷ es -(CH₂)₅-:

En otra realización, la unidad Bastidor está unida a la unidad de Ligando a través de un enlace disulfuro entre un átomo de azufre de la unidad de Ligando y un átomo de azufre de la unidad Bastidor. Una unidad Bastidor representativa de la presente realización se representa dentro de los corchetes de Fórmula IV, en la que R¹⁷, L-, -W-, -Y-, -D, w e y son tal como se han definido anteriormente.

30

25

$$L = S - R^{17} - C(O) + W_W - Y_V - D$$

En otra realización más, el grupo reactivo del Bastidor contiene husillo reactivo que puede formar un enlace con un grupo amino primario o secundario de un Ligando. Ejemplos de estos sitios reactivos incluyen, pero no se limitan a, ésteres activados tales como ésteres de succinimida, ésteres de 4-nitrofenilo, ésteres de pentafluorofenilo, ésteres de tetrafluorofenilo, anhídridos, cloruros de ácido, cloruros de sulfonilo, isocianatos e isotiocianatos. Las unidades Bastidor representativas de la presente realización se representan dentro de los corchetes de las Fórmulas Va y Vb, en las que -R¹⁷-, L-, -W-, -Y-, -D, w e y son tal como se han definido anteriormente;

5

10

15

20

$$L = \left\{ C(O)NH - R^{17} - C(O) - W_w - Y_y - D \right\}$$

Va

$$\begin{array}{c|c} S \\ II \\ C \cdot NH - R^{17} - C(O) \end{array}$$

$$\begin{array}{c} W_w - Y_y - D \\ \end{array}$$

$$\begin{array}{c} V_b \end{array}$$

En otro aspecto más, el grupo reactivo del Bastidor contiene un sitio reactivo que es reactivo a un grupo modificado del hidrato de carbono (-CHO) que puede estar presente en un por. Por ejemplo, un hidrato de carbono se puede oxidar suavemente usando un reactivo tal como peryodato sódico y la unidad (-CHO) resultante del hidrato de carbono oxidado se puede condensar con un Bastidor que contiene una funcionalidad tal como una hidrazida, una oxima, una amina primaria o secundaria, una hidrazina, una tiosemicarbazona, un carboxilato de hidrazina, y una arilhidrazida tal como las que se describen en Kaneko, T. et al. (1991) Bioconjugate Chem 2: 133-41. Las unidades Bastidor representativas de la presente realización se representan dentro de los corchetes de Fórmulas VIa, VIb, y VIc, en las que -R¹⁷-, L-, -W-, -Y-, -D, w e y son tal como se han definido anteriormente.

4.3.2 LA UNIDAD DE AMINOÁCIDO

5

10

25

La unidad de Aminoácido (-W-), cuando está presente, une la unidad Bastidor a la unidad Espaciadora si la unidad Espaciadora está presente, une la unidad Bastidor al resto de Fármaco si la unidad Espaciadora está ausente, y une la unidad de Ligando a la unidad de Fármaco si la unidad Bastidor y la unidad Espaciadora están ausentes.

W_w- es una unidad dipéptido, tripéptido, tetrapéptido, pentapéptido, hexapéptido, heptapéptido, octapéptido, nonapéptido, decapéptido, undecapéptido o dodecapéptido. Cada unidad -W- tiene independientemente la fórmula que se indica a continuación entre paréntesis, y w es un número entero que varía de 0 a 12:

en las que R¹⁹ es hidrógeno, metilo, isopropilo, isobutilo, *sec*-butilo, bencilo, *p*-hidroxibencilo, -CH₂OH, -CH(OH)CH₃, -CH₂CH₂SCH₃, -CH₂CONH₂, -CH₂COOH, -CH₂CONH₂, -CH₂COOH, -(CH₂)₃NHC(=NH)NH₂, -(CH₂)₃NHC(=NH)NH₂, -(CH₂)₃NHCOCH₃, -(CH₂)₃NHCHO, -(CH₂)₄NHCOCH₃, -(CH₂)₄NHCOOH₃, -(CH₂)₄NHCOOH₂, -CH₂CH₂CH(OH)CH₂NH₂, 2-piridilmetil-, 3-piridilmetil-, 4-piridilmetil-, fenilo, ciclohexilo,

La unidad de Aminoácido se puede escindir enzimáticamente con una o más enzimas, que incluyen proteasa asociada a tumores, para liberar la unidad de Fármaco (-D), que en una realización se protona *in vivo* después de su liberación para proporcionar un Fármaco (D). Unidades W_w ilustrativas se representan con las fórmulas (VII)-(IX):

en la que R^{20} y R^{21} son como sigue a continuación:

R ²⁰	R^{21}
bencilo	(CH ₂) ₄ NH ₂ ;
metilo	$(CH_2)_4NH_2;$
isopropilo	$(CH_2)_4NH_2;$
isopropilo	$(CH_2)_3NHCONH_2;$
bencilo	$(CH_2)_3NHCONH_2;$
isobutilo	(CH ₂) ₃ NHCONH ₂ ;
sec-butilo	(CH ₂) ₃ NHCONH ₂ ;
S-CH ₂ N	(CH ₂) ₃ NHCONH ₂ ;
bencilo	metilo; y
bencilo	(CH2)3NHC(=NH)NH2;

en la que R²⁰, R²¹ y R²² son como sigue a continuación:

	R^{20}	R^{21}	R^{22}	
-	bencilo	bencilo	(CH ₂) ₄ NH ₂ ;	_
	isopropilo	bencilo	$(CH_2)_4NH_2$; y	
	I			
	Н	bencilo	$(CH_2)_4NH_2;$	

$$\begin{array}{c|c} & & & & \\ & &$$

en R^{20} , R^{21} , R^{22} y R^{23} son como sigue a continuación:

10

ES 2 456 325 T3

R^{20}	R^{21}	R^{22}	R^{23}
Н	bencilo	isobutilo	Н; у
		1	
metilo	isobutilo	metilo	Isobutilo
	1		

Unidades Aminoácido a modo de ejemplo unidad incluyen, pero no se limitan a, unidades de fórmula (VII) en la que: R^{20} es bencilo y R^{21} es $-(CH_2)_4NH_2$; R^{20} isopropilo y R^{21} es $-(CH_2)_4NH_2$; R^{20} isopropilo y R^{21} es $-(CH_2)_3NHCONH_2$. Otra unidad de Aminoácido a modo de ejemplo es una unidad de fórmula (VIII) en la que R^{20} es bencilo, R^{21} es bencilo, y R^{22} es $-(CH_2)_4NH_2$.

Las unidades $-W_w$ - útiles se pueden diseñar y optimizar en su selectividad para escisión enzimática con una enzima en particular, por ejemplo, una proteasa asociada a tumores. En una realización, una unidad $-W_w$ - es aquélla cuya escisión está catalizada por catepsina B, C y D, o una proteasa de plásmido.

En una realización, -W_w- es un dipéptido, tripéptido, tetrapéptido o pentapéptido.

Cuando R¹⁹, R²⁰, R²¹, R²² o R²³ es distinto de hidrógeno, el átomo de carbono al que R¹⁹, R²⁰, R²¹, R²² o R²³ está unido es quiral.

Cada átomo de carbono al que R¹⁹, R²⁰, R²¹, R²² o R²³ está unido está independientemente en la configuración (S) o (R).

En un aspecto de la unidad de Aminoácido, la unidad de Aminoácido es valina-citrulina. En otro aspecto, la unidad de Aminoácido es fenilalanina-lisina (es decir, fk). En otro aspecto más de la unidad de Aminoácido, la unidad de Aminoácido es N-metilvalina-citrulina. En otro aspecto más, la unidad de Aminoácido es ácido 5-aminovalérico, homo fenilalanina lisina, tetraisoquinolinacarboxilato de lisina, ciclohexilalanina lisina, ácido isonipecótico lisina, beta-alanina lisina, glicina serina valina glutamina y ácido isonipecótico.

En determinadas realizaciones, la unidad de Aminoácido puede comprender aminoácidos naturales. En otras realizaciones, la unidad de Aminoácido puede comprender aminoácidos no naturales.

4.3.3 LA UNIDAD ESPACIADORA

La unidad Espaciadora (-Y-), cuando está presente, une una unidad de Aminoácido al resto de Fármaco cuando una unidad de Aminoácido está presente. Como alternativa, la unidad Espaciadora une la unidad Bastidor al resto de Fármaco cuando la unidad de Aminoácido está ausente. La unidad Espaciadora también une el resto de Fármaco a la unidad de Ligando cuando tanto la unidad de Aminoácido como la unidad Bastidor están ausentes.

Las unidades Espaciadoras son de dos tipos generales: autoinmolativas y no autoinmolativas. Una unidad Espaciadora no autoinmolativa es una en la que parte o toda la unidad Espaciadora permanece unida al resto de Fármaco después de la escisión, particularmente enzimática, de una unidad de Aminoácido a partir del Conjugado de Fármaco-Conector-Ligando o del Compuesto Fármaco-Conector. Ejemplos de una unidad Espaciadora no autoinmolativa incluyen, pero no se limitan a una unidad Espaciadora (glicina-glicina) y una unidad Espaciadora glicina (ambas representadas en el Esquema 1) (véase a continuación). Cuando un Compuesto a modo de Ejemplo que contiene una unidad Espaciadora glicina-glicina o una unidad Espaciadora glicina experimenta escisión enzimática a través de una proteasa asociada a células tumorales, una proteasa asociada a células cancerosas o una proteasa asociada a linfocitos, un resto de Fármaco glicina-glicina o un resto de Fármaco glicina se escinde de L-A_a-Ww-. En una realización, una reacción de hidrólisis independiente se produce dentro de la célula diana, escindiendo el resto de Fármaco glicina y liberando el Fármaco.

En otra realización, $-Y_v$ - es una unidad de alcohol p-aminobencílico (PAB) (véanse los Esquemas 2 y 3) cuya porción de fenileno está sustituida con Q_m en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno,- nitro o -ciano; y m es un número entero que varía de 0-4.

50

5

10

Esquema 1

En una realización, una unidad Espaciadora no autoinmolativa (-Y-) es -Gly-Gly-. En otra realización, una unidad Espaciadora no autoinmolativa (-Y-) es -Gly-.

En una realización, se proporciona un Compuesto de Fármaco-Conector o un Conjugado de Fármaco-Conector Ligando en el que la unidad Espaciadora está ausente (y = 0), o una sal o un solvato farmacéuticamente aceptables del mismo.

Como alternativa, un Compuesto a modo de Ejemplo que contiene una unidad Espaciadora autoinmolativa puede liberar -D sin la necesidad de una etapa de hidrólisis separada. En esta realización, -Y- es un grupo PAB que se une a -W_w- a través del átomo de nitrógeno del amino del grupo PAB, y se conecta directamente a -D a través de un grupo carbonato, carbamato o éter. Sin quedar ligado a teoría o mecanismo alguno en particular, el Esquema 2 representa un mecanismo posible de liberación de Fármaco de un grupo PAB que se une directamente a -D a través de un grupo carbamato o carbonato adoptado por Toki et al. (2002) J Org. Chem. 67: 1866-1872.

Esquema 2

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno, -nitro o -ciano; m es un número entero que varía de 0-4; y p varía de 1 a aproximadamente 20.

Sin quedar ligado a teoría o mecanismo alguno en particular, el Esquema 3 representa un mecanismo posible de liberación de Fármaco de un grupo PAB que se une directamente a -D a través de una unión éter o amina.

Esquema 3

5

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno,- nitro o -ciano; m es un número entero que varía de 0-4; y p varía de 1 a aproximadamente 20.

10

15

Otros ejemplos de espaciadores autoinmolativos incluyen, pero no se limitan a, compuestos aromáticos que son electrónicamente similares al grupo PAB tales como derivados de 2-aminoimidazol-5-metanol (Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237) y orto o para-aminobencilacetales. Se pueden usar espaciadores que experimentan ciclación tras la hidrólisis del enlace amida, tales como amidas sustituidas y sin sustituir del ácido 4-aminobutírico (Rodrigues et al., Chemistry Biology, 1995, 2, 223), sistemas de anillo biciclo[2.2.1] y biciclo[2.2.2] sustituidos apropiadamente (Storm, et al., J. Amer. Chem. Soc., 1972, 94, 5815) y amidas del ácido 2-aminofenilpropiónico (Amsberry, et al., J. Org. Chem., 1990, 55, 5867). La eliminación de fármacos que contienen amina que están sustituidos en la posición a de la glicina (Kingsbury, et al., J. Med. Chem., 1984, 27, 1447) también son ejemplos de espaciador autoinmolativo útil en Compuestos a modo de Ejemplo.

20

En una realización, la unidad Espaciadora es una unidad de bis(hidroximetil)estireno (BHMS) ramificado tal como se representa en el Esquema 4, que se puede usar para incorporar y liberar múltiples fármacos.

Esquema 4

$$\begin{array}{c|c} Q_m & CH_2(O(C(O)))_n-D \\ \hline \\ CH_2(O(C(O)))_n-D \\ \hline \\ escision \\ enzimatica \end{array}$$

2 fármacos

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno, -nitro r -ciano; m es un número entero que varía de 0-4; n es 0 o 1; y p varía de 1 a aproximadamente 20.

En una realización, los restos -D son los mismos. En otra realización más, los restos -D son diferentes.

En un aspecto, las unidades Espaciadoras (-Yy-) se representan con las Fórmulas (X)-(XII):

10

5

en la que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno, -nitro o -ciano; y m es un número entero que varía de 0-4;

Υ

15

$$\begin{cases} ---NHCH2C(O)-NHCH2C(O)-\begin{cases} xIII \end{cases}$$

20

Realizaciones de los compuestos de conjugado de anticuerpo-fármaco de Fórmulas la' e lc incluyen:

$$Ab$$
— S
 W_w - Y_y - D
 P

25

у,

en la que w e y son cada uno 0,

5

у

4.4 LA UNIDAD FÁRMACO (RESTO)

15

20

25

30

35

40

El resto de fármaco (D) de los conjugados de anticuerpo fármaco (ADC) son los del tipo dolastatina/auristatina (Patentes de Estados Unidos Nº 5635483; Nº 5780588) que se ha mostrado que interfieren con la dinámica de microtúbulos, hidrólisis de GTP, y división nuclear y celular (Woyke et al. (2001) Antimicrob. Agents y Chemother. 45 (12): 3580-3584) y tienen actividad anticáncer (Patente de Estados Unidos Nº 5663149) y antifúngica (Pettit et al. (1998) Antimicrob. Agents Chemother. 42: 2961-2965).

D es una unidad de Fármaco (resto) que tiene un átomo de nitrógeno que puede formar un enlace con la unidad Espaciadora cuando y = 1 o 2, con el grupo carboxilo C-terminal de una unidad de Aminoácido cuando y = 0, con el grupo carboxilo de una unidad Bastidor cuando w e y = 0, y con el grupo carboxilo de una unidad de Fármaco cuando a, w, e y = 0. se debe observar que las expresiones "unidad de fármaco" y "resto de fármaco" son sinónimos y se usan indistintamente en el presente documento. La unidad de fármaco tiene una estructura tal como se define en las reivindicaciones.

Además, en el presente documento se describen unidades de fármaco que tiene la fórmula DE:

en la que, independientemente en cada posición:

R² se selecciona entre H y alquilo C₁-C₈;

R³ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquilarilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈), heterociclo C₃-C₈ y alquil C₁-C₈-(heterociclo C₃-C₈);

 R^4 se selecciona entre H, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , arilo, alquilarilo C_1 - C_8 , alquil C_1 - C_8 -(carbociclo C_3 - C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

R⁵ se selecciona entre H y metilo;

o R⁴ y R⁵ forman de manera conjunta un anillo carbocíclico y tienen la fórmula -(CR^aR^b)_n- en la que R^a y R^b se seleccionan independientemente entre H, alquilo C₁-C₈ y carbociclo C₃-C₈ y n se selecciona entre 2, 3, 4, 5 y 6; R⁶ se selecciona entre H y alquilo C₁-C₈;

 R^7 se selecciona entre H, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , arilo, alquil C_1 - C_8 -arilo, alquil C_1 - C_8 -(carbociclo C_3 - C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

cada R⁸ se selecciona independientemente entre H, OH, alquilo C₁-C₈, carbociclo C₃-C₈ y O-(alquilo C₁-C₈); R⁹ se selecciona entre H y alquilo C₁-C₈:

se selecciona entre H y alquilo C_1 - C_8 ; R^{18} se selecciona entre $-C(R^8)_2$ - $C(R^8)_2$ -arilo, $-C(R^8)_2$ - $C(R^8)_2$ -(heterociclo C_3 - C_8), y $-C(R^8)_2$ -(carbociclo C_3 - C_8); y

n es un número entero que varía de 0 a 6.

En un caso, R^3 , R^4 y R^7 son independientemente isopropilo o sec-butilo y R^5 es -H. En un caso modo de ejemplo, R^3 y R^4 son cada uno isopropilo, R^5 es H, y R^7 es sec-butilo.

En otro caso, R² y R⁶ son cada uno metilo, y R⁹ es H.

Además en otro caso, cada aparición de R⁸ es -OCH₃.

10

En un caso a modo de ejemplo, R^3 y R^4 son cada uno isopropilo, R^2 y R^6 son cada uno metilo, R^5 es H, R^7 es secbutilo, cada aparición de R^8 es -OCH₃, y R^9 es H.

Unidades de Fármaco (-D) a modo de ejemplo incluyen las unidades de fármaco que tiene las siguientes estructuras:

5 y

y sales o solvatos farmacéuticamente aceptables de las mismas.

Tal como se describen en el presente documento, grupos hidróxidos, como tal pero no limitados a ésteres de trietilenglicol (TEG), como se ha mostrado anteriormente, se pueden unir a la Unidad de Fármaco en R¹¹. Sin quedar ligado a la teoría, los grupos hidrácidos ayudan en la internalización y no aglomeración de la Unidad de Fármaco.

4.5 LA UNIDAD DE LIGANDO

10

15

20

25

30

50

La unidad de Ligando (L-) incluye dentro de su alcance cualquier unidad de un Ligando (L) que se una o que se asocie de forma reactiva o que forme complejos con un receptor, antígeno u otro resto receptor asociado con una relación dada de células diana. Un Ligando es una molécula que se une a, forma complejos con, o reacciona con un resto de una población celular que se trata de modificar terapéuticamente o de otro modo biológicamente. En un aspecto, la unidad de Ligando actúa para administrar la unidad de Fármaco a la población de células diana en particular con la que reacciona la unidad de Ligando. Dichos Ligandos incluyen, pero no se limitan a, proteínas de alto peso molecular tales como, por ejemplo, anticuerpos de longitud total, fragmento de anticuerpos, proteínas de peso molecular más pequeño, polipéptidos o péptidos, lectinas, glicoproteínas, no péptidos, vitaminas, moléculas transportadoras de nutrientes (tales como, pero no limitadas a, transferrina), o cualquier otra molécula o sustancia de unión a células.

Una unidad de Ligando puede formar un enlace con una unidad Bastidor, una unidad de Aminoácido, una Unidad Espaciadora, o una Unidad Fármaco. Una unidad de Ligando puede formar un enlace con una unidad de Conector a través de un heteroátomo del Ligando. Los heteroátomos que pueden estar presentes en una unidad de Ligando incluyen azufre (en una realización, de un grupo sulfhidrilo de un Ligando), oxígeno (en una realización, de un grupo carbonilo, carboxilo o hidroxilo de un Ligando) y nitrógeno (en una realización, de un grupo amino primario o secundario de un Ligando). Estos heteroátomos pueden estar presentes en el Ligando en el estado natural del Ligando, por ejemplo un anticuerpo de origen natural, o se pueden introducir en el Ligando a través de modificación química.

En una realización, un Ligando tiene un grupo sulfhidrilo y el Ligando se une a la unidad de Conector a través del átomo de azufre del grupo sulfhidrilo.

En otro aspecto más, el Ligando tiene uno o más restos de lisina que se pueden modificar químicamente para introducir uno o más grupos sulfhidrilo. La unidad de Ligando se une a la unidad de Conector a través del átomo de azufre del grupo sulfhidrilo. Los reactivos que se pueden usar para modificar lisinas incluyen, pero no se limitan a, Sacetiltioacetato de N-succinimidilo (SATA) y Clorhidrato de 2-iminotiolano (Reactivo de Traut).

En otra realización, el Ligando puede tener uno o más grupos de hidrato de carbono que se puede modificar químicamente para que tengan uno o más grupos sulfhidrilo. La unidad de Ligando se une a la Unidad de Conector, tal como la Unidad Bastidor, a través del átomo de azufre del grupo sulfhidrilo.

En otra realización más, el Ligando puede tener uno o más grupos de hidratos de carbono que se pueden oxidar para proporcionar un grupo aldehído (-CHO) (véase, *por ejemplo* Laguzza, et al., J. Med. Chem. 1989, 32 (3), 548-55). El aldehído correspondiente puede formar un enlace con un Sitio Reactivo en un Bastidor. Los sitios reactivos en un Bastidor que pueden reaccionar con a grupo carbonilo en un Ligando incluyen, pero no se limitan a, hidrazina e hidroxilamina. Otros protocolos para la modificación de proteínas para la unión o asociación de Unidades de Fármaco se describen en Coligan et al., Current Protocols in Protein Science, vol. 2, John Wiley & Sons (2002), que se incorpora en el presente documento por referencia.

Ligandos útiles no inmunoreactivos de proteína, polipéptido, o péptido incluyen, pero no se limitan a, transferrina, factores de crecimiento epidérmico ("EGF"), bombesina, gastrina, péptido de liberación de gastrina, factor de crecimiento derivado de plaquetas, IL-2, IL-6, factores de crecimiento transformantes ("TGF"), tales como TGF- α y TGF- β , factor de crecimiento de vaccinia ("VGF"), factores de crecimiento I y II insulínicos y de tipo insulínico,

lectinas y apoproteína de lipoproteína de baja densidad.

5

10

30

35

40

45

50

55

60

Los anticuerpos policionales útiles son poblaciones heterogéneas de moléculas de anticuerpo que provienen de los sueros de animales inmunizados. Se pueden usar diversos procedimientos bien conocidos en la técnica para la producción de anticuerpos policionales para un antígeno de interés. Por ejemplo, para la producción de anticuerpos policionales, diversos animales huésped se pueden inmunizar por inyección con un antígeno de interés o derivado del mismo, que incluyen, pero no se limitan a, conejos, ratones, ratas, y cobayas. Se pueden usar diversos adyuvantes para aumentar la respuesta inmunológica, dependiendo de las especies huéspedes, e incluyen pero no se limitan a adyuvante de Freund (completo e incompleto), geles minerales tales como hidróxido de aluminio, sustancias activas de superficie tales como lisolecitina, polioles plurónicos, polianiones, péptidos, emulsiones de aceite, hemocianinas de lapa californiana, dinitrofenol, y adyuvantes humanos potencialmente útiles tales como BCG (bacilo de Calmette-Guerin) y corynebacterium parvum. Dichos adyuvantes también son bien conocidos en la técnica.

Los anticuerpos monoclonales útiles son poblaciones homogéneas de anticuerpos para un determinante antigénico en particular (*por ejemplo*, un antígeno de célula cancerosa, un antígeno viral, un antígeno microbiano, una proteína, un péptido, un hidrato de carbono, un agente químico, ácido nucleico, o fragmentos de los mismos). Un anticuerpo monoclonal (mAb) para un antígeno de interés se puede preparar usando cualquier técnica conocidas en la materiaque proporciona para la producción de moléculas de anticuerpo mediante líneas celulares continuas en cultivo. Éstas incluyen, pero no se limitan a, la técnica de hibridomas que se describió originalmente en Köhler y Milstein (1975, Nature 256, 495-497), la técnica de hibridomas de linfocitos B humanos (Kozbor et al., 1983, Immunology Today 4: 72), y la técnica de hibridomas de EBV (Cole et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., páginas 77-96). Dichos anticuerpos pueden ser de una clase de inmunoglobulinas que incluyen IgG, IgM, IgE, IgA, e IgD y cualquier subclase de las mismas. El hibridoma que produce los mAb rehusó la presente invención se pueden cultivar *in vitro* o *in vivo*.

Los anticuerpos monoclonales útiles incluyen, pero no se limitan a, anticuerpos monoclonales humanos, anticuerpos monoclonales humanizados, fragmento de anticuerpos, o anticuerpos monoclonales quiméricos humano-ratón (u otras especies). Los anticuerpos monoclonales humanos se pueden tratar mediante cualquiera de numerosas técnicas bien conocidas en la materia (*por ejemplo*, Teng et al., 1983, Proc. Natl. Acad. Sci. USA. 80, 7308-7312; Kozbor et al., 1983, Immunology Today 4, 72-79; y Olsson et al., 1982, Meth. Enzymol. 92, 3-16).

El anticuerpo también puede ser un anticuerpo biespecífico. En la técnica se conocen métodos para preparar anticuerpos biespecíficos. La producción tradicional de anticuerpos biespecíficos de longitud total se basa en la coexpresión de dos pares de cadena pesada-cadena ligera de inmunoglobulina, en los que las dos cadenas tienen diferentes especificidades (Milstein et al., 1983, Nature 305: 537-539). Debido a la variedad aleatoria de cadenas pesadas y ligeras de inmunoglobulina, estos hibridomas (cuadromas) producen una mezcla potencial de 10 moléculas diferentes de anticuerpo, de las que solamente una tiene la estructura biespecífica correcta. Procedimientos similares se desvelan en la Publicación Internacional Nº WO 93/08829, y en Traunecker et al., EMBO J. 10: 3655-3659 (1991).

De acuerdo con un enfoque diferente, dominios variables de anticuerpos con las especificidades de unión deseadas (sitios de combinación anticuerpo-antígeno) se condensan con secuencias de dominio constante de inmunoglobulina. La fusión es preferentemente con un dominio constante de cadena pesada de inmunoglobulina, que comprende al menos parte de las regiones C_{H2} , y C_{H3} , bisagra. Es preferente que la primera región constante de cadena pesada (C_{H1}) que contiene el sitio necesario para unión a la cadena ligera, esté presente en al menos una de las fusiones. Los ácidos nucleicos con secuencias que codifican las fusiones de cadenas pesadas de inmunoglobulina y, si se desea, la cadena ligera de inmunoglobulina, se insertan en vectores de expresión separados, y se cotransfectan en un organismo huésped adecuado. Ésto proporciona gran flexibilidad en el ajuste de las proporciones mutuas de los tres fragmentos de polipéptido en realizaciones cuando las relaciones desiguales de las tres cadenas polipeptídicas usadas en la construcción proporcionan los rendimientos óptimos. Sin embargo, es posible insertar las secuencias de codificación para dos o todas las tres cadenas polipeptídicas en un vector de expresión cuando la expresión de al menos dos cadenas polipeptídicas en relaciones iguales da como resultado altos rendimientos cuando las relaciones no son particularmente significativas.

En una realización de este enfoque, los anticuerpos biespecíficos tienen una cadena pesada de inmunoglobulina híbrida con una primera especificidad de unión en una rama, y un par híbrido de cadena pesada-cadena ligera de inmunoglobulina (que proporciona una segunda especificidad de unión) en la otra rama. Esta estructura asimétrica facilita la separación del compuesto biespecífico deseado a partir de combinaciones de cadenas de inmunoglobulina no deseadas, ya que la presencia de una cadena ligera de inmunoglobulina solamente en una mitad de la molécula biespecífica proporciona un modo de separación fácil (Publicación Internacional Nº WO 94/04690) que se incorpora en el presente documento por referencia en su totalidad.

Para detalles adicionales para generar anticuerpos biespecíficos véanse, por ejemplo, Suresh et al., Methods in Enzymology, 1986, 121: 210; Rodrigues et al., 1993, J. of Immunology 151: 6954-6961; Carter et al., 1992, Bio/Technology 10: 163-167; Carter et al., 1995, J. of Hematotherapy 4: 463-470; Merchant et al., 1998, Nature

ES 2 456 325 T3

Biotechnology 16: 677-681. Usando dichas técnicas, los anticuerpos biespecíficos se pueden preparar para su uso en el tratamiento o prevención de enfermedades tal como se define en el presente documento.

Además, se describen anticuerpos bifuncionales, en Publicación de Patente Europea Nº EPA 0 105 360. Tal como se desvela en esta referencia, los anticuerpos híbridos o bifuncionales se pueden derivar biológicamente, es decir, mediante técnicas de fusión celular, o químicamente, especialmente con agentes de reticulación o reactivos formadores de puentes disulfuro, y puede comprender anticuerpos enteros o fragmentos de los mismos. Métodos para obtener dichos anticuerpos híbridos se desvelan por ejemplo, en la Publicación Internacional WO 83/03679, y en la Publicación de Patente Europea Nº EPA 0 217 577, ambas de las cuales se incorporan en el presente documento por referencia.

5

10

15

20

35

40

45

50

55

60

65

El anticuerpo puede ser un fragmento, derivado o análogo funcionalmente activo de un anticuerpo que se une de forma y especifica a antígenos de células cancerosas, antígenos virales, o antígenos microbianos u otros anticuerpos unidos a células o matrices tumorales. A este respecto, "funcionalmente activo" se refiere a que el fragmento, derivado o análogo es capaz de obtener anticuerpos anti-anti-idiotipo que reconocen el mismo antígeno que el anticuerpo a partir del que el fragmento, derivado o análogo se deriva o se reconoce. De forma específica, en una realización a modo de ejemplo, la antigenicidad del idiotipo de la molécula de inmunoglobulina se puede potenciar por supresión de las secuencias marco y CDR que son C-terminales a la secuencia CDR que reconoce específicamente al antígeno. Para determinar que secuencias de CDR se unen al antígeno, se pueden usar péptidos sintéticos que contienen las secuencias CDR en ensayos de unión con el antígeno mediante cualquier método de ensayo de unión conocido en la técnica (por ejemplo, el ensayo de núcleos BIA) (Véase, por ejemplo, Kabat et al., 1991, Sequences of Proteins of Immunological Interest, Quinta Edición, National Institute of Health, Bethesda, Md; Kabat E et al., 1980, J. of Immunology 125 (3): 961-969).

Otros anticuerpos útiles incluyen fragmentos de anticuerpos tales como, pero no limitados a, fragmentos de F(ab')₂, que contienen la región variable, la región constante de cadena ligera y el dominio CH1 de la cadena pesada que se pueden producir por digestión con pepsina de la molécula de anticuerpo, y fragmentos de Fab, que se pueden generar por reducción de los puentes disulfuro de los fragmentos de F(ab')₂. Otros anticuerpos útiles son dímeros de cadena pesada y de cadena ligera de anticuerpos, o cualquier fragmento mínimo de los mismos tales como Fvs o anticuerpos de una sola cadena single (SCA) (por ejemplo, tal como se describe en la Patente de Estados Unidos Nº 4946778; Bird, 1988, Science 242: 423-42; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85: 5879-5883; y Ward et al., 1989, Nature 334: 544-54), o cualquier otra molécula con la misma especificidad que el anticuerpo.

Además, anticuerpos recombinantes, tales como anticuerpos monoclonales quiméricos y humanizados, que comprenden porciones tanto humanas como no humanas, que se pueden producir usando técnicas de ADN recombinante convencionales, son anticuerpos útiles. Un anticuerpo quiméricos una molécula en la que diferentes porciones se derivan de diferentes especies animales, tales como las que tienen una región variable derivada de regiones constantes de inmunoglobulina monoclonal de murino y humana. (Véase, por ejemplo, Cabilly et al., Patente de Estados Unidos Nº 4816567; y Boss et al., Patente de Estados Unidos Nº 4,816397, que se incorporan en el presente documento por referencia en su totalidad). País que inicia los anticuerpos humanizados son moléculas de anticuerpo de especies no humanas que tienen una o más regiones de determinación de la complementariedad (CDR) de las especies no humanas y una región marco de una molécula de inmunoglobulina humana. (Véase, por ejemplo, Queen, Patente de Estados Unidos Nº 5.585.089, que se incorpora en el presente documento por referencia en su totalidad). Dichos anticuerpos monoclonales quiméricos y humanizados se pueden producir mediante técnicas de ADN recombinante conocidas en la técnica, por ejemplo usando métodos que se describen en la Publicación Internacional № WO 87/02671; Publicación de Patente Europea № 184.187; Publicación de Patente Europea Nº 171496; Publicación de Patente Europea Nº 173494; Publicación Internacional Nº WO 86/01533; Patente de Estados Unidos Nº 4816567; Publicación de Patente Europea Nº 12.023; Berter et al., 1988, Science 240: 1041-1043; Liu et al., 1987, Proc. Natl. Acad. Sci. USA 84: 3439-3443; Liu et al., 1987, J. Immunol. 139: 3521-3526; Sun et al., 1987, Proc. Natl. Acad. Sci. USA 84: 214-218; Nishimura et al., 1987, Cancer. Res. 47: 999-1005; Wood et al., 1985, Nature 314: 446-449; y Shaw et al., 1988, J. Natl. Cancer Inst. 80: 1553-1559; Morrison, 1985, Science 229: 1202-1207; Oi et al., 1986, BioTechniques 4: 214; Patente de Estados Unidos Nº 5225539; Jones et al., 1986, Nature 321: 552-525; Verhoeyan et al. (1988) Science 239: 1534; v Beidler et al., 1988, J. Immunol. 141: 4053-4060; cada una de las cuales se incorpora en el presente documento por referencia en su totalidad.

Los anticuerpos completamente humanos son particularmente deseables y se pueden producir usando ratones transgénicos que son incapaces de expresar genes endógenos de cadenas pesadas y ligeras de inmunoglobulina, pero que pueden expresar genes humanos de cadena pesada y ligera. Los ratones transgénicos e inmunizan de la forma habitual con un antígeno seleccionado, *por ejemplo*, toda o una porción de un polipéptido de la invención. Los anticuerpos monoclonales dirigidos frente al antígeno se pueden obtener usando tecnología convencional de hibridomas. Los transgenes de inmunoglobulina humana albergados en los ratones transgénicos se reorganizan durante la diferenciación de linfocitos B, y posteriormente experimentan intercambio de clase y mutación somática. Por lo tanto, usando dicha técnica, es posible producir anticuerpos IgG, IgA, IgM e IgE terapéuticamente útiles. Para una visión de conjunto de esta tecnología para producir anticuerpos humanos, véase Lonberg y Huszar (1995, Int. Rev. Immunol. 13: 65-93). Para un análisis detallado de esta tecnología para producir anticuerpos humanos y

anticuerpos monoclonales humanos y protocolos para producir dichos anticuerpos, véanse, *por ejemplo*, las Patentes de Estados Unidos Nº 5625126; Nº 5633425; Nº 5569825; Nº 5661016; Nº 5545806; cada una de las cuales se incorpora en el presente documento por referencia en su totalidad. Los anticuerpos humanos pueden obtener en el mercado en, por ejemplo, Abgenix, Inc. (Freemont, CA) y Genpharm (San Jose, CA).

5

10

25

30

35

40

45

50

55

60

65

Los anticuerpos totalmente humanos que reconocen un epítopo seleccionado se pueden generar usando una técnica denominada "selección guiada". En este enfoque, un anticuerpo monoclonal no humano seleccionado, por ejemplo, un anticuerpo de ratón, se usa para guiar la selección de un anticuerpo totalmente humano que reconoce el mismo epítopo. (Jespers et al. (1994) Biotechnology 12: 899-903). Los anticuerpos humanos tales se pueden producir usando diversas técnicas conocidas en la materia, que incluyen bibliotecas de presentación de fagos (Hoogenboom y Winter, J. Mol. Biol., 227: 381 (1991); Marks et al., J. Mol. Biol., 222: 581 (1991); Quan, M. P. y Carter, P. 2002. The rise of monoclonal antibodies as therapeutics. In Anti-IgE and Allergic Disease, Jardieu, P. M. y Fick Jr., R. B, eds., Marcel Dekker, Nueva York, NY, Capítulo 20, páginas 427-469).

En otras realizaciones, el anticuerpo es una proteína de fusión de un anticuerpo, o un fragmento funcionalmente activo de la misma, por ejemplo en la que el anticuerpo se funde a través de un enlace covalente (*por ejemplo*, un enlace peptídico), del extremo N o al extremo C a una secuencia de aminoácidos de otra proteína (o porción de la misma, preferentemente al menos 10, 20 o 50 porciones de aminoácidos de una proteína) que no son el anticuerpo. Preferentemente, el anticuerpo o fragmento del mismo se une covalentemente a la otra proteína en el extremo N del dominio constante.

Los anticuerpos incluyen análogos y derivados que están modificados, *es decir*, mediante la unión covalente de cualquier tipo de molécula siempre y cuando dicha unión covalente permita que el anticuerpo retenga su inmunoespecificidad de unión a antígenos. Por ejemplo, pero no a modo de limitación, los derivados y análogos de los anticuerpos incluyen los que se han modificado adicionalmente, *por ejemplo*, por glicosilación, acetilación, pegilación, fosforilación, amidación, derivatización mediante grupos protectores/de bloqueo conocidos, escisión proteolítica, unión a una unidad de anticuerpo celular u otra proteína, etc. Se puede realizar cualquiera de numerosas modificaciones químicas mediante técnicas conocidas, que incluyen, pero no se limitan a escisión química específica, acetilación, formilación, síntesis metabólica en presencia de tunicamicina, etc. Además, el análogo derivado por contener uno o más aminoácidos no naturales.

Los anticuerpos incluyen anticuerpos que tienen modificaciones (*por ejemplo*, sustituciones, supresiones o adiciones) en restos de aminoácidos que interactúan con receptores Fc. En particular, los anticuerpos incluyen anticuerpos que tienen modificaciones en restos de aminoácidos que se identifican como implicados en la interacción entre el dominio anti-Fc y el receptor FcRn (véase, *por ejemplo*, Publicación Internacional Nº WO 97/34631, que se incorpora en el presente documento por referencia en su totalidad). Los anticuerpos inmunoespecíficos para un antígeno de célula cancerosa se pueden obtener en el mercado, por ejemplo, en Genentech (San Francisco, CA) o se pueden producir mediante cualquier método conocido por un experto en la materia tal como, *por ejemplo*, técnicas de síntesis química o de expresión recombinante. La secuencia de nucleótidos que codifica anticuerpos y específicos para un antígeno de célula cancerosa se puede obtener, *por ejemplo*, a partir de la base de datos de GenBank o una base de datos similar a ésta, las publicaciones de bibliografía, o mediante clonación y secuenciación de rutina.

En una realización específica, se pueden usar anticuerpos conocidos para el tratamiento o prevención del cáncer. Se pueden obtener anticuerpos específicos para un antígeno de célula cancerosa en el mercado coproducir mediante cualquier método conocido por un experto en la materia tal como, por ejemplo, técnicas de expresión recombinante. La secuencia de nucleótidos que codifica anticuerpos inmunoespecíficos para un antígeno de célula cancerosa se puede tener, por ejemplo, a partir de la base de datos de GenBank o una base de datos similar a ésta, las publicaciones de bibliografía, o mediante clonación y secuenciación de rutina. Ejemplos de anticuerpos disponibles para el tratamiento del cáncer incluyen, pero no se limitan a, anticuerpo monoclonal anti-HER2 humanizado, HERCEPTIN® (trastuzumab; Genentech) para el tratamiento de pacientes con cáncer de mama metastásico; RITUXAN® (rituximab; Genentech) que es un anticuerpo monoclonal anti-CD20 guimérico para el tratamiento de pacientes con linfoma no Hodgkin; OvaRex (AltaRex Corporation, MA) que es un anticuerpo de murino para el tratamiento de cáncer de ovarios; Panorex (Glaxo Wellcome, NC) que es un anticuerpo IgG2a de murino para el tratamiento de cáncer colorrectal; Cetuximab Erbitux (Imclone Systems Inc., NY) que es un anticuerpo quimérico IgG anti-EGFR para el tratamiento de cánceres positivos para el factor de crecimiento epidérmico, tales como cáncer de cabeza y cuello; Vitaxin (MedImmune, Inc., MD) que es un anticuerpo humanizado para el tratamiento de sarcoma; Campath I/H (Leukosite, MA) que es un anticuerpo IgG₁ humanizado para el tratamiento de leucemia linfocítica crónica (CLL); Smart MI95 (Protein Design Labs, Inc., CA) que es un anticuerpo IgG anti-CD33 humanizado para el tratamiento de leucemia mieloide aguda (AML); LymphoCide (Immunomedics, Inc., NJ) que es un anticuerpo IgG anti-CD22 humanizado para el tratamiento de linfoma no Hodgkin; Smart ID10 (Protein Design Labs, Inc., CA) que es un anticuerpo anti-HLA-DR humanizado para el tratamiento de linfoma no Hodgkin; Oncolym (Techniclone, Inc., CA) que es un anticuerpo anti-HLA-Dr10 de murino radiomarcado para el tratamiento de linfoma no Hodgkin; Allomune (BioTransplant, CA) es un mAb anti-CD2 humanizado para el tratamiento de Enfermedad de Hodgkin o linfoma no Hodgkin; Avastin (Genentech, Inc., CA) que es un anticuerpo humanizado anti-VEGF para el tratamiento de cánceres de pulmón y colorrectales; Epratuzamab (Immunomedics, Inc., NJ and Amgen, CA) que es un

ES 2 456 325 T3

anticuerpo anti-CD22 para el tratamiento de linfoma no Hodgkin; y CEAcide (Immunomedics, NJ) que es un anticuerpo anti-CEA humanizado para el tratamiento de cáncer colorrectal.

5

10

15

20

25

30

35

50

55

60

Otros anticuerpos útiles en el tratamiento del cáncer incluyen, pero no se limitan a, anticuerpos frente a los siguientes antígenos: CA125 (ovarios), CA15-3 (carcinomas), CA19-9 (carcinomas), L6 (carcinomas), Lewis Y (carcinomas), Lewis X (carcinomas), alfa fetoproteína (carcinomas), CA 242 (colorrectal), fosfatasa alcalina placentaria (carcinomas), antígeno específico de próstata (próstata), fosfatasa ácida prostática (próstata), factor de crecimiento epidérmico (carcinomas), MAGE-1 (carcinomas), MAGE-2 (carcinomas), MAGE-3 (carcinomas), MAGE-4 (carcinomas), receptor de anti-transferrina (carcinomas), p97 (melanoma), MUC1-KLH (cáncer de mama), CEA (colorrectal), gp100 (melanoma), MART1 (melanoma), PSA (próstata), IL-2 receptor (leucemia y linfomas de linfocitos T), CD20 (linfoma no Hodgkin), CD52 (leucemia), CD33 (leucemia), CD22 (linfoma), gonadotropina coriónica humana (carcinoma), CD38 (mieloma múltiple), CD40 (linfoma), mucina (carcinomas), P21 (carcinomas), MPG (melanoma), y producto oncogenético Neu (carcinomas). Algunos anticuerpos útiles, específicos incluyen, pero no se limitan a, mAb BR96 (Trailo, P. A., Willner, D. Lasch, S. J., Henderson, A. J., Hofstead, S. J., Casazza, A. M., Firestone, R. A., Hellström, I., Hellström, K. E., "Cure of Xenografted Human Carcinomas by BR96-Doxorubicin Immunoconjugates" Science 1993, 261, 212-215), BR64 (Trailo, PA, Willner, D, Knipe, J., Henderson, A. J. Lasch, S. J., Zoeckler, M. E., Trailsmith, M. D., Doyle, T. W., King, H. D., Casazza, A. M., Braslawsky, G. R., Brown, J. P., Hofstead, S. J., (Greenfield, R. S., Firestone, R. A., Mosure, K., Kadow, D. F., Yang, M. B., Hellstrom, K. E., y Hellstrom, I. "Effect of Linker Variation on the Stability, Potency, and Efficacy of Carcinoma-reactive BR64-Doxorubicin Immunoconjugates" Cancer Research 1997, 57, 100-105, mAb frente al antígeno CD40, tales como mAb S2C6 (Francisco, J. A., Donaldson, K. L., Chace, D., Siegall, C. B., y Wahl, A. F. "Agonistic properties and in vivo antitumor activity of the anti-CD-40 antibody, SGN-14" Cancer Res. 2000, 60, 3225-3231), mAb frente al antígeno CD70, tales como mAb 1F6 y mAb 2F2, y mAb frente al antígeno CD30, tales como AC10 (Bowen, M. A., Olsen, K. J., Cheng, L., Avila, D., y Podack, E. R. "Functional effects of CD30 on a large granular lymphoma cell line YT" J. Immunol., 151, 5896-5906, 1993: Wahl et al., 2002 Cancer Res. 62 (13): 3736-42). Se pueden usar otros muchos anticuerpos de internalización que se unen a antígenos asociados a tumores y se han revisado (Franke, A. E., Sievers, E. L., y Scheinberg, D. A., "Cell surface receptor-targeted therapy of acute myeloid leucemia: a review" Cancer Biother Radiopharm. 2000,15, 459-76; Murray, J. L., "Monoclonal antibody treatment of solid tumors: a coming of age" Semin Oncol. 2000, 27, 64-70; Breitling, F., y Dubel, S., Recombinant Antibodies, John Wiley, y Sons, Nueva York, 1998).

En determinadas realizaciones, el anticuerpo no es Trastuzumab (anti-HER2 humanizado, de longitud total, (PM 145167)), Herceptina F(ab')₂ (derivado de anti-HER2 enzimáticamente (PM 100000)), 4D5 (antiHER2 de murino, de longitud total, de hibridoma), rhu4D5 (anticuerpo humanizado de longitud total, expresado de forma transitoria), rhuFab4D5 (Fab humanizado recombinante (PM 47738)), 4D5Fc8 (antiHER2 de murino, de longitud total, con dominio de unión a FcRn mutado), o Hg (4D5 humanizado de longitud total "sin bisagra", con cisteínas bisagra de cadena pesada mutadas a serinas. Expresadas en E. coli (por lo tanto no glicosiladas)).

En otra realización específica, se usan anticuerpos conocidos para el tratamiento de la prevención de una enfermedad autoinmune de acuerdo con las composiciones y métodos de la invención. Anticuerpos inmunoespecíficos para un antígeno de una célula que es responsable de la producción de anticuerpos autoinmunes se pueden obtener a partir de cualquier organización (*por ejemplo*, una universidad científica o una empresa) o reducir mediante cualquier método conocido por un experto en la materia tal como, *por ejemplo*, técnicas de síntesis química o de expresión recombinante. En otra realización, los anticuerpos útiles son inmunoespecíficos para el tratamiento de enfermedades autoinmunes e incluyen, pero no se limitan a, Anticuerpo Anti-Nuclear; ADN Anti-ds; ADN Anti-ss, Anticuerpo IgM Anti-Cardiolipina, IgG; Anticuerpo IgM Anti-Fosfolípido, IgG; Anticuerpo Anti-SM; Anticuerpo Anti-Mitocondrial; Anticuerpo Tiroideo; Anticuerpo Microsómico; Anticuerpo Tiroglobulina; Anti-SCL-70; Anti-Jo; Anti-U₁RNP; Anti-La/SSB; Anti SSA; Anti-SSB; Anticuerpo de Células Anti-Parietales; Anti-Histonas; Anti-RNP; C-ANCA; P-ANCA; Anti centrómero; Anti-Fibrilarina, y Anticuerpo Anti-GBM.

En determinadas realizaciones, los anticuerpos útiles se pueden unir tanto a un receptor como un complejo receptor expresado en un linfocito activado. El receptor el complejo receptor puede comprender un miembro de la superfamilia de genes de inmunoglobulina, un miembro de la superfamilia receptores TNF, una integrina, un receptor de citoquinas, un receptor quimioquinas, una proteína de histocompatibilidad principal, una lectina, o una proteína de control de complementos. Los ejemplos no limitantes de miembros de la superfamilia de inmunoglobulinas adecuados son CD2, CD3, CD4, CD8, CD19, CD22, CD28, CD79, CD90, CD152/CTLA-4, PD-1, e ICOS. Ejemplos no limitantes de miembros de la superfamilia de receptores TNF son CD27, CD40, CD95/Fas, CD134/OX40, CD137/4-1BB, TNF-R1, TNFR-2, RANK, TACI, BCMA, osteoprotegerina, Apo2/TRAIL-R1, TRAIL-R2, TRAIL-R3, TRAIL-R4, y APO-3. Ejemplos no limitantes de integrinas adecuadas son CD11a, CD11b, CD11c, CD18, CD29, CD41, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD103, y CD104. Ejemplos no limitantes de lectinas adecuada son lectina de tipo C, de tipo S, y de tipo 1.

En una realización, el Ligando se une a un linfocito activado que está asociado con una enfermedad autoinmune.

65 En otra realización específica, los Ligandos inmunoespecíficos útiles para un antígeno viral o microbiano son anticuerpos monoclonales. Los anticuerpos pueden ser anticuerpos monoclonales quiméricos, humanizados o

humanos. Tal como se usa en el presente documento, la expresión "antígeno viral" incluye, pero no se limita a, cualquier péptido viral, proteína polipeptídica (por ejemplo, VIH gp120, VIH nef, glicoproteína RSV F, virus de la gripe neuraminidasa, hemaglutinina del virus de la gripe, HTLV tax, glicoproteína del virus del herpes simplex (por ejemplo, gB, gC, gD, y gE) y antígeno de superficie de hepatitis B) que es capaz de provocar una respuesta inmune. Tal como se usa en el presente documento, la expresión "antígeno microbiano" incluye pero no se limita a, cualquier péptido microbiano, polipéptido, proteína, sacárido, polisacárido, o molécula de lípido (por ejemplo, un polipéptido bacteriano, fúngico, protozoo patógeno, o levadura que incluye, por ejemplo, polisacárido 5/8 LPS y capsular) que es capaz de provocar una respuesta inmune.

Los anticuerpos inmunoespecíficos para un agente viral o microbiano se pueden obtener en el mercado, por ejemplo, en BD Biosciences (San Francisco, CA), Chemicon International, Inc. (Temecula, CA), o Vector Laboratories, Inc. (Burlingame, CA) o producir mediante cualquier método conocido por un experto en la materia tal y como, *por ejemplo*, técnicas de síntesis química o de expresión recombinante. La secuencia de nucleótidos que codifica anticuerpos que son inmunoespecíficos para un agente viral o microbiano se puede obtener, *por ejemplo*, a partir de la base de datos de GenBank o una base de datos similar a ésta, publicaciones de bibliografía, o mediante clonación y secuenciación de rutina.

20

25

30

35

40

55

60

65

En una realización específica, útil Ligandos son los que son útiles para el tratamiento con la prevención de una infección vírica o microbiana de acuerdo con los métodos que se desvelan en el presente documento. Ejemplos de anticuerpos disponibles útiles para el tratamiento de sección vírica o infección bacteriana incluyen, pero no se limitan a, SYNAGIS (MedImmune, Inc., MD) que es un anticuerpo monoclonal de virus sincitial anti-respiratorio humanizado (RSV) útil para el tratamiento de pacientes con infección por RSV; PRO542 (Progenics) que es un anticuerpo de fusión de CD4 útil para el tratamiento de infección por VIH; OSTAVIR (Protein Design Labs, Inc., CA) que es un anticuerpo humano útil para el tratamiento de virus de la hepatitis B; PROTOVIR (Protein Design Labs, Inc., CA) que es un anticuerpo IgG₁ humanizado útil para el tratamiento de citomegalovirus (CMV); y anticuerpos anti-LPS.

Otros anticuerpos útiles en el tratamiento de enfermedades infecciosas incluyen, pero no se limitan a, anticuerpos frente a los antígenos de cepas patogénicas de bacterias (Streptococcus pyogenes, Streptococcus pneumoniae, Neisseria gonorrheae, Neisseria meningitidis, Corynebacterium diphtheriae, Clostridium botulinum, Clostridium perfringens, Clostridium tetani, Hemophilus influenzae, Klebsiella pneumoniae, Klebsiella ozaenas, Klebsiella rhinoscleromotis, Staphylococc aureus, Vibrio colerae, Escherichia coli, Pseudomonas aeruginosa, Campylobacter (Vibrio) fetus, Aeromonas hidrophila, Bacillus cereus, Edwardsiella tarda, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Salmonella typhimurium, Treponema pallidum, Treponema pertenue, Treponema carateneum, Borrelia vincentii, Borrelia burgdorferi, Leptospira icterohemorrhagiae, Mycobacterium tuberculosis, Pneumocystis carinii, Francisella tularensis, Brucella abortus, Brucella suis, Brucella melitensis, Mycoplasma spp., Rickettsia prowazeki, Rickettsia tsutsugumushi, Chlamydia spp.); hongos patógenos (Coccidioides immitis, Aspergillus fumigatus, Candida albicans, Blastomyces dermatitidis, Cryptococcus neoformans, Histoplasma capsulatum); protozoa (Entomoeba histolytica, Toxoplasma gondii, Trichomonas tenas, Trichomonas hominis, Trichomonas vaginalis, Tryoanosoma gambiense, Trypanosoma rhodesiense, Trypanosoma cruzi, Leishmania donovani, Leishmania tropica, Leishmania braziliensis, Pneumocystis pneumonia, Plasmodium vivax, Plasmodium falciparum, Plasmodium malaria); o Helmintos (Enterobius vermicularis, Trichuris trichiura, Ascaris lumbricoides, Trichinella spiralis, Strongyloides stercoralis, Schistosomajaponicum, Schistosoma mansoni, Schistosoma haematobium, y anquilostomas).

Otros anticuerpos útiles en la presente invención para el tratamiento de enfermedades víricas incluyen, pero no se limitan a, anticuerpos frente a antígenos del virus patógenos, que incluyen como ejemplos y no como limitación: Poxviridae, Herpesviridae, virus 1 del Herpes Simplex, virus 2 del Herpes Simplex, Adenoviridae, Papovaviridae, Enteroviridae, Picornaviridae, Parvoviridae, Reoviridae, Retroviridae, virus de la gripe, virus de parainfluenza, paperas, sarampión, virus sincitial respiratorio, rubéola, Arboviridae, Rhabdoviridae, Arenaviridae, virus de la Hepatitis A, virus de la Hepatitis B, virus de la Hepatitis C, virus de la Hepatitis E, virus de la Hepatitis No A/No B, Rhinoviridae, Coronaviridae, Rotoviridae, y Virus de Inmunodeficiencia Humana.

En intentos para descubrir dianas celulares eficaces para diagnósticos y terapia de cáncer, los investigadores han buscado identificar polipéptidos transmembrana o asociados de otro modo a tumores que se expresan específicamente en la superficie de uno o más tipos de cáncer en particular en comparación con una o más células no cancerosas normales. A menudo, dichos polipéptidos asociados a tumores se expresan más abundantemente la superficie de las células cancerosas en comparación con la expresión en la superficie de las células no cancerosas. La identificación de dichos polipéptidos antigénicos de superficie celular asociada a tumores ha dado lugar a la capacidad de dirigir específicamente células cancerosas para destrucción través de terapias basadas en anticuerpos.

Los anticuerpos que comprenden Ab en conjugados de anticuerpo y fármaco de Fórmula Ic (ADC) y que pueden ser útiles en el tratamiento del cáncer incluyen, pero no se limitan a, anticuerpos frente a antígenos asociados a tumores (TAA). Dichos antígenos asociados a tumores son conocidos en la técnica, y se pueden preparar para su uso en la generación de anticuerpos usando métodos e información que son bien conocidos en la técnica. Ejemplos de TAA incluyen (1)-(35), pero no se limitan a TAA (1)-(35) que se indican a continuación. Por conveniencia, la información

ES 2 456 325 T3

con respecto a estos antígenos, todos los cuales son conocidos en la técnica, se enumeran a continuación e incluye nombres, nombres alternativos, números de acceso en Genbank y referencia o referencias primarias. Los antígenos asociados a tumores dirigidos por anticuerpos incluyen todas las variantes secuencias de aminoácidos que isoformas que poseen una identidad de secuencia de al menos aproximadamente un 70 %, un 80 %, un 85 %, un 90 %, o un 95 % con respecto a las secuencias identificadas en las correspondientes secuencias enumeradas (SEC ID Nºs: 1-35) o las secuencias identificadas en las referencias citadas. En algunas realizaciones, TAA que tiene variantes de secuencia de aminoácidos es capaz de unirse específicamente un anticuerpo que se une específicamente a los TAA con la correspondiente secuencia enumerada. Las secuencias y divulgación mencionadas específicamente en el presente documento se incorporan expresamente por referencia.

ANTÍGENOS ASOCIADOS A TUMORES (1)-(35):

BMPR1B (receptor de proteína morfogenética ósea de tipo IB, N^2 de acceso en Genbank NM_001203, ten Dijke,P., et al. Science 264 (5155): 101-104 (1994), Oncogene 14 (11): 1377-1382 (1997)); documento WO2004063362 (Reivindicación 2); documento WO2003042661 (Reivindicación 12); US2003134790-A1 (Páginas 38-39); documento WO2002102235 (Reivindicación 13; Página 296); documento WO2003055443 (Páginas 91-92); documento WO200299122 (Ejemplo 2; Páginas 528-530); documento WO2003029421 (Reivindicación 6); documento WO2003024392 (Reivindicación 2; Fig 112); documento WO200298358 (Reivindicación 1; Página 183); documento WO200254940 (Páginas 100-101); documento WO200259377 (Páginas 349-350); documento WO200230268 (Reivindicación 27; Página 376); documento WO200148204 (Ejemplo; Fig 4) receptor de proteína morfogenética ósea NP_001194, tipo IB /pid = NP_001194.1 – Referencias cruzadas: MIM:603248; NP 001194.1; NM 001203 1

502 aa

MLLRSAGKLNVGTKKEDGESTAPTPRPKVLRCKCHHHCPEDSVNNICSTDGYCFTMIEED
DSGLPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKNRDFVD
GPIHHRALLISVTVCSLLLVLIILFCYFRYKRQETRPRYSIGLEQDETYIPPGESLRDLI
EQSQSSGSGSGLPLLVQRTIAKQIQMVKQIGKGRYGEVWMGKWRGEKVAVKVFFTTEEAS
WFRETEIYQTVLMRHENILGFIAADIKGTGSWTQLYLITDYHENGSLYDYLKSTTLDAKS
MLKLAYSSVSGLCHLHTEIFSTQGKPAIAHRDLKSKNILVKKNGTCCIADLGLAVKFISD
TNEVDIPPNTRVGTKRYMPPEVLDESLNRNHFQSYIMADMYSFGLILWEVARRCVSGGIV
EEYQLPYHDLVPSDPSYEDMREIVCIKKLRPSFPNRWSSDECLRQMGKLMTECWAHNPAS
RLTALRVKKTLAKMSESQDIKL

(SEC ID Nº: 1)

25

30

35

5

10

15

20

(2) E16 (LAT1, SLC7A5, Nº de acceso en Genbank NM_003486); Biochem. Biophys. Res. Commun. 255 (2), 283-288 (1999), Nature 395 (6699): 288-291 (1998), Gaugitsch,H.W., et al. (1992) J. Biol. Chem. 267 (16): 11267-11273); documento WO2004048938 (Ejemplo 2); documento WO2004032842 (Ejemplo IV); documento WO2003042661 (Reivindicación 12); documento WO2003016475 (Reivindicación 1); documento WO200278524 (Ejemplo 2); documento WO200299074 (Reivindicación 19; Páginas 127-129); documento WO200286443 (Reivindicación 27; Páginas 222,393); documento WO2003003906 (Reivindicación 10; Página 293); documento WO200264798 (Reivindicación 33; Página 93-95); documento WO200014228 (Reivindicación 5; Páginas 133-136); US2003224454 (Fig 3); documento WO2003025138 (Reivindicación 12; Página 150); familia 7 de vehículos de soluto NP_003477 (transportador catiónico de aminoácidos, sistema y+), miembro 5 /pid = NP_003477.3 - Referencias cruzadas de Homo sapiens: MIM:600182; NP_003477.3; NM_015923; NM_003486_1

MAGAGPKRRALAAPAAEEKEEAREKMLAAKSADGSAPAGEGEGVTLQRNITLLNGVAIIV
GTIIGSGIFVTPTGVLKEAGSPGLALVVWAACGVFSIVGALCYAELGTTISKSGGDYAYM
LEVYGSLPAFLKLWIELLIIRPSSQYIVALVFATYLLKPLFPTCPVPEEAAKLVACLCVL
LLTAVNCYSVKAATRVQDAFAAAKLLALALIILLGFVQIGKGVVSNLDPNFSFEGTKLDV
GNIVLALYSGLFAYGGWNYLNFVTEEMINPYRNLPLAIIISLPIVTLVYVLTNLAYFTTL
STEQMLSSEAVAVDFGNYHLGVMSWIIPVFVGLSCFGSVNGSLFTSSRLFFVGSREGHLP
SILSMIHPQLLTPVPSLVFTCVMTLLYAFSKDIFSVINFFSFFNWLCVALAIIGMIWLRH
RKPELERPIKVNLALPVFFILACLFLIAVSFWKTPVECGIGFTIILSGLPVYFFGVWWKN
KPKWLLQGIFSTTVLCQKLMQVVPQET

(SEC ID Nº: 2)

- (3) STEAP1 (antígeno epitelial de seis dominios transmembrana de próstata, № de acceso en Genbank NM 012449
- 5 Cancer Res. 61 (15), 5857-5860 (2001), Hubert, R.S., et al. (1999) Proc. Natl. Acad. Sci. USA. 96 (25): 14523-14528);
 - documento WO2004065577 (Reivindicación 6); documento WO2004027049 (Fig 1L); documento EP1394274 (Ejemplo 11); documento WO2004016225 (Reivindicación 2);
- documento WO2003042661 (Reivindicación 12); US2003157089 (Ejemplo 5); US2003185830 (Ejemplo 5); US2003064397 (Fig 2); documento WO200289747 (Ejemplo 5; Páginas 618-619); documento WO2003022995 (Ejemplo 9; Fig 13A, Ejemplo 53; Páginas 173, Ejemplo 2; Fig 2A);

antígeno epitelial de seis dominios transmembrana de la próstata NP_036581

Referencias cruzadas: MIM:604415; NP 036581.1; NM 012449 1

339 aa

MESRKDITNQEELWKMKPRRNLEEDDYLHKDTGETSMLKRPVLLHLHQTAHADEFDCPSE LQHTQELFPQWHLPIKIAAIIASLTFLYTLLREVIHPLATSHQQYFYKIPILVINKVLPM VSITLLALVYLPGVIAAIVQLHNGTKYKKFPHWLDKWMLTRKQFGLLSFFFAVLHAIYSL SYPMRRSYRYKLLNWAYQQVQQNKEDAWIEHDVWRMEIYVSLGIVGLAILALLAVTSIPS VSDSLTWREFHYIQSKLGIVSLLLGTIHALIFAWNKWIDIKQFVWYTPPTFMIAVFLPIV VLIFKSILFLPCLRKKILKIRHGWEDVTKINKTEICSQL

15 (SEC ID №: 3)

(4) 0772P (CA125, MUC16, № de acceso en Genbank AF361486

J. Biol. Chem. 276 (29): 27371-27375 (2001)); documento WO2004045553 (Reivindicación 14); documento WO200292836 (Reivindicación 6; Fig 12); documento WO200283866 (Reivindicación 15; Páginas 116-121); documento US2003124140 (Ejemplo 16); documento US2003091580 (Reivindicación 6); documento WO200206317 (Reivindicación 6; Páginas 400-408);

Referencias cruzadas: GI:34501467; AAK74120.3; AF361486_1

PVTSLLTPGLVITTDRMGISREPGTSSTSNLSSTSHERLTTLEDTVDTEAMOPSTHTAVT NVRTSISGHESQSSVLSDSETPKATSPMGTTYTMGETSVSISTSDFFETSRIQIBPTSSL TSGLRETSSSERISSATEGSTVLSEVPSGATTEVSRTEVISSRGTSMSGPDOFTISPDIS TEAITRLSTSPIMTESAESAITIETGSPGATSEGTLTLDTSTTTFWSGTHSTASPGFSHS **EMTTLMSRTPGDVPWPSLPSVEEASSVSSSLSSPAMTSTSFFSTLPESISSSPHPVTALL** TLGPVKTTDMLRTSSEPETSSPPNLSSTSAEILATSEVTKDREKIHPSSNTPVVNVGTVI YKHLSPSSVLADLVTTKPTSPMATTSTLGNTSVSTSTPAFPETMMTOPTSSLTSGLREIS TSQETSSATERSASLSGMPTGATTKVSRTEALSLGRTSTPGPAQSTISPEISTETITRIS TPLTTTGSAEMTITPKTGHSGASSOGTFTLDTSSRASWPGTHSAATHRSPHSGMTTPMSR GPEDVSWPSRPSVEKTSPPSSLVSLSAVTSPSPLYSTPSESSHSSPLRVTSLFTPVMMKT TDMLDTSLEPVTTSPPSMNITSDESLATSKATMETEAIQLSENTAVTQMGTISARQEFYS SYPGLPEPSKVTSPVVTSSTIKDIVSTTIPASSEITRIEMESTSTLTPTPRETSTSOEIH SATKPSTVPYKALTSATIEDSMTQVMSSSRGPSPDQSTMSQDISTEVITRLSTSPIKTES TEMTITTOTGSPGATSRGTLTLDTSTTFMSGTHSTASQGFSHSQMTALMSRTPGEVPWLS hpsveeaseaspslsspvmtssspvsstlpdsihssslpvtslltsglvkttellgtsse PETSSPPNLSSTSAEILATTEVTTDTEKLEMTNVVTSGYTHESPSSVLADSVTTKATSSM GITYPTGDTNVLTSTPAFSDTSRIOTKSKLSLTPGLMETSISEETSSATEKSTVLSSVPT **GATTEVSRTEAISSSRTSIPGPAQSTMSSDTSMETITRISTPLTRKESTDMAITPKTGPS** GATSQGTFTLDSSSTASWPGTHSATTORFPRSVVTTPMSRGPEDVSWPSPLSVEKNSPPS SLVSSSSVTSPSPLYSTPSGSSHSSPVPVTSLFTSIMMKATDMLDASLEPETTSAPNMNI TSDESLAASKATTETEAIHVFENTAASHVETTSATEELYSSSPGFSEPTKVISPVVTSS IRDNMVSTTMPGSSGITRIEIESMSSLTPGLRETRTSODITSSTETSTVLYKMPSGATPE VSRTEVMPSSRTSIPGPAQSTMSLDISDEVVTRLSTSPIMTESAEITITTQTGYSLATSQ VTLPLGTSMTFLSGTHSTMSQGLSHSEMTNLMSRGPESLSWTSPRFVETTRSSSSLTSLP LTTSLSPVSSTLIDSSPSSPLPVTSLILPGLVKTTEVLDTSSEPKTSSSPNLSSTSVEIP ATSEIMTDTEKTHPSSNTAVAKVRTSSSVHESHSSVLADSETTITIPSMGITSAVEDTTV

ftsnpafsetrripteptfsltpgfretstseettsitetsavlfgvptsattevsmtei MSSNRTHIPDSDQSTMSPDIITEVITRLSSSSMMSBSTQMTITTOKSSPGATAQSTLTLA TTTAPLARTHSTVPPRFLHSEMTTLMSRSPENPSWKSSPFVEKTSSSSSLLSLPVTTSPS vsstlpqsipsssfsvtslltpgmvkttdtstepgtslspnlsgtsveilaasevttdte KIHPSSSMAVTNVGTTSSGHELYSSVSIHSEPSKATYPVGTPSSMAETSISTSMPANFET TGFRARPFSHLTSGLRKTNMSLDTSSVTPTNTPSSPGSTHLLOSSKTDFTSSAKTSSPDW PPASQYTEIPVDIITPFNASPSITESTGITSPPESRFTMSVTESTHHLSTDLLPSAETIS TGTVMPSLSEAMTSFATTGVPRAISGSGSPFSRTESGPGDATLSTIAESLPSSTPVPFSS STFTTTDSSTIPALHEITSSSATPYRVDTSLGTESSTTEGRLVMVSTLDTSSOPGRTSSS PILDTRMTESVELGTVTSAYQVPSLSTRLTRTDGIMEHITKIPNEAAHRGTIRPVKGPQT STSPASPKGLHTGGTKRMEITTTALKTTTALKTTSRATLTTSVYTPTLGTLTPLNASMO MASTIPTEMMITTPYVFPDVPETTSSLATSLGAETSTALPRTTPSVFNRESETTASLVSR SGAERSPVIOTLDVSSSEPDTTASWVIHPAETIPTVSKTTPNFFHSELDTVSSTATSHGA DVSSAIPTNISPSELDALTPLVTISGTDTSTTFPTLTKSPHETETRTTWLTHPAETSSTI PRTIPNFSHHESDATPSIATSPGAETSSAIPIMTVSPGAEDLVTSOVTSSGTDRNMTIPT LTLSPGEPKTIASLVTHPEAOTSSAIPTSTISPAVSRLVTSMVTSLAAKTSTTNRALTNS PGEPATTVSLVTHSAQTSPTVPWTTSIFFHSKSDTTPSMTTSHGAESSSAVPTPTVSTEV PGVVTPLVTSSRAVISTTIPILTLSPGEPETTPSMATSHGEEASSAIPTPTVSPGVPGVV TSLVTSSRAVTSTTIPILTFSLGEPETTPSMATSHGTEAGSAVPTVLPEVPGMVTSLVAS SRAVTSTTLPTLTLSPGEPETTPSMATSHGAEASSTVPTVSPEVPGVVTSLVTSSSGVNS TST DTLTLSDCRLETTDSMATSHCARASSAVDTDTVSDCVSCVVTDLVTSSRAVTSTTTD **ILTLSSSEPETTPSMATSHGVEASSAVLTVSPEVPGMVTFLVTSSRAVTSTTIPTLTISS** DEPETTTSLVTHSEAKMISAIPTLGVSPTVQGLVTSLVTSSGSETSAFSNLTVASSQPET IDSWVAHPGTEASSVVPTLTVSTGEPFTNISLVTHPAESSSTLPRTTSRFSHSELDTMPS TVTSPEAESSAISTTISPGIPGVLTSLVTSSGRDISATFPTVPESPHESEATASWVTHP AVTSTTVPRTTPNYSHSEPDTTPSIATSPGAEATSDFPTITVSPDVPDMVTSOVTSSGTD TSIT1PTLTLSSGEPETTTSFITYSETHTSSAIPTLPVSPDASKMLTSLVISSGTDSTTT FPTLTETPYEPETTAIOLIHPAETNTMVPRTTPKFSHSKSDTTLPVAITSPGPEASSAVS TTTISPDMSDLVTSLVPSSGTDTSTTFPTLSETPYEPETTATWLTHPAETSTTVSGTIPN FSHRGSDTAPSMVTSPGVDTRSGVPTTTIPPSIPGVVTSOVTSSATDTSTAIPTLTPSPG **EPETTASSATHPGTOTGFTVPIRTVPSSEPDTMASWVTHPPOTSTPVSRTTSSFSHSSPD ATPVMATSPRTEASSAVLTTISPGAPEMVTSOITSSGAATSTTVPTLTHSPGMPETTALL** STHPRTETSKTPPASTVFPOVSETTASLTIRPGAETSTALPTQTTSSLFTLLVTGTSRVD LSPTASPGVSAKTAPLSTHPGTETSTMIPTSTLSLGLLETTGLLATSSSAETSTSTLTLT vspavsglssasittdkpqtvtswntetspsvtsvgppepsrtvtgttmtlipsemptpp KTSHGEGVSPTTILRTTMVEATNLATTGSSPTVAKTTTTFNTLAGSLFTPLTTPGMSTLA SESVTSRTSYNHRSWISTTSSYNRRYWTPATSTPVTSTFSPGISTSSIPSSTAATVPFMV PFTLNFTITNLQYEEDMRHPGSRKFNATERELQGLLKPLFRNSSLEYLYSGCRLASLRPE KDSSATAVDAICTHRPDPEDLGLDRERLYWELSNLTNGIQELGPYTLDRNSLYVNGFTHR SSMPTTSTPGTSTVDVGTSGTPSSSPSPTTAGPLLMPFTLNFTITNLOYEEDMRRTGSRK FNTMESVLOGLLKPLFKNTSVGPLYSGCRLTLLRPEKDGAATGVDAICTHRLDPKSPGLN REOLYWELSKLTNDIEELGPYTLDRNSLYVNGFTHOSSVSTTSTPGTSTVDLRTSGTPSS LSSPTIMAAGPLLVPFTLNFTITNLOYGEDMGHPGSRKFNTTERVLOGLLGPIFKNTSVG PLYSGCRLTSLRSEKDGAATGVDAICIHHLDPKSPGLNRERLYWELSQLTNGIKELGPYT LDRNSLYVNGFTHRTSVPTTSTPGTSTVDLGTSGTPFSLPSPATAGPLLVLFTLNFTITN

LKYEEDMHRPGSRKFNTTERVLQTLVGPMFKNTSVGLLYSGCRLTLLRSEKDGAATGVDA ICTHRLDPKSPGVDREQLYWELSQLTNGIKELGPYTLDRNSLYVNGFTHWIPVPTSSTPG TSTVDLGSGTPSSLPSPTSATAGPLLVPFTLNFTITNLKYEEDMHCPGSRKFNTTERVLO SLLGPMFKNTSVGPLYSGCRLTLLRSEKDGAATGVDAICTHRLDPKSPGVDREQLYWELS OLTIGIKELGPYTLDRNSLYVNGFTHOTSAPNTSTPGTSTVDLGTSGTPSSLPSPTSAGP LLVPFTLNFTITNLQYEEDMHPGSRKFNTTBRVLQGLLGPMFKNTSVGLLYSGCRLTLL RPEKNGAATGMDAICSHRLDPKSPGLNREQLYWELSQLTHGIKELGPYTLDRNSLYVNGF THRSSVAPTSTPGTSTVDLGTSGTPSSLPSPTTAVPLLVPFTLNFTITNLOYGEDMRHPG SRKFNTTERVLQGLLGPLFKNSSVGPLYSGCRLISLRSEKDGAATGVDAICTHHLNPQSP GLDREOLYWOLSOMTNGIKELGPYTLDRNSLYVNGFTHRSSGLTTSTPWTSTVDLGTSGT PSPVPSPTTAGPLLVPFTLNFTITNLQYEEDMHRPGSRKFNATERVLQGLLSPIFKNSSV GPLYSGCRLTSLRPEKDGAATGMDAVCLYHPNPKRPGLDREQLYWELSQLTHNITELGPY SLDRDSLYVNGFTHONSVPTTSTPGTSTVYWATTGTPSSFPGHTEPGPLLIPFTFNFTIT NLHYEENMOHPGSRKFNTTERVLOGLLKPLFKNTSVGPLYSGCRLTLLRPEKOEAATGVD TICTHRVDPIGPGLDRERLYWELSQLTNSITELGPYTLDRDSLYVNGFNPWSSVPTTSTP GTSTVHLATSGTPSSLPGHTAPVPLLIPFTLNFTITNLHYEENMOHPGSRKFNTTERVLO GLLKPLFKSTSVGPLYSGCRLTLLRPEKHGAATGVDAICTLRLDPTGPGLDRERLYWELS QLTNSVTELGPYTLDRDSLYVNGFTHRSSVPTTSI PGTSAVHLETSGTPASLPGHTAPGP LLVPFTLNFTITNLOYEEDMRHPGSRKFNTTERVLOGLLKPLFKSTSVGPLYSGCRLTLL RPEKRGAATGVDTICTHRLDPLNPGLDREQLYWELSKLTRGIIELGPYLLDRGSLYVNGF THRNFVPITSTPGTSTVHLGTSETPSSLPRPIVPGPLLVPFTLNFTITNLOYEEAMRHPG SRKFNTTERVLOGLLRPLFKNTSIGPLYSSCRLTLLRPEKDKAATRVDAICTHHPDPOSP glnreolywelsolthgitelgpytldrdslyvdgfthwspipttstpgtsivnigtsgi PPSLPETTATGPLLVPFTLNFTITNLQYEENMGHPGSRKFNITESVLQGLLKPLFKSTSV GPLYSGCRLTLLRPEKDGVATRVDAICTHRPDPKIPGLDRQQLYWELSQLTHSITELGPY TLDRDSLYVNGFTORSSVPTTSTPGTFTVOPETSETPSSLPGPTATGPVLLPFTLNFTII NLOYEEDMHRPGSRKFNTTERVLQGLLMPLFKNTSVSSLYSGCRLTLLRPEKDGAATRVD AVCTHRPDPKSPGLDRERLYWKLSOLTHGITELGPYTLDRHSLYVNGFTHOSSMTTTRTP DTSTMHLATSRTPASLSGPTTASPLLVLFTINFTITNLRYEENMHHPGSRKFNTTERVLO GLLRPVFKNTSVGPLYSGCRLTLLRPKKDGAATKVDAICTYRPDPKSPGLDREQLYWELS **QLTHSITELGPYTLDRDSLYVNGFTQRSSVPTTSIPGTPTVDLGTSGTPVSKPGPSAASP** LLVLFTLNFTITNLRYEENMOHPGSRKFNTTERVLOGLLRSLFKSTSVGPLYSGCRLTLL RPEKDGTATGVDAICTHHPDPKSPRLDREQLYWELSQLTHNITELGPYALDNDSLFVNGP THRSSVSTTSTPGTPTVYLGASKTPASIFGPSAASHLLILFTLNFTITNLRYEENMWPGS RKFNTTERVLQGLLRPLFKNTSVGPLYSGCRLTLLRPEKDGEATGVDAICTHRPDPTGPG LDREQLYLELSQLTHSITELGPYTLDRDSLYVNGFTHRSSVPTTSTGVVSEEPFTLNFTI NNLRYMADMGQPGSLKFNITDNVMQHLLSPLFQRSSLGARYTGCRVIALRSVKNGAETRV DLLCTYLQPLSGPGLPIKQVPHELSQQTHGITRLGPYSLDKDSLYLNGYNEPGPDEPPTT PKPATTFLPPLSEATTAMGYHLKTLTLNFTISNLOYSPDMGKGSATFNSTEGVLOHLLRP LFQKSSMGPFYLGCQLISLRPEKDGAATGVDTTCTYHPDPVGPGLDIQQLYWELSQLTHG VTQLGFYVLDRDSLFINGYAPQNLSIRGEYQINFHIVNWNLSNPDPTSSEYITLLRDIQD KVTTLYKGSOLHDTFRFCLVTNLTMDSVLVTVKALFSSNLDPSLVEOVFLDKTLNASFHW LGSTYQLVDIHVTEMESSVYQPTSSSSTQHFYLNFTITNLPYSQDKAQPGTTNYQRNKRN IEDALNQLFRNSSIKSYFSDCQVSTFRSVPNRHHTGVDSLCNFSPLARRVDRVAIYEEFL RMTRNGTOLONFTLDRSSVLVDGYSPNRNEPLTGNSDLPFWAVILIGLAGLLGLITCLIC

GVLVTTRRRKKEGEYNVQQQCPGYYQSHLDLEDLQ

(SEC ID Nº: 4)

(5) MPF (MPF, MSLN, SMR, factor de potenciación de megacariocitos, mesotelina, № de acceso en Genbank NM_005823 Yamaguchi,N., et al. Biol. Chem. 269 (2), 805-808 (1994), Proc. Natl. Acad. Sci. USA. 96 (20): 11531-11536 (1999), Proc. Natl. Acad. Sci. USA. 93 (1): 136-140 (1996), J. Biol. Chem. 270 (37): 21984-21990 (1995)); documento WO2003101283 (Reivindicación 14); (documento WO2002102235 (Reivindicación 13; Páginas 287-288); documento WO2002101075 (Reivindicación 4; Páginas 308-309); documento WO200271928 (Páginas 320-321); documento WO9410312 (Páginas 52-57); Referencias cruzadas: MIM:601051; NP 005814.2; NM 005823 1

10

5

622 aa

MALPTARPLLGSCGTPALGSLLFLLFSLGWVQPSRTLAGETGQEAAPLDGVLANPPNISS
LSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDALPL
DLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLLSEA
DVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPYGPPSTW
SVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRFRREVEKT
ACPSGKKARBIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELY
PQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQVATLIDRFVK
GRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKA
RLAFQNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMDLATFMKLRTDAVLPLTVAEVQ
KLLGPHVEGLKAEERHRPVRDWILRQRQDDLDTLGLGLQGGIPNGYLVLDLSMQEALSGT
PCLLGPGPVLTVLALLLASTLA

(SEC ID Nº: 5)

15

20

(6) Napi3b (NAPI-3B, NPTIIb, SLC34A2, familia de transportadores de soluto 34 (fosfato sódico), miembro 2, transportador de fosfato dependiente de sodio de tipo II 3b, Nº de acceso en Genbank NM_006424, J. Biol. Chem. 277 (22): 19665-19672 (2002), Genomics 62 (2): 281-284 (1999), Feild, J.A., et al. (1999) Biochem. Biophys. Res. Commun. 258 (3): 578-582); documento WO2004022778 (Reivindicación 2); documento EP1394274 (Ejemplo 11); documento WO2002102235 (Reivindicación 13; Página 326); documento EP875569 (Reivindicación 1; Páginas 17-19); documento WO200157188 (Reivindicación 20; Página 329); documento WO2004032842 (Ejemplo IV); documento WO200175177 (Reivindicación 24; Páginas 139-140); Referencias cruzadas: MIM:604217; NP 006415.1; NM 006424 1

690 aa

MAPWPELGDAQPNPDKYLEGAAGQQPTAPDKSKETNKTDNTEAPVTKIELLPSYSTATLI
DEPTEVDDPWNLPTLQDSGIKWSERDTKGKILCFFQGIGRLILLLGFLYFFVCSLDILSS
AFQLVGGKMAGQFFSNSSIMSNPLLGLVIGVLVTVLVQSSSTSTSIVVSMVSSSLLTVRA
AIPIIMGANIGTSITNTIVALMQVGDRSEFRRAFAGATVHDFFNWLSVLVLLPVEVATHY
LEIITQLIVESFHFKNGEDAPDLLKVITKPFTKLIVQLDKKVISQIAMNDEKAKNKSLVK
IWCKTFTNKTQINVTVPSTANCTSPSLCWTDGIQNWTMKNVTYKENIAKCQHIFVNFHLP
DLAVGTILLILSLLVLCGCLIMIVKILGSVLKGQVATVIKKTINTDFPFPFAWLTGYLAI
LVGAGMTFIVQSSSVFTSALTPLIGIGVITIERAYPLTLGSNIGTTTTAILAALASPGNA
LRSSLQIALCHFFFNISGILLWYPIPFTRLPIRMAKGLGNISAKYRWFAVFYLIIFFFLI
PLTVFGLSLAGWRVLVGVGVPVVFIIILVLCLRLLQSRCPRVLPKKLQNWNFLPLWMRSL
KPWDAVVSKFTGCFQMRCCYCCRVCCRACCLLCGCPKCCRCSKCCEDLEEAQEGQDVPVK
APETFDNITISREAOGEVPASDSKTECTAL

(SEC ID N°: 6)

(7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMA5B, SEMAG, Semaforina 5b Hlog, dominio sema, siete repeticiones de trombospondina (de tipo 1 y similar al tipo 1), dominio transmembrana (TM) y dominio citoplasmático corto, (semaforina) 5B, N° de acceso en Genbank AB040878,

Nagase T., et al. (2000) DNA Res. 7 (2): 143-150); documento WO2004000997 (Reivindicación 1); documento WO2003003984 (Reivindicación 1); documento WO200206339 (Reivindicación 1; Página 50); documento WO200188133 (Reivindicación 1; Páginas 41-43, 48-58); documento WO2003054152 (Reivindicación 20); documento WO2003101400 (Reivindicación 11); Accession: Q9P283; EMBL; AB040878; BAA95969.1. Genew; HGNC:10737;

1093 aa

5

MVLAGPLAVSLLLPSLTLLVSHLSSSQDVSSEPSSEQQLCALSKHPTVAFEDLOPWVSNF TYPGARDFSQLALDPSGNQLIVGARNYLFRLSLANVSLLQATEWASSEDTRRSCQSKGKT EEECQNYVRVLIVAGRKVFMCGTNAFSPMCTSRQVGNLSRTTEKINGVARCPYDPRHNST AVISSQGELYAATVIDFSGRDPAIYRSLGSGPPLRTAQYNSKWLNEPNFVAAYDIGLFAY FFLRENAVEHDCGRTVYSRVARVCKNDVGGRFLLEDTWTTFMKARLNCSRPGEVPFYYNE LQSAFHLPEQDLIYGVFTTNVNSIAASAVCAFNLSAISQAFNGPFRYQENPRAAWLPIAN PIPNFQCGTLPETGPNENLTERSLQDAQRLFLMSEAVQPVTPEPCVTQDSVRFSHLVVDL VQAKDTLYHVLYIGTESGTILKALSTASRSLHGCYLEELHVLPPGRREPLRSLRILHSAR ALFVGLRDGVLRVPLERCAAYRSQGACLGARDPYCGWDGKQQRCSTLEDSSNMSLWTQNI TACPVRNVTRDGGFGPWSPWQPCEHLDGDNSGSCLCRARSCDSPRPRCGGLDCLGPAIHI ANCSRNGAWTPWSSWALCSTSCGIGFQVRQRSCSNPAPRHGGRICVGKSREERFCNENTP CPVPIFWASWGSWSKCSSNCGGGMQSRRRACENGNSCLGCGVEFKTCNPEGCPEVRRNTP WTPWLPVNVTQGGARQEQRFRFTCRAPLADPHGLQFGRRRTETRTCPADGSGSCDTDALV EDLLRSGSTSPHTVSGGWAAWGPWSSCSRDCELGFRVRKRTCTNPEPRNGGLPCVGDAAE YQDCNPQACPVRGAWSCWTSWSPCSASCGGGHYQRTRSCTSPAPSPGEDICLGLHTEEAL CATQACPEGWSPWSEWSKCTDDGAQSRSRHCEELLPGSSACAGNSSQSRPCPYSEIPVIL PASSMEEATGCAGFNLIHLVATGISCFLGSGLLTLAVYLSCQHCQRQSQESTLVHPATPN

${\tt HLHYKGGGTPKNEKYTPMEFKTLNKNNLIPDDRANFYPLQQTNVYTTTYYPSPLNKHSFR} \\ {\tt PEASPGQRCFPNS}$

10 (SEC ID N°: 7)

(8) PSCA hlg (2700050C12Rik, C530008O16Rik, RIKEN cDNA 2700050C12, gen RIKEN cADN2700050C12, № de acceso en Genbank AY358628); US2003129192 (Reivindicación 2); US2004044180 (Reivindicación 12); US2004044179 (Reivindicación 11); US2003096961 (Reivindicación 11); US2003232056 (Ejemplo 5); documento WO2003105758 (Reivindicación 12); US2003206918 (Ejemplo 5); EP1347046 (Reivindicación 1); documento WO2003025148 (Reivindicación 20); Referencias cruzadas: GI:37182378; AAQ88991.1; AY358628 1

141 aa

MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEVMB QSAGIMYRKSCASSAACLIASAGYQSFCSPGKLNSVCISCCNTPLCNGPRPKKRGSSASA LRPGLRTTILFLKLALFSAHC

(SEC ID Nº: 8)

20

15

(9) ETBR (Receptor de endotelina de tipo B, Nº de acceso en Genbank AY275463); Nakamuta M., et al. Biochem. Biophys. Res. Commun. 177, 34-39, 1991; Ogawa Y., et al. Biochem. Biophys. Res. Commun. 178, 248-255, 1991; Arai H., et al. Jpn. Circ. J. 56, 1303-1307, 1992; Arai H., et al. J. Biol. Chem. 268, 3463-3470,

ES 2 456 325 T3

1993; Sakamoto A., Yanagisawa M., et al. Biochem. Biophys. Res. Commun. 178, 656-663, 1991; Elshourbagy N.A., et al. J. Biol. Chem. 268, 3873-3879, 1993; Haendler B., et al. J. Cardiovasc. Pharmacol. 20, s1-S4, 1992; Tsutsumi M., et al. Gene 228, 43-49, 1999; Strausberg R.L., et al. Proc. Natl. Acad. Sci. USA. 99, 16899-16903, 2002; Bourgeois C., et al. J. Clin. Endocrinol. Metab. 82, 3116-3123, 1997; Okamoto Y., et al. Biol. Chem. 272, 21589-21596, 1997; Verheij J.B., et al. Am. J. Med. Genet. 108, 223-225, 2002; Hofstra R.M.documento W., et al. Eur. J. Hum. Genet. 5, 180-185, 1997; Puffenberger E.G., et al. Cell 79, 1257-1266, 1994; Attie T., et al, Hum. Mol. Genet. 4, 2407-2409, 1995; Auricchio A., et al. Hum. Mol. Genet. 5:351-354, 1996; Amiel J., et al. Hum. Mol. Genet. 5, 355-357, 1996; Hofstra R.M.documento W., et al. Nat. Genet. 12, 445-447, 1996; Svensson P.J., et al. Hum. Genet. 103, 145-148, 1998; Fuchs S., et al. Mol. Med. 7, 115-124, 2001; Pingault V., et al. (2002) Hum. Genet. 111, 198-206; documento WO2004045516 (Reivindicación 1); documento WO2004048938 (Ejemplo 2); documento WO2004040000 (Reivindicación 151); documento WO2003087768 (Reivindicación 1); documento WO2003016475 (Reivindicación 1); documento WO2003016475 (Reivindicación 1); documento WO200261087 (Fig 1); documento WO2003016494 (Fig 6); documento WO2003025138 (Reivindicación 12; Página 144); documento WO200198351 (Reivindicación 1; Páginas 124-125); EP522868 (Reivindicación 8; Fig 2); documento WO200177172 (Reivindicación 1; Páginas 297-299); documento US2003109676; documento US6518404 (Fig 3); documento US5773223 (Reivindicación 1a; Col 31-34); documento WO2004001004;

442 aa

5

10

15

MQPPPSLCGRALVALVLACGLSRIWGEERGFPPDRATPLLQTAEIMTPPTKTLWPKGSNA SLARSLAPAEVPKGDRTAGSPPRTISPPPCQGPIEIKETFKYINTVVSCLVFVLGIIGNS TLLRIIYKNKCMRNGPNILIASLALGDLLHIVIDIPINVYKLLAEDWPFGAEMCKLVPFI QKASVGITVLSLCALSIDRYRAVASWSRIKGIGVPKWTAVEIVLIWVVSVVLAVPEAIGF DIITMDYKGSYLRICLLHPVQKTAFMQFYKTAKDWWLFSFYFCLPLAITAFFYTLMTCEM LRKKSGMQIALNDHLKQRREVAKTVFCLVLVFALCWLPLHLSRILKLTLYNQNDPNRCEL LSFLLVLDYIGINMASLNSCINPIALYLVSKRFKNCFKSCLCCWCQSFEEKQSLEEKQSC

(SEC ID N°: 9)

- 20 (10)MSG783 (RNF124, proteína hipotética FLJ20315, Nº de acceso en Genbank NM_017763); documento WO2003104275 (Reivindicación 1); documento WO2004046342 (Ejemplo 2); documento WO2003042661 (Reivindicación 12); documento WO2003083074 (Reivindicación 14; Página 61); documento WO2003018621 (Reivindicación 1); documento WO2003024392 (Reivindicación 2; Fig 93); documento WO200166689 (Ejemplo 6);
- 25 Referencias cruzadas: ID de Locus:54894; NP_060233.2; NM_017763_1

MSGGHQLQLAALWPWLLMATLQAGFGRTGLVLAAAVESERSAEQKAIIRVIPLKMDPTGK
LNLTLEGVFAGVAEITPAEGKLMQSHPLYLCNASDDDNLEPGFISIVKLESPRRAPRPCL
SLASKARMAGERGASAVLFDITEDRAAAEQLQQPLGLTWPVVLIWGNDAEKLMEFVYKNQ
KAHVRIELKEPPAWPDYDVWILMTVVGTIFVIILASVLRIRCRPRHSRPDPLQQRTAWAI
SQLATRRYQASCRQARGEWPDSGSSCSSAPVCAICLEEFSEGQELRVISCLHEFHRNCVD
PWLHQHRTCPLCVFNITEGDSFSQSLGPSRSYQEPGRRLHLIRQHPGHAHYHLPAAYLLG
PSRSAVARPPRPGPFLPSQEPGMGPRHHRFPRAAHPRAPGEQQRLAGAQHPYAQGWGMSH
LQSTSQHPAACPVPLRRARPPDSSGSGESYCTERSGYLADGPASDSSSGPCHGSSSDSVV
NCTDISLQGVHGSSSTFCSSLSSDFDPLVYCSPKGDPQRVDMQPSVTSRPRSLDSVVPTG
ETQVSSHVHYHRHHHHYKKRFQWHGRKPGPETGVPQSRPPIPRTQPQPEPPSPDQQVTG
SNSAAPSGRLSNPQCPRALPEPAPGPVDASSICPSTSSLFNLQKSSLSARHPQRKRRGGP
SEPTPGSRPQDATVHPACQIFPHYTPSVAYPWSPEAHPLICGPPGLDKRLLPETPGPCYS
NSQPVWLCLTPRQPLEPHPPGEGPSEWSSDTAEGRPCPYPHCQVLSAQPGSEEELEELCE
QAV

(SEC ID Nº: 10)

(11) STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, gen 1 asociado al cáncer de próstata, proteína 1 asociada al cáncer de próstata, antígeno epitelial de seis dominios transmembrana de próstata 2, proteína de próstata de seis dominios transmembrana, № de acceso en Genbank AF455138, Lab. Invest. 82 (11): 1573-1582 (2002)); documento WO2003087306; documento US2003064397 (Reivindicación 1; Fig 1); documento WO200272596 (Reivindicación 13; Páginas 54-55); documento WO200172962 (Reivindicación 1; Fig 4B); documento WO2003104270 (Reivindicación 11); documento WO2003104270 (Reivindicación 16); documento US2004005598 (Reivindicación 22); documento WO2003042661 (Reivindicación 12); documento US2003060612 (Reivindicación 12; Fig 10); documento WO200216429 (Reivindicación 12; Fig 10); Referencias cruzadas: GI:22655488; AAN04080.1; AF455138 1

490 aa

MESISMMGSPKSLSETVLPNGINGIKDARKVTVGVIGSGDFAKSLTIRLIRCGYHVVIGS
RNPKFASEFFPHVVDVTHHEDALTKTNIIFVAIHREHYTSLWDLRHLLVGKILIDVSNNM
RINQYPESNAEYLASLFPDSLIVKGFNVVSAWALQLGPKDASRQVYICSNNIQARQQVIE
LARQLNFIPIDLGSLSSAREIENLPLRLFTLWRGPVVVAISLATFFFLYSFVRDVIHPYA
RNQQSDFYKIPIEIVNKTLPIVAITLLSLVYLAGLLAAAYQLYYGTKYRRFPPWLETWLQ
CRKQLGLLSFFFAMVHVAYSLCLPMRRSERYLFLNMAYQQVHANIENSWNEEBVWRIEMY
ISFGIMSLGLLSLLAVTSIPSVSNALNWREFSFIQSTLGYVALLISTFHVLIYGWKRAFE
EEYYRFYTPPNFVLALVLPSIVILGKIILFLPCISQKLKRIKKGWEKSQFLEEGIGGTIP
HVSPERVTVM

(SEC ID Nº: 11)

15

20

5

10

(12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, canal catiónico potencial de receptores transitorios, subfamilia M, miembro 4, Nº de acceso en Genbank NM_017636

Xu,X.Z., et al. Proc. Natl. Acad. Sci. USA. 98 (19): 10692-10697 (2001), Cell 109 (3): 397-407 (2002), J. Biol. Chem. 278 (33): 30813-30820 (2003)); documento US2003143557 (Reivindicación 4); documento WO20040614 (Reivindicación 14; Páginas 100-103); documento WO200210382 (Reivindicación 1; Fig 9A); documento WO2003042661 (Reivindicación 12); documento WO200230268 (Reivindicación 27; Página 391); documento US2003219806 (Reivindicación 4); documento WO200162794 (Reivindicación 14; Fig 1A-D); Referencias cruzadas: MIM:606936; NP 060106.2; N 017636 1

MVVPEKEQSWIPKIFKKKTCTTFIVDSTDPGGTLCQCGRPRTAHPAVAMEDAFGAAVVTV WDSDAHTTEKPTDAYGELDFTGAGRKHSNFLRLSDRTDPAAVYSLVTRTWGFRAPNLVVS VLGGSGGPVLQTWLQDLLRRGLVRAAQSTGAWIVTGGLHTGIGRHVGVAVRDHQMASTGG TKVVAMGVAPWGVVRNRDTLINPKGSFPARYRWRGDPEDGVOFPLDYNYSAFFLVDDGTH

GCLGGENRFRLRLESYISQQKTGVGGTGIDIPVLLLLIDGDEKMLTRIENATQAQLPCLL VAGSGGAADCLAETLEDTLAPGSGGAROGEARDRIRRFFPKGDLEVLOAOVERIMTRKEL LTVYSSEDGSEEFETIVLKALVKACGSSEASAYLDELRLAVAWNRVDIAQSELFRGDIQW RSFHLEASLMDALLNDRPEFVRLLISHGLSLGHFLTPMRLAQLYSAAPSNSLIRNLLDQA SHSAGTKAPALKGGAAELRPPDVGHVLRMLLGKMCAPRYPSGGAWDPHPGQGFGESMYLL SDKATSPLSLDAGLGOAPWSDLLLWALLLNRAQMAMYFWEMGSNAVSSALGACLLLRVMA RLEPDAEEAARRKDLAFKFEGMGVDLFGECYRSSEVRAARLLLRRCPLWGDATCLOLAMO ADARAFFAODGVOSLLTQKWWGDMASTTPIWALVLAFFCPPLIYTRLITFRKSEEEPTRE ELEFDMDSVINGEGPVGTADPAEKTPLGVPRQSGRPGCCGGRCGGRRCLRRWFHFWGAPV TIFMGNVVSYLLFLLLFSRVLLVDFOPAPPGSLELLLYFWAFTLLCEELROGLSGGGGSL ASGGPGPGHASLSQRLRLYLADSWNQCDLVALTCFLLGVGCRLTPGLYHLGRTVLCIDFM VFTVRLLHIFTVNKOLGPKIVIVSKMMKDVFFFLFFLGVWLVAYGVATEGLLRPRDSDFP SILRRVFYRPYLOIFGQIPQEDMDVALMEHSNCSSEPGFWAHPPGAQAGTCVSQYANWLV VLLLVIFLLVANILLVNLLIAMFSYTFGKVQGNSDLYWKAQRYRLIREFHSRPALAPPFI VISHLRLLLROLCRRPRSPOPSSPALEHFRVYLSKEAERKLLTWESVHKENFLLARARDK RESDSERLKRTSQKVDLALKQLGHIREYEQRLKVLEREVQQCSRVLGWVAEALSRSALLP PGGPPPPDLPGSKD

(SEC ID Nº: 12)

(13) CRIPTO (CR, CR1, CRGF, CRIPTO, TDGF1, factor de crecimiento derivado de teratocarcinoma, Nº de acceso en Genbank NP 003203 o NM 003212,

Ciccodicola, A., et al. EMBO J. 8 (7): 1987-1991 (1989), Am. J. Hum. Genet. 49 (3): 555-565 (1991)); documento US2003224411 (Reivindicación 1); documento WO2003083041 (Ejemplo 1); documento WO2003034984 (Reivindicación 12); documento WO200288170 (Reivindicación 2; Páginas 52-53); documento WO2003024392 (Reivindicación 2; Fig 58); documento WO200216413 (Reivindicación 1; Páginas 94-95, 105); documento WO200222808 (Reivindicación 2; Fig 1); documento US5854399 (Ejemplo 2; Col 17-18); documento US5792616
 (Fig 2);

Referencias cruzadas: MIM:187395; NP_003203.1; NM_003212_1

188 aa

20

MDCRKMARFSYSVIWIMAISKVFELGLVÄGLGHQEFARPSRGYLAFRDDSIWPQEEPAIR PRSSQRVPPMGIQHSKELNRTCCLNGGTCMLGSFCACPPSFYGRNCEHDVRKENCGSVPH DTWLPKKCSLCKCWHGQLRCFPQAFLPGCDGLVMDEHLVASRTPELPPSARTTTFMLVGI CLSIQSYY

(SEC ID Nº: 13)

(14) CD21 (CR2 (Receptor de complemento2) o C3DR (receptor de C3d/virus de Epstein Barr) o Hs.73792 Nº de acceso en Genbank M26004,

Fujisaku et al. (1989) J. Biol. Chem. 264 (4): 2118-2125); Weis J.J., et al. J. Exp. Med. 167, 1047-1066, 1988; Moore M., et al. Proc. Natl. Acad. Sci. USA. 84, 9194-9198, 1987; Barel M., et al. Mol. Immunol. 35, 1025-1031, 1998; Weis J.J., et al. Proc. Natl. Acad. Sci. USA. 83, 5639-5643, 1986; Sinha S.K., et al. (1993) J. Immunol. 150,5311-5320; documento WO2004045520 (Ejemplo 4); documento US2004005538 (Ejemplo 1); documento

WO2003062401 (Reivindicación 9); documento WO2004045520 (Ejemplo 4); documento WO9102536 (Fig 9.1-9.9); documento WO2004020595 (Reivindicación 1); Acceso: P20023; Q13866; Q14212; EMBL; M26004; AAA35786.1.

1033 aa

10

15

20

MGAAGLLGVFLALVAPGVLGISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGE KSLLCITKDKVDGTWDKPAPKCEYFNKYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKT NFSMNGNKSVWCOANNMWGPTRLPTCVSVFPLECPALPMIHNGHHTSENVGSIAPGLSVT YSCESGYLLVGEKI INCLSSGKWSAVPPTCEEARCKSLGRFPNGKVKEPPILRVGVTANF FCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCEEIFCPSPPPILNGRHIGNSLANVSYGSI VTYTCDPDPEEGVNFILIGESTLRCTVDSQKTGTWSGPAPRCELSTSAVQCPHPQILRGR MVSGQKDRYTYNDTVIFACMFGFTLKGSKQIRCNAQGTWEPSAPVCEKECQAPPNILNGQ KEDRHMVRFDPGTSIKYSCNPGYVLVGEESIQCTSEGVWTPPVPQCKVAACEATGROLLT KPOHOFVRPDVNSSCGEGYKLSGSVYQECQGTIPWFMEIRLCKEITCPPPPVIYNGAHTG SSLEDFPYGTTVTYTCNPGPERGVEFSLIGESTIRCTSNDQERGTWSGPAPLCKLSLLAV QCSHVHIANGYKISGKEAPYFYNDTVTFKCYSGFTLKGSSQIRCKADNTWDPEIPVCEKE TCOHVROSLOELPAGSRVELVNTSCODGYQLTGHAYOMCQDAENGIWFKKIPLCKVIHCH PPPVIVNGKHTGMMAENFLYGNEVSYECDQGFYLLGEKKLQCRSDSKGHGSWSGPSPOCL RSPPVTRCPNPEVKHGYKLNKTHSAYSHNDIVYVDCNPGFIMNGSRVIRCHTDNTWVPGV PTCIKKAFIGCPPPPKTPNGNHTGGNIARFSPGMSILYSCDQGYLLVGEALLLCTHEGTW SOPAPHCKEVNCSSPADMDGIOKGLEPRKMYQYGAVVTLECEDGYMLEGSPOSOCOSDHO WNPPLAVCRSRSLAPVLCGIAAGLILLTFLIVITLYVISKHRERNYYTDTSQKEAFHLEA REVYSVDPYNPAS

5 (SEC ID N°: 14)

(15) CD79b (CD79B, CD79β, IGb (asociado a inmunoglobulina beta), B29, Nº de acceso en Genbank NM_000626 o 11038674, Proc. Natl. Acad. Sci. USA. (2003) 100 (7): 4126-4131, Blood (2002) 100 (9): 3068-3076, Muller et al. (1992) Eur. J. Immunol. 22 (6): 1621-1625); documento WO2004016225 (reivindicación 2, Fig 140); documento WO2003087768, documento US2004101874 (reivindicación 1, página 102); documento WO2003062401 (reivindicación 9); documento WO200278524 (Ejemplo 2); documento US2002150573 (reivindicación 5, página 15); US5644033; documento WO2003048202 (reivindicación 1, páginas 306 y 309); documento WO 99/558658, documento US6534482 (reivindicación 13, Fig 17A/B); documento WO200055351 (reivindicación 11, páginas 1145-1146);

Referencias cruzadas: MIM:147245; NP_000617.1; NM_000626_1

229 aa

MARLALSPVPSHWMVALLLLLSAEPVPAARSEDRYRNPKGSACSRIWQSPRFIARKRGFT VKMHCYMNSASGNVSWLWKQEMDENPQQLKLEKGRMEESQNESLATLTIQGIRFEDNGIY FCQQKCNNTSEVYQGCGTELRVMGFSTLAQLKQRNTLKDGIIMIQTLLIILFIIVPIFLL LDKDDSKAGMEEDHTYEGLDIDQTATYEDIVTLRTGEVKWSVGEHPGQE

(SEC ID N°: 15)

- (16) FcRH2 (IFGP4, IRTA4, SPAP1A (proteína de anclaje 1a de fosfatasa que contiene el dominio SH2), SPAP1B, SPAP1C, № de acceso en Genbank NM 030764,
 - Genome Res. 13 (10): 2265-2270 (2003), Immunogenetics 54 (2): 87-95 (2002), Blood 99 (8): 2662-2669 (2002), Proc. Natl. Acad. Sci. USA. 98 (17): 9772-9777 (2001), Xu,M.J., et al. (2001) Biochem. Biophys. Res. Commun. 280 (3): 768-775; documento WO2004016225 (Reivindicación 2); documento WO2003077836; documento WO200138490 (Reivindicación 5; Fig 18D-1-18D-2);
- documento WO2003097803 (Reivindicación 12); documento WO2003089624 (Reivindicación 25);

ES 2 456 325 T3

Referencias cruzadas: MIM:606509; NP_110391.2; NM_030764_1

508 aa

MLLWSLLVIFDAVTEQADSLTLVAPSSVFEGDSIVLKCQGEQNWKIQKMAYHKDNKELSV
FKKFSDFLIQSAVLSDSGNYFCSTKGQLFLWDKTSNIVKIKVQELFQRPVLTASSFQPIE
GGPVSLKCETRLSPQRLDVQLQFCFFRENQVLGSGWSSSPELQISAVWSEDTGSYWCKAE
TVTHRIRKQSLQSQIHVQRIPISNVSLEIRAPGGQVTEGQKLILLCSVAGGTGNVTFSWY
REATGTSMGKKTQRSLSAELEIPAVKESDAGKYYCRADNGHVPIQSKVVNIPVRIPVSRP
VLTLRSPGAQAAVGDLLELHCEALRGSPPILYQFYHEDVTLGNSSAPSGGGASFNLSLTA
EHSGNYSCEANNGLGAQCSEAVPVSISGPDGYRRDLMTAGVLWGLFGVLGFTGVALLLYA
LFHKISGESSATNEPRGASRPNPQEFTYSSPTPDMEELQPVYVNVGSVDVDVVYSQVWSM
QQPESSANIRTLLENKDSQVIYSSVKKS

(SEC ID N°: 16)

5 (16) HER2 (ErbB2, Nº de acceso en Genbank M11730, Coussens L., et al. Science (1985) 230 (4730): 1132-1139); Yamamoto T., et al. Nature 319, 230-234, 1986; Semba K., et al. Proc. Natl. Acad. Sci. USA. 82, 6497-6501, 1985; Swiercz J.M., et al. J. Cell Biol. 165, 869-880, 2004; Kuhns J.J., et al. J. Biol. Chem. 274, 36422-36427, 1999; Cho H.-S., et al. Nature 421, 756-760, 2003; Ehsani A., et al. (1993) Genomics 15, 426-429; documento WO2004048938 (Ejemplo 2); documento WO2004027049 (Fig 1I); documento WO2004009622; 10 documento WO2003081210; documento WO2003089904 (Reivindicación 9); documento WO2003016475 (Reivindicación 1); documento US2003118592; documento WO2003008537 (Reivindicación 1); documento WO2003055439 (Reivindicación 29; Fig 1A-B); documento WO2003025228 (Reivindicación 37; Fig 5C); documento WO200222636 (Ejemplo 13; Páginas 95-107); documento WO200212341 (Reivindicación 68; Fig 7); documento WO200213847 (Páginas 71-74); documento WO200214503 (Páginas 114-117); documento WO200153463 (Reivindicación 2; Páginas 41-46); documento WO200141787 (Páginas 15); documento WO200044899 (Reivindicación 52; Fig 7); documento WO200020579 (Reivindicación 3; Fig 2); documento 15 US5869445 (Reivindicación 3; Col 31-38); documento WO9630514 (Reivindicación 2; Páginas 56-61); EP1439393 (Reivindicación 7); documento WO2004043361 (Reivindicación 7); documento WO2004022709; documento WO200100244 (Ejemplo 3; Fig 4); Acceso: P04626; EMBL; M11767; AAA35808.1. EMBL; M11761; 20 AAA35808.1.

MELAALCRWGLLLALLPPGAASTOVCTGTDMKLRLPASPETHLDMLRHLYQGCQVVQGNL ELTYLPTNASLSFLQDIQEVQGYVLIAHNQVRQVPLQRLRIVRGTQLFEDNYALAVLDNG DPLNNTTPVTGASPGGLRELQLRSLTEILKGGVLIQRNPQLCYQDTILWKDIFHKNNQLA I.TI.IDTNRSRACHPCSPMCKGSRCWGESSEDCOSLTRTVCAGGCARCKGPLPTDCCHEOC **AAGCTGPKHSDCLACLHFNHSGICELHCPALVTYNTDTFESMPNPEGRYTFGASCVTACP** YNYLSTDVGSCTLVCPLHNOEVTAEDGTQRCEKCSKPCARVCYGLGMEHLREVRAVTSAN IOEFAGCKKIFGSLAFLPESFDGDPASNTAPLQPEQLQVFETLEEITGYLYISAWPDSLP DLSVFQNLQVIRGRILHNGAYSLTLQGLGISWLGLRSLRELGSGLALIHHNTHLCFVHTV PWDOLFRNPHOALLHTANRPEDECVGEGLACHQLCARGHCWGPGPTQCVNCSQFLRGQEC VEECRVLOGLPREYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARC PSGVKPDLSYMPIWKFPDEEGACQPCPINCTHSCVDLDDKGCPAEQRASPLTSIISAVVG ILLVVVLGVVFGILIKRROOKIRKYTMRRLLQETELVEPLTPSGAMPNQAQMRILKETEL RKVKVLGSGAFGTVYKGIWIPDGENVKIPVAIKVLRENTSPKANKEILDEAYVMAGVGSP YVSRLLGICLTSTVOLVTQLMPYGCLLDHVRENRGRLGSQDLLNWCMQIAKGMSYLEDVR LVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEYHADGGKVPIKWMALESILRRRFT HOSDVWSYGVTVWELMTFGAKPYDGIPAREIPDLLEKGERLPQPPICTIDVYMIMVKCWM IDSECRPRFRELVSEFSRMARDPORFVVIQNEDLGPASPLDSTFYRSLLEDDDMGDLVDA EEYLVPOOGFFCPDPAPGAGGMVHHRHRSSSTRSGGGDLTLGLEPSEEEAPRSPLAPSEG AGSDVFDGDLGMGAAKGLQSLPTHDPSPLQRYSEDPTVPLPSETDGYVAPLTCSPQPEYV NOPDVRPOPPSPREGPLPAARPAGATLERPKTLSPGKNGVVKDVFAFGGAVENPEYLTPQ GGAAPOPHPPPAFSPAFDNLYYWDODPPERGAPPSTFKGTPTAENPEYLGLDVPV

(SEC ID N°: 17)

(18) NCA (CEACAM6, № de acceso en Genbank M18728);
Barnett T., etal Genomics 3, 59-66, 1988; Tawaragi Y., et al. Biochem. Biophys. Res. Commun. 150, 89-96, 1988;
Strausberg R.L., et al. Proc. Natl. Acad. Sci. USA. 99: 16899-16903, 2002; documento WO2004063709;
documento EP1439393 (Reivindicación 7); documento WO2004044178 (Ejemplo 4); documento WO2004031238; documento WO2003042661 (Reivindicación 12); documento WO200278524 (Ejemplo 2);
documento WO200286443 (Reivindicación 27; Página 427); documento WO200260317 (Reivindicación 2);
Acceso: P40199; Q14920; EMBL; M29541; AAA59915.1. EMBL; M18728;

344 aa

5

10

15

MGPPSAPPCRLHVPWKEVLLTASLLTFWNPPTTAKLTIESTPFNVAEGKEVLLLAHNLPQ
NRIGYSWYKGERVDGNSLIVGYVIGTQQATPGPAYSGRETIYPNASLLIQNVTQNDTGFY
TLQVIKSDLVNEEATGQFHVYPELPKPSISSNNSNPVEDKDAVAFTCEPEVQNTTYLWWV
NGQSLPVSPRLQLSNGNMTLTLLSVKRNDAGSYECEIQNPASANRSDPVTLNVLYGPDVP
TISPSKANYRPGENLNLSCHAASNPPAQYSWFINGTFQQSTQELFIPNITVNNSGSYMCQ
AHNSATGLNRTTVTMITVSGSAPVLSAVATVGITIGVLARVALI

(SEC ID Nº: 18)

(19) MDP (DPEP1, Nº de acceso en Genbank BC017023,

Proc. Natl. Acad. Sci. USA. 99 (26): 16899-16903 (2002)); documento WO2003016475 (Reivindicación 1); documento WO200264798 (Reivindicación 33; Páginas 85-87); documento JP05003790 (Fig 6-8); documento WO9946284 (Fig 9);

Referencias cruzadas: MIM:179780; AAH17023.1; BC017023 1

MWSGWWLWPLVAVCTADFFRDEAERIMRDSPVIDGHNDLPWQLLDMFNNRLQDERANLTT
LAGTHTNIPKLRAGFVGGQFWSVYTPCDTQNKDAVRRTLEQMDVVHRMCRMYPETFLYVT
SSAGIRQAFREGKVASLIGVEGGHSIDSSLGVLRALYQLGMRYLTLTHSCNTPWADNWLV
DTGDSEPQSQGLSPFGQRVVKELNRLGVLIDLAHVSVATMKATLQLSRAPVIFSHSSAYS
VCASRRNVPDDVLRLVKQTDSLVMVNFYNNYISCTNKANLSQVADHLDHIKEVAGARAVG
FGGDFDGVPRVPEGLEDVSKYPDLIAELLRRNWTEAEVKGALADNLLRVFEAVEQASNLT
QAPEEEPIPLDQLGGSCRTHYGYSSGASSLHRHWGLLLASLAPLVLCLSLL

(SEC ID Nº: 19)

(20) IL20Rα (IL20Ra, ZCYTOR7, N^0 de acceso en Genbank AF184971); Clark H.F., et al. Genome Res. 13, 2265-2270, 2003; Mungall A.J., et al. Nature 425, 805-811, 2003; Blumberg H., et al. Cell 104, 9-19, 2001; Dumoutier L., et al. J. Immunol. 167, 3545-3549,2001; Parrish-Novak J., et al. J. Biol. Chem. 277, 47517-47523, 2002; Pletnev S., et al. (2003) Biochemistry 42: 12617-12624; Sheikh F., et al. (2004) J. Immunol. 172, 2006-2010; documento EP1394274 (Ejemplo 11); documento US2004005320 (Ejemplo 5); documento W02003029262 (Páginas 74-75); documento W02003002717 (Reivindicación 2; Página 63); documento W0200222153 (Páginas 45-47); documento US2002042366 (Páginas 20-21); documento W0200146261 (Páginas 57-59); documento W0200146232 (Páginas 63-65); documento W09837193 (Reivindicación 1; Páginas 55-59); Acceso: Q9UHF4; Q6UWA9; Q96SH8; EMBL; AF184971; AAF01320.1.

553 aa

MRAPGRPALRPLPPLLLLLLAAPWGRAVPCVSGGLPKPANITFLSINMKNVLQWTPPE
GLQGVKVTYTVQYFIYGQKKWLNKSECRNINRTYCDLSAETSDYEHQYYAKVKAIWGTKC
SKWAESGRFYPFLETQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIYSNLK
YNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTL
KDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRF
FVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHL
GYASHLMEIFCDSEENTEGTSFTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELS
LQEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLV
DWDPQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQ
FMEEWGLYVQMEN

(SEC ID Nº: 20)

15

20

5

10

(21) Brevican (BCAN, BEHAB, N° de acceso en Genbank AF229053) Gary S.C., et al. Gene 256, 139-147, 2000; Clark H.F., et al. Genome Res. 13, 2265-2270, 2003; Strausberg R.L., et al. Proc. Natl. Acad. Sci. USA. 99, 16899-16903, 2002; documento US2003186372 (Reivindicación 11); documento US2003186373 (Reivindicación 11); documento US2003119131 (Reivindicación 1; Fig 52); documento US2003119122 (Reivindicación 1; Fig 52); documento US2003119126 (Reivindicación 1); documento US2003119121 (Reivindicación 1; Fig 52); documento US2003119129 (Reivindicación 1); documento US2003119130 (Reivindicación 1); documento US2003119125 (Reivindicación 1); documento US200311912

MAQLFLPLLAALVLAQAPAALADVLEGDSSEDRAFRVRIAGDAPLQGVLGGALTIPCHVH
YLRPPPSRRAVLGSPRVKWTFLSRGREAEVLVARGVRVKVNEAYRFRVALPAYPASLTDV
SLALSELRPNDSGIYRCEVQHGIDDSSDAVEVKVKGVVFLYREGSARYAFSFSGAQEACA
RIGAHIATPEQLYAAYLGGYEQCDAGWLSDQTVRYPIQTPREACYGDMDGFPGVRNYGVV
DPDDLYDVYCYAEDLNGELFLGDPPEKLTLEEARAYCQERGAEIATTGQLYAAWDGGLDH
CSPGWLADGSVRYPIVTPSQRCGGGLPGVKTLFLFPNQTGFPNKHSRFNVYCFRDSAQPS
AIPEASNPASNPASDGLEAIVTVTETLEELQLPQEATESESRGAIYSIPIMEDGGGGSST
PEDPAEAPRTLLEFETQSMVPPTGFSEEEGKALEEEEKYEDEEEKEEEEEEEVEDEALW
AWPSELSSPGPEASLPTEPAAQEKSLSQAPARAVLQPGASPLPDGESEASRPPRVHGPPT
ETLPTPRERNLASPSPSTLVEAREVGEATGGPELSGVPRGESEETGSSEGAPSLLPATRA
PEGTRELEAPSEDNSGRTAPAGTSVQAQPVLPTDSASRGGVAVVPASGDCVPSPCHNGGT
CLEEEEGVRCLCLPGYGGDLCDVGLRFCNPGWDAFQGACYKHFSTRRSWEEAETQCRMYG
AHLASISTPEEQDFINNRYREYQWIGLNDRTIEGDFLWSDGVPLLYENWNPGQPDSYFLS
GENCVVMVWHDQGQWSDVPCNYHLSYTCKMGLVSCGPPPELPLAQVFGRPRLRYEVDTVL
RYRCREGLAQRNLPLIRCQENGRWEAPQISCVPRRPARALHPEEDPEGRQGRLLGRWKAL

LIPPSSPMPGP

(SEC ID Nº: 21)

(22) EphB2R (DRT, ERK, Hek5, EPHT3, Tyro5, Nº de acceso en Genbank NM_004442) Chan, J. y Watt, V.M., Oncogene 6 (6), 1057-1061 (1991) Oncogene 10 (5): 897-905 (1995), Annu. Rev. Neurosci. 21: 309-345 (1998), Int. Rev. Cytol. 196: 177-244 (2000)); documento WO2003042661 (Reivindicación 12); documento WO200053216 (Reivindicación 1; Página 41); documento WO2004065576 (Reivindicación 1); documento WO2004020583 (Reivindicación 9); documento WO2003004529 (Páginas 128-132); documento WO200053216 (Reivindicación 1; Página 42);

Referencias cruzadas: MIM:600997; NP 004433.2; NM 004442 1

10

MALRRIGAALLLLPLLAAVEETLMDSTTATAELGWMVHPPSGWEEVSGYDENMNTIRTYO VCNVFESSONNWLRTKF1RRRGAHR1HVEMKFSVRDCSS1PSVPGSCKETFNLYYYEADF DSATKTFPNWMENPWVKVDTIAADESFSQVDLGGRVMKINTEVRSFGPVSRSGFYLAFQD YGGCMSLIAVRVFYRKCPRIIONGAIFOETLSGAESTSLVAARGSCIANAEEVDVPIKLY CNGDGEWLVPIGRCMCKAGFEAVENGTVCRGCPSGTFKANOGDEACTHCPINSRTTSEGA TNCVCRNGYYRADLDPLDMPCTTIPSAPQAVISSVNETSLMLEWTPPRDSGGREDLVYNI ICKSCGSGRGACTRCGDNVQYAPRQLGLTEPRIYISDLLAHTQYTFEIQAVNGVTDQSPF SPQFASVNITTNQAAPSAVSIMHQVSRTVDSITLSWSQPDQPNGVILDYBLQYYEKBLSE YNATAIKSPTNTVTVQGLKAGAIYVFQVRARTVAGYGRYSGKMYFQTMTEAEYQTSIQEK LPLIIGSSAAGLVFLIAVVVIAIVCNRRRGFERADSEYTDKLQHYTSGHMTPGMKIYIDP FTYEDPNEAVREFAKEIDISCVKIEOVIGAGEFGEVCSGHLKLPGKREIFVAIKTLKSGY TEKORROFLSEASIMGOFDHPNVIHLEGVVTKSTPVMIITEFMENGSLDSFLRONDGOFT VIQLVGMLRGIAAGMKYLADMNYVHRDLAARNILVNSNLVCKVSDFGLSRFLEDDTSDPT YTSALGGKIPIRWTAPEAIQYRKFTSASDVWSYGIVMWEVMSYGERPYWDMTNQDVINAI EQDYRLPPPMDCPSALHQLMLDCWQKDRNHRPKFGQIVNTLDKMIRNPNSLKAMAPLSSG INLPLLDRTIPDYTSFNTVDEWLEAIKMGQYKESFANAGFTSFDVVSQMMMEDILRVGVT LAGHQKKILNSIQVMRAQMNQIQSVEV

(SEC ID Nº: 22)

(23) ASLG659 (B7h, Nº de acceso en Genbank AX092328) documento US20040101899 (Reivindicación 2); documento WO2003104399 (Reivindicación 11); documento WO2004000221 (Fig 3); documento US2003165504 (Reivindicación 1); documento USA2003124140 (Ejemplo 2); documento US2003065143 (Fig 60); documento WO2002102235 (Reivindicación 13; Página 299); documento US2003091580 (Ejemplo 2); documento WO200210187 (Reivindicación 6; Fig 10); documento WO200194641 (Reivindicación 12; Fig 7b); documento WO200202624 (Reivindicación 13; Fig 1A-1B); documento US2002034749 (Reivindicación 54; Páginas 45-46); documento WO200206317 (Ejemplo 2; Páginas 321-322); documento WO200271928 (Páginas 468-469); documento WO200202587 (Ejemplo 1; Fig 1); documento WO200140269 (Ejemplo 3; Paginas 190-192); documento WO2003004989 (Reivindicación 1); documento WO200271928 (Páginas 233-234,452-453); documento WO 0116318;

282 aa

5

10

20

25

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEP DIKLSDIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNV QLTDAGTYKCYIITSKGKKNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVV WASQVDQGANFSEVSNTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKV TESEIKRRSHLQLLNSKASLCVSSFFAISWALLPLSPYLMLK

15 (SEC ID N°: 23)

(24) PSCA (Percusor antigénico de células madre prostáticas, № de acceso en Genbank AJ297436) Reiter R.E., et al. Proc. Natl. Acad. Sci. USA. 95, 1735-1740, 1998; Gu Z., et al. Oncogene 19, 1288-1296, 2000; Biochem. Biophys. Res. Commun. (2000) 275(3): 783-788; documento WO2004022709; documento EP1394274 (Ejemplo 11); documento US2004018553 (Reivindicación 17); documento WO2003008537 (Reivindicación 1); documento WO200281646 (Reivindicación 1; Página 164); documento WO2003003906 (Reivindicación 10; Página 288); documento WO200140309 (Ejemplo 1; Fig 17); documento US2001055751 (Ejemplo 1; Fig 1b); documento WO200032752 (Reivindicación 18; Fig 1); documento WO9851805 (Reivindicación 17; Página 97); documento WO9851824 (Reivindicación 10; Página 94); documento WO9840403 (Reivindicación 2; Fig 1B); Acceso: 043653; EMBL; AF043498; AAC39607.1.

MKAVLLALLMAGLALOPGTALLCYSCKAQVSNEDCLQVENCTQLGEQCWTARIRAVGLLT VISKGCSLNCVDDSODYYVGKKNITCCDTDLCNASGAHALQPAAAILALLPALGLLLWGP GQL

(SEC ID Nº: 24)

(25) GEDA (Nº de acceso en Genbank AY260763);

AAP14954 proteína de tipo pareja de fusión de lipoma de hmgic /pid = AAP14954.1 - Homo sapiens

Especie: Homo sapiens (humano)

documento WO2003054152 (Reivindicación 20); documento WO2003000842 (Reivindicación 1); documento WO2003023013 (Ejemplo 3, Reivindicación 20); documento US2003194704

(Reivindicación 45);

Referencias cruzadas: GI:30102449; AAP14954.1; AY260763 1

10

5

236 aa

MPGAAAAAAAAAMLPAQEAAKLYHTNYVRNSRAIGVLWAIFTICFAIVNVVCFIQPYW IGDGVDTPQAGYFGLFHYCIGNGFSRELTCRGSFTDFSTLPSGAFKAASFF1GLSMMLII ACIICFTLFFFCNTATVYKICAWMQLTSAACLVLGCMIFPDGWDSDEVKRMCGEKTDKYT LGACSVRWAYILAIIGILDALILSFLAFVLGNRQDSLMAEELKAENKVLLSQYSLE

(SEC ID Nº: 25)

15

(26) BAFF-R (receptor del factor de activación de linfocitos B, receptor 3 de BLyS, BR3, № de acceso en Genbank NP_443177.1); NP_443177 BAFF receptor /pid=NP_443177.1 - Homo sapiens Thompson, J.S., et al. Science 293 (5537), 2108-2111 (2001); documento WO2004058309; documento W02004011611; documento WO2003045422 (Ejemplo; Páginas 32-33); documento WO2003014294 (Reivindicación 35; Fig 6B); documento WO2003035846 (Reivindicación 70; Páginas 615-616); documento WO200294852 (Col 136-137); documento WO200238766 (Reivindicación 3; Página 133); documento WO200224909 (Ejemplo 3; Fig 3); Referencias cruzadas: MIM:606269; NP 443177.1; NM 052945 1

20

184 aa

MRRGPRSLRGRDAPAFTPCVPAECFDLLVRHCVACGLLRTPRPKPAGASSPAPRTALQPQ ESVGAGAGEAALPLPGLLFGAPALLGLALVLALVLVGLVSWRRRQRRLRGASSAEAPDGD KDAPEPLDKVI ILSPGISDATAPAWPPPGEDPGTTPPGHSVPVPATELGSTELVTTKTAG PEQQ

(SEC ID Nº: 26)

25

(27) CD22 (isoforma CD22-B de receptores de linfocitos B, Nº de acceso en Genbank NP-001762.1); Stamenkovic, I. y Seed, B., Nature 345 (6270), 74-77 (1990); documento US2003157113; documento US2003118592; documento WO2003062401 (Reivindicación 9); documento WO2003072036 (Reivindicación 1; Fig 1); documento WO200278524 (Ejemplo 2);

Referencias cruzadas: MIM:107266; NP_001762.1; NM_001771_1

MHLLGPWLLLLVLEYLAFSDSSKWVFEHPETLYAWEGACVWIPCTYRALDGDLESFILFH
NPEYNKNTSKFDGTRLYESTKDGKVPSEQKRVQFLGDKNKNCTLSIHPVHLNDSGQLGLR
MESKTEKWMERIHLNVSERPFPPHIQLPPEIQESQEVTLTCLLNFSCYGYPIQLQWLLEG
VPMRQAAVTSTSLTIKSVFTRSELKFSPQWSHHGKIVTCQLQDADGKFLSNDTVQLNVKH
TPKLEIKVTPSDAIVREGDSVTMTCEVSSSNPEYTTVSWLKDGTSLKKQNTFTLNLREVT
KDQSGKYCCQVSNDVGPGRSEEVFLQVQYAPEPSTVQILHSPAVEGSQVEFLCMSLANPL
PTNYTWYHNGKEMQGRTEEKVHIPKILPWHAGTYSCVAENILGTGQRGPGAELDVQYPPK

KVTTVIQNPMPIREGDTVTLSCNYNSSNPSVTRYEWKPHGAWEEPSLGVLKIQNVGWDNT
TIACARCNSWCSWASPVALNVQYAPRDVRVRKIKPLSEIHSGNSVSLQCDFSSSHPKEVQ
FFWEKNGRLLGKESQLNFDSISPEDAGSYSCWVNNSIGQTASKAWTLEVLYAPRRLRVSM
SPGDQVMEGKSATLTCESDANPPVSHYTWFDWNNQSLPHHSQKLRLEPVKVQHSGAYWCQ
GTNSVGKGRSPLSTLTVYYSPETIGRRVAVGLGSCLAILILAICGLKLQRRWKRTQSQQG
LQENSSGQSFFVRNKKVRRAPLSEGPHSLGCYNPMMEDGISYTTLRFPEMNIPRTGDAES
SEMQRPPRTCDDTVTYSALHKRQVGDYENVIPDFPEDEGIHYSELIQFGVGERPQAQENV
DYVILKH

(SEC ID Nº: 27)

(28) CD79a (CD79A, CD79α, asociado a inmunoglobulina alfa, una proteína específica de linfocitos B que interactúa covalentemente con lg beta (CD79B) y forma un complejo sobre la superficie de moléculas de IgM, transduce una señal implicada en la diferenciación de linfocitos B) SECUENCIA DE PROTEÍNA Total mpggpgv...dvqlekp (1..226; 226 aa), pl: 4.84, PM: 25028 TM: 2 [P] Gen Cromosoma: 19q13.2, Nº de acceso en Genbank NP_001774.1;

documento WO2003088808, documento US20030228319; documento WO2003062401 (reivindicación 9); documento US2002150573 (reivindicación 4, páginas 13-14); documento WO9958658 (reivindicación 13, Fig 16); documento WO9207574 (Fig 1); documento US5644033; Ha et al. (1992) J. Immunol. 148 (5): 1526-1531; Mueller et al (1992) Eur. J. Biochem. 22: 1621-1625; Hashimoto et al. (1994) Immunogenetics 40(4): 287-295; Preud'homme e al. (1992) Clin. Exp. Immunol. 90(1):141-146; Yu et al. (1992) J. Immunol. 148 (2) 633-637; Sakaguchi et al. (1988) EMBO J. 7 (11): 3457-3464;

226 aa

MPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKVPASLMVSLGEDAHFQCPHNSSN NANVTWWRVLHGNYTWPPEFLGPGEDPNGTLIIQNVNKSHGGIYVCRVQEGNESYQQSCG TYLRVRQPPPRPFLDMGEGTKNRIITAEGIILLFCAVVPGTLLLFRKRWQNEKLGLDAGD EYEDENLYEGLNLDDCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP

(SEC ID N°: 28)

15

20

25

5

10

(29) CXCR5 (receptor del linfoma de Burkitt 1, un receptor acoplado a la proteína G que se activa con la quimioquina CXCL13, funciona en la migración de linfocitos y en la defensa humoral, desempeña un papel en la infección por VIH-2 y quizá en el desarrollo de SIDA, linfoma, mieloma, y leucemia) SECUENCIA DE PROTEÍNA Total mnypltl...atslttf (1..372; 372 aa), pl: 8.54 PM: 41959 TM: 7 [P] Gen Cromosoma: 11q23.3, Nº de acceso en Genbank NP 001707.1;

documento WO2004040000; documento WO2004015426; documento US2003105292 (Ejemplo 2); documento US6555339 (Ejemplo 2); documento WO200261087 (Fig 1); documento WO200157188 (Reivindicación 20, páginas 269); documento WO200172830 (página 12-13); documento WO200022129 (Ejemplo 1, páginas 152-153, Ejemplo 2, páginas 254-256); documento WO9928468 (reivindicación 1, página 38); documento US5440021 (Ejemplo 2, col 49-52); documento WO9428931 (páginas 56-58); documento WO9217497 (reivindicación 7, Fig 5); Dobner et al. (1992) Eur. J. Immunol. 22: 2795-2799; Barella et al. (1995) Biochem. J. 309:773-779;

MNYPLTLEMDLENLEDLFWELDRLDNYNDTSLVENHLCPATEGPLMASFKAVFVPVAYSL
IFLLGVIGNVLVLVILERHRQTRSSTETFLFHLAVADLLLVFILPFAVAEGSVGWVLGTF
LCKTVIALHKVNFYCSSLLLACIAVDRYLAIVHAVHAYRHRRLLSIHITCGTIWLVGFLL
ALPEILFAKVSQGHHNNSLPRCTFSQENQAETHAWFTSRFLYHVAGFLLPMLVMGWCYVG
VVHRLRQAQRRPQRQKAVRVAILVTSIFFLCWSPYHIVIFLDTLARLKAVDNTCKLNGSL
PVAITMCEFLGLAHCCLNPMLYTFAGVKFRSDLSRLLTKLGCTGPASLCQLFPSWRRSSL
SESENATSLTTF

(SEC ID N°: 29)

(30) HLA-DOB (Subunidad beta de la molécula MHC de clase II (antígeno la) que se une a péptidos y los presenta a linfocitos T CD4+) SECUENCIA DE PROTEÍNA Total mgsgwvp...vllpqsc (1..273; 273 aa, pl: 6.56 PM: 30820 TM: 1 [P] Gen Cromosoma: 6p21.3, № de acceso en Genbank NP_002111.1; Tonnelle et al. (1985) EMBO J. 4 (11): 2839-2847; Jonsson et al. (1989) Immunogenetics 29 (6): 411-413; Beck et al. (1992) J. Mol. Biol. 228: 433-441; Strausberg et al. (2002) Proc. Natl. Acad. Sci USA 99: 16899-16903; Servenius et al. (1987) J. Biol. Chem. 262: 8759-8766; Beck et al. (1996) J. Mol. Biol. 255: 1-13; Naruse et al. (2002) Tissue Antigens 59: 512-519; documento WO9958658 (reivindicación 13, Fig 15); documento US6153408 (Col 35-38); documento US5976551 (col 168-170); documento US6011146 (col 145-146); Kasahara et al. (1989) Immunogenetics 30 (1): 66-68; Larhammar et al. (1985) J. Biol. Chem. 260 (26): 14111-14119;

273 aa

MGSGWVPWVVALLVNLTRLDSSMTQGTDSPEDFVIQAKADCYFTNGTEKVQFVVRFIFNL EEYVRFDSDVGMFVALTKLGQPDAEQWNSRLDLLERSRQAVDGVCRHNYRLGAPFTVGRK VQPEVTVYPERTPLLHQHNLLHCSVTGFYPGDIKIKWFLNGQEERAGVMSTGPIRNGDWT FQTVVMLEMTPELGHVYTCLVDHSSLLSPVSVEWRAQSEYSWRKMLSGIAAFLLGLIFLL VGIVIQLRAQKGYVRTQMSGNEVSRAVLLPQSC

(31) P2X5 (Canal iónico 5 abierto por el ligando receptor purinérgico P2X, un canal aniónico abierto por ATP extracelular, puede estar implicado en la transmisión y en la neurogénesis sináptica, la deficiencia puede contribuir a la patofisiología de inestabilidad) SECUENCIA DE PROTEÍNA Total mgqagck...lephrst (1..422; 422 aa), pl: 7.63, PM: 47206 TM: 1 [P] Gen Cromosoma: 17p13.3, № de acceso en Genbank NP_002552.2; Le et al. (1997) FEBS Lett. 418 (1-2): 195-199; documento WO2004047749; documento WO2003072035 (reivindicación 10); Touchman et al. (2000) Genome Res. 10: 165-173; documento WO200222660 (reivindicación 20); documento WO2003093444 (reivindicación 1); documento WO2003087768 (reivindicación 1); documento WO2003029277 (página 82);

422 aa

MGQAGCKGLCLSLFDYKTEKYVIAKNKKVGLLYRLLQASILAYLVVWVFLIKKGYQDVDT SLQSAVITKVKGVAFTNTSDLGQRIWDVADYVIPAQGENVFFVVTNLIVTPNQRQNVCAE NEGIPDGACSKDSDCHAGEAVTAGNGVKTGRCLRRENLARGTCEIFAWCPLETSSRPEEP FLKEAEDFTIFIKNHIRFPKFNFSKSNVMDVKDRSFLKSCHFGPKNHYCPIFRLGSVIRW AGSDFQDIALEGGVIGINIEWNCDLDKAASECHPHYSFSRLDNKLSKSVSSGYNFRFARY YRDAAGVEFRTLMKAYGIRFDVMVNGKGAFFCDLVLIYLIKKREFYRDKKYEEVRGLEDS SQEAEDEASGLGLSEQLTSGPGLLGMPEQQELQEPPEAKRGSSSQKGNGSVCPQLLEPHR ST

(SEC ID N°: 31)

25

5

10

15

20

(33) CD72 (antígeno CD72 de diferenciación de linfocitos B , Lyb-2) SECUENCIA DE PROTEÍNA Total

maeaity...tafrfpd (1..359; 359 aa), pl: 8.66, PM: 40225 TM: 1 [P] Gen Cromosoma: 9p13.3, N^{o} de acceso en Genbank NP 001773.1;

documento WO2004042346 (reivindicación 65); documento WO2003026493 (páginas 51-52, 57-58); documento WO200075655 (páginas 105-106); Von Hoegen et al. (1990) J. Immunol. 144 (12): 4870-4877; Strausberg et al. (2002) Proc. Natl. Acad. Sci USA 99: 16899-16903;

359 aa

5

10

15

MAEAITYADLRFVKAPLKKSISSRLGQDPGADDDGEITYENVQVPAVLGVPSSLASSVLG
DKAAVKSEQPTASWRAVTSPAVGRILPCRTTCLRYLLLGLLLTCLLLGVTAICLGVRYLQ
VSQQLQQTNRVLEVTNSSLRQQLRLKITQLGQSAEDLQGSRRELAQSQEALQVEQRAHQA
AEGQLQACQADRQKTKETLQSEEQQRRALEQKLSNMENRLKPFFTCGSADTCCPSGWIMH
QKSCFYISLTSKNWQESQKQCETLSSKLATFSEIYPQSHSYYFLNSLLPNGGSGNSYWTG
LSSNKDWKLTDDTQRTRTYAQSSKCNKVHKTWSWWTLESESCRSSLPYICEMTAPRFPD

(SEC ID N°: 32)

(33) LY64 (Antígeno 64 de linfocitos (RP105), proteína de membrana de tipo I de la familia de repetición rica en leucina (LRR), regula la activación y apoptosis de linfocitos B, la pérdida de función está asociada con mayor actividad de la enfermedad en pacientes con lupus sistémico eritematoso) SECUENCIA DE PROTEÍNA Total mafdvsc...rwkyqhi (1..661; 661 aa), pl: 6.20, PM: 74147 TM: 1 [P] Gen Cromosoma: 5q12, № de acceso en Genbank NP_005573.1; documento US2002193567; documento WO9707198 (reivindicación 11, páginas 39-42); Miura et al. (1996) Genomics 3 (3): 299-304; Miura et al. (1998) Blood 92: 2815-2822; documento WO2003083047; documento WO9744452 (reivindicación 8, páginas 57-61); documento W0200012130 (páginas 24-26);

661 aa

MAFDVSCFFWVVLFSAGCKVITSWDQMCIEKEANKTYNCENLGLSEIPDTLPNTTEFLEF
SFNFLPTIHNRTFSRLMNLTPLDLTRCQINWIHEDTFQSHHQLSTLVLTGNPLIFMAETS
LNGPKSLKHLFLIQTGISNLEFIPVHNLENLESLYLGSNHISSIKFPKDFPARNLKVLDF
QNNAIHYISREDMRSLEQAINLSLNFNGNNVKGIELGAFDSTVFQSLNFGGTPNLSVIFN
GLQNSTTQSLWLGTFEDIDDEDISSAMLKGLCEMSVESLNLQEHRFSDISSTTFQCFTQL
QELDLTATHLKGLPSGMKGLNLLKKLVLSVNHFDQLCQISAANFPSLTHLYIRGNVKKLH
LGVGCLEKLGNLQTLDLSHNDIEASDCCSLQLKNLSHLQTLNLSHNEPLGLQSQAFKECP
QLELLDLAFTRLHINAPQSPFQNLHFLQVLNLTYCFLDTSNQHLLAGLPVLRHLNLKGNH
FQDGTITKTNLLQTVGSLEVLILSSCGLLSIDQQAFHSLGKMSHVDLSHNSLTCDSIDSL
SHLKGIYLNLAANSINIISPRLLPILSQQSTINLSHNPLDCTCSNIHFLTWYKENLHKLE
GSEETTCANPPSLRGVKLSDVKLSCGITAIGIFFLIVFLLLLAILLFFAVKYLLRWKYQH

(SEC ID N°: 33)

- 20 (34) FCRH1 (proteína 1 de tipo receptor de Fc,1 supuesto receptor para el dominio Fc de la inmunoglobulina que contiene los dominios similar a Ig de tipo C2 e ITAM, puede tener un papel en la diferenciación de linfocitos B) SECUENCIA DE PROTEÍNA Total mlprlll...vdye-dam (1..429; 429 aa), pl: 5.28, PM: 46925 TM: 1 [P] Gen Cromosoma: 1q21-1q22, Nº de acceso en Genbank NP_ 443170.1;
- documento WO2003077836; documento WO200138490 (reivindicación 6, Fig 18E-1-18-E-2); Davis et al. (2001)
 Proc. Natl. Acad. Sci USA 98 (17): 9772-9777; documento WO2003089624 (reivindicación 8); documento EP1347046 (reivindicación 1); documento WO2003089624 (reivindicación 7);

MLPRLLLLICAPLCEPAELFLIASPSHPTEGSPVTLTCKMPFLQSSDAQFQFCFFRDTRA LGPGWSSSPKLQIAAMWKEDTGSYWCEAQTMASKVLRSRRSQINVHRVPVADVSLETQPP GGOVMEGDRLVLICSVAMGTGDITFLWYKGAVGLNLQSKTQRSLTAEYEIPSVRESDAEQ

YYCVAENGYGPSPSGLVSITVRIPVSRPILMLRAPRAQAAVEDVLELHCEALRGSPPILY WFYHEDITLGSRSAPSGGGASFNLSLTEEHSGNYSCEANNGLGAQRSEAVTLNFTVPTGA RSNHLTSGVIEGLLSTLGPATVALLFCYGLKRKIGRRSARDPLRSLPSPLPQEFTYLNSP TPGQLQPIYENVNVVSGDEVYSLAYYNQPEQESVAAETLGTHMEDKVSLDIYSRLRKANI TDVDYEDAM

(SEC ID Nº: 34)

(35) IRTA2 (Translocación asociada al receptor 2 de la superfamilia de inmunoglobulinas, un supuesto inmunoreceptor con posibles papeles en el desarrollo y la linfomagénesis de linfocitos B; la desregulación de los genes por translocación se produce en algunas neoplasias de linfocitos B) SECUENCIA DE PROTEÍNA Total mllwvil...assaphr (1..977; 977 aa), pl: 6.88 PM: 106468 TM: 1 [P] Gen Cromosoma: 1q21, № de acceso en Genbank NP_112571.1; documento WO2003024392 (reivindicación 2, Fig 97); Nakayama et al. (2000) Biochem. Biophys. Res. Commun. 277 (1): 124-127; documento WO2003077836; documento WO200138490 (reivindicación 3, Fig 18B-1-18B-2);

977 aa

5

10

MLLWVILLVLAPVSGQFARTPRPIIFLQPPWTTVFQGERVTLTCKGFRFYSPQKTKWYHR YLGKEILRETPDNILEVQESGEYRCQAQGSPLSSPVHLDFSSASLILQAPLSVFEGDSVV LRCRAKAEVTLNNTIYKNDNVLAFLNKRTDFHIPHACLKDNGAYRCTGYKESCCPVSSNT VKIQVQEPFTRPVLRASSFQPISGNPVTLTCETQLSLERSDVPLRFRFFRDDQTLGLGWS LSPNFQITAMWSKDSGFYWCKAATMPHSVISDSPRSWIQVQIPASHPVLTLSPEKALNFE GTKVTLHCETQEDSLRTLYRFYHEGVPLRHKSVRCERGASISFSLTTENSGNYYCTADNG LGAKPSKAVSLSVTVPVSHPVLNLSSPEDLIFEGAKVTLHCEAORGSLPILYOFHHEDAA LERRSANSAGGVAISFSLTAEHSGNYYCTADNGFGPORSKAVSLSITVPVSHPVLTLSSA EALTFEGATVTLHCEVQRGSPQILYQFYHEDMPLWSSSTPSVGRVSFSFSLTEGHSGNYY CTADNGFGPORSEVVSLFVTVPVSRPILTLRVPRAOAVVGDLLELHCEAPRGSPPILYWF YHEDVTLGSSSAPSGGEASFNLSLTAEHSGNYSCEANNGLVAQHSDTISLSVIVPVSRPI LTFRAPRAQAVVGDLLELHCEALRGSSPILYWFYHEDVTLGKISAPSGGGASFNLSLTTE HSGIYSCEADNGPEAORSEMVTLKVAVPVSRPVLTLRAPGTHAAVGDLLELHCEALRGSP LILYRFFHEDVTLGNRSSPSGGASLNLSLTAEHSGNYSCEADNGLGAQRSETVTLYITGL TANRSGPFATGVAGGLLSIAGLAAGALLLYCWLSRKAGRKPASDPARSPPDSDSOEPTYH NVPAWEELOPVYTNANPRGENVVYSEVRIIQEKKKHAVASDPRHLRNKGSPIIYSEVKVA STPVSGSLFLASSAPHR

(SEC ID Nº: 35)

Véase también: documento WO04/045516 (03 Jun 2004); documento WO03/000113 (03 Ene 2003); documento WO02/016429 (28 Feb 2002); documento WO02/16581 (28 Feb 2002); documento WO03/024392 (27 Mar 2003); documento WO04/016225 (26 Feb 2004); documento WO01/40309 (07 Jun 2001), y solicitud de patente Provisional de Estados Unidos con Nº de Serie 60/520842 "COMPOSITIONS AND METHODS FOR THE TREATMENT OF TUMOR OF HEMATOPOIETIC ORIGIN", presentada el 17 Nov 2003; todos los cuales se incorporan en el presente documento por referencia en su totalidad.

20 En una realización, el Conjugado de Ligando-Conector-Fármaco tiene la Fórmula IIIa, en la que el Ligando es un

anticuerpo Ab que incluye uno que se une a al menos un antígeno de CD30, CD40, CD70, Lewis Y, w = 0, y = 0, y D tiene la Fórmula III. Conjugados a Modo de ejemplo de Fórmula IIIa incluyen aquéllos en los que R17 es -(CH2)5-. Además, se incluyen dichos Conjugados de Fórmula IIIa en la que D tiene la estructura del Compuesto 2 en el Ejemplo 3 y ésteres del mismo. Además, se incluyen dichos Conjugados de Fórmula IIIa que contienen de aproximadamente 3 a aproximadamente 8, en un aspecto, de aproximadamente 3 a aproximadamente 5 restos de Fármaco D, es decir, los Conjugados de Fórmula la en la que p es un valor en el intervalo de aproximadamente 3-8, por ejemplo aproximadamente 3-5. Los Conjugados que contienen combinaciones de las características estructurales que se indican en este párrafo también se contemplan dentro del alcance de los compuestos de la invención.

10

15

5

En otra realización, el Conjugado de Ligando-Conector-Fármaco tiene la Fórmula IIIa, en la que el Ligando es un Anticuerpo Ab que se une a un antígeno de CD30, CD40, CD70, Lewis Y, w = 1, y = 0, y D tiene la Fórmula lb. Se incluyen dichos Conjugados de Fórmula **Illa** en la que R^{17} es -(CH₂)₅-. Además, se incluyen dichos Conjugados de Fórmula IIIa en la que W es -Val-Cit-, y/o en la que D tiene la estructura del Compuesto 2 en el Ejemplo 3 y ésteres del mismo. Además, se incluyen dichos Conjugados de Fórmula IIIa que contienen de aproximadamente 3 a aproximadamente 8, preferentemente de aproximadamente 3 a aproximadamente 5 restos de Fármaco D, es decir, Conjugados de Fórmula la en la que p es un valor en el intervalo de aproximadamente 3-8, preferentemente de aproximadamente 3-5. Los Conjugados que contienen combinaciones de las características estructurales que se indican en este párrafo también son a modo de ejemplo.

20

25

En una realización, el Conjugado de Ligando-Conector-Fármaco tiene la Fórmula IIIa, en la que el Ligando es un Anticuerpo Ab que se une a un antígeno de CD30, CD40, CD70, Lewis Y, w = 1, y = 1, y D tiene la Fórmula III. Se incluyen los Conjugados de Fórmula IIIa en la que R^{17} es -(CH₂)₅-. Además, se incluyen dichos Conjugados de Fórmula IIIa en la que: W es -Val-Cit-; Y has Fórmula X; D tiene la estructura del Compuesto 2 en el Ejemplo 3 y ésteres del mismo; p es de aproximadamente 3 a aproximadamente 8, preferentemente de aproximadamente 3 a aproximadamente 5 restos de Fármaco D. Los Conjugados que contienen combinaciones de las características estructurales que se indican en este párrafo también se contemplan dentro del alcance de los compuestos de la invención.

30

Una realización adicional es un conjugado de anticuerpo fármaco (ADC), o una sal o un solvato farmacéuticamente aceptables del mismo, en el que Ab es un anticuerpo que se une a uno de los antígenos asociados a tumores (1)-(35) que se han indicado anteriormente (el "Compuesto TAA").

35

Otra realización es el Compuesto TAA o sal o un solvato farmacéuticamente aceptables del mismo que está en forma aislada y purificada.

Otra realización es un método para eliminar o inhibir la multiplicación de una célula tumoral o célula cancerosa que comprende administrar a un paciente, por ejemplo un ser humano con un trastorno hiperproliferativo, una cantidad del Compuesto TAA o una sal o un solvato farmacéuticamente aceptables del mismo, siendo dicha cantidad eficaz para eliminar o inhibir la multiplicación de una célula tumoral o una célula cancerosa.

40

Otra realización es un método para tratar cáncer que comprende administrar a un paciente, por ejemplo un ser humano con un trastorno hiperproliferativo, una cantidad del Compuesto TAA o una sal o un solvato farmacéuticamente aceptables del mismo, siendo dicha cantidad eficaz para tratar cáncer, solo o junto con una cantidad eficaz de un agente anticáncer adicional.

45

Otra realización es un método para tratar una enfermedad autoinmune, que comprende administrar a un paciente, por ejemplo un ser humano con un trastorno hiperproliferativo, una cantidad del Compuesto TAA o una sal o un solvato farmacéuticamente aceptables del mismo, siendo dicha cantidad eficaz para tratar una enfermedad autoinmune.

50

Los antídotos adecuados para su uso en la invención se pueden producir mediante cualquier método conocido en la técnica para la síntesis de anticuerpos, en particular, mediante síntesis química o mediante expresión recombinante, y se producen preferentemente mediante técnicas de expresión recombinante.

55

4.5.1 PRODUCCIÓN DE ANTICUERPOS RECOMBINANTES

Los anticuerpos de la invención se pueden producir usando cualquier método conocido en la técnica por ser útil para la síntesis de anticuerpos, en particular, mediante síntesis química o mediante expresión recombinante.

60

65

La expresión recombinante de anticuerpos, o fragmento, derivado o análogo de los mismos, requiere la construcción de un ácido nucleico que codifica el anticuerpo. Si se conoce la secuencia de nucleótidos del anticuerpo, un ácido nucleico que codifica el anticuerpo se pueden ensamblar a partir de oligonucleótidos sintetizados químicamente (por ejemplo, tal como se describe en Kutmeier et al., 1994, BioTechniques 17: 242), que implica la síntesis de oligonucleótidos de solapamiento que contienen porciones de la secuencia que codifica el anticuerpo. hibridación v ligadura de esos oligonucleótidos, y a continuación amplificación de los oligonucleótidos ligados, por ejemplo, por

PCR.

Como alternativa, una molécula de ácido nucleico que codifica un anticuerpo se puede generar a partir de una fuente adecuada. Si un clon que contiene el ácido nucleico que codifica el anticuerpo en particular no está disponible, pero se conoce la secuencia del anticuerpo, se puede obtener un ácido nucleico que codifica el anticuerpo a partir de una fuente adecuada (*por ejemplo*, una biblioteca de cADN de anticuerpos, o una biblioteca de cADN generada a partir de cualquier tejido o células que expresan la inmunoglobulina) mediante, *por ejemplo*, amplificación por PCR usando cebadores sintéticos que se pueden hibridar en los extremos 3' y 5' de la secuencia mediante clonación usando una secuencia de oligonucleótidos específica para la secuencia genética en particular.

10

15

Si un anticuerpo que reconoce específicamente un antígeno en particular no está disponible en el mercado (o una fuente para una biblioteca de cADN para clonar un ácido nucleico que codifica dicha inmunoglobulina), los anticuerpos específicos para un antígeno en particular se pueden generar mediante cualquier método conocido en la técnica, por ejemplo, por inmunización de un paciente, o modelo animal adecuado tal como conejo o ratón, para generar anticuerpos policionales o, más preferentemente, mediante generación de anticuerpos monoclonales, *por ejemplo*, tal como se describe en Kohler y Milstein (1975, Nature 256: 495-497) o, tal como se describe en Kozbor et al. (1983, Immunology Today 4:72) o Cole et al. (1985 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., páginas 77-96). Como alternativa, se puede obtener un clon que codifica al menos la porción Fab del anticuerpo por cribado de bibliotecas de expresión de Fab (por ejemplo, tal como se describe en Huse et al., 1989, Science 246: 1275-1281) para clones de fragmentos de Fab que se unen al antígeno específico o mediante cribado de bibliotecas de anticuerpos (Véase, *por ejemplo*, Clackson et al., 1991, Nature 352: 624; Hane et al., 1997 Proc. Natl. Acad. Sci. USA 94: 4937).

20

25

30

Una vez que se obtiene una secuencia de ácidos nucleicos que codifican al menos el dominio variable del anticuerpo, se puede introducir en un vector que contiene la secuencia de nucleótidos que codifica las regiones constantes del anticuerpo (véase, *por ejemplo*, Publicación Internacional Nº WO 86/05807; documento WO 89/01036; y Patente de Estados Unidos Nº 5122464). Están disponibles vectores que contienen la cadena ligera o pesada completa que permite la expresión de una molécula completa de anticuerpo. A continuación, se puede usar el ácido nucleico que codifica el anticuerpo para introducir las sustituciones o supresiones de nucleótidos necesarias para sustituir (o suprimir) el uno o más restos de cisteína de la región variable que participan en una unión disulfuro intracadena con un resto de aminoácido que no contiene un grupo sulfhidrilo. Dichas modificaciones se pueden realizar mediante cualquier método conocido en la técnica para la introducción de mutaciones o supresiones específicas en una secuencia de nucleótidos, por ejemplo, pero no se limitan a, mutagénesis química y mutagénesis dirigida al sitio *in vitro* (Hutchinson et al., 1978, J. Biol. Chem. 253: 6551).

35

Además, se pueden usar técnicas desarrolladas para la producción de "anticuerpos quiméricos" (Morrison et al., 1984, Proc. Natl. Acad. Sci. 81: 851-855; Neuberger et al., 1984, Nature 312: 604-608; Takeda et al., 1985, Nature 314: 452-454) mediante empalme de genes a partir del molécula de anticuerpos de ratón de una especificidad a antígenos apropiada junto con genes a partir de una molécula de anticuerpo humano y actividad biológica apropiada. Un anticuerpo quimérico es una molécula en la que diferentes porciones se derivan de diferentes especies animales, tales como las que tienen una región variable derivada de un anticuerpo monoclonal de murino y una región constante de inmunoglobulina humana, *por ejemplo*, anticuerpos humanizados.

40

45

Como alternativa, técnicas que se describen para la producción de anticuerpos de una sola cadena (Patente de Estados Unidos Nº 4.694.778; Bird, 1988, Science 242: 423-42; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85: 5879-5883; y Ward et al., 1989, Nature 334: 544-54) se pueden adaptar para producir anticuerpos de una sola cadena. Los anticuerpos de una sola cadena se forman por unión de los fragmentos de cadena pesada y ligera de la región Fv a través de un puente de aminoácido, dando como resultado un polipéptido de una sola cadena. Además, se pueden usar técnicas para el ensamblaje de fragmentos funcionales de Fv en E. *coli* (Skerra et al., 1988, Science 242: 1038-1041).

50

Se pueden generar fragmentos de anticuerpos que reconocen epítopos específicos mediante técnicas conocidas. Por ejemplo, dichos fragmentos incluyen, pero no se limitan a los fragmentos de F(ab')₂ que se pueden producir mediante digestión con pepsina de la molécula de anticuerpo y los fragmentos de Fab que se pueden generar por reducción de los puentes disulfuro de los fragmentos de F(ab')₂.

55

60

Una vez que se ha obtenido una secuencia de ácidos nucleicos que codifican un anticuerpo, el vector para la producción del anticuerpo se puede producir mediante tecnología de ADN recombinante usando técnicas bien conocidas en la materia. Se pueden usar métodos que son bien conocidos por los expertos en la materia para construir vectores de expresión que contienen las secuencias que codifican el anticuerpo y señales de control de transcripción y traducción apropiadas. Estos métodos incluyen, por ejemplo, técnicas de ADN recombinante *in vitro*, técnicas sintéticas, y recombinación genética *in vivo*. Véanse, por ejemplo, las técnicas que se describen en Sambrook et al. (1990, Molecular Cloning, A Laboratory Manual, 2ª Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) y Ausubel et al. (eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY).

65

Un vector de expresión que comprende la secuencia de nucleótidos de un anticuerpo o la secuencia de nucleótidos

de un anticuerpo se puede transferir a una célula huésped mediante técnicas convencionales (*por ejemplo*, electroporación, transfección liposomal, y precipitación con fosfato de calcio), y las células transfectadas se cultivan a continuación mediante técnicas convencionales para producir el anticuerpo. En realizaciones específicas, la expresión del anticuerpo se regula mediante un promotor específico constitutivo, inducible o un tejido.

5

10

15

20

25

30

35

40

55

60

65

Las células huésped usadas para expresar el anticuerpo recombinante pueden ser células bacterianas tales como *Escherichia coli*, o, preferentemente, células eucariotas, especialmente para la expresión de toda la molécula de inmunoglobulina recombinante. En particular, células de mamíferos tales como células de ovario de hámster chino (CHO), en conjunto con un vector tal como el elemento promotor genético primitivo intermedio principal de citomegalovirus humano es un sistema de expresión eficaz para inmunoglobulinas (Foecking et al., 198, Gene 45:101; Cockett et al., 1990, BioTechnology 8:2).

Diversos sistemas de vectores de expresión en huésped se puede usar para expresar los anticuerpos de inmunoglobulina. Dichos sistemas de expresión en huésped representan vehículos mediante los cuales se pueden producir las secuencias de codificación del anticuerpo y purificar posteriormente, pero también representan células que, cuando se transforma o se transfectan con la secuencia de codificación de nucleótidos apropiada, expresan una molécula de inmunoglobulina de anticuerpo in situ. Éstos incluyen, pero no se limitan a, microorganismos tales como bacterias (por ejemplo, E. coli y B. subtilis) transformados con vectores de expresión de ADN bacteriófago recombinante, ADN de plásmido o ADN cósmido que contiene secuencias de codificación de inmunoglobulina; levadura (por ejemplo, Saccharomyces Pichia) transformada con vectores de expresión de levadura recombinante que contienen secuencias de codificación de inmunoglobulina; sistemas celulares de insecto infectados con vectores de expresión de virus recombinante (por ejemplo, baculovirus) que contienen las secuencias de codificación de inmunoglobulina; sistemas celulares vegetales infectados con vectores de expresión de virus recombinante virus (por ejemplo, virus del mosaico de la coliflor (CaMV) y virus del mosaico del tabaco (TMV)) o transformados con vectores de expresión de plásmido recombinante (por ejemplo, plásmido Ti) que contienen secuencias de codificación de inmunoglobulina; o sistemas celulares de mamífero (por ejemplo, células COS, CHO, BH, 293, 293T, 3T3) que albergan constructos de expresión recombinante que contienen promotores derivados del genoma de células de mamífero (por ejemplo, promotor de metalotioneína) o de virus de mamífero (por ejemplo, el promotor tardío de adenovirus; el promotor 7.5K del virus de vaccinia).

En sistemas bacterianos, un número de vectores de expresión se puede seleccionar ventajosamente dependiendo del uso pretendido para el anticuerpo que se está expresando. Por ejemplo, cuando se va a producir una gran cantidad de dicha proteína, podrían ser deseables vectores que dirigen la expresión de niveles altos de productos de proteínas de fusión que se purifican fácilmente. Dichos vectores incluyen, pero no se limitan a, el vector pUR278 de expresión de *E. coli* (Ruther et al., 1983, EMBO J. 2:1791), en el que la secuencia que codifica el anticuerpo se puede librar individualmente en el vector en marco con la región de codificación *lac* Z de modo que se produce una proteína de fusión; vectores pIN (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 24: 5503-5509); y similares. Además, se pueden usar Vectores pGEX para expresar polipéptidos extraños como proteínas de fusión con glutatión S-transferasa (GST). En general, dichas proteínas de fusión son solubles y se pueden purificar fácilmente a partir de células lisadas por adsorpción y unión a una matriz de perlas de glutatión-agarosa seguido de elución en presencia de glutatión libre. Los vectores pGEX se diseñan para incluir sitios de escisión de proteasa de trombina o factor Xa de modo que el producto genético diana clonado se puede liberar del resto de GST.

En un sistema de insecto, el virus de polihedrosis nuclear de *Autographa californica* (AcNPV) o el virus análogo de *Drosophila Melanogaster* se usa como un vector para expresar genes extraños. El virus crece en células de *Spodoptera frugiperda*. La secuencia que codifica anticuerpos se puede clonar individualmente en regiones no esenciales (por ejemplo, el gen de polihedrina) del virus y colocar bajo control de un promotor AcNPV (por ejemplo el promotor de polihedrina).

En células huésped de mamífero, se puede usar un número de sistemas de expresión basados en virus. En casos en los que se usa un adenovirus como un vector de expresión, la secuencia que codifica anticuerpos de interés se puede ligar un complejo de control de transcripción/traducción de adenovirus, *por ejemplo*, el promotor tardío y la secuencia directora tripartita. Este gen quimérico se puede insertar a continuación en el genoma del adenovirus mediante recombinación *in vitro* o *in vivo*. La inserción en una región no esencial del genoma viral (*por ejemplo*, la región E1 o E3) da como resultado un virus recombinante que es viable y capaz de expresar la molécula de inmunoglobulina en huéspedes infectados (*por ejemplo*, véase Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81: 355-359). Además como señales de iniciación específicas pueden ser necesarias para una traducción eficaz de secuencias de codificación de anticuerpos insertadas. Estas señales incluyen el codón de iniciación ATG y secuencias adyacentes. Además, el codón de iniciación debe estar en fase con el marco de lectura de la secuencia de codificación deseada para asegurar la traducción de todo el inserto. Estas señales exógenas de control de traducción y codones de iniciación pueden ser de diversos orígenes, tanto naturales como sintéticos. La eficacia de expresión se puede potenciar con la inclusión de elementos potenciadores de la transcripción apropiados, terminado desde transcripción, etc. (*véase* Bittner et al., 1987, Methods in Enzymol. 153: 51-544).

Además, se puede elegir una cepa de célula huésped para modular la expresión de las secuencias insertadas, o

modificar y procesar el producto genético en la forma específica deseada. Dichas modificaciones (por ejemplo, glicosilación) y procesamiento (por ejemplo, escisión) de productos proteícos pueden ser importantes para la función de la proteína. diferentes células huésped tienen mecanismos característicos y específicos para el procesamiento y la modificación después de la traducción de productos proteicos y genéticos. Se pueden elegir líneas celulares o sistemas de huésped apropiados para asegurar la correcta modificación y procesamiento de la proteína extraña expresada. Para este fin, se pueden usar células huésped eucariotas que poseen la maquinaria celular para procesamiento apropiado del transcripto primario, glicosilación, y fosforilación del producto genético. Dichas células huésped de mamífero incluyen, pero no se limitan a, CHO, VERY, BH, Hela, COS, MDCK, 293, 293T, 3T3, WI38, BT483, Hs578T, HTB2, BT20 y T47D, CRL7030 y Hs578Bst.

10

15

20

Para producción de proteínas recombinantes con alto rendimiento, a largo plazo, es precedente la expresión estable. Por ejemplo, se puede modificar genéticamente líneas celulares que expresan de forma estable un anticuerpo. En lugar de usar vectores de expresión que contienen orígenes virales de replicación, se pueden transformar células huésped con ADN controlado mediante elementos de control de expresión apropiados (por ejemplo, promotor, potenciador, secuencias, terminado desde la transcripción, sitios de poliadenilación, etc.), y un marcador que se puede seleccionar. Después de la introducción del ADN extraño, se puede permitir que células modificadas genéticamente crezcan durante 1-2 días en un medio enriquecido, y a continuación se intercambian a un medio selectivo. El marcador que se puede seleccionar en el plásmido recombinante confiere resistencia a la selección y permite que las células integren de forma estable el plásmido en sus cromosomas y crezcan para formar focos que a su vez se pueden clonar y expandir en líneas celulares. Este método se puede usar ventajosamente para modificar genéticamente líneas celulares que expresan el anticuerpo. Dichas líneas celulares modificadas genéticamente pueden ser particularmente útiles en el cribado y evaluación de antígenos tumorales que interactúan directa o indirectamente con el anticuerpo.

25 Se puede usar un número de sistemas de selección, que incluyen pero no se limitan a la timidina quinasa del virus

30

35

del herpes simplex (Wigler et al., 1977, Cell 11: 223), hipoxantina-guanina fosforibosiltransferasa (Szybalska & Szybalski, 192, Proc. Natl. Acad. Sci. USA 48:202), y adenina fosforibosiltransferasa (Lowy et al., 1980, Cell 22: 817), se pueden usar genes en células tk-, hgprt- o aprt-, respectivamente. Además, se puede usar resistencia antimetabolitos como la base de selección para los siguientes genes: DHFR, que confiere resistencia al metotrexato (Wigler et al., 1980, Proc. Natl. Acad. Sci. USA 77: 357; O'Hare et al., 1981, Proc. Natl. Acad. Sci. USA 78: 1527); gpt, que confiere resistencia al ácido micofenólico (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78: 2072); neo, que confiere resistencia al aminoglicósido G-418 (Clinical Pharmacy 12: 488-505; Wu y Wu, 1991, Biotherapy 3: 87-95; Tolstoshev, 1993, Ann. Rev. Pharmacol. Toxicol. 32: 573-596; Mulligan, 1993, Science 260: 926-932; y Morgan y Anderson, 1993, Ann. Rev. Biochem. 62: 191-217; mayo de 1993, TIB TECH 11 (5): 155-215) e higro, que confiere resistencia a higromicina (Santerre et al., 1984, Gene 30: 147). Los métodos conocidos normalmente en la técnica de tecnología de ADN recombinante que se pueden usar se describen en Ausubel et al. (eds., 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY: Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY; y en los Capítulos 12 y 13, Dracopoli et al. (eds), 1994, Current Protocols in Human Genetics, John Wiley & Sons, NY.; Colberre-Garapin et al., 1981, J. Mol. Biol. 150:1).

40

Los niveles de expresión de un anticuerpo se pueden elevar por amplificación del vector (para una revisión, véase Bebbington y Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, Nueva York, 1987)). Cuando un marcador en el sistema de vector que expresa un anticuerpo se puede amplificar, un aumento en el nivel de inhibir el presente en cultivo de células huésped aumentará el número de copias del gen marcador. Dado que la región amplificada se asocia con la secuencia de nucleótidos del anticuerpo, la producción del anticuerpo también aumentará (Crouse et al., 1983, Mol. Cell. Biol. 3:257).

50

45

La célula huésped se puede cotransfectar con dos vectores de expresión, el primer vector que codifica una cadena pesada derivada de polipéptidos y el segundo vector que codifica una cadena ligera derivada de polipéptidos. Los dos lectores pueden contener marcadores idénticos que se pueden seleccionar que permiten la misma expresión de polipéptidos de cadena pesada y ligera. Como alternativa, se puede usar un solo vector que codifique polipéptidos tanto de cadena pesada como ligera. En dichas situaciones, la cadena ligera se debería colocar antes de la cadena pesada para evitar un exceso de cadena pesada sin tóxicos (Proudfoot, 1986, Nature 322: 52; Kohler, 1980, Proc. Natl. Acad. Sci. USA 77: 2197). Las secuencias de codificación para las cadenas pesadas y ligeras pueden comprender cADN o ADN genómico.

55

Una vez que el anticuerpo se ha expresado de forma recombinante, se puede purificar usando cualquier método conocido en la técnica a la purificación de un anticuerpo, por ejemplo, por cromatografía (por ejemplo, intercambio iónico, afinidad, particularmente por afinidad para el antígeno específico después de Proteína A, y cromatografía de exclusión por tamaño), centrifugación, solubilidad diferencial, o mediante cualquier otra técnica convencional para la purificación de proteínas.

65

60

Además, en otra realización a modo de ejemplo, el anticuerpo es un anticuerpo monoclonal.

En cualquier caso, los anticuerpos híbridos tienen una especificidad doble, preferentemente con uno o más sitios de

unión específicos para el hapteno de elección o uno o más sitios de unión específicos para un o antígeno diana, por ejemplo, un antígeno asociado con un tumor, una enfermedad autoinmune, un organismo infeccioso, u otro estado de enfermedad.

5 4.5.2 PRODUCCIÓN DE ANTICUERPOS

10

15

25

30

35

40

45

60

La producción de anticuerpos se ilustrará con referencia a anticuerpos anti-CD30 pero será evidente para los expertos en la materia que se pueden producir anticuerpos para otros miembros de la familia de receptores la TNF y modificar de una manera similar. El uso de CD30 para la producción de anticuerpos se hace solamente a modo de ejemplo y no pretende ser limitante.

El antígeno CD30 a usar para la producción de anticuerpos puede ser, *por ejemplo*, una forma soluble del dominio extracelular de CD30 o una porción del mismo, que contiene el epítopo deseado. Como alternativa, las células que expresan CD30 en su superficie celular (*por ejemplo*, L540 (línea celular derivada de linfoma Hodgkin con un fenotipo de linfocitos T) y L428 (línea celular derivada de linfoma Hodgkin con un fenotipo de linfocitos B)) se pueden usar para generar anticuerpos. Otras formas de CD30 útiles para generar anticuerpos serán evidentes para los expertos en la materia.

En otra realización a modo de ejemplo, el antígeno ErbB2 a usar para la producción de anticuerpos puede ser, *por ejemplo*, una forma soluble del dominio extracelular de ErbB2 o una porción del mismo, que contiene el epítopo deseado. Como alternativa, las células que expresan ErbB2 en su superficie celular (*por ejemplo*, células NIH-3T3 transformadas para que sobreexpresen ErbB2; o una línea celular de carcinoma tal como células SK-BR-3, véase Stancovski et al. Proc. Natl. Acad. Sci. USA 88: 8691-8695 (1991)) se pueden usar para generar anticuerpos. Otras formas de ErbB2 útiles para generar anticuerpos serán evidentes para los expertos en la materia.

(i) Anticuerpos Policionales

Los anticuerpos policionales aumentan preferentemente en animales mediante múltiples inyecciones subcutáneas (sc) o intraperitoneales (ip) del antígeno relevante y un adyuvante. Puede ser útil conjugar el antígeno relevante con una proteína que es inmunogénica en las especies a inmunizar, *por ejemplo*, hemocianina de lapa californiana, albúmina de suero, tiroglobulina bovina, o inhibidor de tripsina de soja usando un agente bifuncional o de derivatización, por ejemplo, éster de maleimidobenzoíl sulfosuccinimida (conjugación a través de restos de cisteína), N-hidroxisuccinimida (a través de restos de lisina), glutaraldehído, anhídrido succínico, SOCl₂, o R¹N=C=NR, en el que R y R¹ son grupos alquilo diferentes.

Los animales se inmunizan frente al antígeno, conjugados inmunogénicos, o derivados por combinación, *por ejemplo*, de 100 µg o 5 µg de la proteína o conjugado (para conejos o ratones, respectivamente) con 3 volúmenes de adyuvante completo de Freund y la solución se inyecta por vía intradérmica en múltiples sitios. Un mes más tarde, los animales se refuerzan con 1/5 a 1/10 de la cantidad original de péptido o conjugado en adyuvante completo de Freund por inyección subcutánea en múltiples sitios. De siete a 14 días más tarde, se extrae sangre a los animales y el suero se somete al ensayo para título de anticuerpos. Los animales se refuerzan hasta las mesetas del título. Preferentemente, el animal se refuerza con el conjugado del mismo antígeno, pero conjugado con una proteína diferente y/o a través de un reactivo de reticulación diferente. Los conjugados también se pueden preparar en cultivo celular recombinante en forma de fusiones de proteínas. Además, agentes de agregación tales como alum se usan adecuadamente para potenciar la respuesta inmune.

(ii) Anticuerpos Monoclonales

Los anticuerpos monoclonales se obtienen a partir de una población de anticuerpos básicamente homogéneos, es decir, los anticuerpos individuales que comprenden la población son idénticos excepto por las posibles mutaciones de origen natural que pueden estar presentes en cantidades menores. Por lo tanto, el modificador "monoclonal" indica el carácter del anticuerpo como que no es una mezcla de anticuerpos distintos.

Por ejemplo, los anticuerpos monoclonales se pueden preparar usando el método del hibridoma que se describió primero en y Kohler et al., Nature, 256: 495 (1975), o se puede preparar mediante métodos de ADN recombinante (Patente de Estados Unidos Nº 4816567).

En el método del hibridoma, un ratón otro modelo animal apropiado, tal como un hámster, se inmuniza tal como se ha descrito anteriormente en el presente documento para hacer que los linfocitos que producen o que son capaces de producir anticuerpos que se unirán específicamente a la proteína se usen para la inmunización. Como alternativa, los linfocitos se pueden inmunizar *in vitro*. A continuación, los linfocitos se funden con células de mieloma usando un agente de fusión adecuado, tal como polietilenglicol, para formar una célula de hibridoma (Goding, Monoclonal Antibodies: Principles and Practice, páginas 59-103 (Academic Press, 1986)).

Las células de hibridoma preparadas de este modo se siembran y se cultivan en un medio de cultivo adecuado que contiene preferentemente una o más sustancias que inhiben el crecimiento o la supervivencia de las células de

mieloma precursoras, sin fundir. Por ejemplo, si las células de mieloma precursoras carecen de la enzima hipoxantina guanina fosforibosil transferasa (HGPRT o HPRT), el medio de cultivo para los hibridomas incluirá por lo general hipoxantina, aminopterina, y timidinla (medio de HAT), cuyas sustancias previenen el crecimiento de células deficientes en HGPRT.

5

Las células de mieloma preferentes son las que se funden de forma eficaz, mantienen un nivel alto estable de producción de anticuerpos mediante las células seleccionadas que producen anticuerpos, y son sensibles a un medio tal como medio de HAT. Entre éstas, las líneas celulares de mieloma preferentes son líneas de mieloma de murino, tales como las obtenidas a partir de tumores de ratón MOPC-21 y MPC-11 disponibles en el Salk Institute Cell Distribution Center, San Diego, California USA, y células SP-2 o X63-Ag8-653 disponibles en la Colección Americana de Cultivos Tipo, Rockville, Mariland USA. Además, se han descrito líneas celulares de mieloma humano y heteromieloma de ratón-humano para la producción de anticuerpos monoclonales humanos (Kozbor, J. Immunol., 133:3001 (1984); y Brodeur et al., Monoclonal Antibody Production Techniques and Applications, páginas 51-63 (Marcel Dekker, Inc., Nueva York, 1987)).

15

20

25

35

40

45

50

55

65

10

Los medios de cultivo en los que se cultivan células de hibridoma se someten a ensayo para la producción de anticuerpos monoclonales dirigidos frente al antígeno. Preferentemente, la especificidad de unión de anticuerpos monoclonales producidos por células de hibridoma se determina por inmunoprecipitación o por un ensayo de unión *in vitro*, tal como radioinmunoensayo (RIA) o ensayo de inmunoabsorción ligado a enzimas (ELISA). La afinidad de unión del anticuerpo monoclonal, por ejemplo, se puede determinar con el análisis Scatchard de Munson et al., Anal. Biochem., 107:220 (1980).

Después de identificar las células de hibridoma que producen anticuerpos de la especificidad, afinidad, y/o actividad deseadas, los clones se pueden subclonar mediante procedimientos de dilución limitante y cultivar con métodos convencionales (Goding, Monoclonal Antibodies: Principles and Practice, páginas 59-103 (Academic Press, 1986)). Los medios de cultivo adecuados para este fin incluyen, por ejemplo, medio D-MEM o RPMI-1640. Además, las células de hibridoma se pueden cultivar *in vivo* como tumores de ascitis en un animal.

Los anticuerpos monoclonales segregados por los subclones se separan adecuadamente del medio de cultivo, fluido de ascitis, o suero con procedimientos convencionales de purificación de anticuerpos tales como, por ejemplo, proteína A-Sepharose, cromatografía en hidroxilapatito, electroforesis en gel, diálisis, o cromatografía por afinidad.

El ADN que codifica los anticuerpos monoclonales se aísla y secuencia fácilmente usando procedimientos convencionales (por ejemplo, usando sondas de oligonucleótidos que son capaces de unirse específicamente a genes que codifican las cadenas pesadas y ligeras de anticuerpos de murino). Las células de hibridoma sirven como una fuente preferente de dicho ADN. Una vez aislado, el ADN se puede colocar en vectores de expresión, que a continuación se transfectan en células huésped tales como células de *E. coli* cells, células COS de simios, células de Ovario de Hámster Chino (CHO), o células de mieloma que no producen de otro modo proteínas de anticuerpos, para obtener la síntesis de anticuerpos monoclonales en las células huésped recombinantes. Artículos de revisión sobre expresión recombinantes en bacterias de ADN que codifica el anticuerpo incluyen Skerra et al., Curr. Opinion in Immunol., 5: 256-262 (1993) y Plückthun, Immunol. Revs., 130: 151-188 (1992).

En una realización más, anticuerpos monoclonales o fragmento de anticuerpos se pueden aislar a partir de fagotecas de anticuerpos generadas usando las técnicas que se describen en McCafferty et al., Nature, 348: 552-554 (1990). Clackson et al., Nature, 352: 624-628 (1991) y Marks et al., J. Mol. Biol., 222: 581-597 (1991) describen el aislamiento de anticuerpos de murino y malos, respectivamente, usando fagotecas. Las publicaciones posteriores describen la producción de anticuerpos humanos de alta afinidad (de rango nM) human mediante redistribución de cadenas (Marks et al., Bio/technology, 10: 779-783 (1992)), así como infección combinatoria y recombinación *in vivo* como una estrategia para construir fagotecas muy grandes (Waterhouse et al., Nuc. Acids. Res., 21: 2265-2266 (1993)). Por lo tanto, estas técnicas son alternativas viables a las técnicas tradicionales de hibridoma de anticuerpo monoclonal para aislamiento de anticuerpos monoclonales.

Además, el ADN puede modificar, por ejemplo, mediante sustitución de la secuencia de codificación para dominios constantes de cadena pesada y cadena ligera humanos en lugar de las secuencias de murino homólogas (Patente de Estados Unidos Nº 4816567; y Morrison, et al. (1984) Proc. Natl Acad. Sci. USA 81:6851), o mediante unión covalente a la secuencia de codificación de inmunoglobulina de toda o parte de la secuencia de codificación para un polipéptido de no inmunoglobulina.

Por lo general, dichos polipéptidos de no inmunoglobulina se sustituyen para los dominios constantes de un anticuerpo, o se sustituyen para los dominios variables de un sitio de combinación con antígenos de un anticuerpo para crear un anticuerpo bivalente quimérico que comprende un sitio de combinación con antígenos que tiene especificidad para un antígeno y otro sitio de combinación con antígenos que tiene especificidad para un antígeno diferente.

(iii) Anticuerpos Humanizados

Un anticuerpo humanizado puede tener uno o más restos de aminoácidos introducidos en él a partir de una fuente que no es humana. Estos restos de aminoácido no humano a menudo se denominan restos "de importación", que por lo general se toman de un dominio variable "de importación". La humanización se puede realizar básicamente siguiendo el método de Winter y colaboradores (Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature, 332: 323-327 (1988); Verhoeyen et al., Science 239: 1534-1536 (1988)), mediante sustitución de secuencias de la región hipervariable las secuencias correspondientes de un anticuerpo humano. Por consiguiente, dichos anticuerpos "humanizados" son anticuerpos quiméricos (Patente de Estados Unidos Nº 4.816.567) en los que básicamente menos de un dominio variable humano intacto se ha sustituido con la secuencia correspondiente de una especie no humana. En la práctica, los anticuerpos humanizados son por lo general anticuerpos humanos en los que algunos restos de la región hipervariable y posiblemente algún resto de FR están sustituidos con restos de sitios análogos en anticuerpos de roedor.

La elección de dominios variables humanos, tanto ligeros como pesados, a usar en la preparación de anticuerpos humanizados es muy importante para reducir la antigenicidad. De acuerdo con el método denominado de "mejor ajuste", la secuencia del dominio variable de un anticuerpo de roedor se identifica sistemáticamente frente a toda la biblioteca de secuencias conocidas de dominio variable humano. La secuencia humana es la más cercana a la del roedor se acepta a continuación como la región marco humana (FR) para el anticuerpo humanizado (Sims et al., J. Immunol., 151: 2296 (1993); Chotia et al., J. Mol. Biol., 196: 901 (1987)). Otro método usa una región marco en particular obtenida a partir de la secuencia consenso de todos los anticuerpos humanos de un subgrupo en particular de cadenas ligeras o pesadas. El mismo marco se puede usar para varios anticuerpos humanizados diferentes (Carter et al., Proc. Natl. Acad. Sci. USA, 89: 4285 (1992); Presta et al., J. Immunol., 151: 2623 (1993)).

En otra realización, los anticuerpos se pueden humanizar con retención de alta afinidad para el antígeno y otras propiedades biológicas favorables. Los anticuerpos humanizados se pueden preparar mediante un proceso de análisis de las secuencias precursoras y varios productos humanizados conceptuales usando modelos tridimensionales de las secuencias precursora y humanizada. Los modelos tridimensionales de inmunoglobulina están disponibles habitualmente son familiares para los expertos en la materia. Están disponibles programas de ordenador que ilustran y presentan estructuras conformacionales en tres dimensiones probables de secuencias de inmunoglobulina candidatas. La inspección de estas presentaciones permite el análisis del papel probable de los restos en el funcionamiento de la secuencia de inmunoglobulina candidata, es decir, el análisis de restos que influyen en la capacidad de la inmunoglobulina candidata para unirse a su antígeno. De esta manera, los restos de FR se pueden seleccionar y combinar a partir de las secuencias, receptora y de importación, de modo que se consigue la característica deseada del anticuerpo, tal como mayor afinidad por el antígeno o antígenos diana. En general, los restos de la región hipervariable están directamente y más básicamente implicados en la influenciación de la unión a antígenos.

Se contemplan diversas formas del anticuerpo humanizado. Por ejemplo, el anticuerpo humanizado puede ser un fragmento de anticuerpo, tal como un Fab. Como alternativa, el anticuerpo humanizado puede ser un anticuerpo intacto, tal como un anticuerpo de IgG1 intacto.

Los Ejemplos describen la producción de un anticuerpo anti-ErbB2 humanizado a modo de ejemplo. El anticuerpo humanizado puede comprender, por ejemplo, restos de la región hipervariable no humana incorporados en un dominio pesado variable humano y puede comprender adicionalmente una sustitución de la región marco (FR) en una posición seleccionada entre el grupo que consiste en 69H, 71H y 73H usando el sistema de numeración del dominio variable se establece en Kabat et al., Sequences of Proteins of Immunological Interest, 5ª Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). En una realización, el anticuerpo humanizado comprende sustituciones de FR endosó todas las posiciones de 69H, 71H y 73H. Otro Ejemplo describe la preparación de anticuerpo de trastuzumab unificado a partir de la formulación de HERCEPTIN®.

(iv) Anticuerpos Humanos

10

15

20

25

30

35

40

45

50

55

60

65

Como una alternativa a la humanización, se pueden generar anticuerpos humanos. Por ejemplo, en la actualidad es posible producir animales transgénicos (*por ejemplo*, ratones) que son capaces, después de inmunización, de producir un repertorio completo de anticuerpos humanos en ausencia de producción de inmunoglobulina endógenas. Por ejemplo, se ha descrito que la supresión homocigoto del gen de la región de unión de cadena pesada del anticuerpo (J_H) en ratones mutantes quiméricos y de línea germinal da como resultado la inhibición completa de producción de anticuerpos endógenos. La transferencia de la matriz del gen de inmunoglobulina de línea germinal humana en dichos ratones mutantes de línea germinal dará como resultado la producción de anticuerpos humanos después de la estimulación con antígenos. Véase, *por ejemplo*, Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551 (1993); Jakobovits et al., Nature, 362: 255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); y Patentes de Estados Unidos Nº 5.591.669, Nº 5.589.369 y Nº 5.545.807.

Como alternativa, se puede usar tecnología de presentación de fagos (McCafferty et al., Nature 348: 552-553 (1990)) para producir anticuerpos y fragmentos de anticuerpos humanos *in vitro*, a partir de repertorios genéticos dominio variable (V) de inmunoglobulina a partir de donantes sin inmunizar. De acuerdo con esta técnica, genes de dominio V de anticuerpos se clona en el marco en un gen de proteína de revestimiento principal o secundario de un

bacteriófago filamentoso, tal como M13 o fd, y se presenta como fragmentos de anticuerpo funcionales en la superficie de la partícula del fago. Debido a que la partícula filamentosa contiene una copia de ADN monocatenario del genoma del fago, las selecciones basándose en las propiedades funcionales del anticuerpo también darán como resultado la selección del gen que codifica el anticuerpo que presenta esas propiedades. Por lo tanto, el fago imita algunas de las propiedades de los linfocitos B. La presentación de fagos se puede realizar en diversos formatos; para su revisión véanse, por *ejemplo*, Johnson, Kevin S. y Chiswell, David J., Current Opinion in Structural Biology 3: 564-571 (1993). Se pueden usar varias fuentes de segmentos de gen V para presentación de fagos. Clackson et al., Nature, 352: 624-628 (1991) aislaron una matriz variada de anticuerpos de anti-oxazolona a partir de una pequeña biblioteca combinatoria aleatoria de genes V obtenidos a partir de los bazos de ratones inmunizados. Se puede construir un repertorio de genes V a partir de parlantes humanos no inmunizados y se pueden aislar anticuerpos para una matriz variada de antígenos (que incluye autoantígenos) básicamente siguiendo las técnicas que se describen en Marks et al., J. Mol. Biol. 222: 581-597 (1991), o Griffith et al., EMBO J. 12: 725-734 (1993). Véanse, también, las Patentes de Estados Unidos Nº 5565332 y Nº 5573905. Tal como se ha analizado anteriormente, también se pueden generar anticuerpos humanos mediante linfocitos B activados *in vitro* (véanse las Patentes de Estados Unidos Nº 5567610 y Nº 5229275). Anticuerpos anti-CD30 humanos se describen en la Solicitud de Patente de Estados Unidos con Nº de Serie 10/338.366.

(v) Fragmentos de anticuerpos

10

15

35

40

45

50

55

60

20 Se han desarrollado diversas técnicas para la producción de fragmentos de anticuerpos. Tradicionalmente, estos fragmentos se obtenían a través de digestión proteolítica de anticuerpos intactos (véase, por ejemplo, Morimoto et al., Journal of Biochemical and Biophysical Methods 24: 107-117 (1992); y Brennan et al., Science, 229: 81 (1985)). Sin embargo, estos fragmentos se pueden producir en la actualidad directamente mediante células huésped recombinantes. Por ejemplo, los fragmentos de anticuerpo se pueden aislar a partir de las fagotecas de anticuerpos 25 que se han analizado anteriormente. Como alternativa, fragmentos de Fab'-SH pueden recuperar directamente de E. coli y acoplar químicamente para formar fragmentos de F(ab')₂ (Carter et al., Bio/Technology 10: 163-167 (1992)). De acuerdo con otro enfoque, se pueden usar fragmentos de F(ab')2 directamente de cultivos de células huésped recombinantes. Otras técnicas para la producción de fragmentos de anticuerpos serán evidentes para el experto en la materia. En otras realizaciones, el anticuerpo de elección es un fragmento de Fv de una sola cadena (scFv). 30 Véanse el documento WO 93/16185; Patente de Estados Unidos Nº 5.571.894; y Patente de Estados Unidos Nº 5.587.458. El fragmento de anticuerpo también puede ser un "anticuerpo lineal", por ejemplo, tal como se describe en la Patente de Estados Unidos Nº 5.641.870 por ejemplo. Dichos fragmentos de anticuerpo lineal pueden ser monoespecíficos o específicos.

(vi) Anticuerpos biespecíficos

Los anticuerpos biespecíficos son anticuerpos que tienen especificidades de unión para al menos dos epítopos diferentes. Los anticuerpos biespecíficos a modo de ejemplo se pueden unir a dos epítopos diferentes de la proteína CD30. Como alternativa, una rama anti-CD30 se puede combinar con una rama que se une a receptores Fc para IgG (FcγR), tales como FcγRI (CD64), FcγRII (CD32) y FcγRII (CD 16) para enfocar mecanismos de defensa celular a la célula que expresa CD30. Los anticuerpos biespecíficos también se pueden usar para localizar citotóxicos para células que expresan CD30.

La producción tradicional de anticuerpos biespecíficos de longitud total se basa en la coexpresión de dos pares de cadena pesada-cadena ligera de inmunoglobulina, en los que las dos cadenas tienen especificidades diferentes (Millstein et al., Nature, 305: 537-539 (1983)). Debido a la variedad aleatoria de cadenas pesadas y ligeras de inmunoglobulina, estos hibridomas (cuadromas) producen una mezcla potencial de 10 moléculas diferentes de anticuerpo, de las que solamente una tiene la estructura biespecífica correcta. La purificación de la molécula correcta, que normalmente se realiza mediante etapas de cromatografía por afinidad, es bastante difícil de manejar, y los rendimientos del producto son bajos. Procedimientos similares se desvelan en el documento WO 93/08829, y en Traunecker et al., EMBO J., 10: 3655-3659 (1991). De acuerdo con un enfoque diferente, dominios variables de anticuerpos con las especificidades de unión deseadas (sitios de combinación anticuerpo-antígeno) se condensan con secuencias de dominio constante de inmunoglobulina. La fusión es preferentemente con un dominio constante de cadena pesada de inmunoglobulina, que comprende al menos parte de las regiones CH2, y CH3, bisagra. Es preferente que la primera región constante de cadena pesada (CH1) que contiene el sitio necesario para unión a la cadena ligera, esté presente en al menos una de las fusiones. Los ADN que codifican las fusiones de la cadena pesada de inmunoglobulina y, si se desea, la cadena ligera de inmunoglobulina, se insertan en vectores de expresión separados, y se cotransfectan en un organismo huésped adecuado. Ésto proporciona gran flexibilidad en el ajuste de las proporciones mutuas de los tres fragmentos de polipéptido en realizaciones cuando las relaciones desiguales de las tres cadenas polipeptídicas usadas en la construcción proporcionan los rendimientos óptimos. Sin embargo, es posible insertar las secuencias de codificación para dos o todas las tres cadenas polipeptídicas en un vector de expresión cuando la expresión de al menos dos cadenas polipeptídicas en relaciones iguales da como resultado altos rendimientos cuando las relaciones no son particularmente significativas.

65 En una realización de este enfoque, los anticuerpos biespecíficos están formados por una cadena pesada de inmunoglobulina híbrida con una primera especificidad de unión en una rama, y un par híbrido de cadena pesada-

cadena ligera de inmunoglobulina (que proporciona una segunda especificidad de unión) en la otra rama. Se encontró que esta estructura asimétrica facilita la separación del compuesto biespecífico deseado a partir de combinaciones de cadenas de inmunoglobulina no deseadas, ya que la presencia de una cadena ligera de inmunoglobulina solamente en una mitad de la molécula biespecífica proporciona un modo de separación fácil. Este enfoque se desvela en el documento WO 94/04690. Para detalles adicionales para generar anticuerpos biespecíficos véase, por ejemplo, Suresh et al., Methods en Enzymology, 121:210 (1986).

De acuerdo con otro enfoque que se describe en la Patente de Estados Unidos Nº 5.731.168, la superficie de contacto entre un par de moléculas de anticuerpos que se pueden modificar genéticamente para maximizar el porcentaje de heterodímeros que se recuperan a partir del cultivo celular recombinante. La superficie de contacto preferente comprende al menos una parte del dominio CH3 de un dominio constante de anticuerpo. En este método, una o más cadenas laterales de aminoácido pequeñas de la superficie de contacto de la primera molécula de anticuerpo se reemplazan con cadenas laterales más grandes (por ejemplo, tirosina o triptófano). Se crean "cavidades" compensatorias de tamaño idéntico o similar al de la cadena o cadenas laterales grandes en la superficie de contacto de la segunda molécula de anticuerpo reemplazando cadenas laterales de aminoácido grandes con otras más pequeñas (por ejemplo, alanina o treonina). Ésto proporciona un mecanismo para aumentar el rendimiento del heterodímero sobre otros productos secundarios no deseados tales como homodímeros.

También se han descrito en la bibliografía técnicas para generar anticuerpos biespecíficos a partir de fragmentos de anticuerpo. Por ejemplo, se pueden preparar anticuerpos biespecíficos usando unión química. Brennan et al., Science, 229: 81 (1985) describen un procedimiento en el que anticuerpos intactos se escinden proteolíticamente para generar fragmentos de F(ab')₂. Estos fragmentos se reducen en presencia del agente arsenito sódico de formación de complejos de ditiol para estabilizar ditioles vecinales y prevenir la formación de disulfuros intermoleculares. Los fragmentos de Fab' generados se convierten a continuación en derivados de tionitrobenzoato (TNB). Uno de los derivados de Fab'-TNB se vuelve a convertir a continuación en el Fab'-tiol por reducción con mercaptoetilamina y se mezcla con una cantidad equimolar del otro derivado de Fab'-TNB para formar el anticuerpo biespecífico. Los anticuerpos biespecíficos producidos se pueden usar como agentes para la inmovilización selectiva de enzimas.

Los avances recientes han facilitado la recuperación directa de fragmentos de Fab'-SH a partir de *E. coli*, que se pueden acoplar químicamente para formar anticuerpos biespecíficos. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describen la producción de una molécula de anticuerpo F(ab')₂ biespecífico totalmente humanizado. Cada fragmento de Fab' fue segregado separadamente de E. *coli* y se sometió a acoplamiento químico directo *in vitro* para formar el anticuerpo biespecífico.

Además, se han descrito diversas técnicas para preparar y aislar fragmentos de anticuerpos biespecíficos directamente de cultivo celular recombinante. Por ejemplo, se han producido anticuerpos biespecíficos usando cremalleras de leucina. Kostelny et al., J. Immunol., 148 (5): 1547-1553 (1992). Los péptidos de cremallera de leucina a partir de las proteínas Fos y Jun se unieron con las porciones de Fab' de dos anticuerpos diferentes mediante fusión genética. Los homodímeros de anticuerpo se redujeron en la región bisagra para formar monómeros y a continuación volver a oxidar para formar los heterodímeros de anticuerpo. Este método también se puede usar para la producción de homodímeros de anticuerpo. La tecnología de "diacuerpo" que se describe en Hollinger et al., Proc. Natl. Acad Sci. USA, 90: 6444-6448 (1993) ha proporcionado un mecanismo alternativo para preparar fragmentos de anticuerpo biespecíficos. Los fragmentos comprenden un dominio variable de cadena pesada (V_H) conectado con un dominio variable de cadena ligera (V_L) con un conector que es demasiado corto, para permitir el emparejamiento en los dos dominios en la misma cadena. Por consiguiente, los dominios V_H y V_L de un fragmento se ven forzados a emparejarse con los dominios complementarios de V_L y V_H de otro fragmento, formando de este modo dos sitios de unión a antígeno. Además se ha indicado otra estrategia para preparar fragmentos de anticuerpo biespecíficos mediante el uso de dímeros de Fv de una sola cadena (sFv). Véase Gruber et al., J. Immunol., 152: 5368 (1994).

Se contemplan anticuerpos con más de dos valencias. Por ejemplo, se pueden preparar anticuerpos triespecíficos. Tutt et al. J. Immunol. 147: 60 (1991).

(vii) Otras modificaciones en la secuencia de aminoácidos

5

10

15

35

40

45

50

55

60

65

Se contemplan modificación o modificaciones en la secuencia de aminoácidos de los anticuerpos que se describen en el presente documento. Por ejemplo, puede ser deseable mejorar la afinidad de unión y/o otras propiedades biológicas del anticuerpo. Se preparan variantes de secuencias de aminoácidos mediante introducción de cambios apropiados de nucleótidos en el ácido nucleico del anticuerpo, o mediante síntesis de péptidos. Dichas modificaciones incluyen, por ejemplo, supresiones a partir de, y/o inserciones en y/o sustituciones de, restos dentro de las secuencias de aminoácidos del anticuerpo. Se prepara cualquier combinación de supresión, inserción, y sustitución para llegar al constructo final, con la condición de que el constructo final posea las características deseadas. Los cambios en aminoácidos también pueden alterar los procesos posteriores a la traducción del anticuerpo, tales como el cambio del número o la posición de sitios de glicosilación.

Un método útil para la identificación de determinados restos por regiones del anticuerpo que son ubicaciones favorecidas por la mutagénesis se denomina "mutagénesis de exploración con alanina" tal como se describe en Cunningham y Wells Science, 244: 1081-1085 (1989). Aquí, un resto o grupo de restos diana se identifican (por ejemplo, restos cargados tales como arg, asp, his, lys, y glu) y se reemplazan con un aminoácido neutro o cargado negativamente (más preferentemente alanina o polialanina) para afectar a la interacción de los aminoácidos con antígenos. Esas ubicaciones de aminoácidos que demuestran sensibilidad funcional a las sustituciones a continuación se refinan mediante introducción adicional o de otras variantes en, o para, los sitios de sustitución. Por lo tanto, a pesar de que el sitio para introducir una variación en la secuencia de aminoácidos está predeterminado, la naturaleza de la mutación per se no necesita estar predeterminada. Por ejemplo, para analizar el rendimiento de una mutación en un sitio dado, se realiza exploración con ala o mutagénesis aleatoria en el codón o región diana y las variantes de anticuerpos expresados se identifican sistemáticamente para la actividad deseada.

Inserciones en secuencias de aminoácidos incluyen fusiones amino- y/o carboxil-terminal que varían en su longitud de un resto a polipéptidos que contienen cieno más restos, así como inserciones intrasecuencia de restos de aminoácidos individuales o múltiples. Ejemplos de inserciones terminales incluyen un anticuerpo con un resto de metionilo N-terminal o el anticuerpo fusionado con un polipéptido citotóxico. Otras variantes de inserción de la molécula anticuerpo incluyen la fusión con el extremo N o C del anticuerpo con una enzima (por ejemplo, para ADEPT) o un polipéptido que aumenta la vida media en suero del anticuerpo.

Otro tipo de variante es una variante de sustitución de aminoácido. Estas variantes tienen al menos un resto de aminoácido en la molécula de anticuerpo reemplazado con un resto diferente. Los sitios con el mayor interés para mutagénesis sustitucional incluyen las regiones hipervariables, pero también se contemplan alteraciones de FR.

Modificaciones básicas en las propiedades biológicas del anticuerpo se consiguen seleccionando sustituciones que difiere significativamente en su efecto mediante el mantenimiento de (a) la estructura de la cadena principal polipeptídica en el área de la sustitución, por ejemplo, tiene una conformación de lámina o helicoidal, (b) la carga o hidrofobicidad de la molécula en el sitio diana, o (c) la mayor parte de la cadena lateral. Los restos de origen natural se dividen en grupos basándose en propiedades comunes de la cadena lateral:

- (1) hidrofóbicos: norleucina, met, ala, val, leu, ile;
- (2) hidrofílicos neutros: cys, ser, thr;
- (3) ácidos: asp, glu;

10

15

25

30

60

65

- (4) básicos: asn, gln, his, lys, arg;
- (5) restos que influyen en la orientación de la cadena: gly, pro; y
- 35 (6) aromáticos: trp, tyr, phe.

Las sustituciones no conservadoras implicarán el intercambio de un miembro de una de estas clases por otra clase.

Un tipo particularmente preferente de variante por sustitución implica la sustitución de uno o más restos de la región 40 hipervariable de un anticuerpo precursor (por ejemplo, un anticuerpo humanizado o humano). Generalmente, la variante o variantes resultantes seleccionadas para el desarrollo adicional tendrán mejores propiedades biológicas con respecto al anticuerpo precursor a partir del que se generan. Una manera conveniente para generar dichas variantes por sustitución implica maduración por afinidad usando presentación de fagos. En resumen, varios sitios de la región hipervariable (por ejemplo, 6-7 sitios) se mutan para generar todas las sustituciones posibles amino en 45 cada sitio. Las variantes de anticuerpos generadas de este modo se presentan de una manera monovalente a partir de partículas de fagos filamentosos como fusiones para el producto del gen III de M13 empaquetado dentro de cada partícula. A continuación, las variantes de presentación de fagos se identifican sistemáticamente para su actividad biológica (por ejemplo, afinidad de unión) tal como se desvela en el presente documento. Para identificar sitios candidatos de la región hipervariable por modificación, se puede realizar mutagénesis de exploración con alanina 50 para identificar restos de la región hipervariable que contribuye significativamente a la unión al antígeno. Como alternativa, o adicionalmente, puede ser beneficioso analizar una estructura cristalina del complejo antígenoanticuerpo para identificar puntos de contacto entre el anticuerpo y el antígeno. Dichos restos de contacto y restos vecinos son candidatos para la sustitución de acuerdo con las técnicas que se elaboran en el presente documento. Una vez que se generan dichas variantes, el panel de variantes se somete a cribado tal como se describen en el 55 presente documento y se pueden seleccionar anticuerpos con propiedades superiores en uno o más ensayos relevantes para desarrollo adicional.

Puede ser deseable modificar el anticuerpo de la invención con respecto a la función efectora, *por ejemplo*, con el fin de mejorar la citotoxicidad mediada por células dependiente de antígenos (ADCC) y/o citotoxicidad dependiente del complemento (CDC) del anticuerpo. Esto se puede conseguir introduciendo una o más sustituciones de aminoácidos en una región Fc del anticuerpo. Como alternativa o adicionalmente, resto o restos de cisteína se pueden introducir en la región Fc, permitiendo de este modo la formación de enlaces disulfuro entre cadenas de esta región. El anticuerpo homodimérico generado de este modo puede tener una capacidad de internalización mejorada y/o mayor muerte celular mediada por complementos y citotoxicidad celular dependientes de anticuerpos (ADCC). Véase Caron et al. J. Exp Med. 176: 1191-1195 (1992) y Shopes, B. J. Immunol. 148: 2918-2922 (1992). También se pueden preparar anticuerpos homodiméricos con mayor actividad antitumoral usando agentes de reticulación

heterobifuncionales tal como se describe en Wolff et al. Cancer Research 53: 2560-2565 (1993). Como alternativa, un anticuerpo se puede modificar genéticamente para que tenga regiones Fc dobles y de ese modo pueda tener mejor lisis de complemento y capacidades de ADCC. Véase Stevenson et al. Anti-Cancer Drug Design 3: 219-230 (1989).

Para aumentar la vida media en suero del anticuerpo, se puede incorporar un epítopo de unión a receptores de rescate en el anticuerpo (especialmente un fragmento de anticuerpo) tal como se describe en la Patente de Estados Unidos Nº 5739277, por ejemplo. Tal como se usa en el presente documento, el término "epítopo de unión a receptores de rescate" se refiere a un epítopo de la región Fc de una molécula de IgG (por ejemplo, IgG₁, IgG₂, IgG₃, o IgG₄) que es responsable del aumento de la vida media en suero *in vivo* de la molécula de IgG.

(viii) Variantes de Glicosilación

5

10

15

20

25

30

45

50

60

65

Los anticuerpos en el ADC de la invención pueden estar glicosilados en posiciones conservadas de sus regiones constantes (Jefferis y Lund, (1997) Chem. Immunol. 65: 111-128; Wright y Morrison, (1997) TibTECH 15: 26-32). Las cadenas laterales de oligosacáridos de las inmunoglobulinas afectan a la función de la proteína (Boyd et al., (1996) Mol. Immunol. 32:1311-1318; Wittwe y Howard, (1990) Biochem. 29: 4175-4180), y la interacción intramolecular entre porciones de la glicoproteína que puede afectar a la conformación y presentar superficie tridimensional de la proteína (Hefferis y Lund, mencionado anteriormente; Wyss y Wagner, (1996) Current Opin. Biotech. 7: 409-416). Los oligosacáridos también pueden servir para dirigir una glicoproteína dada a determinadas moléculas basándose en estructuras específicas de reconocimiento. Por ejemplo, se ha informado que en IgG agalactosilada, el resto de oligosacárido 'se voltea' fuera del espacio entre -CH2 y restos de N-acetilglucosamina se hacen disponibles para unirse a la proteína de unión a manosa (Malhotra et al., (1995) Nature Med. 1: 237-243). La retirada mediante glicopeptidasa de los oligosacáridos de CAMPATH-1H (un anticuerpo IgG1 monoclonal de murino humanizado recombinante que reconoce el antígeno CDw52 de linfocitos humanos) producido en Células de Ovario de Hámster Chino (CHO) que como resultado una reducción completa en la lisis mediada por complementos (CMCL) (Boyd et al., (1996) Mol. Immunol. 32: 1311-1318), mientras que la retirada selectiva de restos de ácido siálico usando neuraminidasa dio como resultado ninguna pérdida de DMCL. También se ha informado glicosilación de anticuerpos que afecta a la citotoxicidad celular dependiente de anticuerpos (ADCC). En particular, se informó que células CHO con expresión regulada por tetraciclina de $\beta(1,4)$ -N-acetilglucosaminiltransferasa III (GnTIII), una glicosiltransferasa que cataliza la formación de GlcNAc de bisección, tienen mejor actividad de ADCC (Umana et al. (1999) Mature Biotech. 17: 176-180).

La glicosilación de anticuerpos por lo general está unida a N o unida a O. Unida a N se refiere a la unión del resto de hidrato de carbono a la cadena lateral de un resto de asparagina. Las secuencias tripeptídicas de asparagina-X-serina y asparagina-X-treonina, en las que X es cualquier aminoácido excepto prolina, son las secuencias de reconocimiento para la unión enzimáticas del resto de hidrato de carbono a la cadena lateral de asparagina. Por lo tanto, la presencia de estas secuencias tripeptídicas en un polipéptido crea un sitio de glicosilación potencial. Glicosilación unida a O se refiere a la unión de uno de los azúcares N-acetilgalactosamina, galactosa, o xilosa a un hidroxiaminoácido, lo más habitualmente serina o treonina, aunque también se pueden usar 5-hidroxiprolina o 5-hidroxilisina.

Las variantes de glicosilación de anticuerpos son variantes en las que se altera el patrón de glicosilación de un anticuerpo. Por alteración se hace referencia a la supresión de uno o más restos de hidrato de carbono encontrados en el anticuerpo, añadiendo uno o más restos de hidrato de carbono al anticuerpo, cambiando la composición de la glicosilación (patrón de glicosilación), la extensión de la glicosilación, etc.

La adición de sitios de glicosilación al anticuerpo se consigue convenientemente alterando la secuencia de aminoácidos de modo que contenga una o más de las secuencias tripeptídicas que se han descrito anteriormente (para sitios de glicosilación unidos a N). La alteración también se puede realizar mediante la adición de, o sustitución con, uno o más restos de serina o treonina a la secuencia del anticuerpo original (para sitios de glicosilación unidos a O). De forma análoga, la retirada de sitios de glicosilación se puede realizar por alteración de aminoácidos dentro de los sitios de glicosilación nativos del anticuerpo.

La secuencia de aminoácidos normalmente se altera mediante la alteración de la secuencia de ácidos nucleicos subyacente. Estos métodos incluyen, pero no se limitan a, aislamiento a partir de una fuente natural (en el caso de variantes de secuencias de aminoácidos de origen natural) o preparación mediante mutagénesis mediada por oligonucleótidos (o dirigida al sitio) mutagénesis, mutagénesis por PCR, y mutagénesis de casete de una variante preparada anteriormente o una versión no variante del anticuerpo.

La glicosilación (incluyendo patrón de glicosilación) de los anticuerpos también se puede alterar sin alterar la secuencia de aminoácidos o la secuencia de nucleótidos subyacente. La glicosilación depende en gran medida de la célula huésped usada para expresar el anticuerpo. Dado que el tipo celular usado para la expresión de glicoproteínas recombinantes, por ejemplo, anticuerpos, como agentes terapéuticos potenciales es en raras ocasiones la célula nativa, se pueden esperar variaciones significativas en el patrón de glicosilación de los anticuerpos. Véase, *por ejemplo*, Hse et al., (1997) J. Biol. Chem. 272: 9062-9070. Además de la elección de células

huésped, factores que afectan a la glicosilación durante la producción recombinante de anticuerpos incluyen modo de crecimiento, formulación de medios, densidad de cultivos, oxigenación, pH, esquemas de purificación y similares. Se han propuesto diversos métodos para alterar el patrón de glicosilación conseguido en un organismo huésped en particular que incluyen la introducción o sobreexpresión de determinadas enzimas implicadas en la producción de oligosacáridos (Patentes de Estados Unidos Nº 5047335; Nº 5510261; Nº 5278299). La glicosilación, o determinados tipos de glicosilación, se pueden eliminar enzimáticamente de la glicoproteína, por ejemplo usando endoglicosidasa H (Endo H). Además, la célula huésped recombinante se puede modificar genéticamente, por ejemplo, hacerla defectuosa en el procesamiento de determinados tipos de polisacáridos. Estas técnicas y similares son bien conocidas en la técnica.

10

15

25

30

35

40

La estructura de glicosilación de anticuerpos se puede analizar fácilmente mediante técnicas convencionales de análisis de hidratos de carbono, que incluyen cromatografía de lectina, RMN, Espectrometría de masas, HPLC, GPC, análisis composicional de monosacáridos, digestión enzimática secuencial, y HPAEC-PAD, que usa cromatografía de intercambio aniónico a pH elevado para separar oligosacáridos basados en la carga. Además se conocen métodos para la liberación de oligosacáridos para fines analíticos, e incluyen, sin limitación, tratamiento enzimático (realizado normalmente usando péptido-N-glicosidasa F/endo-β-galactosidasa), eliminación usando entorno alcalino riguroso para liberar principalmente estructuras unidas a O, y métodos químicos que usan hidrazina anhidra para liberar oligosacáridos unidos tanto a N como a O.

20 4.5.2a CRIBADO PARA CONJUGADOS DE ANTICUERPO-FÁRMACO (ADC)

Animales transgénicos y líneas celulares son particularmente útiles en el cribado de conjugados de anticuerpo y fármaco (ADC) que tienen potencial como tratamientos profilácticos o terapéuticos de enfermedades o trastornos que implican sobreexpresión de proteínas que incluyen Lewis Y, CD30, CD40, y CD70. Animales transgénicos y líneas celulares son particularmente útiles en el cribado de conjugados de anticuerpo y fármaco (ADC) que tienen potencial como tratamientos profilácticos o terapéuticos de enfermedades o trastornos implicados en la sobreexpresión de HER2 (documento US6632979). El cribado para un ADC útil puede implicar la administración de ADC candidato sobre un intervalo de dosis al animal transgénico, y someter a ensayo en diversos puntos temporales para el efecto o efectos del ADC en la enfermedad o trastorno que se está evaluando. Como alternativa, o adicionalmente, el fármaco se puede administrar antes de o simultáneamente con exposición a un inductor de la enfermedad, si fuera aplicable. El ADC candidato se puede identificar sistemáticamente de forma seriada e individualmente, o en paralelo el formato de cribado media o de alto rendimiento. La velocidad a la que se puede identificar sistemáticamente ADC para utilidad en tratamientos profilácticos o terapéuticos de enfermedades o trastornos está limitada solamente por la velocidad de síntesis o metodología de cribado, que incluye detección/medida/análisis de datos.

Una realización es un método de cribado que comprende (a) trasplantar células de una línea celular de cáncer de células renales estable en un animal no humano, (b) administrar un candidato de fármaco de ADC al animal no humano y (c) determinar la capacidad del candidato para inhibir la formación de tumores a partir de la línea celular trasplantada.

Otra realización es un método de cribado que comprende (a) poner en contacto células de una línea celular estable de enfermedad de Hodgkin con un candidato de fármaco de ADC y (b) evaluar la capacidad del candidato de ADC para bloquear la activación de ligandos de CD40.

45

60

Otra realización es un método de cribado que comprende (a) poner en contacto células de una línea celular estable de enfermedad de Hodgkin con un candidato de fármaco de ADC y (b) evaluar la capacidad del candidato de ADC para inducir muerte celular. En una realización, se evalúa la capacidad del candidato de ADC para inducir apoptosis.

Una realización es un método de cribado que comprende (a) trasplantar células de una línea celular de cáncer estable en un animal no humano, (b) administrar un candidato de fármaco de ADC al animal no humano y (c) determinar la capacidad del candidato para inhibir la formación de tumores a partir de la línea celular trasplantada. La invención también se refiere a un método para identificar sistemáticamente candidatos de ADC para el tratamiento de una enfermedad o trastorno caracterizado por la sobreexpresión HER2 que comprende (a) poner en contacto células de una línea celular de cáncer de mama estable con un candidato de fármaco y (b) evaluar la capacidad del candidato de para inhibir el crecimiento de la línea celular estable.

Otra realización es un método de cribado que comprende (a) poner en contacto células de una línea celular de cáncer estable con un candidato de fármaco de ADC y (b) evaluar la capacidad del candidato de ADC para bloquear la activación de ligandos de HER2. En una realización, se evalúa la capacidad del candidato de ADC para bloquear la unión de heregulina. En otra realización, se evalúa la capacidad del candidato de ADC para bloquear la fosforilación de tirosina estimulada con ligandos.

Otra realización es un método de cribado que comprende (a) poner en contacto células de una línea celular de cáncer estable con un candidato de fármaco de ADC y (b) evaluar la capacidad del candidato de ADC para inducir muerte celular. En una realización, se evalúa la capacidad del candidato de ADC para inducir apoptosis.

Otra realización es un método de cribado que comprende (a) administrar un candidato de fármaco de ADC a un mamífero no humano transgénico que sobreexpresa en sus células de las glándulas mamarias una proteína HER2 humana nativa o un fragmento de la misma, en el que dicho mamífero transgénico ha integrado de forma estable en su genoma una secuencia de ácidos nucleicos que codifican una proteína HER2 humana nativa o un fragmento de la misma que tiene la actividad biológica de la humana HER2, unida operativamente a secuencias reguladoras de la transcripción que dirige su expresión a la glándula mamaria, y desarrolla un tumor de mama que no responde por responde muy poco a tratamiento con anticuerpos anti-HER2, o a un mamífero no humano portador de un tumor trasplantado a partir de dicho mamífero no humano transgénico; y (b) evaluar el efecto del candidato de ADC en enfermedad o trastorno diana. Sin limitaciones, la enfermedad o trastorno puede ser un cáncer que sobreexpresa HER2, tal como cáncer de mama, ovarios, estómago, endometrio, glándulas salivales, pulmón, riñón, colon, tiroides, pancreático y vejiga. El cáncer es preferentemente cáncer de mama que expresó HER2 en al menos aproximadamente 500.000 copias por célula, más preferentemente al menos aproximadamente 2.000.000 copias por célula. Los candidatos de fármaco de ADC, por ejemplo, se pueden evaluar por su capacidad para inducir muerte celular y/o apoptosis, usando métodos de ensayo bien conocidos en la técnica y que se describen en lo sucesivo en el presente documento.

5

10

15

20

25

45

50

55

En una realización, el candidato de ADC se identifica sistemáticamente siendo administrado al animal transgénico en un intervalo de dosis, y evaluando la respuesta fisiológica del animal a los compuestos con el tiempo. La administración puede ser oral, o mediante inyección adecuada, dependiendo de la naturaleza química del compuesto que se está evaluando. En algunos casos, puede ser apropiado administrar el compuesto de manera conjunta con cofactores que potenciarían la eficacia del compuesto. Si se usan líneas celulares obtenidas a partir de los animales transgénicos objetivo para identificar sistemáticamente compuestos útiles en el tratamiento de diversos trastornos, los compuestos de ensayo se añaden al medio de cultivo celular en un momento apropiado, y la respuesta celular al compuesto se evalúa con el tiempo usando los ensayos bioquímicos y/o histológicos apropiados. En algunos casos, puede ser apropiado aplicar el compuesto de interés al medio de cultivo de manera conjunta con cofactores que potenciarían la eficacia del compuesto.

Por lo tanto, en el presente documento se proporcionan ensayos para identificar ADC que se dirigen específicamente y se unen a una proteína diana, cuya presencia se correlaciona con la función celular anómala, y en la patogénesis de proliferación y/o diferenciación celular que se relaciona de forma causal con el desarrollo de tumores.

Para identificar un ADC que bloquea la activación de ligandos de un receptor ErbB (por ejemplo, ErbB2), se puede determinar la capacidad del compuesto para bloquear ligandos ErbB que se unen a células que expresan el receptor ErbB (ErbB2) (por ejemplo, en conjugación con otro receptor ErbB con el que el receptor ErbB de interés forma un ErbB heterooligómero). Por ejemplo, se pueden incubar células aisladas a partir del animal transgénico que sobreexpresa HER2 y transfectarlas para que expresen otro receptor ErbB (con el que HER2 forma heterooligómero), es decir cultivar, con el ADC y a continuación exponer a ligando de ErbB marcado. A continuación, se puede evaluar la capacidad del compuesto para bloquear la unión de ligandos al receptor ErbB en el heterooligómero de ErbB.

Por ejemplo, la inhibición de heregulina (HRG) que se une a líneas celulares de tumores de mama, que sobreexpresa HER2 y que se establece a partir de los mamíferos no humanos transgénicos (por ejemplo, ratones) en el presente documento, con el candidato de ADC se puede realizar usando cultivos en monocapa sobre hielo en un formato de placa de 24 pocillos. Se pueden añadir anticuerpos monoclonales Anti-ErbB2 a cada pocillo e incubar durante 30 minutos. A continuación se puede añadir rHRGβ1₁₇₇₋₂₂₄ marcado con ¹²⁵I (25.000 cpm), y se puede continuar con la incubación durante 4 a 16 horas. Se pueden preparar las curvas de respuesta a la dosis y se puede calcular un valor de CI₅₀ (actividad citotóxica) para el compuesto interés.

Como alternativa, o adicionalmente; se puede evaluar la capacidad de un ADC para bloquear la fosforilación de tirosina estimulada con ligandos de ErbB de un receptor ErbB presente en un heterooligómero de ErbB. Por ejemplo, las líneas celulares establecidas a partir de los animales transgénicos en el presente documento se pueden incubar con un ADC de ensayo y a continuación someter a ensayo para la actividad de fosforilación de tirosina dependiente de ligandos ErbB usando un anticuerpo monoclonal anti-fosfotirosina (que está conjugado opcionalmente con una marca detectable). La activación del receptor de quinasas que se describe en la Patente de Estados Unidos Nº 5766863 también está disponible para determinar la activación del receptor ErbB y el bloqueo de esa actividad con el compuesto.

60 En una realización, se puede identificar sistemáticamente el ADC que inhibe la estimulación de HRG de la fosforilación de p180 tirosina en células MCF7 básicamente tal como se describe a continuación. Por ejemplo, una línea celular establecida a partir del animal transgénico para HER2 se puede sembrar en placas de 24 pocillos y compuestos se puede añadir a cada pocillo e incubar durante 30 minutos a temperatura ambiente; a continuación, se puede añadir rHRGβ₁₁₇₇₋₂₄₄ a cada pocillo hasta una concentración final de 0,2 nM, y se puede continuar con la incubación durante aproximadamente 8 minutos. Los medios se pueden aspirar de cada pocillo, y las relaciones se pueden detener mediante la adición de 100 μl de tampón de muestra de SDS (SDS al 5 %, DTT 25 mM, y Tris-HCl

25 mM, pH 6.8). Cada muestra (25 μl) se puede someter a electroforesis en un gel con un gradiente de un 4-12 % de Novex) y a continuación transferir de forma electroforética a una membrana de difluoruro de polivinilideno. Se pueden desarrollar inmunotransferencias de antifosfotirosina (a 1 μg/ml), y la intensidad de la banda reactiva predominante a la M_r -180.000 se puede cuantificar mediante densitometría de reflectancia. Un método alternativo para evaluar la inhibición de la fosforilación del receptor es el ensayo KIRA (activación del receptor de quinasas) de Sadick et al. (1998) Jour. of Pharm. and Biomed. Anal. Algunos de los anticuerpos monoclonales bien establecidos frente a HER2 que se sabe que inhiben la estimulación de HRG de fosforilación de p180 tirosina se pueden usar como control positivo en este ensayo. Se puede preparar una curva de dosis-respuesta para la inhibición de la estimulación de HRG de fosforilación de p180 tirosina tal como se determina con densitometría de reflectancia y se puede calcular una Cl_{50} para el compuesto interés.

5

10

15

35

40

45

65

Además, se puede evaluar los efectos inhibidores del crecimiento de un ADC de ensayo en líneas celulares obtenidas a partir de un animal transgénico para HER2, por ejemplo, básicamente tal como se describe en Schaefer et al. (1997) Oncogene 15: 1385-1394. De acuerdo con este ensayo, las células se pueden tratar con un compuesto de ensayo a diversas concentraciones durante 4 días y teñir con violeta de cristal o con el tinte redox Azul de Alamar. La incubación con el compuesto puede presentar un efecto inhibidor del crecimiento sobre esta línea celular similar al que se presenta con anticuerpo monoclonal 2C4 en células MDA-MB-175 (Schaefer *et al.*, mencionado anteriormente). En una realización más, HRG exógeno no invertirá significativamente esta inhibición.

Para identificar los compuestos inhibidores de crecimiento que se dirigen específicamente a un antígeno de interés, se pueden identificar sistemáticamente compuestos que inhiben el crecimiento de células cancerosas que sobreexpresan antígenos de interés obtenidos a partir de animales transgénicos, y se puede realizar el ensayo que se describe en la Patente de Estados Unidos № 5677171. De acuerdo con este ensayo, células cancerosas que sobreexpresan el antígeno de interés se cultivan en una mezcla 1:1 de F12 y medio DMEM complementado con suero bovino fetal al 10 %, glutamina y penicilina estreptomicina. Las células se siembran a 20.000 células en un disco de cultivo celular de 35 mm (2 ml/35 mm de disco) y el compuesto de ensayo se añade a diversas concentraciones. Después de seis días, se hace recuento del número de células, en comparación con células sin tratar usando un contador celular electrónico COULTER™. Los compuestos que inhiben el crecimiento celular en aproximadamente un 20-100 % o aproximadamente un 50-100 % se pueden seleccionar como compuestos inhibidores del crecimiento.

Para seleccionar compuestos que inducen la muerte celular, la pérdida de la integridad de la membrana tal como se indica, por ejemplo, con PI, azul de tripano o absorción de 7AAD se puede evaluar con respecto al control. El ensayo de absorción de PI usa células aisladas a partir del tejido tumoral de interés de un animal transgénico. De acuerdo con este ensayo, las células se cultivan en Medio de Eagle Modificado con Dulbecco (D-MEM):F-12 de Ham (50:50) complementado con FBS inactivado con calor al 10 % (Hyclone) y L-glutamina 2 mM. Por lo tanto, el ensayo se realiza en ausencia de células de complemento y efectoras inmunes. Las células se siembran con una densidad de 3 x 10⁶ por disco en discos de 100 x 20 mm y se permite que se unan durante una noche. A continuación el medio se retira y se reemplaza con medio recién preparado solo o con medio que contiene diversas concentraciones del compuesto. Las células se incubaron durante un periodo de tiempo de 3 días. Después de cada tratamiento, las monocapas se lavan con PBS y se separan mediante tripsinización. Las células se centrifugan a continuación a 1200 rpm durante 5 minutos a 4 ºC, el sedimento se vuelve a suspender en 3 ml de tampón de unión de Ca²⁺ frío (Hepes 10 mM, pH 7,4, NaCl 140 mM, CaCl₂ 2,5 mM) y se toman alícuotas en tubos de 12 x 75 mm cerrados con tamiz de 35 mm (1 ml por tubo, 3 tubos por grupo de tratamiento) para retirada de grupos de células. Los tubos reciben a continuación PI (10 µg/ml). Las muestras se pueden analizar usando un citómetro de flujo FACSCAN™ y el software de CellQuest FACSCONVERTTM (Becton Dickinson). Los compuestos que inducen niveles estadísticamente significativos de muerte celular tal como se determina mediante absorción de PI se pueden seleccionar como compuestos que inducen la muerte celular.

Para seleccionar compuestos que inducen la apoptosis, se realiza un ensayo de unión de anexina que usa células establecidas a partir del tejido tumoral de interés del animal transgénico. Las células se cultivan y se siembran en discos tal como se ha analizado en el párrafo precedente. El medio se retira a continuación y se reemplaza con medio recién preparado solo o medio que contiene 10 μg/ml del conjugado de anticuerpo fármaco (ADC). Después de un periodo de incubación de tres días, las monocapas se lavan con PBS y se separan mediante tripsinización.
 Las células se centrifugan a continuación, se vuelven a suspender en tampón de unión de Ca²+ y se toman alícuotas en tubos tal como se ha analizado anteriormente para el ensayo de muerte celular. Los tubos reciben a continuación anexina (por ejemplo, anexina V-FITC) (1 μg/ ml). Las muestras se pueden analizar usando un citómetro de flujo FACSCAN™ y el software de CellQuest FACSCONVERT™ (Becton Dickinson). Los compuestos que inducen niveles estadísticamente significativos de unión a anexina con respecto al control se seleccionan como compuestos que inducen la apoptosis.

4.5.3 ENSAYOS DE PROLIFERACIÓN CELULAR IN VITRO

Generalmente, la actividad citotóxica o citostática de un conjugado de anticuerpo fármaco (ADC) se mide mediante: exposición de células mamíferos que tienen proteínas receptoras al anticuerpo del ADC en un medio de cultivo

celular; cultivar las células durante un periodo de aproximadamente 6 horas a aproximadamente 5 días; y medir la viabilidad celular. Se usaron ensayos *in vitro* basados en células para medir viabilidad (proliferación), citotoxicidad, e inducción de apoptosis (activación de caspasas) del ADC de la invención.

- La potencia *in vitro* de conjugados de anticuerpo y fármaco se midió con un ensayo de proliferación celular (Ejemplo 18, Figuras 7-10). El Ensayo de Viabilidad Celular Luminescente CellTiter-Glo® es un método de ensayo homogéneo disponible en el mercado (Promega Corp., Madison, WI), basado en la expresión recombinante de luciferasa de *Coleópteros* (Patentes de Estados Unidos № 5583024; № 5674713 y № 5700670). Este ensayo de proliferación celular determina el número de células viables en cultivo basándose en la cuantificación del ATP presente, un indicador de células metabólicamente activas (Crouch et al. (1993) J. Immunol. Meth. 160: 81-88, Patente de Estados Unidos № 6602677). El Ensayo CellTiter-Glo® se realizó en formato de 96 pocillos, lo que lo hace susceptible el cribado de alto rendimiento automatizada (HTS) (Cree et al. (1995) AntiCancer Drugs 6: 398-404). El procedimiento de ensayo homogéneo implica la adición del reactivo individual (Reactivo CellTiter-Glo®) directamente a las células cultivadas en medio complementado con suero. No son necesarios lavado celular, retirada del medio y etapas múltiples de pipeteo. El sistema detecta una cantidad tan pequeña como 15 células/pocillo en un formato de 384 pocillos a los 10 minutos después de la dicción del reactivo y mezcla. Las células se pueden tratar continuamente con ADC, o se pueden tratar y separar de ADC. Generalmente, las células tratadas brevemente, *es decir* 3 horas, mostraron los mismos efectos de potencia que las células tratadas continuamente.
- El formato homogéneo de "añadir-mezclar-medir" da como resultado lisis celular y generación de una señal luminiscente proporcional a la cantidad de ATP presente. La cantidad de ATP es directamente proporcional al número de células presentes en el cultivo. El Ensayo CellTiter-Glo® genera una señal luminiscente "de tipo brillo", producida por la reacción de la luciferasa, que tiene una vida media generalmente mayor que cinco horas, dependiendo del tipo de célula y medio usados. Las células viables se reflejan en unidades de luminiscencia relativa (RLU). El sustrato, Luciferina de Escarabajo, se descarboxilasa oxida activamente mediante luciferasa de luciérnaga recombinante con conversión simultánea de ATP en AMP y generación de fotones. La vida media extendida elimina la necesidad del uso de inyectores de reactivo y proporciona flexibilidad para procesamiento en modo continuo o discontinuo de múltiples placas. Este ensayo de proliferación celular se puede usar con diversos formatos de múltiples pocillos, *por ejemplo*, formato de 96 o 384 pocillos. Los datos se pueden registrar con luminómetro o un dispositivo de formación de imágenes con cámara CCD. La producción de luminiscencia se presenta como unidades de luz relativa (RLU), medidas en el tiempo.

Luciferasa

ATP + Luciferina +
$$O_2$$
 \longrightarrow

Oxiluciferina + AMP + PPi + CO_2 + luz

 Mg^{+2}

- Los efectos antiproliferativos de conjugados de anticuerpo y fármaco se midieron con el ensayo de muerte celular *in vitro*, proliferación celular mencionado anteriormente frente a cuatro líneas celulares diferentes de tumor de mama (Figuras 7-10). Los valores de Cl₅₀ se establecieron para SK-BR-3 y BT-474 que se sabe que sobreexpresan la proteína receptora HER2. La Tabla 2a muestra las medidas de la potencia (Cl₅₀) de conjugados de anticuerpo y fármaco a modo de ejemplo en el ensayo de proliferación celular frente a células SK-BR-3. La Tabla 2b muestra las medidas de la potencia (Cl₅₀) de conjugados de anticuerpo y fármaco a modo de ejemplo en el ensayo de proliferación celular frente a células BT-474.
- Conjugados de anticuerpo y fármaco: Trastuzumab-MC-vc-PAB-MMAF, 3.8 MMAF/Ab; Trastuzumab-MC-(N-Me)vc-PAB-MMAF, 3.9 MMAF/Ab; Trastuzumab-MC-MMAF, 4.1 MMAF/Ab; Trastuzumab-MC-vc-PAB-MMAE, 4.1 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAE, 4.1 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAF, 3.7 MMAF/Ab no inhibieron la proliferación de células MCF-7 (Figura 9).
- Conjugados de anticuerpos y fármaco: Trastuzumab-MC-vc-PAB-MMAE, 4.1 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAE, 3.3 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAF, 3.7 MMAF/Ab; Trastuzumab-MC-vc-PAB-MMAF, 3.8 MMAF/Ab; Trastuzumab-MC-(N-Me)vc-PAB-MMAF, 3.9 MMAF/Ab; y Trastuzumab-MC-MMAF, 4.1 MMAF/Ab no inhibieron la proliferación de células MDA-MB-468 (Figura 10).
 - Las células MCF-7 y MDA-MB-468 no sobreexpresa en la proteína receptora HER2. Los conjugados de anticuerpo y fármaco anti-HER2 de la invención muestran por lo tanto selectividad para la inhibición de células que expresan HER2.

55

Tabla 2a células SK-BR-3

Tabla 2a células SK-BR-3	
Conjugado de Anticuerpo Fármaco H = trastuzumab unido a través de una cisteína [cys] excepto cuando se indica	Cl ₅₀ (μg de ADC/ml)
H-MC-MMAF, 4,1 MMAF/Ab	0,008
H-MC-MMAF, 4.8 MMAF/Ab	0,002
H-MC-vc-PAB-MMAE, (Ejemplo de referencia)	0,007
H-MC-vc-PAB-MMAE (Ejemplo de referencia)	0,015
H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab	0,0035 - 0,01
H-MC-vc-PAB-MMAF, 4.4 MMAF/Ab	0,006 - 0,007
H-MC-vc-PAB-MMAF, 4.8 MMAF/Ab	0,006
H-MC-(N-Me)vc-PAB-MMAF, 3,9 MMAF/Ab	0,0035
H-MC-MMAF, 4.1 MMAF/Ab	0,0035
H-MC-vc-PAB-MMAE, 4.1 MMAE/Ab (Ejemplo de referencia)	0,010
H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab	0,007
H-MC-vc-PAB-MMAE 4.1 MMAE/Ab (Ejemplo de referencia)	0,015
H-MC-vc-PAB-MMAF, 3.7 MMAF/Ab.	0,010
H-MC-vc-PAB-MMAE, 7.5 MMAE/Ab (Ejemplo de referencia)	0,0025
H-MC-MMAE, 8.8 MMAE/Ab (Ejemplo de referencia)	0,018
H-MC- MMAE, 4.6 MMAE/Ab (Ejemplo de referencia)	0,05
H-MC-(L)val-(L)cit-PAB-MMAE, 8.7 MMAE/Ab (Ejemplo de referencia)	0,0003
H-MC-(D)val-(D)cit-PAB-MMAE, 8.2 MMAE/Ab (Ejemplo de referencia)	0,02
H-MC-(D)val-(L)cit-PAB-MMAE, 8.4 MMAE/Ab (Ejemplo de referencia)	0,0015
H-MC-(D)val-(L)cit-PAB-MMAE, 3.2 MMAE/Ab (Ejemplo de referencia)	0,003
H-Trastuzumab	0,083
H-vc-MMAE, unido a través de una lisina [lys] (Ejemplo de referencia)	0,002
H-phe-lys-MMAE, unido a través de una lisina [lys] (Ejemplo de referencia)	0,0015
4D5-Fc8-MC-vc-PAB-MMAF, 4.4 MMAF/Ab	0,004
Hg-MC-vc-PAB-MMAF, 4.1 MMAF/Ab	0,01
7C2-MC-vc-PAB-MMAF, 4.0 MMAF/Ab	0,01
4D5 Fab-MC-vc-PAB-MMAF, 1.5 MMAF/Ab	0,02
Anti-TF Fab-MC-vc-PAB-MMAE* (Ejemplo de referencia)	-

Tabla 2b células BT474

Conjugado de Anticuerpo Fármaco H = trastuzumab unido a través de una cisteína [cys]	Cl ₅₀ (μg de ADC/ml)
H-MC-MMAF, 4.1 MMAF/Ab	0,008
H-MC-MMAF, 4.8 MMAF/Ab	0,002
H-MC-vc-PAB-MMAE, 4.1 MMAE/Ab (Ejemplo de referencia)	0,015
H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab	0,02 - 0,05
H-MC-vc-PAB-MMAF, 4.4 MMAF/Ab	0,01
H-MC-vc-PAB-MMAF, 4.8 MMAF/Ab	0,01
H-MC-vc-PAB-MMAE 3.3 MMAE/Ab (Ejemplo de referencia)	0,02

Conjugado de Anticuerpo Fármaco H = trastuzumab unido a través de una cisteína [cys]	Cl ₅₀ (μg de ADC/ml)
H-MC-vc-PAB-MMAF, 3.7 MMAF/Ab,	0,02
H-MC-vc-PAB-MMAF, 3,8 MMAF/Ab	0,015
H-MC-(N-Me)vc-PAB-MMAF, 3.9 MMAF/Ab	0,010
H-MC-MMAF, 4.1 MMAF/Ab	0,00015
H-MC-vc-PAB-MMAE, 7,5 MMAE/Ab (Ejemplo de referencia)	0.0025
H-MC-MMAE, 8.8 MMAE/Ab (Ejemplo de referencia)	0,04
H-MC- MMAE, 4.6 MMAE/Ab (Ejemplo de referencia)	0,07
4D5-Fc8-MC-vc-PAB-MMAF, 4.4 MMAF/Ab	0,008
Hg-MC-vc-PAB-MMAF, 4.1 MMAF/Ab	0,01
7C2-MC-vc-PAB-MMAF, 4.0 MMAF/Ab	0,015
4D5 Fab-MC-vc-PAB-MMAF, 1.5 MMAF/Ab	0,04
Anti-TF Fab-MC-vc-PAB-MMAE* (Ejemplo de referencia)	-
_	

H = trastuzumab

15

7C2 = anticuerpo de murino anti-HER2 que se unen a un epítopo diferente que el trastuzumab.

Fc8 = mutante que no se une a FcRn

Hg = 4D5 humanizado de longitud total "sin bisagra", con cisteínas bisagra de cadena pesada mutadas a serinas. Expresado en E. coli (por lo tanto no glicosilado).

Anti-TF Fab = fragmento de anticuerpo de factor anti-tejido * actividad frente a células MDA-MB-468

En un descubrimiento sorprendente e inesperado, los resultados de la actividad de proliferación celular in vitro del ADC en las Tablas 2a y 2b muestran por lo general que ADC con un número medio bajo de restos de fármaco por anticuerpo mostró eficacia, por ejemplo, CI₅₀ < 0,1 μg de ADC/ml. Los resultados sugieren que al menos para ADC de trastuzumab, la relación óptima de restos de fármaco por anticuerpo puede ser menor que 8, y puede ser de aproximadamente 2 a aproximadamente 5.

4.5.4 ACLARAMIENTO Y ESTABILIDAD DE PLASMA IN VIVO

10 El aclaramiento y la estabilidad de plasma farmacocinético de ADC se investigaron en ratas y monos cynomolgus. La concentración de plasma se midió con el tiempo. La Tabla 2c muestra datos farmacocinéticos de conjugados de anticuerpo y fármaco y otras muestras dosificadas en ratas. Las ratas son un modelo no específico para anticuerpos receptores de ErbB, debido a que, no se sabe que la rata exprese proteínas receptoras de HER2.

Tabla 2c Farmacocinética en Ratas

H = trastuzumab unido a tra se indica	avés de una cisteína [d	cys] excepto cuand	do se indica 2 m	g/kg de dosis exce	pto cuando
Dosis de la muestra en mg/kg	AUCinf día* μg/ml	CL ml/día/kg	Cmáx μg/ml	T½ Term. días	% Conj.
H-MC-vc-PAB-MMAE (Ab Total	78,6	26,3	39,5	5,80	40,6
H-MC-vc-PAB-MMAE (Conj.) (Ejemplo de referencia)	31,1	64,4	33,2	3,00	
H-MC-vc-PAB-MMAF (Total Ab)	170	12,0	47,9	8,4	50,0
H-MC-vc-PAB-MMAF	83,9	24,0	44,7	4,01	
(Conj.)					

H = trastuzumab unido a tr	avés de una cisteína	[cys] excepto cuar	ndo se indica 2 m	ng/kg de dosis exc	epto cuando
se indica Dosis de la muestra en mg/kg	AUCinf día* μg/ml	CL ml/día/kg	Cmáx μg/ml	T½ Term. días	% Conj.
H-MC-MMAE (Total Ab)	279	18,9	79,6	7,65	33
H-MC-MMAE (Conj.)	90,6	62,9	62,9	4,46	
5 mg/kg	,		,		
(Ejemplo de referencia)					
H-MC-MMAF (Total Ab)	299	6,74	49,1	11,6	37
H-MC-MMAF (Conj.)	110	18,26	50,2	4,54	
H-MC-vc-MMAF,	306	6,6	78,7	11,9	19,6
wo/PAB, (Total Ab)			,	,-	- , -
H-MC-vc-MMAF,	59,9	33,4	82,8	2,1	
wo/PAB, (Conj.)			ŕ		
H-Me-vc-PAB-MMAF	186	10,8	46,9	8,3	45,3
(Total Ab)		,			
H-Me-vc-PAB-MMAF	84,0	23,8	49,6	4,3	
(Conj.)			ŕ		
H-Me-vc-PAB-MMAE (Total Ab)	135	15,0	44,9	11,2	23,8
H-Me-vc-PAB-MMAE	31,9	63,8	45,2	3,0	
(Conj.)			1.5,2		
(Ejemplo de referencia)					
H-MC-vc-MMAF,	306	6,6	78,7	11,9	19,6
wo/PAB, (Total Ab)			,	,	,
H-MC-vc-MMAF,	59,9	33,4	82,8	2,1	
wo/PAB, (Conj.)					
H-MC-(D)val-(L)cit-PAB-	107	19,2	30,6	9,6	38,1
MMAE (Total Ab)					
H-MC-(D)val-(L)cit-PAB-	40	50,4	33,7	3,98	
MMAE (Conj.)					
(Ejemplo de referencia)					
H-MC-(Me)-vc-PAB-	135,1	15,0	44,9	11,2	23,8
MMAE, Total Ab					
H-MC-(Me)-vc-PAB-	31,9	63,8	45,2	2,96	
MMAE, Conj.					
(Ejemplo de referencia)					
H-MC-(D)val-(D)cit-PAB-	88,2	22,8	33,8	10,5	38,3
MMAE, Total Ab					
H-MC-(D)val-(D)cit-PAB-	33,6	59,8	36,0	4,43	
MMAE, Conj.					
(Ejemplo de referencia)					

H = trastuzumab unido a tra se indica	avés de una cisteína [cys] excepto cuar	ndo se indica 2 m	ng/kg de dosis exc	epto cuando
Dosis de la muestra en mg/kg	AUCinf día* μg/ml	CL ml/día/kg	Cmáx μg/ml	T½ Term. días	% Conj.
H-MC-vc-PAB-MMAE,	78,6	26,3	39,5	5,8	40,6
Total Ab					
H-MC-vc-PAB-MMAE, Conj. H unido a MC mediante lisina [lys]	31,1	64,4	33,2	3,00	
(Ejemplo de referencia)					
MMAF	0,99	204	280	0,224	-
200 μg/kg					
MMAE	3,71	62,6	649	0,743	-
206 μg/kg					
ejemplo) (Ejemplo de referencia)					
HER F(ab') ₂ -MC-vc- MMAE, Total Ab	9,3	217	34,4	0,35	95
HER F(ab') ₂ -MC-vc- MMAE, Conj. (Ejemplo de referencia)	8,8	227	36,9	0,29	
4D5-H-Fab-MC-vc-MMAF, Total Ab	43,8	46,2	38,5	1,49	68
4D5-H-Fab-MC-vc-MMAF, Conj.,	29,9	68,1	34,1	1,12	
4D5-H-Fab-MC-vc- MMAE,	71,5	70,3	108	1,18	59
Total Ab 4D5-H-Fab-MC-vc- MMAE, Conj. (Ejemplo de referencia)	42,2	118,9	114	0,74	
4D5-H-Fab	93,4	53,9	133	1,08	-
H-MC-vc-PAB-MMAF,	170	12,03	47,9	8,44	49,5
Total Ab H-MC-vc-PAB-MMAF, Conj.	83,9	23,96	44,7	4,01	
H-MC-vc-PAB-MMAF- DMAEA, Total Ab	211	9,8	39,8	8,53	34,3
H-MC-vc-PAB-MMAF- DMAEA, Conj.	71,5	28,2	38,8	3,64	
H-MC-vc-PAB-MMAF- TEG, Total Ab	209	9,75	53,2	8,32	29,7
H-MC-vc-PAB-MMAF- TEG, Conj.	63,4	31,8	34,9	4,36	

El AUC inf es el área bajo la curva de concentración de plasma-tiempo desde el momento de la dosificación hasta el infinito y es una medida de la exposición total a la entidad medida (fármaco, ADC). CL se define como el volumen de plasma aclarado de la entidad medida en unidades de tiempo y se expresa mediante normalización a peso corporal. El término T1/2 es la mitad del fármaco en el organismo medido durante su fase de eliminación. La expresión % Conj. es la cantidad relativa de ADC en comparación con el anticuerpo total detectado, mediante ensayos separados de inmunoafinidad de ELISA ("Analytical Methods for Biotechnology Products", Ferraiolo et al, páginas 85-98 en Pharmacokinetics of Drugs (1994) P.G. Welling y L.P. Balant, Eds., Handbook of Experimental Pharmacology, Vol.

- 110, Springer-Verlag. El cálculo del % Conj. es simplemente el AUCinf de ADC ÷ AUCinf total de Ab, y es un indicador general de la estabilidad del conector, aunque pueden tener efecto otros factores y mecanismos.
- La Figura 11 muestra un gráfico de un estudio de aclaramiento de la concentración de plasma después de la administración de los conjugados de anticuerpo fármaco: H-MC-vc-PAB-MMAF-TEG y H-MC-vc-PAB-MMAF a ratas Sprague-Dawley. Las concentraciones de anticuerpo total y ADC se midieron en el tiempo.
 - La Figura 12 muestra un gráfico de un estudio de aclaramiento de la concentración de plasma en dos etapas en el que ADC se administró a dosificaciones diferentes y las concentraciones del anticuerpo total y ADC se midieron en el tiempo.

EFICACIA IN VIVO

10

40

- La eficacia *in vivo* del ADC de la invención se midió con un modelo de ratón de explante transgénico de HER2 de alta expresión. Se propagó un aloinjerto desde el ratón transgénico Fo5 mmtv que no responde a, o responde muy poco a, la terapia con HERCEPTIN®. Los sujetos se trataron una vez con ADC y se controlaron durante 3-6 semanas para medir el tiempo de duplicación tumoral, log de muerte celular, y disminución tumoral. Se realizaron experimentos de seguimiento de respuesta a dosis y dosis múltiples.
- Los tumores aparecen fácilmente en ratones transgénicos que expresan una forma activada de forma mutacional de neu, el homólogo de rata de HER2, pero el HER2 que se sobreexpresa en cánceres de mama no muta y la formación de tumor es mucho menos robusta en ratones transgénicos que sobreexpresa en HER2 sin mutar (Webster et al. (1994) Semin. Cancer Biol. 5: 69-76).
- 25 Para mejorar la formación de tumores con HER2 sin mutar, se produjeron ratones transgénicos usando un plásmido de cADN de HER2 en el que un ATG secuencia arriba se suprimió para prevenir el comienzo de la traducción en dichos codones de ATG secuencia arriba, que de otro modo reducirían la frecuencia del comienzo de la traducción desde el codón de iniciación auténtico secuencia debajo de HER2 (por ejemplo, véase Child et al. (1999) J. Biol. Chem. 274: 24335-24341). Además, se añadió un intrón guimérico en el extremo 5', que también potenciaría el nivel de expresión tal como se ha indicado anteriormente (Neuberger y Williams (1988) Nucleic Acids Res. 16: 6713; 30 Buchman y Berg (1988) Mol. Cell. Biol. 8: 4395; Brinster et al. (1988) Proc. Natl. Acad. Sci. USA 85: 836). El intrón quimérico se obtuvo a partir de un vector de Promega, vector de expresión de mamífero pCI-neo (bp 890-1022). En extremo 3' del cADN está flanqueado por los exones 4 y 5 de la hormona de crecimiento humano, y secuencias de poliadenilación. Además, se usaron ratones FVB por qué esta cepa es más susceptible al desarrollo tumoral. Se usó 35 el promotor de MMTV-LTR para asegurar la expresión de HER2 específica de tejidos en la glándula mamaria. Los animales alimentaron con la dieta AIN 76A para aumentar la susceptibilidad a la formación de tumores (Rao et al. (1997) Breast Cancer Res. and Treatment 45: 149-158).

Tabla 2d Medidas de tumor en modelo de aloinjerto de ratón - Tumor de mama MMTV-HER2 Fo5, ratones atímicos desnudos

			uesiluuus				
Una sola dosis el día 1 (T = 0) excepto cuando se indica H = trastuzumab unido a través de una cisteína [cys] excepto cuando se indica							
Fármacos de Muestra por anticuerpo	Dosis	Ti	PR	CR	Tiempo de duplicación tumoral (días)	log medio de muerte celular	
Vehículo					2-5	0	
H-MC-vc-PAB- MMAE 8.7 MMAE/Ab (Ejemplo Ref.)	1250 μg/m ²	5/5	4/7	0/7	18	1,5	
H-MC-vc-PAB- MMAF 3.8 MMAF/Ab	555 μg/m ²	2/5	2/7	5/7	69	6,6	
H-MC(Me)-vc- PAB-MMAF					> 50	6,4	
H-MC-MMAF 4.8 MMAF/Ab	9.2 mg/kg Ab 550 μg/m² a 0, 7, 14 y 21 días	7/7	6/7	0/7	63	9	
H-MC-MMAF 4.8 MMAF/Ab	14 mg/kg Ab 840 μg/m² a 0,	5/5	5/7	2/7	> 63		

	día 1 (T = 0) exce unido a través de			to cuando se ir	ndica	
Fármacos de Muestra por anticuerpo	Dosis	Ti	PR	CR	Tiempo de duplicación tumoral (días)	log medio de muerte celular
	7, 14 y 21 días					
H-MC-vc-PAB- MMAF 5.9 MMAF/Ab	3,5 mg/kg Ab 300 μg/m² a 0, 21, y 42 días	5/6	1/7	3/7	> 36	
H-MC-vc-PAB- MMAF 5.9 MMAF/Ab	4,9 mg/kg Ab 425 μg/m² a 0, 21, y 42 días	4/7	2/7	5/7	> 90	
H-MC-vc-PAB- MMAF 5.9 MMAF/Ab	6,4 mg/kg Ab 550 μg/m² a 0, 21, y 42 días	3/6	1/7	6/7	> 90	
H-(L)val-(L)cit- MMAE 8.7 MMAE/Ab (Ejemplo Ref.)	10 mg/kg	7/7	1/7	0/7	15,2	1,1
H-MC-MMAE 4.6 MMAE/Ab (Ejemplo Ref.)	10 mg/kg	7/7	0/7	0/7	4	0,1
H-(D)val-(D)cit- MMAE 4.2 MMAE/Ab (Ejemplo Ref.)	10 mg/kg	7/7	0/7	0/7	3	
H-(D)val-(L)cit- MMAE 3.2 MMAE/Ab Ejemplo de referencia	13 mg/kg	7/7	0/7	0/7	9	0,6
H-MC(Me)-vc- MMAE 3.0 MMAE/Ab Ejemplo de referencia	13 mg/kg	7/7	3/7	0/7	17	1,2
H-(L)val-(D)cit- MMAE 3.5 MMAE/Ab Ejemplo de referencia	12 mg/kg	7/7	0/7	0/7	5	0,2
H-vc-MMAE 8.7 MMAE/Ab Ejemplo de referencia	10 mg/kg	7/7			17	
H-cys-vc-MMAF 3.8 MMAF/Ab	1 mg/kg	7/7			3	
H-cys-vc-MMAF 3.8 MMAF/Ab	3 mg/kg	7/7			> 17	
H-cys-vc-MMAF 3.8 MMAF/Ab	10 mg/kg	4/7	4/7	3/7	> 17	
H-MC-vc- MMAF-TEG 4 MMAF/Ab	10 mg/kg	3/6	1/7	6/7	81	7,8

Fármacos de	Dosis	Ti	PR	CR	Tiempo de	log medio de
Muestra por anticuerpo	Dusis	11	1 17	On	duplicación tumoral (días)	muerte celular
H-MC-vc- MMAF-TEG 4 MMAF/Ab	10 mg/kg q3wk x 3	0/5	0/7	7/7	81	7,9
H-vc-MMAF (lote 1)	10 mg/kg	4/6	2/8	5/8		
H-vc-MMAF (lote 2)	10 mg/kg	7/8	1/8	1/8		
H-MC-MMAF	10 mg/kg 550 μg/m ²	8/8	1/8	0/8	18	
H-(Me)-vc- MMAF	10 mg/kg	3/7	2/8	5/8		
H-vc-MMAE 7.5 MMAE/Ab Ejemplo de referencia	3,7 mg/kg a 0, 7, 14, 21, 28 días	6/6	0/7	1/7	17	2,3
H-vc-MMAE 7.5 MMAE/Ab Ejemplo de referencia	7.5 mg/kg a 0, 7, 14, 21, 28 días	5/7	3/7	3/7	69	10
anti IL8-vc- MMAE 7.5 MMAE/Ab Ejemplo de referencia	7.5 mg/kg a 0,7,14,21, 28 días	7/7	0/7	0/7	5	0,5
anti IL8-vc- MMAE 7.5 MMAE/Ab Ejemplo de referencia	3.7 mg/kg a 0, 7, 14, 21, 28 días	6/6	0/7	0/7	3	0,2
H-fk-MMA 7.5 MMAE/Ab Ejemplo de referencia	7.5 mg/kg a 0, 7, 14, 21, 28 días	7/7	1/7	0/7	31	4,4
H-fk-MMAE 7.5 MMAE/Ab Ejemplo de referencia	3.7 mg/kg a 0, 7, 14, 21, 28 días	7/7	0/7	0/7	8,3	0,9
anti IL8-fk- MMAE 7.5 MMAE/Ab Ejemplo de referencia	7.5 mg/kg a 0, 7, 14, 21, 28 días	7/7	0/7	0/7	6	0,5
anti IL8-fk- MMAE 7.5 MMAE/Ab Ejemplo de referencia	3,7 mg/kg a 0, 7, 14, 21, 28 días	7/7	0/7	0/7	3	0,1
Trastuzumab	7,5 mg/kg a	7/7	0/7	0/7	5	0,4
	0, 7, 14, 21, 28 días					

	día 1 (T = 0) exce unido a través de			ando se indica		
Fármacos de Muestra por anticuerpo	Dosis	Ti	PR	CR	Tiempo de duplicación tumoral (días)	log medio de muerte celular
H-vc-MMAE 8.7 MMAE/Ab Ejemplo de referencia	10 mg/kg 1250 mg/m ²	6/6	3/6	0/6	15	1,3
H-vc-MMAE Ejemplo Referencia	10 mg/kg 1250 μg/m² a 0, 7, y 14 días	7/7	5/7		> 19	
H-vc-MMAE Ejemplo Referencia	3 mg/kg a 0, 7, y 14 días	7/7			8	
H-vc-MMAE Ejemplo Referencia	1 mg/kg a 0, 7, y 14 días	7/7			7	
H-vc-MMAF	10 mg/kg	8/8	5/8		> 21	
H-vc-MMAF	10 mg/kg a 0, 7, y 14 días	4/7	4/7	3/7	> 21	
H-vc-MMAF	3 mg/kg a 0, 7, y 14 días	7/7			6	
H-vc-MMAF	1 mg/kg a 0, 7, y 14 días	8/8			4	
Trastuzumab	10 mg/kg a 0 y 7 días	8/8			3	
Hg-MC-vc-PAB- MMAF 4.1 MMAF/Ab	10 mg/kg a 0 días	6/7	3/8	5/8	56	5,1
Fc8-MC-vc- PAB-MMAF 4.4 MMAF/Ab	10 mg/kg a 0 días	7/7	6/8	0/8	25	2,1
7C2-MC-vc- PAB-MMAF	10 mg/kg a 0 días	5/6	6/8	1/8	41	3,7
4 MMAF/Ab	_	_				
H-MC-vc-PAB- MMAF 5.9 MMAF/Ab	10 mg/kg a 0 días	3/8	3/8	5/8	62	5,7
2H9-MC-vc- PAB-MMAE Ejemplo de referencia		9/9			> 14 días	
2H9-MC-vc- PAB-MMAF		9/9			> 14 días	
11D10-vc-PAB- MMAE Ejemplo de referencia		9/9			> 14 días	
11D10-vc- PAB-MMAF		9/9			11 días	

Una sola dosis el día 1 (T = 0) excepto cuando se indica H = trastuzumab unido a través de una cisteína [cys] excepto cuando se indica							
Fármacos de Muestra por anticuerpo	Dosis	Ti	PR			log medio de muerte celular	

7C2 = anticuerpo de murino anti-HER2 que se une a un epítopo diferente a trastuzumab.

Fc8 = mutante que no se une a la FcRn

Hg = 4D5 humanizado de longitud total "sin bisagra", con cisteínas bisagra de cadena pesada mutadas a serinas. Expresado en E. *coli* (por lo tanto no glicosilado).

2H9 = Anti-EphB2R

11D10 = Anti-0772P

10

15

20

25

30

35

El término Ti es el número de animales en el grupo de estudio con tumor a T = 0 + animales totales en el grupo. El término PR es el número de animales que alcanzan la remisión parcial del tumor + animales con tumor a T = 0 en el grupo. El término CR es el número de animales que alcanzan la remisión completa del tumor + animales con tumor a T = 0 en el grupo. El término Log de muerte celular es el tiempo en días para que el volumen del tumor se duplique – el tiempo en días para que el volumen del tumor de control se duplique dividido por 3,32 X tiempo para que el volumen tumoral se duplique en animales de control (dosificados con Vehículo). El cálculo del log de muerte celular tiene en cuenta el retraso del crecimiento del tumor que resulta del tratamiento y el tiempo de duplicación del volumen del tumor en el grupo de control. La actividad antitumoral de ADC se clasifica con valores de log de muerte celular de:

++++ $\geq 3,4$ (muy activo) +++ = 2,5-3,4++ = 1,7-2,4+ = 1,0-1,6inactivo = 0

La Figura 13 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con Aloinjertos de tumor de mama MMTV-HER2 Fo5 dosificados el Día 0 con: Vehículo, Trastuzumab-MC-vc-PAB-MMAE (1250 $\mu g/m^2$) y Trastuzumab-MC-vc-PAB-MMAF (555 $\mu g/m^2$). (H = Trastuzumab). El crecimiento de los tumores se retrasó por tratamiento con ADC en comparación con el nivel de crecimiento de control (Vehículo). La Figura 14 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con Aloinjertos de tumor de mama MMTV-HER2 Fo5 dosificados el Día 0 con 10 mg/kg (660 $\mu g/m^2$) de Trastuzumab-MC-MMAE y 1250 $\mu g/m^2$ de Trastuzumab-MC-vc-PAB-MMAE. La Figura 15 muestra el cambio del volumen tumoral medio con el tiempo en ratones atímicos desnudos con Aloinjertos de tumor de mama MMTV-HER2 Fo5 dosificados con 650 $\mu g/m^2$ de Trastuzumab-MC-MMAF. La Tabla 2d y las Figuras 13-15 muestran que el ADC tiene fuerte actividad antitumoral en el aloinjerto de un tumor positivo para HER2 (Fo5) que originalmente en un ratón transgénico MMTV-HER2. el anticuerpo solo (por ejemplo, Trastuzumab) no tiene actividad antitumoral significativa en este modelo (Erickson et al. Patente de Estados Unidos Nº 6632979). Tal como se ilustra en las Figuras 13-15, el crecimiento de los tumores se retrasó con el tratamiento con ADC en comparación con el nivel de crecimiento de control (Vehículo).

En un descubrimiento sorprendente e inesperado, los resultados de la actividad antitumoral *in vivo* del ADC en la Tabla 2d muestran generalmente que ADC con un número medio más bajo de restos de fármacos por anticuerpo mostraron eficacia, *por ejemplo*, tiempo de duplicación del tumor > 15 días y log medio de muerte celular > 1,0. La Figura 16 muestra que para el conjugado de anticuerpo fármaco, trastuzumab-MC-vc-PAB-MMAF, el volumen tumoral medio disminuyó y no progresó cuando la relación MMAF:trastuzumab era 2 y 4, mientras que el tumor progresaba con una relación de 5,9 y 6, pero una velocidad menor que con el Vehículo (tampón). La velocidad de la progresión tumoral en este modelo de xenoinjerto de ratón fue aproximadamente la misma, *es decir* 3 días, para Vehículo y trastuzumab. Los resultados sugieren que al menos para el ADC de trastuzumab, la relación óptima de restos de fármacos con anticuerpo puede ser menor que aproximadamente 8, y puede ser de aproximadamente 2 a aproximadamente 4.

4.5.5 TOXICIDAD EN ROEDORES

Los conjugados de anticuerpo y fármaco y un control menos ADC, "Vehículo", se evaluaron en un modelo de rata de toxicidad aguda. La toxicidad del ADC se investigo por tratamiento de ratas Sprague-Dawley macho y hembra con el ADC y posterior inspección y análisis de los efectos sobre diversos órganos. Las observaciones macroscópicas incluyeron cambios en los pesos corporales y signos de lesiones y sangrado. Se realizaron parámetros de patología clínica (química y hematología en suero), histopatología, y necropsia en animales dosificados.

45

Se considera que la pérdida de peso, o el cambio de peso con respecto animales dosificados solamente con Vehículo, en animales después de la dosificación con ADC son un indicador macroscópico y general de toxicidad sistémica o localizada. La Figuras 17-19 muestran los efectos de diversos ADC y control (Vehículo) después de la dosificación en el peso corporal de las ratas.

5

Se midió la hepatotoxicidad mediante enzimas hepáticas elevadas, mayores números de figuras mitóticas y apoptóticas y necrosis de hepatocitos. Se observó toxicidad hematolinfoide por supresión de leucocitos, principalmente granulocitos (neutrófilos), y/o plaquetas, e implicación orgánica linfoide, *es decir* atrofia o actividad apoptótica. También se observó toxicidad por lesiones en el tracto gastrointestinal tales como números aumentados de figuras mitóticas y apoptóticas y enterocolitis degenerativa.

Las enzimas indicativas de lesión hepática que se estudiaron incluyen:

AST (aspartato aminotransferasa)

15

10

- Localización: citoplasmática; hígado, corazón, músculo esquelético, riñón
- Relación Hígado:Plasma de 7000:1
- T1/2: 17 horas

20 ALT (alanina aminotransferasa)

- Localización: citoplasmática; hígado, riñón, corazón, músculo esquelético
- Relación Hígado:Plasma de 3000:1

25

- T1/2: 42 horas; variación diurna GGT (g-glutamil transferasa)
- Localización: membrana plasmática de células con alta capacidad secretora o de absorción; hígado, riñón, intestino
- Mal indicador de lesión hepática; normalmente elevada en trastornos de conductos biliares.

30

35

40

Los perfiles de toxicidad de trastuzumab-MC-val-cit-MMAF, trastuzumab-MC(Me)-val-cit-PAB-MMAF, trastuzumab-MC-MMAF and trastuzumab-MC-val-cit-PAB-MMAF se estudiaron en ratas Sprague-Dawley hembra (Ejemplo 19). El anticuerpo de trastuzumab humanizado no se une de forma apreciable al tejido de rata, y cualquier toxicidad se consideraría no específica. Las variantes a niveles de dosis de 840 y 2105 ug/m² de MMAF se compararon con trastuzumab-MC-val-cit-PAB-MMAF a 2105 ug/m².

Los animales en los grupos 1, 2, 3, 4, 6, y 7 (Vehículo, 9,94 y 24,90 mg/kg de trastuzumab-MC-val-cit-MMAF, 10,69 mg/kg de trastuzumab-MC(Me)-val-cit-PAB-MMAF, y 10,17 y 25,50 mg/kg de trastuzumab-MC-MMAF, respectivamente) ganaron peso durante el estudio. Los animales a los grupos 5 y 8 (26,78 mg/kg de trastuzumab-MC(Me)-val-cit-PAB-MMAF y 21,85 mg/kg de trastuzumab-MC-val-cit-PAB-MMAF, respectivamente) perdieron peso durante el estudio. En el Día del Estudio 5, el cambio en los casos corporales de animales en los grupos 2, 6 y 7 no fueron significativamente diferentes de los animales del grupo 1. The cambio de pesos corporales de los animales en los grupos 3, 4, 5 y 8 fueron de los de los animales del grupo 1 (Ejemplo 19).

Las ratas tratadas con trastuzumab-MC-MMAF (grupos 6 que 7) eran indistinguible es de los animales de control tratados con vehículo a ambos niveles de dosis; es decir este conjugado mostró un perfil de seguridad superior en este modelo. Las ratas tratadas con trastuzumab-MC-val-cit-MMAF (sin del resto de PAB autoinmolativo; grupos 2 ir 3) mostraron cambios dependientes de la dosis habituales para conjugados de MMAF; del alcance de los cambios fue menor en comparación con un conjugado de MC-val-cit-PAB-MMAF de longitud total (grupo 8). Los recuentos de plaquetas el Día 5 fueron de aproximadamente un 30 % de los valores de la medida inicial en animales del grupo 3 (trastuzumab-MC-val-cit-PAB-MMAF a dosis elevada) en comparación con un 15 % en animales del grupo 8 (trastuzumab-MC-val-cit-PAB-MMAF a dosis elevada). El aumento de enzimas hepáticas AST que ALT, de bilirrubina del alcance de trombocitopenia temas evidentes en animales tratados con trastuzumab-MC(Me)-val-cit-PAB-MMAF (grupos 4 Inc. 5) de una manera dependiente de la dosis; animales del grupo 5 (grupo de dosis elevadas) mostraron el día 5 niveles de ALT de aproximadamente 10x el valor de la medida inicial y las plaquetas se redujeron en aproximadamente un 90 % en el momento de la necropsia.

Ratas Sprague Dawley Hembra también se dosificaron con niveles elevados (Ejemplo 19, estudio de Dosis Elevada: Grupos 2, 3, 4) con trastuzumab-MC-MMAF, y control de Vehículo (Grupo 1). Se observaron ligeras señales de toxicidad, incluyendo elevación de enzimas hepáticas dependientes de la dosis ALT, AST y GGT. El Día 5, animales en el grupo de dosis más elevadas mostraron un aumento de 2 veces de ALT y un aumento de 5 veces de AST; GGT también está elevada (6 U/l). los niveles enzimáticos muestran una tendencia hacia la normalización el Día 12. hubo una granulocitosis moderada en todos los tres grupos de dosis el Día 5, el recuento de plaquetas permanece básicamente sin cambios en todos los animales. Los cambios morfológicos fueron los suaves; animales tratados con un nivel de dosis de 4210 μg/m² (Grupo 2) mostró histología sin complicaciones de hígado, bazo, timo, intestinos y médula ósea. Se observó un leve aumento de la actividad apoptótica y mitótica en timo e hígado, respectivamente

en animales tratados con el nivel de dosis de $5500 \,\mu\text{g/m}^2$ (Grupo 3). La medular ósea era normocelular, pero mostró evidencias de hiperplasia granulocítica, que es coherente con la granulocitosis absoluta observada en los recuentos de sangre periférica en estos animales. Los animales con la dosis más elevada en el grupo 4 mostraron cualitativamente las mismas características; la actividad mitótica en el hígado parece en cierto modo mayor en comparación con animales en el Grupo 3. Además, se observó hematopoyesis extramedular en bazo e hígado.

EphB2R es un receptor de tirosina quinasa TM de tipo 1 con una homología próxima entre ratón y ser humano, y se sobreexpresa en células de cáncer colorrectal. 2H9 es un anticuerpo frente a EphB2R. El anticuerpo desnudo no tienen efecto en el crecimiento tumoral, pero 2H9-val-cit-MMAE eliminó células que expresan EphB2R demostró eficacia en un modelo de xenoinjerto de ratón que usa tumores de colon humano CXF1103 (Mao et al. (2004) Cancer Res. 64: 781-788). Tanto 2H9 como 7C2 son anticuerpos anti-HER2 de IgG1 de ratón. Se compararon los perfiles de toxicidad de 2H9-MC-val-cit-PAB-MMAF (3.7 MMAF/Ab), 7C2-MC-val-cit-PAB-MMAF (4 MMAF/Ab), que trastuzumab-MC-val-cit-PAB-MMAF (5.9 MMAF/Ab). Las diferencias en la estructura de cada inmunoconjugado o porción de fármaco del inmunoconjugado pueden afectar a la farmacocinetica y por último al perfil de seguridad. El anticuerpo de trastuzumab humanizado no se une de forma apreciable al tejido de rata, y cualquier toxicidad se consideraría no específica.

TOXICIDAD/SEGURIDAD EN MONO CYNOMOLGUS

5

10

15

25

30

45

50

Del mismo modo que el estudio de toxicidad la seguridad en ratas, monos cynomolgus se trataron con ADC seguido de medidas de enzimas hepáticas, e inspección y análisis de los efectos sobre diversos órganos. Las observaciones macroscópicas incluyeron cambios en los pesos corporales y signos de lesiones y sangrado. Se realizaron parámetros de patología clínica (química y hematología en suero), histopatología, y necropsia en animales dosificados (Ejemplo 19).

El conjugado de anticuerpo y fármaco, H-MC-vc-PAB-MMAE (H = trastuzumab unido a través de cisteína) no mostró evidencia de toxicidad hepática a ninguno de los niveles de dosis sometidos a ensayo. Los granulocitos de sangre periférica mostraron reducción después de una sola dosis de 1100 mg/m² con recuperación completa 14 días después de la dosis. El conjugado de anticuerpo y fármaco H-MC-vc-PAB-MMAF mostró aumento de enzimas hepáticas a 550 (transitorio) y 880 mg/m² de nivel de dosis, ninguna evidencia de granulocitopenia, y una disminución de plaquetas dependiente de la dosis, transitoria (grupos 2 y 3).

4.6 SÍNTESIS DE LOS COMPUESTOS DE LA INVENCIÓN

Los Compuestos a modo de Ejemplo y los Conjugados a modo de Ejemplo se pueden preparar usando los procedimientos sintéticos que se describen a continuación en los Esquemas 5-16. Tal como se describe con más detalle a continuación, los Compuestos a modo de Ejemplo o los Conjugados a modo de Ejemplo se pueden preparar convenientemente usando un Conector que tiene un sitio reactivo para la unión al Fármaco y Ligando. En un aspecto, un Conector tiene un sitio reactivo que quien un grupo electrófilo que es reactivo a un grupo no nucleófilo presente en un Ligando, tal como, pero no limitado a un anticuerpo. Grupos nucleófilos útiles en un anticuerpo incluyen pero no se limitan a, grupos sulfhidrilo, hidroxilo y amino. El heteroátomo del grupo nucleófilo de un anticuerpo es reactivo a un grupo electrófilo de un Conector y forma un enlace covalentes con una unidad de Conector. Grupos electrófilos útiles incluyen, pero no se limitan a, grupos maleimida y haloacetamida. El grupo electrófilo proporciona un sitio conveniente para unión a anticuerpos.

En otra realización, un Conector tiene un sitio reactivo que has un grupo nucleófilo que es reactivo a un grupo electrófilo presente en un anticuerpo. Grupos electrófilos útiles en un anticuerpo incluyen, pero no se limitan a, grupos carbonilo de aldehído y cetona. El heteroátomo de un grupo nucleófilo de un Conector puede reaccionar con un grupo electrófilo en un anticuerpo y formar un enlace, lente con una unidad de anticuerpo. Grupos nucleófilos útiles en un Conector incluyen, pero no se limitan a, hidrazida, oxima, amino, hidrazina, tiosemicarbazona, hidrazina carboxilato, y arilhidrazida. El grupo electrófilo en un anticuerpo proporciona un sitio conveniente para unión a un Conector.

Además, grupos funcionales de ácido carboxílico y grupos funcionales de cloroformiato son sitios reactivos útiles para un Conector porque pueden reaccionar con grupos amino secundario de un Fármaco para formar una unión amida. además es útil como un sitio reactivo un grupo funcional carbonato en un Conector, tal como pero no limitado a p-nitrofenil carbonato, que puede reaccionar con un grupo amino de un Fármaco, tal como pero no limitado a N-metil valina, para formar una unión carbamato. Por lo general, los Fármacos basados en péptidos se preparan mediante la formación de un enlace peptídico entre dos o más fragmentos de aminoácido y/o péptido. Dichos enlaces peptídico se pueden preparar, por ejemplo, de acuerdo con el método de síntesis en fase líquida (*véase* E. Schröder y K. Lübke, "The Peptides", volumen 1, páginas 76-136, 1965, Academic Press) que es bien conocido en el campo de la química de péptidos.

La síntesis de un Bastidor ilustrativo que tiene un grupo electrófilo de maleimida se ilustra continuación en los Esquemas 8-9. En el Esquema 10 se describen métodos sintéticos generales útiles para la síntesis de un Conector. El Esquema 11 muestra la construcción de una unidad de Conector que tiene un grupo val-cit, un grupo electrófilo de

maleimida y un grupo Espaciador autoinmolativo PAB. El Esquema 12 representa la síntesis de un Conector que tiene un grupo phe-lys, un grupo electrófilo de maleimida, con y sin el grupo Espaciador autoinmolativo PAB. El Esquema 13 presenta una descripción general para la síntesis de un Compuesto de Fármaco-Conector, mientras que el Esquema 14 presenta una ruta alternativa para preparar un Compuesto de Fármaco-Conector. El Esquema 15 representa la síntesis de un conector ramificado que contiene un grupo BHMS. El Esquema 16 describe la unión de un anticuerpo a un Compuesto de Fármaco-Conector para formar un Conjugado de Fármaco-Conector-Anticuerpo, y el Esquema 14 ilustra la síntesis de Conjugados de Fármaco-Conector-Anticuerpo que tienen, por ejemplo pero no se limitan a, 2 o 4 fármacos por Anticuerpo.

Tal como se describe con más detalle a continuación, los Conjugados a modo de Ejemplo se preparan convenientemente usando un Conector que tiene dos o más Sitios Reactivos para la unión al y a un Ligando. En un aspecto, un Conector tiene un sitio Reactivo que tiene un grupo electrófilo que es reactivo a un grupo nucleófilo presente en un Ligando, tal como un anticuerpo. Grupos nucleófilos útiles en un anticuerpo incluyen pero no se limitan a, grupos sulfhidrilo, hidroxilo y amino. El heteroátomo del grupo nucleófilo de un anticuerpo es reactivo a un grupo electrófilo en un Conector y forma un enlace covalente con una unidad de Conector. Grupos electrófilos útiles incluyen, pero no se limitan a, grupos maleimida y haloacetamida. El grupo electrófilo proporciona un sitio conveniente para unión a anticuerpos.

En otra realización, un Conector tiene un sitio Reactivo que tiene un grupo nucleófilo que es reactivo a un grupo electrófilo presente en un Ligando, tal como un anticuerpo. Grupos electrófilos útiles en un anticuerpo incluyen, pero no se limitan a, grupos aldehído y cetona carbonilo. El heteroátomo de un grupo nucleófilo de un Conector puede reaccionar con un grupo electrófilo en un anticuerpo y formaron el tráfico Valente con una unidad de anticuerpo. Grupos nucleófilos útiles en un Conector incluyen, pero no se limitan a, hidrazida, oxima, amino, hidrazina, tiosemicarbazona, hidrazina carboxilato, y arilhidrazida. El grupo electrófilo en un anticuerpo proporciona un sitio conveniente para unión a un Conector.

4.6.1 SÍNTESIS DE RESTOS DE FÁRMACO

Por lo general, los Fármacos basados en péptido se pueden preparar formando un enlace peptídico entre dos o más fragmentos de aminoácido y/o péptido. Dichos enlaces peptídicos se pueden preparar, por ejemplo, de acuerdo con el método de síntesis en fase líquida (*véase* E. Schröder y K. Lübke, "The Peptides", volumen 1, páginas 76-136, 1965, Academic Press) que es bien conocido en el campo de la química de péptidos.

Los restos de fármacos de auristatina/dolastatina se pueden preparar de acuerdo con los métodos generales de:
Patente de Estados Unidos Nº 5635483; Patente de Estados Unidos Nº 5780588; Pettit et al. (1989) J. Am. Chem.
Soc. 111: 5463-5465; Pettit et al. (1998) Anti-Cancer Drug Design 13: 243-277; y Pettit et al. (1996) J. Chem. Soc.
Perkin Trans. 15:859-863.

En una realización, un Fármaco se prepara por combinación de aproximadamente un equivalente estequiométrico de un dipéptido y un tripéptido, preferentemente en una reacción en una etapa en condiciones de condensación adecuadas. Este enfoque se ilustra en los Esquemas 5-7, que siguen a continuación.

El Esquema 5 ilustra la síntesis de una unidad F de tripéptido N-terminal que es un compuesto intermedio útil para la síntesis de los compuestos de fármaco de Fórmula lb.

45

Esquema 5

Tal como se ilustra en el Esquema 5, un aminoácido protegido A (en el que PG representa un grupo de protección de amina, R^4 se selecciona entre hidrógeno, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , -O-(alquilo C_1 - C_8), -arilo, alquil-arilo, alquil-(carbociclo C_3 - C_8), heterociclo C_3 - C_8 , alquil-(heterociclo C_3 - C_8) en el que R^5 se selecciona entre H y metilo; o R^4 y R^5 se unen, tiene la fórmula - $(CR^aR^b)_{n^-}$ en la que R^a y R^b se seleccionan independientemente entre hidrógeno, alquilo C_1 - C_8 y carbociclo C_3 - C_8 y n se selecciona entre 2, 3, 4, 5 y 6, y forman un anillo con el átomo de carbono al que están unidos), se acopla con el éster t-butílico B (en el que R^6 se selecciona entre -H y -alquilo C_1 - C_8 ; y R^7 se selecciona entre hidrógeno, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , -O-(alquilo C_1 - C_8), -arilo, alquil-arilo, alquil-(carbociclo C_3 - C_8), heterociclo C_3 - C_8 y alquil-(heterociclo C_3 - C_8)) en condiciones adecuadas de acoplamiento, por ejemplo, en presencia de PyBrop y diisopropiletilamina, o usando DCC (véase, por ejemplo, Miyazaki, K. et. al. Chem. Pharm. Bull. 1995, 43 (10), 1706-1718).

10

15

20

25

30

35

40

Grupos protectores PG adecuados, y métodos sintéticos adecuados para proteger un grupo amino con un grupo protector son bien conocidos en la técnica. *Véanse, por ejemplo,* Greene, T.W. y Wuts, P.G.M., Protective Groups in Organic Synthesis, 2ª Edición, 1991, John Wiley & Sons. Los aminoácidos A protegidos a modo de ejemplo son PG-lle y, particularmente, PG-Val, mientras que otros aminoácidos protegidos adecuados incluyen, sin limitación: PG-ciclohexilglicina, PG-ciclohexilalanina, ácido PG-aminociclopropano-1-carboxílico, ácido PG-aminoisobutírico, PG-fenilalanina, PG-fenilglicina, y PG-*terc*-butilglicina. Z es un grupo protector a modo de ejemplo. Fmoc es otro grupo protector a modo de ejemplo. Un a modo de ejemplo éster *t*-butílico **B** es éster t-butílico de dolaisoleucina.

El dipéptido $\bf C$ se puede purificar, *por ejemplo*, usando cromatografía, y posteriormente desproteger, *por ejemplo*, usando $\bf H_2$ y Pd al 10 %-C en etanol cuando $\bf PG$ es benciloxicarbonilo, o usando dietilamina para la retirada de un grupo protector Fmoc. La amina $\bf D$ resultante forma rápidamente un enlace peptídico con un aminoácido $\bf BB$ (en el que $\bf R^1$ se selecciona entre -H, -alquilo $\bf C_1$ - $\bf C_8$ y -carbociclo $\bf C_3$ - $\bf C_8$; y $\bf R^2$ se selecciona entre -H y -alquilo $\bf C_1$ - $\bf C_8$; o $\bf R^1$ y $\bf R^2$ se unen, tiene la fórmula - $(\bf CR^aR^b)_{n^-}$ en la que $\bf R^a$ y $\bf R^b$ se seleccionan independientemente entre -H, -alquilo $\bf C_1$ - $\bf C_8$ y -carbociclo $\bf C_3$ - $\bf C_8$ y n se selecciona entre 2, 3, 4, 5 y 6, y forman un anillo con el átomo de nitrógeno al que están unidos; y $\bf R^3$ se selecciona entre hidrógeno, -alquilo $\bf C_1$ - $\bf C_8$, -carbociclo $\bf C_3$ - $\bf C_8$, -O-(alquilo $\bf C_1$ - $\bf C_8$), -arilo, alquil-arilo, alquil-(carbociclo $\bf C_3$ - $\bf C_8$), heterociclo $\bf C_3$ - $\bf C_8$ y alquil-(heterociclo $\bf C_3$ - $\bf C_8$)). *N,N*-Dialquil aminoácidos son aminoácidos a modo de ejemplo para $\bf BB$, tal como las *N,N*-dimetil valina disponible en el mercado. Se pueden preparar otros *N,N*-dialquil aminoácidos por bis -alquilación reductora usando procedimientos conocidos (véase, *por ejemplo*, Bowman, R.E, Stroud, H.H J. Chem. Soc., 1950, 1342-1340). Fmoc-Me-L-Val y Fmoc-Me-L-glicina son dos aminoácidos $\bf BB$ a modo de ejemplo útiles para la síntesis de derivados de *N*-monoalquilo. La amina $\bf D$ y el aminoácido $\bf BB$ reaccionan para proporcionar el tripéptido $\bf E$ usando reactivo de acoplamiento DEPC con trietilamina como la base. El grupo protector de $\bf E$ con el extremo $\bf C$ se desprotege posteriormente usando HCl para proporcionar el compuesto tripeptídico de fórmula $\bf F$.

La metodología de acoplamiento a DEPC ilustrativa y la metodología de acoplamiento a PyBrop mostrada en el Esquema 5 se resumen a continuación en el Procedimiento General A y en el Procedimiento General B, respectivamente. La metodología ilustrativa para la desprotección de una amina protegida con Z a través de

hidrogenación catalítica se resume a continuación en el Procedimiento General C.

5

10

15

Procedimiento General A: Síntesis de péptidos usando DEPC. El aminoácido o péptido *N*-protegido o N,N-disustituido **D** (1,0 equiv.) y una amina **BB** (1,1 equiv.) se diluyen con un disolvente orgánico aprótico, tal como diclorometano (de 0,1 a 0,5 M). Una base orgánica tal como trietilamina o diisopropiletilamina (1,5 equiv.) se añade a continuación, seguido de DEPC (1,1 equiv.). La solución resultante se agita, preferentemente en atmósfera de argón, durante hasta 12 horas a la vez que se va controlando por HPLC o TLC. El disolvente se retira al vacío a temperatura ambiente, y el producto en bruto se purifica usando, por ejemplo, HPLC o cromatografía en columna ultrarrápida (columna en gel de sílice). Las fracciones relevantes se combinan y se concentran al vacío para proporcionar el tripéptido **E** que se seca al vacío durante una noche.

Procedimiento general B: Síntesis de péptidos usando PyBrop. El aminoácido **B** (1,0 equiv.), opcionalmente que tiene un grupo protector carboxilo, se diluye con un disolvente orgánico aprótico tal como diclorometano o DME para proporcionar una solución de una concentración entre 0,5 y 1,0 mM, a continuación se añade diisopropiletilamina (1,5 equiv.). El aminoácido Fmoc-, o Z-protegido **A** (1,1 equiv.) se añade en forma de un sólido en una porción, a continuación se añade PyBrop (1,2 equiv.) a la mezcla resultante. La reacción se controla por TLC o HPLC, seguido de un procedimiento de tratamiento similar al que se ha descrito en el Procedimiento General A.

Procedimiento general C: Retirada de Z a través de hidrogenación catalítica. El aminoácido o péptido C Zprotegido se diluye con etanol para proporcionar una solución de una concentración entre 0,5 y 1,0 mM en un recipiente adecuado, tal como un matraz de fondo redondo de paredes gruesas. Se añade paladio al 10 % sobre carbono (5-10 % en p/p) y la mezcla de reacción se coloca en una atmósfera de hidrógeno. La evolución de la reacción se controla usando HPLC y generalmente está completa en 1-2 h. La mezcla de reacción se filtra a través de un lecho de celite lavado previamente y el celite se lava de nuevo con un disolvente orgánico polar, tal como metanol después de filtración. La solución de eluyente se concentra al vacío para proporcionar un resto que se diluye con un disolvente orgánico, preferentemente tolueno. El disolvente orgánico se retira a continuación al vacío para proporcionar la amina C desprotegida.

El Esquema 6 muestra un método útil para preparar un dipéptido C-terminal de fórmula **K** y un método para acoplamiento del dipéptido de fórmula **K** con el tripéptido de fórmula **F** para preparar compuestos de fármaco de Fórmula **Ib**.

Esquema 6

El dipéptido **K** se puede preparar fácilmente por condensación del aminoácido modificado Boc-Dolaproína **G** (*véase*, por ejemplo, Pettit, G.R., et al. Synthesis, 1996, 719-725), con una amina de fórmula **H** usando agentes de condensación bien conocidos en la química de péptidos, tales como, por ejemplo, DEPC en presencia de trietilamina, tal como se muestra en el Esquema 5.

5

10

15

20

25

El dipéptido de fórmula **K** se puede acoplar a continuación con un tripéptido de fórmula **F** usando el Procedimiento General D para preparar los compuestos de fármaco protegidos con Fmoc de fórmula **L** que se pueden desproteger posteriormente usando el Procedimiento General E para proporcionar los compuestos de fármaco de fórmula **(Ib)**.

Procedimiento general D: Síntesis de Fármacos. Una mezcla de dipéptido **K** (1,0 equiv.) y tripéptido **F** (1 equiv.) se diluye con un disolvente orgánico aprótico, tal como diclorometano, para formar una solución 0,1 M, a continuación se añade un ácido fuerte, tal como ácido trifluoroacético (1/2 en v/v) se añade y la mezcla resultante se agita en una atmósfera de nitrógeno durante dos horas a 0 °C. La reacción se puede controlar usando TLC o, preferentemente, HPLC. El disolvente se retira al vacío y el resto resultante se seca de forma azeotrópica dos veces, preferentemente usando tolueno. El resto resultante se seca a alto vacío durante 12 h y después se diluye con un disolvente orgánico aprótico, tal como diclorometano. A continuación se añade una base orgánica tal como trietilamina o diisopropiletilamina (1,5 equiv.), seguido de PyBrop (1,2 equiv.) o DEPC (1,2 equiv.) dependiendo de la funcionalidad química en el resto. La mezcla de reacción se controla por TLC o HPLC y después de la finalización, la reacción se somete a un procedimiento de tratamiento similar o idéntico al que se ha descrito en el Procedimiento General **A.**

Procedimiento general E: Retirada de Fmoc usando dietilamina. Un Fármaco L protegido con Fmoc se diluye con un disolvente orgánico aprótico tal como diclorometano y a la solución resultante se le añade dietilamina (1/2 en v/v). La evolución de la reacción se controla por TLC o HPLC y por lo general se completa en 2 h. La mezcla de reacción se concentra al vacío y el resto resultante se seca de forma azeotrópica, preferentemente usando tolueno, después se seca a alto vacío para proporcionar el Fármaco Ib que tiene un grupo amino desprotegido.

El Esquema 7 nuestro método útil para preparar derivados de MMAF.

Esquema 7 DEPC, Et₃N Boo M G **HCVEIOAc** DEPC, EtaN Cuando PG = Fmoc:DEA/CH2Cl2 HCI/Dioxano (lb) cuando Z es -0- y R¹¹ es t-butilo

(lb) cuando Z es -0- y R¹¹ es -H

El dipéptido **O** se puede preparar fácilmente por condensación del aminoácido modificado Boc-Dolaproína **G** (*véase*, por ejemplo, Pettit, G.R., et al. Synthesis, 1996, 719-725), con un aminoácido protegido de fórmula **M** usando agentes de condensación bien conocidos en la química de péptidos, tales como, por ejemplo, DEPC en presencia de trietilamina, tal como se muestra en los Esquemas 5 y 6.

El dipéptido de fórmula **O** se puede acoplar a continuación con un tripéptido de fórmula **F** usando el Procedimiento General D para preparar los compuestos de MMAF protegidos con Fmoc de fórmula **P** que se pueden desproteger posteriormente usando el Procedimiento General E para proporcionar los compuestos de fármaco de MMAF.

Por lo tanto, los métodos anteriores son útiles para preparar Fármacos que se pueden usar en la presente invención.

4.6.2 SÍNTESIS DE CONECTOR DE FÁRMACO

Para preparar un Compuesto de Fármaco-Conector de la presente invención, el Fármaco se hace reaccionar con un sitio reactivo en el Conector. En general, el Conector puede tener la estructura:

20

5

cuando están presentes tanto una unidad Espaciadora (-Y-) como una unidad Bastidor (-A-). Como alternativa, el Conector puede tener la estructura:

Sitio Reactivo 2 — A_a-W_w — Sitio Reactivo 1

cuando están ausentes tanto la unidad Bastidor (-A-) como la unidad Espaciadora (-Y-).

10 El Conector también puede tener la estructura:

5

15

20

30

cuando están ausentes tanto la unidad de Aminoácido (W) como la Unidad Espaciadora (Y).

En general, un Conector adecuado tiene una unidad de Aminoácido unida a una Unidad Bastidor opcional y a una Unidad Espaciadora opcional. El Sitio Reactivo 1 está presente en el extremo de la unidad Espaciadora y el sitio Reactivo 2 está presente en el extremo del Bastidor. Si no está presente una unidad Espaciadora, entonces el sitio Reactivo 1 está presente en el extremo C de la unidad de Aminoácido.

En una realización a modo de ejemplo de la invención, el Sitio Reactivo Nº 1 es reactivo a un átomo de nitrógeno del Fármaco, y el Sitio Reactivo Nº 2 es reactivo a un grupo sulfhidrilo en el Ligando. Los Sitios Reactivos 1 y 2 pueden ser reactivos a diferentes grupos funcionales.

25 En un aspecto de la invención, el Sitio Reactivo Nº 1 es

En otro aspecto de la invención, el Sitio Reactivo Nº 1 es

Además, en otro aspecto de la invención, el Sitio Reactivo Nº 1 es un p-nitrofenil carbonato de que tiene la fórmula

En un aspecto de la invención, el Sitio Reactivo Nº 2 es un grupo aceptor de tiol. Grupos aceptores de tiol adecuados incluyen grupos haloacetamida que tienen la fórmula

40

en la que X representa un grupo saliente, preferentemente O-mesilo, O-tosilo, -CI,-Br, o -I; o un grupo maleimida que tiene la fórmula

Los Conectores útiles se pueden obtener a través de agentes comerciales, tales como Molecular Biosciences Inc. (Boulder, CO), o preparar tal como se resume en los Esquemas 8-10 que siguen a continuación.

Esquema 8

en el que X es - CH_2 - o - CH_2OCH_2 -; y n es un número entero que varía de 0-10 cuando X es - CH_2 - ; o 1-10 cuando X es - CH_2 OCH $_2$ -.

El método que se muestra en el Esquema 9 combina maleimida con un glicol en condiciones de Mitsunobu para preparar un Bastidor de polietilenglicol maleimida (véase por ejemplo, Walker, M.A. J. Org. Chem. 1995, 60, 5352-5), seguido de instalación de un grupo de Sitio Reactivo de p-nitrofenil carbonato.

Esquema 9

en el que E es -CH₂- o -CH₂OCH₂-; y e es un número entero que varía de 0-8.

10

Como alternativa, los bastidores de PEG-maleimida y PEG-haloacetamida se pueden preparar tal como se describe en Frisch, et al., Bioconjugate Chem. 1996, 7, 180-186.
El Esquema 10 ilustra una síntesis general de una unidad de Conector ilustrativa que contiene un grupo Bastidor de maleimida y opcionalmente una unidad Espaciadora autoinmolativa de éter p-aminobencílico.

Esquema 10

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno,-nitro o -ciano; m es un número entero que varía de 0-4; y n es un número entero que varía de 0-10.

Los Bastidores útiles se pueden incorporar en un Conector usando los compuestos intermedios disponibles en el mercado en Molecular Biosciences (Boulder, CO) que se describen a continuación mediante el uso de técnicas

conocidas de síntesis orgánica. Los Bastidores de fórmula (IIIa) se pueden introducir en un Conector haciendo reaccionar los siguientes compuestos intermedios con el extremo N de una unidad de Aminoácido tal como se representa en los Esquemas 11 y 12:

5

en el que n es un número entero que varía de 1-10 y T es -H o -SO₃Na;

10

en el que n es un número entero que varía de 0-3;

15

У

20

Las unidades Bastidor de fórmula (IIIb) se pueden introducir en un Conector haciendo reaccionar los siguientes compuestos intermedios con el extremo N de una unidad de Aminoácido:

en el que X es -Br o -I; y

5

Las unidades Bastidor de fórmula (IV) se pueden introducir en un Conector haciendo reaccionar los siguientes compuestos intermedios con el extremo N de una unidad de Aminoácido:

10

у

15

Las unidades Bastidor de fórmula (Va) se pueden introducir en un Conector haciendo reaccionar los siguientes compuestos intermedios con el extremo N de una unidad de Aminoácido:

У

5

10

Otros Bastidores útiles se pueden sintetizar de acuerdo con procedimientos conocidos. Los Bastidores de aminooxi de la fórmula que se muestra a continuación se pueden preparar por tratamiento de haluros de alquilo con N-Bochidroxilamina de acuerdo con procedimientos que se describen en Jones, D.S. et al., Tetrahedron Letters, 2000, 41 (10), 1531-1533; y Gilon, C. et al., Tetrahedron, 1967, 23(11), 4441-4447.

15

en la que - R^{17} - se selecciona entre -alquileno C_1 - C_{10} -, -carbociclo C_3 - C_8 -, -O-(alquil C_1 - C_8)-, -arileno-, -alquilen C_1 - C_{10} -arileno-, -arilen-alquileno C_1 - C_{10} -, -alquilen C_1 - C_{10} -(carbociclo C_3 - C_8)-, -(carbociclo C_3 - C_8)-alquileno C_1 - C_{10} -, -heterociclo C_3 - C_8)-, -alquileno C_1 - C_{10} -, -(CH₂CH₂O)_r-, -(CH₂CH₂O)_r-CH₂-; y r es un número entero que varía de 1-10;

Los Bastidores de isotiocianato de la fórmula que se muestra a continuación se pueden preparar a partir de cloruros de ácido isotiocianatocarboxílico tal como se describe en Angew. Chem., 1975, 87 (14): 517.

20

$$S=C=N-R^{17}-C(O)-\xi$$

en la que -R¹⁷- es tal como se describe en el presente documento.

El Esquema 11 nuestro método para obtener un Conector dipeptídico de val-cit que tiene un Bastidor de maleimida y opcionalmente un Espaciador autoinmolativo de p-aminobencilo.

Esquema 11

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno, -nitro o -ciano; y m es un número entero que varía de 0- α

5

El Esquema 12 ilustra la síntesis de una unidad de Conector dipeptídica de phe-lys(Mtr) que tiene una unidad Bastidor de maleimida y una unidad Espaciadora autoinmolativa de p-aminobencilo. El material de partida de AD (lys(Mtr)) está disponible en el mercado (Bachem, Torrance, CA) o se puede preparar de acuerdo con Dubowchik, et al. Tetrahedron Letters (1997) 38: 5257-60.

Esquema 12

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno, -nitro o -ciano; y m es un número entero que varía de 0-4.

5

10

15

20

Tal como se muestra en el Esquema 13, un Conector se puede hacer reaccionar con un grupo amino de un Compuesto de Fármaco de Fórmula (Ib) para formar un Compuesto de Fármaco-Conector que contiene un grupo amida o carbamato, que une la unidad de Fármaco con la unidad de Conector. Cuando el Sitio Reactivo Nº 1 es un grupo ácido carboxílico, tal como en el Conector AJ, la reacción de acoplamiento se puede realizar usando HATU o PyBrop y una base de amina apropiada, dando como resultado un Compuesto de Fármaco-Conector AK, que contiene un enlace amida bond entre la unidad de Fármaco y la unidad de Conector. Cuando el Sitio Reactivo Nº 1 es un carbonato, tal como en el Conector AL, el Conector se puede acoplar con el Fármaco usando HOBt en una mezcla de DMF/piridina para proporcionar un Compuesto de Fármaco-Conector AM, que contiene un enlace de carbamato entre la unidad de Fármaco y la unidad de Conector

Como alternativa, cuando el Sitio Reactivo Nº 1 es un buen grupo saliente, tal como en el Conector **AN,** el Conector se puede acoplar con un grupo amina de un Fármaco a través de un proceso de sustitución nucleófila para proporcionar un Compuesto de Fármaco-Conector que tiene una unión de amina (**AO**) entre la unidad de Fármaco y la unidad de Conector.

Los métodos ilustrativos útiles para unir un Fármaco a un Ligando para formar un Compuesto de Fármaco-Conector

se representan en el Esquema 13 y se resumen en los Procedimientos Generales G-H.

Procedimiento General G: Formación de amida usando HATU. Un Fármaco (Ib) (1,0 equiv.) y un Conector Nprotegido que contiene un sitio Reactivo de ácido carboxílico (1,0 equiv.) se diluyen con un disolvente orgánico
adecuado, tal como diclorometano, y la solución resultante se trata con HATU (1,5 equiv.) y una base orgánica,
preferentemente piridina (1,5 equiv.). La mezcla de reacción se deja en agitación en una atmósfera inerte,
preferentemente argón, durante 6 h, tiempo durante el cual la mezcla de reacción se controla usando HPLC. La
mezcla de reacción se concentra y el resto resultante se purifica usando HPLC para producir la amida de fórmula

Procedimiento H: Formación de carbamato usando HOBt. Una mezcla de un Conector AL que tiene un sitio Reactivo de p-nitrofenil carbonato (1,1 equiv.) y Fármaco (Ib) (1,0 equiv.) se diluyen con un disolvente orgánico aprótico, tal como DMF, para proporcionar una solución que tienen una concentración de 50-100 mM, y la solución resultante se trata con HOBt (2,0 equiv.) y se coloca en una atmósfera inerte, preferentemente argón. La mezcla de reacción se deja en agitación durante 15 min, a continuación se añade una base orgánica, tal como piridina (1/4 en v/v), y la evolución de la reacción se controla usando HPLC. El Conector por lo general se consume en 16 h. Después, la mezcla de reacción se concentra al vacío y el resto resultante se purifica usando, por ejemplo, HPLC para producir el carbamato AM.

15

20

25

Un método alternativo para preparar Compuestos de Fármaco-Conector se resume en el Esquema 14. Usando el método del Esquema 14, el Fármaco se une a una unidad de Conector parcial (**ZA**, por ejemplo), que no tiene unida una unidad Bastidor. Ésto proporciona el compuesto intermedio **AP**, que tiene una unidad de Aminoácido que tiene un extremo N protegido con Fmoc. El grupo Fmoc se retira a continuación y el compuesto intermedio de amina **AQ** resultante se une a continuación a una unidad Bastidor a través de la reacción de acoplamiento catalizada usando PyBrop o DEPC. La preparación de Compuestos de Fármaco-Conector que contienen un Bastidor **AR** de bromoacetamida o un Bastidor **AS** de PEG maleimida se ilustra en el Esquema 14.

Esquema 14

en el que Q es -alquilo C_1 - C_8 , -O-(alquilo C_1 - C_8), -halógeno, -nitro o -ciano; y m es un número entero que varía de 0-4.

La metodología útil para la preparación de una unidad de Conector que contiene un espaciador ramificado se muestra en el Esquema 15.

Esquema 15

El Esquema 15 ilustra la síntesis de un conector dipeptídico deval-cit que tiene una unidad Bastidor de maleimida y una unidad de bis(4-hidroximetil)estireno (BHMS). La síntesis del compuesto intermedio de BHMS (AW) se ha mejorado a partir de procedimientos anteriores de bibliografía (véase la Publicación Internacional Nº WO 9813059 de Firestone et al., y Crozet, M.P.; Archaimbault, G.; Vanelle, P.; Nouguier, R. Tetrahedron Lett. (1985) 26: 5133-5134) y usa como materiales de partida, (4-nitrobencil)fosfonato de dietilo (AT) disponible en el mercado y 2,2-dimetil-1,3-dioxan-5-ona (AU) disponible en el mercado. Los conectores AY y BA se pueden preparar a partir del compuesto AW usando la metodología que se describe en el Esquema 9.

4.6.3 CONECTORES DENDRÍTICOS

El conector puede ser un conector de tipo dendrítico para unión covalente de más de un resto de fármaco a través de un resto conector multifuncional, de ramificación con un Ligando, tal como pero no limitado a un anticuerpo (Sun et al. (2002) Bioorganic & Medicinal Chemistry Letters 12: 2213-2215; Sun et al. (2003) Bioorganic & Medicinal Chemistry 11: 1761-1768). Los conectores dendríticos pueden aumentar la relación molar de fármaco a anticuerpo, es decir la carga, que está relacionada con la potencia del Conjugado de Fármaco-Conector-Ligando. Por lo tanto, cuando un anticuerpo modificado genéticamente con cisteína lleva solamente un grupo reactivo tiol de cisteína, una multitud de restos de fármaco se pueden unir a través de un conector dendrítico.

20

15

5

Las siguientes realizaciones a modo de ejemplo de reactivos de conector dendrítico permiten que se conjuguen hasta nueve reactivos de resto de fármaco nucleófilo por reacción con los grupos funcionales cloroetilo de la mostaza de nitrógeno

$$X = CH_2OCH_2CH_2CH_2NHCCH_2CH_2CH_2 \longrightarrow N(CH_2CH_2CI)_2$$

$$Y = CH_2OCH_2CH_2CH_2CH_2CH_2CH(CO_2H)NHCCH_2CH_2CH_2 \longrightarrow N(CH_2CH_2CI)_2$$

$$Z = CH_2OCH_2CH_2CNHCH_2CX_3$$

$$CH_2OCH_2CH_2CNHCH_2CY_3$$

4.6.4 CONJUGACIÓN DE RESTOS DE FÁRMACOS A ANTICUERPOS

5

10

15

20

El Esquema 16 ilustra metodología útil para preparar conjugados de Fármaco-Conector-Ligando que tienen de aproximadamente 2 a aproximadamente 4 fármacos por anticuerpo. Un anticuerpo se trata con un agente reductor, tal como ditiotreitol (DTT) para reducir alguno o todos los restos disulfuro de la cisteína para formar grupos tiol de cisteína nucleófilos (-CH₂SH). El anticuerpo parcialmente reducido reacciona de este modo con compuestos de fármaco-conector, o reactivos de conector, con grupos funcionales electrófilos tales como maleimida o α-halo carbonilo, de acuerdo con el método de conjugación en la página 766 de Klussman, et al. (2004), Bioconjugate Chemistry 15 (4): 765-773.

Esquema 16

Por ejemplo, un anticuerpo, *por ejemplo*, AC10, disuelto en borato sódico 500 mM y cloruro sódico 500 mM a pH 8,0 se trata con un exceso de ditiotreitol 100 mM (DTT). Después de incubación a 37 °C durante aproximadamente 30

minutos, el tampón se intercambia mediante elución sobre resina Sephadex G25 y elución con PBS con DTPA 1 mM. El valor de tiol/Ab se comprueba por determinación de la concentración de anticuerpos reducido a partir de la absorbancia a 280 nm de la solución y la concentración de tiol por reacción con DTNB (Aldrich, Milwaukee, WI) y la determinación del absorbancia a 412 nm. El anticuerpo reducido disuelto en PBS se enfría con hielo. El conector de fármaco, *por ejemplo,* MC-val-cit-PAB-MMAE en DMSO, disuelto en acetonitrilo y agua en una concentración conocida, se añade al anticuerpo reducido enfriado en PBS. Después de aproximadamente una hora, se añade un exceso de maleimida para inactivar la reacción se protege cualquier grupo tiol de anticuerpos sin reaccionar. La mezcla de reacción se concentra por ultrafiltración centrífuga y el ADC, *por ejemplo,* AC10-MC-vc-PAB-MMAE, se purifica y se desala por elución a través de resina G25 en PBS, se filtra a través de filtros de 0,2 μm en condiciones estériles, y se congela para su almacenamiento.

Se prepararon diversos conjugados de anticuerpo y fármaco (ADC), con diversos conectores, y los restos de fármaco, MMAE y MMAF. La siguiente tabla es un grupo a modo de ejemplo de ADC que se prepararon siguiendo el protocolo del Ejemplo 27, y se caracterizaron por HPLC y ensayo de carga de fármaco.

1	5

10

Diana (antígeno)	ADC	cantidad aislada (mg)	relación fármaco/Ab
0772P	16E12-MC-vc-PAB-MMAE Ejemplo de referencia	1,75	4
0772P	11D10-MC-vc-PAB-MMAE Ejemplo de referencia	46,8	4,4
0772P	11D10-MC-vc-PAB-MMAF	54,5	3,8
Brevican	Brevican-MC-MMAF	2	6
Brevican	Brevican-MC-vc-MMAF	2	6
Brevican	Brevican-MC-vc-PAB-MMAF	1,4	6
CD21	CD21-MC-vc-PAB-MMAE Ejemplo de referencia	38,1	4,3
CD21	CD21-MC-vc-PAB-MMAF	43	4,1
CRIPTO	11F4-MC-vc-PAB-MMAF	6	4,8
CRIPTO	25G8-MC-vc-PAB-MMAF	7,4	4,7
E16	12G12-MC-vc-PAB-MMAE Ejemplo de referencia	2,3	4,6
E16	3B5-MC-vc-PAB-MMAE Ejemplo de referencia	2,9	4,6
E16	12B9-MC-vc-PAB-MMAE Ejemplo de referencia	1,4	3,8
E16	12B9-MC-vc-PAB-MMAE Ejemplo de referencia	5,1	4
E16	12G12-MC-vc-PAB-MMAE Ejemplo de referencia	3	4,6
E16	3B5-MC-vc-PAB-MMAE Ejemplo de referencia	4,8	4,1
E16	385-MC-vc-PAB-MMAF	24,7	4,4
EphB2R	2H9-MC-vc-PAB-MMAE Ejemplo de referencia	29,9	7,1
EphB2R	2H9-MC-fk-PAB-MMAE Ejemplo de referencia	25	7,5
EphB2R	2H9-MC-vc-PAB-MMAE Ejemplo de referencia	175	4,1
EphB2R	2H9-MC-vc-PAB-MMAF	150	3,8
EphB2R	2H9-MC-vc-PAB-MMAF	120	3,7
EphB2R	2H9-MC-vc-PAB-MMAE Ejemplo de referencia	10,7	4,4
IL-20Ra	IL20Ra-fk-MMAE Ejemplo de referencia	26	6,7
IL-20Ra	IL20Ra-vc-MMAE Ejemplo de referencia	27	7,3
EphB2	IL8-MC-vc-PAB-MMAE Ejemplo de referencia	251	3,7
MDP	MDP-vc-MMAE Ejemplo de referencia	32	
MPF	19C3-vc-MMAE Ejemplo de referencia	1,44	6,5
MPF	7D9-vc-MMAE Ejemplo de referencia	4,3	3,8
MPF	19C3-vc-MMAE Ejemplo de referencia	7,9	3
MPF	7D9-MC-vc-PAB-MMAF	5	4,3
Napi3b	10H1-vc-MMAE Ejemplo de referencia	4,5	4,6

Diana (antígeno)	ADC	cantidad aislada (mg)	relación fármaco/Ab
Napi3b	4C9-vc-MMAE Ejemplo de referencia	3,0	5,4
Napi3b	10H1-vc-MMAE Ejemplo de referencia	4,5	4,8
Napi3b	10H1-vc-MMAF	6,5	4
NCA	3E6-MC-fk-PAB-MMAE Ejemplo de referencia	49,6	5,4
NCA	3E6-MC-vc-PAB-MMAE Ejemplo de referencia	56,2	6,4
PSCA	PSCA-fk-MMAE Ejemplo de referencia	51,7	8,9
PSCA	PSCA-vc-MMAE Ejemplo de referencia	61,1	8,6
Napi3b	10H1-MC-vc-PAB-MMAE	75	4,2
Napi3b	10H1-MC-vc-PAB-MMAF	95	4,4
Napi3b	10H1-MC-MMAF	92	4
EphB2R	2H9-MC-vc-PAB-MMAE Ejemplo de referencia	79	5
EphB2R	2H9-MC-MMAF	92	4,9
0772P	11D10(Fc quimera)-MC-vc-PAB-MMAE Ejemplo de referencia	79	4,3
0772P	11D10(Fc quimera)-MC-vc-PAB-MMAF	70	4,5
0772P	11D10(Fc quimera)-MC-MMAF	23	4,5
Brevican	6D2-MC-vc-PAB-MMAF	0,3	4,5
Brevican	6D2-MC-MMAF	0,36	4,5
EphB2R	2H9(Fc quimera)-MC-vc-PAB-MMAE Ejemplo referencia	de 1983	4,3
E16	12B9-MC-vc-PAB-MMAE	14,1	4,6
E16	12B9-MC-vc-PAB-MMAF	16,4	4,5
E16	12G12-MC-vc-PAB-MMAE Ejemplo de referencia	10,5	4,1
E16	12G12-MC-vc-PAB-MMAF	10,2	3,8
E16	3B5-MC-vc-PAB-MMAE Ejemplo de referencia	58,6	3,8
E16	3B5-MC-vc-PAB-MMAF	8	3,1
0772P	11D10(Fc quimera)-MC-vc-PAB-MMAE Ejemplo de referencia	340	3,9
Steap1	(Steap1-92)-MC-vc-PAB-MMAE Ejemplo de referencia	3,5	4
Steap1	(Steap1-92)-MC-vc-PAB-MMAF	4,7	4
Steap1	(Steap1-120)-MC-vc-PAB-MMAE Ejemplo de referencia	2	4
Steap1	(Steap1-120)-MC-vc-PAB-MMAF	2,3	4
E16	3B5-MC-vc-PAB-MMAF	52,2	4,5

4.7 COMPOSICIONES Y MÉTODOS DE ADMINISTRACIÓN

10

En otras realizaciones, se describe una composición que incluye una cantidad eficaz de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo y un vehículo o excipiente farmacéuticamente aceptable. Por conveniencia, las unidades de Fármacos y Compuestos de Fármaco-Conector se pueden mencionar como Compuestos a modo de Ejemplo, mientras que Conjugados Fármaco-Ligando y Conjugados Fármaco-Conector-Ligando se pueden mencionar como Conjugados a modo de Ejemplo. Las composiciones son adecuadas para administración veterinaria o en seres humanos.

Las presentes composiciones pueden estar en cualquier forma que permita que la composición se administre a un paciente. Por ejemplo, la composición puedes estar en forma de un sólido, líquido o gas (aerosol). Las vías de administración habituales incluyen, sin limitación, oral, tópica, parenteral, sublingual, rectal, vaginal, ocular,

intratumoral, e intranasal. La administración parenteral incluye inyecciones subcutánea, intravenosa, intramuscular, inyección intraesternal o técnicas de infusión. En un aspecto, las composiciones se administran por vía parenteral. En otro aspecto más, los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo o composiciones se administran por vía intravenosa.

5

10

15

25

30

35

Las composiciones farmacéuticas se pueden formular con el fin de que permitan que un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo esté biodisponible tras la administración de la composición un paciente. Las composiciones pueden tomar la forma de una o más unidades de dosificación, en las que por ejemplo, un comprimido puede ser una sola unidad de dosificación, y un envase de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo en forma de aerosol pueda contener una pluralidad de unidades de dosificación.

Los materiales usados en la preparación de las composiciones farmacéuticas pueden ser no tóxicos en las cantidades usadas. Será evidente para los expertos en la materia que la dosificación óptima del ingrediente o ingredientes activos en la composición farmacéutica dependerá de diversos factores. Factores relevantes incluven. sin limitación, el tipo de animal (por ejemplo, ser humano), la forma en particular del Compuesto a modo de Ejemplo o Conjugado a modo de Ejemplo, la forma de administración, y la composición usada.

20

El vehículo o excipiente farmacéuticamente activo puede ser de partículas, de modo que las composiciones, por ejemplo, estén en forma de comprimido o de polvo. El vehículo o vehículos pueden ser líquidos, siendo las composiciones, por ejemplo, un jarabe oral o un líquido invectable. Además, el vehículo o vehículos pueden ser gaseosos o con partículas, con el fin de proporcionar una composición de aerosol útil, por ejemplo, en administración por inhalación.

Cuando está destinada a la administración oral, la composición está preferentemente en forma sólida o líquida, en la que las formas semisólida, semilíquida, suspensión y gel están incluidas dentro de las formas que se consideran en el presente documento como sólidas o líquidas.

Como una composición sólida para administración oral, la composición se prevé formular en una forma de polvo, gránulo, comprimido fabricado por compresión, píldora, cápsula, goma de mascar, oblea o similares. Dicha composición sólida contiene por lo general uno o más diluyentes inertes. Además, pueden estar presentes uno o más de los siguientes: aglutinantes tales como carboximetilcelulosa, etil celulosa, celulosa microcristalina, o gelatina; excipientes tales como almidón, lactosa o dextrinas, agentes disgregantes tales como ácido algínico, alginato sódico, Primogel, almidón de maíz y similares; lubricantes tales como estearato de magnesio o Sterotex; agentes deslizantes tales como dióxido de silicio coloidal; agentes edulcorantes tales como sacarosa o sacarina, un agente saborizante tales como menta, salicilato de metilo por sabor a naranja, y un agente colorante.

Cuando la composición está en forma de una cápsula, por ejemplo, una cápsula de gelatina, ésta puede contener, además de materiales del tipo que se han mencionado anteriormente, un vehículo líquido tal como polietilenglicol, ciclodextrina o un aceite graso.

40

45

La composición puede estar en forma de un líquido, por ejemplo, un elixir, jarabe, solución, emulsión o suspensión. El líquido puede ser útil para administración oral o para administración por inyección. Cuando está destinado para administración oral, una composición que de comprender uno o más de un agente edulcorante, conservantes, tinte/colorante y potenciador del sabor. En una composición para administración por inyección, también se puede incluir uno o más tensioactivo, conservante, agente humectante, agente dispersante, agente de suspensión, tampón, estabilizante el agente isotónico.

50

55

Las composiciones líquidas, ya sean soluciones, suspensiones u otra forma similar, también pueden incluir uno o más de los siguientes: diluyentes estériles tales como aqua para inyección, solución salina, preferentemente solución salina fisiológica, solución de Ringer, cloruro sódico isotónico, aceites fijos tales como mono o diglicéridos sintéticos que pueden servir como medio disolvente o de suspensión, polietilenglicoles, glicerina, ciclodextrina, propilenglicol u otros disolventes; agentes antibacterianos tales como alcohol bencílico o metil parabeno; antioxidantes tales como ácido ascórbico o bisulfito sódico: agentes de quelación tales como ácido etilendiamintetraacético: tampones tales como acetatos, citratos o fosfatos y agentes para la justa de la tonicidad tales como cloruro sódico o dextrosa. Una composición parenteral puede estar incluida en ampolla, una jeringa desechable o un vial de dosis múltiples fabricado de vidrio, plástico u otro material. La solución salina fisiológica es un adyuvante a modo de ejemplo. Una composición inyectable es preferentemente estéril.

60

65

La cantidad del Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo que es eficaz en el tratamiento de un trastorno o afección en particular dependerá de la naturaleza del trastorno o afección, y se puede determinar mediante técnicas clínicas convencionales. Además, se pueden usar opcionalmente ensayo in vitro o in vivo para ayudar a identificar los intervalos óptimos de dosificación. La dosis precisa a usar en las composiciones dependerá también de la vía de administración, y de la gravedad de la enfermedad o el trastorno, y se debería decidir de acuerdo con el criterio del médico en cada una de las circunstancias del paciente.

Las composiciones comprenden una cantidad eficaz de un Compuesto a modo de Ejemplo y/o Conjugado a modo

de Ejemplo de modo que se obtendrá una dosificación adecuada. Por lo general, esta cantidad es de al menos aproximadamente un 0,01 % de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo en peso de la composición. Cuando se pretende que sea para administración oral, esta cantidad se puede variar para que oscile de aproximadamente un 0,1 % a aproximadamente un 80 % en peso de la composición. En un aspecto, las composiciones orales pueden comprender de aproximadamente un 4 % a aproximadamente un 50 % del Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo el peso de la composición. En otro aspecto más, las composiciones presentes se preparan de modo que una unidad de dosificación parenteral contenga de aproximadamente un 0,01 % a aproximadamente un 2 % el peso del Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo.

10

15

A la administración intravenosa, la composición de comprender de aproximadamente 0,01 a aproximadamente 100 mg de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo por kg de peso corporal del animal. En un aspecto, la composición puede incluir de aproximadamente 1 a aproximadamente 100 mg de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo por kg de peso corporal del animal. En otro aspecto, la cantidad administrada estará en el intervalo de aproximadamente 0,1 a aproximadamente 25 mg/kg de peso corporal del Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo.

Generalmente, la dosificación de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo administrada a un paciente es por lo general de aproximadamente 0,01 mg/kg a aproximadamente 2000 mg/kg del peso corporal del animal. En un aspecto, la dosificación administrada aún pacientes entre aproximadamente 0,01 mg/kg y aproximadamente 10 mg/kg del peso corporal del animal, en otro aspecto, la dosificación administrada a un pacientes es entre aproximadamente 0,1 mg/kg y aproximadamente 250 mg/kg del peso corporal del animal, además, en otro aspecto, la dosificación administrada a un paciente es entre aproximadamente 0,1 mg/kg y aproximadamente 20 mg/kg del peso corporal del animal, en otro aspecto más, la dosificación administrada es entre aproximadamente 0,1 mg/kg y aproximadamente 10 mg/kg del peso corporal del animal, y además en otro aspecto, la dosificación administrada es entre aproximadamente 1 mg/kg y aproximadamente 10 mg/kg del peso corporal del animal.

Los Compuestos a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composiciones se pueden administrar mediante cualquier vía conveniente, por ejemplo por infusión o inyección en bolo, por absorción a través de revestimientos epiteliales o mucocutáneos (por ejemplo, mucosa oral, mucosa rectal e intestinal, etc.). La administración puede ser sistémica o local. Se conocen diversos sistemas de administración, por ejemplo, encapsulación en liposomas, micropartículas, microcápsulas, cápsulas, etc., y se pueden usar para administrar un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composición. En determinadas realizaciones, se administra más de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composición a un paciente.

En realizaciones específicas, puede ser deseable administrar uno o más Compuestos a modo de Ejemplo y/o Conjugados a modo de Ejemplo o composiciones localmente en el área con necesidad de tratamiento. Esto se puede conseguir, por ejemplo, y no a modo de limitación, por infusión local durante la cirugía; aplicación tópica, por ejemplo, de manera conjunta con un apósito para heridas después de la cirugía; por inyección; por medio de un catéter; por medio de un supositorio; o por medio de un implante, siendo el implante de un material poroso, no poroso, o gelatinoso, que incluye membranas, tales como membranas sialásticas, o fibras. En una realización, la administración puede ser por inyección directa en el sitio (o sitio anterior) de un cáncer, tumor o tejido neoplásico o pre-neoplásico. En otra realización, la administración puede ser por inyección directa en el sitio (o sitio anterior) de una manifestación de una enfermedad autoinmune.

En determinadas realizaciones, puede ser deseable introducir uno o más Compuestos a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composiciones en el sistema nervioso central mediante cualquier vía adecuada, que incluye inyección intraventricular e intratecal. La inyección intraventricular se puede facilitar a través de un catéter intraventricular, por ejemplo, unido a un depósito, tales como un depósito de Ommaya.

Además, se puede usar administración pulmonar, *por ejemplo*, mediante el uso de un inhalador o nebulizador, y formulaciones con un agente de aerosol, o a través de perfusión en un tensioactivo pulmonar de fluorocarbono o sintético.

En otra realización más, los Compuestos a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composiciones se pueden administrar en un sistema de liberación controlada, tales como pero no se limitan a, una bomba o se pueden usar diversos materiales poliméricos. En otra realización más, un sistema de liberación controlada se puede colocar en proximidad a la diana de los Compuestos a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composiciones, *por ejemplo*, el cerebro, necesitando de este modo solamente una fracción de la dosis sistémica (véase, *por ejemplo*, Goodson, en Medical Applications of Controlled Release, mencionado anteriormente, vol. 2, páginas 115-138 (1984)). Se pueden usar otros sistemas de liberación controlada que se analizan en la revisión de Langer (Science 249: 1527-1533 (1990)).

65

50

55

60

El término "vehículo" se refiere a un diluyente, adyuvante o excipiente, con el que se administra un Compuesto a

modo de Ejemplo y/o Conjugado a modo de Ejemplo. Dichos vehículos farmacéuticos pueden ser líquidos, tales como agua y aceites, que incluyen los de origen de petróleo, animal, vegetal o sintético, tales como aceite de cacahuete, aceite de soja, aceite mineral, aceite de sésamo y similares. Los vehículos pueden ser solución salina, goma de acacia, gelatina, pasta de almidón, talco, queratina, sílice coloidal, urea, y similares. Además, se pueden usar agentes auxiliares, estabilizantes, espesantes, lubricantes y colorantes. En una realización, cuando se administran a un paciente, el Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo o composiciones y vehículos farmacéuticamente aceptables son estériles. El agua es un vehículo a modo de ejemplo cuando los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo se administran por vía intravenosa. Las soluciones salinas y soluciones de dextrosa acuosa y glicerol solutions también se pueden usar como vehículos líquidos, particularmente para soluciones inyectables. Los vehículos farmacéuticos adecuados también incluyen excipientes tales como almidón, glucosa, lactosa, sacarosa, gelatina, malta, arroz, harina, quizá, gel de sílice, estearato sódico, monoestearato de glicerol, talco, cloruro sódico, leche desnatada seca, glicerol, propileno, glicol, agua, etanol y similares. Las presentes composiciones, si se desea, también pueden contener cantidades menores de agentes humectantes o de emulsificación, o agentes de tamponamiento del pH.

15

25

30

10

Las presentes composiciones pueden tomar la forma de soluciones, suspensiones, emulsión, comprimidos, píldoras, gránulos, cápsulas, cápsulas que contienen líquidos, polvos, formulaciones de liberación sostenida, supositorios, emulsiones, aerosoles, pulverizaciones, suspensiones, o cualquier otra forma adecuada para su uso. Otros ejemplos de vehículos farmacéuticos adecuados se describen en "Remington's Pharmaceutical Sciences" de E.W.

20 Martin.

En una realización, los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo se formulan de acuerdo con procedimientos de rutina en forma de una composición farmacéutica adaptada para administración intravenosa en animales, particularmente seres humanos. Por lo general, los vehículos su excipientes para la administración intravenosa son soluciones tampón acuosas isotónicas estériles. Cuando sea necesario, las composiciones también pueden incluir un agente solubilizante. Las composiciones para administración intravenosa pueden comprender opcionalmente un anestésico local tal como lignocaína para aliviar el dolor en el sitio de la inyección. Generalmente, los ingredientes se suministran por separado o se mezclan de manera conjunta en forma de dosificación individual, por ejemplo, en forma de un polvo liofilizado seco o concentrado sin agua en un envase cerrado herméticamente tal como una ampolla o un sobrecito que indique la cantidad del agente activo. Cuando se va a administrar un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo por infusión, se puede dosificar, por ejemplo, con una botella de infusión que contiene agua o solución salina de calidad farmacéutica estéril. Cuando el Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo se administra por inyección, se puede proporcionar una ampolla de agua estéril para inyección o solución salina de modo que los ingredientes se pueden mezclar antes de la administración.

35

40

Las composiciones para administración oral pueden estar en forma de comprimidos, pastillas para chupar, suspensiones acuosas u oleosas, gránulos, polvos, emulsiones, cápsulas, jarabes o elixires, por ejemplo. Las composiciones administradas por vía oral pueden contener uno o más agentes opcionales opcionalmente, por ejemplo, agentes edulcorantes tales como fructosa, aspartamo o sacarina; agentes saborizantes tales como menta, aceite de gaulteria, o cereza; agentes colorantes; y agentes conservantes, para proporcionar una preparación farmacéuticamente agradable al paladar. Además, cuando están en forma de comprimido o píldora, las composiciones se pueden revestir para retrasar la desintegración y la absorción en el tracto gastrointestinal proporcionando una acción sostenida durante un período de tiempo prolongado. Las membranas selectivamente permeables que rodean un compuesto de dirección osmóticamente activo también son adecuadas para compuestos administrados por vía oral. En estas últimas plataformas, el fluido del entorno que rodea a la cápsula es embestido por el compuesto de dirección, que se hincha para desplazar el agente o composición de agente a través de una apertura. Estas plataformas de administración pueden proporcionar un perfil de liberación básicamente de orden cero en oposición a los perfiles con adiciones de formulaciones de liberación inmediata. También se puede usar un material de retardo con el tiempo tal como monoestearato de glicerol o estearato de glicerol.

50

45

Las composiciones pueden estar destinadas a la administración tópica, en cuyo caso el vehículo puede estar en forma de una solución, emulsión, pomada o base de gel. Si están destinadas a la administración transdérmica, la composición puede estar en la forma de un parche transdérmicos o un dispositivo de iontoforesis. Las formulaciones tópicas pueden comprender una concentración de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo de aproximadamente un 0,05 % a aproximadamente un 50 % en p/v (peso por volumen unitario de la composición), en otro aspecto, de un 0,1 % a un 10 % en p/v.

55

60

65

La composición puede estar destinada a la administración rectal, en la forma, *por ejemplo*, de un supositorio que se fundirá en el recto y liberará el Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo.

La composición puede incluir diversos materiales que modifican la forma física de una unidad de dosificación sólida o líquida. Por ejemplo, la composición puede incluir materiales que forman una cubierta de revestimiento alrededor de los principios activos. Los materiales que forman la cubierta de revestimiento por lo general son inertes, y se pueden seleccionar entre, por ejemplo, azúcar, goma laca, y otros agentes de revestimiento entérico. Como alternativa, los principios activos se pueden encerrar en una cápsula de gelatina.

Las composiciones pueden consistir en unidades de dosificación gaseosa, por ejemplo, pueden estar en forma de un aerosol. El término aerosol se usa para indicar diversos sistemas que varían de los de naturaleza coloidal a sistemas que consisten en envases presurizados. Administración puede ser mediante un gas licuado o comprimido o mediante un sistema de bombeo adecuado que dosifica los principios activos.

Ya sea en forma sólida, líquida o gaseosa, las presentes composiciones pueden incluir un agente farmacológico usado en el tratamiento de cáncer, una enfermedad autoinmune o una enfermedad infecciosa.

10 4.8 USOS TERAPÉUTICOS DE LOS CONJUGADOS A MODO DE EJEMPLO

Los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo son útiles para tratar cáncer, una enfermedad autoinmune o una enfermedad infecciosa en un paciente.

15 4.8.1 TRATAMIENTO DE CÁNCER

5

20

25

30

45

Los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo son útiles para inhibir la multiplicación de una célula tumoral o de una célula cancerosa, causando apoptosis en una célula tumoral o cancerosa, o para tratar el cáncer en un paciente. Los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo se pueden usar en consecuencia de acuerdo con diversos entornos para el tratamiento de cánceres en animales. Los Conjugados Fármaco-Conector-Ligando se pueden usar para administrar un Fármaco o unidad de Fármaco a una célula tumoral o célula cancerosa. Sin quedar ligado a teoría alguna, en una realización, la unidad de Ligando de un Conjugado a modo de Ejemplo se une a o se asocia con un antígeno asociado a célula cancerosa asociado una célula tumoral, y el Conjugado a modo de Ejemplo se puede recoger dentro de una célula tumoral o célula cancerosa a través de endocitosis mediada por receptores. El antígeno se puede unir a una célula tumoral o célula cancerosa o puede ser una proteína de matriz extracelular asociada con la célula tumoral o célula cancerosa. Una vez dentro de la célula, una o más secuencias peptídicas específicas dentro de la unidad de Conector se extienden hidrolíticamente con una o más proteasas asociadas a células tumorales o a células cancerosas, dando como resultado la liberación de un Fármaco o un Compuesto de Fármaco-Conector. A continuación, el Fármaco liberado o Compuesto de Fármaco-Conector es libre paramilitar dentro de la célula e inducir actividades citotóxicas citostáticas. En una realización alternativa, el Fármaco o unidad de Fármaco se escinde del Conjugado a modo de Ejemplo fuera de la célula tumoral o célula cancerosa, y el Fármaco o Compuesto de Fármaco-Conector penetra posteriormente en la célula.

En una realización, la unidad de Ligando se une a la célula tumoral o célula cancerosa.

En otra realización, la unidad de Ligando se une a una célula tumoral o antígeno de célula cancerosa que está en la superficie de la célula tumoral o célula cancerosa.

40 En otra realización, la unidad de Ligando se une a una célula tumoral o antígeno de célula cancerosa que está en una proteína de matriz extracelular asociada con la célula tumoral o célula cancerosa.

La especificidad de la unidad de Ligando para una célula tumoral o célula cancerosa en particular puede ser importante para determinar los tumores o cánceres que se tratan de forma más eficaz. Por ejemplo, los Conjugados a modo de Ejemplo que tienen una unidad de Ligando BR96 pueden ser útiles para tratar carcinomas positivos a antígenos que incluyen los de pulmón, mama, colon, ovarios, y páncreas. Los Conjugados a modo de Ejemplo que tienen una unidad de Ligando Anti-CD30 o una anti-CD40 pueden ser útiles para tratar neoplasias hematológicas.

Otros tipos de cánceres en particular que se pueden tratar con los Conjugados a modo de Ejemplo incluyen, pero no se limitan a, los que se desvelan en la Tabla 3.

TABLA 3

Tumores sólidos, que incluyen pero no se limitan a:

fibrosarcoma

mixosarcoma

liposarcoma

condrosarcoma

sarcoma osteogénico

cordoma

angiosarcoma

endoteliosarcoma

Tumores sólidos, que incluyen pero no se limitan a:

linfangiosarcoma

linfangioendoteliosarcoma

sinovioma

mesotelioma

tumor de Ewing

leiomiosarcoma

rabdomiosarcoma

cáncer de colon

cáncer colorrectal

cáncer de riñón

cáncer pancreático

cáncer óseo

cáncer de mama

cáncer de ovarios

cáncer de próstata

cáncer de esófago

cáncer de estómago

cáncer oral

cáncer nasal

cáncer de garganta

carcinoma de células escamosas

carcinoma de células basales

adenocarcinoma

carcinoma de glándulas utópicas

carcinoma de glándulas sebáceas

carcinoma papilar

adenocarcinomas papilares

cistadenocarcinoma

carcinoma medular

carcinoma broncogénico

carcinoma de células renales

hepatoma

carcinoma de conductos biliares

coriocarcinoma

seminoma

carcinoma embrionario

tumor de Wilms

cancer cervical

cancer uterino

cancer testicular

carcinoma de pulmón de células pequeñas

Tumores sólidos, que incluyen pero no se limitan a:

carcinoma de vejiga

cáncer de pulmón

carcinoma epitelial

glioma

glioblastoma multiforme

astrocitoma

meduloblastoma

craneofaringioma

ependimoma

pinealoma

hemangioblastoma

neurinoma del acústico

oligodendroglioma

meningioma

cáncer de piel

melanoma

neuroblastoma

retinoblastoma

cánceres de transmisión sanguínea, que incluyen pero no se limitan a

leucemia linfoblástica aguda "ALL"

leucemia linfoblástica aguda de linfocitos B

leucemia linfoblástica aguda de linfocitos T

leucemia mieloblástica aguda "AML"

leucemia promielocítica aguda "APL"

leucemia monoblástica aguda

leucemia eritroleucémica aguda

leucemia megacarioblástica aguda

leucemia mielomonocítica aguda

leucemia no linfocítica aguda

leucemia sin diferenciar aguda

leucemia mielocítica crónica "CML"

leucemia linfocítica crónica "CLL"

leucemia de células pilosas

mieloma múltiple

leucemias aguda y crónica:

linfoblástica

mielogénica

leucemias aguda y crónica:

leucemias mielocíticas

Linfomas:

linfocítica

enfermedad de Hodgkin Linfoma no Hodgkin

Mieloma múltiple macroglobulinemia de Waldenström Enfermedad de cadena pesada Policitemia vera

Los Conjugados a modo de Ejemplo proporcionan una dirección al tumor o cáncer específica de conjugación, reduciendo de este modo la toxicidad general de estos compuestos. Las unidades Conectors estabilizan los Conjugados a modo de Ejemplo en sangre, sin embargo se pueden escindir con proteasas específicas de tumores dentro de la célula, liberando un Fármaco.

4.8.2 TERAPIA DE MODALIDAD MÚLTIPLE PARA CÁNCER

5

25

40

- Los cánceres, que incluyen, pero no se limitan a, un tumor, metástasis, u otra enfermedad o trastorno caracterizado por crecimiento celular descontrolado, se pueden tratar o prevenir mediante administración de un Conjugado a modo de Ejemplo y/o un Compuesto a modo de Ejemplo.
- Métodos para tratar o prevenir el cáncer son los que se describen en el presente documento, que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado a modo de Ejemplo y un agente quimioterapeútico. En un método, el agente quimioterapeútico es uno con el que no se ha encontrado que el tratamiento del cáncer sea resistente. En otro método, el agente quimioterapeútico es uno con el que se ha encontrado que el tratamiento del cáncer es resistente. Los Conjugados a modo de Ejemplo se pueden administrar a un paciente que también ha experimentado cirugía como tratamiento para el cáncer.

En un método, el método adicional de tratamiento es la terapia de radiación.

- En un método específico, el Conjugado a modo de Ejemplo se administró simultáneamente con el agente quimioterapeútico o con terapia de radiación. En otro método específico, el agente quimioterapeútico o terapia de radiación se administra antes su después de la administración de un Conjugado a modo de Ejemplo, en un aspecto al menos una hora, cinco horas, 12 horas, un día, una semana, un mes, en aspectos adicionales varios meses (*por ejemplo*, hasta tres meses), antes o después de la administración de un Conjugado a modo de Ejemplo.
- Un agente quimioterapeútico se puede administrar durante una serie de sesiones. Se puede administrar uno cualquiera o una combinación de los agentes quimioterapeúticos que se enumeran en la Tabla 4. Con respecto a la radiación, se puede usar cualquier protocolo de terapia de radiación dependiendo del tipo de cáncer a tratar. Por ejemplo, pero no a modo de limitación, se puede administrar radiación de rayos X; en particular, se puede usar megavoltaje de alta energía (radiación mayor que 1 MeV de energía) para tumores profundos, y se pueden usar radiación de haz de electrones rayos X de ortovoltaje para cánceres de piel. Además, se pueden administrar radioisótopos que emiten rayos gamma, tales como isótopos radiactivos de radio, cobalto y otros elementos.
 - Además, se describen métodos tratamiento del cáncer con un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo como una alternativa a la quimioterapia o a la terapia de radiación cuando se ha demostrado, o se puede demostrar, que la quimioterapia o la terapia de radiación puede ser demasiado tóxica, *por ejemplo*, da como resultado efectos secundarios inaceptables o insoportables, para el sujeto que se está tratando. El animal que se está tratando, opcionalmente, se puede tratar con otro tratamiento de cáncer tal como cirugía, terapia de radiación o quimioterapia, dependiendo del tratamiento que se encuentre aceptable o soportable.

Los Compuestos a modo de Ejemplo y/o los Conjugados a modo de Ejemplo también se pueden usar de forma in

vitro o ex vivo, de modo que para el tratamiento de determinados cánceres, que incluyen, pero no se limitan a leucemias y linfomas, dicho tratamiento implica trasplantes de células madre autólogas. Esto puede implicar un proceso en etapas múltiples en el que las células madre hematopoyéticas autólogas del animal se cosechan y se purgan de todas las células cancerosas, a continuación se erradica la población de células de médula ósea restantes del animal mediante la administración de una dosis elevada de un Compuesto a modo de Ejemplo y/o Conjugado a modo de Ejemplo con o sin terapia de radiación de dosis elevada adjunta, y el injerto de células madre se infunde de nuevo en el animal. A continuación, se proporciona cuidados de apoyo mientras que la función de la médula ósea se restablece y el animal se recupera.

10 4.8.3 TERAPIA CON MÚLTIPLES FÁRMACOS PARA CÁNCER

Se desvelan métodos para tratar el cáncer que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado a modo de Ejemplo y otro agente terapéutico que es un agente anticáncer. Agentes anticáncer adecuados incluyen, pero no se limitan a, metotrexato, taxol, L-asparaginasa, mercaptopurina, tioguanina, hidroxiurea, citarabina, ciclofosfamida, ifosfamida, nitrosoureas, cisplatino, carboplatino, mitomicina, dacarbazina, procarbazina, topotecán, mostazas de nitrógeno, cytoxan, etopósido, 5-fluorouracilo, BCNU, irinotecán, camptotecinas, bleomicina, doxorrubicina, idarrubicina, daunorrubicina, dactinomicina, plicamicina, mitoxantrona, asparaginasa, vinblastina, vincristina, vinorelbina, paclitaxel, and docetaxel. En un aspecto, el agente anticáncer incluye, pero no se limitan a, un fármaco que se enumera en la Tabla 4.

TABLA 4

TABLA 4	
Agentes de alquilación	
Mostazas de nitrógeno:	ciclofosfamida ifosfamida trofosfamida clorambucilo melfalano
Nitrosoureas:	carmustina (BCNU) Iomustina (CCNU)
Alquilsulfonatos	busulfán
	treosulfán
Triazenos:	decarbazina
Compuestos que contienen platino:	cisplatino carboplatino
Alcaloides Vegetales	
Alcaloides de la vinca:	vincristina vinblastina vindesina vinorelbina
Taxoides:	paclitaxel docetaxol
Inhibidores de la ADN Topoisomerasa	
Epipodofilinas:	etopósido tenipósido topotecán 9-aminocamptotecina camptotecina crisnatol
mitomicinas:	mitomicina C
Anti-metabolitos	
Anti-folatos:	
Inhibidores de DHFR:	metotrexato trimetrexato

20

15

Anti-metabolitos	
Inhibidores de la IMP deshidrogenasa:	ácido micofenólico tiazofurina ribavirina EICAR
Inhibidores de la ribonucleótido reductasa:	hidroxiurea deferoxamina
Análogos de pirimidina:	
Análogos de un acilo	5-Fluorouracilo
	floxuridina doxifluridina ratitrexed
Análogos de citosinas	citarabina (ara C) arabinósido de citosina fludarabina
Análogos de purina:	mercaptopurina tioguanina
Terapias hormonales:	
Antagonistas de receptores:	
Antiestrógenos	tamoxifeno raloxifeno megestrol
Agonistas de LHRH:	goserilina acetato de leuprolida
Antiandrógenos:	flutamida bicalutamida
Retinoides/Deltoides	
Análogos de vitamina D3:	EB 1089 CB 1093 KH 1060
Terapias fotodinámicas:	vertoporfina (BPD-MA) ftalocianina fotosensibilidador Pc4 demetoxi-hipocrelina A (2BA-2-DMHA)
Citoquinas:	Interferón- α Interferón- γ factor de necrosis tumoral
Otros:	Gemcitabina Velcade Revamid Talamid
Inhibidores de isoprenilación:	Lovastatina
Neurotoxinas dopaminérgicas:	ión de 1-metil-4-fenilpiridinio
Inhibidores del ciclo celular	estaurosporina
Actinomicinas:	Actinomicina D
	dactinomicina
Bleomicinas:	bleomicina A2 bleomicina B2 peplomicina

Antraciclinas:	daunorrubicina Doxorrubicina (adriamicina) idarrubicina epirrubicina
Retinoides/Deltoides	
	pirarubicina zorubicina mtoxantrona
Inhibidores de MDR:	verapamilo
Inhibidores de ATPasa Ca ²⁺ :	tapsigargina

4.8.4 TRATAMIENTO DE ENFERMEDADES AUTOINMUNES

Los Conjugados a modo de Ejemplo son útiles para eliminar o inhibir la replicación de una célula que produce una enfermedad autoinmune o para tratar una enfermedad autoinmune. Los Conjugados a modo de Ejemplo se pueden 5 usar en consecuencia en diversos entornos para el tratamiento de una enfermedad autoinmune en un paciente. Los Conjugados Fármaco-Conector-Ligando se pueden usar para administrar un Fármaco a una célula diana. Sin quedar ligado a teoría alguna, en una realización, el Conjugado de Fármaco-Conector-Ligando se asocia con un antígeno en la superficie de una célula diana, y el Conjugado a modo de Ejemplo se recoge a continuación dentro de una célula 10 diana a través de endocitosis mediada por receptores. Una vez dentro de la célula, una, secuencias peptídicas específicas dentro de la unidad de Conector se escinden enzimáticamente o hidrolíticamente, dando como resultado la liberación de un Fármaco. A continuación, el Fármaco liberado es libre para migrar en el citosol e inducir actividades citotóxica as o citostáticas. En una realización alternativa, el Fármaco se escinde del Conjugado a modo de Ejemplo fuera de la célula diana, y el Fármaco penetra posteriormente en la célula.

15

En una realización, la unidad de Ligando se une a un antígeno autoinmune. En un aspecto, el antígeno está en la superficie de una célula implicada en una afección autoinmune.

En otra realización, la unidad de Ligando se une a un antígeno autoinmune que está en la superficie de una célula.

20

30

En una realización, el Ligando se une a linfocitos activados que están asociados con el estado de enfermedad autoinmune.

25

En una realización más, los Conjugados a modo de Ejemplo eliminan o inhiben la multiplicación de células que producen un anticuerpo autoinmune asociado con una enfermedad autoinmune en particular.

Los tipos de enfermedades autoinmunes en particular que se pueden tratar con los Conjugados a modo de Ejemplo incluyen, pero no se limitan a, trastornos relacionados con linfocitos Th2 (por ejemplo, dermatitis atópica, asma atópica, rinoconjuntivitis, rinitis alérgica, síndrome de Omenn, esclerosis sistémica, y enfermedad de injerto frente a huésped); trastornos relacionados con linfocitos Th1 (por ejemplo, artritis reumatoide, esclerosis múltiple, psoriasis, síndrome de Sjorgren, tiroiditis de Hashimoto, Enfermedad de Grave, cirrosis biliar primaria, granulomatosis de Wegener, y tuberculosis); trastornos relacionados con linfocitos B activados (por ejemplo, lupus sistémico eritematoso, síndrome de Goodpasture, artritis reumatoide, y diabetes de tipo I); y las que se desvelan en la Tabla 5.

TABLA 5

Hepatitis Activa Crónica

Enfermedad de Addison

Alveolitis Alérgica

Reacción Alérgica

Rinitis Alérgica

Síndrome de Alport

Anafilaxis

Espondilitis Anquilosante

Síndrome antifosfolipídico

Artritis

Ascariasis

Aspergilosis

Alergia Atópica

Dermatitis Atrópica

Rinitis Atrópica

Enfermedad de Behcet

Pulmón de Bird-Fancier

Asma Bronquial

Síndrome de Caplan

Cardiomiopatía

Enfermedad Celíaca

Enfermedad de Chagas

Glomerulonefritis Crónica

Síndrome de Cogan

Enfermedad de Aglutinina Fría

Infección por Rubéola Congénita

Síndrome de CREST

Enfermedad de Crohn

Crioglobulinemia

Síndrome de Cushing

Dermatomiositis

Lupus Discoide

Síndrome de Dressler

Síndrome de Eaton-Lambert

Infección por Ecovirus

Encefalomielitis

Oftalmopatía Endocrina

Infección por Virus Epstein-Barr

Vómitos Equinos

Eritematosis

Síndrome de Evan

Síndrome de Felty

Fibromialgia

Ciclitis de Fuch

Atrofia Gástrica

Alergia Gastrointestinal

Arteritis de Células Gigantes

Glomerulonefritis

Síndrome de Goodpasture

Enfermedad de Injerto frente a Huésped

Enfermedad de Graves

Enfermedad de Guillain-Barre

Tiroiditis de Hashimoto

Anemia Hemolítica

Púrpura de Henoch-Schonlein

Atrofia Adrenal Idiopática

Fibritis Pulmonar Idiopática

Nefropatía de IgA

Enfermedades Intestinales Inflamatorias

Diabetes Mellitus dependiente de Insulina

Artritis Juvenil

Diabetes Mellitus Juvenil (Tipo I)

Síndrome de Lambert-Eaton

Laminitis

Liquen Plano

Hepatitis Lupoides

Lupus

Linfopenia

Enfermedad de Meniere

Enfermedad de Tejido Conectivo Mixto

Esclerosis Múltiple

Miastenia Gravis

Anemia Perniciosa

Síndromes Poliglandulares

Demencia Presenil

Agammaglobulinemia Primaria

Cirrosis Biliar Primaria

Psoriasis

Artritis Psoriática

Fenómeno de Raynauds

Aborto Recurrente

Síndrome de Reiter

Fiebre Reumática

Artritis Reumatoide

Síndrome de Sampter

esquistosomiasis

Síndrome de Schmidt

Esclerodermia

Síndrome de Shulman

Síndrome de Sjorgen

Síndrome de Stiff-Man

Oftalmia Simpática

Lupus Sistémico Eritematoso

Arteritis de Takayasu

Arteritis Temporal

Tiroiditis

Trombocitopenia

Tirotoxicosis

Necrólisis Epidérmica Tóxica

Resistencia a Insulina de Tipo B

Diabetes Mellitus de Tipo I

Colitis Ulcerosa

Uveítis

Vitíligo

Macroglobulemia de Waldenstrom

Granulomatosis de Wegener

4.8.5 TERAPIA CON MÚLTIPLES FÁRMACOS DE ENFERMEDADES AUTOINMUNES

Además, se desvelan métodos para tratar una enfermedad autoinmune que incluyen administrar a un paciente que lo necesita una cantidad eficaz de un Conjugado a modo de Ejemplo y otro agente terapéutico conocido para el tratamiento de una enfermedad autoinmune. En una realización, the anti-enfermedad autoinmune incluye, pero no se limita a, los agentes que se enumeran en la Tabla 6.

Tabla 6

ciclosporina

ciclosporina A

micofenilato mofetilo

sirolimus

tacrolimus

enanercept

prednisona

azatioprina

metotrexato ciclofosfamida

prednisona

ácido aminocaproico

cloroquina

hidroxicloroquina

hidrocortisona

dexametasona

clorambucilo

DHEA

danazol

bromocriptina

meloxicam

infliximab

10 <u>4.8.6 TRATAMIENTO DE ENFERMEDADES INFECCIOSAS</u>

Los Conjugados a modo de Ejemplo son útiles para eliminar o inhibir la multiplicación de una célula que produce una enfermedad infecciosa o para tratar una enfermedad infecciosa. Los Conjugados a modo de Ejemplo se pueden usar en consecuencia en diversos entornos para el tratamiento de una enfermedad infecciosa en un paciente. Los

Conjugados Fármaco-Conector-Ligando se pueden usar para administrar un Fármaco a una célula diana. En una realización, la unidad de Ligando se une a la célula de la enfermedad infecciosa.

En una realización, los Conjugados eliminan o inhiben la multiplicación de células que producen una enfermedad infecciosa en particular.

Los tipos de enfermedades infecciosas en particular que se pueden tratar con los Conjugados a modo de Ejemplo incluyen, pero no se limitan a, las que se desvelan en la Tabla 7.

10 <u>TABLA 7</u>

5

Enfermedades Bacterianas:

Diftheria

Pertussis

Bacteremia Oculta

Infección del Tracto Urinario

Gastroenteritis

Celulitis

Epiglotitis

Traqueitis

Hipertrofia Adenoide

Abceso Retrofaríngeo

Impétigo

Ectima

Neumonía

Endocarditis

Artritis Séptica

Pneumococos

Peritonitis

Bacteremia

Meningitis

Meningitis Purulenta Aguda

Uretritis

Cervicitis

Proctitis

Faringitis

Salpingitis

Epididimitis

Gonorrea

Sífilis

Listeriosis

Ántrax

Nocardiosis

Salmonella

Fiebre tifoidea

Disentería

Conjuntivitis

Enfermedades Bacterianas:

Plaga Bubónica

Actinomicosis

Fiebre Recurrente Leptospirosis

Enteritis Necrotizante

Infecciones Anaerobias Mixtas

Sinusitis Brucelosis Tularemia Cólera

Tétano

Sífilis

Enfermedad de Lyme Fiebre por Mordedura de Rata **Tuberculosis** Linfadenitis Lepra Clamidia Neumonía por Clamidia Tracoma Conjuntivitis por Inclusión Enfermedades Fúngicas Sistémicas: Histoplamosis Coccidiodomicosis Blastomicosis Esporotricosis Criptococosis Candidiasis Sistémica Aspergilosis Mucormicosis Micetoma Cromomicosis Enfermedades por Rickettsia: Tifus Fiebre Maculada de las Montañas Rocosas Ehrlichiosis Rickettsiosis Oriental Transmitida por Garrapatas Rickettsiosis pustulosa

Enfermedades por Rickettsia:

Fiebre Q

Bartonelosis

Enfermedades Parasitarias:

Malaria

Babesiosis

Tripanosomiasis Africana

Enfermedad de Chagas

Leishmaniasis

Fiebre Dum-Dum

Toxoplasmosis

Meningoencefalitis

Queratitis

Entamebiasis

Giardiasis

Criptosporidiasis

Isosporiasis

Ciclosporiasis

Microsporidiosis

Ascariasis

Infección por Tricocéfalos

Infección por Anquilostomas

Infección por Lombrices

Larva Migrans Ocular

Triquinosis

Enfermedad del Gusano de Guinea

Filariasis Linfática

Loiasis

Oncocercosis

Infección Canina del Gusano del corazón

Esquistosomiasis

Urticaria del Nadador

Trematodo Oriental de Pulmón

Trematodo Oriental de Hígado

Fascioliasis

Fasciolopsiasis

Opistorquiasis

Infecciones por Tenia

Enfermedad Hidatídica

Enfermedad Hidatídica Alveolar

Enfermedades Víricas:

Sarampión

Panencefalitis esclerososante subaguda

Resfriado Común

Paperas

Rubeola

Roseola

Quinta Enfermedad

Varicela

Infección por el virus sincitial respiratorio

Crup

Bronquiolitis

Mononucleosis infecciosa

Poliomielitis

Herpangina

Enfermedad de manos, pies y boca

Enfermedad de Bornholm

Herpes Genital

Verrugas Genitales

Meningitis Aséptica

Miocarditis

Pericarditis

Gastroenteritis

Síndrome de Inmunodeficiencia Adquirida

(SIDA)

Virus de Inmunodeficiencia Humana (VIH)

Síndrome de Reye

Síndrome de Kawasaki

Gripe

Bronquitis

Neumonía Vírical del "Caminante"

Enfermedad Respiratoria Febril Aguda

Fiebre faringoconjuntiva aguda

Queratoconjuntivitis Epidémica

Virus del Herpes Simplex 1 (VHS-1)

Virus del Herpes Simplex 2 (VHS-2)

Herpes

Enfermedad Citomegálica de Inclusión

Rabia

Leucoencefalopatía Multifocal Progresiva

Kuru

Insomnio Familiarl Fatal

Enfermedades Víricas:

Enfermedad de Creutzfeldt-Jakob

Enfermedad de Gerstmann-Straussler-Scheinker

Paraparesis Espástica Tropical

Encefalitis Equina Occidental

Encefalitis de California

Encefalitis de St. Louis

Fiebre Amarilla

Dengue

Coriomeningitis Linfocítica

Fiebre de Lassa

Fiebre Hemorrágica

Síndrome Pulmonar por Hantvirus

Infecciones por el Virus de Marburg

Infecciones por el Virus del Ébola

Viruela

4.8.7 TERAPIA DE ENFERMEDADES INFECCIOSAS CON MÚLTIPLES FÁRMACOS

5

Se desvelan métodos para tratar una enfermedad infecciosa que incluyen administrar a un paciente que lo necesita un Conjugado a modo de Ejemplo y otro agente terapéutico que es un agente anti-enfermedad infecciosa. En una realización, el agente anti-enfermedad infecciosa es, pero no se limitan a, los agentes que se enumeran en la Tabla 8.

TABLA 8

Antibióticos de β-Lactama:

Penicilina G

Penicilina V

Cloxacilina

Dicloxacilina

Meticilina

Nafcilina

Oxacilina

Ampicilina

Amoxicilina

Bacampicilina

Azlocilina Carbenicilina

Mezlocilina

Piperacilina

Ticarcilina

Aminoglicósidos:

Amicacina Gentamicina Kanamicina Neomicina Netilmicina Streptomicina Tobramicina

Macrólidos:

Azitromicina Claritromicina Erithromicina Lincomicina Clindamicina

Tetraciclinas:

Demeclociclina Doxiciclina Minociclina Oxitetraciclina Tetraciclina

Quinolonas:

Cinoxacina Ácido Nalidíxico

Fluoroquinolonas:

Ciprofloxacina Enoxacina Grepafloxacina Levofloxacina Lomefloxacina Norfloxacina Ofloxacina Sparfloxacina Trovafloxicina

Polipéptidos:

Bacitracina Colistina Polimixina B

Sulfonamidas:

Sulfisoxazol Sulfametoxazol Sulfadiazina Sulfametizol Sulfacetamida

Diversos Agentes Antibacterianos:

Trimetoprim

Sulfametazol

Cloramfenicol

Vancomicina

Metronidazol

Quinupristina

Dalfopristina

Rifampina

Espectinomicina

Nitrofurantoína

Agentes Antivirales:

Agentes Antivirales Generales:

Idoxuradina

Vidarabina

Trifluridina

Aciclovir

Famciciclovir

Penciciclovir

Valaciclovir

Ganciciclovir

Foscarnet

Ribavirina

Amantadina

Rimantadina

Cidofovir

Oligonucleótidos Antisentido

Inmunoglobulinas

Inteferones

Fármacos para infección por VIH

Tenofovir

Emtricitabina

Zidovudina

Didanosina

Zalcitabina

Estavudina

Lamivudina

Nevirapina

Delavirdina Saquinavir

Ritonavir

Indinavir

Nelfinavir

5. Ejemplos

Ejemplo 1 - Preparación del compuesto AB

Fmoc-val-cit-PAB-OH (14,61 g, 24,3 mmol, 1,0 equiv., Patente de Estados Unidos Nº 6214345 de Firestone et al.) se diluyó con DMF (120 ml, 0,2 M) y a esta solución se añadió a dietilamina (60 ml). La reacción se controló por HPLC y se encontró que estaba completa en 2 h. La mezcla de reacción se concentró y el resto resultante se precipitó usando acetato de etilo (aprox. 100 ml) con sonicación durante 10 min. Se añadió éter (200 ml) y el precipitado se sonicó adicionalmente durante 5 min. La solución se dejó en reposo durante 30 min. sin agitación y a continuación se filtró y se secó a alto vacío para proporcionar Val-cit-PAB-OH, que se usó en la siguiente etapa sin purificación adicional. Rendimiento: 8,84 g (96 %). Val-cit-PAB-OH (8,0 g, 21 mmol) se diluyó con DMF (110 ml) y la solución resultante se trató con MC-OSu (Willner et al., (1993) Bioconjugate Chem. 4: 521; 6,5 g, 21 mmol, 1,0 equiv.). La reacción era completa de acuerdo con HPLC después de 2 h. La mezcla de reacción se concentró y el aceite resultante se precipitó usando acetato de etilo (50 ml). Después de sonicar durante 15 min, se añadió éter (400 ml) y la mezcla se sonicó adicionalmente hasta que todas las partículas grandes se separaron. La solución se filtró a continuación y el sólido se secó para proporcionar un sólido intermedio de color blanquecino. Rendimiento: 11,63 g (96 %); ES-MS *m*/*z* 757,9 [M-H]

Fmoc-val-cit-PAB-OH (14,61 g, 24,3 mmol, 1,0 equiv., Patente de Estados Unidos Nº 6214345 de Firestone et al.) se diluyó con DMF (120 ml, 0,2 M) y a esta solución se añadió a dietilamina (60 ml). La reacción se controló por HPLC y se encontró que estaba completa en 2 h. La mezcla de reacción se concentró y el resto resultante se precipitó usando acetato de etilo (aprox. 100 ml) con sonicación durante 10 min. Se añadió éter (200 ml) y el precipitado se sonicó adicionalmente durante 5 min. La solución se dejó en reposo durante 30 min. sin agitación y a continuación se filtró y se secó a alto vacío para proporcionar Val-cit-PAB-OH, que se usó en la siguiente etapa sin purificación adicional. Rendimiento: 8,84 g (96 %). Val-cit-PAB-OH (8,0 g, 21 mmol) se diluyó con DMF (110 ml) y la solución resultante se trató con MC-OSu (Willner *et al.*, (1993) Bioconjugate Chem. 4: 521; 6,5 g, 21 mmol, 1,0 equiv.). La reacción era completa de acuerdo con HPLC después de 2 h. La mezcla de reacción se concentró y el aceite resultante se precipitó usando acetato de etilo (50 ml). Después de sonicar durante 15 min, se añadió éter (400 ml) y la mezcla se sonicó adicionalmente hasta que todas las partículas grandes se separaron. La solución se filtró a continuación y el sólido se secó para proporcionar un sólido intermedio de color blanquecino. Rendimiento: 11,63 g (96 %); ES-MS m/z 757,9 [M-H].

El sólido intermedio de color blanquecino (8,0 g, 14,0 mmol) se diluyó con DMF (120 ml, 0,12 M) y a la solución resultante se añadió bis(4-nitrofenil)carbonato (8,5 g, 28,0 mmol, 2,.0 equiv.) y DIEA (3,66 ml, 21,0 mmol, 1,5 equiv.). La reacción se completó en 1 h de acuerdo con HPLC. La mezcla de reacción se concentró para proporcionar un aceite que se precipitó con EtOAc, y a continuación se trituró con EtOAc (aprox. 25 ml). El soluto se precipitó adicionalmente con éter (aprox. 200 ml) y se trituró durante 15 min. El sólido se filtró y se secó a alto vacío para proporcionar el Compuesto **AB** que era puro en un 93 % de acuerdo con HPLC y se usó en la siguiente etapa sin purificación adicional. Rendimiento: 9,7 g (94 %).

Ejemplo 2 - Preparación del compuesto 1

Sal de HCl del éster t-butílico de fenilalanina (868 mg, 3 mmol), *N*-Boc-Dolaproína (668 mg, 1 equiv.), DEPC (820 µl, 1,5 equiv.), y DIEA (1,2 ml) se diluyeron con diclorometano (3 ml). Después de 2 horas (h) a temperatura ambiente (aproximadamente 28 grados Celsius), la mezcla de reacción se diluyó con diclorometano (20 ml), se lavó sucesivamente con NaHCO₃ acuoso (ac.) saturado (2 x 10 ml), NaCl ac. saturado (2 x 10 ml). La fase orgánica se separó y se concentró. El resto resultante se volvió suspender en acetato de etilo y se purificó por cromatografía ultrarrápida en acetato de etilo. Las fracciones relevantes se combinaron y se concentraron para proporcionar el dipéptido en forma de un sólido de color blanco: 684 mg (46 %). ES-MS *m/z* 491,3 [M+H]⁺.

Para escisión selectiva de Boc en presencia de éster de t-butilo, el dipéptido anterior (500 mg, 1,28 mmol) se diluyó con dioxano (2 ml). Se añadió HCl 4 M/dioxano (960 μ l, 3 equiv.), y la mezcla de reacción se agitó durante una noche a temperatura ambiente. Se observó desprotección de Boc casi completa por RP-HPLC con una cantidad mínima de escisión del éster de t-butilo. La mezcla se enfrió en un baño de hielo, y se añadió trietilamina (500 μ l). Después de 10 min, la mezcla se retiró del baño de enfriamiento, se diluyó con diclorometano (20 ml), se lavó sucesivamente con NaHCO $_3$ ac. saturado (2 x 10 ml), NaCl ac. saturado (2 x 10 ml). La fase orgánica se concentró para dar una espuma de color amarillo: 287 mg (57 %). El compuesto intermedio se usó sin purificación adicional.

El tripéptido Fmoc-Meval-val-dil-*O-t*-Bu (preparado tal como se describe en el documento WO 02/088172, titulado *"Pentapeptide Compounds and Uses Related Thereto"*; 0,73 mmol) se trató con TFA (3 ml), diclorometano (3 ml) durante 2 h a temperatura ambiente. La mezcla se concentró a sequedad, el resto se co-evaporó con tolueno (3 x 20 ml), se secó al vacío durante una noche. El resto se diluyó con diclorometano (5 ml) y se añadió dipéptido desprotegido (287 mg, 0,73 mmol), seguido de DIEA (550 μl, 4 equiv.), DEPC (201 μl, 1,1 equiv.). Después de 2 h a temperatura ambiente la mezcla de reacción se diluyó con acetato de etilo (50 ml), se lavó sucesivamente con ácido cítrico ac. al 10 % (2 x 20 ml), NaHCO₃ ac. saturado (2 x 10 ml), NaCl ac. saturado (10 ml). La fase orgánica se separó y se concentró. El resto resultante se volvió a suspender en acetato de etilo y se purificó por cromatografía ultrarrápida en acetato de etilo. Las fracciones relevantes se combinaron y se concentraron para proporcionar Fmoc-Meval-val-dil-dap-phe-*O-t*-Bu en forma de un sólido de color blanco: 533 mg (71 %). R_f 0.4 (EtOAc). ES-MS *m/z* 1010,6 [M+H][†].

El producto (200 mg, 0,2 mmol) se diluyó con diclorometano (3 ml), dietilamina (1 ml). La mezcla de reacción se agitó durante una noche a temperatura ambiente. Los disolventes se retiraron para proporcionar un aceite que se purificó por cromatografía ultrarrápida sobre gel de sílice en un gradiente de la etapa de MeOH al 0-10 % en diclorometano para proporcionar el Compuesto 1 en forma de un sólido de color blanco: 137 mg (87 %). R_f 0,3 (MeOWCH₂Cl₂ al 10 %). ES-MS m/z 788,6 [M+H] $^+$.

Ejemplo 3 - Preparación del compuesto 2

El compuesto 2 se preparó a partir del compuesto 1 (30 mg, 0,038 mmol) por tratamiento con HCl 4 M/dioxano (4 ml) durante 7 h a temperatura ambiente. El disolvente se retiró, y el resto se secó al vacío durante una noche para proporcionar el Compuesto 2 en forma de un sólido higroscópico de color blanco: 35 mg (120 % calculado para sal de HCl). ES-MS *m/z* 732,56 [M+H]

45

40

5

10

15

20

25

30

35

Ejemplo 4 - Preparación del compuesto 3

5 Fmoc-Meval-val-dil-dap-phe-*O-t*-Bu (Ejemplo 2, 50 mg) se trató con HCl 4 M/dioxano (4 ml) durante 16 h a temperatura ambiente. El disolvente se retiró, y el resto se secó al vacío durante una noche para dar 50 mg de un sólido intermedio higroscópico de color blanco.

El sólido intermedio de color blanco (20 mg, 0,02 mmol) se diluyó con diclorometano (1 ml); se añadió DEPC (5 μl, 0,03 mmol, 1,5 equiv.) seguido de DIEA (11 μl, 0,06 mmol, 3 equiv.), y t-butilamina (3,2 μl, 0,03 mmol, 1,5 equiv.). Después de 2 h a temperatura ambiente, se encontró que la reacción era completa por RP-HPLC. Se añadió más DEPC (10 μl) y t-butilamina (5 μl) y la reacción se agitó durante un periodo adicional de 4 h. La mezcla de reacción se diluyó con diclorometano (15 ml), se lavó sucesivamente con agua (5 ml), HCl ac. 0,1 M (10 ml), NaCl ac. saturado (10 ml). La fase orgánica se separó y se concentró. El resto resultante se diluyó con diclorometano y se purificó por cromatografía ultrarrápida en un gradiente de etapa de MeOH al 0-5 % en diclorometano. Las fracciones relevantes se combinaron y se concentraron para proporcionar el compuesto intermedio protegido con Fmoc en forma de un sólido de color blanco: 7,3 mg (36 %). R_f 0,75 (Me-OH al 10 % /CH₂Cl₂).

El compuesto intermedio protegido con Fmoc se diluyó con diclorometano (0,5 ml) y se trató con dietilamina (0,5 ml) durante 3 h a temperatura ambiente. La mezcla de reacción se concentró a sequedad. El producto se aisló por cromatografía ultrarrápida sobre gel de sílice en un gradiente de etapa de MeOH al 0-10 % en diclorometano para proporcionar el Compuesto 3 en forma de un sólido de color blanco: 4 mg (70 %). R_f 0.2 (MeOH al 10 %/CH₂Cl₂). ES-MS m/z 787 [M+H]⁺, 809 [M+Na]⁺.

Ejemplo 5 - Preparación del compuesto 4

10

15

25

30

35

40

45

Boc-L-Fenilalanina (265 mg, 1 mmol, 1 equiv.) y éter monometílico de trietilenglicol (164 μl, 1 mmol, 1 equiv.) se diluyeron con diclorometano (5 ml). A continuación, se añadió DCC (412 mg, 2 mmol, 2 equiv.), seguido de DMAP (10 mg). La mezcla de reacción se agitó durante una noche a temperatura ambiente. El precipitado se retiró por filtración. El disolvente se retiró al vacío, el resto se diluyó con acetato de etilo, y se purificó por gel de sílice cromatografía ultrarrápida en acetato de etilo. Las fracciones que contenían el producto se combinaron, se concentraron, y se secaron al vacío para dar un sólido de color blanco: 377 mg (91 %). R_f 0,5 (EtOAc). ES-MS *m/z* 434 [M+Na]⁺.

La retirada del grupo protector Boc se realizó por tratamiento del material anterior en dioxano (10 ml) con HCl 4 M/dioxano (6 ml) durante 6 h a temperatura ambiente. El disolvente se retiró al vacío, el resto se secó al vacío para dar un sólido de color blanco.

La sal de HCl del éster del éter monometílico de Fenilalanina-trietilenglicol (236 mg, 0,458 mmol, 1 equiv.) y N-Boc-Dolaproína (158 mg, 0,55 mmol, 1,2 equiv.) se diluyeron con diclorometano (3 ml). DEPC (125 μ l, 1,5 equiv.) y se añadió a la mezcla seguido de DIEA (250 μ l, 3 equiv.). Después de 2 h a temperatura ambiente la mezcla de reacción se diluyó con acetato de etilo (30 ml), se lavó sucesivamente con NaHCO₃ ac. saturado (2 x 10 ml), ácido cítrico ac. al 10 % (2 x 10 ml), NaCl ac. saturado (10 ml). La fase orgánica se separó y se concentró. El resto resultante se volvió suspender en acetato de etilo y se purificó por cromatografía ultrarrápida sobre gel de sílice en

acetato de etilo. Las fracciones relevantes se combinaron y se concentraron para proporcionar una espuma intermedia de color blanco: 131 mg (50 %). R_f 0,25 (EtOAc). ES-MS m/z 581,3 [M+H]⁺.

La desprotección de Boc se realizó en diclorometano (2 ml), TFA (0,5 ml) a temperatura ambiente durante 2 h. El disolvente se retiró al vacío, y el resto co-evaporó con tolueno (3 x 25 ml), después se secó al vacío para dar 138 mg de sal de TFA de dipéptido.

Fmoc-Meval-val-dil-OH (Ejemplo 2, 147 mg, 0,23 mmol, 1 equiv.), y sal de TFA de dipéptido (138 mg) se diluyeron con diclorometano (2 ml). A la mezcla se añadió DEPC (63 μ l, 1,5 equiv.), seguido de DIEA (160 μ l, 4 equiv.). Después de 2 h a temperatura ambiente la mezcla de reacción se diluyó con diclorometano (30 ml), se lavó sucesivamente con ácido cítrico ac. al 10 % (2 x 20 ml), NaCl ac. saturado (20 ml). La fase orgánica se separó y se concentró. El resto resultante se volvió a suspender en diclorometano y se purificó por cromatografía ultrarrápida sobre gel de sílice en un gradiente de etapa de MeOH al 0-5 % en diclorometano. Las fracciones relevantes se combinaron y se concentraron para proporcionar una espuma de color blanco: 205 mg (81 %). R_f 0,4 (MeOH al 10 %/CH₂Cl₂). ES-MS m/z 1100.6 $[M+H]^+$, 1122,4 $[M+Na]^+$.

El grupo protector Fmoc se retiró por tratamiento con dietilamina (2 ml) en diclorometano (6 ml). Después de 6 h a temperatura ambiente, el disolvente se retiró al vacío, el producto se aisló por cromatografía ultrarrápida sobre gel de sílice en un gradiente de etapa de MeOH al 0-10 % en diclorometano. Las fracciones relevantes se combinaron y se concentraron. Después de la evaporación de diclorometano/hexano, 1:1, se obtuvo el Compuesto 4 en forma de una espuma de color blanco: 133 mg (80 %). R_f 0,15 (MeOH al 10 %/CH₂Cl₂). ES-MS *m*/*z* 878,6 [M+H]⁺.

Ejemplo 6 - Preparación del compuesto 5

5

10

15

20

25

30

35

40

Fmoc-Meval-val-dil-OH (Ejemplo 2, 0,50 g, 0,78 mmol) y dap-phe-OMe·HCl (0,3 g, 0,78 mmol, preparado de acuerdo con Pettit, G.R., et al. Anti-Cancer Drug Design 1998, 13, 243-277) se disolvieron en CH_2Cl_2 (10 ml) seguido de la adición de diisopropiletilamina (0,30 ml, 1,71 mmol, 2,2 equiv.). Se añadió DEPC (0,20 ml, 1,17, 1,5 equiv.) y los contenidos se mantuvieron en Ar. La reacción era completa de acuerdo con HPLC en 1 h. La mezcla se concentró hasta un aceite y se purificó por cromatografía en SiO_2 (columna de 300 x 25 mm) y se eluyó con EtOAc al 100 %. El producto se aisló en forma de un sólido espumoso de color blanco. Rendimiento: 0,65 g (87 %). ES-MS m/z 968,35 $[M+H]^+$, 991,34 $[M+Na]^+$; $\lambda_{máx}$ de UV 215, 265 nm.

El péptido protegido con Fmoc (0,14 g, 0,14 mmol) en cloruro de metileno (5 ml) se trató con dietilamina (2 ml) y los contenidos se mantuvieron a temperatura ambiente durante 2 h. La reacción, completa por HPLC, se concentró hasta un aceite, se recogió en 2 ml de DMSO y se inyectó en una HPLC preparativa (columna C₁₂-RP, 5 μ, 100 Å, gradiente lineal de MeCN en agua (que contenía TFA al 0,1 %) del 10 al 100 % en 40 min seguido de 20 min al 100 %, a un caudal de 25 ml/min). las fracciones que contenían el producto se evaporaron para proporcionar un polvo de color blanco para la sal de trifluoroacetato. Rendimiento: 0,126 g (98 %). R_f 0,28 (EtOAc al 100 %); ES-MS *m/z* 746.59 [M+H]⁺, 768,51 [M+Na]⁺; λ_{máx} de UV 215 nm.

Ejemplo 7 - Preparación del compuesto 6

La sal de trifluoroacetato del Compuesto 5 (0,11 g, 0,13 mmol), Compuesto **AB** (0,103 g, 0,14 mmol, 1,1 equiv.) y HOBt (3,4 mg, 26 μ mol, 0,2 equiv.) se suspendieron en DMF/piridina (2 ml/0,5 ml, respectivamente). Se añadió diisopropiletilamina (22,5 μ l, 0,13 mmol, 1,0 equiv.) y la solución de color amarillo se agitó en una atmósfera de argón. Después de 3 h, se añadió una cantidad adicional de 1,0 equiv. de DIEA. 24 horas más tarde, se incluyeron 0,5 equiv. del conector activado en la mezcla de reacción. Después de 40 h totales, la reacción se completó. Los contenidos se evaporaron, se recogieron en DMSO y se inyectaron en una HPLC preparativa (columna C₁₂-RP, 5 μ , 100 Å, gradiente lineal de MeCN en agua (que contenía TFA al 0,1 %) del 10 al 100 % en 40 min seguido de 20 min al 100 %, a un caudal de 50 ml/min). Las fracciones deseadas se evaporaron para dar el producto en forma de un aceite de color amarillo. Se añadieron cloruro de metileno (aprox. 2 ml) y éter en exceso para proporcionar el Compuesto **6** en forma de un precipitado de color blanco que se filtró y se secó. Rendimiento: 90 mg (52 %). ES-MS m/z 1344,32 [M+H] $^+$, 1366,29 [M+Na] $^+$; $\lambda_{máx}$ de UV 215,248 nm.

Ejemplo 8 - Preparación del compuesto 7

5

10

15

20

25

El Compuesto **4** (133 mg, 0,15 mmol, 1 equiv.), Compuesto **AB**, (123 mg, 0,167 mmol, 1,1 equiv.), y HOBt (4 mg, 0.2 equiv.) se diluyeron con DMF (1,5 ml). Después de 2 min, se añadió piridina (5 ml) y la reacción se controló usando RP-HPLC. La reacción mostró que estaba completa en 18 h. La mezcla de reacción se diluyó con diclorometano (20 ml), se lavó sucesivamente con ácido cítrico ac. al 10 % (2 x 10 ml), agua (10 ml), NaCl ac. saturado (10 ml). La fase orgánica se separó y se concentró. El resto resultante se volvió a suspender en diclorometano y se purificó por cromatografía ultrarrápida sobre gel de sílice en un gradiente de etapa de MeOH al 0-10 % en diclorometano. Las fracciones relevantes se combinaron y se concentraron para proporcionar el Compuesto 7 en forma de una espuma de color blanco: 46 mg (21 %). R_f 0,15 (MeOH al 10 %/CH₂Cl₂). ES-MS *m/z* 1476,94 [M+H]⁺.

Ejemplo 9 - Preparación del éster t-butílico de MC-Val-Cit-PAB-MMAF 8

El Compuesto **1** (83 mg, 0,11 mmol), Compuesto **AB** (85 mg, 0,12 mmol, 1,1 equiv.), y HOBt (2,8 mg, 21 μ mol, 0,2 equiv.) se recogieron en DMF seca (1,5 ml) y piridina (0,3 ml) en una atmósfera de argón. Después de 30 h, se encontró que la reacción está básicamente completa por HPLC. La mezcla se evaporó, se recogió en una cantidad mínima de DMSO y se purificó por HPLC preparativa (columna C_{12} -RP, 5 μ , 100 Å, gradiente lineal de MeCN en agua (que contenía TFA al 0,1 %) del 10 al 100 % en 40 min seguido de 20 min al 100 %, a un caudal de 25 ml/min) para proporcionar el Compuesto **8** en forma de un sólido de color blanco. Rendimiento: 103 mg (71 %). ES-MS m/z 1387,06 [M+H] $^+$, 1409,04 [M+Na] $^+$; $\lambda_{máx}$ de UV 205, 248 nm.

Ejemplo 10 - Preparación de MC-val-cit-PAB-MMAF 9

El Compuesto **8** (45 mg, 32 μmol) se suspendió en cloruro de metileno (6 ml) seguido de la adición de TFA (3 ml). La solución resultante se mantuvo durante 2 h. La mezcla de reacción se concentró al vacío y se purificó por HPLC preparativa (columna C₁₂-RP, 5 μ, 100 Å, gradiente lineal de MeCN en agua (que contenía TFA al 0,1 %) del 10 al 100 % en 40 min seguido de 20 min al 100 %, a un caudal de 25 ml/min). Las fracciones deseadas se concentraron para proporcionar maleimidocaproil-valina-citrulina-p-hidroximetilaminobenceno-MMAF (MC-val-cit-PAB-MMAF) **9** en forma de un sólido de color blanquecino. Rendimiento: 11 mg (25 %). ES-MS *m/z* 1330,29 [M+H]⁺, 1352,24 [M+Na]⁺; λ_{máx} de UV 205, 248 nm.

Ejemplo 11 - Preparación de MC-val-cit-PAB-MMAF terc-butil amida 10

25

5

10

El Compuesto **3** (217 mg, 0,276 mmol, 1,0 equiv.), Compuesto **AB** (204 mg, 0,276 mmol, 1,0 equiv.), y HOBt (11 mg, 0,0828 mmol, 0.3 equiv.) se diluyeron con piridina/DMF (6 ml). A esta mezcla se añadió DIEA (0,048 ml), y la mezcla se agitó durante aproximadamente 16 h. los compuestos orgánicos volátiles se evaporaron al vacío. El resto en bruto se purificó por Chromatotron® (cromatografía en capa fina radial) con un gradiente de etapa (metanol al 0-5-10 % en DCM) para proporcionar MC-val-cit-PAB-MMAF terc-butil amida **10.** Rendimiento: 172 mg (45 %); ES-MS m/z $1386,33 \, [M+H]^+$, $1408,36 \, [M+Na]^+$; $\lambda_{máx}$ de UV 215, 248 nm.

Ejemplo 12 - Preparación de AC10-MC-MMAE por conjugación de AC10 y MC-MMAE

AC10, disuelto en borato sódico 500 mM y cloruro sódico 500 mM a pH 8,0 se trata con un exceso de ditiotreitol 100 mM (DTT). Después de incubación a 37 °C durante aproximadamente 30 minutos, el tampón se intercambia por elución sobre resina de Sephadex G25 y se eluyó con PBS con DTPA 1 mM. El valor de tiol/Ab se comprueba mediante la determinación de la concentración de anticuerpo reducido a partir de la absorbancia a 280 nm de la solución y la concentración de tiol por reacción con DTNB (Aldrich, Milwaukee, WI) y determinación de la absorbancia a 412 nm. El anticuerpo reducido disuelto en PBS se enfría en hielo.

El reactivo de conector de fármaco, maleimidocaproil-monometil auristatina E, es decir MC-MMAE, disuelto en DMSO, se diluye en acetonitrilo y agua a una concentración conocida, y se añade al anticuerpo reducido enfriado AC10 en PBS. Después de aproximadamente una hora, se añade un exceso de maleimida para inactivar la reacción y proteger cualquier grupo tiol del anticuerpo sin reaccionar. La mezcla de reacción se concentra mediante un tipo de ultrafiltración en centrífuga y AC10-MC-MMAE se purifica y se desala por elución a través de resina G25 en PBS, se filtra a través de filtros de 0,2 μm en condiciones estériles, y se congela para su almacenamiento.

Ejemplo 13 - Preparación de AC10-MC-MMAF por conjugación de AC10 y MC-MMAF

AC10-MC-MMAF se preparó por conjugación de AC10 y MC-MMAF siguiendo el procedimiento del Ejemplo 12.

Ejemplo 14 - Preparación de AC10-MC-val-cit-PAB-MMAE por conjugación de AC10 y MC-val-cit-PAB-MMAE

AC10-MC-val-cit-PAB-MMAE se preparó por conjugación de AC10 y MC-val-cit-PAB-MMAE siguiendo el procedimiento del Ejemplo 12.

Ejemplo 15 - Preparación de AC10-MC-val-cit-PAB-MMAF por conjugación de AC10 y MC-val-cit-PAB-MMAF 35 (9)

AC10-MC-val-cit-PAB-MMAF se preparó por conjugación de AC10 y MC-val-cit-PAB-MMAF (9) siguiendo el procedimiento del Ejemplo 12.

40 Ejemplo 16 – Determinación de citotoxicidad de compuestos seleccionados

La actividad de citotoxicidad de MMAF y los Compuestos 1-5 se evaluaron en las líneas celulares OVCAR-3 positivas para Lewis Y, las líneas celulares positivas para Lewis Y de carcinoma de mama H3396, carcinoma de pulmón L2987 y carcinoma de colon LS174t se puede someter al ensayo para la citotoxicidad. Para evaluar la citotoxicidad de los Compuestos 1-5, se puede sembrar células a aproximadamente 5 – 10.000 por pocillo en 150 μl de medio de cultivo tratado a continuación con dosis graduadas de los Compuestos 1-5 por cuadruplicado al comienzo del ensayo. Los ensayos de citotoxicidad normalmente se realizan durante 96 horas después de la adición de los compuestos de ensayo. Cincuenta μl de colorante de resazurina se pueden añadir a cada pocillo durante las últimas 4 a 6 horas de la incubación para evaluar las células viables al final del cultivo. La reducción del colorante se puede determinar mediante espectrometría de fluorescencia usando las longitudes de onda de excitación y de emisión de 535 nm y 590 nm, respectivamente. Para el análisis, el alcance de la reducción con resazurina mediante las células tratadas se puede comparar con el de las células de control sin tratar.

Para ensayos de exposición de 1 h las células se pueden pulsar con el fármaco durante 1 h y a continuación lavar; el efecto citotóxico se puede determinar después de 96 h de incubación.

Ejemplo 17 – cata citotoxicidad in vitro para compuestos seleccionados

La Tabla 10 muestra el efecto citotóxico de Conjugados de los Compuestos cAC10 **7-10**, sometidos al ensayo tal como se describe en el Procedimiento General I en una línea celular Karpas 299 de CD30+. Se presentan los datos de dos experimentos separados. Se encontró que los conjugados cAC10 de los Compuestos **7** y **9** eran ligeramente más activos que cAC10-val-cit-MMAE.

5

10

15

20

25

30

45

50

55

TABLA 10

Conjugado	Cl ₅₀ (ng/ml)
cAC10-val-cit-MMAE	6
cAC10- 7	1,0
cAC10-8	15
cAC10- 9	0,5
cAC10- 10	20

En otros experimentos, BR96-val-cit-MMAF era al menos 250 veces más potente que el MMAF libre.

Procedimiento General I – Determinación de citotoxicidad. Para evaluar la citotoxicidad de los Conjugados a modo de Ejemplo 7-10, se sembraron celulasa aproximadamente 5 – 10.000 por pocillo en 150 μl de medio de cultivo y a continuación se trató con dosis graduadas de los Conjugados a modo de Ejemplo 7-10 por cuadruplicado al comienzo del ensayo. Se realizaron ensayos de citotoxicidad durante 96 horas después de la adición de los compuestos de ensayo. Cincuenta μl de colorante de resazurina se añadieron a cada pocillo durante las últimas 4 a 6 horas de la incubación para evaluar las células viables al final del cultivo. La reducción del colorante se puede determinar mediante espectrometría de fluorescencia usando las longitudes de onda de excitación y de emisión de 535 nm y 590 nm, respectivamente. Para el análisis, el alcance de la reducción con resazurina mediante las células tratadas se puede comparar con el de las células de control sin tratar.

Ejemplo 18 - Ensayo de proliferación celular in vitro

5

10

15

20

25

35

45

La eficacia de ADC se puede medir con un ensayo de proliferación celular usando el siguiente protocolo (Promega Corp. Technical Bulletin TB288; Mendoza et al. (2002) Cancer Res. 62: 5485-5488):

- 1. Una alícuota de 100 μl de cultivo celular que contiene aproximadamente 10⁴ células (SKBR-3, BT474, MCF7 o MDA-MB-468) en medio se depositó en cada pocillo del una placa de paredes opacas, de 96 pocillos.
 - 2. Se prepararon pocillos de control que contenían medio y sin células.
 - 3. Se añadió ADC a los concilios experimentales y se incubó durante 3-5 días.
 - 4. Las placas se equilibraron a temperatura ambiente durante aproximadamente 30 minutos.
 - 5. Se añadió un volumen de Reactivo CellTiter-Glo igual al volumen del medio de cultivo celular presente en cada pocillo.
 - 6. Los contenidos se mezclaron durante 2 minutos en un agitador orbital para inducir la lisis celular.
 - 7. La placa se incubó a temperatura ambiente durante 10 minutos para estabilizar la señal de luminiscencia.
 - 8. La luminiscencia se registró y se indicó en gráficos como RLU = unidades relativas de luminiscencia.

30 Ejemplo 19 – Aclaramiento de plasma en ratas

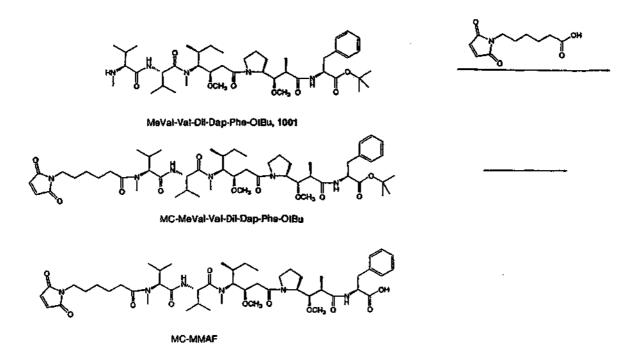
La farmacocinética del aclaramiento de plasma de conjugados de anticuerpo y fármaco y anticuerpo total se estudiaron en ratas Sprague-Dawley (Charles River Laboratories, 250-275 gramos cada una). Los animales se dosificaron con inyección embolo en la vena de la cola (Impulso IV). Se recogieron aproximadamente 300 µl de sangre entera a través de cánula yugular, o extracción en la cola, en recipientes con anticoagulante de litio/heparina en cada punto temporal: 0 (dosis previa), 10, y en 30 minutos; 1, 2, 4, 8, 24 y 36 horas; y 2, 3, 4, 7, 14, 21, 28 días después de la dosis. El anticuerpo total se midió por ELISA - ECD/GxhuFc-HRP. El conjugado de anticuerpo y fármaco se midió por ELISA-MMAE/MMAF/ECD-Bio/SA-HRP.

40 Ejemplo 20 - Aclaramiento de plasma en monos

La farmacocinética del aclaramiento de plasma de conjugados de anticuerpo y fármaco y anticuerpo total se puede estudiar en monos cynomolgus. La Figura 12 muestra un estudio en dos etapas de aclaramiento de la concentración en plasma después de la administración de H-MC-vc-MMAE a monos Cynomolgus a diferentes dosis: 0,5, 1,5, 2,5, y 3,0 mg/kg, administradas el día 1 y el día 21. Las concentraciones de anticuerpo total y ADC se midieron con el tiempo. (H = Trastuzumab).

Ejemplo 21 – Eficacia in vivo del volumen tumoral en ratones transgénicos con explantes

Los animales adecuados para experimentos transgénicos se pueden obtener en fuentes comerciales convencionales tales como Taconic (Germantown, N.Y.). Muchas cepas son adecuadas, pero son preferentes los ratones hembra FVB debido a su mayor susceptibilidad a la formación de tumores. Los machos de FVB se pueden usar para apareamiento y se pueden usar sementales CD.1 vasectomizados para estimular un pseudo-embarazo. Los ratones vasectomizados se pueden obtener de cualquier proveedor comercial. Los fundadores se pueden criar con ratones


FVB o con ratones heterocigotos 129/BL6 x FVB p53. Los ratones con heterocigosidad en el alelo p53 se pueden usar para aumentar potencialmente la formación de tumores. Algunos tumores F1 son de cepas mixtas. Los tumores en los fundadores solamente pueden ser FVB.

5 Los animales que tienen tumores (aloinjerto propagado de ratones transgénicos Fo5 mmtv) se pueden tratar con una sola dosis o con múltiples dosis por inyección IV de ADC. El volumen tumoral se puede evaluar en diversos puntos temporales después de la inyección.

Ejemplo 22 - Síntesis de MC-MMAF a través de éster t-butílico

Síntesis 1:

10

MeVal-Val-Dil-Dap-Phe-OtBu (compuesto 1, 128,6 mg, 0,163 mmol) se suspendió en CH₂Cl₂ (0,500 ml). Se añadieron ácido 6-maleimidocaproico (68,9 mg, 0,326 mmol) y 1,3-diisopropilcarbodiimida (0,0505 ml, 0,326 mmol) seguido de piridina (0,500 ml). La mezcla de reacción se dejó en agitación durante 1,0 h. El análisis de HPLC indicó consumo completo del compuesto de partida 1. Los compuestos orgánicos volátiles se evaporaron a presión reducida. El producto se aisló por cromatografía en columna ultrarrápida, usando un gradiente de etapa de Metanol al 0 a 5 % en CH₂Cl₂. Se recuperó un total de 96 mg de MC-MeVal-Val-Dil-Dap-Phe-OtBu (12) pura (rendimiento de un 60 %). ES-MS m/z 981,26 [M+H]⁺; 1003,47 [M+Na]⁺; 979,65 [M-H]⁻.

MC-MeVal-Val-Dil-Dap-Phe-OtBu (Compuesto 12,74 mg, 0,0754 mmol) se suspendió en CH_2Cl_2 (2,0 ml) y TFA (1 ml) a temperatura ambiente. Después de 2,5 h, el análisis de HPLC indicó consumo completo del material de partida. Los compuestos orgánicos volátiles se evaporaron a presión reducida, y el producto se aisló a través de RP-HPLC preparativa, usando una Columna Synergi Max-RP C_{12} de 80 Å de Phenomenex (250 x 21,20 mm). Eluyente: gradiente lineal de MeCN del 10 % al 90 %/TFA al 0,05 % (ac.) durante 30 minutos, a continuación MeCN al 90 %/TFA al 0,05 % (ac.) isocrático para un periodo adicional de 20 minutos. ES-MS m/z 925,33 [M+H] $^+$; 947,30 [M+Na] $^+$; 923,45 [M-H] $^-$.

Ejemplo 23a - Síntesis de MC-MMAF (11) a través de éster dimetoxibencílico

Síntesis 2:

25

30

Preparación de éster Fmoc-L-Fenilalanina-2,4-dimetoxibencílico (Fmoc-Phe-ODMB)

5

10

15

Un matraz de fondo redondo de 5 l de 3 bocas, se cargó con Fmoc-L-Fenilalanina (200 g, 516 mmol de Bachem), alcohol 2,4-dimetoxibencílico (95,4 g, 567 mmol, Aldrich), y CH₂Cl₂ (2,0 l). Se añadió t-butil acetal de N,N-dimetilformamida (155 ml, 586 mmol, Fluka) a la suspensión resultante durante 20 min en atmósfera de N₂, que dio como resultado una solución transparente. Después, la reacción se agitó a temperatura ambiente durante una noche, tras lo cual el análisis de TLC (0,42, Heptano/EtOAc = 2:1) indicó que la reacción era completa. La mezcla de reacción se concentró a presión reducida para dar un aceite de color amarillo claro, que se disolvió de nuevo en CH₂Cl₂ (200 ml) y se purificó a través de un lecho corto de gel de sílice (25 cm x 25 cm, CH₂Cl₂) para dar una espuma incolora (250 g). Se añadió MeCN (1 l) en la espuma resultante, que disolvió totalmente el lote. A continuación se concentró a sequedad y se volvió a disolver en MeCN (1 l) y la suspensión resultante se agitó durante 1 h, se filtró y la torta de filtro se aclaró con MeCN (2 x 200 ml) para dar éster Fmoc-L-fenilalanina-2,4-dimetoxibencílico en forma de un sólido de color blanco (113,58 g, 41 %, AUC de un 95,5 % por análisis de HPLC).

Datos: HPLC.

Preparación Éster L-fenilalanina-2,4-dimetoxibencílico (Phe-ODMB)

Un matraz de fondo redondo de 500 ml se cargó con éster Fmoc-L-fenilalanina-2,4-dimetoxibencílico (26,00 g, 48,3 mmol), CH₂Cl₂ (150 ml) y dietilamina (75 ml, Acros). La mezcla se agitó a temperatura ambiente y la finalización se controló por HPLC. Después de 4 h, la mezcla se concentró (temperatura del baño < 30 °C). El resto se volvió a suspender en CH₂Cl₂ (200 ml) y se concentró. Ésto se repitió una vez. Al resto se añadió MeOH (20 ml), que provocó la formación de un gel. Este resto se diluyó con CH₂Cl₂ (200 ml), se concentró y el aceite turbio se dejó vacío durante una noche. El resto se suspendió en CH₂Cl₂ (100 ml), a continuación se añadió tolueno (120 ml). La mezcla se concentró y el resto se dejó al vacío durante una noche.

Datos: HPLC, RMN 1H.

20

25

30

35

50

65

15 Preparación de Fmoc-Dolaproína (Fmoc-Dap)

Boc-Dolaproína (58.8 g. 0.205 mol) se suspendió en HCl 4 N en 1.4-dioxano (256 ml, 1.02 mol, Aldrich). Después de agitar durante 1,5 horas, el análisis de TLC indicó que la reacción era completa (MeOH al 10 %/CH₂Cl₂) y la mezcla se concentró casi hasta sequedad. Se cargó 1,4-dioxano adicional (50 ml) y la mezcla se concentró a sequedad y se secó al vacío durante una noche. El sólido de color blanco resultante se disolvió en H₂O (400 ml) y se transfirió a un to matraz de fondo redondo, de tres bocas, de 3 l, con un agitador mecánico y sonda de temperatura. Se añadió N,N-diisopropiletilamina (214,3 ml, 1,23 mol, Acros) durante un minuto, causando una exotermia de 20,5 a 28,2 °C (interna). La mezcla se enfrió en un baño de hielo y se añadió 1,4-dioxano (400 ml). Una solución de Fmoc-OSu (89,90 g, 0,267 mol, Advanced ChemTech) en 1,4-dioxano (400 ml) se añadió desde un embudo de adición durante 15 minutos, manteniendo la temperatura de reacción por debajo de 9 ºC. La mezcla se dejó calentar a temperatura ambiente y se agitó durante 19 horas, tras lo cual la mezcla se concentró por evaporación rotatoria hasta una suspensión acuosa (390 g). La suspensión se diluyó con H₂O (750 ml) y Et₂O (750 ml), provocando que se formara un precipitado de color blanco abundante. Las fases se separaron, manteniendo los sólidos con la fase orgánica. La fase acuosa se acidificó usando HCl conc. (30 ml) y se extrajo con EtOAc (3 x 500 ml). Los extractos combinados se secaron sobre MgSO₄, se filtró y se concentró para dar 59,25 g de un aceite de color amarillo A. El extracto de Et₂O se extrajo una vez con NaHCO₃ sat. (200 ml), manteniendo los sólidos con la fase acuosa. La suspensión acuosa se acidificó usando HCl conc. (50 ml) y se extrajo con Et₂O (50 ml) manteniendo los sólidos con la fase orgánica. La fase orgánica se filtró y se concentró para dar 32,33 g de un aceite de color amarillo B. Los dos aceites (A y B) se combinaron y se purificó por cromatografía ultrarrápida sobre gel de sílice eluyendo con CH₂Cl₂ (3,5 l), a continuación MeOH al 3 %/CH2Cl2 (9 I) para dar 68,23 g de Fmoc-dolaproína en forma de una espuma de color blanco (81 %, pureza de un 97,5 % por HPLC (AUC)).

Preparación de Fmoc-Dap-Phe-ODMB

Phe-ODMB en bruto (48,3 mmol) se suspendió en DMF anhidra (105 ml, Acros) durante 5 minutos y se añadió Fmoc-Dap (19,80 g, 48,3 mmol). La mezcla se enfrió en un baño de hielo y se añadió TBTU (17,08 g, 53,20 mmol, Matrix Innovations). Se añadió N,N-diisopropiletilamina (25,3 ml, 145,0 mmol, Acros) mediante una jeringa durante 3 min. Después de 1 h, el baño de hielo se retiró y la mezcla se dejó calentar durante 30 min. La mezcla se vertió en agua (1 l) y se extrajo con acetato de etilo (300 ml). Después de separación, la fase acuosa se extrajo de nuevo con acetato de etilo (2 x 150 ml). Las fases orgánicas combinadas se lavaron con salmuera (150 ml), se secó (MgSO₄) y se filtró (papel de filtro) para retirar las sustancias insolubles (compuestos inorgánicos y algo de dibenzofulveno). Después de concentración, el resto (41 g) se adsorbió sobre sílice (41 g) y se purificó por cromatografía (columna de 22 cm x 8 cm; Heptano al 65 %/EtOAc (2,5 l); Heptano al 33 %/EtOAc (3,8 l), para dar 29,4 g de producto en forma de una espuma de color blanco (86 %, pureza de un 92 % por HPLC).

Datos: HPLC, RMN 1H, TLC (EtOAc a 1:1/Heptano Rf = 0,33, tinción con rojo en vanillina).

Preparación de Dap-Phe-ODMB

Un matraz de fondo redondo de 1 l se cargó con Fmoc-Dap-Phe-ODMB (27,66 g), CH₂Cl₂ (122 ml) y dietilamina (61 ml, Acros). La solución se agitó a temperatura ambiente y la finalización se controló por HPLC. Después de 7 h, la mezcla se concentró (temp. del baño < 30 °C). El resto se suspendió en CH₂Cl₂ (300 ml) y se concentró. Ésto se repitió dos veces. Al resto se añadió MeOH (20 ml) y CH₂Cl₂ (300 ml), y la solución se concentró. El resto se suspendió en CH₂Cl₂ (100 ml) y tolueno (400 ml), se concentró, y el resto se dejó al vacío durante una noche para dar un resto de color similar al crema.

Datos: HPLC, RMN 1H, MS.

Preparación de Fmoc-MeVal-Val-Dil-Dap-Phe-ODMB

Dap-Phe-ODMB en bruto (39,1 mmol) se suspendió en DMF anhidra (135 ml, Acros) durante 5 minutos y se añadió

Fmoc-MeVal-Val-Dil-OH (24,94 g, 39,1 mmol, véase el Ejemplo 2 para la preparación). La mezcla se enfrió en un baño de hielo y se añadió TBTU (13,81 g, 43,0 mmol, Matrix Innovations). N,N-Diisopropiletilamina (20,5 ml, 117,3 mmol, Acros) se añadió mediante una jeringa durante 2 minutos. Después de 1 hora, el baño de hielo se retiró y la mezcla se dejó calentar durante 30 min. La mezcla se vertió en agua (1,5 l) y se diluyó con acetato de etilo (480 ml). Después de reposar durante 15 minutos, las fases se separaron y la fase acuosa se extrajo con acetato de etilo (300 ml). Las fases orgánicas combinadas se lavaron con salmuera (200 ml), se secó (MgSO₄) y se filtró (papel de filtro) para retirar las sustancias insolubles (compuestos inorgánicos y algo de dibenzofulveno). Después de concentración, el resto (49 g) se raspo del matraz y se adsorbió sobre sílice (49 g) y se purificó por cromatografía (columna dia de 15 cm x 10 cm; EtOAc a2:1/Heptano (3 l), EtOAc (5 l); fracciones de 250 ml) para dar 31,84 g de Fmoc-MeVal-Val-Dil-Dap-Phe-ODMB en forma de una espuma de color blanco (73 %, pureza de un 93 % por HPLC (AUC)).

Datos: HPLC, TLC (EtOAc a 2:1/heptano, Rf = 0.21, tinción con rojo en vanillina).

Preparación de MeVal-Val-Dil-Dap-Phe-ODMB

15

20

5

10

Un matraz de fondo redondo, de 1 l se cargó con Fmoc-MeVal-Dil-Dap-Phe-ODMB (28,50 g), CH_2Cl_2 (80 ml) y dietilamina (40 ml). La mezcla se agitó a temperatura ambiente durante una noche y después se concentró a presión reducida. El resto se adsorbió sobre sílice (30 g) y se purificó por cromatografía ultrarrápida (columna dia de 15 cm x 8 cm; MeOH al 2 %/DCM (2 l), MeOH al 3 %/DCM (1 l), MeOH al 6 %/DCM (4 l); fracciones de 250 ml) para dar 15,88 g de MeVal-Val-Dil-Dap-Phe-ODMB en forma de una espuma de color blanco (69 %, pureza de un 96 % por HPLC (AUC)).

Datos: HPLC, TLC (MeOH al 6 %/DCM, Rf = 0.24, tinción con rojo en vanillina).

25 Preparación de MC-MeVal-Val-Dil-Dap-Phe-ODMB

Un matraz de fondo redondo, de 50 ml se cargó con MeVal-Val-Dil-Dap-Phe-ODMB (750 mg, 0,85 mmol), DMF anhidra (4 ml), ácido maleimidocaproico (180 mg, 0,85 mmol) y TBTU (300 mg, 0,93 mmol, Matrix Innovations) a temperatura ambiente. N,N-Diisopropiletilamina (450 μl, 2,57 mmol) se añadió mediante una jeringa. Después de 1,5 horas, la mezcla se vertió en agua (50 ml) y se diluyó con acetato de etilo (30 ml). NaCl se añadió para mejorar la separación. Después de la separación de las fases, la fase acuosa se extrajo con acetato de etilo (25 ml). Las fases orgánicas combinadas se secaron (MgSO₄), se filtró y se concentró. El aceite resultante (1 g) se purificó por cromatografía ultrarrápida [100 ml de sílice; Heptano al 25 %/EtOAc (100 ml), Heptano al 10 %/EtOAc (200 ml), EtOAc (1,5 l)] para dar MC-MeVal-Val-Dil-Dap-Phe-ODMB (13) en forma de una espuma de color blanco (521 mg, 57 %, pureza de un 94 % por HPLC(AUC)).

Datos: RMN 1H, HPLC.

Preparación de MC-MeVal-Val-Dil-Dap-Phe-OH (MC-MMAF) (11)

40

45

30

35

Un matraz de fondo redondo, de 50 ml se cargó con MC-MeVal-Val-Dil-Dap-Phe-ODMB (Compuesto 13,428 mg, 0,39 mmol) y se disolvió en TFA al 2,5 %/CH₂Cl₂ (20 ml). La solución se volvió de color rosa-púrpura durante 2 min. La finalización se controló por HPLC y TLC (MeOH al 6 %/DCM, tinción con KMnO₄). Después de 40 min, se añadieron tres gotas de agua y la mezcla de color rosa-púrpura se concentró para dar 521 mg de un resto de color rosa. La purificación por cromatografía (IPA al 15 %/DCM) proporcionó 270 mg de MC-MMAF (73 %, pureza de un 92 % por HPLC) en forma de un sólido de color blanco.

Ejemplo 23b - Síntesis de análogo de mc-MMAF

MeVal-Val-Dil-Dap-Phe-OtBu (compuesto 1, 35 mg, 0,044 mmol) se suspendió en DMF (0,250 ml). Se añadieron ácido 4-(2,5-dioxo-2,5-dihidro-pirrol-1-il)-benzoico (11 mg, 0,049 mmol) y HATU (17 mg, 0,044 mmol) seguido de DIEA (0,031 ml, 0,17 mmol). Esta mezcla de reacción se dejó en agitación durante 2,0 h. El análisis de HPLC indicó el consumo completo del compuesto de partida 1.

El producto se aisló a través de RP-HPLC preparativa, usando una Columna Synergi Max-RP C₁₂ de 80 Å de Phenomenex (250 x 21,20 mm). Eluyente: gradiente lineal de MeCN de un 10 % a un 80 %/TFA al 0,05 % (ac.) durante 8 minutos, a continuación MeCN al 80 %/TFA al 0,05 % (ac.) isocrático durante un periodo adicional 12 minutos. Se aisló un total de 20 mg de producto puro (14) (0,02 mmol, rendimiento de un 46 %). ES-MS *m/z* 987,85 [M+H]⁺; 1019,41 [M+Na]⁺; 985,54 [M-H]⁻.

MB-MeVal-Val-Dil-Dap-Phe-OtBu (Compuesto 14,38 mg, 0,0385 mmol) se suspendió en CH₂Cl₂ (1 ml) y TFA (1 ml). La mezcla se agitó durante 2,0 h, y a continuación los compuestos volátiles se evaporaron a presión reducida. El producto se purificó por RP-HPLC preparativa, usando una Columna Synergi Max-RP C₁₂ de 80 Å de Phenomenex (250 x 21,20 mm). Eluyente: gradiente lineal de MeCN de un 10 % a un 80 % y TFA al 0,05 % (ac.) durante 8 minutos, a continuación MeCN al 80 %/TFA al 0,05 % (ac.) isocrático durante un periodo adicional 12 minutos. Se aisló un total de 14,4 mg de producto de MB-MMAF (0,015 mmol, rendimiento de un 40 %). ES-MS *m*/ *z* 930,96 [M+H]⁺ 952,98 [M+Na]⁺; 929,37 [M-H]⁻.

Ejemplo 23c - Preparación de MC-MeVal-Cit-PAB-MMAF (16)

5

10

15

20

A una suspensión a temperatura ambiente de Fmoc-MeVal-OH (3,03 g, 8,57 mmol) y carbonato de N,N'-disuccimidilo (3,29 g, 12,86 mmol) en CH_2Cl_2 (80 ml) se añadió DIEA (4,48 ml, 25,71 mmol). Esta mezcla de reacción se dejó en agitación durante 3,0 h, y después se vertió en un embudo de separación en el que la mezcla orgánica se extrajo con HCl 0,1 M (ac.). El resto orgánico en bruto se concentró a presión reducida, y el producto se aisló por cromatografía en columna ultrarrápida sobre gel de sílice usando un gradiente lineal de acetato de etilo al 20-100 %/hexanos. Se recuperó un total de 2,18 g de Fmoc-MeVal-OSu puro (4,80 mmoles, rendimiento de un 56 %).

5

10

15

20

25

30

35

40

45

A una suspensión a temperatura ambiente de Fmoc-MeVal-OSu (2,18 g, 4,84 mmol) en DME (13 ml) y THF (6,5 ml) se añadió una solución de L-citrulina (0,85 g, 4,84 mmol) y NaHCO₃ (0,41 g, 4,84 mmol) en H₂O (13 ml). La suspensión se dejó en agitación a temperatura ambiente durante 16 h, a continuación se extrajo en *terc*-BuOH/CHCl₃/H₂O, se acidificó a pH = 2-3 con HCl 1 M. La fase orgánica se separó, se secó y se concentró a presión reducida. El resto se trituró con éter dietílico dando como resultado 2,01 g de Fmoc-MeVal-Cit-COOH que se usó sin purificación adicional.

El Fmoc-MeVal-Cit-COOH bruto se suspendió en $CH_2Cl_2/MeOH$ a 2:1 (100 ml), y se le añadió alcohol p-aminobencílico (0,97 g, 7,9 mmol) y EEDQ (1,95 g, 7,9 mmol). Esta suspensión se dejó en agitación durante 125 h, a continuación los compuestos orgánicos volátiles se retiraron a presión reducida, y el resto se purificó por cromatografía en columna ultrarrápida sobre gel de sílice usando MeOH al 10 %/CH $_2$ Cl $_2$. Se recuperó el Fmoc-MeVal-Cit-PAB-OH puro (0,55 g, 0,896 mmol, rendimiento de un 18,5 %). ES-MS m/z 616,48 $[M+H]^+$.

A una suspensión de Fmoc-MeVal-Cit-PAB-OH (0,55 g, 0,896 mmol) en CH₂Cl₂ (40 ml) se añadió STRATOSPHEREStm (unido a resina de piperazina) (> 5 mmol/g, 150 mg). Después de su agitación a temperatura ambiente durante 16 h la mezcla se filtró a través de celite (lavado previamente con MeOH), y se concentró a presión reducida. El resto se trituró con éter dietílico y hexanos. El material sólido resultante, MeVal-Cit-PAB-OH, se suspendió en CH₂Cl₂ (20 ml), y se le añadió MC-OSu (0,28 g, 0,896 mmol), DIEA (0,17 ml, 0,99 mmol) y DMF (15 ml). Esta suspensión se agitó durante 16 h, pero el análisis de HPLC de la mezcla de reacción indicó reacción incompleta, de modo que la suspensión se concentró a presión reducida hasta un volumen de 6 ml, a continuación se añadió una solución de NaHCO₃ (ac.) al 10 % y la suspensión se agitó durante un periodo adicional de16 h. El disolvente se retiró a presión reducida, y el resto se purificó por cromatografía en columna ultrarrápida sobre gel de sílice usando un gradiente de MeOH al 0-10 %/CH₂Cl₂, dando como resultado 42 mg (0,072 mmol, rendimiento de un 8 %) de MC-MeVal-Cit-PAB-OH.

A una suspensión de MC-MeVal-Cit-PAB-OH (2,37 g, 4,04 mmol) y bis(nitrofenil)carbonato (2,59 g, 8,52 mmol) en CH_2Cl_2 (10 ml) se añadió DIEA (1,06 ml, 6,06 mmol). Esta suspensión se agitó durante 5,5 h, se concentró a presión reducida y se purificó por trituración con éter dietílico. MC-MeVal-Cit-PAB-OCO-pNP (147 mg, 0,196 mmol) se suspendió en una solución de piridina a 1:5/DMF (3 ml), y se le se añadió HOBt (5 mg, 0,039 mmol), DIEA (0,17 ml, 0,978 mmol) y MMAF (compuesto 2, 150 mg, 0,205 mmol). Esta mezcla de reacción se agitó durante 16 h a temperatura ambiente, y a continuación se purificó por RP-HPLC preparativa (x 3), usando una Columna Synergi Max-RP C_{12} de 80 Å de Phenomenex (250 x 21,20 mm). Eluyente: gradiente lineal de MeCN de un 10 % a un 90 %/TFA al 0,05 % (ac.) durante 30 minutos, a continuación MeCN al 90 %/TFA al 0,05 % (ac.) isocrático durante un periodo adicional de 20 minutos. MC-MeVal-Cit-PAB-MMAF (16) se obtuvo en forma de un sólido de color amarillento (24,5 mg, 0,0182, rendimiento de un 0,45 %). ES-MS m/z 1344,95 $[M+H]^+$; 1366,94 $[M+Na]^+$.

Ejemplo 23d - Preparación de éster de succinimida de suberil-Val-Cit-PAB-MMAF (17)

Compuesto 17

5

10

15

20

25

30

35

40

45

50

El Compuesto 1 (300 mg, 0,38 mmol), Fmoc-Val-Cit-PAB-pNP (436 mg, 0,57 mmol, 1,5 equiv.) se suspendieron en piridina anhidra, 5 ml. Se añadió HOBt (10 mg, 0,076 mmol, 0,2 equiv.) seguido de DIEA (199 μl, 1,14 mmol, 3 equiv.). La mezcla de reacción se sonicó durante 10 min, y a continuación se agitó durante una noche a temperatura ambiente. Piridina se retiró a presión reducida, el resto se volvió a suspender en CH₂Cl₂. La mezcla se separó por cromatografía ultrarrápida en gel de sílice en un gradiente de etapa de MeOH, de un 0 a un 10 %, en CH₂Cl₂. Las fracciones que contenían el producto se combinaron, se concentraron, se secó al vacío durante una noche para dar 317 mg (rendimiento de un 59 %) de Fmoc-Val-Cit-PAB-MMAF-OtBu. ES-MS *m/z* 1415,8 [M+H]⁺.

Fmoc-Val-Cit-PAB-MMAF-OtBu (100 mg) se agitó en TFA al 20 %/CH₂Cl₂ (10 ml), durante 2 h. La mezcla se diluyó con CH₂Cl₂ (50 ml). La fase orgánica se lavó sucesivamente con agua (2 x 30 ml) y salmuera (1 x 30 ml). La fase orgánica se concentró, se cargó sobre un lecho de gel de sílice en MeOH al 10 %/CH₂Cl₂. El producto se eluyó con MeOH al 30 %/CH₂Cl₂. Después de secar al vacío durante una noche se obtuvo, Fmoc-Val-Cit-PAB-MMAF en forma de un sólido de color blanco, 38 mg, rendimiento de un 40 %. ES-MS *m*/*z* 1357,7 [M-H]⁻.

Fmoc-Val-Cit-PAB-MMAF, 67 mg, se suspendió en CH₂Cl₂ (2 ml) dietilamina (2 ml) y DMF (2 ml). La mezcla se agitó durante 2 horas a temperatura ambiente. El disolvente se retiró a presión reducida. El resto se co-evaporó con piridina (2 ml), a continuación con tolueno (2 x 5 ml), se secó al vacío. Se obtuvo Val-Cit-PAB-MMAF en forma de un aceite de color parduzco, y se usó sin purificación adicional.

Todo el Val-Cit-PAB-MMAF preparado a partir de 67 mg de Fmoc-Val-Cit-PAB-MMAF, se suspendió en piridina (2 ml), y se añadió a una solución de suberato de disuccinimidilo (74 mg, 0,2 mmol, 4 equiv.), en piridina (1 ml). La mezcla de reacción se agitó a temperatura ambiente. Después de 3 horas, se añadió éter (20 ml). El precipitado se recogió, se lavó con una cantidad adicional de éter. Un sólido de color rojizo se suspendió en MeOH al 30 %/CH₂Cl₂, se filtra a través de una capa de gel de sílice con MeOH al 30 %/CH₂Cl₂ como eluyente. Se obtuvo el Compuesto 17 en forma de un sólido de color blanco, 20 mg (rendimiento de un 29 %). ES-MS *m/z* 1388,5 [M-H].

Ejemplo 24 – Eficacia in vivo de Conjugados de Anticuerpo-Fármaco de mcMMAF

Eficacia de cAC10-mcMMAF en xenoinjertos de ALCL de Karpas-299: Para evaluar la eficacia in vivo de cAC10-mcMMAF con un promedio de 4 restos de fármaco por anticuerpo (cAC10-mcF4), células ALCL humanas de Karpas-299 se implantaron por vía subcutánea en ratones C.B-17 SCID inmunodeficientes (5 x 10⁶ células por ratón). Los volúmenes tumorales se calcularon usando la fórmula (0,5 x L x W²) en la que L y W son la medida más larga y más corta de dos medidas bidireccionales. Cuando el volumen tumoral medio en los animales de estudio alcanzó aproximadamente 100 mm³ (intervalo de 48-162), los ratones se dividieron en 3 grupos (5 ratones por grupo) y se dejaron sin tratar o se dosificaron con una sola inyección intravenosa a través de la vena de la cola de 1 o 2 mg/kg de cAC10-mcF4 (Figura 1). Los tumores en los ratones sin tratar crecieron rápidamente hasta un volumen medio de > 1.000 mm³ en 7 días del comienzo de la terapia. Por el contrario, todo el tumor tratado con cAC10-mcF4 mostró una rápida regresión con 3/5 en el grupo de 1 mg/kg y 5/5 en el grupo de 2 mg/kg que obtuvo una respuesta total del tumor. Aunque el tumor en uno de los pacientes con respuesta total en el grupo de 2 mg/kg recurrió aproximadamente 4 semanas más tarde, no hubo tumores detectables en los 4/5 pacientes restantes en este grupo y el los 3 pacientes de respuesta total en el grupo de 1 mg/kg a las 10 semanas después de la terapia.

Eficacia de cBR96-mcMMAF en xenoinjertos de NSCLC L2987: cBR96 es un anticuerpo quimérico que reconoce el antígeno Le Y. Para evaluar la eficacia in vivo de cBR96-mcMMAF con 4 fármacos por anticuerpo (cBR96-mcF4), fragmentos de tumor de cáncer de pulmón de células no pequeñas (NSCLC) L2987 se implantaron en ratones atímicos desnudos. Cuando los tumores tenían un tamaño medio de aproximadamente 100 mm³, los ratones se dividieron en 3 grupos: sin tratar y 2 grupos de terapia. Para la terapia, tal como se muestra en la Figura 3a, se administró cBR96-mcF4 a los ratones a 3 o 10 mg/kg/inyección cada 4 días para un total de 4 inyecciones (q4dx4). Tal como se muestra en la Figura 3b, se administró cBR96-mcF4 a los ratones o un conjugado de control de no unión, cAC10-mcF4, a 10 mg/kg/inyección cada 4 días para un total de 4 inyecciones (q4dx4). Tal como se muestra en las Figuras 3a y 3b, BR96-mcF4 produjo un retraso del crecimiento tumoral pronunciado en comparación con los controles.

La Figura 2 muestra an un ensayo de eficacia, de una sola dosis, *in vivo*, de cAC10-mcMMAF en L540CY subcutáneo. Para este estudio había 4 ratones en el grupo sin tratar y 10 en cada uno de los grupos de tratamiento.

Ejemplo 25 – Eficacia in vitro de Conjugados de Anticuerpo-Fármaco de MC-MMAF

Actividad de conjugados de cAC10-anticuerpo-fármaco frente a líneas celulares CD30⁺. Las Figuras 4a y 16b muestran curvas de dosis-respuesta a partir de un experimento representativo en el que se incubaron cultivos de Karpas 299 (linfoma anaplásico de células grandes) y L428 (Linfoma Hodgkin) con diluciones en serie de cAC10-mcMMAF (Figura 4a) o cAC10-vcMMAF (Figura 4b) durante 96 horas. Los cultivos se marcaron durante 4 horas con resazurina 50 μΜ [10-óxido de 7-hidroxi-3H-fenoxazin-3-ona] y se midió la fluorescencia. Los datos se redujeron en GraphPad Prism versión 4.00 usando el procedimiento de ajuste de curvas de dosis-respuesta de 4 parámetros. Los valores de Cl₅₀ se definen como la concentración en la que el crecimiento se reduce al 50 % en comparación con cultivos de control sin tratar. Cada concentración se sometió a ensayo por cuadruplicado.

Actividad de conjugados de cBR96-anticuerpo-fármaco frente a líneas celulares Le^{y+} . Las Figuras 5a y 5b muestran curvas de dosis-respuesta a partir de un experimento representativo en el que se incubaron cultivos de H3396 (carcinoma de mama) y L2987 (carcinoma de pulmón de células no pequeñas) con diluciones en serie de cBR96-mcMMAF (Figura 5a) o -vcMMAF (Figura 5b) durante 96 horas. Los cultivos se marcaron durante 4 horas con resazurina 50 μ M y se midió la fluorescencia. Los datos se redujeron en GraphPad Prism versión 4.00 usando el procedimiento de ajuste de curvas de dosis-respuesta de 4 parámetros. Los valores de Cl₅₀ se definen como la concentración en la que el crecimiento se reduce al 50 % en comparación con cultivos de control sin tratar. Cada concentración se sometió a ensayo por cuadruplicado.

Actividad de conjugados c1F6-anticuerpo-fármaco frente a líneas celulares de carcinoma de células renales CD70⁺. Las Figuras 6a y 6b muestran curvas de dosis-respuesta a partir de un experimento representativo en el que se incubaron cultivos de células Caki-1 y 786-O con diluciones en serie de c1F6-mcMMAF (Figura 6a) o -vcMMAF (Figura 6b) durante 96 horas. Los cultivos se marcaron durante 4 horas con resazurina 50 μM y se midió la fluorescencia medido. Los datos se redujeron en GraphPad Prism versión 4.00 usando el procedimiento de ajuste de curvas de dosis-respuesta de 4 parámetros. Los valores de Cl₅₀ se definen como la concentración en la que el crecimiento se reduce al 50 % en comparación con cultivos de control sin tratar. Cada concentración se sometió a ensayo por cuadruplicado.

Ejemplo 26 - Purificación de trastuzumab

10

15

20

35

40

45

50

55

Un vial que contiene 440 mg de HERCEPTIN® (huMAb4D5-8, rhuMAb HER2, Patente de Estados Unidos Nº 5821337) anticuerpo) se disolvió en 50 ml de tampón MES (MES 25 mM, NaCl 50 mM, pH 5,6) y se cargó en una columna de intercambio catiónico (Sepharose S, 15 cm x 1,7 cm) que se había equilibrado en el mismo tampón. La columna se lavó a continuación con el mismo tampón (5 volúmenes de columna). Trastuzumab se eluyó aumentando la concentración de NaCl del tampón a 200 mM. Las fracciones que contenían el anticuerpo se combinaron, se diluyó a 10 mg/ml, y se dializó en un tampón que contenía fosfato potásico 50 mm, NaCl 50 mM, EDTA2 mM, pH 6,5.

Ejemplo 27 - Preparación de trastuzumab-MC-MMAE por conjugación de trastuzumab y MC-MMAE

Trastuzumab, disuelto en borato sódico 500 mM y cloruro sódico 500 mM a pH 8,0 se trata con un exceso de ditiotreitol 100 mM (DTT). Después de incubación a 37 °C durante aproximadamente 30 minutos, el campo se intercambia por elución sobre resina Sephadex G25 y eluyendo con PBS con DTPA 1 mM. El valor de tiol/Ab se comprueba mediante la determinación de la concentración de anticuerpo reducido a partir de la absorbancia a 280 nm de la solución y la concentración de tiol por reacción con DTNB (Aldrich, Milwaukee, WI) y la determinación del absorbancia a 412 nm. El anticuerpo reducido disuelto en PBS se enfría en hielo.

El reactivo de conector del fármaco, maleimidocaproil-monometil auristatina E (MMAE), *es decir* MC-MMAE, disuelto en DMSO, se diluye en acetonitrilo y agua a una concentración conocida, y se añade al anticuerpo trastuzumab reducido enfriado en PBS. Después de aproximadamente una hora, se añade un exceso de maleimida para inactivar la reacción y se protege cualquier grupo tiol del anticuerpo sin reaccionar. La mezcla de reacción se mediante un ultrafiltración en centrífuga y trastuzumab-MC-MMAE se purifica y se desala mediante elución a través de resina G25 en PBS, se filtró a través de filtros de 0,2 μm en condiciones estériles, y se congeló para su almacenamiento.

60 Ejemplo 28 - Preparación de trastuzumab-MC-MMAF por conjugación de trastuzumab y MC-MMAF

Trastuzumab-MC-MMAF se preparó por conjugación de trastuzumab y MC-MMAF siguiendo el procedimiento del Ejemplo 27.

65 Ejemplo 29 - Preparación de trastuzumab-MC-val-cit-PAB-MMAE por conjugación de trastuzumab y MC-val-cit-PAB-MMAE

Trastuzumab-MC-val-cit-PAB-MMAE se preparó por conjugación de trastuzumab y MC-val-cit-PAB-MMAE siguiendo el procedimiento del Ejemplo 27.

Ejemplo 30 - Preparación de trastuzumab-MC-val-cit-PAB-MMAF por conjugación de trastuzumab y MC-valcit-PAB-MMAF 9

Trastuzumab-MC-val-cit-PAB-MMAF se preparó por conjugación de trastuzumab y MC-val-cit-PAB-MMAF **9** siguiendo el procedimiento del Ejemplo 27.

Ejemplo 31 - Toxicidad en ratas

El perfil de toxicidad aguda de fármacos libres y ADC se evaluó en ratas Sprague-Dawley adolescentes (75-125 gramos cada una, Charles River Laboratories (Hollister, CA). Los animales fueron inyectados el Día 1, se obtuvieron perfiles completos de química y hematología en la medida inicial, el día 3 y el día 5 y se realizó una necropsia completa el Día 5. Se realizaron medidas de enzimas hepáticas en todos los animales e histología de rutina tal como se realiza en tres animales aleatorios para cada grupo para los siguientes tejidos: esternón, hígado, riñón, timo, bazo, intestino grueso y delgado. Los grupos experimentales fueron como sigue a continuación:

Grupo	Administrado	mg/kg	μg de MMAF/m²	MMAF/MAb	N/Sexo
1	Vehículo	0	0	0	2/F
2	trastuzumab-MC-val-cit-MMAF	9,94	840	4,2	6/F
3	trastuzumab-MC-val-cit-MMAF	24,90	2105	4,2	6/F
4	trastuzumab-MC(Me)-val-cit-PAB-MMAF	10,69	840	3,9	6/F
5	trastuzumab-MC(Me)-val-cit-PAB-MMAF	26,78	2105	3,9	6/F
6	trastuzumab-MC-MMAF	10,17	840	4,1	6/F
7	trastuzumab-MC-MMAF	25,50	2105	4,1	6/F
8	trastuzumab-MC-val-cit-PAB-MMAF	21,85	2105	4,8	6/F

Para trastuzumab-MC-val-cit-MMAF, trastuzumab-MC(Me)-val-cit-PAB-MMAF, trastuzumab-MC-MMAF y trastuzumab-MC-val-cit-PAB-MMAF, el término μg de MMAF/m² se calculó usando 731,5 como el PM de MMAF y 145167como el PM de Herceptin.

El área de superficie corporal se calculó como sigue a continuación: [{(peso corporal en gramos a potencia 0,667) x 11,8}/10000]. (Guidance for Industry and Reviewers, 2002).

Las soluciones de dosis se administraron mediante una sola inyección en bolo intravenoso en la vena de la cola el Día del Estudio 1 con un volumen de dosis de 10 ml/kg. Los pesos corporales de los animales se midieron antes de la dosis El Día del Estudio 1 y diariamente a partir de ese momento. Se recogió sangre entera en tubos que contenían EDTA para análisis de hematología. La sangre entera se recogió en tubos separadores de suero para análisis clínico de química. Las muestras de sangre se recogieron antes de la dosis el Día del Estudio -4, Día del Estudio 3 y Día del Estudio 5. Además, se recogió sangre entera en tubos que contenían heparina sódica en el momento de la necropsia del plasma se congeló a -70 °C para un posible análisis posterior. Los siguientes tejidos se recogieron y se colocaron en formalina tamponada neutra en el momento de la necropsia: hígado, riñones, corazón, timo, bazo, cerebro, esternón secciones del tracto GI, que incluyen estómago, intestino grueso y delgado. Se examinaron el esternón, intestino delgado, intestino grueso, hígado, timo, bazo y riñón.

Los niveles de enzimas en suero asociados al hígado en cada punto temporal se compararon con un intervalo (percentil 5º y 95º) a partir de ratas Sprague-Dawley hembra normales. Recuentos de glóbulos blancos y plaquetas en cada punto temporal se compararon con un intervalo (percentil 5º y 95º) a partir de ratas Sprague-Dawley hembra normales.

Estudio de dosis elevada en ratas Sprague-Dawley hembra normales:

Grupo 1: Vehículo

Grupo 2: trastuzumab-MC-MMAF, 52,24 mg/kg, 4210 μ g/m² trastuzumab-MC-MMAF, 68,25 mg/kg, 5500 μ g/m² Grupo 4: trastuzumab-MC-MMAF, 86,00 mg/kg, 6930 μ g/m²

20

30

35

40

5

10

15

45

Tejidos de 11 animales se sometieron a histología de rutina. Estos animales había sido parte de un estudio de toxicidad aguda de dosis variadas usando un inmunoconjugado de trastuzumab-MC-MMAF. Se observó a los animales durante 12 días después de la dosificación.

5 Ejemplo 32 – Toxicidad/Seguridad en Mono Cynomolgus

10

15

30

35

Tres grupos de cuatro (2 machos, 2 hembras) *Macaca fascicularis* (mono cynomolgus) sin tratamiento previa se estudiaron para trastuzumab-MC-vc-PAB-MMAE y trastuzumab-MC-vc-PAB-MMAF. La administración intravenosa se realizó los dos días 1 y 22 de los estudios.

Muestra	Grupo	Dosis
Vehículo	1 1M/1F	día 1 día 22
Ejemplo de referencia de H-MC-vc-PAB-MMAE	2 2M/2F	180 μg/m² (0,5 mg/kg) el día 1 1100 μg/m² (3,0 mg/kg) el día 22
Ejemplo de referencia de H-MC-vc-PAB-MMAE	3 2M/2F	550 μg/m² (1,5 mg/kg) el día 8 550 μg/m² (1,5 mg/kg) el día 29
Ejemplo de referencia de H-MC-vc-PAB-MMAE	4 2M/2F	880 μg/m² (2,5 mg/kg) el día 15 880 μg/m² (2,5 mg/kg) el día 36

Muestra	Grupo	Dosis
Vehículo	1 1M/1F	día 1 día 22
H-MC-vc-PAB-MMAF	2 2M/2F	180 μg/m² (0,5 mg/kg) el día 1 1100 μg/m² (3,0 mg/kg) el día 22
H-MC-vc-PAB-MMAF	3 2M/2F	550 μg/m² (1,5 mg/kg) el día 1 550 μg/m² (1,5 mg/kg) el día 22
H-MC-vc-PAB-MMAF	4 2M/2F	880 μg/m² (2,5 mg/kg) el día 1 880 μg/m² (2,5 mg/kg) el día 22
H = trastuzumab	'	

La dosificación se expresa en el área superficial de un animal con el fin de ser relevante para otras especies, *es decir* la dosificación en μg/m² es independiente de las especies y por lo tanto comparable entre especies. Las formulaciones de ADC contenían PBS, fosfato sódico 5,4 mM, fosfato potásico 4,2 mM, cloruro sódico 140 mM, pH 6.5

Se recogió sangre para dosis previa de análisis de hematología, y a los 5 min, 6 h, 10 h, y a los 1, 3, 5, 7, 14, 21 días después de cada dosis. Los recuentos de eritrocitos (RBC) y de plaquetas (PLT) se midieron con el método de dispersión de luz. El recuento de leucocitos (WBC) se midió con el método de peroxidasa/basófilos. El recuento de reticulocitos se midió con el método de dispersión de luz con tinte catiónico. Los recuentos celulares se midieron en un aparato Advia 120. ALT (alanina aminotransferasa) y AST (aspartato aminotransferasa) se midieron en U/L con UV/NADH; metodología IFCC en un aparato AU400 de Olympus, y usando ensayos de Ab ELISA - ECD/GxhuFc-HRP. Conj. Ab ELISA-MMAE/MMAF//ECD-Bio/SA-HRP Total.

Ejemplo 33 - Producción, Caracterización y Humanización de Anticuerpo Monoclonal 4D5 Anti-ErbB2

El anticuerpo monoclonal 4D5 de murino que se une específicamente al dominio extracelular de ErbB2 se produjo tal como se describe en Fendly et al. (1990) Cancer Research 50: 1550-1558. En resumen, células NIH 3T3/HER2-3₄₀₀ (que expresan aproximadamente 1 x 10⁵ moléculas de ErbB2/célula) se produjeron tal como se describe en Hudziak et al. Proc. Natl. Acad. Sci. (USA) 84: 7158-7163 (1987) y se cosecharon con solución salina tamponada con fosfato (PBS) que contenía EDTA 25 mM y se usó para inmunizar ratones BALB/c. Se administraron inyecciones i.p. a los ratones de 10⁷ células en 0,5 ml de PBS en las semanas 0, 2, 5 y 7. A los ratones con antisueros que inmunoprecipitaban ErbB2 marcado con ³²P se les administraron inyecciones i.p. de un extracto de membranas de ErbB2 purificado con aglutinina-Sepharose de germen de trigo (WGA) en las semanas 9 y 13. Ésto fue seguido de una inyección i.v. de 0,1 ml de la preparación de ErbB2 y los estrenos y dos se fundieron con línea de mieloma de ratón X63-Ag8.653. Dos sobrenadantes de hibridoma se identificaron sistemáticamente para la unión a ErbB2 con ELISA y radioinmunoprecipitación.

Mapeo y caracterización de epítopos

El epítopo de ErbB2 unido mediante el anticuerpo monoclonal 4D5 se determinó mediante un análisis de unión competitiva (Fendly et al. Cancer Research 50: 1550 -1558 (1990)). Se realizaron estudios de bloqueo cruzado mediante florescencia directa en células intactas usando la Máquina de Cribado PANDEX™ para cuantificar la fluorescencia. El anticuerpo monoclonal se conjugó con isotiocianato de fluoresceína (FITC), usando procedimientos establecidos (Wofsy et al. Selected Methods in Cellular Immunology, p. 287, Mishel y Schiigi (eds.) San Francisco: W.J. Freeman Co. (1980)). Las monocapas confluentes de células NIH 3T3/HER2-3₄₀₀ se tripsinizaron, se lavaron una vez, y se volvieron a suspender a 1,75 x 10⁶ células/ml en PBS frío que contenía albúmina de suero bovino al 0,5 % (BSA) y NaN₃ al 0,1 %. Se añadió una concentración final de partículas de látex al 1 % (IDC, Portland, OR) para reducir la obstrucción de las membranas de placa PANDEXTM. Células en suspensión, 20 μl, y 20 μl de anticuerpos monoclonales purificados (de 100 µg/ml a 0,1 µg/ml) se añadieron a los pocillos de la placa PANDEX™ y se incubó en hielo durante 30 minutos. Una dilución predeterminada del anticuerpo monoclonal marcado con FITC en 20 µl se añadió a cada pocillo, se incubó durante 30 minutos, se lavó, y la fluorescencia se cuantificó con la PANDEXTM. Se consideró que los anticuerpos monoclonales compartían un epítopo si cada uno bloqueaba la unión del otro en un 50 % o más en comparación con un anticuerpo monoclonal de control irrelevante. En este experimento, al anticuerpo monoclonal 4D5 se le asignó el epítopo I (restos de aminoácidos de aproximadamente 529 a aproximadamente 625, inclusive dentro del dominio extracelular de ErbB2.

20

25

10

15

Las características inhibidoras de crecimiento del anticuerpo monoclonal 4D5 se evaluaron usando la línea celular de tumor de mama, SK-BR-3 (véase Hudziak et al. (1989) Molec. Cell. Biol. 9 (3): 1165-1172). En resumen, se separaron células SK-BR-3 usando tripsina al 0,25 % (vol/vol) y se suspendieron en medio completo a una densidad de 4 x 10^5 células por ml. Se sembraron alícuotas de $100~\mu$ l (4 x 10^4 células) en placas de microdilución de 96 pocillos, se permitió que las células se adhirieran, y se añadieron a continuación $100~\mu$ l de de ellos solos o medios que contenían anticuerpo monoclonal (concentración final de $5~\mu$ g/ml). Después de 72 horas, las placas se lavaron dos veces con PBS (pH 7,5), se tiñeron con violeta de cristal (0,5 % en metanol), y se analizaron para la proliferación celular relativa tal como se describe en Sugarman et al. (1985) Science 230: 943-945. El anticuerpo monoclonal 4D5 inhibió la proliferación celular relativa de SK-BR-3 en aproximadamente un 56 %.

30

35

Además, se evaluó la capacidad del anticuerpo monoclonal 4D5 para inhibir la fosforilación de tirosina estimulada por HRG de proteínas en el intervalo $M_{\rm r}$ 180.000 a partir de lisados de células enteras de células MCF7 (Lewis et al. (1996) Cancer Research 56: 1457-1465). Se indica que las células MCF7 expresan todos los receptores conocidos de ErbB, pero a niveles relativamente bajos. Dado que ErbB2, ErbB3, y ErbB4 tienen tamaños moleculares casi idénticos, no es posible discernir que proteína se está convirtiendo en tirosina fosforilada cuando se evalúan lisados de células enteras mediante análisis de transferencia de Western. Sin embargo, estas células son ideales para ensayos de fosforilación con tirosina mediante HRG debido a que en las condiciones de ensayo usadas, en ausencia de HRG añadida de forma exógena, presenta niveles de bajos a indetectables de proteínas de fosforilación de tirosina en el intervalo de $M_{\rm f}$ 180.000.

40

45

Se sembraron células MCF7 en placas de 24 pocillos y se añadieron anticuerpos monoclonales a ErbB2 a cada pocillo y se incubaron durante 30 minutos a temperatura ambiente; a continuación se añadió rHRG β 1₁₇₇₋₂₄₄ a cada pocillo hasta una concentración final de 0,2 nM, y la incubación continuó durante 8 minutos. Los medios se aspiraron cuidadosamente de cada pocillo, y las reacciones se detuvieron mediante la adición de 100 μ l de tampón de muestra de SDS (SDS al 5 %, DTT 25 mM, y Tris-HCl 25 mM, pH 6,8). Cada muestra (25 μ l) se sometió a electroforesis en un gel de gradiente al 4-12 % (Novex) y a continuación se transfirieron electroforéticamente a membranas de difluoro de polivinilideno. Se desarrollaron inmunotinciones con antifosfotirosina (4G10, de UBI, usada a 1 μ g/ml), y la intensidad de la banda reactiva predominante a M_r 180.000 se cuantificó mediante densitometría de reflectancia, tal como se ha descrito anteriormente (Holmes et al. (1992) Science 256: 1205-1210; Sliwkowski et al. J. Biol. Chem. 269: 14661-14665 (1994)).

50

55

El anticuerpo monoclonal 4D5 inhibió significativamente la generación de una señal de fosforilación de tirosina inducida por HRG a M_r 180.000. En ausencia de HRG, pero fue incapaz de estimular la fosforilación de tirosina de proteínas en el intervalo de M_r 180.000. Además, este anticuerpo no tiene reacción cruzada con EGFR (Fendly et al. Cancer Research 50: 1550-1558 (1990)), ErbB3, o ErbB4. El anticuerpo monoclonal 4D5 fue capaz de bloquear la estimulación con HRG de la fosforilación de tirosina en un 50 %.

60

65

Se evaluó el efecto inhibidor del crecimiento de anticuerpo monoclonal 4D5 en células MDA-MB-175 y SK-BR-3 en presencia o ausencia de rHRGβ1 exógeno (Schaefer et al. Oncogene 15: 1385-1394 (1997)). Los niveles de ErbB2 en células MDA-MB-175 son 4-6 veces más elevados que el nivel encontrado en células epiteliales de mama normales y el receptor ErbB2-ErbB4 es constitutivamente tirosina fosforilada en células MDA-MB-175. El anticuerpo monoclonal 4D5 fue capaz de inhibir la proliferación celular de células MDA-MB-175, tanto en presencia como en ausencia de HRG exógena. La inhibición de proliferación celular por 4D5 es dependiente del nivel de expresión de ErbB2 (Lewis et al. Cancer Immunol. Immunother. 37: 255-263 (1993)). Se podría detectar una inhibición máxima de un 66 % en células SK-BR-3. Sin embargo, este efecto se podría superar con HRG exógeno.

El anticuerpo monoclonal 4D5 de murino se humanizó, usando una estrategia de "mutagénesis de conversión genética", tal como se describe en la Patente de Estados Unidos Nº 5821337, cuya divulgación completa se incorpora expresamente por la presente por referencia. El anticuerpo monoclonal 4D5 humanizado usado en los siguientes experimentos se denomina huMAb4D5-8. Este anticuerpo es de isotipo IgG1.

Listado de secuencias

5

```
<110> Doronina, Svetlana O.
Toki, Brian E.
Senter, Peter D.
Ebens, Allen J.
Polakis, Paul
Sliwkowski, Mark X.
Spencer, Susan D
Kline, Toni Beth
<120> COMPUESTOS DE MONOMETILVALINA CAPACES DE CONJUGACIÓN CON LIGANDOS
<130> 018891-001020PC
<141> 05-11-2004
```

<150> US 60/598.899

25 <151> 04-08-2004

<150> US 60/557.116

<151> 26-03-2004

30 <150> US 60/518.534 <151> 06-11-2003

<160> 35

35 <210> 1 <211> 502

<212> PRT

<213> Homo sapien

40 <400> 1

Met 1	Leu	Leu	Ārg	Ser 5	Ala	Gly	Lys	Leu	Asn 10	Val	Gly	Thr	Lys	Lys 15
Glu	Asp	GЪУ	Glu	Ser 20	Thr	Ala	Pro	Thr	Pro 25	Arg	Pro	Lys	Val	Leu 30
Arg	Cys	Lys	Cys	His 35	His	His	Cys	Pro	Glu 40	Asp	Ser	Val	Asn	Asn 45
lļe	Cys	Ser	Thr	Asp 50	Gly	tyr	Суз	Phe	Thr 55	Met	Ile	Glu	Glu	Asp 60
Asp	Ser	Gly	Leu	Pro .65	Val	Val	Thr	Ser	Gly 70	Cys	Leu	Gly	Leu	Glu 75
Gly	Ser	Asp	Phe	Gln 80	Сув	Arg	Asp	Thr	Pro 85	Ile	Pro	His	Gln	Arg 90
Arg	Ser	Ile	Glu	Cys 95	Cys	Thr	Glu	Arg	Asn 100	Glu	Cys	Asn	Lys	Asp 105
Leu	His	Pro	Thr	Leu 110	Pro	Pro	Leu	Lys	Asn 115	Arg	Asp	Phe	Val	Asp 120
Gly	Pro	Ile	His	His	Arg	Ala	Leu	Leu	Ile 130		Val		Val	Cys 135

Ser	Leu	Leu	Leu	Val 140	Leu	Ile	Ile	Leu	Phe 145	Cys	Tyr	Phe	Arg	Tyr 150
Lys	Arg	Gln	Glu	Thr 155	Arg	Pro	Arg	Tyr	Ser 160	Ile	Gly	Leu	Glu	Gln 165
Asp	Glu	Thr	Tyr	Ile 170	Pro	Pro	Gly	Glu	Ser 175	Leu	Arg	Asp	Leu	Ile 180
Glu	Gln	Ser	Gln	Ser 185	Ser	Gly	Ser	Gly	Ser 190	Gly	Leu	Pro	Leu	Leu 195
Val	Gln	Arg	Thr	Ile 200	Ala	ГЛЗ	Gln	Ile	Gln 205	Met	Val	Lys	Gln	Ile 210
Gly	Lys	Gly	Arg	Tyr 215	Gly	Glu	Val	Trp	Met 220	Gly	Lys	Trp	Arg	Gly 225
Glu	Lys	Val	Ala	Val 230	Lys	Val	Phe	Phe	Thr 235	Thr	Glu	Glu	Ala	Ser 240
Trp	Phe	Arg	Glu	Thr 245	Glu	Ile	Tyr	Gln	Thr 250	Val	Leu	Met	Arg	His 255
Glu	Asn	Ile	Leu	Gly 260	Phe	Ile	Ala	Ala	Asp 265	Ile	Lys	Gly	Thr	Gly 270
Ser	Ţŗp	Thr	Gln	Leu 275	Tyr	Leu	Ile	Thr	Asp 280	Tyr	His	Glu	Asn	Gly 285
Ser	Leu	Tyr	Asp	Tyr 290	Leu	Lys	Ser	Thr	Thr 295	Leu	Asp	Ala	Lys	Ser 300
Met	Leu	Lys	Leu	Ala 305	Tyr	Ser	Ser	Val	Ser 310	Gly	Leu	Суз	His	Leu 315
His	Thr	Glu	Ile	Phe 320	Şer	Thr	Gln	Gly	Lys 325	Pro	Ala	Ile	Ala	His 330
Arg	Asp	Leu	Lys	Ser 335	Lys	Asn	Ile	Leu	Val 340	Lys	Lys	Asn	Gly	Thr 345
Суѕ	Cys	Ile	Ala	Asp 350	Leu	Gly	Leu	Ala	Val 355	Lys	Phe	Ile	Ser	Asp 360
Thr	Asn	Glu	Val	Asp 365	Ile	Pro	Pro	Asn	Thr 370	Arg	Val	Gly	Thr	Lys 375
Arg	Tyr	Met	Pro	Pro 380	Glu	Val	Leu	Asp	Glu 385	Ser	Leu	Asn	Arg	Asn 390
His	Phe	Gln	Ser	Tyr 395	Ile	Met	Ala	Asp	Met 400	Tyr	Ser	Phe	Gly	Leu 405
Ile	Leu	Trp	Gl u	Val 410	Ala	Arg	Arg	Cys	Val 415	Ser	Gly	Gly	Ile	Val 420
Glv	Glu	Tyr	Gln	Leu 425	Pro	Tyr	His	Asp	Leu 430	Val	Pro	Ser	Asp	Pro 435
Ser	Tyr	Glu	Asp	Met	Arg	Glu	Ile	Val	Суз	Ile	Lуз	Lys	Leu	Arg

				440					445					450
Pro	Ser	Phe	Pro	Asn 455	Arg	Trp	Ser	Ser	Asp 460	Glu	Cys	Leu	Arg	Gln 465
Met	Gly	Lys	Leu	Met 470	Thr	Glu	Cys	Trp	Ala 475	His	Asn	Pro	Ala	Ser 480
Arg	Leu	Thr	Ala	Leu 485	Arg	Val	Ľуs	Lys	Thr 490	Leu	Ala	Lys	Met	Ser 495
Glu	Ser	Gln	Asp	11e 500	Lys	Leu								

<210> 2 <211> 507 5 <212> PRT <213> Homo sapien

<400> 2

Met 1	Ala	Gly	Ala	Gly 5	Pro	Lys	Arg	Arg	Ala 10	Leu	Ala	Ala	Pro	Ala 15
Ala	Glu	Glu	Lys	Glu 20	Glu	Ala	Arg	Glu	Lys 25	Met	Leu	Ala	Ala	Ъу з
Ser	Ala	Asp	Gly	Ser 35	Ala	Pro	Ala	GЪ	Glu 40	Gly	Glu	GΊУ	Val	Thr 45
Leu	Ģln	Arg	Asn	11e 50	Thr	Leu	Leu	Asn	Gly 55	Val	Ala	Ile	Ile	Val 60
Gly	Thr	Ile	Ile	Gly 65	Ser	Gly	Ile	Phe	Val 70	Thr	Pro	Thr	Gly	Val 75
Leu	Lys	Glu	Ala	Gly 80	Ser	Pro	Gly	Leu	Ala 85	Leu	Val	Val	Trp	Ala 90
Ala	Суз	Gly	Val	Phe 95	Ser	Ile	Val	Gly	Ala 100	Leu	Cys	Tyr	Ala	Glu 105
Leu	Gly	Thr	Thr	Ile 110	Ser	Lys	Ser	Gly	Gly 115	Asp	Tyr	Ala	Туг	Met 120
Leu	Glu	Val	Tyr	Gly 125	Ser	Leu	Pro	Ala	Phe 130	Leu	Lys	Leu	Trp	Ile 135
Glu	Leu	Leu	Ile	11e 140	Arg	Pro	Ser	Ser	Gln 145	Tyr	Ile	Val	Ala	Leu 150
Val	Phe	Ala	Thr	Tyr 155	Leu	Leu	Lys	Pro	Leu 160	Phe	Pro	Thr	Cys	Pro 165
Val	Pro	G1u	Glu	Ala 170	Ala	Lys	Leu	Val	Ala 175	Суѕ	Leu	Cys	Val	Leu 180
Leu.	Leu	Thr	Ala	Val 185	Asn	Cys	Tyr	Ser	Val 190	Lys	Ala	Ala	Thr	Arg 195
Val	Gln	Asp	Ala	Phe 200	Ala	Ala	Ala	Lys	Leu 205	Leu	Ala	Leu	Ala	Leu 210

Ile	Ile	Leu	Leu	Gly 215	Phe	Va1	Gln	Ile	Gly 220	Lys	Gly	Val	Val	Ser 225
Asn	Leu	Asp	Pro	Asn 230	Phe	Ser	Phe	Glu	Gly 235	Thr	Lys	Leu	Asp	Val 240
Gly	Asn	fle	Val	Leu 245	Ala	Leu	Tyr	Ser	Gly 2 5 0	Leu	Phe	Ala	Tyr	Gly 255
Gly	Trp	Asn	Tyr	Leu 260	Asn	Phe	Val	Thr	Glu 265	Glu	Met	Ile	Asn	Pro 270
Tyr	Arg	Asn	Leu	Pro 275	Leu	Ala	Ile	Ile	Ile 280	Ser	Leu	Pro	Ile	Val 205
Thr	Leu	Val	Туг	Val 290	Leu	Thr	Asn	Leu	Ala 295	Tyr	Phe	Thr	Thr	Leu 300
Ser	Thr	Glu	G ln	Met 305	Leu	Ser	Ser	Glu	Ala 310	Val	Ala	Val	Asp	Phe 315
Gly	Asn	Tyr	His	Leu 320	Gly	Val	Met	Ser	Trp 325	Ile	Ile	Pro	Val	Phe 330
Val	Gly	Leu	Ser	Cys 335	Phe	Gly	Ser	Val	Asn 340	Gly	Ser	Leu	Phe	Thr 345
Ser	Ser	Arg	Leu	Phe 350	Phe	Val	Gly	Ser	Arg 355	Glu	Gly	His	Leu	Pro 360
Ser	Ile	Leu	Ser	Met 365	Ile	His	Pro	Gln	Leu 370	Leu	Thr	Pro	Val	Pro 3 75
Ser	Leu	Val	Phe	Thr 380	Cys	Val	Met	Thr	Leu 385	Leu	Tyr	Ala	Phe	Ser 390
Lus														
2,5	Asp	Ile	Phe	Ser 395	Val	Ile	Asn	Phe	Phe 400	Ser	Phe	Phe	Asn	Trp 405
_	_			395					400				Asn Arg	405
Leu	Cys	Val	Ala	395 Leu 410	Ala	Ile	Ile	Gly	400 Met 415	Ile	Trp	Leu		405 His 420
Leu	Cys Lys	Val Pro	Ala Glu	395 Leu 410 Leu 425	Ala Glu	Ile Arg	Ile Pro	Gly Ile	400 Met 415 Lys 430	Ile Val	Trp Asn	Leu Leu	Arg	405 His 420 Leu 435
Leu Arg Pro	Cys Lys Val	Val Pro	Ala Glu Phe	395 Leu 410 Leu 425 Ile 440	Ala Glu Leu	Ile Arg Ala	Ile Pro Cys	Gly Ile Leu	400 Met 415 Lys 430 Phe 445	Ile Val Leu	Trp Asn Ile	Leu Leu Ala	Arg Ala	405 His 420 Leu 435 Ser 450
Leu Arg Pro	Cys Lys Val Trp	Val Pro Phe Lys	Ala Glu Phe Thr	395 Leu 410 Leu 425 Ile 440 Pro 455	Ala Glu Leu Val	Ile Arg Ala Glu	Ile Pro Cys	Gly Ile Leu Gly	400 Met 415 Lys 430 Phe 445 Ile 460	Ile Val Leu Gly	Trp Asn Ile	Leu Leu Ala Thr	Arg Ala Val	405 His 420 Leu 435 Ser 450 Ile 465
Leu Arg Pro Phe	Cys Lys Val Trp Ser	Val Pro Phe Lys Gly	Ala Glu Phe Thr	395 Leu 410 Leu 425 Ile 440 Pro 455 Pro 470	Ala Glu Leu Val	Ile Arg Ala Glu	Ile Pro Cys Cys	Gly Leu Gly	400 Met 415 Lys 430 Phe 445 Ile 460 Gly 475	Ile Val Leu Gly Val	Trp Asn Ile Phe Trp	Leu Leu Ala Thr	Arg Ala Val	405 His 420 Leu 435 Ser 450 Ile 465 Asn 480

<210> 3 <211> 339

<212> PRT <213> Homo sapien

<400> 3

5

Met 1	Glu	Ser	Arg	Lys 5	Asp	Ile	Thr	Asn	Gln 10	Glu	Glu	Leu	Trp	Ьу: 15
Met	Lys	Pro	Arg	Arg 20	Asn	Leu	Glu	Glu	Asp 25	Asp	Tyr	Leu	His	Ly:
Asp	Thr	Gly	Glu	Thr 35	Ser	Met	Leu	Lys	Arg 40	Pro	Val	Leu	Leu	His 45
Leu	His	Gln	Thr	Ala 50	His	Ala	Asp	Glu	Phe 55	Asp	Cys	Pro	Ser	G1 t
Leu	Gln	His	Thr	G1n 65	Glu	Leu	Phe	Pro	Gln 70	Trp	His	Leu	Pro	11e 75
Lys	Ile	Ala	Ala	Ile 80		Ala	Ser	Leu	Thr 85	Phe	Leu	Tyr	Thr	Let 90
Leu	Arg	Glu	Val	Ile 95	His	Pro	Leu	Ala	Thr 100	Ser	His	Gln	Gln	Ту1 105
Phe	Tyr	Lys	Ile	Pro 110	Ile	Leu	Val	Ile	Asn 115	Lys	Val	Leu	Pro	Met 120
Val	Ser	Ile	Thr	Leu 125	Leu	Ala	Leu	Val	Tyr 130	Leu	Pro	Gly	Val	11e 135
	Ala			140					145				_	150
	His			155					160					165
,	Leu			170					175			-		180
	Tyr			185					190					195
Ala	Tyr	Gln	Gln	Val 200	Gln	Gln	Asn	ГÀЗ	Glu 205	Asp	Ala	Trp	lle	Glu 210
His			_	215				-	220			-		225
Gly	Leu	Ala	Ile	Leu 230	Ala	Leu	Leu	Ala	Val 235	Thr	Ser	Ile	Pro	Ser 240
Val	Ser	Asp	Ser	Leu 245	Thr	Trp	Arg	Glu	Phe 250	His	Tyr	Ile	Gln	Ser 255
Lys	Leu	Gly	Ile	Val 260	Ser	Leu	Leu	Leu	Gly 265	Thr	Ile	His	Ala	Leu 270
Ile	Phe	Ala	Trp	Asn	Lys	Trp	Ile	Asp	Ile	Lys	Gln	Phe	Val	Trp

				275					280					285
Tyr	Thr	Pro	Pro	Thr 290	Phe	Met	Ile	Ala	Val 295	Phe	Leu	Pro	Ile	Val 300
Val	Leu	Ile	Phe	Lys 305	Ser	Ile	Leu	Phe	Leu 310	Pro	Cys		Arg	_
Lys	Ile	Leu	Lys	Ile 320	Arg	His	Gly	Trp	Glu 325	Asp	Val	Thr	Lys	Ile 330
Asn	Lys	Thr	Glu	Ile	Cys	Ser	Gln	Leu						

<210> 4

<211> 6995

5 <212> PRT <213> Homo sapien

<400> 4

Pro 1	Val	Thr	Ser	Leu 5	Leu	Thr	Pro	Gly	Leu 10	Val	Ile	Thr	Thr	Asp 15
Arg	Met	Gly	Ile	Ser 20	Arg	Glu	Pro	Gly	Thr 25	Ser	Ser	Thr	Ser	Asn 30
Leu	Ser	Ser	Thr	Ser 35	His	G1u	Arg	Leu	Thr 40	Thr	Leu	Glu	Asp	Thr 45
Val	Asp	Thr	Glu	Ala 50	Met	Gln	Pro	Ser	Thr 55	His	Thr	Ala	Val	Thr 60
Asn	Val	Arg	Thr	Ser 65	Ile	Ser	Gly	His	G1u 70	Ser	Gln	Ser	Ser	Val 75
Leu	Ser	Asp	Ser	Glu 80	Thr	Pro	Lys	Ala	Thr 85	Ser	Pro	Met	Gly	Thr 90
Thr	Tyr	Thr	Met	Gly 95	Glu	Thr	Ser	Val	Ser 100	Ile	Ser	Thr	Ser	Asp 105
Phe	Phe	Glu	Thr	Ser 110	Arg	Ile	Gln	Ile	Glu 115	Pro	Thr	Ser	Ser	Leu 120
Thr	Ser	Gly	Leu	Arg 125	Glu	Thr	Ser	Ser	Ser 130	Glu	Arg	Ile	Ser	Ser 135
Ala	Thr	Glu	Gly	Ser 140	Thr	Val	Leu	Ser	Glu 145	Val	Pro	Ser	Gly	Ala 150
Thr	Thr	Glu	Val	Ser 155	Arg	Thr	Glu	Val	Ile 160	Ser	Ser	Arg	Gly	Thr 165
Ser	Met	Ser	Gly	Pro 170	Asp	Gln	Phe	Thr	Ile 175	Ser	Pro	Asp	Ile	Ser 180
Thr	Glu	Ala	Ile	Thr 185	Arg	Leu	Ser	Thr	Ser 190	Pro	Ile	Met	Thr	Glu 195
Ser	Ala	Glu	Ser	Ala 200	Ile	Thr	Ile	Glu	Thr 205	Gly	Ser	Pro	Gly	Ala 210

Thr	Ser	Glu	Gly	Thr 215	Leu	Thr	Leu	Asp	Thr 220	Ser	Thr	Thr	Thr	Phe 225
Trp	Ser	Gly	Thr	His 230	Ser	Thr	Ala	Ser	Pro 235	Gly	Phe	Ser	His	Ser 240
Glu	Met	Thr	Thr	Leu 245	Met	Ser	Arg	Thr	Pro 250	Gly	Asp	Val	Pro	Тгр 255
Pro	Ser	Leu	Pro	Ser 260	Val	Glu	Glu	Ala	Ser 265	Ser	Val	Ser	Ser	Ser 270
Leu	Ser	Ser	Pro	Ala 275	Met	Thr	Ser	Thr	Ser 280	Phe	Phe	Ser	Thr	Leu 285
Pro	Glu	Ser	lle	Ser 290	Ser	Ser	Pro	His	Pro 295	Val	Thr	Ala	Leu	Leu 300
Thr	Leu	Gly	Pro	Val 305	Lys	Thr	Thr	Asp	Met 310	Leu	Arg	Thr	Ser	Ser 315
Glu	Pro	Glu	Thr	Ser 320	Ser	Pro	Pro	Asn	Leu 325	Ser	Ser	Thr	Ser	Ala 330
Glu	Ile	Leu	Ala	Thr 335	Ser	Glu	Val	Thr	Lys 340	Asp	Arg	Glu	Lys	11e 345
His	Pro	Ser	Ser	Asn 350	Thr	Pro	Val	Val	Asn 355	Val	Gly	Thr	Val	Ile 360
Tyr	Lys	Hìs	Leu	Ser 365	Pro	Ser	Ser	Val	Leu 370	Ala	Asp	Leu	Val	Thr 375
Thr	Lys	Pro	Thr	Ser 380	Pro	Met	Ala	Thr	Thr 385	Ser	Thr	Leu	Gly	Asn 390
Thr	Ser	Val	Ser	Thr 395	Ser	Thr	Pro	Ala	Phe 400	Pro	Glu	Thr	Met	Met 405
Thr	Gln	Pro	Thr	Ser 410	Ser	Leu	Thr	Ser	_		Arg		Ile	Ser 420
Thr	Ser	Gln	Glu	Th <u>r</u> 425	Ser	Ser	Ala	Thr	Glu 430	Arg	Ser	Ala	Ser	Leu 435
Ser	Gly	Met	Pro	Thr 440	GJY	Ala	Thr	Thr	Lys 445	Val	Ser	Arg	Thr	Glu 450
Ala	Leu	Ser	Leu	Gly 455	Arg	Thr	Ser	Thr	Pro 460	Gly	Pro	Ala	Gln	Ser 465
Thr	Ile	Ser	Pro	Glu 470	Ile	Ser	Thr	Glu	Thr 475	lle	Thr	Arg	Ile	Ser 480
Thr	Pro	Leu	Thr	Thr 485	Thr	Glγ	Ser	Ala	Glu 490	Met	Thr	Ile	Thr	Pro 495
Lys	Thr	еĵà	His	Ser 500	Gly	Ala	Ser	Ser	Gln 505	Gly	Thr	Phe	Thr	Leu 510

Asp	Thr	Ser	Ser	Arg 515	Ala	Ser	Trp	Pro	Gly 520	Thr	His	Ser	Ala	Ala 525
Thr	His	Arg	Ser	Pro 530	His	Ser	Gly	Met	Thr 535	Thr	Pro	Met	Ser	Arg 540
Gly	Pro	Glu	Asp	Val 545	Ser	Trp	Pro	Ser	Arg 550	Pro	Ser	Val	Glu	Lys 555
Thr	Ser	Pro	Pro	Ser 560	Ser	Leu	Val	Ser	Leu 565	Ser	Ala	Val	Thr	Ser 570
Pro	Ser	Pro	Leu	Tyr 575	Ser	Thr	Pro	Ser	Glu 580	Ser	Ser	His	Ser	Ser 585
Pro	Leu	Arg	Val	Thr 590	Ser	Leu	Phe	Thx	Pro 595	Val	Met	Met	Lys	Thr 600
Thr	Asp	Met	Leu	Asp 605	Thr	Ser	Leu	Glu	Pro 610	Val	Thr	Thr	Ser	Pro 615
Pro	Ser	Met	Asn	11e 620	Thr	Ser	Asp	Gl u	Ser 625	Leu	Ala	Thr	Ser	Lys 630
Ala	Thr	Met	Glu	Thr 635	Glu	Ala	Ile	Gln	Leu 640	Ser	Glu	Asn	Thr	Ala 645
Val	Thr	Gln	Met	Gly 650	Thr	Ile	Ser	Ala	Arg 655	Gln	Glu	Phe	Tyr	Ser 660
Ser	Tyr	Pro	Gly	Leu 665	Pro	Gl u	Pro	Ser	Lys 670	Val	Thr	Ser	Pro	Val 675
Val	Thr	Ser	Ser	Thr 680	Ile	ГÀЗ	Asp	Ile	Val 685	Ser	Thr	Thr	Ile	Pro 690
Ala	Ser	Ser	Glu	Ile 695	Thr	Arg	Ile	Glu	Met 700	Glu	Ser	Thx	Ser	Thr 705
Leu	Thr	Pro	The	Pro 710	Arg	Glu	Thr	Ser	Thr 715	Ser	Gln	Glu	Ile	His 720
Ser	Ala	Thr	Lys	Pro 725	Ser	Thr	Val	Pro	Tyr 730	Lys	Ala	Leu	Thr	Ser 735
Ala	Thr	Ile	Glu	Asp 740	Ser	Met	Thr	Gln	Val 745	Met	Ser	Ser	Ser	Arg 750
Gly	Pro	Ser	Pro	Asp 755	Gln	Ser	Thr	Met	Ser 760	Gln	Asp	Ile	Ser	Thr 765
Glu	Val	Ile	Thr	Arg 770	Leu	Ser	Thr	Ser	Pro 775	Ile	Lys	Thr	Glu	Ser 780
Thr	Glu	Met	Thr	Ile 785	Thr	Thr	Gln	Thr	Gly 790	Ser	Pro	Gly	Ala	Thr 795
Ser	Arg	Gly	Thr	Leu 800	Thr	Leu	Asp	Thr	Ser 805	Thr	Thr	Phe	Met	Ser 810
Gly	Thr	His	Ser	Thr	Ala	Ser	Gln	Gly	Phe	Ser	His	Ser	Gln	Met

				815					820					825
Thr	Ala	Leu	Met	Ser 830	Arg	Thr	Pro	Gly	Glu 835	Val	Pro	Trp	Leu	Ser 840
His	Pro	Ser	Val	Glu 845	Glu	Ala	Ser	Ser	Ala 850	Ser	Phe	Ser	Leu	Ser 855
Ser	Pro	Val	Met	Thr 860	Ser	Ser	Ser	Pro	Val 865	Ser	Ser	Thr	Leu	Pro 870
Asp	Ser	Ile	His	Ser 875	Ser	,Ser	Leu	Pro	Val 880	Thr	Ser	Leu	Leu	Thr 885
Ser	Gly	Leu	Val	Lys 890	Thr	Thr	G1u	Leu	Leu 895	Gly	Thr	Ser	Ser	Ģ1u 900
Pro	Glu	Thr	Ser	Ser 905	Pro	Pro	Asn	Leu	Ser 910	Ser	Thr	Ser	Ala	Glu 915
Ile	Leu	Ala	Thr	Thr 920	Glu	Val	Thr	Thr	Asp 925	Thr	Gl u	Lys	Leu	Glu 930
Met	Thr	Asn	Val	Val 935	Thr	Ser	Gly	Tyr	Thr 940	His	Glu	Ser	Pro	Ser 945
Ser	Val	Leu	Ala	Asp 950	Ser	Val	Thr	Thr	Lys 955	Ala	Thr	Ser	Ser	Met 960
Gly	Ile	Thr	Tyr	Pro 965	Thr	Gly	Asp	Thr	Asn 970	Val	Leu	Thr	Ser	Thr 975
Pro	Ala	Phe	Ser	Asp 980	Thr	Ser	Arg	Ile	Gln 985	Thr	Lys	Şer	Lуs	Leu 990
Ser	Leu	Thr	Pro	G1y 995	Leu	Met	Glu		Ser 1000	Ile	Ser	Glu	Glu 1	Thr ,005
Ser	Ser	Ala		Glu .010	Lys	Ser	Thr		Leu .015	Ser	Ser	Val	Pro 1	Thr 020
Gly	Ala	Thr		Glu .025	Val	Ser	Arg		Glu 1030	Ala	Ile	Ser	Ser 1	Ser .035
Arg	Thr	Ser		Pro 1040	Gly	Pro	Ala		Ser .045	Thr	Met	Ser	Ser 1	Asp .050
Thr	Ser	Met		Thr 1055	Ile	Thr	Arg		Ser .060	Thr	Pro	Leu	Thr 1	Arg .065
ГÀЗ	Glu	Ser		Asp 1070	Met	Ala	Ile		Pro .075	ràs	Thr	Gly	Pro I	Ser 080
Gly	Ala	Thr		Gln 1085	Gly	Thr	Phe		Leu .090	Asp	Ser	Ser	Ser 1	Thr .095
Ala	Ser	Trp		Gly 100	Thr	His	Ser		Thr 105	Thr	Gln	Arg	Phe 1	Pro 110
Arg	Ser	Val		Thr 1115	Thr	Pro	Met		Arg 120	Gly	Pro	Glu	Asp 1	Val 125

Ser	Trp	Pro	Ser Pro 1130		Ser	Val	Glu Lys 1135	Asn	Ser	Pro	Pro Ser 1140
Ser	Leu	Val	Ser Ser 1145		Ser	Val	Thr Ser 1150	Pro	Ser	Pro	Leu Tyr 1155
Ser	Thr	Pro	Ser Gly		Ser	His	Ser Ser 1165	Pro	Val	Pro	Val Thr 1170
Ser	Leu	Phe	Thr Ser		Met	Met	Lys Ala 1180	Thr	Asp	Met	Leu Asp 1185
Ala	Ser	Leu	Glu Pro 1190		Thr	Thr	Ser Ala 1195	Pro	Asn	Met	Asn Ile 1200
Thr	Ser	Asp	Glu Ser 1209		Ala	Ala	Ser Lys 1210	Ala	Thr	Thr	Glu Thr 1215
Glu	Ala	Ile	His Val 1220		Glu	Asn	Thr Ala 1225	Ala	Ser	His	Val Glu 1230
Thr	Thr	Ser	Ala Thi		Glu	Leu	Tyr Ser 1240	Ser	Ser	Pro	Gly Phe 1245
Ser	Glu	Pro	Thr Lys 1250		Ile	Ser	Pro Val 1255	Val	Thr	Ser	Ser Ser 1260
Ile	Arg	Asp	Asn Met 1269		Ser	Thr	Thr Met 1270	Pro	Gly	Ser	Ser Gly 1275
Ile	Thr	Arg	Ile Gli 1280		Glu	Ser	Met Ser 1285	Ser	Leu	Thr	Pro Gly 1290
Leu	Arg	Glu	Thr Arc 1295		Ser	Gln	Asp Ile 1300	Thr	Ser	Ser	Thr Glu 1305
Thr	Ser	Thr	Val Leu 1310	_	Lys	Met	Pro Ser 1315	_	Ala	Thr	Pro Glu 1320
۷al	Ser	Arg	Thr Glu 1325		Met	Pro	Ser Ser 1330	Arg	Thr	Ser	Ile Pro 1335
Gly	Pro	Ala	Gln Ser 1340		Met	Ser	Leu Asp 1345	Ile	Ser	Aşp	Glu Val 1350
Val	Thr	Arg	Leu Ser 1355		Ser	Pro	Ile Met 1360	Thr	Glu	Ser	Ala Glu 1365
Ile	Thr	Ile	Thr Thi 1370		Thr	Gly	Tyr Ser 1375	Leu	Ala	Thr	Ser Gln 1380
Val	Thr	Leu	Pro Let 1385	_	Thr	Ser	Met Thr 1390	Phe	Leu	Ser	Gly Thr 1395
His	Ser	Thr	Met Ser 1400		Gly	Leu	Ser His 1405	Ser	Glu	Met	Thr Asn 1410
Leu	Met	Ser	Arg Gly		Glu	Ser	Leu Ser 1420	Trp	Thr	Ser	Pro Arg

Phe Val Glu Thr Thr Arg Ser Ser Ser Leu Thr Ser Leu Pro Leu Thr Thr Ser Leu Ser Pro Val Ser Ser Thr Leu Leu Asp Ser Ser Pro Ser Ser Pro Leu Pro Val Thr Ser Leu Ile Leu Pro Gly Leu Val Lys Thr Thr Glu Val Leu Asp Thr Ser Ser Glu Pro Lys Thr Ser Ser Ser Pro Asn Leu Ser Ser Thr Ser Val Glu Ile Pro Ala Thr Ser Glu Ile Met Thr Asp Thr Glu Lys Ile His Pro Ser Ser Asn Thr Ala Val Ala Lys Val Arg Thr Ser Ser Val His Glu Ser His Ser Ser Val Leu Ala Asp Ser Glu Thr Thr Ile Thr Ile Pro Ser Met Gly Ile Thr Ser Ala Val Glu Asp Thr Thr Val Phe Thr Ser Asn Pro Ala Phe Ser Glu Thr Arg Arg Ile Pro Thr Glu Pro Thr Phe Ser Leu Thr Pro Gly Phe Arg Glu Thr Ser Thr Ser Glu Glu Thr Thr Ser Ile Thr Glu Thr Ser Ala Val Leu Phe Gly Val Pro Thr Ser Ala Thr Thr Glu Val Ser Met Thr Glu Ile Met Ser Ser Asn Arg Thr His Ile Pro Asp Ser Asp Gln Ser Thr Met Ser Pro Asp Ile Ile Thr Glu Val Ile Thr Arg Leu Ser Ser Ser Ser Met Met Ser Glu Ser Thr Gln Met Thr Ile Thr Thr Gln Lys Ser Ser Pro Gly Ala Thr Ala Gln Ser Thr Leu Thr Leu Ala Thr Thr Thr Ala Pro Leu Ala Arg Thr His Ser Thr Val Pro Pro Arg Phe Leu His Ser Glu Met Thr Thr Leu Met Ser Arg Ser Pro Glu Asn Pro Ser Trp Lys Ser Ser Pro Phe Val Glu Lys Thr Ser Ser Ser Ser Ser Leu Leu Ser Leu Pro Val Thr Thr Ser Pro Ser

			1730				1735				1740
Val	Ser	Ser	Thr Leu 1745	Pro	Gln	Ser	Ile Pro 1750	Ser	Ser	Ser	Phe Ser 1755
Val	Thr	Ser	Leu Leu 1760	Thr	Pro	Gly	Met Val 1765	Lys	Thr	Thr	Asp Thr 1770
Ser	Thr	Glu	Pro Gly 1775	Thr	Ser	Leu	Ser Pro 1780	Asn	Leu	Ser	Gly Thr 1785
Ser	Val	Glu	Ile Leu 1790	Ala	Ala	Ser	Glu Val 1795	Thr	Thr	Asp	Thr Glu 1800
Lys	Île	His	Pro Ser 1805	Ser	Ser	Met	Ala Val 1810	Thr	Asn	Val	Gly Thr 1815
Thr	Ser	Ser	Gly His 1820	Glu	Leu	Tyr	Ser Ser 1825	Val	Ser	Ile	His Ser 1830
Glu	Pro	Ser	Lys Ala 1835	Thr	Tyr	Pro	Val Gly 1840	Thr	Pro	Ser	Ser Met 1845
Ala	Glu	Thr	Ser Ile 1850	Ser	Thr	Ser	Met Pro 1855	Ala	Asn	Phe	Glu Thr 1860
Thr	Gly	Phe	Glu Ala 1865	Glu	Pro	Phe	Ser His 1870	Leu	Thr	Ser	Gly Leu 1875
Arg	Lys	Thr	Asn Met 1880	Ser	Leu	Asp	Thr Ser 1885	Ser	Val	Thr	Pro Thr 1890
Asn	Thr	Pro	Ser Ser 1895	Pro	Gly	Ser	Thr His 1900	Leu	Leu	Gln	Ser Ser 1905
Lys	Thr	Asp	Phe Thr 1910	Ser	Ser	Ala	Lys Thr 1915	Ser	Ser	Pro	Asp Trp 1920
Pro	Pro	Ala	Ser Gln 1925	Tyr	Thr	Glu	Ile Pro 1930	Val	Asp	Ile	Ile Thr 1935
Pro	Phe	Asn	Ala Ser 1940	Pro	Ser	Ile	Thr Glu 1945	Ser	Thr	Gly	Ile Thr 1950
Ser	Phe	Pro	Glu Ser 1955	Arg	Phe	Thr	Met Ser 1960	Val	Thr	Glu	Ser Thr 1965
His	His	Leu	Ser Thr 1970	Asp	Leu	Leu	Pro Ser 1975	Ala	Glu	Thr	Ile Ser 1980
Thr	Gly	Thr	Val Met 1985	Pro	Ser	Leu	Ser Glu 1990	Ala	Met	Thr	Ser Phe 1995
Ala	Thr	Thr	Gly Val 2000	Pro	Arg	Ala	Ile Ser 2005	Gly	Ser	Gly	Ser Pro 2010
Phe	Ser	Arg	Thr Glu 2015	Ser	Gly	Pro	Gly Asp 2020	Ala	Thr	Leu	Ser Thr 2025
Ile	Ala	Glu	Ser Leu 2030		Ser	Ser	Thr Pro 2035	Va1	Pro	Phe	Ser Ser 2040

la Leu His 2055	Pro Al	Ile	Ser Thr 2050	Ser	Asp	Thr	Thr Thr 2045	Phe	Thr	Ser
sp Thr Ser 2070	Val As	Arg	Pro Tyr 2065	Thr	Ala	Ser	Ser Ser 2060	Thr	Ile	Glu
al Met Val 2085	Leu Va	Arg	Glu Gly 2080	Thr	Thr		Glu Ser 2075	Thr	Gly	Leu
er Ser Ser 2100	Thr Se	Arg	Pro Gly 2095	Gln	Ser	Ser	Asp Thr 2090	Leu	Thr	Ser
eu Gly Thr 2115	Glu Le	Val	Glu Ser 2110	Thr	Met	Arg	Asp Thr 2105	Leu	Ile	Pro
rg Leu Thr 2130	Thr Ar	Ser	Ser Leu 2125	Pro	Val	Gln	Ala Tyr 2120	Ser	Thr	Val
ro Asn Glu 2145	Ile Pr	Lys	lle Thr 2140	His	Glu	Met	Gly Ile 2135	Asp	Thx	Arg
ro Gln Thr 2160	Gly Pr	Lys	Pro Val 2155	Arg	Ile	Thr	Arg Gly 2150	His	Ala	Ala
ly Gly Thr 2175	Thr Gl	His	Gly Leu 2170	Lys	Pro	Ser	Pro Ala 2165	Ser	Thr	Ser
hr Th r Thr 2190	Thr Th	ГÀЗ	Ala Leu 2185	Thr	Thr	Thr	Glu Thr 2180	Met	Arg	Lys
er Val Tyr 2205	Thr Se	Thr	Thr Leu 2200	Ala	Arg	Ser	Thr Thr 2195	Lys	Leu	Ala
er Met Gln 2220	Ala Se	Asn	Pro Leu 2215	Thr	Leu	Thr	Leu Gly 2210	Thx	Pro	Thr
hr Pro Tyr 2235	Thr Th	Ile	Met Met 2230	Glu	Thr	Pro	Thr Ile 2225	Ser	Ala	Met
la Thr Ser 2250	Leu Al		Thr Ser 2245	Thr	Glu		Asp Val 2240	Pro	Phe	Val
hr Pro Ser 2265	Thr Th	Arg	Leu Pro 2260	Ala	Thr	Ser	Glu Thr 2255	Ala	Gly	Len
al Ser Arg 2280	Leu Va	Ser	Thr Ala 2275	Thr	Glu	Ser	Arg Glu 2270	Asn	Phe	Val
sp Val Ser 2295	Leu As	Thr	Ile Gln 2290	Val	Pro	Ser	Glu Arg 2285	Ala	Gly	Ser
is Pro Ala 2310	Ile Hi	Val	Ser Trp 2305	Ala	Thr	Thr	Pro Asp 2300	Glu	Ser	Ser
he Phe His 2325	Asn Ph	Pro	Thr Thr 2320	Lys	Ser	Val	Pro Thr 2315	Ile	Thr	Glu
is Gly Ala 2340	Ser Hi	Thr	Thr Ala 2335	Ser	Ser	Val	Asp Thr 2330	Leu	Glu	Ser

7	Asp	Val	Ser	Ser Ala 2345	Ile	Pro	Thr	Asm Ile 2350	Ser	Pro	Ser	Glu Leu 2355
2	Asp	Ala	Leu	Thr Pro 2360	Leu	Val	Ţhr	Ile Ser 2365	Gly	Thr	Asp	Thr Sex 2370
7	Thr	Thr	Phe	Pro Thr 2375	Leu	Thr	Lys	Ser Pro 2380	His	Glu	Thr	Glu Thr 2385
1	Arg	Thr	Thr	Trp Leu 2390	Thr	His	Pro	Ala Glu 2395	Thr	Ser	Ser	Thr Ile
I	Pro	Arg	Thr	Ile Pro 2405	Asn	Phe	Ser	His His 2410	Glu	Ser	Asp	Ala Thr 2415
1	Pro	Ser	Ile	Ala Thr 2420	Ser	Pro	Gly	Ala Glu 2425	Thr	Ser	Ser	Ala Ile 2430
I	Pro	Ile	Met	Thr Val 2435	Ser	Pro	Gly	Ala Glu 2440	Asp	Leu	Val	Thr Ser 2445
(3ln	Val	Thr	Ser Ser 2450	Gly	Thr	Asp	Arg Asn 2455	Met	Thr	Ile	Pro Thr 2460
1	Leu	Thr	Leu	Ser Pro 2465	Glу	Glu	Pro	Lys Thr 2470	Ile	Ala	Ser	Leu Val 2475
•	Phr	His	Pro	Glu Ala 2480	Gln	Thr	Ser	Ser Ala 2485	Ile	Pro	Thr	Ser Thr 2490
•	île	Ser	Pro	Ala Val 2495	Ser	Arg	Leu	Val Thr 2500	Ser	Met	Val	Thr Ser 2505
3	Leu	Ala	Ala	Lys Thr 2510	Ser	Thr	Thr	Asn Arg 2515	Ala	Leu	Thr	Asn Ser 2520
1	Pro	Gly	Glu	Pro Ala 2525	Thr	Thr	Val	Ser Leu 2530	Val	Thr	His	Ser Ala 2535
(31n	Thr	Ser	Pro Thr 2540	Val	Pro	Trp	Thr Thr 2545	Ser	Ile	Phe	Phe His 2550
5	Ser	Ľуз	Ser	Asp Thr 2555	Thr	Pro	Ser	Met Thr 2560	Thr	Ser	His	Gly Ala 2565
(3lu	Ser	Ser	Ser Ala 2570	Val	Pro	Thr	Pro Thr 2575	Val	Ser	Thr	Glu Val 2580
]	Pro	Gly	Val	Val Thr 2585	Pro	Leu	Val	Thr Ser 2590	Ser	Arg	Ala	Val Ile 2595
:	Ser	Thr	Thr	Ile Pro 2600	Ile	Leu	Thr	Leu Ser 2605	Pro	Gly	Glu	Pro Glu 2610
•	Fhr	Thr	Pro	Ser Met 2615	Ala	Thr	Ser	His Gly 2620	Glu	Glu	Ala	Ser Ser 2625
1	Ala	Ile	Pro	Thr Pro 2630	Thr	Val	Ser	Pro Gly 2635	Val	Pro	Gly	Val Val 2640
	Thr	Ser	Leu	Val Thr	Ser	Ser	Arg	Ala Val	Thr	Ser	Thr	Thr Ile

			2645				2650				2655
Pro	Ile	Leu	Thr Phe 2660	Ser	Leu	Gly	Glu Pro 2665	Glu	Thr	Thr	Pro Ser 2670
Met	Ala	Thr	Ser His 2675	Gly	Thr	Glu	Ala Gly 2680	Ser	Ala	Val	Pro Thr 2685
Val	Leu	Pro	Glu Val 2690	Pro	Gly	Met	Val Thr 2695	Ser	Leu	Val	Ala Ser 2700
Ser	Arg	Ala	Val Thr 2705	Ser	Thr	Thr	Leu Pro 2710	Thr	Leu	Thr	Leu Ser 2715
Pro	Gly	Glu	Pro Glu 2720	Thr	Thr	Pro	Ser Met 2725	Ala	Thr	Ser	His Gly 2730
Ala	Glu	Ala	Ser Ser 2735	Thr	Val	Pro	Thr Val 2740	Ser	Pro	Glu	Val Pro 2745
Gly	Val	Val	Thr Ser 2750	Leu	Val	Thr	Ser Ser 2755	Ser	Gly	Val	Asn Ser 2760
Thr	Ser	Ile	Pro Thr 2765	Leu	Ile	Leu	Ser Pro 2770	Gly	Glu	Leu	Glu Thr 2775
Thr	Pro	Ser	Met Ala 2780	Thr	Ser	His	Gly Ala 2785	Glu	Ala	Ser	Ser Ala 2790
Val	Pro	Thr	Pro Thr 2795	Val	Ser	Pro	Gly Val 2800	Ser	Gly	Val	Val Thr 2805
Pro	Leu	Val	Thr Ser 2810	Ser	Arg	Ala	Val Thr 2815		Thr	Thr	Ile Pro 2820
Ile	Leu	Thr	Leu Ser 2825	Ser	Ser	Glu	Pro Glu 2830	Thr	Thr	Pro	Ser Met 2835
Ala	Thr	Ser	His Gly 2840	Val	Glu	Ala	Ser Ser 2845	Ala	۷al	Leu	Thr Val 2850
Ser	Pro	Glu	Val Pro 2855	Gly	Met	Val	Thr Phe 2860	Leu	Val	Thr	Ser Ser 2865
Arg	Ala	Val	Thr Ser 2870	Thr	Thr	Ile	Pro Thr 2875	Leu	Thr	Ile	Ser Ser 2880
Asp	Glu	Pro	Glu Thr 2885	Thr	Thr	Ser	Leu Val 2890	Thr	His	Ser	Glu Ala 2895
Lys	Met	Ile	Ser Ala 2900	Ile	Pro	Thr	Leu Gly 2905	Val	Ser	Pro	Thr Val 2910
Gln	Gly	Leu	Val Thr 2915	Ser	Leu	Val	Thr Ser 2920	Ser	Gly	Ser	Glu Thr 2925
Ser	Ala	Phe	Ser Asn 2930	Leu	Thr	Val	Ala Ser 2935	Ser	Gln	Pro	Glu Thr 2940
Ile	Asp	Ser	Trp Val	Ala	His	Pro	Gly Thr	Glu	Ala	Ser	Ser Val

Val	Pro	Thr	Leu Thr 2960	Val	Ser	Thr	Gly Glu 2965	Pro	Phe	Thr	Asn Ile 2970
Ser	Leu	Val	Thr His	Pro	Ala	Glu	Ser Ser 2980	Ser	Thr	Leu	Pro Arg 2985
Thr	Thr	Ser	Arg Phe 2990	Ser	His	Ser	Glu Leu 2995	Asp	Thr	Met	Pro Ser 3000
Thr	Val	Thr	Ser Pro 3005	Glu	Ala	Glu	Ser Ser 3010	Ser	Ala	Ile	Ser Thr 3015
Thr	Ile	Ser	Pro Gly 3020	Ile	Pro	Gly	Val Leu 3025	Thr	Ser	Leu	Val Thr 3030
Ser	Ser	Gly	Arg Asp 3035	lle	Ser	Ala	Thr Phe 3040	Pro	Thr	Val	Pro Glu 3045
Ser	Pro	His	Glu Ser 3050	Glu	Ala	Thr	Ala Ser 3055	Trp	Val	Thr	His Pro 3060
Ala	Val	Thr	Ser Thr 3065	Thr	Val	Pro	Arg Thr 3070	Thr	Pro	Asn	Tyr Ser 3075
His	Ser	Glu	Pro Asp 3080	Thr	Thr	Pro	Ser Ile 3085	Ala	Thr	Ser	Pro Gly 3090
Ala	Glu	Ala	Thr Ser 3095	Asp	Phe	Pro	Thr Ile 3100	Thr	Val	Ser	Pro Asp 3105
Val	Pro	Asp	Met Val 3110	Thr	Ser	Gln	Val Thr 3115	Ser	Ser	СŢУ	Thr Asp 3120
Thr	Ser	Ile	Thr Ile 3125	Pro	Thr	Leu	Thr Leu 3130	Ser	Ser	Gly	Glu Pro 3135
Glu	Thr	Thr	Thr Ser 3140	Phe	Ile	Thr	Tyr Ser 3145	Glu	Thr	His	Thr Ser 3150
Ser	Ala	Ile	Pro Thr 3155	Leu	Pro	Val	Ser Pro 3160	Asp	Ala	Ser	Lys Met 3165
Leu	Thr	Ser	Leu Val 3170	Ile	Ser	Ser	Gly Thr 3175	Asp	Ser	Thr	Thr Thr 3180
Phe	Pro	Thr	Leu Thr 3185	Glu	Thr	Pro	Tyr Glu 3190	Pro	Glu	Thr	Thr Ala 3195
Ile	Gln	Leu	Ile His 3200	Pro	Ala	Glu	Thr Asn 3205	Thr	Met	Val	Pro Arg 3210
Thr	Thr	Pro	Lys Phe 3215	Ser	His	Ser	Lys Ser 3220	Asp	Thr	Thr	Leu Pro 3225
Val	Ala	Ile	Thr Ser 3230	Pro	Gly	Pro	Glu Ala 3235	Ser	Ser	Ala	Val Ser 3240
Thr	Thr	Thr	Ile Ser 3245	Pro	Asp	Met	Ser Asp 3250	Leu	Val	Thr	Ser Leu 3255

۷a	l Pro	Ser	Ser Gly 3260	Thr	Asp	Thr	Ser Thr 3265	Thr	Phe	Pro	Thr Leu 3270
Se	r Glu	Thr	Pro Tyr 3275	Glu	Pro	Glu	Thr Thr 3280	Ala	Thr	Trp	Leu Thr 3285
Hi	s Pro	Ala	Glu Thr 3290	Ser	Thr	Thr	Val Ser 3295	Gly	Thr	Ile	Pro Asn 3300
Ph	e Ser	His	Arg Gly 3305	Ser	Asp	Thr	Ala Pro 3310	Ser	Met	Val	Thr Ser 3315
Pr	o Gly	· Val	Asp Thr 3320	Arg	Ser	Gly	Val Pro 3325	Thr	Thr	Thr	Ile Pro 3330
Pr	o Ser	Ile	Pro Gly 3335	Val	Val	Thr	Ser Gln 3340	Val	Thr	Ser	Ser Ala 3345
Th	r Asp	Thr	Ser Thr 3350	Ala	Ile	Pro	Thr Leu 3355	Thr	Pro	Ser	Pro Gly 3360
Gl	u Pro	Glu	Thr Thr 3365	Ala	Ser	Ser	Ala Thr 3370	His	Pro	Gly	Thr Gln 3375
Th	r Gly	Phe	Thr Val 3380	Pro	Ile	Arg	Thr Val 3385	Pro	Ser	Ser	Glu Pro 3390
As	p Thr	Met	Ala Ser 3395	Trp	Val	Thr	His Pro 3400	Pro	Gln	Thr	Ser Thr 3405
Pr	o Val	. Ser	Arg Thr 3410	Thr	Ser	Ser	Phe Ser 3415	His	Ser	Ser	Pro Asp 3420
Al	a Thr	Pro	Val Met 3425	Ala	Thr	Ser	Pro Arg 3430	Thr	Glu	Ala	Ser Ser 3435
Al	a Val	. Leu	Thr Thr 3440	Ile	Ser	Pro	Gly Ala 3445	Pro	Glu	Met	Val Thr 3450
Şe	r Gln	lle	Thr Ser 3455	Ser	Gly	Ala	Ala Thr 3460	Ser	Thr	Thr	Val Pro 3465
Th	r Lev	Thr	His Ser 3470	Pro	Gly	Met	Pro Glu 3475		Thr	Ala	Leu Leu 3480
Se	r Thr	His	Pro Arg 3485	Thr	Glu	Thr	Ser Lys 3490	Thr	Phe	Pro	Ala Ser 3495
Th	r Val	. Phe	Pro Gln 3500	Val	Ser	Glu	Thr Thr 3505	Ala	Ser	Leu	Thr Ile 3510
Ar	g Pro	Gly	Ala Glu 3515	Thr	Ser	Thr	Ala Leu 3520	Pro	Thr	Gln	Thr Thr 3525
Se	r Ser	Leu	Phe Thr 3530	Leu	Leu	Val	Thr Gly 3535	Thr	Ser	Arg	Val Asp 3540
Гe	u Ser	Pro	Thr Ala 3545	Ser	Pro	Gly	Val Ser 3550	Ala	Lys	Thr	Ala Pro 3555
Le	u Sei	Thr	His Pro	Gly	Thr	Glu	Thr Ser	Thr	Met	Ile	Pro Thr

			3560				3565		•		3570
Ser	Thr	Leu	Ser Leu 3575	Glγ	Leu	Leu	Glu Thr 3580	Thr	GГĀ	Leu	Leu Ala 3585
Thr	Ser	Ser	Ser Ala 3590	Glu	Thr	Ser	Thr Ser 3595	Thr	Leu	Thr	Leu Thr 3600
Val	Ser	Pro	Ala Val 3605	Ser	Gly	Leu	Ser Ser 3610	Ala	Ser	Ile	Thr Thr 3615
Asp	Lys	Pro	Gln Thr 3620	Val	Thr	Ser	Trp Asn 3625	Thr	Glu	Thr	Ser Pro 3630
Ser	Val	Thr	Ser Val 3635	Gly	Pro	Pro	Glu Phe 3640	Ser	Arg	Thr	Val Thr 3645
Gly	Thr	Thr	Met Thr 3650	Leu	Ile	Pro	Ser Glu 3655	Met	Pro	Thr	Pro Pro 3660
Lys	Thr	Ser	His Gly 3665	Glu	Gly	Val	Ser Pro 3670	Thr	Thr	Ile	Leu Arg 3675
Thr	Thr	Met	Val Glu 3680	Ala	Thr	Asn	Leu Ala 3685	Thr	Thr	Gly	Ser Ser 3690
Pro	Thr	Val	Ala Lys 3695	Thr	Thr	Thr	Thr Phe 3700	Asn	Thr	Leu	Ala Gly 3705
Ser	Leu	Phe	Thr Pro 3710	Leu	Thr	Thr	Pro Gly 3715	Met	Ser	Thr	Leu Ala 3720
Ser	Glu	Ser	Val Thr 3725	Ser	Arg	Thr	Ser Tyr 3730	Asn	His	Arg	Ser Trp 3735
Ile	Ser	Thr	Thr Ser 3740	Ser	Tyr	Asn	Arg Arg 3745	Туг	Trp	Thr	Pro Ala 3750
Thr	Ser	Thr	Pro Val 3755	Thx	Ser	Thr	Phe Ser 3760	Pro	Gly	Ile	Ser Thr 3765
Ser	Ser	Ile	Pro Ser 3770	Ser	Thr	Ala	Ala Thr 3775	Va1	Pro	Phe	Met Val 3780
Pro	Phe	Thr	Leu Asn 3785	Phe	Thr	Ile	Thr Asn 3790	Leu	Gln	Tyr	Glu Glu 3795
Asp	Met	Arg	His Pro 3800	Gly	Ser	Arg	Lys Phe 3805	Asn	Ala	Thr	Glu Arg 3810
Glu	Leu	Gln	Gly Leu 3815	Leu	Lys	Pro	Leu Phe 3820	Arg	Asn	Ser	Ser Leu 3825
Glu	Tyr	Leu	Tyr Ser 3830	Gly	Cys	Arg	Leu Ala 3835	Ser	Leu	Arg	Pro Glu 3840
Lys	Asp	Ser	Ser Ala 3845	Thr	Ala	Val	Asp Ala 3850	Ile	Cys	Thr	His Arg 3855
Pro	Asp	Pro	Glu Asp	Leu	GГΆ	Leu	Asp Arg	Glu	Arg	Leu	Tyr Trp

Glu	Leu	Ser	Asn Leu 3875	Thr	Asn	Gly	Ile Gln 3880	Glu	Leu	Gly	Pro Tyr 3885
Thr	Leu	Asp	Arg Asn 3890	Ser	Leu	Tyr	Val Asn 3895	Gly	Phe	Thr	His Arg 3900
Ser	Ser	Met	Pro Thr 3905	Thr	Ser	Thr	Pro Gly 3910	Thr	Ser	Thr	Val Asp 3915
Val	Gly	Thr	Ser Gly 3920	Thr	Pro	Ser	Ser Ser 3925	Pro	Ser	Pro	Thr Thr 3930
Ala	Gly	Pro	Leu Leu 3935	Met	Pro	Phe	Thr Leu 3940	Asn	Phe	Thr	Ile Thr 3945
Asn	Leu	Gln	Tyr Glu 3950	Glu	Asp	Met	Arg Arg 3955	Thr	Gly	Ser	Arg Lys 3960
Phe	Asn	Thr	Met Glu 3965	Ser	Val	Leu	Gln Gly 3970	Leu	Leu	Lys	Pro Leu 3975
Phe	Lys	Asn	Thr Ser 3980	Val	Gly	Pro	Leu Tyr 3985	Ser	Gly	Cys	Arg Leu 3990
Thr	Leu	Leu	Arg Pro 3995	Glu	Lys	Asp	Gly Ala 4000	Ala	Thr	Gly	Val Asp 4005
Ala	Ile	Cys	Thr His 4010	Arg	Leu	Asp	Pro Lys 4015	Ser	Pro	Gly	Leu Asn 4020
Arg	Glu	G1n	Leu Tyr 4025	Trp	Glu	Leu	Ser Lys 4030	Leu	Thr	Asn	Asp Ile 4035
Glu	Glu	Leu	Gly Pro 4040	Тух	Thr	Leu	Asp Arg 4045	Asn	Ser	Leu	Tyr Val 4050
Asn	Gly	Phe	Thr His 4055	Gln	Ser	Ser	Val Ser 4060	Thr	Thr	Ser	Thr Pro 4065
Gly	Thr	Ser	Thr Val 4070	Asp	Leu	Arg	Thr Ser 4075	G1y	Thr	Pro	Ser Ser 4080
Leu	Ser	Ser	Pro Thr 4085	Ile	Met	Ala	Ala Gly 4090	Pro	Leu	Lęu	Val Pro 4095
Phe	Thr	Leu	Asn Phe 4100	Thr	Ile	Thr	Asn Leu 4105	Gln	Tyr	Gly	Glu Asp 4110
Met	GЪУ	His	Pro Gly 4115	Ser	Arg	Lys	Phe Asn 4120	Thr	Thr	Glu	Arg Val 4125
Leu	Gln	дīλ	Leu Le u 4130	Gly	Pro	Ile	Phe Lys 4135	Asn	Thr	Ser	Val Gly 4140
Pro	Leu	Tyr	Ser Gly 4145	Cys	Arg	Leu	Thr Ser 4150	Leu	Arg	Ser	Glu Lys 4155
Asp	Gly	Ala	Ala Thr 4160	Gly	Val	Asp	Ala Ile 4165	Cys	Ile	His	His Leu 4170

Asp	Pro ·	Lys	Ser Pro 4175	Gly	Leu	Asn	Arg Glu 4180	Arg	Leu	Tyr	Trp Glu 4185
Leu	Ser	Gln	Leu Thr 4190	Asn	СŢĀ	Ile	Lys Glu 4195	Leu	Gly	Pro	Tyr Thr 4200
Leu	Asp	Arg	Asn Ser 4205	Leu	Tyr	Val	Asn Gly 4210	Phe	Thr	His	Arg Thr 4215
Ser	Val	Pro	Thr Thr 4220	Ser	Thr	Pro	Gly Thr 4225	Ser	Thr	Val	Asp Leu 4230
Gly	Thr	Ser	Gly Thr 4235	Pro	Phe	Ser	Leu Pro 4240	Ser	Pro	Ala	Thr Ala 4245
Gly	Pro	Leu	Leu Val 4250	Leu	Phe	Thr	Leu Asn 4255	Phe	Thr	Ile	Thr Asn 4260
Leu	Lys	Tyr	Glu Glu 4265	Asp	Met	His	Arg Pro 4270	Gly	Ser	Arg	Lys Phe 4275
Asn	Thr	Thr	Glu Arg 4280	Val	Leu	Gln	Thr Leu 4285	Val	Gly	Pro	Met Phe 4290
Lys	Asn	Thr	Ser Val 4295	Gly	Leu	Leu	Tyr Ser 4300	Gly	Суз	Arg	Leu Thr 4305
Leu	Leu	Arg	Ser Glu 4310	Ъуs	Asp	Gly	Ala Ala 4315	Thr	Gly	Val	Asp Ala 4320
Ile	Суз	Thr	His Arg 4325	Leu	Asp	Pro	Lys Ser 4330	Pro	Gly	Val	Asp Arg 4335
Glu	Gln	Leu	Tyr Trp 4340	Glu	Leu	Ser	Gln Leu 4345	Thr	Asn	Gly	Ile Lys 4350
Glu	Leu	Gly	Pro Tyr 4355	Thr	Leu	Asp	Arg Asn 4360	Ser	Leu	Tyr	Val Asn 4365
Gly	Phe	Thr	His Trp 4370	Ile	Pro	Val	Pro Thr 4375	Ser	Ser	Thr	Pro Gly 4380
Thr	Ser	Thr	Val Asp 4385	Leu	Gly	Ser	Gly Thr 4390	Pro	Ser	Ser	Leu Pro 4395
Ser	Pro	Thr	Ser Ala 4400	Thr	Ala	Gly	Pro Leu 4405	Leu	Val	Pro	Phe Thr 4410
Leu	Asn	Phe	Thr Ile 4415	Thr	Asn	Leu	Lys Tyr 4420	Glu	Glu	Asp	Met His 4425
Cys	Pro	Gly	Ser Arg 4430	Lys	Phe	Asn	Thr Thr 4435	Glu	Arg	Val	Leu Gln 4440
Ser	Leu	Leu	Gly Pro 4445	Met	Phe	Lys	Asn Thr 4450	Ser	Val	Gly	Pro Leu 4455
Tyr	Ser	Gly	Cys Arg 4460	Ļeu	Thr	Leu	Leu Arg 4465	Ser	Glu	Lys	Asp Gly 4470
Ala	Ala	Thr	Gly Val	Asp	Ala	Ile	Cys Thr	His	Arg	Leu	Asp Pro

		4475				4480				4485
Lys Ser	Pro	Gly Val 4490	Asp	Arg	Glu	Gln Leu 4495	Tyr	Trp	Glu	Leu Ser 4500
Gln Lev	Thr	Asn Gly 4505	Ile	Lys	Glu	Leu Gly 4510	Pro	Tyr	Thr	Leu Asp 4515
Arg Asr	Ser	Leu Tyr 4520	Val	Asn	Gly	Phe Thr 4525	His	Gln	Thr	Ser Ala 4530
Pro Asr	Thr	Ser Thr 4535	Pro	Gly	Thr	Ser Thr 4540	Val	Asp	Leu	Gly Thr 4545
Ser Gly	Thr	Pro Ser 4550	Ser	Leu	Pro	Ser Pro 4555	Thr	Ser	Ala	Gly Pro 4560
Leu Leu	Val	Pro Phe 4565	Thr	Leu	Asn	Phe Thr 4570	Ile	Thr	Asn	Leu Gln 4575
Tyr Glu	Glu	Asp Met 4580	His	His	Pro	Gly Ser 4585	Arg	Lys	Phe	Asn Thr 4590
Thr Glu	Arg	Val Leu 4595	Gln	Gly	Leu	Leu Gly 4600	Pro	Met	Phe	Lys Asn 4605
Thr Ser	. Val	Gly Leu 4610	Leu	Тух	Ser	Gly Cys 4615	Arg	Leu	Thr	Leu Leu 4620
Arg Pro	Glu	Lys Asn 4625	Gly	Ala	Ala	Thr Gly 4630	Met	Asp	Ala	Ile Cys 4635
Ser His	Arg	Leu Asp 4640	Pro	Lys	Ser	Pro Gly 4645	Leu	Asn	Arg	Glu Gln 4650
Leu Туг	Trp	Glu Leu 4655	Ser	Gln	Leu	Thr His 4660	Gly	Ile	Lys	Glu Leu 4665
Gly Pro	туг	Thr Leu 4670	Asp	Arg	Asn	Ser Leu 4675	Tyr	Val	Asn	Gly Phe 4680
Thr His	Arg	Ser Ser 4685	Val	Ala	Pro	Thr Ser 4690	Thr	Pro	Gly	Thr Ser 4695
Thr Val	. Asp	Leu Gly 4700	Thr	Ser	Gly	Thr Pro 4705	Ser	Ser	Leu	Pro Ser 4710
Pro Thi	Thr	Ala Val 4715	Pro	Leu	Leu	Val Pro 4720	Phe	Thr	Leu	Asn Phe 4725
Thr Ile	Thr	Asn Leu 4730	Gln	Tyr	Gly	Glu Asp 4735	Met	Arg	His	Pro Gly 4740
Ser Arç	, Lys	Phe Asn 4745	Thr	Thr	Glu	Arg Val 4750	Leu	Gln	Gly	Leu Leu 4755
Gly Pro) Leu	Phe Lys 4760	Asn	Ser	Ser	Val Gly 4765	Pro	Leu	Tyr	Ser Gly 4770
Cys Arq	, Leu	Ile Ser 4775	Leu	Arg	Ser	Glu Lys 4780	Asp	Gly	Ala	Ala Thr 4785

Gly Val Asp Ala Ile Cys Thr His His Leu Asn Pro Gln Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Gln Leu Ser Gln Met Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu Thr Thr Ser Thr Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Pro Val Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu

Thr	Leu	Leu	Arg Pro 5090	Glu	Lys	Gln	Glu Ala 5095	Ala	Thr	Gly	Val Asp 5100
Thr	Ile	Cys	Thr His 5105	Arg	Val	Asp	Pro Ile 5110	Gly	Pro	Gly	Leu Asp 5115
Arg	Glu	Arg	Leu Tyr 5120	Trp	Glu	Leu	Ser Gln 5125	Leu	Thr	Asn	Ser Ile 5130
Thr	Glu	Leu	Gly Pro 5135	Tyr	Thr	Leu	Asp Arg 5140	Asp	Ser	Leu	Tyr Val 5145
Asn	Gly	Phe	Asn Pro 5150	Trp	Ser	Ser	Val Pro 5155	Thr	Thr	Ser	Thr Pro 5160
Gly	Thx	Ser	Thr Val 5165	His	Leu	Ala	Thr Ser 5170	Gly	Thr	Pro	Ser Ser 5175
Leu	Pro	Gly	His Thr 5180	'Ala	Pro	Val	Pro Leu 5185	Leu	Ile	Pro	Phe Thr 5190
Leu	Asn	Phe	Thr Ile 5195	Thr	Asn	Leu	His Tyr 5200	Glu	Glu	Asn	Met Gln 5205
His	Pro	Gly	Ser Arg 5210	Lys	Phe	Asn	Thr Thr 5215	Glu	Arg	Val	Leu Gln 5220
Gly	Leu	Leu	Lys Pro 5225	Leu	Phe	ГÀЗ	Ser Thr 5230	Ser	Val	Gly	Pro Leu 5235
Tyr	Ser	Gly	Cys Arg 5240	Leu	Thr	Leu	Leú Arg 5245	Pro	Glu	Lys	His Gly 5250
Ala	Ala	Thr	Gly Val 5255	Asp	Ala	Ile	Cys Thr 5260	Leu	Arg	Leu	Asp Pro 5265
Thr	Gly	Pro	Gly Leu 5270	Asp	Arg	Glu	Arg Leu 5275	Tyr	Trp	Glu	Leu Ser 5280
Gln	Leu	Thr	Asn Ser 5285	Val	Thr	Glu	Leu Gly 5290	Pro	Tyr	Thr	Leu Asp 5295
Arg	Asp	Ser	Leu Tyr 5300	Val	Asn	Gly	Phe Thr 5305	His	Arg	Ser	Ser Val 5310
Pro	Thr	Thr	Ser Ile 5315	Pro	Glу	Thr	Ser Ala 5320	Val	His	Leu	Glu Thr 5325
Ser	Gly	Thr	Pro Ala 5330	Ser	Leu	Pro	Gly His 5335	Thr	Ala	Pro	Gly Pro 5340
Leu	Leu	Val	Pro Phe 5345	Thr	Leu	Asn	Phe Thr 5350	Ile	Thr	Asn	Leu Gln 53 55
Tyr	Glu	Glu	Asp Met 5360	Arg	His	Pro	Gly Ser 5365	Arg	Lys	Phe	Asn Thr 5370
Thr	Glu	Arg	Val Leu 5375	Gln	Gly	Leu	Leu Lys 5380	Pro	Leu	Phe	Lys Ser 5385
Thr	Ser	Val	Gly Pro	Leu	Tyr	Ser	Gly Cys	Ara	Leu	Thr	Leu Leu

			5390				5395				5400
Arg	Pro	Glu	Lys Arg 5405	Gly	Ala	Ala	Thr Gly 5410	Val	Asp	Thr	Ile Cys 5415
Thr	His	Arg	Leu Asp 5420	Pro	Leu	aeA	Pro Gly 5425	Leu	Asp	Arg	Glu Gln 5430
Leu	Tyr	Trp	Glu Leu 5435	Ser	Lys	Leu	Thr Arg 5440	GГÀ	Ile	Ile	Glu Leu 5445
Gly	Pro	Tyr	Leu Leu 5450	Asp	Arg	Gly	Ser Leu 5455	Tyr	Val	Asn	Gly Phe 5460
Thr	His	Arg	Asn Phe 5465	Val	Pro	Ile	Thr Ser 5470	Thr	Pro	Gly	Thr Ser 5475
Thr	Val	His	Leu Gly 5480	Thr	Ser	Glu	Thr Pro 5485	Ser	Ser	Leu	Pro Arg 5490
Pro	Ile	Val	Pro Gly 5495	Pro	Leu	Leu	Val Pro 5500	Phe	Thr	Leu	Asn Phe 5505
Thr	lle	Thr	Asn Leu 5510	Gln	Tyr	Glu	Glu Ala 5515	Met	Arg	His	Pro Gly 5520
Ser	Arg	Lys	Phe Asn 5525	Thr	Thr	Glu	Arg Val 5530	Leu	Gln	Gly	Leu Leu 5535
Arg	Pro	Leu	Phe Lys 5540	Asn	Thr	Ser	Ile Gly 5545	Pro	Leu	Tyr	Ser Ser 5550
C y s	Arg	Leu	Thr Leu 5555	Leu	Arg	Pro	Glu Lys 5560	Asp	Lys	Ala	Ala Thr 5565
Arg	Val	Asp	Ala Ile 5570	Cys	Thr	His	His Pro 5575	Asp	Pro	Gln	Ser Pro 5580
Gly	Leu	Asn	Arg Glu 5585	Gln	Leu	Tyr	Trp Glu 5590	Leu	Ser	Gln	Leu Thr 5595
His	Gly	Ile	Thr Glu 5600	Leu	Gly	Pro	Tyr Thr 5605	Leu	Asp	Arg	Asp Ser 5610
Leu	Туг	Val	Asp Gly 5615	Phe	Thr	His	Trp Ser 5620	Pro	Ile	Pro	Thr Thr 5625
Ser	Thr	Pro	Gly Thr 5630	Ser	Ile	Val	Asn Leu 5635	Gly	Thr	Ser	Gly Ile 5640
Pro	Pro	Ser	Leu Pro 5645	Glu	Thr	Thr	Ala Thr 5650	Gly	Pro	Leu	Leu Val 5655
Pro	Phe	Thr	Leu Asn 5660	Phe	Thr	Ile	Thr Asn 5665	Leu	Gln	Tyr	Glu Glu 5670
Asn	Met	Gly	His Pro 5675	Gly	Ser	Arg	Lys Phe 5680	Asn	Ile	Thr	Glu Ser 5685
Val	Leu	Gln	Gly Leu 5690	Leu	Lys	Pro	Leu Phe	Lys	Ser	Thr	Ser Val

Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 5705 Lys Asp Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His Arg 5720 Pro Asp Pro Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr 5750 5755 Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg 5765 5770 Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Phe Thr Val Gln 5780 5785 Pro Glu Thr Ser Glu Thr Pro Ser Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu Pro Phe Thr Leu Asn Phe Thr Ile Ile 5815 Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys 5825 5830 Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys Arg Leu 5860 5855 Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val Asp 5875 Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp 5885 5890 Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser 5945 5950 Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr 5960 5965 Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln 5990 5995 6000

Gly	Leu	Leu	Arg Pro		Phe	Lys	Asn Thr 6010	Ser	Val	GЉ	Pro Leu 6015
Tyr	Ser	Gly	Cys Are		Thr	Leu	Leu Arg 6025	Pro	Lys	Lys	Asp Gly 6030
Ala	Ala	Thr	Lys Va: 603	_	Ala	Ile	Cys Thr 6040	Tyr	Arg	Pro	Asp Pro 6045
Lys	Ser	Pro	Gly Let 605		Arg	Glu	Gln Leu 6055	Туг	Trp	Glu	Leu Ser 6060
Gln	Leu	Thr	His Se: 606		Thr	Glu	Leu Gly 6070	Pro	Tyr	Thr	Leu Asp 6075
Arg	Asp	Ser	Leu Ту : 608		Asn	Gly	Phe Thr 6085	Gln	Arg	Ser	Ser Val 6090
Pro	Thr	Thx	Ser Ile 609		Gly	Thr	Pro Thr 6100	Val	Asp	Leu	Gly Thr 6105
Ser	Gly	Thr	Pro Val		Lys	Pro	Gly Pro 6115	Ser	Ala	Ala	Ser Pro 6120
Leu	Leu	Val	Leu Pho		Leu	Asn	Phe Thr 6130	Ile	Thr	Asn	Leu Arg 6135
Tyr	Glu	Glu	Asn Mer 614		His	Pro	Gly Ser 6145	Arg	Lys	Phe	Asn Thr 6150
Thr	G1 u	Arg	Val Le		Gly	Leu	Leu Arg 6160	Ser	Leu	Phe	Lys Ser 6165
Thr	Ser	۷al	Gly Pro 617		Tyr	Ser	Gly Cys 6175	Arg	Leu	Thr	Leu Leu 6180
Arg	Pro	Glu	Lys Asp 618	-	Thr	Ala	Thr Gly 6190	Val	Asp	Ala	Ile Cys 6195
Thr	His	His	Pro Asp 620	-	Ьys	Ser	Pro Arg 6205	Leu	Asp	Arg	Glu Gln 6210
Leu	Tyr	Trp	Glu Le		Gln	Leu	Thr His 6220	Asn	Ile	Thr	Glu Leu 6225
Gly	Pro	Tyr	Ala Le		Asn	Asp	Ser Leu 6235	Phe	Val	Asn	Gly Phe 6240
Thr	His	Arg	Ser Ser 624		Ser	Thr	Thr Ser 6250	Thr	Pro	Gly	Thr Pro 6255
Thr	Val	Tyr	Leu Gl; 626		Ser	Lys	Thr Pro 6265	Ala	Ser	Ile	Phe Gly 6270
Pro	Ser	Ala	Ala Se: 627		Leu	Leu	Ile Leu 6280	Phe	Thr	Leu	Asn Phe 6285
Thr	Ile	Thr	Asn Le		Tyr	Glu	Glu Asn 6295	Met	Trp	Pro	Gly Ser 6300
Ara	T.vs	Phe	Asn Th	r ፖኮኮ	Glu	Aro	Val Leu	Gle	GLV	Len	Len Ara

		6305				6310				6315
Pro Leu	Phe	Lys Asn 6320	Thr	Ser	Val	Gly Pro 6325	Leu	Tyr	Ser	Gly Cys 6330
Arg Leu	Thr	Leu Leu 6335	Arg	Pro	Glu	Lys Asp 6340	Gly	G1 u	Ala	Thr Gly 6345
Val Asp	Ala	Ile Cys 6350	Thr	His	Arg	Pro Asp 6355	Pro	Thr	Gly	Pro Gly 6360
Leu Asp	Arg	Glu Gln 6365	Leu	Tyr	Leu	Glu Leu 6370	Ser	Gln	Leu	Thr His 6375
Ser Ile	Thr	Glu Leu 6380	Gly	Pro	Tyr	Thr Leu 6385	Asp	Arg	Asp	Ser Leu 6390
Tyr Val	Asn	Gly Phe 6395	Thr	His	Arg	Ser Ser 6400	Val	Pro	Thr	Thr Ser 6405
Thr Gly	Val	Val Ser 6410	Glu	Glu	Pro	Phe Thr 6415	Leu	Asn	Phe	Thr Ile 6420
Asn Asn	Leu	Arg Tyr 6425	Met	Ala	Asp	Met Gly 6430	Gln	Pro	Gly	Ser Leu 6435
Lys Phe	Asn	Ile Thr 6440	Asp	Asn	Val	Met Gln 6445	His	Leu	Leu	Ser Pro 6450
Leu Phe	Gln	Arg Ser 6455	Ser	Leu	Gly	Ala Arg 6460	Tyr	Thr	Gly	Cys Arg 6465
Val Ile	Ala	Leu Arg 6470	Ser	Val	Lys	Asn Gly 6475	Ala	G l u	Thr	Arg Val 6480
Asp Leu	Leu	Cys Thr 6485	Tyr	Leu	Gln	Pro Leu 6490	Ser	Gly	Pro	Gly Leu 6495
Pro Ile	Lys	Gln Val 6500	Phe	His	Glu	Leu Ser 6505	Gln	Gln	Thr	His Gly 6510
Ile Thr	Arg	Leu Gly 6515	Pro	Tyr	Ser	Leu Asp 6520	Lys	Asp	Ser	Leu Tyr 6525
Leu Asn	Gly	Tyr Asn 6530	Glu	Pro	Gly	Pro Asp 6535	Glu	Pro	Pro	Thr Thr 6540
Pro Lys	Pro	Ala Thr 6545	Thr	Phe	Leu	Pro Pro 6550	Leu	Ser	Glu	Ala Thr 6555
Thr Ala	Met	Gly Tyr 6560	His	Leu	Lys	Thr Leu 6565	Thr	Leu	Asn	Phe Thr 6570
Ile Ser	Asn	Leu Gln 6575	Tyr	Ser	Pro	Asp Met 6580	Gly	Lys	Gĺy	Ser Ala 6585
Thr Phe	Asn	Ser Thr 6590	Glu	Gly	Val	Leu Gln 6595	His	Leu	Leu	Arg Pro 6600
Leu Phe	Gln	Lys Ser 6605	Ser	Met	Gly	Pro Phe 6610	Tyr	Leu	Gly	Cys Gln 6615

Leu Ile Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln Leu Gly Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly Tyr Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln Ile Asn Phe His Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu Tyr Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr Thr Leu Tyr Lys Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu Val Thr Asn Leu Thr Met Asp Ser Val Leu Val Thr Val Lys Ala Leu Phe Ser Ser Asn Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp Lys Thr Leu Asn Ala Ser Phe His Trp Leu Gly Ser Thr Tyr Gln Leu Val Asp Ile His Val Thr Glu Met Glu Ser Ser Val Tyr Gln Pro Thr Ser Ser Ser Ser Thr Gln His Phe Tyr Leu Asn Phe Thr Ile Thr Asn Leu Pro Tyr Ser Gln Asp Lys Ala Gln Pro Gly Thr Thr Asn Tyr Gln Arg Asn Lys Arg Asn Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg Asn Ser Ser Ile Lys Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg Ser Val Pro Asn Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu Arg Met Thr Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp

Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu 6920 6930

Pro Leu Thr Gly Asn Ser Asp Leu Pro Phe Trp Ala Val Ile Leu 6935 6940 6945

Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile Thr Cys Leu Ile Cys 6950 6955 6960

Gly Val Leu Val Thr Thr Arg Arg Lys Lys Glu Gly Glu Tyr 6965 6970 6975

Asn Val Gln Gln Cys Pro Gly Tyr Tyr Gln Ser His Leu Asp 6980 6985 6990

Leu Glu Asp Leu Gln 6995

<210> 5

<211> 622

<212> PRT

5

<213> Homo sapien

<400> 5

Met 1	Ala	Leu	Pro	Thr 5	Ala	Arg	Pro	Leu	Leu 10	Gly	Ser	Cys	Gly	Thr 15
Pro	Ala	Leu	Gly	Ser 20	Leu	Leu	Phe	Leu	Leu 25	Phe	Ser	Leu	Gly	Trp 30
Val	Gl n	Pro	Ser	Arg 35	Thr	Leu	Ala	Gly	Glu 40	Thr	Gly	Gln	Glu	Ala 45
Ala	Pro	Leu	Asp	Gly 50	Val	Leu	Ala	Asn	Pro 55	Pro	Aşn	Ile	Ser	Ser 60
Leu	Ser	Pro	Arg	G1n 65	Leu	Leu	Gly	Phe	Pro 70	Cys	Ala	Glu	Val	Ser 75
Gly	Leu	Ser	Thr	Glu 80	Arg	Val	Arg	Glu	Leu 85	Ala	Val	Ala	Leu	Ala 90
Gln	Lys	Asn	Val	Lys 95	Leu	Ser	Thr	Gl u	Gln 100	Leu	Arg	Cys	Leu	Ala 105
His	Arg	Leu	Ser	Glu 110	Pro	Pro	Glu	Asp	Leu 115	Asp	Ala	Leu	Pro	Leu 120
Asp	Leu	Leu	Leu	Phe 125	Leu	Asn	Pro	Asp	Ala 130	Phe	Ser	Gly	Pro	Gln 135
Ala	Cys	Thr	Arg	Phe 140	Phe	Ser	Arg	Ile	Thr 145	Lys	Ala	Asn	Val	Asp 150
Leu	Leu	Pro	Arg	Gly 155	Ala	Pro	Glu	Arg	Gln 160	Arg	Leu	Leu	Pro	Ala 165
Ala	Leu	Ala	Cys	Trp 170	Gly	Val	Arg	Gly	Ser 175	Leu	Leu	Ser	Glu	Ala 180
Asp	Val	Ara	Ala	Leu	Glv	G1v	Leu	Ala	Cvs	Asp	Leu	Pro	Glv	Ara

				185					190					195
Phe	Val	Ala	Glu	Ser 200	Ala	Glu	Val	Leu	Leu 205	Pro	Arg	Leu	Val	Ser 210
Cys	Pro	Gly	Pro	Leu 215	Asp	Gln	Asp	Gln	Gln 220	Glu	Ala	Ala	Arg	Ala 225
Ala	Leu	Gln	Gly	Gly 230	Gly	Pro	Pro	Tyr	Gly 235	Pro	Pro	Ser	Thr	Trp 240
Ser	V al	Ser	Thr	Met 245	Asp	Ala	Leu	Arg	Gly 250	Leu	Leu	Pro	Val	Leu 255
Gly	Gln	Pro	Ile	11e 260	Arg	Ser	Ile	Pro	Gln 265	Gly	Ile	Val	Ala	Ala 270
Trp	Arg	Gln	Arg	Ser 275	Şer	Arg	Asp	Pro	Ser 280	Trp	Arg	G1n	Pro	Glu 285
Arg	Thr	Ile	Leu	Arg 290	Pro	Arg	Phe	Arg	Arg 295	Glu	Val	Glu	Lys	Thr 300
Ala	Cys	Pro	Ser	Gly 305	Lys	Lys	Ala	Arg	G1u 310	Ile	Asp	Glu	Ser	Leu 315
Ile	Phe	Tyr	ГАЗ	Lys 320	Trp	Glu	Leu	Glu	Ala 325	Суз	Val	Asp	Ala	Ala 330
Leu	Leu	Ala	Thr	Gln 335	Met	Asp	Arg	Val	Asn 340	Ala	Ile	Pro	Phe	Thr 345
Tyr	Glu	Gln	Leu	Asp 350	Val	Leu	Lys	His	Lys 355	Leu	Asp	Glu	Leu	Туг 360
Pro	Gln	Gly	Tyr	Pro 365	Glu	Ser	Val	Ile	Gln 370	His	Leu	Gly	Tyr	Leu 375
Phe	Leu	Lys	Met	Ser 380	Pro	Glu	Asp	Ile	Arg 385	Lys	Trp	Asn	Val	Thr 390
Ser	Leu	Glu	Thr	Leu 395	Lys	Ala	Leu	Leu	Glu 400	Val	Asn	Lys	Gly	His 405
Glu	Met	Ser	Pro	Gln 410	Val	Ala	Thr	Leu	Ile 415	Asp	Arg	Phe	Val	Lys 420
Gly	Arg	Gly	Gln	Leu 425	Asp	Lys	Asp	Thr	Leu 430	Asp	Thr	Leu	Thr	Ala 435
Phe	Tyr	Pro	Gly	Tyr 440	Leu	Cys	Ser	Leu	Ser 445	Pro	Glu	Glu	Leu	Ser 450
Ser	Val	Pro	Pro	Ser 455	Ser	Ile	Trp	Ala	Val 460	Arg	Pro	Gln	Asp	Leu 465
Asp	Thr	Cys	Asp	Pro 470	Arg	Gln	Leu	Asp	Val 475	Leu	Tyr	Pro	Lys	Ala 480
Arg	Leu	Ala	Phe	Gln 485	Asn	Met	Asn	Gly	Ser 490	Gl v	Tyr	Phe	Val	Lys 495

Ι	le	Gln	Ser	Phe	Leu 500	Gly	Сlу	Ala	Pro	Thr 505	Glu	Asp	Leu	Lys	Ala 510
L	eu	Ser	G1n	Gln	Asn 515	Val	Ser	Met	Asp	Leu 520	Ala	Thr	Phe	Met	Lys 525
L	eu	Arg	Thr	Asp	Ala 530	Val	Leu	Pro	Leu	Thr 535	Val	Ala	G1u	Val	Gln 540
L	ys	Leu	Leu	Gly	Pro 545	His	Val	Glu	Gly	Leu 550	Lys	Ala	Glu	Glu	Arg 555
Н	is	Arg	Pro	۷al	Arg 560	Asp	Trp	Ile	Leu	Arg 565	Gln	Arg	Glņ	Asp	Asp 570
L	eu	Asp	Thr	Leu	Gly 575	Leu	Gly	Leu	Gln	Gly 580	Gly	Ile	Pro	Asn	Gly 585
Т	yr	Leu	Val	Leu	Asp 590	Leu	Ser	Met	Gln	Glu 595	Ala	Leu	Ser	Gly	Thr 600
P	ro	Cys	Leu	Leu	Gly 605	Pro	Gly	Pro	Val	Leu 610	Thr	Val	Leu	Ala	Leu 615
L	eu	Leu	Ala	Ser	Thr 620	Leu	Ala								

<210> 6 <211> 690 <212> PRT

<213> Homo sapien

<400> 6

 Met
 Ala
 Pro
 Trp
 Solution
 Leu
 Gly
 Asp
 Ala
 Gln
 Pro
 Asp
 Asp
 Ala
 Gln
 Pro
 Asp
 Asp
 Asp
 Asp
 Pro
 Thr
 Asp
 Asp
 Asp
 Pro
 Thr
 Asp
 Asp
 Asp
 Asp
 Asp
 Thr
 Asp
 As

10

Asn	Ser	Ser	Ile	Met 140	Ser	Asn	Pro	Leu	Leu 145	G1 y	Leu	Val	Ile	Gly 150
Val	Leu	Val	Thr	Val 155	Leu	Val	Gln	Ser	Ser 160	Ser	Thr	Ser	Thr	Ser 165
Ile	Val	Val	Ser	Met 170	Val	Ser	Ser	Ser	Leu 175	Leu	Thr	Val	Arg	Ala 180
Ala	Ile	Pro	Ile	Ile 185	Met	Gly	Ala	Asn	Ile 190	Gly	Thr	Ser	Ile	Thr 195
Asn	Thr	Ile	Val	Ala 200	Leu	Met	Gln	Val	Gly 205	Asp	Arg	Ser	Glu	Phe 210
Arg	Arg	Ala	Phe	Ala 215	Gly	Ala	Thr	Val	His 220	Asp	Phe	Phe	Asn	Trp 225
Leu	Ser	Val	Leu	Val 230	Leu	Leu	Pro	Val	Glu 235	Val	Ala	Thr	Kis	Tyr 240
Leu	Glu	Ile	Ile	Thr 245	Gln	Leu	Ile	Val	Glu 250	Ser	Phe	His	Phe	Lys 255
Asn	Gly	Glu	Asp	Ala 260	Pro	Asp	Leu	Leu	Lys 265	Val	Ile	Thr	Lys	Pro 270
Phe	Thr	Lys	Leu	Ile 275	Val	Gln	Leu	Asp	Lys 280	Lys	Val	Ile	Ser	Gln 285
Ile	Ala	Met	Asn	Asp 290	Glu	Lys	Ala	Lys	Asn 295	Lys	Ser	Leu	Val	Lys 300
Ile	Trp	Cys	Lys	Thr 305	Phe	Thr	Asn	Lys	Thr 310	Gl n	Ile	Asn	Val	Thr 315
Val	Pro	Ser	Thr	Ala 320	Asn	Cys	Thr	Ser	Pro 325	Ser	Leu	Cys	Trp	Thr 330
Asp	Gly	Ile	Gln	Asn 335	Trp	Thr	Met	Lys	Asn 340	Val	Thr	Tyr	Lys	Glu 345
Asn	Ile	Ala	Lys	Суs 350	Gln	His	Ile		Val 355	Asn	Phe	His	Leu	Pro 360
Asp	Leu	Ala	Val	Gly 365	Thr	Ile	Leu	Leu	Ile 370	Leu	Ser	Leu	Leu	Val 375
Leu	Cys	Gly	Cys	Leu 380	Ile	Met	Ile	Va1	Lys 385	Ile	Leu	Gly	Ser	Val 390
Leu	Lys	Gly	Gln	Val 395	Ala	Thr	Val	Ile	Lys 400	Lys	Thr	Ile	Asn	Thr 405
Asp	Phe	Pro	Phe	Pro 410	Phe	Ala	Trp	Leu	Thr 415	Gly	Tyr	Leu	Ala	Ile 420
Leu	Val	Gly	Ala	Gly 425	Met	Thr	Phe	Ile	Val 430	Gln	Ser	Ser	Ser	Val 435
Phe	Thr	Ser	Ala	Leu	Thr	Pro	Len	Ile	Gly	Ile	Gly	Val	Ile	Thr

				440					445					450
Ile	Glu	Arg	Ala	Tyr 455	Pro	Leu	Thr	Leu	Gly 460	Ser	Asn	Ile	Gly	Thr 465
Thr	Thr	Thr	Ala	Ile 470	Leu	Ala	Ala	Leu	Ala 475	Şer	Pro	Gly	Asn	Ala 480
Leu	Arg	Ser	Ser	Leu 485	Gln	Ile	Ala	Leu	Cys 490	His	Phe	Phe	Phe	Asn 495
Ile	Ser	Gly	Ile	Leu 500	Leu	Trp	Tyr	Pro	Ile 505	Pro	Phe	Thr	Arg	Leu 510
Pro	Iļle	Arg	Met	Ala 515	Lys	Gly	Leu	Gly	Asn 520	Ile	Ser	Ala	Lys	Tyr 525
Arg	Trp	Phe	Ala	Val 530	Phe	Tyr	Leu	Ile	Ile 535	Phe	Phe	Phe	Leu	Ile 540
Pro	Leu	Thr	Val	Phe 545	Gly	Leu	Ser	Leu	Ala 550	Gly	Trp	Arg	Val	Leu 555
Val	Gly	Val	Gly	Val 560	Pro	۷al	Val	Phe	11e 565	Ile	Ile	Leu	Val	Leu 570
Суз	Leu	Arg	Leu	Leu 575	Gln	Ser	Arg	Cys	Pro 580	Arg	Val	Leu	Pro	Lys 585
Lys	Leu	Gln	Asn	Trp 590	Asn	Phe	Leu	Pro	Leu 595	Trp	Met	Arg	Ser	Leu 600
Lys	Pro	Trp	Asp	Ala 605	Val	Val	Ser	Lys	Phe 610	Thr	Gly	Cys	Phe	Gln 615
Met	Arg	Cys	Суѕ	Тут 620	Cys	Cys	Arg	Val	Cys 625	Cys	Arg	Ala	Cys	Cys 630
Leu	Leu	Cys	Gly	Cys 635	Pro	Lys	Суѕ	Cys	Arg 640	Суѕ	Ser	Lys	Cys	Cys 645
Glu	Asp	Leu	Glu	Glu 650	Ala	Gln	G1u	Gly	G1n 655	Asp	Val	Pro	Val	Lys 660
Ala	Pro	Glu	Thr	Phe 665	Asp	Asn	Ile	Thr	Ile 670	Ser	Arg	Glu	Ala	Gln 675
Gly	Glu	Val	Pro	Ala 680	Ser	Asp	Ser	Lys	Thr 685	Glu	Cys	Thr	Ala	Leu 690

<210> 7

5

<211> 1093

<212> PRT

<213> Homo sapien

<400> 7

Met Val Leu Ala Gly Pro Leu Ala Val Ser Leu Leu Leu Pro Ser 15

Leu Thr Leu Leu Val Ser His Leu Ser Ser Ser Gln Asp Val Ser 30

Ser	Glu	Pro	Ser	Ser 35	Glu	Gln	Gln	Leu	Суз 40	Ala	Leu	Ser	Lys	His 45
Pro	Thr	Val	Ala	Phe 50	Glu	Asp	Leu	Gln	Pro 55	Trp	Val	Ser	Asn	Phe 60
Thr	Tyr	Pro	Gly	Ala 65	Arg	Asp	Phe	Ser	Gln 70	Leu	Ala	Leu	Asp	Pro 75
Ser	Сĵу	Asn	Gln	Leu 80	Ile	Val	Gly	Ala	Arg 85	Asn	Tyr	Leu	Phe	Arg 90
Leu	Ser	Leu	Ala	Asn 95	Val	Ser	Leu	Leu	Gln 100	Ala	Thr	Glu	Trp	Ala 105
Ser	Ser	Glu	Asp	Thr 110	Arg	Arg	Ser	Cys	Gln 115	Ser	Lys	Gly	Lys	Thr 120
Glu	Glu	Glu	Суз	Gln 125	Asn	Tyr	Val	Arg	Val 130	Leu	Ile	Val	Ala	Gly 135
Arg	Lys	Val	Phe	Met 140	Cys	Gly	Thr	Asn	Ala 145	Phe	Ser	Pro	Met	Cys 150
Thr	Ser	Arg	Gln	Val 155	Gly	Asn	Leu	Ser	Arg 160	Thr	Thr	Glu	Lys	Ile 165
Asn	G1 A	Val	Ala	Arg 170	Cys	Pro	Tyr	Asp	Pro 175	Arg	His	Asn	Ser	Thr 180
Ala	Val	Ile	Ser	Ser 185	Gln	G1y	Glu	Leu	Tyr 190	Ala	Ala	Thr	Val	Ile 195
Asp	Phe	Ser	Gly	Arg 200	Asp	Pro	Ala	Ile	Туг 205	Arg	Ser	Leu	Gly	Ser 210
Gly	Pro	Pro	Leu	Arg 215	Thr	Ala	Gln	Tyr	Asn 220	Ser	Lys	Trp	Leu	Asn 225
Glu	Pro	Asn	Phe	Val 230	Ala	Ala	Tyr	Asp	Ile 235	Gly	Leu	Phe	Ala	Tyr 240
Phe	Phe	Leu	Arg	Glu 245	Asn	Ala	Val	Glu	His 250	Asp	Cys	Gly	Arg	Thr 255
Val	Tyr	Ser	Arg	Val 260	Ala	Arg	Val	Cys	Lys 265	Aşn	Asp	Val	Gly	Gly 270
Arg	Phe	Leu	Leu	Glu 275	Asp	Thr	Trp	Thr	Thr 280	Phe	Met	Lys	Ala	Arg 285
Leu	Asn	Cys	Ser	Arg 290	Pro	Gly	Glu	Val	Pro 295	Phe	Tyr	Tyr	Asn	Glu 300
Leu	Gln	Ser	Ala	Phe 305	His	Leu	Pro	Glu	Gln 310	Asp	Leu	Ile	Tyr	Gly 315
Val	Phe	Thr	Thr	Asn 320	Val	Asn	Ser	Ile	Ala 325	Ala	Ser	Ala	Val	Cys 330

Ala	Phe	Asn	Leu	Ser 335	Ala	Ile	Ser	Gln	Ala 340	Phe	Asn	Gly	Pro	Phe 345
Arg	Tyr	Gln	Glu	Asn 350	Pro	Arg	Ala	Ala	Trp 355	Fen	Pro	Ile	Ala	Asn 360
Pro	Ile	Pro	Asn	Phe 365	Gln	Cys	Gly	Thr	Leu 370	Pro	Gl u	Thr	Gly	Pro 375
Asn	Glu	Asn	Leu	Thr 380	Glu	Arg	Ser	Leu	Gln 385	Asp	Ala	Gln	Arg	Leu 390
Phe	Leu	Met	Ser	Glu 395	Ala	Val	Gln	Pro	Val 400	Thr	Pro	Glu	Pro	Cys 405
Val	Thr	Gln	Asp	Ser 410	Val	Arg	Phe	Ser	His 415	Leu	Val	Val	Asp	Leu 420
Val	Gln	Ala	Lys	Asp 425	Thr	Leu	Tyr	His	Val 430	Leu	Tyr	Ile	Glу	Thr 435
Glu	Ser	СĴУ	Thr	Ile 440	Leu	Lys	Ala	Leu	Ser 445	Thr	Ala	Ser	Arg	Ser 450
Leu	His	Gly	Cys	Tyr 455	Leu	Glu	Glu	Leu	His 460	Val	Leu	Pro	Pro	Gly 465
Arg	Arg	Glu	Pro	Leu 470	Arg	Ser	Leu	Arg	Ile 475	Ьeu	His	Ser	Ala	Arg 480
Ala	Leu	Phe	Val	Gly 485	Leu	Arg	Asp	Gly	Val 490	Leu	Arg	Val	Pro	Leu 495
Glu	Arg	Cys	Ala	Ala 500	Tyr	Arg	Ser	Gln	G1y 505	Ala	Суѕ	Leu	Glу	Ala 510
Arg	Asp	Pro	Tyr	Cys 515	Gly	Trp	Asp	Gly	Lys 520	Gln	Gln	Arg	Суз	Ser 525
Thr	Leu	Glu	Asp	Ser 530	Ser	Asn	Met	Ser	Leu 535	Trp	Thr	Gln	Asn	11e 540
Thr	Ala	Cys	Pro	Val 545	Arg	Aşn	Val	Thr	Arg 550	Asp	Gly	Gly	Phe	Gly 555
Pro	Trp	Ser	Pro	Trp 560	Gln	Pro	Суз	Glu	His 565	Leu	Asp	Gly	Asp	Asn 570
Ser	Gly	Ser	Cys	Leu 575	Cys	Arg	Ala	Arg	Ser 580	Cys	Asp	Ser	Pro	Arg 585
Pro	Arg	Cys	Gly	Gly 590	Leu	Asp	Суѕ	Leu	Gly 595	Pro	Ala	Ile	His	Ile 600
Ala	Asn	Суз	Ser	Arg 605	Asn	Gly	Ala	Trp	Thr 610	Pro	Trp	Ser	Ser	Trp 615
Ala	Leu	Cys	Ser	Thr 620	Ser	Cys	Gly	Ile	Gly 625	Phe	Gln	Val	Arg	Gln 630
Arg	Ser	Cys	Ser	Asn	Pro	Ala	Pro	Arg	His	Gly	Gly	Arg	Ile	Cys

				635					640					645
Val	Gly	ГÀЗ	Ser	Arg 650	Glu	Glu	Arg	Phe	Cys 655	Asn	Glu	Asn	Thr	Pro 660
Cys	Pro	Val	Pro	11e 665	Phe	Trp	Ala	Ser	Trp 670	Gly	Ser	Trp	Ser	Lys 675
Cys	Ser	Ser	Asn	Cys 680	Gly	Gly	Gly	Met	G1n 685	Ser	Arg	Arg	Arg	Ala 690
Cys	Glu	Asn		Asn 695	Şer	Cys	Leu	Gly	Cys 700	Gly	Val	Glu	Phe	Lys 705
Thr	Cys	Asn	Pro	Glu 710	Gly	Суз	Pro	Glu	Val 715	Arg	Arg	Asn	Thr	Pro 720
Trp	Thr	Pro	Trp	Leu 725	Pro	·Val	Asn	۷al	Thr 730	Gln	GLy	Gly	Ala	Arg 735
Gln	Glu	Gln	Arg	Phe 740	Arg	Phe	Thr	Суз	Arg 745	Ala	Pro	Leu	Ala	Asp 750
Pro	His	Gly	Leu	Gln 755	Phe	Gly	Arg	Arg	Arg 760	Thr	Glu	Thr	Arg	Thr 765
Cys	Pro	Ala	Asp	Gly 770	Ser	Gly	Ser	Cys	Asp 775	Thr	Asp	Ala	Leu	Val 780
	Asp			785			,	-	790					795
	Gly	_		800		·			805					810
•	Glu _		_	815			_	_	820		-			825
	Pro			830	_			_	835	_	_			840
•	Gln	*		845				-	850			-		855
	Cys			860					865					870
	His			875					880					885
	G1A			890					895					900
	Ala			905					910					915
	Ser			920					925		-			930
Cys	Glu	Glu	Leu	Leu 935	Pro	Gly	Ser	Ser	Ala 940	Cys	Ala	Gly	Asn	Ser 945

Pro Ala Ser Ser Met Glu Glu Ala Thr Gly Cys Ala Gly Phe Asn 965

Leu Ile His Leu Val Ala Thr Gly Ile Ser Cys Phe Leu Gly Ser 980

Gly Leu Leu Thr Leu Ala Val Tyr Leu Ser Cys Gln His Cys Gln 1005

Arg Gln Ser Gln Glu Ser Thr Leu Val His Pro Ala Thr Pro Asn 1010

His Leu His Tyr Lys Gly Gly Gly Thr Pro Lys Asn Glu Lys Tyr

Ser Gln Ser Arg Pro Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu

1025 1030 1035

Thr Pro Met Glu Phe Lys Thr Leu Asn Lys Asn Asn Leu Ile Pro 1040 1045 1050

Asp Asp Arg Ala Asn Phe Tyr Pro Leu Gln Gln Thr Asn Val Tyr 1055 1060 1065

Thr Thr Tyr Tyr Pro Ser Pro Leu Asn Lys His Ser Phe Arg 1070 1075 1080

Pro Glu Ala Ser Pro Gly Gln Arg Cys Phe Pro Asn Ser 1085 1090

<210> 8

<211> 141

<212> PRT

5

<213> Homo sapien

<400>8

Met 1	Trp	Val	Leu	Gly 5	Ile	Ala	Ala	Thr	Phe 10	Суѕ	Gly	Leu	Phe	Leu 15
Leu	Pro	Gly	Phe	Ala 20	Leu	Gln	Ile	Gln	C ys 25	Tyr	Gln	Суѕ	Glu	Glu 30
Phe	Gln	Leu	Asn	Asn 35	Asp	Суз	Ser	Ser	Pro 40	Glu	Phe	Ile	Val	Asn 45
Суз	Thr	Val	Asn	Val 50	Gln	Asp	Met	Суз	Gln 55	Lys	G1u	Val	Met	Glu 60
Gln	Ser	Ala	Glу	Ile 65	Met	Tyr	Arg	Lys	Ser 70	Cys	Ala	Ser	Ser	Ala 75
Ala	Cys	Leu	Ile	Ala 80	Ser	Ala	Gly	Tyr	Gln 85	Ser	Phe	Cys	Ser	Pro 90
Gly	Lys	Leu	Asn	Ser 95	Val	Суѕ	Ile	Ser	Cys 100	Суѕ	Asn	Thr	Pro	Leu 105
Cys	Asn	Gly	Pro	Arg 110	Pro	Lys	Lys	Arg	Gly 115	Ser	Ser	Ala	Ser	Ala 120
Leu	Arg	Pro	Gly	Leu 125	Arg	Thr	Thr	Ile	Leu 130	Phe	Leu	Lуз	Leu	Ala 135
Leu	Phe	Ser	Ala	His 140	Cys									

<210> 9

<211> 442

<212> PRT

5

<213> Homo sapien

<400> 9

Met 1	Gln	Pro	Pro	Pro 5	Ser	Leu	Cys	Gly	Arg 10	Ala	Leu	Val	Ala	Leu 15
Val	Leu	Ala	Cys	Gly 20	Leu	Ser	Arg	Ile	Trp 25	Gly	Glu	Glu	Arg	Gly 30
Phe	Pro	Pro	Asp	Arg 35	Ala	Thr	Pro	Leu	Leu 40	Gln	Thr	Ala	Glu	Ile 45
Met	Thr	Pro	Pro	Thr 50	Lys	Thr	Leu	Trp	Pro 55	Lys	Gly	Ser	Asn	Ala 60
Ser	Leu	Ala	Arg	Ser 65	Leu	Ala	Pro	Ala	Glu 70	Val	Pro	Lys	Gly	Asp 75
Arg	Thr	Ala	Gly	Ser 80	Pro	Pro	Arg	Thr	Ile 85	Ser	Pro	Pro	Pro	Суs 90
Gln	Gly	Pro	Ile	Glu 95	Ile	Lys	Glu	Thr	Phe 100	Lys	Тук	Ile	Asn	Thr 105
Val	Val	Ser	Cys	Leu 110	Val	Phe	Val	Leu	Gly 115	Ile	Ile	Gly	Asn	Ser 120
Thr	Leu	Leu	Arg	Ile 125	Ile	Tyr	Lys	Asn	Lys 130	Cys	Met	Arg	Asn	Gly 135
Pro	Asn	Ile	Leu	Ile 140	Ala	Ser	Leu	Ala	Leu 145	Gly	Asp	Leu	Leu	His 150
Ile	Val	Ile	Asp	11e 155	Pro	lle	Asn	Val	Tyr 160	Lys	Leu	Leu	Ala	Glu 165
Asp	Trp	Pro	Phe	Gly 170	Ala	Glu	Met	Cys	Lys 175	Leu	Val	Pro	Phe	Ile 180
Gln	Lys	Ala	Ser	Val 185	Gly	Ile	Thr	۷al	Leu 190	Ser	Leu	Cys	Ala	Leu 195
Ser	Ile	Asp	Arg	Tyr 200	Arg	Ala	Val	Ala	Ser 205	Trp	Ser	Arg	Ile	Lys 210
Gly	Ile	Gly	Va1	Pro 215	Lys	Trp	Thr	Ala	Val 220	Glu	lle	Val	Leu	Ile 225
Trp	Val	Val	Ser	Val 230	Val	Leu	Ala	Val	Pro 235	Glu	Ala	Ile	Glу	Phe 240
Asp	Ile	Ile	Thr	Met	Asp	Tyr	Lys	Gly	Ser	Tyr	Leu	Arg	Ile	Cys

				245					250					255
Leu	Leu	His	Pro	Val 260	Gln	Lys	Thr	Ala	Phe 265	Met	Gln	Phe	Tyr	Lys 270
Thr	Ala	Ьуs	Asp	Trp 275	Trp	Leu	Phe	Ser	Phe 280	Tyr	Phe	Суз	Leu	Pro 285
Leu	Ala	Ile	Thr	Ala 290	Phe	Phe	Tyr	Thr	Leu 295	Met	Thr	Cys	Glu	Met 300
Leu	Arg	Ъуs	Lys	Ser 305	Gly	Met	Gln	Ile	Ala 310	Leu	Asn	Asp	His	Leu 315
Lys	Gln	Arg	Arg	Glu 320	Val	Ala	Lys	Thr	Val 325	Phe	Cys	Leu	Val	Leu 330
Val	Phe	Ala	Leu	Cys 335	Trp	Leu	Pro	Leu	His 340	Leu	Ser	Arg	Ile	Leu 345
Lys	Leu	Thr	Leu	Tyr 350	Asn	Gln	Asn	Asp	Pro 355	Asn	Arg	Cys	Glu	Leu 360
Leu	Ser	Phe	Leu	Leu 365	Val	Leu	Asp	Tyr	Ile 370	Gly	Ile	Asn	Met	Ala 375
Ser	Leu	Asn	Ser	Cys 380	Ile	Asn	Pro	Ile	Ala 385	Leu	Tyr	Leu	Val	Ser 390
Ŀуs	Arg	Phe	Lys	Asn 395	Cys	Phe	Lys	Ser	Cys 400	Leu	Суз	Cys	Trp	Cys 405
Gln	Ser	Phe	Glu	Glu 410	Lys	Gln	Ser	Leu	Glu 415	Glu	Lys	Gln	Ser	Cys 420
Leu	Lys	Phe	Lуs	Ala 425	Asn	Asp	His	Gly	Tyr 430	Asp	Asn	Phe	Arg	Ser 435
Ser	Asn	Lys	Tyr	Ser 440	Ser	Ser								

5

<210> 10 <211> 783 <212> PRT <213> Homo sapien

<400> 10

Met 1	Ser	Gly	Gly	His 5	Gln	Leu	Gln	Leu	Ala 10	Ala	Leu	Trp	Pro	Trp 15
Leu	Leu	Met	Ala	Thr 20	Leu	Gln	Ala	Gly	Phe 25		Arg	Thr	Gly	Leu 30
Val	Leu	Ala	Ala	Ala 35	Val	Glu	Ser	Glu	Arg 40		Ala	Glu	Gln	Lys 45
Ala	Ile	Ile	Arg	Val 50	Ile	Pro	Leu	Lys	Met 55		Pro	Thr	Gly	Lys 60
Leu	Asn	Leu	Thr	Leu 65	Glu		Val			_		Ala		

Thr	Pro	Ala	Glu	Gly 80	Lys	Leu	Met	G1n	Ser 85	His	Pro	Leu	Tyr	Leu 90
Cys	Asn	Ala	Ser	Asp 95	Asp	Asp	Asn	Leu	Glu 100	Pro	Gly	Phe	Ile	Ser 105
Ile	Va1	Ŀуŝ	Leu	Glu 110	Ser	Pro	Arg	Arg	Ala 115	Pro	Arg	Pro	Cys	Leu 120
Ser	Leu	Ala	Ser	Lys 125	Ala	Arg	Met	Ala	Gly 130	Glu	Arg	Gly	Ala	Ser 135
Ala	Val	Leu	Phe	Asp 140	Ile	Thr	Glu	Asp	Arg 145	Ala	Ala	Ala	Glu	Gln 150
Leu	Gln	Gln	Pro	Leu 155	Gly	Leu	Thr	Trp	Pro 160	Val	Val	Leu	Ile	Trp 165
Gly	Asn	Asp	Ala	Glu 170	Lys	Leu	Met	Gl u	Phe 175	Val	Tyr	Lys	Asn	Gln 180
Ľуs	Ala	His	Val	Arg 185	Ile	G1u	Leu	Lys	Glu 190	Pro	Pro	Ala	Trp	Pro 195
Asp	Tyr	Asp	Val	Trp 200	Ile	Leu	Met	Thr	Val 205	Val	Gly	Thr	Ile	Phe 210
Val	Ile	Ile	Leu	Ala 215	Ser	Val	Leu	Arg	11e 220	Arg	Суѕ	Arg	Pro	Arg 225
His	Ser	Arg	Pro	Asp 230	Pro	Leu	Gln	Gln	Arg 235	Thr	Ala	Trp	Ala	Ile 240
		Arg Leu		230					235			_		240
Ser	Gln		Ala	230 Thr 245	Arg	Arg	Туг	Gln	235 Ala 250	Ser	Cys	Arg	Gln	240 Ala 255
Ser Arg	Gln Gly	Leu	Ala Trp	230 Thr 245 Pro 260	Arg Asp	Arg Ser	Tyr Gly	Gln Ser	235 Ala 250 Ser 265	Ser Cys	Cys Ser	Arg Ser	Gln Ala	240 Ala 255 Pro 270
Ser Arg Val	Gln Gly Cys	Leu Glu	Ala Trp Ile	230 Thr 245 Pro 260 Cys 275	Arg Asp Leu	Arg Ser Glu	Tyr Gly Glu	Gin Ser Phe	235 Ala 250 Ser 265 Ser 280	Ser Cys Glu	Cys Ser Gly	Arg Ser Gln	Gln Ala Glu	240 Ala 255 Pro 270 Leu 285
Ser Arg Val	Gln Gly Cys Val	Leu Glu Ala	Ala Trp Ile Ser	230 Thr 245 Pro 260 Cys 275 Cys 290	Arg Asp Leu Leu	Arg Ser Glu His	Tyr Gly Glu Glu	Gln Ser Phe	235 Ala 250 Ser 265 Ser 280 His 295	Ser Cys Glu Arg	Cys Ser Gly Asn	Arg Ser Gln Cys	Gln Ala Glu Val	240 Ala 255 Pro 270 Leu 285 Asp 300
Ser Arg Val Arg	Gln Gly Cys Val	Leu Glu Ala Ile	Ala Trp Ile Ser	230 Thr 245 Pro 260 Cys 275 Cys 290 Gln 305	Arg Asp Leu Leu His	Arg Ser Glu His	Tyr Gly Glu Glu	Gln Ser Phe Phe	235 Ala 250 Ser 265 Ser 280 His 295 Pro 310	Ser Cys Glu Arg Leu	Cys Ser Gly Asn Cys	Arg Ser Gln Cys Val	Gln Ala Glu Val	240 Ala 255 Pro 270 Leu 285 Asp 300 Asn 315
Ser Arg Val Arg Pro	Gln Gly Cys Val Trp	Leu Glu Ala Ile Leu	Ala Trp Ile Ser His	230 Thr 245 Pro 260 Cys 275 Cys 290 Gln 305 Asp 320	Arg Asp Leu Leu His	Arg Ser Glu His Arg	Tyr Gly Glu Glu Thr	Gln Ser Phe Phe Cys	235 Ala 250 Ser 265 Ser 280 His 295 Pro 310 Ser 325	Ser Cys Glu Arg Leu	Cys Ser Gly Asn Cys	Arg Ser Gln Cys Val	Gln Ala Glu Val Phe Ser	240 Ala 255 Pro 270 Leu 285 Asp 300 Asn 315 Arg 330
Ser Arg Val Arg Pro Ile Ser	Gln Gly Cys Val Trp Thr	Leu Glu Ala Ile Leu Glu	Ala Trp Ile Ser His Gly	230 Thr 245 Pro 260 Cys 275 Cys 290 Gln 305 Asp 320 Pro 335	Arg Asp Leu Leu His	Arg Ser Glu His Arg	Tyr Gly Glu Glu Thr Ser	Gln Ser Phe Phe Cys Gln Leu	235 Ala 250 Ser 265 Ser 280 His 295 Pro 310 Ser 325 His 340	Ser Cys Glu Arg Leu Leu	Cys Ser Gly Asn Cys Gly Ile	Arg Ser Gln Cys Val Pro	Gln Ala Glu Val Phe Ser	240 Ala 255 Pro 270 Leu 285 Asp 300 Asn 315 Arg 330 His 345

Leu	Pro	Ser	Gln	Glu 380	Pro	Gly	Met	Gly	Pro 385	Arg	His	His	Arg	Phe 390
Pro	Arg	Ala	Ala	His 395	Pro	Arg	Ala	Pro	Gly 400	Glu	Gln	Gln	Arg	Leu 405
Ala	Gly	Ala	Gln	His 410	Pro	Tyr	Ala	Gln	Gly 415	Trp	Gly	Met	Ser	His 420
Leu	Gln	Ser	Thr	Ser 425	Gln	His	Pro	Ala	Ala 430	Cys	Pro	Val	Pro	Leu 435
Arg	Arg	Ala	Arg	Pro 440	Pro	Asp	Ser	Şer	Gly 445	Ser	Gly	Glu	Ser	Tyr 450
Суз	Thr	Glu	Arg	Ser 455	Gly	Tyr	Leu	Ala	Asp 460	Gly	Pro	Ala	Ser	Asp 465
Ser	Ser	Ser	Gly	Pro 470	Cys	His	Gly	Ser	Ser 475	Ser	Asp	Ser	Val	Val 480
Asn	Cys	Thr	Asp	Ile 485	Ser	Leu	Gln	Gly	Val 490	His	Gly	Ser	Ser	Ser. 495
Thr	Phe	Cys	Ser	Ser 500	Leu	Ser	Ser	Asp	Phe 505	Asp	Pro	Leu	Val	Tyr 510
Cys	Ser	Pro	Lys	Gly 515	Asp	Pro	Gln	Arg	Val 520	Asp	Met	Gln	Pro	Ser 525
Val	Thr	Ser	Arg	Pro 530	Arg	Ser	Leu	Asp	Ser 535	Val	Val	Pro	Thr	Gly 540
Glu	Thr	Gln	Val	Ser 5 45	Ser	His	Val		Tyr 550	His	Arg	His	Arg	His 555
His	His	Tyr	Lys	Lys 560	Arg	Phe	Gln	Trp	His 565	Gly	Arg	Lys	Pro	Gly 570
Pro	Glu	Thr	Gly	Val 575	Pro	Gln	Ser	Arg	Pro 580		Ile	Pro	Arg	Thr 585
Gln	Pro	Gln	Pro	Glu 590	Pro	Pro	Ser	Pro	Asp 595	Gln	Gln	Val	Thx	Gly 600
Ser	Asn	Ser	Ala	Ala 605	Pro	Ser	Gly	Arg	Leu 610	Ser	Asn	Pro	Gln	Cys 615
Pro	Arg	Ala	Leu	Pro 620	Glu	Pro	Ala	Pro	Gly 625	Pro	Val	Asp	Ala	Ser 630
Ser	Ile	Cys	Pro	Ser 635	Thr	Ser	Ser	Leu	Phe 640	Asn	Leu	Gln	Lys	Ser 645
Ser	Leu	Ser	Ala	Arg 650	His	Pro	Gln	Arg	Lys 655	Arg	Arg	Gly	GLy	Pro 660
Ser	Glu	Pro	Thr	Pro 665	Gly	Ser	Arg	Pro	Gln 670	Asp	Ala	Thr	Val	His 675
Pro	Ala	Cys	Gln	Ile	Phe	Pro	His	Tyr	Thr	Pro	Ser	Val	Ala	туг

				680					685					690
Pro	Trp	Ser	Pro	Glu 695	Ala	His	Pro	Leu	Ile 700	Cys	Gly	Pro	Pro	Gly 705
Leu	Asp	Lys	Arg	Leu 710	Leu	Pro	Glu	Thr	Pro 715	Gly	Pro	Cys	Tyr	Ser 720
Asn	Ser	Gln	Pro	Val 725	Trp	Leu	Cys	Leu	Thr 730	Pro	Arg	Gln	Pro	Leu 735
Glu	Pro	His	Pro	Pro 740	Glу	Glu	Gly	Pro	Ser 745	Glu	Trp	Ser	Ser	Asp 750
Thr	Ala	Glu	Gly	Arg 755	Pro	Суз	Pro	Tyr	Pro 760	His	Суѕ	Gln	Val	Leu 765
Ser	Ala	Gln	Pro	Gly 770	Ser	Glu	Glu	Glu	Leu 775	Glu	Glu	Leu	Cys	Glu 780

Gln Ala Val

<210> 11

<211> 490

<212> PRT

5

<213> Homo sapien

<400> 11

Met 1	Glu	Ser	Ile	Ser 5	Met	Met	Gly	Ser	Pro 10	Lys	Ser	Leu	Ser	Gl บ 15
Thr	Val	Leu	Pro	Asn 20	Gly	Ile	Asn	Gly	Ile 25	Lys	Asp	Ala	Arg	Lys 30
Val	Thr	Val	Gly	Val 35	Ile	Gly	Ser	Gly	Asp 40	Phe	Ala	Lys	Ser	Leu 45
Thr	Ile	Arg	Leu	Ile 50	Arg	Cys	Gly	Tyr	His 55	Val	Val	Ile	Gly	Ser 60
Arg	Asn	Pro	Lys	Phe 65	Ala	Ser	Glu	Phe	Phe 70	Pro	His	Va1	Val	Asp 75
Val	Thr	His	His	Glu 80	Asp	Ala	Leu	Thr	Lys 85	Thr	Asn	Ile	Ile	Phe 90
Val	Ala	Ile	His	Arg 95	Glu	His	Tyr	Thr	Ser 100	Leu	Trp	Asp	Leu	Arg 105
His	Leu	Leu	Val	Gly 110	Lys	Ile	Leu	Ile	Asp 115	Val	Ser	Asn	Asn	Met 120
Arg	Ile	Asn	Gln	Tyr 125	Pro	Glu	Ser	Asn	Ala 130	Glu	Tyr	Leu	Ala	Ser 135
Leu	Phe	Pro	Asp	Ser 140	Leu	Ile	Val	Lys	Gly 145	Phe	Asn	Val	Val	Ser 150
Ala	Trp	Ala	Leu	Gln 155	Leu	Gly	Pro	Lys	Asp 160	Ala	Ser	Arg	Gln	Val 165

Tyr	Ile	Суз	Ser	Asn 170	Asn	Ile	Gln	Ala	Arg 175	Gln	Gln	Val	Ile	Glu 180
Leu	Ala	Arg	Gln	Leu 185	Asn	Phe	Ile	Pro	Ile 190	Asp	Leu	Gly	Ser	Leu 195
Ser	Ser	Ala	Arg	Glu 200	Ile	Glu	Asn	Leu	Pro 205	Leu	Arg	Leu	Phę	<u>Th</u> r 210
Leu	Trp	Arg	Gly	Pro 215	Val	Val	Val	Ala	Ile 220	Ser	Leu	Ala	Thr	Phe 225
Phe	Phe	Leu	Tyr	Ser 230	Phe	Val	Arg	Asp	Val 235	Ile	His	Pro	Tyr	Ala 240
Arg	Asn	Gln	Gln	Ser 245	Asp	Phe	Tyr	Lys	Ile 250	Pro	Ile	Glu	Ile	Val 255
Asn	Lys	Thr	Leu	Pro 260	Ile	Val	Ala	lle	Thr 265	Leu	Leu	Ser	Leu	Val 270
Tyr	Leu	Ala	Gly	Leu 275	Leu	Ala	Ala	Ala	Tyr 280	Gln	Leu	Tyr	Tyr	Gly 285
Thr	Lys	Tyr	Arg	Arg 290	Phe	Pro	Pro	Trp	Leu 295	Glu	Thr	Trp	Leu	Gln 300
Cys	Arg	Lys	Gln	Leu 305	Gly	Leu	Leu	Ser	Phe 310	Phe .	Phe	Ala	Met	Val 315
His	Val	Ala	Tyr	Ser 320	Leu	Cys	Leu	Pro	Met 325	Arg	Arg	Ser	Glu	Arg 330
Tyr	Leu	Phe	Leu	Asn 335	Met	Ala	Tyr	Gln	Gln 340	∀al	Hîs	Ala	Asn	Ile 345
Glu	Asn	Ser	Trp	Asn 350	Glu	Glu	Glu	Val	Trp 355	Arg	Ile	Glu	Met	Tyr 360
Ile	Ser	Phe	Gly	Ile	Mot	_								
Val			-	365	nec	Ser	Leu	Gly	Leu 370	Leu	Ser	Leu	Leu	Ala 375
	Thr	Ser		365				_	370				Leu Arg	375
Phe			lle	365 Pro 380	Ser	Val	Ser	Asn	370 Ala 385	Leu	Asn	Trp		375 Ģlu 390
	Ser	Phe	lle	365 Pro 380 Gln 395	Ser Ser	Val Thr	Ser Leu	Asn Gly	370 Ala 385 Tyr 400	Leu Val	Asn Ala	Trp	Arg	375 Glu 390 Ile 405
Ser	Ser Thr	Phe Phe	lle lle	365 Pro 380 Gln 395 Val 410	Ser Ser Leu	Val Thr Ile	Ser Leu Tyr	Asn Gly Gly	370 Ala 385 Tyr 400 Trp 415	Leu Val Lys	Asn Ala Arg	Trp Leu Ala	Arg Leu	375 Glu 390 Ile 405 Glu 420
Ser Glu	Ser Thr Glu	Phe Phe Tyr	lle lle His	365 Pro 380 Gln 395 Val 410 Arg 425	Ser Ser Leu Phe	Val Thr Ile Tyr	Ser Leu Tyr Thr	Asn Gly Gly Pro	370 Ala 385 Tyr 400 Trp 415 Pro 430	Leu Val Lys Asn	Asn Ala Arg Phe	Trp Leu Ala Val	Arg Leu Phe	375 Glu 390 Ile 405 Glu 420 Ala 435

Glu Lys Ser Gln Phe Leu Glu Glu Gly Ile Gly Gly Thr Ile Pro 470 475 480

His Val Ser Pro Glu Arg Val Thr Val Met 485 490

<210> 12

<211> 1214

5 <212> PRT

<213> Homo sapien

<400> 12

Met 1	Val	Val	Pro	Glu 5	Lys	Glu	Gln	Ser	Trp 10	Ile	Pro	Lys	Ile	Phe 15
Lys	Lys	Lys	Thr	Cys 20	Thr	Thr	Phe	Ile	Val 25	Asp	Ser	Thr	Asp	Pro 30
Gly	Gly	Thr	Leu	Cys 35	Gln	Cys	Gly	Arg	Pro 40	Arg	Thr	Ala	His	Pro 45
Ala	Val	Ala	Met	Glu 50	Asp	Ala	Phe	Gly	Ala 55	Ala	Val	Val	Thr	Val 60
Trp	Asp	Ser	Asp	Ala 65	His	Thr	Thr	Glu	Lys 70	Pro	Thr	Asp	Ala	Туг 75
Gly	Glu	Leu	Asp	Phe 80	Thr	Gly	Ala	Gly	Arg 85	Ьуs	His	Ser	Asn	Phe 90
Leu	Arg	Leu	Ser	Asp 95	Arg	Thr	Asp	Pro	Ala 100	Ala	V al	Tyr	Ser	Leu 105
Val	Thr	Arg	Thr	Trp 110	Gly	Phe	Arg	Ala	Pro 115	Asn	Leu	Val	Val	Ser 120
Val	Leu	Gly	Gly	Ser 125	Gly	Gly	Pro	Val	Leu 130	Gln	Thr	Trp	Leu	Gln 135
Asp	Leu	Leu	Arg	Arg 140	Gly	Leu	Val	Arg	Ala 145	Ala	Gln	Ser	Thr	Gly 150
Ala	Trp	Ile	Val	Thr 155	Gly ;	GГА	Leu	His	Thr 160	Gly	Ile	Gly	Arg	His 165
Val	Gly	Val	Ala	Val 170	Arg	Asp	His	Gln	Met 175	Ala	Ser	Thr	Gly	Gly 180
Thr	Lys	Val	Val	Ala 185	Met	Gly	Va1	Ala	Pro 190	Trp	G1A	Val	Val	Arg 195
Asn	Arg	Asp	Thr	Leu 200	lle	Asn	Pro	Lys	Gly 205	Ser	Phe	Pro	Ala	Arg 210
Tyr	Arg	Trp	Arg	Gly 215	Asp	Pro	Glu	Asp	Gly 220	Val	Gln	Phe	Pro	Leu 225
Asp	Tyr	Asn	Tyr	Ser 230	Ala	Phe	Phe	Leu	Val 235	Asp	Asp	Gly	Thr	His 240
Gly	Суз	Leu	Gly	Gly	Glu	Asn	Arg	Phe	Arg	Leu	Arg	Leu	Glu	Ser

				245					250				•	255
Tyr	Ile	Ser	Gln	Gln 260	Lys	Thr	Gly	Val	Gly 265	Glу	Thr	Gly	Ile	Asp 270
Ile	Pro	Val	Leu	Leu 275	Leu	Leu	Ile	Asp	Gly 280	Asp	Glu	Гуs	Met	Leu 285
Thr	Arg	Ile	Glu	Asn 290	Ala	Thr	Gln	Ala	Gln 295	Leu	Pro	Cys	Leu	Leu 300
Val	Ala	Gly	Ser	Gly 305	Gly	Ala	Ala	Asp	Cys 310	Leu	Ala	Glu	Thr	Leu 315
Glu	Asp	Thr	Leu	Ala 320	Pro	Gly	Ser	Gly	Gly 325	Ala	Arg	Gln	Gly	Glu 330
Ala	Arg	Asp	Arg	11e 335	Arg	Arg	Phe	Phe	Pro 340	Lys	Gly	Asp	Leu	Glu 345
Val	Leu	Gln	Ala	Gln 350	Val	Glu	Arg	Ile	Met 355	Thr	Arg	Lys	Glu	Leu 360
Leu	Thr	Val	Tyr	Ser 365	Ser	Glu	Asp	Gly	Ser 370	Glu	Glu	Phe	Glu	Thr 375
Ile	Val	Leu	Lys	Ala 380	Leu	Val	Lys	Ala	Cys 385	Glу	Ser	Ser	Glu	Ala 390
Ser	Ala	Tyr	Leu	Asp 395	Glu	Leu	Arg	Leu	Ala 400	Val	Ala	Trp	Asn	Arg 405
Val	Asp	Ile	Ala	Gln 410	Ser	G1u	Leu	Phe	Arg 415	Gly	Asp	Ile	Gln	Trp 420
Arg	Ser	Phe	His	Leu 425	Glu	Ala	Ser	Leu	Met 430	Asp	Ala	Leu	Leu	Asn 435
Asp	Arg	Pro	G1u	Phe 440	Val	Arg	Leu	Leu	11e 445	Ser	His	Gly	Leu	Ser 450
Leu	Gly	His	Phe	Leu 455	Thr	Pro	Met	Arg	Leu 460	Ala	Gln	Leu	Tyr	Ser 465
Ala	Ala	Pro	Ser	Asn 470	Ser	Leu	Ile	Arg	Asn 475	Leu	Leu	Asp	Gln	Ala 480
Ser	His	Ser	Ala	Gly 485	Thr	Lys	Ala	Pro	Ala 490	Leu	Lys	Gly	Gly	Ala 495
Ala	Glu	Leu	Arg	Pro 500	Pro	Asp	Val	Gly	His 505	Val	Leu	Arg	Met	Leu 510
Leu	Gly	Lys	Met	Cys 515	Ala	Pro	Arg	Tyr	Pro 520	Ser	Gly	Gly	Ala	Trp 525
Asp	Pro	His	Pro	Gly 530	Gln	Gly	Phe	Gly	Glu 535	Ser	Met	Tyr	Leu	Leu 540
Ser	Asp	Lys	Ala	Thr 545	Ser	Pro	Leu	Ser	Leu 550	Asp	Ala	Gly	Leu	Gly 555

Gln	Ala	Pro	Trp	Ser 560	Asp	Leu	Leu	Leu	Trp 565	Ala	Leu	Leu	Leu	Asn 570
Arg	Ala	Gln	Met	Ala 575	Met	Tyr	Phe	Trp	Glu 580	Met	Gly	Ser	Asn	Ala 585
Val	Ser	Ser	Ala	Leu 590	Gly	Ala	Cys	Leu	Leu 595	Leu	Arg	Val	Met	Ala 600
Arg	Leu	Glu	Pro	Asp 605	Ala	Glu	Glu	Ala	Ala 610	Arg	Arg	Lys	Asp	Leu 615
Ala	Phe	Lys	Phe	Glu 620	Gly	Met	Gly	Val	Asp 625	Leu	Phe	Gly	Glu	Сув 630
Tyr	Arg	Ser	Ser	Glu 635	Val	Arg	Ala	Ala	Arg 640		Leu	Leu	Arg	Arg 645
Суѕ	Pro	Leu	Trp	Gly 650	Asp	Ala	Thr	Cys	Leu 655	Gln	Leu	Ala	Met	Gln 660
Ala	Asp	Ala	Arg	Ala 665	Phe	Phe	Ala	Gln	Asp 670	Gly	Val	Gln	Ser	Leu 675
Leu	Thr	Gln	Lys	Trp 680	Trp	Gly	Asp	Met	Ala 685	Ser	Thr	Thr	Pro	Ile 690
Trp	Ala	Leu	Val	Leu 695	Ala	Phe	Phe	Суз	Pro 700	Pro	Leu	Ile	Tyr	Thr 705
Arg	Leu	Ile	Thr	Phe 710	Arg	Lys	Ser	Glu	Glu 715	Glu	Pro	Thr	Arg	Glu 720
Glu	Leu	Glu	Phe	Asp 725	Met	Asp	Ser	Val	Ile 730	Asn	GΙΆ	Glu	Gly	Pro 735
Val	Gly	Thr	Ala	Asp 740	Pro	Ala	Glu	Lys	Thr 745	Pro	Leu	Gly	Val	Pro 750
Arg	Gln	Ser	Gly	Arg 755	Pro	Glу	Суз	Суѕ	Gly 760	Gly	Arg	Сув	Gly	Gly 765
Arg	Arg	Суз	Leu	Arg 770	Arg	Trp	Phe	His	Phe 775	Trp	GJA	Ala	Pro	Val 780
Thr	Ile	Phe	Met	Gly 785	Asn	Val	Val	Ser	Tyr 790	Leu	Leu	Phe	Leu	Leu 795
Leu	Phe	Ser	Arg	Val 800	Leu	Leu	Val	Asp	Phe 805	Gln	Pro	Ala	Pro	Pro 810
Gly	Ser	Leu	Glu	Leu 815	Leu	Leu	Tyr	Phe	Trp 820	Ala	Phe	Thr	Leu	Leu 825
Суз	Glu	Glu	Leu	Arg 830	Gln	Gly	Leu	Ser	Gly 835	Gly	GŢĀ	Gly	Ser	Leu 840
Ala	Ser	Gly	Gly	Pro 845	Gly	Pro	Gly	His	Ala 850	Ser	Leu	Ser	Gln	Arg 855

Leu Arg Leu	Tyr Leu 860	Ala As	sp Ser	Trp Asn 865	Gln	Суз	Asp	Leu	Val 870
Ala Leu Thr	Cys Phe 875	Leu Le	eu Gly	Val Gly 880	Cys	Arg	Leu	Thr	Pro 885
Gly Leo Tyr	His Leu 890	Gly A	g Thr	Val Leu 895	Cys	Ile	Asp	Phe	Met 900
Val Phe Thr	Val Arg 905	Leu Le	eu His	Ile Phe 910	Thr	Val	Asn	Lys	Gln 915
Leu Gly Pro	Lys Ile 920	Val II	le Val	Ser Lys 925	Met	Met	Lys	Asp	Val 930
Phe Phe Phe	Leu Phe 935	Phe Le	eu Gly	Val Trp 940	Leu	Val	Ala	Tyr	Gly 945
Val Ala Thr	Glu Gly 950	Leu Le	eu Arg	Pro Arg 955	Asp	Ser	Asp	Phe	Pro 960
Ser Ile Leu	Arg Arg 965	Val Pi	ne Tyr	Arg Pro 970	Tyr	Leu	Gln	Ile	Phe 975
Gly Gln Ile	Pro Gln 980	Glu As	sp Met	Asp Val 985	Ala	Leu	Met	Glu	His 990
Ser Asn Cys	Ser Ser 995	Glu Pa	co Gly	Phe Trp 1000	Ala	His	Pro		G1y 1005
Ala Gln Ala	Gly Thr 1010	Cys Va	al Ser	Gln Tyr 1015	Ala	Asn	Trp	_	Val 020
Val Leu Leu	Leu Val 1025	Ile P	ne Leu	Leu Val 1030	Ala	Asn	Ile		Leu .035
Val Asn Leu	Leu Ile 1040	Ala Me	et Phe	Ser Tyr 1045	Thr	Phe	Gly	_	Val .050
Gln Gly Asn	Ser Asp 1055	Leu Ty	yr Trp	Lys Ala 1060	Gln	Arg	Tyr		Leu .065
Ile Arg Glu	Phe His 1070	Ser A	g Pro	Ala Leu 1075	Ala	Pro	Pro		11e .080
Val Ile Ser	His Leu 1085	Arg Le	eu Leu	Leu Arg 1090	Gln	Leu	Cys		Arg .095
Pro Arg Ser	Pro Gln 1100	Pro Se	er Ser	Pro Ala 1105	Leu	Glu	His		Arg .110
Val Tyr Leu	Ser Lys 1115	Glu Al	la Glu	Arg Lys 1120	Leu	Leu	Thr	-	Glu .125
Ser Val His	Lys Glu 1130	Asn Pi	ne Leu	Leu Ala 1135	Arg	Ala	Arg		Lys .140
Arg Glu Ser	Asp Ser 1145	Glu Aı	rg Leu	Lys Arg 1150	Thr	Ser	Gln		Val .155
Asp Leu Ala	Leu Lys	Gln Le	eu Gly	His Ile	Arg	Glu	Tyr	Glu	Gln

				:	1160				:	1165				:	1170
	Arg	Leu	Lys		Leu 1175	Glu	Arg	Glu		Gln 1180	Gln	Cys	Ser	_	Val 1185
	Leu	Gly	Trp		Ala 1190	Glu	Ala	Leu		Arg 1195	Ser	Ala	Leu		Pro L200
	Pro	Gly	Gly		Pro 1205	Pro	Pro	Asp		Pro 1210	Gly	Ser	Ľуз	Asp	
5	<210> 13 <211> 188 <212> PRT <213> Homo s	apien													
	<400> 13														
	Met 1	Asp	Cys	Arg	Lys 5	Met	Ala	Arg	Phe	Ser 10	Туг	Ser	Val	Ile	Trp 15
	lle	Met	Ala	Ile	Ser 20	Lys	Val	Phe	Glu	Leu 2 5	Gly	Leu	Val	Ala	Gly 30
	Leu	Gly	His	G l n	Glu 35	Phe	Ala	Arg	Pro	Ser 40	Arg	Gly	Tyr	Leu	Ala 45
	Phe	Arg	Asp	Asp	Ser 50	Ile	Trp	Pro	Gln	Glu 55	Glu	Pro	Ala	Ile	Arg 60
	Pro	Arg	Ser	Ser	Gln 65	Arg	Val	Pro	Pro	Met 70	Gly	Ile	Gln	His	Ser 75
	Lys	Glu	Leu	Asn	Arg 80	Thr	Суз	Cys	Leu	Asn 85	Gly	Gly	Thr	Cys	Met 90
	Leu	Gly	Ser	Phe	Су з 95	Ala	Cys	Pro	Pro	Ser 100	Phe	Tyr	Gly	Arg	Asn 105
	Cys	Glu	His	Asp	Val 110	Arg	Lys	Glu	Asn	Cys 115	Gly	Ser	Val	Pro	His 120
	Asp	Thr	Trp	Leu	Pro 125	Lys	Lys	Cys	Ser	Leu 130	Cys	Lys	Cys	Trp	His 135
	Gly	Gln	Leu	Årg	Cys 140	Phe	Pro	Gln	Ala	Phe 145	Leu	Pro	Ğİy	Cys	Asp 150
	Gly	Leu	Val	Met	Asp 155	Glu	His	Leu	Val	Ala 160	Ser	Arg	Thr	Pro	Glu 165
	Leu	Pro	Pro	Ser	Ala 170	Arg	Thr	Thr	Thr	Phe 175	Met	Leu	Val	Gly	Ile 180
Λ	Cys	Leu	Ser	Ile	Gln 185	Ser	Tyr	Tyr							

10

<212> PRT <213> Homo sapien

<400> 14

5

Met	Glv	Ala	Ala	Glv	Leu	Leu	Glv	Val	Phe	Leu	Ala	Leu	Val	Ala
1	•			5			•		10					15
Pro	Gly	Val	Leu	Gly 20	Ile	Ser	Cys	Gly	Ser 25	Pro	Pro	Pro	Ile	Leu 30
Asn	Gly	Arg	Ile	Ser 35	Tyr	Tyr	Ser	Thr	Pro 40	Ile	Ala	Val	Gly	Thr 45
Val	Ile	Arg	Tyr	Ser 50	Cys	Ser	Gly	Thr	Phe 55	Arg	Leu	Ile	СſУ	Glu 60
Lys	Ser	Leu	Leu	Cys 65	Ile	Thr	Lys	Asp	Lys 70	Val	Asp	Gly	Thr	Trp 75
Asp	Lys	Pro	Ala	Pro 80	Lys	Cys	Glu	Tyr	Phe 85	Asn	Lys	Tyr	Ser	Ser 90
Cys	Pro	Glu	Pro	Ile 95	Val	Pro	Gly	Gly	Tyr 100	Lys	Ile	Arg	Gly	Ser 105
Thr	Pro	Tyr	Arg	His 110	Gly	Asp	Ser	Val	Thr 115	Phe	Ala	Суз	Lys	Thr 120
Asn	Phe	Ser	Met	Asn 125	Gly	Asn	Lys	Ser	Val 130	Trp	Cys	Gln	Ala	Asn 135
Asn	Met	Trp	Gly	Pro 140	Thr	Arg	Leu	Pro	Thr 145	Cys	Val	Ser	Val	Phe 150
Pro	Leu	Glu	Cys	Pro 155	Ala	Leu	Pro	Met	Ile 160	His	Asn	Gly	His	His 165
Thr	Ser	Glu	Asn	Val 170	Gly	Ser	Ile	Ala	Pro 175	Gly	Leu	Ser	Val	Thr 180
Tyr	Ser	Cys	Glu	Ser 185	Gly	Tyr	Leu	Leu	Val 190	Gly	Glu	Lys	Ile	Ile 195
Asn	Cys	Leu	Ser	Ser 200	Gly	Lys	Trp	Ser	Ala 205	Val	Pro	Pro	Thr	Cys 210
Glu	G] ŋ	Ala	Arg	Cys 215	Lyş	Ser	Leu	Gly	Arg 220	Phe	Pro	Asn	Gly	Lys 225
Val	Lys	Glu	Pro	Pro 230	Ile	Leu	Arg	Val	Gly 235	Val	Thr	Ala	Asn	Phe 240
Phe	Cys	Asp	Glu	Gly 245	Tyr	Arg	Leu	Gln	Gly 250	Pro	.Pro	Ser	Ser	Arg 255
Cys	Val	Ile	Ala	Gly 260	Gln	Gly	Val	Ala	Trp 265	Thr	Lys	Met	Pro	Val 270
Cys	Gl u	Glu	Ile	Phe 275	Суз	Pro	Ser	Pro	Pro 280	Pro	Ile	Leu	Asn	Gly 285
Arg	His	Ile	Gly	Asn 290	Ser	Leu	Ala	Asn	Val 295	Ser	Tyr	Gly	Ser	Ile 300

Val	Thx	Tyr	Thr	Cys 305	Asp	Pro	Asp	Pro	Glu 310	Glu	Gly	Val	Asn	Phe 315
Ile	Leu	Ile	Gly	Glu 320	Ser	Thr	Leu	Arg	Cys 325	Thr	Val	Asp	Ser	Gln 330
Lys	Thr	Gly	Thr	Trp 335	Ser	Gly	Pro	Ala	Pro 340	Arg	Суз	Glu	Leu	Ser 345
Thr	Ser	Ala	Val	Gln 350	Cys	Pro	His	Pro	Gln 355	Ile	Leu	Arg	Gly	Arg 360
Met	Val	Ser	Gly	Gln 365	Lys	Asp	Arg	Tyr	Thr 370	Tyr	Asn	Asp	Thr	Val 375
Ile	Phe	Ala	Cys	Met 380	Phe	Gly	Phe	Thr	Leu 385	Lys	Gly	Ser	Lys	Gln 390
Ile	Arg	Cys	Asn	Ala 395	Gln	Gly	Thr	Trp	Glu 400	Pro	Ser	Ala	Pro	Val 405
Cys	Glu	Lys	Glu	Cys 410	Gln	Ala	Pro	Pro	Asn 415	Ile	Leu	Asn	Gly	Gln 420
Lys	Glu	Asp	Arg	His 425	Met	Val	Arg	Phe	Asp 430	Pro	Gly	Thr	Ser	Ile 435
Lys	Tyr	Ser	Cys	Asn 440	Pro	Gly	Tyr	Val	Leu 445	Val	Gly	Glu	Glu	Ser 450
Ile	Gln	Cys	Thr	Ser 455	Glu	Gly	Val	Тгр	Thr 460	Pro	Pro	Val	Pro	Gln 465
Cys	Lys	Val	Ala	Ala 470	Cys	Glu	Ala	Thr	Gly 475	Arg	Gln	Leu	Leu	Thr 480
Lys	Pro	Gln	His	Gln 485	Phe	Val	Arg	Pro	Asp 490	Val	Asn	Ser	Ser	Cys 495
Gly	Glu	Gly	Tyr	Lуз 5 00	Leu	Ser	Gly	Ser	Val 505	Tyr	Gln	Glu	Cys	Gln 510
Gly	Thr	Ile	Pro	Trp 515	Phe	Met	Glu	Ile	Arg 520	Leu	Cys	Lys	Glu	Ile 525
Thr	Cys	Pro	Pro	Pro 530	Pro	۷al	Ile	Tyr	Asn 535	Gly	Ala	His	Thr	Gly 540
Ser	Ser	Leu	Glu	Asp 545	Phe	Pro	Tyr	Gly	Thr 550	Thr	Val	Thr	Tyr	Thr 555
Cys	Asn	Pro	Gly	Pro 560	Glu	Arg	Gly	Va1	Glu 565	Phe	Ser	Leu	Ile	Gly 570 .
Glu	Ser	Thr	Ile	Arg 575	Суз	Thr	Ser	Asn	Asp 580	Gln	Glu	Arg	Gly	Thr 585
Trp	Ser	Gly	Pro	Ala 590	Pro	Leu	Cys	Lys	Leu 595	Ser	Leu	Leu	Ala	Val 600
Gln	Суз	Ser	His	Val	His	Ile	Ala	Asn	Gly	Tyr	Lys	Ile	Ser	Gly

				605					610					615
Lys	Glu	Ala	Pro	Tyr 620	Phe	Tyr	Asn	Asp	Thr 625	Val	Thr	Phe	Lys	Cys 630
Tyr	Ser	Gly	Phe	Thr 635	Leu	Lys	Gly	Ser	Ser 640	Gln	Ile	Arg	Cys	Lys 645
Ala	Asp	Asn	Thr	Trp 650	Asp	Pro	Glu	Ile	Pro 655	Val	Суз	Glu	Lys	Glu 660
Thr	Cys	Gln	His	Val 665	Arg	Gln	Ser	Leu	Gln 670	Glu	Leu	Pro	Ala	Gly 675
Ser	Arg	Val	Glu	Leu 680	Val	Asn	Thr	Ser	Cys 685	Gln	Asp	Gly	Туг	Gln 690
Leu	Thr	Gly	His	Ala 695	Tyr	Gln	Met	Cys	Gln 700	Asp	Ala	Glu	Asn	Gly 705
Ile	Trp	Phe	Lys	Lys 710	Ile	Pro	Leu	Cys	Lys 715	Val	Ile	His	Суз	His 720
Pro	Pro	Pro	Val	11e 725	Val	Asn	Gly	Lys	His 730	Thr	Gly	Met	Met	Ala 735
Glu	Asn	Phe	Leu	Tyr 740	Gly	Asn	Glu	Va1	Ser 745	Tyr	Glu	Суз	Asp	Gln 750
Gly	Phe	Tyr	Leu	Leu 755	Сlў	Glu	Lys	Lys	Leu 760	Gln	Сув	Arg	Ser	Asp 765
Ser	Lys	Gly	His	Gly 770	Ser	Trp	Ser	Gly	Pro 775	Ser	Pro	Gln	Cys	Leu 780
Arg	Ser	Pro	Pro	Val 785	Thr	Arg	Суз	Pro	Asn 790	Pro	Glu	Val	Lys	His 795
Gly	Tyr	Lys	Leu	Asn 800	Lys	Thr	His	Ser	Ala 805	Tyr	Ser	His	Asn	Asp 810
Ile	Val	Tyr	Val	Asp 815	Cys	Asn	Pro	Gly	Phe 820	Ile	Met	Asn	Gly	Ser 825
Arg	Val	Ile	Arg	Суs 830	His	Thr	Äsp	Asn	Thr 835	Trp	Val	Pro	Gly	Val 840
Pro	Thr	Cys	Ile	Lys 845	Lys	Ala	Phe	Ile	Gly 850	Cys	Pro	Pro	Pro	Pro 855
Lys	Thr	Pro	Asn	61y 860	Asn	His	Thr	Gly	Gly 865	Asn	Ile	Ala	Arg	Phe 870
Ser	Pro	GJA	Met	Ser 875	Ile	Leu	Tyr	Ser	880 Cya	Asp	Gln	Gly	Tyr	Leu 885
Leu	Val	Gly	Glu	Ala 890	Leu	Leu	Leu	Cys	Thr 895	His	Glu	Gly	Thr	Trp 900
Ser	Gln	Pro	Ala	Pro		Сув	Ľуs	Glu	Val 910		Суѕ	Ser	Ser	Pro

Ala Asp Met Asp Gly Ile Gln Lys Gly Leu Glu Pro Arg Lys Met 925 920 Tyr Gln Tyr Gly Ala Val Val Thr Leu Glu Cys Glu Asp Gly Tyr Met Leu Glu Gly Ser Pro Gln Ser Gln Cys Gln Ser Asp His Gln 950 955 Trp Asn Pro Pro Leu Ala Val Cys Arg Ser Arg Ser Leu Ala Pro 970 965 975 Val Leu Cys Gly Ile Ala Ala Gly Leu Ile Leu Leu Thr Phe Leu 980 Ile Val Ile Thr Leu Tyr Val Ile Ser Lys His Arg Glu Arg Asn 995 1000 Tyr Tyr Thr Asp Thr Ser Gln Lys Glu Ala Phe His Leu Glu Ala 1010 1015 Arg Glu Val Tyr Ser Val Asp Pro Tyr Asn Pro Ala Ser 1025 1030

<210> 15

<211> 229

<212> PRT

5

<213> Homo sapien

Met 1	Ala	Arg	Leu	Ala 5	Leu	Ser	Pro	Val	Pro 10	Ser	His	Trp	Met	Val 15
Ala	Leu	Leu	Leu	Leu 20	Leu	Ser	Ala	Glu	Pro 25	Val	Pro	Ala	Ala	Arg 30
Ser	Glu	Asp	Arg	Tyr 35	Arg	Asn	Pro	Lys	Gly 40	Ser	Ala	Суз	Ser	Arg 45
Ile	Trp	Gln	Ser	Pro 50	Arg	Phe	Ile	Ala	Arg 55	Lys	Arg	Gly	Phe	Thr 60
Val	Lys	Met	His	Cys 65	Tyr	Met	Asn	Ser	Ala 70	Ser	Gly	Asn	Val	Ser 75
Trp	Leu	Trp	Lys	Gln 80	Glu	Met	Asp	Glu	Asn 85	Pro	Gln	Gln	Leu	Lys 90
Leu	Glu	Lys	Gly	Arg 95	Met	Glu	Glu	Ser	Gln 100	Asn	Glu	Ser	Leu	Ala 105
Thr	Leu	Thr	Ile	Gln 110	Gly	Ile	Arg	Phe	Glu 115	Asp	Asn	Gly	Ile	Туr 120
Phe	Cys	Gln	Gln	Lys 125	Cys	Asn	Asn	Thr	Ser 130	Glu	Val	Tyr	Gln	Gly 135
Cys	Gly	Thr	Glu	Leu 140	Arg	Val	Met	Gly	Phe 145	Ser	Thr	Leu	Ala	Gln 150
Leu	Lys	Gln	Arg	Asn 155	Thr	Leu	Lys	Asp	Gly 160	Ile	Ile	Met	Ile	Glr 165
Thr	Leu	Leu	Ile	Ile 170	Leu	Phe	Ile	Ile	Val 175	Pro	Ile	Phe	Leu	Let 180
Leu	Asp	Lys	Asp	Asp 185	Ser	Lys	Ala	Gly	Met 190	Glu	Glu	Asp	His	Thr 1,95
Tyr	Glu	Gly	Leu	Asp 200	Ile	Asp	Gln	Thr	Ala 205	Thr	Tyr	Glu	Asp	Ile 210
Val	Thr	Leu	Arg	Thr 215	Gly	Glu	Val	Lys	Trp 220	Ser	Val	Gly	Glu	His 225

Pro Gly Gln Glu

<210> 16 <211> 508

<212> PRT

5

<213> Homo sapien

Met 1	Leu	Leu	Trp	Ser 5	Leu	Leu	Val	Ile	Phe 10	Asp	Ala	Val	Thr	Glu 15
Gln	Ala	Asp	Ser	Leu 20	Thr	Leu	Val	Ala	Pro 25	Şer	Ser	Val	Phe	Glu 30
Gly	Asp	Ser	Ile	Val 35	Leu	Lys	Cys	Gln	Gly 40	Glu	Gln	Asn	Trp	Lys 45
Ile	Gln	Lys	Met	Ala 50	Туг	His	Lys	Asp	Asn 55	Lys	Glu	Leu	Ser	Val 60
Phe	Lys	Lys	Phe	Ser 65	Asp	Phe	Leu	Ile	Gl n 70	Ser	Ala	Val	Leu	Ser 75
Asp	Ser	Gly	Asn	Tyr 80	Phe	Cys	Ser	Thr	Lys 85	Gly	Gln	Leu	Phe	Leu 90
Trp	Asp	Lys	Thr	Ser 95	Asn	Ile	Val	Lys	Ile 100	Lys	Val	Gln	Glu	Leu 105
Phe	Gln	Arg	Pro	Val 110	Leu	Thr	Ala	Ser	Ser 115	Phe	Gln	Pro	Ile	Glu 120
Gly	Gly	Pro	Val	Ser 12 5	Leu	Lys	Cys	Glu	Thr 130	Arg	Leu	Ser	Pro	Gln 135
Arg	Leu	Asp	Val	Gln 140	Leu	Gln	Phe	Cys	Phe 145	Phe	Arg	Glu	Asn	Gln 150
Val	Leu	Gly	Ser	Gly 155	Trp	Ser	Ser	Ser	Pro 160	Glu	Leu	Gln	Ile	Ser 165
Ala	Val	Trp	Ser	Glu 170	Asp	Thr	Gly	Ser	Tyr 175	Trp	Cys	Lys	Ala	Glu 180
Thr	Val	Thr	His	Aro	Ile	Ara	Lvs	Gln	Ser	Leu	Gln	Ser	Gln	Ile

				185			•		190					195
His	Val	Gln	Arg	11e 200	Pro	Ile	Ser	Asn	Val 205	Ser	Leu	Glu	Ile	Arg 210
Ala	Pro	Gly	GΊγ	Gln 215	Val	Thr	Glu	Gly	Gln 220	Lys	Leu	Ile	Leu	Leu 225
Cys	Ser	Val	Ala	Gly 230	Gly	Thr	Gly	Asn	Val 235	Thr	Phe	Ser	Trp	Tyr 240
Arg	Glu	Ala	Thr	Gly 245	Thr	\$er	Met	Gly	Lys 250	Lys	Thr	Gln	Arg	Ser 255
Leu	Şer	Ala	Glu	Leu 260	Glu	Ile	Pro	Ala	Val 265	Lys	Glu	Ser	Asp	Ala 270
Gly	Lys	Tyr	Tyr	Cys 275	Arg	Ala	Asp	Asn	Gly 280	His	Val	Pro	Ile	Gln 285
Ser	Lys	Val	Val	Asn 290	Ile	Pro	Val	Arg	11e 295	Pro	Val	Ser	Arg	Pro 300
Val	Leu	Thr	Leu	Arg 305	Ser	Pro	Gly	Ala	Gln 310	Ala	Ala	Val	Gly	Asp 315
Leu	Leu	Glu	Leu	His 320	Cys	Glu	Ala	Leu	Arg 325	Gly	Ser	Pro	Pro	11e 330
Leu	Tyr	Gln	Phe	Tyr 335	His	Glu	Asp	Val	Thr 340	Leu	Gly	Asn	Ser	Ser 345
Ala	Pro	Ser	Gly	Gly 350	Gly	Ala	Ser	Phe	Asn 355	Leu	Ser	Leu	Thr	Ala 360
Glu	His	Ser	Gly	Asn 365	Tyr	Ser	Cys	Glu	Ala 370	Asn	Asn	Gly	Leu	Gly 375
Ala	Gln	Cys	Ser	Glu 380	Ala	Val.	Pro	Val	Ser 385	Ile	Ser	Gly	Pro	Asp 390
Gly	Tyr	Arg	Arg	Asp 395	Leu	Met	Thr	Ala	Gly 400	Val	Leu	Trp	Gly	Leu 405
Phe	Gly	Val	Leu	Gly 410	Phe	Thr	Gly	Val	Ala 415	Leu	Leu	Leu	Tyr	Ala 420
Leu	Phe	His	Lys	1le 425	Ser	Gly	Glu	Ser	Ser 430	Ala	Thr	Asn	Glu	Pro 435
Arg	Gly	Ala	Ser	Arg 440	Pro	Asn	Pro	Gln	Glu 445	Phe	Thr	Tyr	Ser	Ser 450
Pro	Thr	Pro	Asp	Met 455	Glu	Glu	Leu	Gln	Pro 460	Val	Tyr	Val	Asn	Val 465
Gly	Ser	Val	Asp	Val 470	Asp	Val	Val	Tyr	Ser 475	Gln	Val	Trp	Ser	Met 480
Gln	Gln	Pro	Glu	Ser 485	Ser	Ala	Asn	Ile	Arg	Thr	Leu	Leu	Glu	Asn 495

Lys Asp Ser Gln Val Ile Tyr Ser Ser Val Lys Lys Ser 500 505

<210> 17

<211> 1255 <212> PRT

5

<213> Homo sapien

Met 1	Glu	Leu	Ala	Ala 5	Leu	Суз	Arg	Trp	Gly 10	Leu	Leu	Leu	Ala	Leu 15
Leu	Pro	Pro	Gly	Ala 20	Ala	Ser	Thr	Gln	Val 25	Cys	Thr	Gly	Thr	Asp 30
Met	Lys	Leu	Arg	Leu 35	Pro	Ala	Ser	Pro	Glu 40	Thr	His	Leu	Asp	Met 45
Leu	Arg	His	Leu	Tyr 50	Gln	Gly	Cys	Gln	Val 55	Val	Gln	Gly	Asn	Leu 60
Glu	Leu	Thr	Tyr	Leu 65	Pro	Thr	Asn	Ala	Ser 70	Leu	Ser	Phe	Leu	Gln 75
Asp	Ile	Gln	Glu	Val 80	Gln	Gly	Tyr	Val	Leu 85	Ile	Ala	His	Asn	Gln 90
Val	Arg	Gln	Val	Pro 95	Leu	Gln	Arg	Leu	Arg 100	Ile	Val	Arg	Gly	Thr 105
Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr	Ala	Leû	Ala 115	Val	Leu	Asp	Asn	Gly 120
Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro	Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135
Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser	Leu 145	Thr	Gl u	Ile	Leu	Lys 150
Gly	Gly	Val	Leu	11e 155	Gln	Arg	Asn	Pro	Gln 160	Leu	Суѕ	Tyr	Gln	Asp 165
Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn	Asn	Gln	Leu	Ala 180
Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Суз	His	Pro	Cys 195
Ser	Pro	Met	Cys	Lys 200	G l y	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser	Ser	Glu 210
Asp	Cys	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Cys	Ala 225
Arg	Суз	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Cys 235	Cys	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Cys 255

Leu	His	Phe	Asn	His 260	Ser	Gly	Ile	Cys	Glu 265	Leu	His	Cys	Pro	Ala 270
Leu	Val	Thr	Tyr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Йet	Pro	Asn	Pro 285
Glu	Gly	Arg	Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Cys	Pro 300
Tyr	Asn	Tyr	Leu	Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Cys 315
Pro	Leu	His	Asn	Gln 320	Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330
Суз	Glu	Lys	Cys	Ser 335	Lys	Pro	Суѕ	Ala	Arg 340	Val	Cys	Туг	Gly	Leu 345
Gly	Met	Glu	His	Leu 350	Arg	Glu	Val	Arg	Ala 355	Val	Thr	Ser	Ala	Asn 360
Ile	Gln	Glu	₽he	Ala 365	Gly	Cys	Lys	гля	Ile 370	Phe	G1 y	Ser	Leu	Ala 375
Phe	Leu	Pro	Glu	Ser 380	Phe	Asp	Gly	Asp	Pro 385	Ala	Ser	Asn	Thr	Ala 390
Pro	Leu	Gln	Pro	Glu 395	Gln	Leu	Gln	Val	Phe 400	Glu	Thr	Leu	Glu	Glu 405
Ile	Thr	Gly	Tyr	Leu 410	Tyr	Ile	Ser	Ala	Trp 415	Pro	Asp	Ser	Leu	Pro 420
Asp	Leu	Ser	Val	Phe 425	Gln	Asn	Leu	Gln	Val 430	Ile	Arg	Gly	Arg	11e 435
Leu	His	Asn	Gly	Ala 440	Tyr	Ser	Leu	Thr	Leu 445	Gln	Gly	Leu	Gly	Ile 450
Ser	Trp	Leu	Gly	Leu 455	Arg	Ser	Leu	Arg	Glu 460	Leu	Gly	Ser	Gly	Leu 465
Ala	Leu	Ile	His	His 470	Asn	Thr	His	Leu	Cys 475	Phe	Val	His	Thr	Val 480
Pro	Trp	Asp	Gln	Leu 485	Phe	Arg	Asn	Pro	His 490	Gln	Ala	Leu	Leu	His 495
Thr	Ala	Asn	Arg	Pro 500	Glu	Asp	Glu	Суз	Val 505	Gly	Glu	Gly	Leu	Ala 510
Cys	His	Gln	Leu	Cys 515	Ala	Arg	Gly	His	Cys 520	Trp	Gly	Pro	Gly	Pro 525
Thr	Gln	Суз	Val	Asn 530	Cys	Ser	Gln	Phe	Leu 535	Arg	Gly	Gln	Glu	Cys 540
Val	Glu	Glu	Cys	Arg 545	Val	Leu	Gln	Gly	Leu 550	Pro	Arg	Glu	Tyr	Val 555
Asn	Ala	Arg	His	Суз	Leu	Pro	Cys	His	Pro	Glu	Суѕ	Gln	Pro	Gln

	560	565		570
Asn Gly Ser Val	Thr Cys Phe 575	Gly Pro Glu 580	Ala Asp Gln	Cys Val 585
Ala Cys Ala His	Tyr Lys Asp 590	Pro Pro Phe 595	Cys Val Ala	Arg Cys 600
Pro Ser Gly Val	Lys Pro Asp 605	Leu Ser Tyr 610	Met Pro Ile	Trp Lys 615
Phe Pro Asp Glu	Glu Gly Ala 620	Cys Gln Pro 625	Cys Pro Ile	Asn Cys 630
Thr His Ser Cys	Val Asp Leu 635	Asp Asp Lys 640	Gly Cys Pro	Ala Glu 645
Gln Arg Ala Ser	Pro Leu Thr 650	Ser Ile Ile 655	Ser Ala Val	Val Gly 660
Ile Leu Leu Val	Val Val Leu 665	Gly Val Val 670	Phe Gly Ile	Leu Ile 675
Lys Arg Arg Gln	Gln Lys Ile 680	Arg Lys Tyr 685	Thr Met Arg	Arg Leu 690
Leu Gln Glu Thr	Glu Leu Val 695	Glu Pro Leu 700	Thr Pro Ser	Gly Ala 705
Met Pro Asn Gln	Ala Gln Met 710	Arg Ile Leu 715	Lys Glu Thr	Glu Leu 720
Arg Lys Val Lys	Val Leu Gly 725	Ser Gly Ala 730	Phe Gly Thr	Val Tyr 735
Lys Gly Ile Trp	Ile Pro Asp 740	Gly Glu Asn 745	Val Lys Ile	Pro Val 750
Ala Ile Lys Val	Leu Arg Glu 755	Asn Thr Ser 760	Pro Lys Ala	Asn Lys 765
Glu Ile Leu Asp	Glu Ala Tyr 770	Val Met Ala 775	Gly Val Gly	Ser Pro 780
Tyr Val Ser Arg	Leu Leu Gly 785	Ile Cys Leu 790	Thr Ser Thr	Val Gln 795
Leu Val Thr Gln	Leu Met Pro 800	Tyr Gly Cys 805	Leu Leu Asp	His Val 810
Arg Glu Asn Arg	Gly Arg Leu 815	Gly Ser Gln 820	Asp Leu Leu	Asn Trp 825
Cys Met Gln Ile	Ala Lys Gly 830	Met Ser Tyr 835	Leu Glu Asp	Val Arg 840
Leu Val His Arg	Asp Leu Ala 845	Ala Arg Asn 850	Val Leu Val	Lys Ser 855
Pro Asn His Val	Lys Ile Thr 860	Asp Phe Gly 865	Leu Ala Arg	Leu Leu 870

Asp Ile Asp	Glu Thr 875	Glu	Tyr	His	Ala	Asp 880	СŢЛ	GŢĀ	Lys	Val	Pro 885
Ile Lys Trp	Met Ala 890	Leu	G1u	Ser	Ile	Leu 895	Arg	Arg	Arg	Phe	Thr 900
His Gln Ser	Asp Val 905	Trp	Ser	Tyr	Gly	Val 910	Thr	Val	Trp	Glu	Leu 915
Met Thr Phe	Gly Ala 920	ГÀз	Pro	Tyr	Asp	Gly 925	Ile	Pro	Ala	Arg	Glu 930
Ile Pro Asp	Leu Leu 935	Glu	Lys	Gly	Glu	Arg 940	Leu	Pro	Gln	Pro	Pro 945
Ile Cys Thr	Ile Asp 950	Val	Tyr	Met	I l e	Met 955	Val	Lys	Cys	Trp	Met 960
Ile Asp Ser	Glu Cys 965	Arg	Pro	Arg	Phe	Arg 970	Glu	Leu	Val	Ser	Glu 975
Phe Ser Arg	Met Ala 980	Arg .	Asp	Pro	Gln	Arg 985	Phe	Val	Val	Ile	Gln 990
Asn Glu Asp	Leu Gly 995	Pro	Ala	Ser		Leu 1000	Ąsp	Ser	Thr		Tyr 1005
Arg Ser Leu	Leu Glu 1010	Asp	Asp	Asp		G1y 1015	Asp	Leu	Val	-	Ala .020
Glu Glu Tyr	Leu Val 1025	₽ro	G1n	Gln		Phe 1030	Phe	Cys	Pro	-	Pro 1035
Ala Pro Gly	Ala Gly 1040	Gly	Met	Val		His 1045	Arg	His	Arg		Ser 1050
Ser Thr Arg	Ser Gly 1055	Gly	Gly	Asp		Thr 1060	Leu	Gly	Leu		Pro .065
Ser Glu Glu	Glu Ala 1070	Pro	Arg	Ser		Leu 1075	Ala	Pro	Ser		Gly .080
Ala Gly Ser	Asp Val 1085	Phe	Asp	Gly		Leu .090	Gly	Met	Gly		Ala .095
Lys Gly Leu	Gln Ser 1100	Leu	Pro	Thr		Asp 1105	Pro	Ser	Pro		Gln 110
Arg Tyr Ser	Glu Asp 1115	Pro	Thr	Val		Leu 120	Pro	Ser	Glu		Asp 125
Gly Tyr Val	Ala Pro 1130	Leu	Thr	Cys		Pro 135	Gln	Pro	Glu	_	Val 140
Asn Gln Pro	Asp Val 1145	Arg	Pro	Gln		Pro .150	Ser	Pro	Arg		Gly 155
Pro Leu Pro	Ala Ala 1160	Arg	Pro	Ala	_	Ala 165	Thr	Leu	Glu	-	Pro 170

Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val Phe 1175 1180 1185

Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln 1190 1195 1200

Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro 1205 1210 1215

Ala Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg 1220 1225 1230

Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn 1235 1240 1245

Pro Glu Tyr Leu Gly Leu Asp Val Pro Val 1250 1255

<210> 18

<211> 344

<212> PRT

<213> Homo sapien

Met 1	Gly	Pro	Pro	Ser 5	Ala	Pro	Pro	Cys	Arg 10	Leu	His	Val	Pro	Trp 15
Lys	Glu	Val	Leu	Leu 20	Thr	Ala	Ser	Leu	Leu 25	Thr	Phe	Trp	Asn	Pro 30
Pro	Thr	Thr	Ala	Lys 35	Leu	Thr	Ile	Glu	Ser 40	Thr	Pro	Phe	Asn	Val 45
Ala	Glu	Gly	Lys	Glu 50	Val	Leu	Leu	Leu	Ala 55	His	Asn	Leu	Pro	G 1 n 60
Asn	Arg	Ile	Gly	Tyr 65	Ser	Trp	Tyr	Lys	Gly 70	Glu	Arg	Val	Asp	Gly 75
Asn	Ser	Leu	Ile	Val 80	Gly	Tyr	Val	lle	Gly 85	Thr	Gln	Gln	Ala	Thr 90
Pro	Gly	Pro	Ala	Tyr 95	Ser	Gly	Arg	Glu	Thr 100	Ile	Tyr	Pro	Asn	Ala 105
Ser	Leu	Leu	Ile	Gln 110	Asn	Val	Thr	Gln	Asn 115	Asp	Thr	Gly	Phe	Tyr 120
Thr	Leu	Gln	۷al	Ile 125	Lys	Ser	Asp	Leu	Val 130	Asn	Glu	Glu	Ala	Thr 135
Gly	Gln	Phe	His	Val 140	Tyr	Pro	Glu	Leu	Pro 145	Lys	Pro	Ser	Ile	Ser 150
Ser	Asn	Asn	Ser	Asn 155	Pro	Val	Glu	Asp	Lys 160	Asp	Ala	Val	Ala	Phe 165
Thr	Сув	Glu	Pro	Glu 170	Val	Gln	Asn	Thr	Thr 175	Tyr	Leu	Trp	Trp	Val 180
Asn	Glv	Gln	Ser	Leu	Pro	Val	Ser	Pro	Arq	Leu	Gln	Leu	Ser	Asn

				185					190					195
Gly	Asn	Met	Thr	Leu 200	Thr	Leu	Leu	Ser	Val 205	Lys	Arg	Asn	Asp	Ala 210
Gly	Ser	Туг	Glu	Cys 215	G1 u	Ile	Gln	Asn	Pro 220	Ala	Ser	Ala	Asn	Arg 225
Ser	Asp	Pro	Val	Thr 230	Leu	Asn	Val	Leu	Tyr 235	Glу	Pro	Asp	Val	Pro 240
Thr	Ile	Ser	Pro	Ser 245	Lys	Ala	Asn	Tyr	Arg 250	Pro	Gly	Glu	Asn	Leu 255
Asn	Leu	Ser	Cys	His 260	Ala	Ala	Ser	Asņ	Pro 265	Pro	Ala	Gln	Tyr	Ser 270
Trp	Phe	Ile	Asn	Gly 275	Thr	Phe	Gln	Gln	Ser 280	Thr	G1n	Glu	Leu	Phe 285
Ile	Pro	Asn	Ile	Thr 290	Val	Asn	Asn	Ser	Gly 2 9 5	Ser	Tyr	Met	Суз	Gln 300
Ala	His	Asn	Ser	Ala 305	Thr	Gly	Leu	Asn	Arg 310	Thr	Thr	Val	Thr	Met 315
lle	Thr	Val	Ser	Gly 320	Ser	Ala	Pro	Val	Leu 325	Ser	Ala	Val	Ala	Thr 330
Val	Gly	Ile	Thx	Ile 335	Gly	Val	Leu	Ala	Arg 340	Val	Ala	Leu	Ile	

<210> 19

<211> 411

<212> PRT

5

<213> Homo sapien

Met 1	Trp	Ser	Gly	Trp 5	Trp	Leu	Trp	Pro	Leu 10	Val	Ala	Val	Суѕ	Thr 15
Ala	Asp	Phe	Phe	Arg 20	Asp	Glu	Ala	Glu	Arg 25	lle	Met	Arg	Asp	Ser 30
Pro	Val	Ile	Asp	Gly 35	His	Asn	Asp	Leu	Pro 40	Trp	Gln	Leu	Leu	Asp 45
Met	Phe	Asn	Asn	Arg 50	Leu	Gln	Asp	Glu	Arg 55	Ala	Asn	Leu	Thr	Thr 60
Leu	Ala	Gly	Thr	His 65	Thr	Asn	Ile	Pro	L ys 70	Leu	Arg	Ala	Gly	Phe 75
Val	Gly	Gly	Gln	Phe 80	Trp	Ser	Val	Tyr	Thr 85	Pro	Сув	Asp	Thr	Gln 90
Asn	Lys	Asp	Ala	Val 95	Arg	Arg	Thr	Leu	Glu 100	Gln	Met	Asp	Val	Val 105
His	Arg	Met	Суз	Arg		Tyr			Thr		Leu	-	Val	Thr

Ser	Ser	Ala	Gly	Ile 125	Arg	Gln	Ala	Phe	Arg 130	Glu	GӀу	Lys	Val	Ala 135
Ser	Leu	Ile	Ġly	Val 140	Glu	Gly	Gly	His	Ser 145	Ile	Ąsp	Ser	Ser	Leu 150
Gly	Val	Leu	Arg	Ala 155	Leu	Тут	Gln	Leu	Gly 160	Met	Arg	Туг	Leu	Thr 165
Leu	Thr	His	Şer	Cys 170	Asn	Thr	Pro	Trp	Ala 175	Asp	Asn	Trp	Leu	Val 180
Asp	Thr	Gly	Asp	Ser 185	Glu	Pro	Gln	Ser	Gln 190	Gly	Leu	Ser	Pro	Phe 195
Gly	Gln	Arg	Val	Val 200	Lys	Glu	Leu	Asn	Arg 205	Leu	Gly	Val	Leu	Ile 210
Asp	Leu	Ala	His	Val 215	Ser	Val	Ala	Thr	Met 220	Lys	Ala	Thr	Leu	Gln 225
Leu	Ser	Arg	Ala	Pro 230	Val	Ile	Phe	Ser	His 235	Ser	Ser	Ala	Tyr	Ser 240
Val	Cys [.]	Ala	Ser	Arg 245	Arg	Asn	Val	Pro	Asp 250	Asp	Val	Leu	Arg	Leu 255
Val	Lys	Gln	Thr	Asp 260	Ser	Leu	Val	Met	Val 265	Asn	Phe	Tyr	Asn	Asn 270
Tyr	Ile	Ser	Cys	Thr 275	neA	Lys	Ala	Asn	Leu 280	Ser	Gln	Val	Ala	Asp 285
His	Leu	Asp	His	11e 290	Lys	G1u	Val	Ala	Gly 295	Ala	Arg	Ala	Val	300 Gly
Phe									295					
	Gly	Gly	Asp	Phe 305	Asp	Gly	Val	Pro		Val	Pro	Gl u	Gly	Leu 315
Glu						_			Arg 310				-	315
	Asp	Val	Ser	305 Lys	Tyr	Pro	Asp	Leu	Arg 310 Ile 325	Ala	Glu	Leu	Leu	315 Arg 330
Arg	Asp Asn	Val Trp	Ser Thr	305 Lys 320 Glu	Tyr Ala	Pro Glu	Asp Val	Leu Lys	Arg 310 Ile 325 Gly 340	Ala Ala	Glu Leu	Leu Ala	Leu	315 Arg 330 Asn 345
Arg Leu	Asp Asn Leu	Val Trp Arg	Ser Thr Val	305 Lys 320 Glu 335 Phe	Tyr Ala Glu	Pro G <u>l</u> u Ala	Asp Val Val	Leu Lys Glu	Arg 310 Ile 325 Gly 340 Gln 355	Ala Ala Ala	Glu Leu Ser	Leu Ala Asn	Leu Asp Leu	315 Arg 330 Asn 345 Thr 360
Arg Leu Gln	Asp Asn Leu Ala	Val Trp Arg	Ser Thr Val Glu	305 Lys 320 Glu 335 Phe 350 Glu	Tyr Ala Glu Glu	Pro Glu Ala Pro	Asp Val Val	Leu Lys Glu Pro	Arg 310 Ile 325 Gly 340 Gln 355 Leu 370	Ala Ala Ala Asp	Glu Leu Ser Gln	Leu Ala Asn Leu	Leu Asp Leu Gly	315 Arg 330 Asn 345 Thr 360 Gly 375
Arg Leu Gln Ser	Asp Asn Leu Ala Cys	Val Trp Arg Pro	Ser Thr Val Glu	305 Lys 320 Glu 335 Phe 350 Glu 365 His	Tyr Ala Glu Glu Tyr	Pro Glu Ala Pro Gly	Asp Val Val Ile	Leu Lys Glu Pro Ser	Arg 310 Ile 325 Gly 340 Gln 355 Leu 370 Ser 385	Ala Ala Ala Asp	Glu Leu Ser Gln Ala	Leu Ala Asn Leu Ser	Leu Asp Leu Gly Ser	315 Arg 330 Asn 345 Thr 360 Gly 375 Leu 390

- <210> 20 <211> 553 <212> PRT 5 <213> Homo sapien
 - <400> 20

Met 1	Arg	Ala	Pro	Gly 5	Arg	Pro	Ala	Leu	Arg 10	Pro	Leu	Pro	Leu	Pro 15
Pro	Leu	Leu	Leu	Leu 20	Leu	Leu	Ala	Ala	Pro 25	Trp	Gly	Arg	Ala	Val 30
Pro	Cys	Val	Ser	Gly 35	Gly	Leu	Pro	Lys	Pro 40	Ala	Asn	Ile	Thr	Phe 45
Leu	Ser	Ile	Asn	Met 50	Lys	Asn	Val	Leu	Gln 55	Trp	Thr	Pro	Pro	Glu 60
Gly	Leu	Gln	Gly	Val 65	Lys	Val	Thr	Tyr	Thr 70	Val	Gln	Tyr	Phe	Ile 75
Tyr	Gly	Gln	Lys	Lys 80	Trp	Leu	Asn	Lys	Ser 85	Glu	Cys	Arg	Asn	Ile 90
Asn	Arg	Thr	Tyr	Суs 95	Asp	Leu	Ser	Ala	Glu 100	Thr	Ser	Asp	Tyr	Glu 105
His	Gln	Tyr	Tyr	Ala 110	Lys	Val	Lys	Ala	Ile 115	Trp	Gly	Thr	Lys	Cys 120
Ser	Lys	Trp	Ala	Glu 125	Ser	Gly	Arg	Phe	Tyr 130	Pro	Phe	Leu	Gl u	Thr 135
Gln	Ile	Gly	Pro	Pro 140	Glu	Val	Ala	Leu	Thr 145	Thr	Asp ·	Glu	Lys	Ser 150
Ile	Ser	Val	Val	Leu 155	Thr	Ala	Pro	Glu	Lys 160	Trp	Lys	Arg	Asn	Pro 165
Glu	Asp	Leu	Pro	Val 170	Ser	Met	Gln	Gln	Ile 175	Tyr	Ser	Asn	Leu	Lys 180
Tyr	Asn	Val	Ser	Val 185	Leu	Asn	Thr	Lys	Ser 190	Asn	Arg	Thr	Trp	Ser 195
Gln	Cys	Val	Thr	Asn 200	His	Thr	Leu	Val	Leu 205	Thr	Trp	Leu	Glu	Pro 210
Asn	Thr	Leu	Tyr	Cys 215	Val	His	Val	Glu	Ser 220	Phe	Val	Pro	Gly	Pro 225
Pro	Arg	Arg	Ala	Gln 230	Pro	Ser	Glu	Lys	Gln 235	Cys	Ala	Arg	Thr	Leu 240
Lys	Asp	Gln	Ser	Ser 245	Glu	Phe	Lys	Ala	Lys 250	Ile	Ile	Phe	Trp	Tyr 255
Val	Leu	Pro	Ile	Ser 260	Ile	Thr	Val	Phe	Leu 265	Phe	Ser	Val	Met	Gly 270
Tyr	Ser	Ile	Tyr	Arg	Tyr	Ile	His	Val	Gly	Lys	Glu	Lys	His	Pro

				275					280					285
Ala	Asn	Leu	Ile	Leu 290	Ile	Tyr	Gly	Asn	Glu 295	Phe	Asp	Lys	Arg	Phe 300
Phe	Val	Pro	Ala	G1u 305	Lys	Ile	Val	Ile	Asn 310	Phe	Ile	Thr	Leu	Asn 315
Ile	Ser	Asp	Asp	Ser 320	Lys	Ile	Ser	His	Gln 325	Asp	Met	Ser	Leu	Leu 330
Gly	Lys	Ser	Ser	Asp 335	Val	Ser	Ser	Leu	Asn 340	Asp	Pro	Gln	Pro	Ser 345
Gly	Asn	Leu	Arg	Pro 350	Pro	Gln	Glu	Glu	Glu 355	Glu	Val	Lys	His	Leu 360
Gly	Tyr	Ala	Ser	His 365	Leu	Met	Glu	Ile	Phe 370	Суѕ	Asp	Ser	Glu	Glu 375
Asn	Thr	Glu	Gly	Thr 380	Ser	Phe	Thr	Gln	Gln 385	Glu	Ser	Leu	Ser	Arg 390
Thr	Ile	Pro	Pro	Asp 395	Lys	Thr	Val	Ile	Glu 400	Tyr.	Glu	Tyr	Asp	Val 405
Arg	Thr	Thr	Asp	Ile 410	Cys	Ala	Gly	Pro	Glu 415	Glu	Gln	Glu	Leu	Ser 420
Leu	Gln	Glu	Glu	Val 425	Ser	Thr	Gln	Gly	Thr 430	Leu	Leu	Glu	Ser	Gln 435
Ala	Ala	Leu	Ala	Val 440	Leu	Gly	Pro	Gln	Thr 445	Leu	Gln	Tyr	Ser	Tyr 450
Thr	Pro	Gln	Leu	Gln 455	Asp	Leu	Asp	Pro	Leu 460	Ala	Gln	Glu	His	Thr 465
Asp	Ser	Glu	Glu	Gly 470	Pro	Glu	Glu	Glu	Pro 475	Ser	Thr	Thr	Leu	Val 480
Asp	Trp	Asp	Pro	Gln 485	Thr	Gly	Arg	Leu	Cys 490	Ile	Pro	Ser	Leu	Ser 495
Ser	Phe	Asp	Gln	Asp 500	Ser	Glu	Gly	Cys	Glu 505	Pro	Ser	Glu	Gly	Asp 510
Gly	Leu	Gly	Glu	Glu 515	Gly	Leu	Leu	Ser	Arg 520	Leu	Tyr	Glu	Glu	Pro 525
Ala	Pro	Asp	Arg	Pro 530	Pro	Gly	Glu	Asn	Glu 535	Thr	Туг	Leu	Met	Gln 540
Phe	Met	Glu	Glu	Trp 545	GТЪ	Leu	Tyr	Val.	Gln 550	Met	Glu	Asn		

<210> 21 <211> 911 <212> PRT <213> Homo sapien

<400> 21

5

Met 1	Ala	Gln	Leu	Phe 5	Leu	Pro	Leu	Leu	Ala 10	Ala	Leu	Val	Leu	Ala 15
Gln	Ala	Pro	Ala	Ala 20	Leu	Ala	Asp	Val	Leu 25	Glu	Gly	Asp	Ser	Ser 30
Glu	Asp	Arg	Ala	Phe 35	Arg	Val	Arg	Ile	Ala 40	G1 y	Asp	Ala	Pro	Leu 45
Gln	Gly	Val	Leu	Gly 50	Gly	Ala	Leu	Thr	Ile 55	Pro	Суз	His	Val	His 60
Tyr	Leu	Arg	Pro	Pro 65	Pro	Ser	Arg	Arg	Ala 70	Val	Leu	Gly	Ser	Pro 75
Arg	Val	Lys	Trp	Thr 80	Phe	Leu	Ser	Arg	Gly 85	Arg	Glu	Ala	Gl u	Val 90
Leu	Val	Ala	Arg	Gly 95	Val	Arg	Val	Lys	Val 100	Asn	Glu	Ala	Tyr	Arg 105
Phe	Arg	Val	Ala	Leu 110	Pro	Ala	Tyr	Pro	Ala 115	Ser	Leu	Thr	Asp	Val 120
Ser	Leu	Ala	Leu	Ser 125	Glu	Leu	Arg	Pro	Asn 130	Asp	Ser	Gly	Ile	Tyr 135
Arg	Cys	Glu	Val	Gln 140	His	Gly	Ile	Asp	Asp 145	Ser	Ser	Asp	Ala	Val 150
Glu	Val	Lys	Val	Lys 155	Gly	Val	Val	Phe	Leu 160	Tyr	Arg	Glu	Gly	Ser 165
Ala	Arg	Tyr	Ala	Phe 170	Ser	Phe	Ser	Gly	Ala 175	Gln	Glu	Ala	Суз	Ala 180
Arg	Ile	Gly	Ala	His 185	Ile	Ala	Thr	Pro	Glu 190	Gln	Leu	Tyr	Ala	Ala 195
Tyr	Leu	Gly	Gly	Tyr 200	Glu	Gln	Cys	Asp	Ala 205	Gly	Trp	Leu	Ser	Asp 210
Gln	Thr	Val	Arg	Tyr 215	Pro	Ile	Gln	Thr	Pro 220	Arg		Ala	Cys	Tyr 225
Gly	Asp	Met	Asp	Gly 230	Phe	Pro	Gly	Val	Arg 235	Asn	Tyr	Gly	Val	Val 240
Asp	Pro	Asp	Asp	Leu 245	Tyr	Asp	Val	Tyr	Cys 250	Tyr	Ala	Glu	Asp	Leu 255
Asn	Gly	Glu	Leu	Phe 260	Leu	Gly	Asp	Pro	Pro 265	Glu	Lys	Leu	Thr	Leu 270
Glu	Glu	Ala	Arg	Ala 275	Tyr	Cys	Gln	Glu	Arg 280	Gly	Ala	Glu	Ile	Ala 285
Thr	Thr	Gly	Gln	Leu 290	Tyr	Ala	Ala	Trp	Asp 295	Gly	G1 y	Leu	Asp	His 300

Суз	Ser	Pro	Gly	Trp 305	Leu	Ala	Asp	GLy	Ser 310	Val	Arg	Tyr	Pro	Ile 315
Val	The	Pro	Ser	Gln 320	Arg	Cys	Gly	Gly	Gly 325	Leu	Pro	GΙΆ	۷al	Lys 330
Thr	Leu	Phe	Leu	Phe 335	Pro	Asn	Gln	Thr	G1 y 340	Phe	Pro	Asn	Lys	His 345
Ser	Arg	Phe	Asn	Val 350	Tyr	Суз	Phe	Arg	Asp 355	Ser	Ala	Gln	Pro	Ser 360
Ala	Ile	Pro	G1u	Ala 365	Ser	Asn	Pro	Ala	Ser 370	Asn	Pro	Ala	Ser	Asp 375
Gly	Leu	Glu	Ala	Ile 380	Val	Thr	Val	Thr	Glu 385	Thr	Leu	Glu	Glu	Leu 390
Gln	Leu	Pro	Gln	Glu 395	Ala	Thr	Glu	Ser	Glu 400	Ser	Arg	Gly	Ala	Ile 405
Туг	Ser	Ile	Pro	Ile 410	Met	Glu	Asp	Gly	Gly 415	Gly	Gly	Ser	Ser	Thr 420
Pro	Glu	Asp	Pro	Ala 425	Glu	Ala	Pro	Arg	Thr 430	Leu	Leu	Glu	Phe	Glu 435
Thr	Gln	Ser	Met	Val 440	Pro	Pro	Thr	Gly	Phe 445	Ser	G1u	Glu	Glu	Gly 450
Lys	Ala	Leu	Glu	Glu 455	Glu	Glu	Lys	Tyr	Glu 460	Asp	Glu	Glu	Gl u	Lys 465
Glu	G1u	Glu	Glu	Glu 470	Glu	Glu	GÍu	Val	Glu 475	Asp	Glu	Ala	Leu	Trp 480
Ala	Trp	Pro	Ser	Glu 485	Leu	Ser	Ser	Pro	Gly 490	Pro	Glu	Ala	Ser	Leu 495
Pro	Thr	Glu	Pro	Ala 500	Ala	Gln	Glu	Lys	Ser 505	Leu	Ser	Gin	Ala	Pro 510
Ala	Arg	Ala	Val	Leu 515	Gln	Pro	Gly	Ala	Ser 520	Pro	Leu	Pro	Asp	Gly 525
Glu	Ser	Glu	Ala	Ser 530	Arg	Pro	Pro	Arg	Val 535	His	Gly	Pro	Pro	Thr 540
Glu	Thr	Leu	Pro	Thr 545	Pro	Arg	Glu	Arg	Asn 550	Leu	Ala	Ser	Pro	Ser 555
Pro	Ser	Thr	Leu	Val 560	Glu	Ala	Arg	Glu	Val 565	Gly	G1u	Ala	Thr	Gly 570
Gly	Pro	Glu	Leu	Ser 575	Gly	Val	Pro	Arg	Gly 580	Glu	Ser	Glu	Glu	Thr 585
Gly	Ser	Ser	Gl u	Gly 590	Ala	Pro	Ser	Leu	Leu 59 5	Pro	Ala	Thr	Arg	Ala 600
Pro	Glu	Gly	Thr	Arg	Glu	Leu	Glu	Ala	Pro	Ser	Glu	Asp	Asn	Ser

		605					610					615
Gly Arg Thr	Ala	Pro 620	Ala	Gly	Thr	Ser	Val 625	Gln	Ala	Gln	Pro	Val 630
Leu Pro Thr	Asp	Ser 635	Ala	Ser	Arg	Gly	Gly 640	Val	Ala	Val	Val	Pro 645
Ala Ser Gly	Asp	Cys 650	Val	Pro	Ser	Pro	Cys 655	His	Asn	Gly	Gly	Thr 660
Cys Leu Glu	Glu	Glu 665	Gl u	Gly	Val	Arg	Cys 670	Leu	Суѕ	Leu	Pro	Gly 675
Tyr Gly Gly	Asp	Leu 680	Суз	Asp	Val	Gly	Leu 685	Arg	Phe	Суз	Asn	Pro 690
Gly Trp Asp	Ala	Phe 695	Gln	Gly	Ala	Cys	Tyr 700	Lys	His	Phe	Ser	Thr 705
Arg Arg Ser	Trp	Glu 710	G1 u	Ala	Glu	Thr	Gln 715	Cys	Arg	Met	Tyr	Gly 720
Ala His Leu	Ala	Ser 725	Ile	Ser	Thr	Pro	Glu 730	Glu	Gln	Asp	Phe	Ile 735
Asn Asn Arg	Tyr	Arg 740	Glu	Tyr	Gln	Trp	11e 745	Gly	Leu	Asn	Asp	Arg 750
Thr Ile Glu	Gly	Asp 755	Phe	Leu	Trp	Ser	Asp 760	Gly	Val	Pro	Leu	Leu 765
Tyr Glu Asn	Trp	Asn 770	Pro	Gly	Gln	Pro	Asp 775	Ser	Tyr	Phe	Leu	Ser 780
Gly Glu Asn	Cys	Val 785	Val	Met	Val	Trp	His 790	Åsp	Gln	Gly	Gln	Trp 795
Ser Asp Val	Pro	Cys 800	Asn	Туг	His	Leu	Ser 805	Tyr	Thr	Cys	Lys	Met 810
Gly Leu Val	Ser	Cys 815	Gly	Pro	Pro	Pro	G1u 820	Leu	Pro	Leu	Ala	Gln 825
Val Phe Gly	Arg	Pro 830	Arg	Leu	Arg	Tyr	Glu 835	Val	Asp	Thr	Val	Leu 840
Arg Tyr Arg	Cys	Arg 845	Glu	Gly	Leu	Ala	Gln 850	Arg	Asn	Leu	Pro	Leu 855
Ile Arg Cys	Gln	Glu 860	Asn	Gly	Arg	Trp	Glu 865	Ala	Pro	Gln	Ile	Ser 870
Cys Val Pro	Arg	Arg 875	Pro	Ala	Arg	Ala	Leu 880	His	Pro	Glu	Glu	Asp 885
Pro Glu Gly	Arg	Gln 890	Gly	Arg	Leu	Leu	Gly 895	Arg	Trp	Lys	Ala	Leu 900
Leu Ile Pro	Pro	Ser 905	Ser	Pro	Met	Pro	Gly 910	Pro				

<210> 22 <211> 987 <212> PRT <213> Homo sapien

<400> 22

5

Met 1	Ala	Leu	Arg	Arg 5	Leu	Gly	Ala	Ala	Leu 10	Leu	Leu	Leu	Pro	Leu 15
Leu	Ala	Ala	Val	Glu 20	Glu	Thr	Leu	Met	Asp 25	Ser	Thr	Thr	Ala	Thr 30
Ala	Glu	Leu	Gly	Trp 35	Met	Val	His	Pro	Pro 40	Ser	Gly	Trp	Glu	Glu 45
Val	Ser	Gly	Tyr	Asp 50	Glu	Asn	Met	Asn	Thr 55	Ile	Arg	Thr	Tyr	Gln 60
Val	Cys	Asn	Val	Phe 65	Glu	Ser	Ser	Gln	Asn 70	Asn	Trp	Leu	Arg	Thr 75
Lys	Phe	Ile	Arg	Arg 80	Arg	Gly	Ala	His	Arg 85	Ile	His	Val	Glu	Met 90
Lys	Phe	Ser	Val	Arg 95	Asp	Суз	Ser	Ser	Ile 100	Pro	Ser	Val	Pro	Gly 105
Ser	Cys	Lys	Glu	Thr 110	Phe	Asn	Leu	Tyr	Tyr 115	Tyr	Glu	Ala	Asp	Phe 120
Asp	Ser	Ala	Thr	Lys 125	Thr	Phe	Pro	Asn	Trp 130	Met	Glu	Asn	Pro	Trp 135
Val	Lys	Val	Asp	Thr 140	Ile	Ala	Ala	Asp	Glu 145	Ser	Phe	Ser	Gln	Val 150
Asp	Leu	Gly	Gly	Arg 155	Val	Met	L ys	Ile	Asn 160	Thr	Glu	Val	Arg	Ser 165
Phe	Gly	Pro	Val	Ser 170	Arg	Ser	Gly	Phe	Tyr 175	Leu	Ala	Phe	Gln	Asp 180
Tyr	Gly	Gly	Суз	Met 185	Ser	Leu	Ile	Ala	Val 190	Arg	Val	Phe	Tyr	Arg 195
Lys	Cys	Pro	Arg	Ile 200	Ile	Gln	Asn	Gly	Ala 205	Ile	Phe	Gln	Glu	Thr 210
Leu	Ser	Gly	Ala	Glu 215	Ser	Thr	Ser	Leu	Val 220	Ala	Ala	Arg	Gly	Ser 225
Cys	Ile	Ala	Asn	Ala 230	Gl u	G1u	Val	Asp	Val 235	Pro	Ile	Lys	Leu	Tyr 240
Cys	Asn	['] Gly	Asp	Gly 245	Glu	Trp	Leu	Val	Pro 250	Ile	Gly	Arg	Cys	Met 255
Cys	Lys	Ala	Gly	Phe 260	Glu	Ala	Val	G1u	Asn 265	Gly	Thr	Val	Суз	Arg 270

Gly	Cys	Pro	Ser	Gly 275	Thr	Phe	Lys	Ala	Asn 280	Gln	Gly	Asp	Gl u	Ala 285
Cys	Thr	His	Cys	Pro 290	Ile	Asn	Ser	Arg	Thr 295	Thr	Ser	Glu	Gly	Ala 300
Thr	Asn	Суз	Val	Cys 305	Arg	Asn	Gly	Tyr	Tyr 310	Arg	Ala	Asp	Leu	Asp 315
Pro	Leu	Asp	Met	Pro 320	Cys	Thr	Thr	lle	Pro 325	Ser	Ala	Pro	Gln	Ala 330
Val	Ile '	Ser	Ser	Val 335	Asn	Glu	Thr	Ser	Leu 340	Met	Leu	Glu	Trp	Thr. 345
Pro	Pro	Arg	Asp	Ser 350	Gly	Gly	Arg	Glu	Asp 355	Leu	Val	Tyr	Asn	Ile 360
Ile	Cys	Lys	Ser	Cys 365	Gly	Ser	Gly	Arg	Gly 370	Ala	Cys	Thr	Arg	Cys 37 5
Gly	Asp	Asn	۷al	Gln 380	Tyr	Ala	Pro	Arg	Gln 385	Leu	Gly	Leu	Thr	Glu 390
Pro	Arg	Ile	Tyr	Ile 395	Ser	Asp	Leu	Leu	Ala 400	His	Thr	Gl n	Tyr	Thr 405
Phe	Glu	Ile	Gln	Ala 410	Val	Asn	Gly	Val	Thr 415	Asp	Gln	Ser	Pro	Phe 420
Ser	Pro	Gln	Phe	Ala 425	Ser	Val	Asn	Ile	Thr 430	Thr	Asn	Gln	Ala	Ala 435
Pro	Ser	Ala	Val	Ser 440	Ile	Met	His	Gln	Val 445	Ser	Arg	Thr	Val	Asp 450
Ser	Ile	Thr	Leu	Ser 455	Trp	Ser	Gln	Pro	Asp 460	Gln	Pro	Asn	Gly	Val 465
Ile	Leu	Asp	Tyr	Glu 470	Leu	Gĺn	Tyr	Tyr	Glu 475	Lys	Glu	Leu	Ser	Glu 480
Tyr	Asn	Ala	Thr	Ala 485	Ile	Lys	Ser	Pro	Thr 490	Asn	Thr	Val	Thr	Val 495
Gln	Gly	Leu	L ys	Ala 500	Gly	Ala	Ile	Tyr	Val 505	Phe	Gln	Val	Arg	Ala 510
Arg	Thr	Val	Ala	Gly 515	Tyr	Gly	Arg	Tyr	Ser 520	Gly	Гуз	Met	Tyr	Phe 525
Gln	Thr	Met	Thr	Glu 530	Ala	Glu	Tyr	Gln	Thr 535	Ser	Ile	Gln	G1 u	Lys 540
Leu	Pro	Leu	Ile	Ile 545	Gly	Ser	Ser	Ala	Ala 550	Gly	Leu	Val	Phe	Leu 55 5
Ile	Ala	Val	Val	Val 560	lle	Ala	Ile	Val	Cys 565	Asn	Arg	Arg	Arg	Gly 570
Phe	Glu	Arg	Ala	Asp	Ser	Glu	Tyr	Thr	Asp	Lys	Leu	Gln	His	Tyr

	575			580			585
Thr Ser Gly	His Met 590	Thr Pro	Gly Met	Lys Ile 595	Tyr Ile	Asp	Pro 600
Phe Thr Tyr	Glu Asp 605	Pro Asn	Glu Ala	Val Arg 610	Glu Phe	Ala	Lys 615
Glu Ile Asp	Ile Ser 620	Cys Val	Lys Ile	Glu Gln 625	Val Ile	Gly	Ala 630
Gly Glu Phe	Gly Glu 635	Val Cys	Ser Gly	His Leu 640	Lys Leu	Pro	Gly 645
Lys Arg Glu	Ile Phe 650	Val Ala	Ile Lys	Thr Leu 655	Lys Ser	Gly	Tyr 660
Thr Glu Lys	Gln Arg 665	Arg Asp	Phe Leu	Ser Glu 670	Ala Ser	Ile	Met 675
Gly Gln Phe	Asp His 680	Pro Asn	Val Ile	His Leu 685	Glu Gly	Val	Val 690
Thr Lys Ser	Thr Pro 695	Val Met	Ile Ile	Thr Glu 700	Phe Met	Glu	Asn 705
Gly Ser Leu	Asp Ser 710	Phe Leu	Arg Gln	Asn Asp 715	Gly Gln	Phe	Thr 720
Val Ile Gln	Leu Val 725	Gly Met	Leu Arg	Gly Ile 730	Ala Ala	Glу	Met 735
Lys Tyr Leu	Ala Asp 740	Met Asn	Tyr Val	His Arg 745	Asp Leu	Ala	Ala 750
Arg Asn Ile	Leu Val 755	Asn Ser	Asn Leu	Val Cys 760	Lys Val	Ser	Asp 765
Phe Gly Leu	Ser Arg 770	Phe Leu	Glu Asp	Asp Thr 775	Ser Asp	Pro	Thr 780
Tyr Thr Ser	Ala Leu 785	Gly Gly	Lys Ile	Pro Ile 790	Arg Trp	Thr	Ala 795
Pro Glu Ala	Ile Gln 800	Tyr Arg	Lys Phe	Thr Ser 805	Ala Ser	Asp	Val 810
Trp Ser Tyr	Gly Ile 815	Val Met	Trp Glu	Val Met 820	Ser Tyr	Gly	Glu 825
Arg Pro Tyr	Trp Asp 830	Met Thr	Asn Gln	Asp Val 835	Ile Asn	Ala	11e 840
Glu Gln Asp	Tyr Arg 845	Leu Pro	Pro Pro	Met Asp 850	Cys Pro	Ser	Ala 855
Leu His Gln	Leu Met 860	Leu Asp	Cys Trp	Gln Lys 865	Asp Arg	Asn	His 870
Arg Pro Lys	Phe Gly 875	Gln Ile	Val Asn	Thr Leu 880	Asp Lys	Met	Ile 885

Arg	Asn	Pro	Asn	Ser 890	Leu	Lys	Ala	Met	Ala 895	Pro	Leu	Ser	Ser	90 0 G1γ
Ile	Asn	Leu	Pro	Leu 905	Leu	Asp	Arg	Thr	Ile 910	Pro	Asp	Tyr	Thr	Ser 915
Phe	Asn	Thr	Val	Asp 920	Glu	Trp	Leu	Glu	Ala 925	Ile	Lys	Met	Gly	Gln 930
Tyr	Lys	Glu	Ser	Phe 935	Ala	Asn	Ala	Gly	Phe 940	Thr	Ser	Phe	Asp	Val 945
Val	Ser	Gln	Met	Met 950	Met	Glu	Asp	Ile	Leu 955	Arg	Val	Gly	Val	Thr 960
Leu	Ala	Gly	His	Gln 965	Lys	Lys	Ile	Leu	Asn 970	Ser	Ile	Gln	Val	Met 975
Arg	Ala	Gln	Met	Asn 980	Gln	Ile	Gln	Ser	Val 985	Glu	Val			

<210> 23

<211> 282

<212> PRT

5

<213> Homo sapien

Met 1	Ala	Ser	Leu	Gly 5	Gln	Ile	Leu	Phe	Trp 10	Ser	Ile	Ile	Ser	Ile 15
Ile	Ile	Ile	Leu	Ala 20	Gly	Ala	Ile	Ala	Leu 25	Ile	Ile	Gly	Phe	Gly 30
Ile	Ser	Gly	Arg	His 35	Ser	Ile	Thr	Val	Thr 40	Thr	Val	Ala	Ser	Ala 45
Gly	Asn	Ile	Gly	Glu 50	Asp	Gly	Ile	Геп	Ser 55	Cys	Thr	Phe	Glu	Pro 60
Asp	Ile	Lys	Leu	Ser 65	Asp	Ile	Val	Ile	Gln 70	Trp	Leu	Lys	Glu	Gly 75
Val	Leu	Gly	Leu	Val 80	His	Glu	Phe	Lys	Glu 85	Gly	Ьуs	Asp	Glu	Leu 90
Ser	Glu	Gl n	Asp	Glu 95	Met	Phe	Arg	Gly	Arg 100	Thr	Ala	Val	Phe	Ala 105
Asp	Gl n	Val	Ile	Val 110	Gly	Asn	Ala	Ser	Leu 115	Arg	Leu	Lys	Asn	Val 120
Gln	Leu	Thr	Asp	Ala 125	Gly	Thr	Tyr	Lys	Cys 130	Tyr	Ile	Ile	Thr	Ser 135
Lys	Gly	Lys	Ъуs	Asn 140	Ala	Asn	Leu	Glu	Tyr 145	Ъуs	Thr	Gly	Ala	Phe 150
Ser	Met	Pro	Glu	Val 155	Asn	Val	Asp	Tyr	Asn 160	Ala	Ser	Ser	Glu	Thr 165
Leu	Arg	Суз	Glu	Ala 170	Pro	Arg	Trp	Phe	Pro 175	Gln	Pro	Thr	Val	Val 180
Trp	Ala	Ser	Gln	Val 185	Asp	Gln	Gly	Ala	Asn 190	Phe	Ser	Glu	Val	Ser 195
Asn	Thr	Ser	Phe	Glu 200	Leu	Asn	Ser	Glu	Asn 205	Val	Thr	Met	Lys	Val 210
Val	Ser	Val	Leu	Tyr 215	Asn	Val	Thr	Ile	Asn 220	Asn	Thr	Тут	Ser	Cys 225
Met	Ile	Glu	Asn	Asp 230	Ile	Ala	Lys	Ala	Thr 235	Gly	Asp	Ile	Lys	Val 240
Thr	Glu	Ser	Glu	Ile 245	ГÀг	Arg	Arg	Ser	His 250	Leu	Gln	Leu	Leu	Asn 255
Ser	Lys	Ala	Ser	Leu 260	Cys	Val	Ser	Ser	Phe 265	Phe	Ala	Ile	Ser	Trp 270
Ala	Leu	Leu	Pro	Leu 275	Ser	Pro	Tyr	Leu	Met 280	Leu	Ьуs			

<210> 24 <211> 123 <212> PRT

<213> Homo sapien

<400> 24

Met 1	Lys	Ala	Val	Leu 5	Leu	Ala	Leu	Leu	Met .10	Ala	Gly	Leu	Ala	Leu 15
Gln	Pro	Gly	Thr	Ala 20	Leu	Leu	Cys	Tyr	Ser 25	Cys	ГАЗ	Ala	Gln	Val 30
Ser	Asn	Glu	Asp	Cys 3 5	Leu	Gln	Val	Glu	Asn 40	Суз	Thr	Gln	Leu	Gly 45
Glu	Gln	Cys	Trp	Thr 50	Ala	Arg	Ile	Arg	Ala 55	Val	Gly	Leu	Leu	Thr 60
Val	Ile	Ser	Lys	Gly 65	Cys	Ser	Leu	Asn	Cys 70	Val	Asp	Asp	Ser	Gln 75
Asp	Tyr	Tyr	Val	Gly 80	Lys	Lys	Asn	Ile	Thr 85	Суз	Cys	Asp	Thr	qeA 0e
Leu	Cys	Asn	Ala	Ser 95	Gly	Ala	His	Ala	Leu 100	Gln	Pro	Ala	Ala	Ala 105
Ile	Leu	Ala	Leu	Leu 110	Pro	Ala	Leu	Gly	Leu 115	Leu	Leu	Trp	Gly	Pro 120
Gly	Gln	Leu												

5 Gly Gln Let

<210> 25

<211> 236

<212> PRT

10 <213> Homo sapien

Met 1	Pro	Gly	Ala	Ala 5	Ala	Ala	Ala	Ala	Ala 10	Ala	Ala	Ala	Ala	Met 15
Leu	Pro	Ala	G1n	Glu 20	Ala	Ala	Lys	Leu	Tyr 25	His	Thr	Asn	Tyr	Val 30
Arg	Asn	Ser	Arg	Ala 35	Ile	Gly	Val	Leu	Trp 40	Ala	Ile	Phe	Thr	Ile 45
Суѕ	Phe	Ala	Ile	Val 50	Asn	Val	Val	Cys	Phe 55	Ile	Gln	Pro	Tyr	Trp 60
Ile	Gly	Asp	Gly	Val 65	ĄsĄ	Thr	Pro	Gln	Ala 70	Gly	Tyr	Phe	Gly	Leu 75
Phe	His	Tyr	Суѕ	Ile 80	Gly	Asn	Gly	Phe	Ser 85	Arg	Glu	Leu	Thr	Cys 90
Arg	Gly	Ser	Phe	Thr 95	Asp	Phe	Ser	Thr	Leu 100	Pro	Ser	Gly	Ala	Phe 105
Lys	Ala	Ala	Ser	Phe 110	Phe	Ile	Gly	Leu	Ser 115	Met	Met	Leu	Ile	Tle 120
Ala	Cys	Ile	Ile	Cys 125	Phe	Thr	Leu	Phe	Phe 130	Phe	Cys	Asn	Thr	Ala 135
Thr	Val	Tyr	Lys	11e 140	Cys	Ala	Trp	Met	Gln 145	Leu	Thr	Ser	Ala	Ala 150
Cys	Leu	Val	Leu	Gly 155	Cys	Met	Ile	Phe	Pro 160	Asp	Gly	Trp	Asp	Ser 165
Asp	G1u	Val	Lys	Arg 170	Met	Cys	Gly	Glu	Lys 175	Thr	Asp	Lys	Tyr	Thr 180
Leu	Gly	Ala	Cys	Ser 185	Val	Arg	Trp	Ala	Tyr 190	Ile	Leu	Ala	Ile	Ile 195
Gly	Ile	Leu	Asp	Ala 200	Leu	Ile	Leu	Ser	Phe 205	Leu	Ala	Phe	Val	Leu 210
Gly	Asn	Arg	Gln	Asp 215	Ser	Leu	Met	Ala	Glu 220	Glu	Leu	Lys	Ala	Glu 225
Asn	Lys	Val	Leu	Leu 230	Ser	Gln	Tyr	Ser	Leu 235	Glu				

<210> 26

<211> 184

<212> PRT

<213> Homo sapien

Met 1	Arg	Arg	Gly	Pro 5	Arg	Ser	Leu	Arg	Gly 10	Arg	Asp	Ala	Pro	Ala 15
Pro	Thr	Pro	Cys	Val 20	Pro	Ala	Glu	Cys	Phe 25	Asp	Leu	Leu	Val	Arg 30
His	Cys	Val	Ala	Суs 35	Gly	Leu	Leu	Arg	Thr 40	Pro	Arg	Pro	Lys	Pro 45
Ala	Gly	Ala	Ser	Ser 50	Pro	Ala	Pro	Arg	Thr 55	Ala	Leu	Gln	Pro	Gln 60
Glu	Ser	Val	Gly	Ala 65	Gly	Ala	Gly	Glu	Ala 70		Leu	Pro	Leu	Pro 75
Gly	Leu	Leu	Phe	Gly 80	Ala	Pro	Ala	Leu	Leu 85	Gly	Leu	Ala	Leu	Val 90
Leu	Ala	Leu	Val	Leu 95	Val	Gly	Leu	Val	Ser 100	Trp	Arg	Arg	Arg	Gln 105
Arg	Arg	Leu	Arg	Gly 110	Ala	Ser	Ser	Ala	Glu 115	Ala	Pro	Asp	Gly	Asp 120
Lys	Asp	Ala	Pro	Glu 125	Pro	Leu	Asp	Lys	Val 130	Ile	Ile	Leu	Ser	Pro 135
Gly	Ile	Ser	Asp	Ala 140	Thr	Ala	Pro	Ala	Trp 145	Pro	Pro	Pro	Gly	Glu 150
Asp	Pro	Gly	Thr	Thr 155	Pro	Pro	Gly	His	Ser 160	Val	Pro	Val	Pro	Ala 165
Thr	G1u	Leu	Gly	Ser 170	Thr	Glu	Leu	Val	Thr 175	Thr	Lys	Thr	Ala	Gly 180
_														

Pro Glu Gln Gln

<210> 27

<211> 847

<212> PRT

5

<213> Homo sapien

Met 1	His	Leu	Leu	Gly 5	Pro	Trp	Leu	Leu	Leu 10	Leu	Val	Leu	Glu	Tyr 15
Leu	Ala	Phe	Ser	Asp 20	Ser	Ser	Lys	Trp	Val 25	Phe	Glu	His	Pro	G1u 30
Thr	Leu	Tyr	Ala	Trp 35	Glu	Gly	Ala	Cys	Val 40	Trp	Ile	Pro	Cys	Thr 45
Tyr	Arg	Ala	Leu	Asp 50	Gly	Asp	Leu	Glu	Ser 55	Phe	Ile	Leu	Phe	His 60
Asn	Pro	Glu	Tyr	Asn 65	Lys	Asn	Thr	Ser	Lys 70	Phe	Asp	Gly	Thr	Arg 75
Leu	Tyr	Glu	Ser	Thr 80	Lys	Asp	Gly	Lys	Val 85	Pro	Ser	Glu	Gln	L ys 90
Arg	Val	Gln	Phe		_	Asp	_		_		_			Ser

Ile	His	Pro	Val	His 110	Leu	Asn	Asp	Ser	Gly 115	Gln	Leu	Gly	Leu	Arg 120
Met	Glu	Ser	Lys	Thr 125	Glu	Lys	Trp	Met	Glu 130	Arg	Ile	His	Leu	Asn 135
Val	Ser	Glu	Arg	Pro 140	Phe	Pro	Pro	His	Ile 145	Gln	Leu	Pro	Pro	Glu 150
Ile	Gln	Glu	Ser	Gln 155	Glu	Val	Thr	Геп	Thr 160	Cys	Leu	Leu	Asn	Phe 165
Ser	Cys	Tyr	Gly	Tyr 170	Pro	Ile	Gln	Leu	Gln 175	Trp	Leu	Leu	Glu	Gly 180
Val	Pro	Met	Arg	Gln 185	Ala	Ala	Val	Thr	Ser 190	Thr	Ser	Leu	Thr	Ile 195
Lys	Ser	Val	Phe	Thr 200	Arg	Ser	Glu	Leu	Lys 205	Phe	Ser	Pro	Gln	Trp 210
Ser	His	His	Gly	Lys 215	Ile	Val	Thr	Cys	Gln 220	Leu	Gln	Asp	Ala	Asp 225
Gly	Lys	Phe	Leu	Ser 230	Asn	Asp	Thr	Val	Gln 235	Leu	Asn	Val	Ьуs	His 240
Thr	Pro	Lys	Leu	Glu 245	Ile	Lys	Val	Thr	Pro 250	Ser	Asp	Ala	Ile	Val 255
Arg	Glu	Gly	Asp	Ser 260	Val	Thr	Met	Thr	Суs 265	Glu	Val	Ser	Ser	Ser 270
Asn	Pro	Glu	Tyr	Thr 275	Thr	Val	Ser	Trp	Leu 280	Ļys	Asp	Gly	Thr	Ser 285
Leu	Lys	Lys	Gln	Asn 290	Thx	Phe	Thr	Leu	Asn 295	Leu	Arg	Glu	Val	Thr 300
Lys	Asp	Gln	Ser	G1y 305	Lys	Tyr	Cys	Cys	Gln 310	Val	Ser	Asn	Asp	Val 315
Glγ	Pro	Gly	Arg	Ser 320	Glu	Glu	Val	Phe	Leu 325	Gln	Val	Gln	Tyr	Ala 330
Pro	Glu	Pro	Ser	Thr 335	Val	Gl n	Ile	Leu	His 340	Ser	Pro	Ala	Va1	Glu 345
Gly	Ser	Gln	Val	Glu 350	Phe	Leu	Cys ,	Met	Ser 355	Leu	Ala	Asn	Pro	Leu 360
Pro	Thr	Asn	Tyr	Thr 365	Trp	Tyr	His	Asn	Gly 370	Lys	Glu	Met	Gln	Gly 375
Arg	Thr	Glu	Glu	Lys 380	Val	His	Ile	Pro	Lys 385	lle	Leu	Pro	Trp	His 390
Ala	Gly	Thr	Tyr	Ser 395	Cys	Val	Ala	Glu	Asn 400	lle	Leu	Gly	Thr	Gly 405
Gln	Arg	Gly	Pro	Gly	Ala	Glu	Leu	Asp	Val	Gln	Tyr	Pro	Pro	Lys

				410					415					420
Ŀуs	Val	Thr	Thr	Val 425	Ile	Gln	Asn	Èro	Met 430	Pro	Ile	Arg	Glu	Gly 435
Asp	Thr	Val	Thr	Leu 440	Ser	Суз	Asn	Tyr	Asn 445	Ser	Ser	Asn	Pro	Ser 450
Val	Thr	Arg	Tyr	Glu 455	Trp	Lys	Pro	His	Gly 460	Ala	Trp	Glu	Glu	Pro 465
Ser	Leu	Glу	Val	Leu 470	Lys	Ile	Gln	Asn	Val 475	Gly	Trp	Asp	Asn	Thr 480
Thr	Ile	Ala	Суз	Ala 485	Arg	Cys	Asn	Ser	Trp 490	Cys	Ser	Trp	Ala	Ser 495
Pro	Val	Ala	Leu	Asn 500	Val	Gln	Tyr	Ala	Pro 505	Arg	Asp	Val	Arg	Val 510
Arg	Lys	Ile	Lys	Pro 515	Leu	Ser	Glu	Ile	His 520	Ser	G1y	Asn	Ser	Val 525
Ser	Leu	Gln	Cys	Asp 530	Phe	Ser	Ser	Ser	His 535	Pro	Lys	Glu	Val	Gln 540
Phe	Phe	Trp	Glu	Lys 545	Asn	Gly	Arg	Leu	Leu 550	Gly	Lys	Glu	Ser	Gln 555
Leu	Asn	Phe	Asp	Ser 560	Ile	Ser	Pro	Glu	Asp 565	Ala	Gly	Ser	Tyr	Ser 570
Суѕ	Trp	Val	Asn	Asn 575	Ser	Ile	Gly	Gln	Thr 580	Ala	Ser	Lys	Ala	Trp 585
Thr	Leu	Glu	Val	Leu 590	Tyr	Ala	Pro	Arg	Arg 595	Leu	Arg	Val	Ser	Met 600
	Pro	_	_	605					610					615
Cys	Glu	Ser	Asp	Ala 620	Asn	Pro	Pro	Val	Ser 625	His	Tyr	Thr	Trp	Phe 630
Asp	Trp	Asn	Asn	Gln 635	Ser	Leu	Pro	His	His 640	Ser	Gln	Lys	Leu	Arg 645
Leu	Glu	Pro	Val	Lуs 650	Val	Gln	His	Ser	Gly 655	Ala	Tyr	Trp	Cys	G1n 660
Gly	Thr	Asn	Ser	Val 665	Gly	Lys	Gly	Arg	Ser 670	Pro	Leu	Ser	Thr	Leu 675
Thr	Val	Tyr	Tyr	Ser 680	Pro	Glu	Thr	Ile	Gly 685	Arg	Arg	Val	Ala	Val 690
Gly	Leu	Gly	Ser	Cys 695	Leu	Ala	Ile	Leu	Ile 700	Leu	Ala	Ile	Cys	Gly 705
Leu	Lys	Leu	G1n	Arg 710	Arg	Trp	Ъуѕ	Arg	Thr 715	Gln	Ser	Gln	Gln	Gly 720

Leu	Gln	Glu	Asn	Ser 725	Ser	Gly	Gln	Ser	Phe 730	Phe	Val	Arg	Asn	Lys 735
Lys	Val	Arg	Arg	Ala 740	Pro	Leu	Ser	Glu	Gly 745	Pro	His	Ser	Leu	Gly 750
Суs	Tyr	Asn	Pro	Met 755	Met	Glu	Asp	Gly	Ile 760	Ser	Tyr	Thr	Thr	Leu 765
Arg	Phe	Pro	Glu	Met 770	Asn	Ile	Pro	Arg	Thr 775	Gly	Asp	Ala	Glu	Ser 780
Ser	Glu	Met	G1n	Arg 785	Pro	Pro	Arg	Thr	Cys 790	Asp	Asp	Thr	Val	Thr 795
Tyr	Ser	Ala	Leu	His 800	Lys	Arg	Gln	Val	Gly 805	Asp	Tyr	Glu	Asn	Val 810
Ile	Pro	Asp	Phe	Pro 815	Glu	Asp	Glu	Gly	11e 820	His	Tyr	Ser	Glu	Leu 825
Ile	Gln	Phe	Gly	Val 830	Gly	Glu	Arg	Pro	Gln 835	Ala	Gln	Glu	Asn	Val 840
Asp	Tyr	Val	Ile	Leu 845	Lys	His	ŧ							

<210> 28

<211> 226 <212> PRT

5

<213> Homo sapien

Met 1	Pro	Gly	GЉУ	Pro 5	Gly	Val	Leu	Gln	Ala 10	Leu	Pro	Ala	Thr	Ile 15
Phe	Leu	Leu	Phe	Leu 20	Leu	Ser	Ala	Val	Tyr 25	Leu	Gly	Pro	Gly	Cys 30
Gln	Ala	Leu	Trp	Met 35	His	Lys	Val	Pro	Ala 40	Ser	Leu	Met	Val	Ser 45
Leu	Gly	Ğlu	Asp	Ala 50	His	Phe	Gln	Çys	Pro 55	His	Ąşn	Şer	Ser	Asn 60
Asn	Ala	Asn	Val	Thr 65	Trp	Trp	Arg	Val	Leu 70	His	Gly	Asn	Tyr	Thr 75
Trp	Pro	Pro	Glu	Phe 80	Leu	Gly	Pro	Gly	Glu 85	Asp	Pro	Asn	Gly	Thr 90
Leu	Ile	Ile	Gln	Asn 95	Val	Asn	Lys	Ser	His 100	Gly	Gly	Ile	Tyr	Val 105
Cys	Arg	Val	Gln	Glu 110	Gly	Asn	Glu	Ser	Tyr 115	Gln	Gln	Ser	Cys	Gly 120
Thr	Tyr	Leu	Arg	Val 125	Arg	Gln	Pro	Pro	Pro 130	Arg	Pro	Phe	Leu	Asp 135
Met	Gly	Glu	Gly	Thr 140	Lys	Asn	Arg	Ile	Ile 145	Thr	Ala	Glu	Gly	11e 150
Ile	Leu	Leu	Phe	Cys 155	Ala	Val	Val	Pro	Gly 160	Thr	Leu	Leu	Leu	Phe 165
Arg	Lys	Arg	Trp	Gln 170	Asn	Glu	Lys	Leu	Gly 175	Leu	Asp	Ala	Gly	Asp 180
Glu	Tyr	Glu	Asp	Glu 185	Asn	Leu	Tyr	Glu	Gly 190	Leu	Asn	Leu	Asp	Asp 195
Cys	Ser	Met	Tyr	Glu 200	Asp	Ile	Ser	Arg	Gly 205	Leu	Gln	Gly	Thr	Tyr 210
Gln	Asp	Val	Gly	Ser 215	Leu	Asn	Ile	Gly	Asp 220	Val	Gln	Leu	Glu	Lys 225

Pro

<210> 29

5

<211> 372

<212> PRT

<213> Homo sapien

Met 1	Asn	Tyr	Pro	Leu 5	Thr	Leu	Glu	Met	Asp 10	Leu	Glu	Asn	Leu	Glu 15
Asp	Leu	Phe	Trp	Glu 20	Leu	Asp	Arg	Leu	Asp 25	Asn	Tyr	Asn	Asp	Thr 30
Ser	Leu	Val	G1u	Asn 35	His	Leu	Cys	Pro	Ala 40	Thr	Glu	Glу	Pro	Leu 45
Met	Ala	Ser	Phe	Lys 50	Ala	Val	Phe	Val	Pro 55	Val	Ala	Tyr	Ser	Leu 60
Ile	Phe	Leu	Leu	Gly 65	Val	Ile	Gly	Asn	Val 70	Leu	Val	Leu	Val	Ile 75
Leu	Glu	Arg	His	Arg 80	Gln	Thr	Arg	Ser	Ser 85	Thr	Glu	Thr	Phe	Leu 90
Phe	His	Leu	Ala	Val 95	Ala	Asp	Leu	Leu	Leu 100	Val	Phe	Ile	Leu	Pro 105
Phe	Ala	Val	Ala	Glu 110	Gly	Ser	Val	Gly	Trp 115	Val	Leu	Gly	Thr	Phe 120
Leu	Cys	Lys	Thr	Val 125	Ile	Ala	Leu	His	Lys 130	Val	Asn	Phe	Tyr	Cys 135
Ser	Ser	Leu	Leu	Leu 140	Ala	Cys	Ile	Ala	Val 145	Asp	Arg	Tyr	Leu	Ala 150
Ile	Val	His	Ala	Val 155	His	Ala	Tyr	Arg	His 160	Arg	Arg	Leu	Leu	Ser 165
Ile	His	Ile	Thr	Cvs	Glv	Thr	Ile	Trp	Leu	Val	Glv	Phe	Leu	Leu

	170		175	180
Ala Leu Pro G	ilu Ile Leu 185	Phe Ala Ly	ys Val Ser Gl 190	n Gly His His 195
Asn Asn Ser L	eu Pro Arg 200	Cys Thr Pi	he Ser Gln Gl 205	u Asn Gln Ala 210
Glu Thr His A	ala Trp Phe 215	Thr Ser A	rg Phe Leu Ty 220	r His Val Ala 225
Gly Phe Leu L	eu Pro Met 230	Leu Val Me	et Gly Trp Cy 235	s Tyr Val Gly 240
Val Val His A	arg Leu Arg 245	Gln Ala G	ln Arg Arg Pr 250	o Gln Arg Gln 255
Lys Ala Val A	arg Val Ala 260	Ile Leu Va	al Thr Ser Il 265	e Phe Phe Leu 270
Cys Trp Ser P	ro Tyr His 275	Ile Val I	le Phe Leu As 280	p Thr Leu Ala 285
Arg Leu Lys A	ala Val Asp 290	Asn Thr Cy	ys Lys Leu As 295	n Gly Ser Leu 300
Pro Val Ala I	le Thr Met 305	Cys Glu Pi	he Leu Gly Le 310	u Ala His Cys 315
Cys Leu Asn P	ro Met Leu 320	Tyr Thr Pi	he Ala Gly Va 325	l Lys Phe Arg 330
Ser Asp Leu S	er Arg Leu 335	Leu Thr Ly	ys Leu Gly Cy 340	s Thr Gly Pro 345
Ala Ser Leu C	ys Gln Leu 350	Phe Pro Se	er Trp Arg Ar 355	g Ser Ser Leu 360
Ser Glu Ser G	lu Asn Ala 365	Thr Ser Le	eu Thr Thr Ph 370	е

<210> 30 <211> 273 <212> PRT

5

<213> Homo sapien

Met 1	Gly	Ser	G).y	Trp 5	Val	Pro	Trp	Val	Val 10	Ala	Leu	Leu	Val	Asn 15
Leu	Thr	Arg	Leu	Asp 20	Ser	Ser	Met	Thr	G1n 25	Gly	Thr	Asp	Ser	Pro 30
Glu	Asp	Phe	Val	Ile 35	Gln	Ala	Lys	Ala	Asp 40	Cys	Tyr	Phe	Thr	Asn 45
Gly	Thr	Glu	Lys	Val 50	Gln	Phe	Val	Val	Arg 55	Phe	Ile	Phe	Asn	Leu 60
Glu	Glu	Tyr	Val	Arg 65	Phe	Asp	Ser	Asp	Val 70	Gly	Met	Phe	Val	Ala 75
Leu	Thr	Lys	Leu	Gly 80	Gln	Pro	Asp	Ala	Glu 85	Gln	Trp	Asn	Ser	Arg 90
Leu	Asp	Leu	Leu	Glu 95	Arg	Ser	Arg	Gln	Ala 100	Val	Asp	Gly	Val	Cys 105
Arg	His	Asn	Tyr	Arg 110	Leu	Gly	Ala	Pro	Phe 115	Thr	Val	Gly	Arg	Lys 120
Val	Gln	Pro	Glu	Val 125	Thr	Val	Tyr	Pro	Glu 130	Arg	Thr	Pro	Leu	Leu 135
His	Gln	His	Asn	Leu 140	Leu	His	Cys	Ser	Val 145	Thr	Gly	Phe	Tyr	Pro 150
Gly	Asp	Ile	Lys	Ile 155	Lys	Trp	Phe	Leu	Asn 160	G1y	Gln	Glu	Glu	Arg 165
Ala	Gly	Val	Met	Ser 170	Thr	Gly	Pro	Ile	Arg 175	Asn	Gly	Asp	Trp	Thr 180
Phe	Gln	Thr	Val	Val 185	Met	Leu	Glu	Met	Thr 190	Pro	Glu	Leu	Gly	His 195
Val	Tyr	Thr	Суѕ	Leu 200	Val	Asp	His	Ser	Ser 205	Leu	Leu	Ser	Pro	Val 210
Ser	Val	Glu	Trp	Arg 215	Ala	Gln	Şer	Glu	Tyr 220	Ser	Trp	Arg	Lys	Met 225
Leu	Ser	Gly	Ile	Ala 230	Ala	Phe	Leu	Leu	Gly 235	Leu	Ile	Phe	Leu	Leu 240
Val	Gly	Ile	Val	Ile 245	Gln	Leu	Arg	Ala	Gln 250	Lys	Gly	Tyr	Val	Arg 255
Thr	Gln	Met	Ser	Gly 260	Asn	Glu	Val	Ser	Arg 265	Ala	Val	Leu	Leu	Pro 270
Gln	Ser	Cys												

<210> 31 <211> 422

<212> PRT <213> Homo sapier
<400> 31

Met 1	Gly	Gln	Ala	Gly 5	Cys	Lys	Gly	Leu		Ser		Phe	Asp 15
T yr	Lys	Thr	Glu	Lys 20	Tyr	Val	Ile			Lys	_		Gly 30
Leu	Leu	Tyr	Arg	Leu 35	Leu	Gln	Ala			Ala	•		Val 45
Val	Trp	Val	Phe	Leu 50	Ile	Lys	Lys	Gly	Gln		Val	Asp	Thr 60

Ser	Leu	Gln	Ser	Ala 65	Val	Ile	Thr	Ъуs	Val 70	Lys	Gly	Val	Ala	Phe 75
Thr	Asn	Thr	Ser	Asp 80	Leu	Gly	Gln	Arg	Ile 85	Trp	Asp	Val	Ala	Asp 90
Tyr	Val	Ile	Pro	Ala 95	Gln	Glу	Glu	Asn	Val 100	Phe	Phe	Val	Val	Thr 105
Asn	Leu	Ile	Val	Thr 110	Pro	Asn	Gln	Arg	Gln 115	Asn	Val	Cys	Ala	Glu 120
Asn	Glu	Gly	Ile	Pro 125	Ąsp	Gly	Ala	Cys	Ser 130	Lуs	Asp	Ser	Asp	Cys 135
His	Ala	Glу	Glu	Ala 140	Val	Thr	Ala	Gly	Asn 145	Gly	Val	Lys	Thr	Gly 150
Arg	Cys	Leu	Arg	Arg 155	Gl u	Asn	Leu	Ala	Arg 160	Gly	Thr	Cys	G1 u	Ile 165
Phe	Ala	Trp	Cys	Pro 170	Leu	G1u	Thr	Ser	Ser 175	Arg	Pro	Glu	Gl u	Pro 180
Phe	Leu	Lys	Glu	Ala 185	Glu	Asp	Phe	Thr	Ile 190	Phe	Ile	Lys	Asn	His 195
Ile	Arg	Phe	Pro	Lys 200	Phe	Asn	Phe	Ser	Lys 205	Ser	Asn	Val	Met	Asp 210
Val	Lys	Asp	Arg	Ser 215	Phe	Leu	Lys	Ser	Cys 220	His	Phe -	Gly	Pro	Lys 2 25
Asn	His	Tyr	Cys.	Pro 230	Ile	Phe	Arg	Leu	Gly 235	Ser	Val	Ile	Arg	Trp 240
Ala	Gly	Ser	Asp	Phe 245	Gln	Asp	Ile	Ala	Leu 250	Glu	Gly	Gly	Val	11e 255
Gly	Ile	Asn	Ile	Glu 260	Trp	Asn	Cys	qsA	Leu 265	Asp	Lys	Ala	Ala	Ser 270
Glu	Cys	His	Pro	His 275	Tyr	Ser	Phe	Ser	Arg 280	Leu	Asp	Asn	Lys	Leu 285
Ser	Lys	Ser	Val	Ser 290	Ser	Gly	Tyr	Asn	Phe 295	Arg	Phe	Ala	Arg	Tyr 300
Tyr	Arg	Asp	Ala	Ala 305	Gly	Val	Glu	Phe	Arg 310	Thr	Leu	Met	Lys	Ala 315
Tyr	Gly	Ile	Arg	Phe 320	Asp	Val	Met	Val	Asn 325	Gly	Lys	Gly	Ala	Phe 330
Phe	Cys	Asp	Leu	Val 335	Leu	Ile	Tyr	Leu	Ile 340	Lys	Lys	Arg	Glu	Phe 345
Tyr	Arg	Asp	Lys	Lys 350	Tyr	Glu	Gl u	Val	Arg 355	Gly	Leu	Glu	Asp	Ser 360
Ser	Gln	Glu	Ala	Glu	Asp	Glu	Ala	Ser	Gly	Leu	GLy	Leu	Ser	Glu

				365					370					375
Gln	Leu	Thr	Ser	380 Gly	Pro	Gly	Leu	Leu	Gly 385	Met	Pro	Glu	Gln	Gln 390
Glu	Leu	Gln	Glu	Pro 395	Pro	Glu	Ala	Lys	Arg 400	Gly	Ser	Ser	Ser	Gln 405
Lys	Gly	Asn	Gly	Ser 410	Val	Cys	Pro	G1n	Leu 415	Leu	G1u	Pro	His	Arg 420

Ser Thr

<210> 32

<211> 359

5 <212> PRT

<213> Homo sapien

	Met 1	Ala	Glu	Ala	Ile 5	Thr	Tyr	Ala	Asp	Leu 10	Arg	Phe	Val	Lys	Ala 15
	Pro	Leu	Lys	Lys	Ser 20	Ile	Ser	Ser	Arg	Leu 25	Gly	Gln	Asp	Pro	Gly 30
	Ala	Asp	Asp	Asp	Gly 35	Glu	Ile	Thr	Tyr	Glu 40	Asn	∜al	Gln	Va1	Pro 45
	Ala	Val	Leu	Gly	Val 50	Pro	Ser	Ser	Leu	Ala 55	Ser	Ser	Val	Leu	Gly 60
	Asp	Lys	Ala	Ala	Val 65	Lys	Ser	Glu	Gln	Pro 70.	Thr	Ala	Ser	Trp	Arg 75
	Ala	Val	Thr	Ser	Pro 80	Ala	Val	Gly	Arg	Ile 85	Leu	.Pro	Суѕ	Arg	Thr 90
,	Thr	Cys	Leu	Arg	Tyr 95	Leu	Leu	Leu	Gly	Leu 100	Leu	Leu	Thr	Cys	Leu 105
	Leu	Leu	Gly	Val	Thr 110	Ala	Ile	Cys	Leu	Gly 115	۷al	Arg	Tyr	Leu	Gln 120
	Val	Ser	Gln	Gln	Leu 125	Gln	Gln	Thr	Asn	Arg 130	Val	Leu	Glu	Val	Thr 135
	Asn	Ser	Ser	Leu	Arg 140	Gln	Gln	Leu	Arg	Leu 145	Lys	Ile	Thr	Gln	Leu 150
	Gly	Gln	Ser	Ala	Glu 155	Asp	Leu	Gln	Gly	Ser 160	Arg	Arg	Glu	Leu	Ala 165
	Gln	Ser	Gln	Glu	Ala 170	Leu	Gln	۷al	Glu	Gln 175	Arg	Ala	His	Gln	Ala 180
	Ala	Glu	Gly	Gln	Leu 185	Gln	Ala	Cys	Gln	Ala 190	Asp	Arg	Gln	Lys	Thr 195
	Lys	Glu	Thr	Leu	Gln 200	Şer	Glu	Glu	Gln	Gln 205	Arg	Arg	Ala	Гел	Glu 210

Gln	Lys	Leu	Ser	Asn 215	Met	Glu	Asn	Arg	Leu 220	Lys	Pro	Phe	Phe	Thr 225
Cys	Gly	Ser	Ala	Asp 230	Thx	Суз	Суѕ	Pro	Ser 235	Gly	Trp	Ile	Met	His 240
Gln	Lys	Ser	Cys	Phe 245	Tyr	Ile	Ser	Leu	Thr 250	Ser	Lys	Asn	Trp	Gln 255
Glu	Ser	Gln	Lys	Gln 260	Cys	Glu	Thr	Leu	Ser 265	Ser	Lys	Leu	Ala	Thr 270
Phe	Ser	Glu	Ile	Tyr 275	Pro	Gln	Ser	His	Ser 280	Tyr	Tyr	Phe	Leu	Asn 285
Ser	Leu	Leu	Pro	Asn 290	Gly	Gly	Ser	GЉ	Asn 295	Ser	Tyr	Trp	Thr	Gly 300
Leu	Ser	Ser	Asn	Lys 305	Asp	Trp	Lys	Leu	Thr 310	Asp	Asp	Thr	Gln	Arg 315
Thr	Arg	Thr	Tyr	Ala 320	Gln	Ser	Ser	Lys	Cys 325	Aşn	Ľуs	Val	His	Lys 330
Thr	Trp	Ser	Trp	Trp 335	Thr	Leu	Glu	Ser	Glu 340	Ser	Cys	Arg	Ser	Ser 345
Leu	Pro	Tyr	Ile	Cys 350	Glu	Met	Thr	Ala	Phe 355	Arg	Phe	Pro	Asp	

<210> 33

5

<211> 661 <212> PRT <213> Homo sapien

Met 1	Ala	Phe	Asp	Val 5	Ser	Cys	Phe	Phe	Trp 10	Val	Val	Leu	Phe	Ser 15
Ala	Gly	Суз	Lys	Val 20	Ile	Thr	Ser	Trp	Asp 25	Gln	Met	Cys	Ile	G1u 30
Lys	Glu	Ala	Asn	Lys 35	Thr	Tyr	Asn	Cys	Glu 40	Aşn	Leu	Gly	Leu	Ser 45
Glu	Ile	Pro	Asp	Thr 50	Leu	Pro	Asn	Thr	Thr 55	Glu	Phe	Leu	Glu	Phe 60
Ser	Phe	Asn	Phe	Leu 65	Pro	Thr	Ile	His	Asn 70	Arg	Thr	Phe	Ser	Arg 75
Leu	Met	Asn	Leu	Thr 80	Phe	Leu	Asp	Leu	Thr 85	Arg	Cys	Gln	Ile	Asn 90
Trp	Ile	His	Glu	Asp 95	Thr	Phe	Gln	Ser	His 100	His	Gln	Leu	Ser	Thr 105
Leu	Val	Leu	Thr	Gly 110	Asn	Pro	Leu	Ile	Phe 115	Met	Ala	Glu	Thr	Ser 120

Lev	ı Asn	Gly	Pro	Lys 125	Ser	Leu	Ľуs	His	Leu 130	Phe	Leu	Ile	Gln	Thr 135
Gl	, Ile	Ser	Asn	Leu 140	Glu	Phe	Ile	Pro	Val 145	His	Asn	Leu	Glu	Asn 150
Le	ı Glu	Ser	Leu	Tyr 155	Leu	Gly	Ser	Asn	His 160	Ile	Ser	Ser	Ile	Lys 165
Phe	e Pro	Lys	Asp	Phe 170	Pro	Ala	Arg	Asn	Leu 175	Lys	Val	Leu	Asp	Phe 180
Glı	n Asn	Asn	Ala	Ile 185	His	Tyr	Ile	Ser	Arg 190	Glu	Asp	Met	Arg	Ser 195
Le	Glu	Gln	Ala	11e 200	Asn	Leu	Ser	Leu	Asn 205	Phe	Asn	Gly	Asn	Asn 210
Va.	L Lys	Gly	Ile	Glu 215	Leu	Gly	Ala	Phe	Asp 220	Ser	Thr	Val	Phe	Gln 225
Set	: Leu	Asn	Phe	Gly 230	Сĵу	Thr	Pro	Asn	Leu 235	Ser	Val	Ile	Phe	Asn 240
Gl	/ Leu	Gln	Asn	Ser 245	Thr	Thr	Gln	Ser	Leu 250	Trp	Leu	Gly	Thr	Phe 255
Glı	Asp	Ile	Asp	Asp 260	Glu	Asp	Ile	Ser	Ser 265	Ala	Met	Leu	Lys	Gly 270
Le	Cys	Glu	Met	Ser 275	Val	Glu	Ser	Leu	Asn 280	Leu	Gln	Glu	His	Arg 285
Phe	e Ser	Asp	Ile	Ser 290	Ser	Thr	Thr	Phe	Gln 295	Cys	Phe	Thr	Gln	Leu 300
Gli	n Glu	Leu	Asp	Leu 305	Thr	Ala	Thr	His	Leu 310	Ĺуз	Gly	Leu	Pro	Ser 315
Gly	/ Met	Lys	Gly	Leu 320	Asn	Leu	Leu	Lys	Lys 325	Leu	Val	Leu	Ser	Val 330
Ası	n His	Phe	Asp	Gln 335	Leu	Cys	Gln	Ile	Ser 340	Ala	Ala	Asn	Phe	Pro 345
Se	. Leu	Thr	His	Leu 350	Tyr	Ile	Arg	Gly	Asn 355	Val	Lys	ьуѕ	Leu	His 360
Let	ı Gly	Val	Gly	Cys 365	Leu	Glu	Lys	Leu	Gly 370	Asn	Leu	Gln	Thr	Leu 375
As	, Leu	Ser	His	A s n 380	Asp	Ile	Glu	Ala	Ser 385	Asp	Cys	Cys	Ser	Leu 390
Gl	ı Leu	Lys	Asn	Leu 395	Ser	His	Leu	Gln	Thr 400	Leu	Asn	Leu	Ser	His 405
Ası	n Glu	Pro	Leu	Gly 410	Leu	Gln	Ser	Gln	Ala 415	Phe	Lys	Glu	Cys	Pro 420
G1	n Leu	Glu	Leu	Leu	Asp	Leu	Ala	Phe	Thr	Arg	Leu	His	Ile	Asn

				425					430					435
Ala	Pro	Gln	Ser	Pro 440	Phe	Gln	Asn	Leu	His 445	Phe	Leu	Gln	Val	Leu 450
Asn	Leu	Thr	Tyr	Cys 455	Phe	Leu	Asp	Thr	Ser 460	Asn	GJn	His	Leu	Leu 465
Ala	Glу	Leu	Pro	Val 470	Leu	Arg	His	Leu	Asn 475	Leu	Lys	Gly	Asn	His 480
Phe	Gln	Asp	Gly	Thr 485	Ile	Thr	Lys	Thr	Asn 490	Leu	Leu	Gln	Thr	Val 495
GŢÀ	Ser	Leu	Glu	Val 500	Leu	lle	Leu	Ser	Ser 505	Cys	Gly	Leu	Leu	Ser 510
Ile	Asp	Gln	Gln	Ala 515	Phe	His	Ser	Leu	Gly 520	Lуз	Met	Ser	His	Val 525
Asp	Leu	Ser	His	Asn 530	Ser	Leu	Thr	Cys	Asp 535	Ser	Ile	Asp	Ser	Leu 540
Ser	His	Leu	Ъуs	Gly 545	Ile	Tyr	Leu	Asn	Leu 550	Ala	Ala	Asn	Ser	Ile 555
Asn	Ile	Ile	Ser	Pro 560	Arg	Leu	Leu	Pro	Ile 565	Leu	Ser	Gln	Gln	Ser 570
Thr	Ile	Asn	Leu	Ser 575	His	Asn	Pro	Leu	Asp 580	Суз	Thr	Cys	Ser	Asn 585
Ile	His	Phe	Leu	Thr 590	Trp	Tyr	ГÀЗ	Glu	Asn 595	Leu	His	Lys	Leu	Glu 600
Gly	Ser	Glu	Glu	Thr 605	Thr	Cys	Ala	Asn	Pro 610	Pro	Ser	Leu	Arg	Gly 615
Val	Lys	Leu	Ser	Asp 620	Val	Lys	Leu	Ser	Cys 625	Gly	Ile	Thr	Ala	11e 630
Gly	Ile	Phe	Phe	Leu 635	Ile	Val	Phe	Leu	Leu 640	Leu	Leu	Ala	Ile	Leu 645
Leu	Phe	Phe	Ala	Val 650	Lys	Tyr	Leu	Leu	Arg 655	Trp	Lys	Tyr	Gln	His 660

Ile

<210> 34 <211> 429

<212> PRT

5

<213> Sarcophaga bullata

Met Leu Pro Arg Leu Leu Leu Leu Ile Cys Ala Pro Leu Cys Glu
1 5

Pro Ala Glu Leu Phe Leu Ile Ala Ser Pro Ser His Pro Thr Glu
20 30

Gly	Ser	Pro	Val	Thr 35	Leu	Thr	Cys	Lys	Met 40	Pro	Phe	Leu	Gln	Ser 45
Ser	Asp	Ala	Gln	Phe 50	Gln	Phe	Суз	Phe	Phe 55	Arg	Asp	Thr	Arg	Ala 60
Leu	Gly	Pro	Gly	Trp 65	Ser	Ser	Ser	Pro	Lys 70	Leu	Gln	Ile	Ala	Ala 75
Met	Trp	Lys	Glu	Asp 80	Thr	Gly	\$er	Tyr	Trp 85	Cys	Glu	Ala	Gln	Thr 90
Met	Ala	Ser	Lys	Val 95	Leu	Arg	Ser	Arg	Arg 100	Ser	Gln	Ile	Asn	Val 105
His	Arg	Val	Pro	Val 110	Ala	Asp	Val	Ser	Leu 115	Glu	Thr	Gln	Pro	Pro 120
Gly	Gly	Gln	Val	Met 125	Glu	Gly	Asp	Arg	Leu 130	Val	Leu	Ile	Cys	Ser 135
Val	Ala	Met	Gly	Thr 140	Gly	Asp	Ile	Thr	Phe 145	Leu	Trp	Tyr	Lys	Gly 150
Ala	Va1	Gly	Leu	Asn 155	Leu	Gln	Ser	Lys	Thr 160	Gln	Arg	Ser	Leu	Thr 165
Ala	Glu	Tyr	Glu	Ile 170	Pro	Ser	Val	Arg	Glu 175	Ser	Asp	Ala	Glu	Gln 180
Tyr	Tyr	Cys	Val	Ala 185	Glu	Asn	Gly	Tyr	Gly 190	Pro	Ser	Pro	Ser	Gly 195
Leu	Val	Ser	Ile	Thr 200	Val	Arg	Ile	Pro	Val 205	Ser	Arg	Pro	Ile	Leu 210
Met	Leu	Arg	Ala	Pro 215	Arg	Ala	Gln	Ala	Ala 220	Val	Glu	Asp	Val	Leu 225
Glu	Leu	His		Glu 230	Ala	Leu	Arg	Gly	Ser 235	Pro	Pro	Ile	Leu	Tyr 240
Trp	Phe	Tyr	His	Glu 245	Asp	Ile	Thr	Leu	Gly 250	Ser	Arg	Ser	Ala	Pro 255
Ser	Gly	Gly	Gly	Ala 260	Ser	Phe	Asn	Leu	Ser 265	Leu	Thr	Glu	Glu	His 270
Ser	Gly	Asn	Tyr	Ser 275	Суз	Glu	Ala	Asn	Asn 280		Leu	Gly	Ala	Gln 285
Arg	Ser	G l u	Ala	Val 290	Thr	Leu	Asn	Phe	Thr 295	Val	Pro	Thr	Gly	Ala 300
Arg	Ser	Asn	His	Leu 305	Thr	Ser	Gly	Val	Ile 310	Glu	Gly	Leu	Leu	Ser 315
Thr	Leu	Gly	Pro	Ala 320	Thr	Val	Ala	Leu	Leu 325	Phe	Cys	Tyr	Gly	Leu 330

Lys Arg Lys Ile Gly Arg Arg Ser Ala Arg Asp Pro Leu Arg Ser 335 340 345 Leu Pro Ser Pro Leu Pro Gln Glu Phe Thr Tyr Leu Asn Ser Pro Thr Pro Gly Gln Leu Gln Pro Ile Tyr Glu Asn Val Asn Val Val Ser Gly Asp Glu Val Tyr Ser Leu Ala Tyr Tyr Asn Gln Pro Glu Gln Glu Ser Val Ala Ala Glu Thr Leu Gly Thr His Met Glu Asp 395 400 Lys Val Ser Leu Asp Ile Tyr Ser Arg Leu Arg Lys Ala Asn Ile 415 420 410 Thr Asp Val Asp Tyr Glu Asp Ala Met 425

<210> 35

<211> 977

<212> PRT

5

<213> Homo sapien

Met 1	Leu	Leu	Trp	Val 5	Ile	Leu	Leu	Val	Leu 10	Ala	Pro	Val	Ser	Gly 15
Gln	Phe	Ala	Arg	Thr 20	Pro	Arg	Pro	Ile	Ile 25	Phe	Leu	Gln	Pro	Pro 30
Trp	Thr	Thr	Val	Phe 35	Gln	G1 y	Glu	Arg	Val 40	Thr	Leu	Thr	Суѕ	Lys 45
Gly	Phe	Arg	Phe	Tyr 50	Ser	Pro	Gln	Lys	Thr 55	Lys	Trp	Tyr	His	Arg 60
Tyr	Leu	Gly	Lys	Glu 65	Ile	Leu	Arg	Glu	Thr 70	Pro	Asp	Asn	Ile	Leu 75
Glu	Val	Gln	Glu	Ser 80	Gly	G1u	Tyr	Arg	Cys 85	Gln	Ala	Gln	Gly	Ser 90
Pro	Leu	Ser	Ser	Pro 95	Val	His	Leu	Asp	Phe 100	Ser	Ser	Ala	Ser	Leu 105
Ile	Leu	Gln	Ala	Pro 110	Leu	Ser	Val	Phe	Glu 115	Gly	Asp	Ser	Val	Val 120
Leu	Arg	Суѕ	Arg	Ala 125	Lys	Ala	Glu	Val	Thr 130	Leu	Asn	Asn	Thr	Ile 135
Tyr	Lys	Asn	Asp	Asn 140	Val	Leu	Ala	Phe	Leu 145	Asn	Lys	Arg	Thr	Asp 150
Phe	His	Ile	Pro	His 155	Ala	Cys	Leu	Lys	Asp 160	Asn	Gly	Ala	Tyr	Arg 165
Cys	Thr	Glv	Tvr	Lvs	Glu	Ser	Cvs	Cvs	Pro	Val.	Ser	Ser	Asn	Thr

				170	•				175					180
Va.l.	Lys	Ile	Gln	Val 185	Gln	Glu	Pro	Phe	Thr 190	Arg	Pro	Val	Leu	Arg 195
Ala	Ser	Ser	Phe	Gln 200	Pro	Ile	Ser	Gly	Asn 205	Pro	Val	Thr	Leu	Thr 210
Суз	Glu	Thr	Gln	Leu 215	Ser	Leu	Glu	Arg	Ser 220	Asp	Val	Pro	Leu	Arg 225
Phe	Arg	Phe	Phe	Arg 230	Asp	Asp	Gln	Thr	Leu 235	Gly	Leu	Gly	Trp	Ser 240
Leu	Ser	Pro	Asn	Phe 245	Gln	Ile	Thr	Ala	Met 250	Trp	Ser	Lys	Asp	Ser 255
Gly	Phe	Tyr	Trp	Су з 260	Lys	Ala	Ala	Thr	Met 265	Pro	His	Ser	Val	Ile 270
Ser	Asp	Ser	Pro	Arg 275	Ser	Trp	Ile	Gln	Val 280	Gln	Ile	Pro	Ala	Ser 285
His	Pro	Val	Leu	Thr 290	Leu	Ser	Pro	Glu	Lys 295	Ala	Leu	Asn	Phe	Glu 300
СГĀ	Thr	Lys	Val	Thr 305	Leu	His	Суѕ	Glu	Thr 310	Gln	Glu	Asp	Ser	Leu 315
Arg	Thr	Leu	Туг	Arg 320	₽he	Tyr	His	Glu	Gly 325	Val	Pro	Leu	Arg	His 330
Lys	Ser	Val	Arg	Су s 335	Glu	Arg	Gly	Ala	Ser 340	Ile	Ser	Phe	Ser	Leu 345
Thx	Thr	Glu	Asn	Ser 350	Gly	Asn	Tyr	Tyr	Cys 355	Thr	Ala	Asp	Asn	Gly 360
	Gly			365		-			370					375
Pro	Val	Ser	His	Pro 380	Val	Leu	Asn	Leu	Ser 385	Ser	Pro	Glu	Asp	Leu 390
Ile	Phe	Glu	Gly	Ala 395		Val	Thr	Leu	His 400	Cys	Glu	Ala	Gln	Arg 405
Сĵу	Ser	Leu	Pro	11e 410	Leu	Tyr	Gln	Ph⊕	His 415	His	Glu	Asp	Ala	Ala 420
Leu	Glu	Arg	Arg	Ser 425	Ala	Asn	Ser	Ala	Gly 430	Gly	Val	Ala	Ile	Ser 435
Phe	Ser	Leu	Thr	Ala 440	Glu	His	Ser	Gly	Asn 445	Tyr	Tyr	Cys	Thr	Ala 450
Asp	Asn	Gly	Phe	Gly 455	Pro	Gln	Arg	Ser	Lys 460	Ala	Val	Ser	Leu	Ser 465
Ile	Thr	Val	Pro	Val 470	Ser	His	Pro	Val	Leu 475	Thr	Leu	Ser	Ser	Ala 480

Glu	Ala	Leu	Thr	Phe 485	Glu	Gly	Ala	Thr	Val 490	Thr	Leu	His	Cys	Glu 495
Val	Gln	Arg	Gly	Ser 500	Pro	Gln	Ile	Leu	Tyr 505	Gln	Phe	Tyr	His	Glu 510
Asp	Met	Pro	Leu	Trp 515	Ser	Ser	Ser	Thr	Pro 520	Ser	Val	Gly	Arg	Val 525
Ser	Phe	Ser	Phe	Ser 530	Leu	Thr	Glu	Gly	His 535	Ser	Gly	Asn	Tyr	Tyr 540
Cys	Thr	Ala	Asp	Asn 545	Gly	Phe	Gly	Pro	Gln 550	Arg	Ser	Glu	Val	Val 555
Ser	Leu	Phe	Val	Thr 560	Val	Pro	Val	Ser	Arg 565	Pro	Ile	Leu	Thr	Leu 570
Arg	Val	Pro	Arg	Ala 575	Gln	Ala	Val	Val	Gly 580	Азр	Leu	Leu	Glu	Leu 585
His	Cys	Glu	Ala	Pro 590	Arg	Gly	Ser	Pro	Pro 595	Ile	Leu	Tyr	Trp	Phe 600
Tyr	His	Glu	Asp	Val 605	Thr	Leu	Gly	Ser	Ser 610	Ser	Ala	Pro	Ser	Gly 615
Gly	Glu	Ala	Ser	Phe 620	Asn	Leu	Ser	Leu	Thr 625	Ala	Glu	His	Ser	Gly 630
Asn	Tyr	Ser	Суз	Glu 635	Ala	Asn	Asn	Gly	Leu 640	Val	Ala	Gln	His	Ser 645
Asp	Thr	Ile	Ser	Leu 650	Ser	Val	Ile	Val	Pro 655	Val	Ser	Arg	Pro	11e 660
Leu	Thr	Phe	Arg	Ala 665	Pro	Arg	Ala	G l n	Ala 670	Val	Val	Gly	Asp	Leu 675
Leu	Glu	Leu	His	Cys 680	Glu	Ala	Leu	Arg	Gly 685	Ser	Ser	Pro	Ile	Leu 690
Tyr	Trp	Phe	Tyr	His 695	Glu	Asp	Val	Thr	Leu 700	Gly	Lys	Ile	Ser	Ala 705
Pro	Ser	Gly	Gly	Gly 710	Ala	Ser	Phe	Asn	Leu 715	Ser	Leu	Thr	Thr	Glu 720
His	Ser	Gly	Ile	Tyr 725	Ser	Cys	Glu	Ala	Asp 730	Asn	Gly	Pro	Glu	Ala 735
Gln	Arg	Ser	Glu	Met 740	Val	Thr	Leu	Lys	Val 745	Ala	Val	Pro	Val	Ser 750
Arg	Pro	Val	Leu	Thr 755	Leu	Arg	Ala	Pro	Gly 760	Thr	His	Ala	Ala	Val 765
Gly	Asp	Leu	Leu	Glu 770	Leu	His	Суз	Glu	Ala 775	Leu	Arg	Gly	Ser	Pro 780

Leu	Ile	Leu	Tyr	Arg 785	Phe	Phe	His	Glu	Asp 790	Val	Thr	Leu	Gly	Asn 795
Arg	Ser	Ser	Pro	Ser 800	Gly	Gly	Ala	Ser	Leu 805	Asn	Leu	Ser	Leu	Thr 810
Ala	Glu	Kis	Ser	Gly 815	Asn	Tyr	Ser	Суз	Glu 820	Ala	Asp	Asn	Gly	Leu 825
Gly	Ala	Gln	Arg	Ser 830	Glu	Thr	Val	Thr	Leu 835	Tyr	Ile	Thr	Gly	Leu 840
Thr	Ala	Asn	Arg	Ser 845	Gly	Pro	Phe	Ala	Thr 850	Gly	Val	Ala	Gly	Gly 855
Leu	Leu	Ser	Ile	Ala 860	Gly	Leu	Ala	Ala	Gly 865	Ala	Leu	Leu	Leu	Tyr 870
Cys	Trp	Leu	Ser	Arg 875	Lys	Ala	Gly	Arg	Lys 880	Pro	Ala	Ser	Asp	Pro 885
Ala	Arg	Ser	Pro	Pro 890	Asp	Ser	Asp	Ser	Gln 895	Glu	Pro	Thr	Tyr	His 900
Asn	Val	Pro	Ala	Trp 905	Glu	Glu	Leu	Gln	Pro 910	Val	Tyr	Thr	Asn	Ala 915
Äsn	Pro	Arg	Gly	Glu 920	Asn	Val	Val	Туг	Ser 925	Glu	Val	Arg	Ile	11e 930
Gln	Glu	Lys	Lys	Lys 935	His	Ala	Val	Ala	Ser 940	Asp	Pro	Arg	His	Leu 945
Arg	Asn	Lys	Gly	Ser 950	Pro	Ile	Ile	Tyr	Ser 955	Glu	Val	Lys	Val	Ala 960
Ser	Thr	Pro	Val	Ser 965	Gly	Ser	Leu	Phe	Leu 970	Ala	Ser	Ser	Ala	Pro 975
His	Arg													

REIVINDICACIONES

1. Un compuesto que tiene la siguiente fórmula:

o una sal o un solvato farmacéuticamente aceptables del mismo en el que:

independientemente de cada posición:

R² se selecciona entre H y alquilo C₁-C₈;

R³ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈), betarrociclo C₂-C₈-(carbociclo C₃-C₈-(carbociclo C₃-(carbociclo C₃-C₈-(carbociclo C₃-C₈-(carbociclo C₃-(carbociclo C₃-(carboc

 C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8); R^4 se selecciona entre H, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , arilo, alquil-arilo C_1 - C_8 , alquil C_1 - C_8 -(carbociclo C_3 - C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

R⁵ se selecciona entre H y metilo;

o:

 R^4 y R^5 forman de manera conjunta un anillo carbocíclico y tienen la fórmula -(CR^aR^b)_n-, en la que R^a y R^b se seleccionan independientemente entre H, alquilo C_1 - C_8 y carbociclo C_3 - C_8 , y n se selecciona entre 2, 3, 4, 5 y 6:

R se selecciona entre H y alquilo C₁-C₈;

 R^7 se selecciona entre H, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , arilo, alquil-arilo C_1 - C_8 , alquil C_1 - C_8 -(carbociclo C_3 - C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

cada R^8 se selecciona independientemente entre H, OH, alquilo C_1 - C_8 , carbociclo C_3 - C_8 y O-(alquilo C_1 - C_8); R^9 se selecciona entre H y alquilo C_1 - C_8 ;

R¹⁰ se selecciona entre arilo y heterociclo C₃-C₈;

Z es O; y

R¹¹ es H.

2. Un conjugado que tiene la fórmula:

$$L-(LU-D_F)_p$$

35

40

45

5

10

15

20

25

30

o una sal o un solvato farmacéuticamente aceptables del mismo en el que:

L- es una unidad de Ligando,

LU es una unidad de Conector que puede estar presente o ausente, p varía de 1 a 20, y

D_F es un grupo con la siguiente fórmula:

en el que independientemente en cada posición:

R² se selecciona entre H y alquilo C₁-C₈;

 R^3 se selecciona entre H, alquilo C_1 - C_8 , carbociclo C_3 - C_8 , arilo, alquil-arilo C_1 - C_8 , alquil C_1 - C_8 -(carbociclo C_3 - C_8) C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

R⁴ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈) C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

R⁵ se selecciona entre H y metilo; o:

R⁴ y R⁵ forman de manera conjunta un anillo carbocíclico y tienen la fórmula -(CRaRb)n-, en la que Ra y Rb se seleccionan independientemente entre H, alquilo C₁-C₈ y carbociclo C₃-C₈, y n se selecciona entre 2, 3, 4, 5 y 6;

R_{_} se selecciona entre H y alquilo C₁-C₈;

R⁷ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈), heterociclo C₃-C₈ y alquil C₁-C₈-(heterociclo C₃-C₈);

cada R⁸ se selecciona independientemente entre H, OH, alquilo C₁-C₈, carbociclo C₃-C₈ y O-(alquilo C₁-C₈); R⁹ se selecciona entre H y alquilo C₁-C₈;

R¹⁰ se selecciona entre arilo y heterociclo C₃-C₈;

Z es O; y R¹¹ es H.

5

10

15

25

30

35

40

45

50

3. Un conjugado que tiene la fórmula: 20

LU-D_F

o una sal o un solvato farmacéuticamente aceptables del mismo en el que:

LU- es una unidad de Conector que comprende un grupo funcional capaz de unirse a una unidad de ligando, y D_F es un grupo de la siguiente fórmula:

en la que:

independientemente en cada posición:

R² se selecciona entre H y alquilo C₁-C₈;

R³ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃- C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃- C_8), heterociclo C_3 - C_8 y alquil C_1 - C_8 -(heterociclo C_3 - C_8);

se selecciona entre H y metilo;

R⁴ y R⁵ forman de manera conjunta un anillo carbocíclico y tienen la fórmula -(CR^aR^b)_n-, en la que R^a y R^b se seleccionan independientemente entre H, alquilo C₁-C₈ y carbociclo C₃-C₈, y n se selecciona entre 2, 3,

R⁶ se selecciona entre H y alquilo C₁-C₈;

R⁷ se selecciona entre H, alquilo C₁-C₈, carbociclo C₃-C₈, arilo, alquil-arilo C₁-C₈, alquil C₁-C₈-(carbociclo C₃-C₈), heterociclo C₃-C₈ y alquil C₁-C₈-(heterociclo C₃-C₈);

cada R⁸ se selecciona independientemente entre H, OH, alquilo C₁-C₈, carbociclo C₃-C₈ y O-(alquilo C₁-C₈); R⁹ s

se selecciona entre H y alquilo C₁-C₈;

R¹⁰ se selecciona entre arilo y heterociclo C₃-C₈;

Z es O; y

R¹¹ es H.

55

4. Un conjugado de acuerdo con la reivindicación 2, en donde el conjugado es un conjugado de anticuerpo-fármaco que tiene la Fórmula la':

$$Ab - \left(-A_{a} - W_{w} - Y_{y} - D_{F}\right)_{p}$$

o una sal o un solvato farmacéuticamente aceptables del mismo en la que:

5

Ab es un anticuerpo,

-A_a-W_w-Y_v- es una unidad de Conector,

A es una unidad Bastidor,

a es 0 o 1,

10 cada W es independientemente una unidad de Aminoácido,

w es un número entero que varía de 0 a 12,

Y es una unidad Espaciadora,

y es 0, 1 o 2, y

p varía de 1 a 20.

15

5. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 4, que tiene la fórmula:

$$Ab = N-R^{17}-C(O)-W_w-Y_y-D_F$$

20

o una sal o un solvato farmacéuticamente aceptables del mismo en la que:

25

 R^{17} es alquileno $C_1\text{-}C_{10^-}$, -carbociclo $C_3\text{-}C_8\text{-}$, -O-(alquilo $C_1\text{-}C_8)\text{-}$, -arileno-, -alquilen $C_1\text{-}C_{10}\text{-}$ arileno- alquileno $C_1\text{-}C_{10^-}$, -alquileno $C_1\text{-}C_{10^-}$ (carbociclo $C_3\text{-}C_8)\text{-}$, -(carbociclo $C_3\text{-}C_8)\text{-}$ alquileno $C_1\text{-}C_{10^-}$, -heterociclo $C_3\text{-}C_8\text{-}$, -alquileno $C_1\text{-}C_{10^-}$ (heterociclo $C_3\text{-}C_8)\text{-}$) alquileno $C_1\text{-}C_{10^-}$, -(CH2CH2O)r- o -(CH2CH2O)r-CH2-; y r es un número entero que varía de 1 a 10.

6. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 5, o una sal o un solvato farmacéuticamente aceptables del mismo, que tiene la fórmula:

30

$$Ab \leftarrow S \qquad \qquad \\ O \qquad \qquad \\ W_w - Y_y - D_F \\ D \qquad \qquad \\ D \qquad \qquad \\ D \qquad \\ D \qquad \qquad \\ D $

35

7. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 5, o una sal o un solvato farmacéuticamente aceptables del mismo, que tiene la fórmula:

en la que: w e y son cada uno 0.

- 5 8. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 4, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que: w es un número entero que varía de 2 a 12.
 - 9. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 8, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que : w es 2.
 - 10. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 9, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que : W_w es -valina-citrulina- o -fenilalanina-lisina-.
 - 11. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 10, que tiene la fórmula:

$$Ab \xrightarrow{A_a - N} H \xrightarrow{B} Y_y - D_F$$

$$O \qquad NH_2$$

o una sal o un solvato farmacéuticamente aceptables del mismo.

20 12. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 10, que tiene la fórmula:

o una sal o un solvato farmacéuticamente aceptables del mismo.

13. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 10, que tiene la fórmula:

25

10

o una sal o un solvato farmacéuticamente aceptables del mismo.

14. Un conjugado de anticuerpo-fármaco de acuerdo con una cualquiera de las reivindicaciones 4 a 13, en el que D_F es:

o una sal o un solvato farmacéuticamente aceptables del mismo.

15. Un conjugado de anticuerpo-fármaco de acuerdo con una cualquiera de las reivindicaciones 4 a 14, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que el anticuerpo se selecciona entre: un anticuerpo monoclonal, un anticuerpo biespecífico, un anticuerpo quimérico, un anticuerpo humanizado, un diacuerpo y un fragmento de anticuerpo.

16. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 4, que tiene la fórmula:

Ab-MC-vc-PAB-MMAF

o una sal o un solvato farmacéuticamente aceptables del mismo en la que: Ab es un anticuerpo, Val es valina y Cit es citrulina.

25 17. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 4, que tiene la fórmula:

10

15

20

Ab-MC-MMAF

o una sal o un solvato farmacéuticamente aceptables del mismo en la que: Ab es un anticuerpo.

- 5 18. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 17, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que el anticuerpo se une al antígeno CD70.
 - 19. Un conjugado de anticuerpo-fármaco de acuerdo con las reivindicaciones 16 o 17, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que el anticuerpo es un anticuerpo monoclonal.
 - 20. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 19, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que el anticuerpo se une al antígeno CD70.
- 21. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 4, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que está presente cada uno de A, W, e Y.
 - 22. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 5, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que w e y son cada uno 0.
- 23. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 22, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que p es de 3 a 5.
 - 24. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 22, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que el anticuerpo se une al antígeno CD70.
 - 25. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 24, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que p es de 3 a 5.
- 26. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 16 o la reivindicación 17, o una sal o un solvato farmacéuticamente aceptables del mismo, en el que el anticuerpo se une a CD30, CD20, CD33, o al antígeno Lewis Y.
 - 27. Un conjugado de anticuerpo-fármaco de acuerdo con la reivindicación 4, o una sal o un solvato farmacéuticamente aceptables del mismo en el que: el anticuerpo se une a la unidad de Conector o a D_F a través de un resto de cisteína del anticuerpo.
 - 28. Una composición farmacéutica que comprende una cantidad eficaz de un conjugado de anticuerpo-fármaco de acuerdo con una cualquiera de las reivindicaciones 4 a 25, o una sal o un solvato farmacéuticamente aceptables del mismo, y un diluyente, un vehículo o un excipiente farmacéuticamente aceptables.
 - 29. Un conjugado de anticuerpo-fármaco de acuerdo con una cualquiera de las reivindicaciones 4 a 25, o una sal o un solvato farmacéuticamente aceptables del mismo, para uso en un método de tratamiento del cuerpo humano o animal mediante terapia.
- 45 30. Uso de un conjugado de anticuerpo-fármaco de acuerdo con una cualquiera de las reivindicaciones 4 a 25, o una sal o un solvato farmacéuticamente aceptables del mismo, en la preparación de un medicamento para uso en el tratamiento del cáncer.
- 31. Uso de acuerdo con la reivindicación 30, en el que el tratamiento del cáncer comprende adicionalmente tratamiento con un agente anticáncer, un agente inmunosupresor, o un agente antiinfeccioso adicionales.
 - 32. Uso de un conjugado de anticuerpo-fármaco de acuerdo con una cualquiera de las reivindicaciones 4 a 25, o una sal o un solvato farmacéuticamente aceptables del mismo, en la preparación de un medicamento para el tratamiento de una enfermedad autoinmune o de una enfermedad infecciosa.
 - 33. Un conjugado de acuerdo con la reivindicación 2 o 3, en el que la unidad de Conector (LU) tiene la fórmula:

55

10

25

35

$-A_a-W_w-Y_y-$

o una sal o un solvato farmacéuticamente aceptables del mismo 5 en la que:

-A- es una unidad Bastidor, a es 0 o 1, cada -W- es independientemente una unidad de Aminoácido, w es un número entero que varía de 0 a 12, -Y- es una unidad Espaciadora, e y es 0, 1 o 2.

34. Un conjugado de acuerdo con la reivindicación 3, que tiene la fórmula:

La Contraction of the Contractio

o una sal o un solvato farmacéuticamente aceptables del mismo.

20 35. Un compuesto de acuerdo con la reivindicación 1, que tiene la siguiente fórmula, o una sal o un solvato farmacéuticamente aceptables del mismo:

- 36. Un compuesto o un conjugado de acuerdo con una cualquiera de las reivindicaciones 1 a 25 y 33 a 35, o una sal o un solvato farmacéuticamente aceptables de los mismos, que están en forma aislada y purificada.
 - 37. Un compuesto o un conjugado de acuerdo con una cualquiera de las reivindicaciones 1 a 13, 15, 21 a 25 y 33, o una sal o un solvato farmacéuticamente aceptables de los mismos, en los que R² y R⁶ son cada uno metilo, y R⁹ es -
 - 38. Un compuesto o un conjugado de acuerdo con una cualquiera de las reivindicaciones 1 a 13, 15, 21 a 25 y 33, o una sal o un solvato farmacéuticamente aceptables de los mismos, en los que R^3 y R^4 son cada uno isopropilo, R^2 y R^6 son cada uno metilo, R^5 es -H, R^7 es sec-butilo, cada aparición de R^8 es -OCH $_3$ y R^9 es -H.

35

30

10

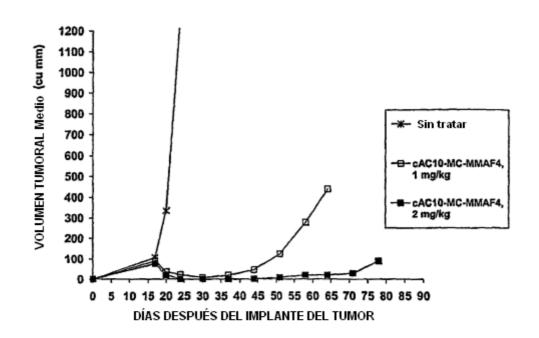


FIGURA 1

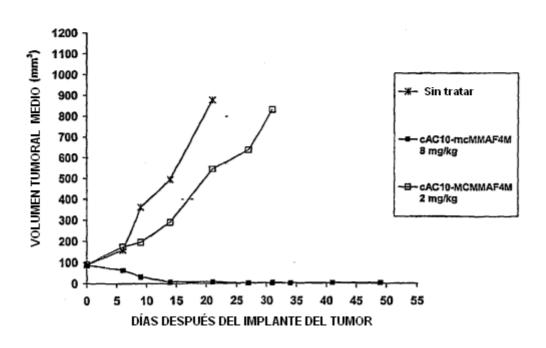


FIGURA 2

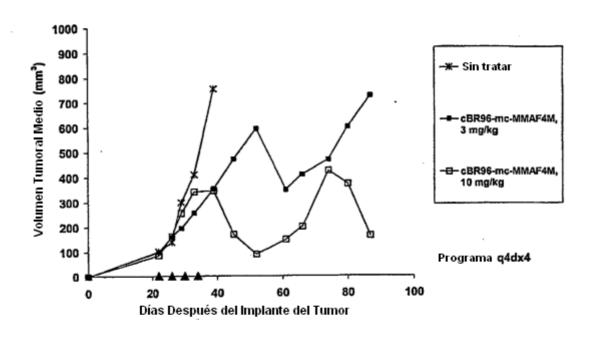
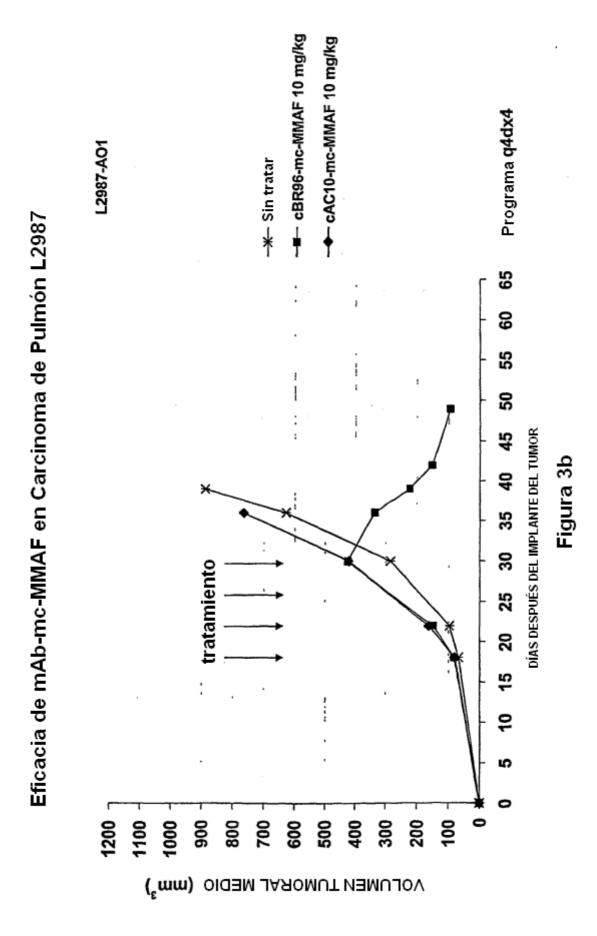



FIGURA 3a

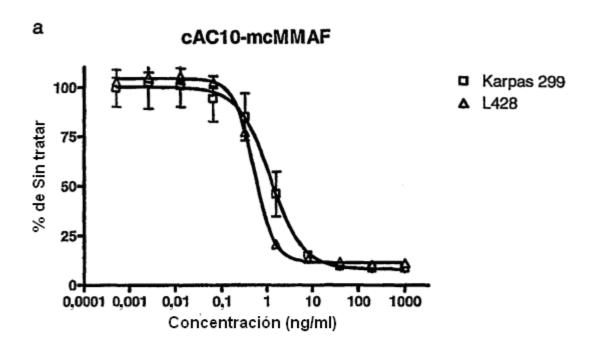
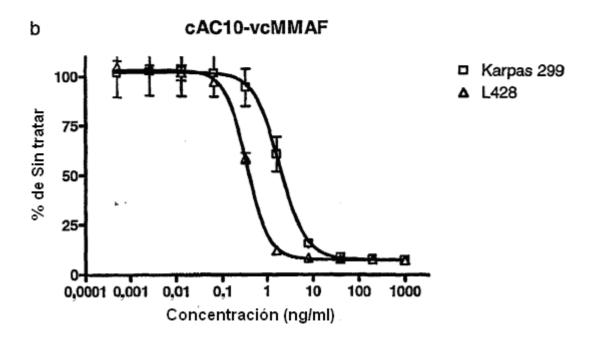
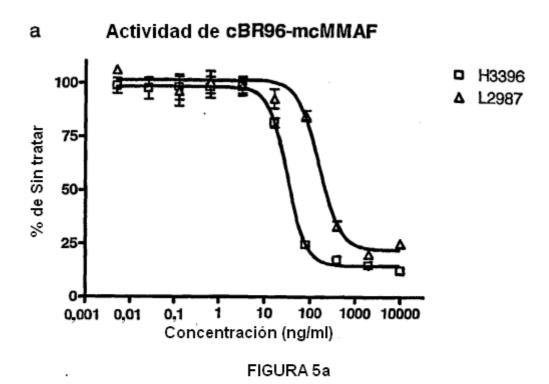
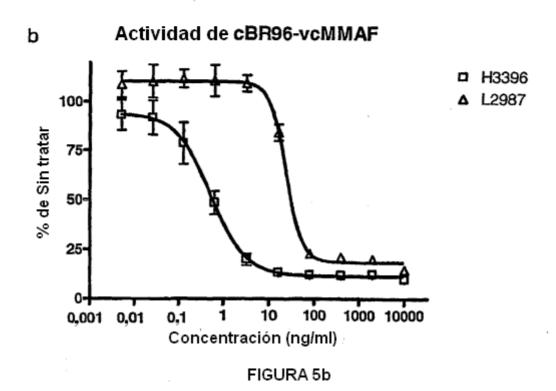
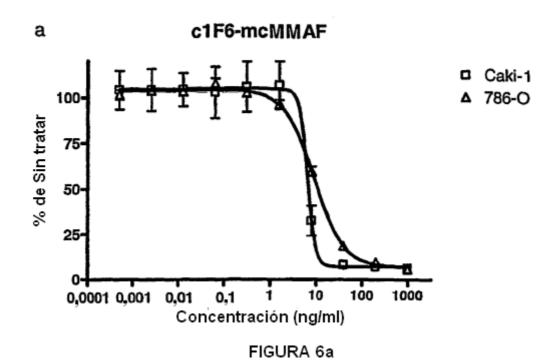
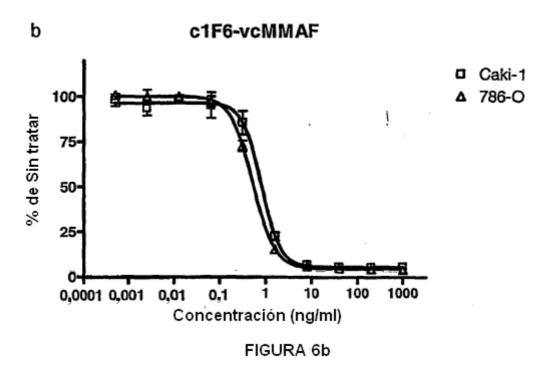
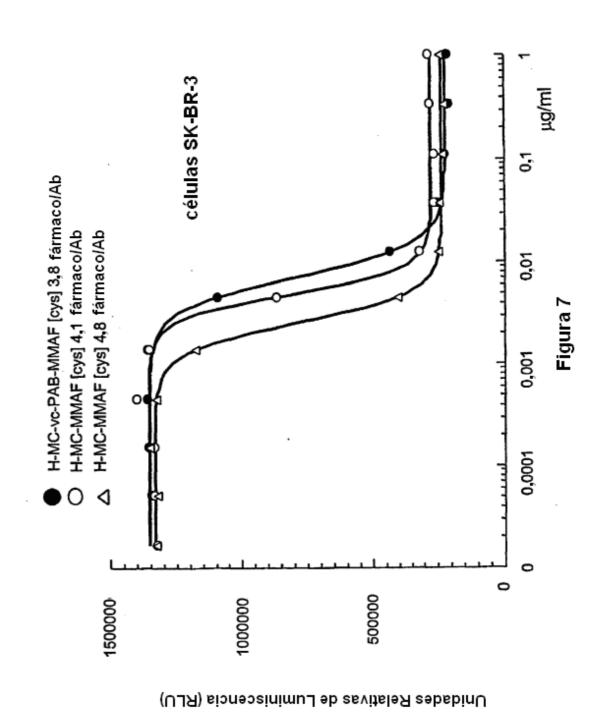
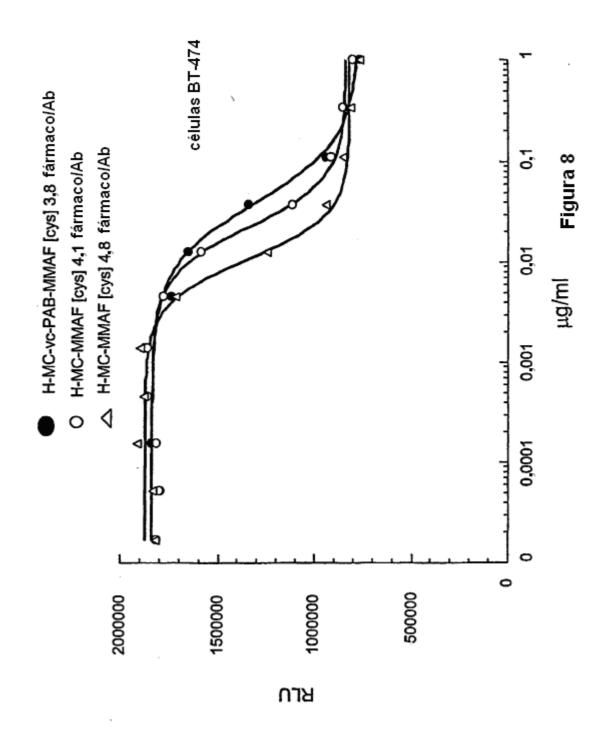
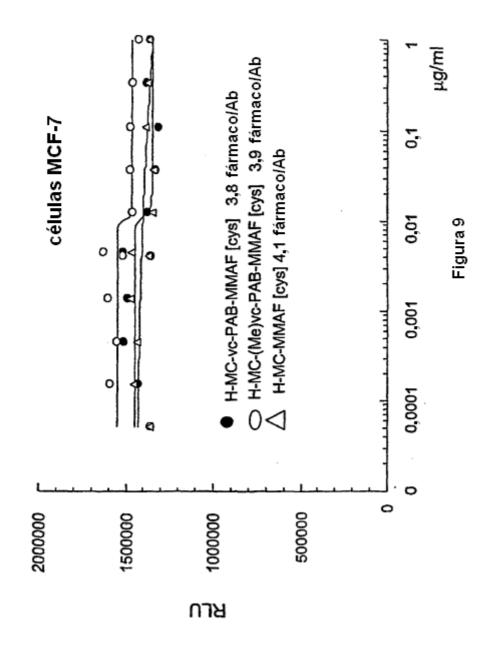


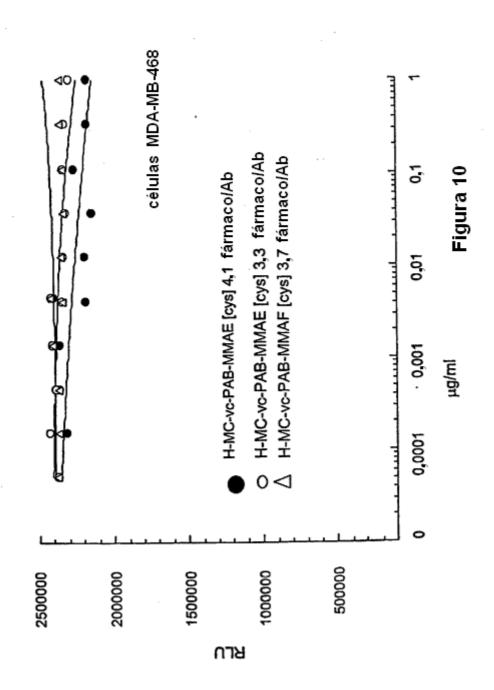
FIGURA 4a

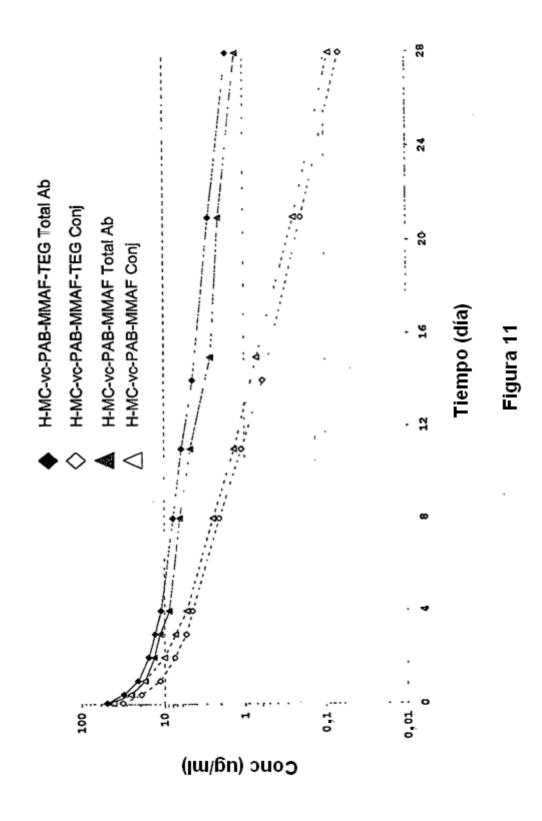






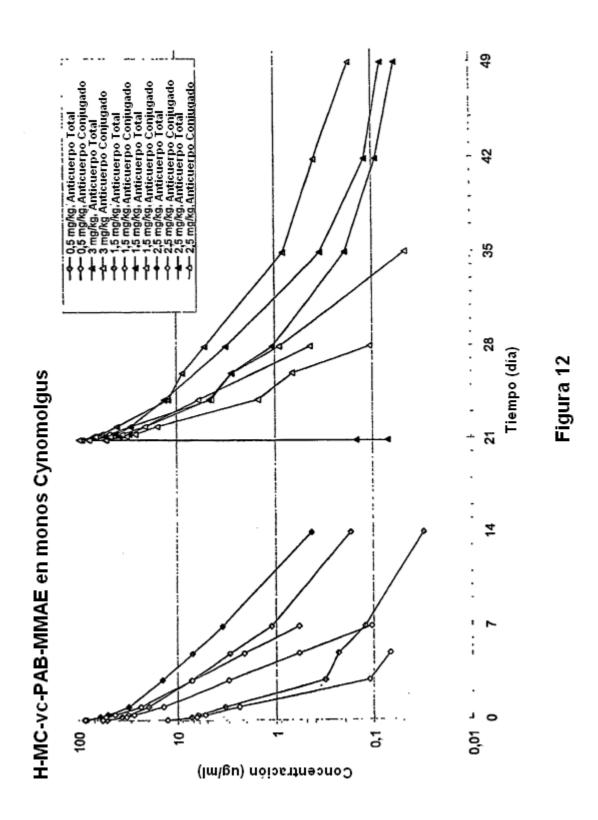

FIGURA 4b

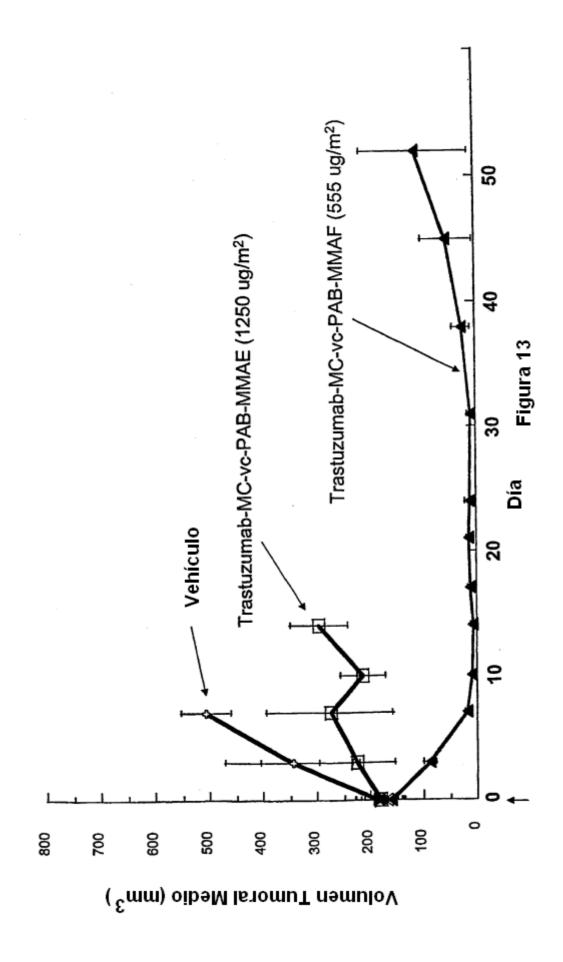


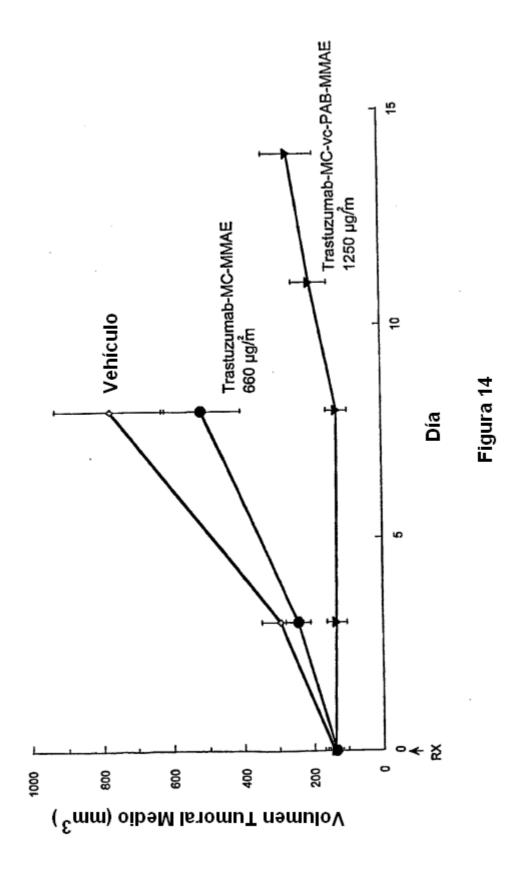


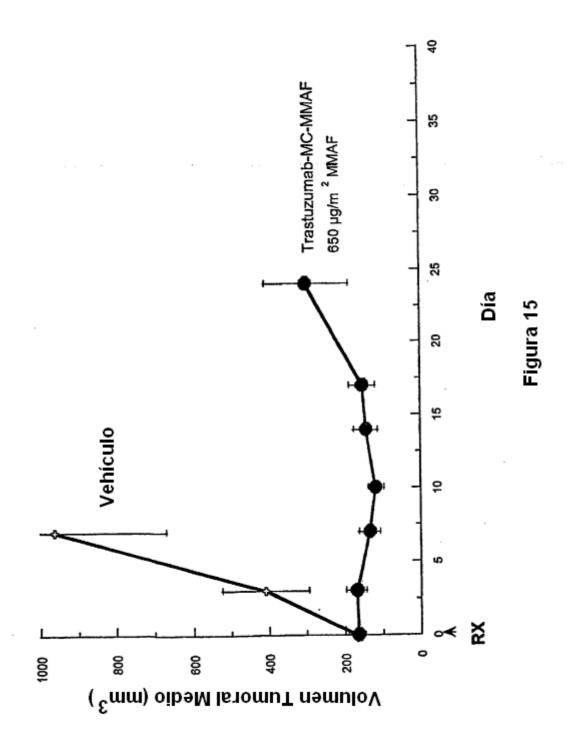


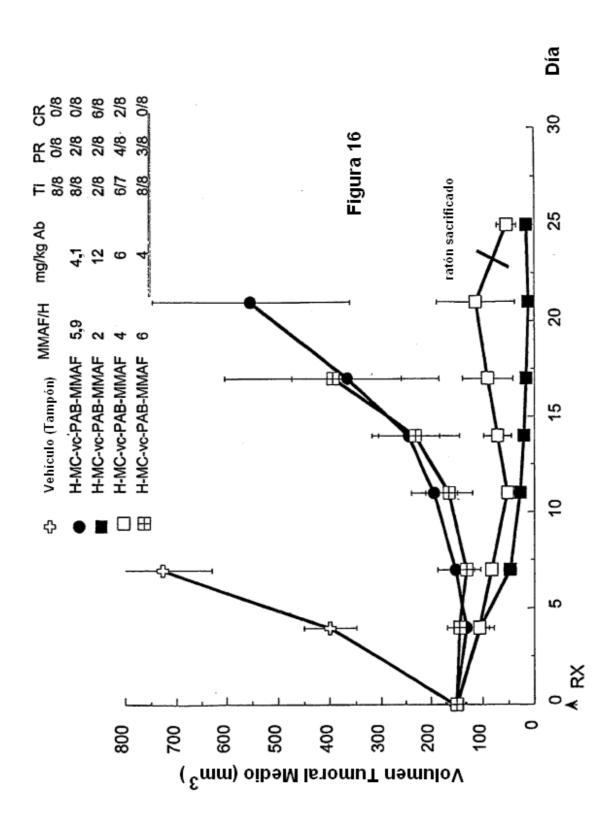


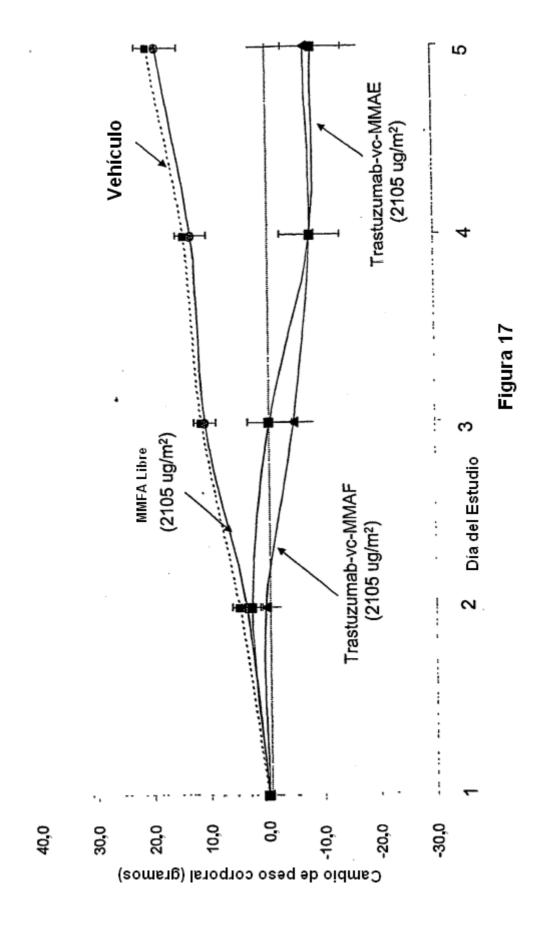


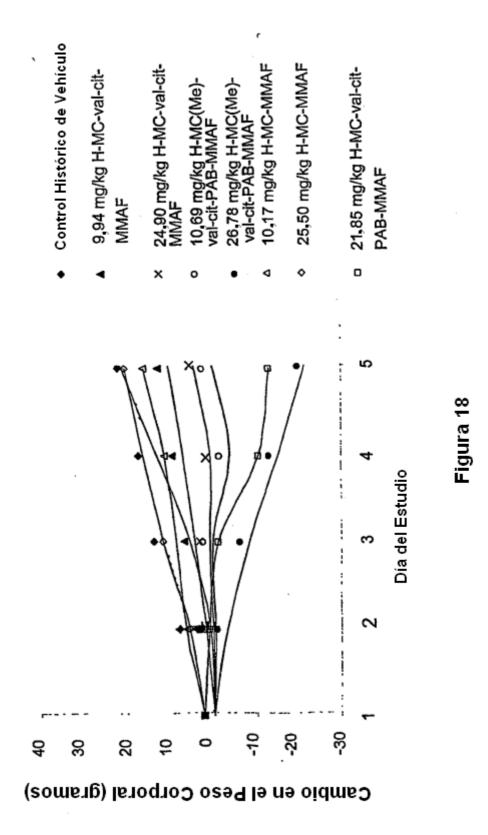


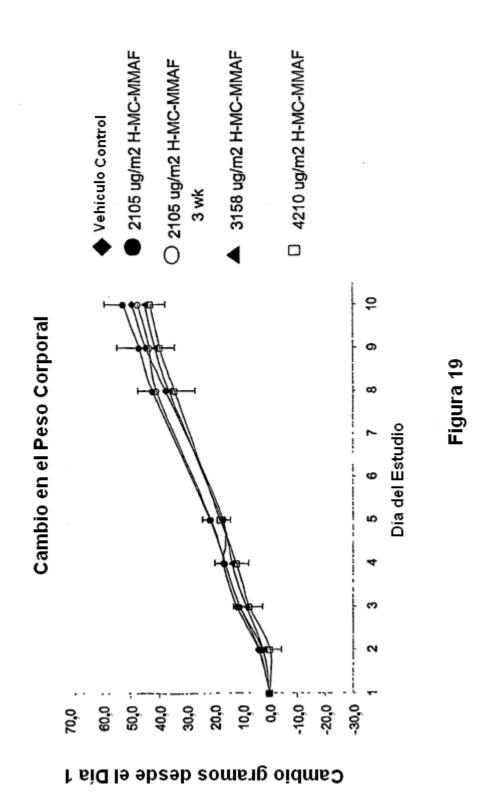












299

300