

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 456 672

61 Int. Cl.:

C07K 16/00 (2006.01) A61K 47/48 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 16.08.2006 E 06783620 (5)

(97) Fecha y número de publicación de la concesión europea: 15.01.2014 EP 1928910

(54) Título: Un procedimiento para la producción en masa de una región Fc de inmunoglobulina con residuos de metionina iniciales eliminados

(30) Prioridad:

16.08.2005 KR 20050074989

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.04.2014

(73) Titular/es:

HANMI SCIENCE CO., LTD. (100.0%) 550 Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si Gyeonggi-do 445-813, KR

(72) Inventor/es:

JUNG, SUNG YOUB; KIM, JIN SUN; SHIN, JIN HWAN; KWON, SE-CHANG; LEE, GWAN-SUN y SONG, DAE HAE

(74) Agente/Representante:

ARIAS SANZ, Juan

DESCRIPCIÓN

Un procedimiento para la producción en masa de una región Fc de inmunoglobulina con residuos de metionina iniciales eliminados

Campo técnico

5 La presente invención se refiere a un procedimiento para producir una región Fc de inmunoglobulina monomérica o dimérica libre de residuos de metionina iniciales en una escala de masa.

Técnica anterior

10

30

35

40

45

50

55

Con las ventajas en ingeniería genética, se han desarrollado y utilizado un gran número de fármacos de proteínas. Susceptibles a desnaturalización o degradación proteolítica en el cuerpo, los fármacos de proteínas, sin embargo, son difíciles de mantener en concentraciones y títulos *in vivo* durante un periodo de tiempo largo. Es importante una mejora en la estabilidad de las proteínas *in vivo*, que puede dar lugar al mantenimiento de las concentraciones *in vivo* de los fármacos de proteínas en niveles adecuados no sólo para promover la eficacia del tratamiento, sino también para ayudar a los pacientes que necesitan inyecciones frecuentes de sus fármacos de proteínas, en términos de conveniencia y costes.

Se han realizado muchos esfuerzos para potenciar la estabilidad *in vivo* de los fármacos de proteínas durante largo tiempo, ejemplificada cambiando la formulación de proteínas, fusionando una proteína a otra proteína, o uniendo química o biológicamente un polímero adecuado a la superficie de una proteína.

Una técnica de este tipo es preparar una proteína de fusión con el fragmento Fc de inmunoglobulina.

El fragmento Fc media en las funciones efectoras tales como la citotoxicidad dependiente de complemento (CDC) o la citotoxicidad mediada por células dependiente de anticuerpos (ADCC), así como la capacidad de unión a antígeno, que es la única función de las inmunoglobulinas. Además, el fragmento Fc contiene una secuencia que participa en la unión al receptor Fc neonatal (FcRn), que desempeña un papel en la regulación de los niveles de IgG en suero incrementando el transporte de IgG materna a los neonatos y la semivida de la IgG (Ghetie y Ward, *Immunology Today* 18: 592-598, 1997), y la secuencia regula la interacción entre proteína A y proteína G. Por medio de la fusión de este fragmento Fc con una proteína terapéutica, se han realizado muchos estudios para potenciar la estabilidad de la proteína terapéutica.

Por ejemplo, la patente coreana n.º 249572 divulga una proteína de fusión preparada uniendo una región Fc de cadena pesada de IgG1 (Fc) en un extremo amino terminal de la misma a un extremo carboxilo terminal de una proteína, tal como un receptor de IL4, un receptor de IL7, un receptor de G-CSF o un receptor de EPO, y produciendo la proteína de fusión resultante en células de mamífero. La patente de los EE, UU, N.º 5,605,690 describe una proteína de fusión que comprende un receptor del factor de necrosis tumoral fusionado en su extremo carboxilo terminal a un derivado de Fc de IgG1 humana, produciéndose la proteína de fusión en células animales. Además, Tanox Inc. informó, en las patentes de los EE. UU. N.º 5.723.125 y 5.908.626, de una molécula híbrida que comprende interferón alfa o beta humano que está unido en su extremo carboxilo terminal a Fc de IgG4 humana natural por medio de un enlazador peptídico, y se produce en células animales. Lexigen Inc., como describe en la publicación de la solicitud internacional PCT N.º WO 00/69913 preparó un Fc de IgG1 natural unido en su extremo carboxilo terminal al extremo amino terminal de interferón humano por recombinación genética sin el uso de un enlazador y produjo la proteína de fusión en células animales. La publicación de patente de los EE. UU. N. 20030082679 divulga una proteína de fusión con una semivida en suero prolongada, que comprende G-CSF humano unido en su extremo carboxilo terminal al extremo amino terminal de Fc de IgG1 y se produce en células animales. La publicación de patente de los EE. UU. N. 20010053539, la patente de los EE. UU. N. 6,030,613, las publicaciones de solicitud internacional PCT N.º WO 99/02709 y WO . 01/03737 y la patente europea N.º 0464533B1 divulga una proteína de fusión Fc con una semivida en suero más larga que una proteína natural, que comprende un Fc de IgG1 o derivado de Fc unido en su extremo amino terminal por medio de un enlazador peptídico al extremo carboxilo terminal de EPO humana, TPO, hormona de crecimiento humana o interferón beta humano, produciéndose la proteína de fusión Fc en células animales.

Estas proteínas de fusión Fc, como se describe anteriormente, incrementan la semivida en suero de proteínas diana, pero conlleva problemas relacionados con la mediación de las funciones efectoras por el fragmento Fc (patente de los EE. UU. N.º 5.349.053). A través de las funciones efectoras del fragmento Fc, fijan complementos o se unen a células que expresan FcyRs, dando lugar a la lisis de células específicas, e inducen la producción y secreción de varias citocinas que inducen la inflamación, dando lugar a una inflamación no deseada. Además, la fusión crea una nueva secuencia de aminoácidos en una región de conexión entre el fragmento Fc y el compañero de proteína, lo que podría inducir potencialmente respuestas inmunitarias si se administra durante mucho tiempo.

A este respecto, se han realizado muchos esfuerzos para preparar una inmunoglobulina o fragmento de inmunoglobulina que tenga una semivida en suero larga pero que sea deficiente en funciones efectoras. Cole et al. informó de que, cuando los residuos aminoacídicos de la región CH2 en las posiciones 234, 235 y 237, conocidos por desempeñar un papel importante en la unión a receptores Fc, se reemplazan con alanina para producir así un derivado Fc que tenga una afinidad de unión reducida a receptores Fc, se inhibe la actividad de ADCC (Cole et al., *J. Immunol.*

159: 3613-3621, 1997). Sin embargo, en todas estas variantes, el Fc puede tener una inmunogenicidad o antigenicidad incrementada en comparación con el fragmento Fc humano natural debido a la presencia de aminoácido no adecuados, y puede perder funciones de Fc deseables.

De entre los procedimientos de deleción o reducción de funciones efectoras no deseables mientras se mantienen concentraciones en suero altas de una inmunoglobulina, uno de ellos se basa en retirar restos de azúcar de la inmunoglobulina. Como se describe en la patente de los EE. UU. N. 5.585.097, se puede preparar un derivado de anticuerpo aglucosilado como anticuerpo anti-CD3 reemplazando un residuo glucosilado de anticuerpos, el residuo asparagina en la posición 297 del dominio CH2, con otro aminoácido. Este derivado de anticuerpo aglucosilado presenta funciones efectoras reducidas, pero aún retiene su afinidad de unión al receptor FcRn, sin cambios en su semivida en suero. Sin embargo, este derivado también es problemático en cuanto a que se reconoce potencialmente como un material exógeno y es rechazado por el sistema inmunitario debido a la producción de una construcción recombinante novedosa que tiene una secuencia anormal. La publicación de patente de los EE. UU. N.º 20030073164 divulga un procedimiento de producción de un derivado de Fc usando *E. coli* carente de capacidad de glucosilación para preparar un anticuerpo terapéutico deficiente en funciones efectoras.

15 La compañía americana Amgen Inc. describió, en la patente de los EE. UU. N.º 6.660.843 y en las publicaciones de patente de los EE. UU. N.º 20040044188 y 20040053845, un derivado de Fc de IgG1 humana que tiene deleciones de aminoácidos en los cinco primeros residuos aminoacídicos de la región bisagra, que está fusionada al extremo amino o carboxilo terminal de una proteína terapéutica o una proteína terapéutica imitada por un péptido, y la producción del mismo usando un huésped de E. coli. Sin embargo, esta proteína de fusión que no tiene una secuencia señal se 20 expresa como los cuerpos de inclusión, y por tanto debe someterse a un procedimiento de replegado adicional. Este procedimiento de replegado de proteína reduce los rendimientos, y, en especial en una proteína presente como un homodímero o un heterodímero, reduce de forma marcada la producción de dímeros. Además, cuando una proteína no tiene una secuencia señal se expresa en E. coli, se añade un residuo de metionina al extremo N terminal del producto de expresión debido a la característica del sistema de expresión de proteína de E. coli. Los productos de 25 expresión mencionados anteriormente de Amgen Inc. tienen un residuo de metionina N terminal, que puede inducir respuestas inmunitarias tras la administración repetida o excesiva al cuerpo. Además, puesto que estas moléculas de fusión se expresan en forma de proteína de fusión en E. coli uniendo un gen que codifica una proteína terapéutica a un gen de Fc, son difíciles de expresar en E. coli, o una proteína terapéutica es difícil de producir en E. coli si su expresión en E. coli en forma fusionada da como resultado una disminución significativa o una pérdida de la actividad. Además, 30 puesto que la fusión de dos moléculas crea una secuencia de aminoácidos anormal no natural en la región de conexión entre dos proteínas, la proteína de fusión podría reconocerse potencialmente como "no propia" por el sistema inmunitario, e inducir, por tanto, respuestas inmunitarias.

Para resolver estos problemas, los presentes inventores prepararon previamente un fragmento Fc y un fármaco de proteína como polipéptidos por separado, sin usar un procedimiento de fusión basado en recombinación genética pero usando los mejores sistemas de expresión, y uniendo covalentemente los dos polipéptidos juntos para usar el fragmento Fc como un vehículo de fármaco. En este caso, es posible preparar un conjugado de un fármaco de polipéptido glucosilado y un Fc aglucosilado, que no induce respuestas inmunitarias no deseadas pero que tiene respuestas inmunitarias satisfactorias de actividad de fármaco fisiológica, duración y estabilidad *in vivo*.

35

50

55

60

En el caso anterior, puesto que es preferente que el Fc este en forma aglucosilada, se usa un sistema de expresión procariota tal como *E. coli*. Los procedimientos de producción de proteínas que usan un sistema de expresión de *E. coli* tienen varias ventajas sobre los procedimientos convencionales que usan células animales, como sigue. Un vector de expresión de *E. coli* se puede construir fácilmente, permitiendo así una evaluación rápida de la expresión de proteínas. Debido a su rápida tasa de crecimiento, *E. coli* permite la producción en masa de una proteína de interés a bajo coste. Además, se puede usar un procedimiento de expresión relativamente simple. Por tanto, *E. coli* es más útil para una producción comercial que otras células huésped.

La mayoría de las regiones Fc están presentes como cuerpos de inclusión tras las sobreexpresión en *E. coli*. Por este motivo, la industria demanda que las regiones Fc se expresen en forma soluble en agua en *E. coli*. La patente europea N.º 0227110 divulga la producción de la región Fc de inmunoglobulina G1 usando sólo el producto (el lisado celular) que se expresa en forma soluble en agua tras la sobreexpresión de la región Fc de inmunoglobulina G1. Sin embargo, sólo la inmunoglobulina expresada en forma soluble en agua tiene un rendimiento de tan solo 15 mg/l, lo que no tiene valor en cuando a utilidad industrial. La solicitud de patente coreana nº. 0092783, resuelve el problema encontrado en la técnica anterior, introduce una técnica novedosa de expresión de una región Fc de inmunoglobulina no como cuerpos de inclusión sino en una forma soluble en agua en *E. coli* por medio de la fusión de la secuencia de nucleótidos correspondiente a la región Fc a una secuencia señal de *E. coli*. Tras la expresión en *E. coli*, la proteína de interés está presente en forma soluble desprovista de péptido señal con un incremento en el rendimiento de producción de la misma en hasta 600 mg/l.

Dando lugar a la presente invención, la investigación intensiva y minuciosa de un procedimiento de producción de regiones Fc de inmunoglobulina aglucosilada activas libres de respuesta inmunitaria, llevada a cabo por los presentes inventores, con el objetivo de incrementar el rendimiento de producción hasta un nivel adecuado para la industrialización, dio como resultado el hallazgo de que cuando una secuencia de nucleótidos que codifica una región Fc de inmunoglobulina se expresa en una forma fusionada en el extremo N terminal a una región bisagra específica, la

región Fc de inmunoglobulina se expresa como cuerpos de inclusión que son finalmente un dímero o un monómero de la región Fc de inmunoglobulina desprovista de residuos de metionina iniciales por medio de procedimientos de solubilización y replegado.

El documento WO 01/18203 divulga composiciones de proteína de fusión osteoprotegerina, procedimientos de preparación de dichas composiciones y usos de las mismas. El documento WO 2005/047334 divulga un fragmento Fc de IgG, un vector recombinante que expresa el fragmento Fc de IgG, un transformante transformado con el vector recombinante y un procedimiento de preparación de un fragmento Fc de IgG que comprende cultivar el transformante.

Divulgación de la invención

5

25

La presente invención proporciona un procedimiento de producción de una región Fc de inmunoglobulina libre de un residuo de metionina codificada por un codón de iniciación en una escala en masa, que comprende:

preparar un vector de expresión recombinante que incluye una secuencia de nucleótidos que codifica una región Fc de inmunoglobulina recombinante compuesta de una región Fc de inmunoglobulina unida a un extremo N terminal de la misma a una región bisagra de la inmunoglobulina por medio de un enlace peptídico; transformar un E. coli con el vector de expresión recombinante para crear un transformante;

15 cultivar el transformante para expresar la región Fc de inmunoglobulina como un cuerpo de inclusión;

aislar y purificar la región Fc de inmunoglobulina del cuerpo de inclusión; y

solubilizar y replegar el fragmento Fc de inmunoglobulina,

en el que dicha región bisagra de inmunoglobulina tiene cisteína, serina o prolina como aminoácido inicial del extremo N terminal.

20 Breve descripción de los dibujos

El anterior y otros objetivos, características y otras ventajas de la presente invención se comprenderán más claramente a partir de la siguiente descripción detallada tomada conjuntamente con los dibujos adjuntos, en los que:

La FIG. 1 es una fotografía de gel de electroforesis que muestra la formación de fragmentos de región Fc monoméricos y diméricos de cuerpos de inclusión expresados usando un vector de expresión que tiene un nucleótido que codifica una región Fc de inmunoglobulina IgG4 humana;

La FIG. 2 muestra los resultados de ELISA para la capacidad de unión a C1q de la región Fc de inmunoglobulina IgG4 humana;

La FIG. 3 muestra los resultados de ELISA para la capacidad de unión a FcγRI de la región Fc de inmunoglobulina IgG humana:

30 La FIG. 4 muestra los resultados de ELISA para la capacidad de unión a FcγRIII de la región Fc de inmunoglobulina IgG humana;

La FIG. 5 muestra los resultados de ELISA para la capacidad de unión a $FcRn\alpha\beta_2$ de la región Fc de inmunoglobulina IgG humana;

La FIG. 6 muestra los resultados de las semividas en suero de un conjugado EPO-PEG-Fc preparado usando una región Fc de inmunoglobulina IgG humana como vehículo;

La FIG. 7 es una fotografía de un gel de SDS-PAGE al 15 % en el que, después de mezclarse con volúmenes iguales de un tampón de muestra de proteína 2x, se hacen correr partes de las soluciones fermentadas obtenidas haciendo crecer transformantes microbianos del ejemplo 2 en fermentadores bajo una condición de expresión;

La FIG. 8 es una fotografía de un gel de SDS-PAGE en el que las proteínas replegadas de los cuerpos de inclusión expresadas por los transformantes del ejemplo 2 se separan y se visualizan como bandas;

La FIG. 9 es una fotografía de un gel de SDS-PAGE al 15 % en el que, después de mezclarse con volúmenes iguales de un tampón de muestra de proteína 2x, se hacen correr partes de las soluciones fermentadas obtenidas haciendo crecer transformantes microbianos del ejemplo 3 en fermentadores bajo una condición de expresión; y

La FIG. 10 es una fotografía de un gel de SDS-PAGE al 15 % en el que, después de mezclarse con un tampón de muestra de proteína libre de agente reductor tal como DTT o beta-mercaptoetanol, se hacen correr los respectivos productos expresados y purificados en el ejemplo 3.

Mejor modo de llevar a cabo la invención

En un aspecto, la presente invención proporciona un procedimiento de producción de una región Fc de

inmunoglobulina libre de un residuo de metionina codificada por un codón de iniciación en una escala en masa, que comprende:

preparar un vector de expresión recombinante que incluye una secuencia de nucleótidos que codifica una región Fc de inmunoglobulina recombinante compuesta de una región Fc de inmunoglobulina unida a un extremo N terminal de la misma a una región bisagra de la inmunoglobulina por medio de un enlace peptídico;

transformar un E. coli con el vector de expresión recombinante para crear un transformante;

cultivar el transformante para expresar la región Fc de inmunoglobulina como un cuerpo de inclusión;

aislar y purificar la región Fc de inmunoglobulina del cuerpo de inclusión; y

solubilizar y replegar el fragmento Fc de inmunoglobulina,

5

15

35

40

45

50

55

10 en el que dicha región bisagra de inmunoglobulina tiene cisteína, serina o prolina como aminoácido inicial del extremo N terminal.

La presente invención se refiere a un procedimiento de producción en masa de una región Fc de inmunoglobulina útil como vehículo para fármacos de proteínas. Cuando se fusiona una región Fc de inmunoglobulina en el extremo N terminal a una región bisagra, se descubre que la región Fc de inmunoglobulina recombinante resultante se expresa como un cuerpo de inclusión y después se solubiliza y se repliega en un dímero o monómero en una forma activa desprovista del residuo de metionina inicial por codificado por el codón de iniciación. La presente invención es de gran relevancia en cuanto al hallazgo de que, cuando se fusiona a una región Fc de inmunoglobulina, una región bisagra desempeña un papel fundamental en el procesado y replegado de la región Fc recombinante en una forma de secuencia natural desprovista del residuo de metionina inicial codificado por el codón de iniciación.

20 La región bisagra que puede permitir que una región Fc de inmunoglobulina se produzca en masa en una forma recombinante con la misma puede ser un derivado de laG. IaA. IaB. IaB o laD de seres humanos y otros animales. incluyendo cabras, cerdos, ratones, conejos, hámsteres, ratas y cobayas, con preferencia por un derivado de IgG, por ejemplo, IgG1, IgG2, IgG3, o IgG4 (SEQ. ID. NO.: 14 a 17). La región bisagra útil en la presente invención puede ser una región bisagra de longitud completa o un fragmento del mismo. Es preferente un fragmento de región bisagra que 25 tenga dos o más secuencias de aminoácidos consecutivas, que son más preferentes cuando contienen al menos un residuo de cisteína en la misma. Son de uso práctico en la presente invención fragmentos de la región bisagra derivados de IgG4 de SEQ. ID. NO. 17, que se representan por SEQ. ID. NO.: 18, 19, 20 y 21. Cuando se emplean regiones bisagra de SEQ. ID. NO.: 18, 19 y 20, la región Fc de inmunoglobulina se puede preparar en una forma de dímero o monómero. La región bisagra de SEQ. ID. NO. 21 permite eficazmente la preparación de un monómero de la 30 región Fc de inmunoglobulina. En otras implementaciones de la presente invención, se usaron fragmentos, representados por SEQ. ID. NO.: 49 y 51 a 55, de la región bisagra derivada de IgG1 de SEQ. ID. NO. 14 y, representada por SEQ. ID. NO.: 56 a 60, de la región bisagra derivada de IgG2 de SEQ. ID. NO. 15 para producir un dímero de la región Fc de inmunoglobulina.

La región Fc de inmunoglobulina que se puede producir por la presente invención puede ser una forma natural aislada de seres humanos y otros animales incluyendo cabras, cerdos, ratones, conejos, hámsteres, ratas y cobayas, o puede ser un recombinante o un derivado de la misma, obtenida de microorganismos o células animales transformadas. Pueden ser preferentes una región Fc de IgG, IgA, IgM, IgE e IgD de seres humanos, o una combinación o híbrido de las mismas. El término "combinación", como se usa en el presente documento, quiere decir que los polipéptidos que codifican fragmentos Fc de inmunoglobulina monocatenaria del mismo origen se unen a un polipéptido monocatenario de origen diferente para formar un dímero o multímero. El término "híbrido", como se usa en el presente documento, quiere decir que, en un fragmento Fc de inmunoglobulina monocatenaria están presentes secuencias que codifican dos o más fragmentos Fc de inmunoglobulina de origen diferente. Preferentemente, la inmunoglobulina puede ser una región Fc de IgG1, IgG2, IgG3 e IgG4, o una combinación o híbrido de las mismas. Las secuencias de nucleótidos que codifican regiones Fc de inmunoglobulina humana y las secuencias de aminoácidos limitadas a las mismas, útiles en la presente invención, pueden ser las codificadas por secuencias de nucleótidos de las bases de datos GenBank y/o EMBL.

La región Fc de inmunoglobulina producida por la presente invención incluye un derivado de secuencia de aminoácidos. El término "derivado de secuencia de aminoácidos" quiere decir una secuencia en la que uno o más residuos aminoacídicos difieren de una secuencia de aminoácidos de origen natural, y se puede producir de forma natural o generarse de forma artificial. La región Fc de inmunoglobulina incluye derivados que resultan de una deleción, una inserción, una sustitución conservadora o no conservadora o combinaciones de las mismas. Típicamente, una inserción se realiza por la adición de una secuencia de aminoácidos consecutiva de aproximadamente 1 a 20 aminoácidos, o se puede realizar con una secuencia más larga. Típicamente, una deleción está en el intervalo de aproximadamente 1 a 30 residuos aminoacídicos. Los intercambios de aminoácidos en proteínas y péptidos, que, en general, no alteran la actividad de las proteínas o péptidos, son conocidos en la técnica (H. Neurath, R. L. Hill, The proteínas, Academic Press, Nueva York, 1979). Los intercambios que se producen más comúnmente son Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu y Asp/Gly, en ambas direcciones. Dichos derivados se pueden preparar por

medio de un procedimiento de síntesis peptídica química o un procedimiento de recombinación basada en secuencia de ADN, que son conocidos en la técnica (Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York, USA, 2ª Ed., 1989).

Además, si se desea, se puede modificar la región Fc de inmunoglobulina por fosforilación, sulfatación, acrilación, glucosilación, metilación, farnesilación, acetilación y amidación.

El derivado de inmunoglobulina producido por la presente invención es preferentemente un equivalente funcional a su forma natural, presentando, por tanto una actividad biológica similar, o, si se desea, se podría realizar alterando la propiedad de la forma natural. Preferentemente, los derivados de la región Fc de inmunoglobulina son proteínas que tienen una estabilidad estructural incrementada frente al calor, pH, etc., o solubilidad, o que tienen características mejoradas en cuanto a la formación de enlace disulfuro, compatibilidad con un huésped de expresión, unión a complemento, unión a receptor de Fc y citotoxicidad mediada por células dependiente de anticuerpos (ADCC), siempre que los derivados producidos no sean tan diferentes de las formas naturales de los seres humanos que induzcan respuestas inmunitarias no deseadas en seres humanos y animales. Son derivados preferentes las regiones Fc de IgG1 que están alteradas en un residuo específico de este tipo para presentar una afinidad reducida a receptores de Fc que median la citotoxicidad mediada por células dependiente de anticuerpos (ADCC). Un derivado producido puede contener una deleción o una sustitución con otro aminoácido en el residuo leucina en la posición 234 de una secuencia CH2 de IgG1 (véase la secuencia de la base de datos de Kabat para la numeración de los residuos aminoacídicos). Lo más preferentemente, se reemplaza Leu234 por fenilalanina, un residuo aminoacídico en una posición correspondiente en IgG4.

10

15

35

40

50

55

De acuerdo con la presente invención, se prepara una secuencia de nucleótidos que codifica una región Fc de inmunoglobulina recombinante en la que se fusiona una región Fc de inmunoglobulina a una región bisagra de inmunoglobulina. Como se usa en el presente documento, el término "región Fc de inmunoglobulina recombinante" quiere decir una región Fc de inmunoglobulina unida en el extremo N terminal a una región bisagra por medio de un enlace peptídico.

Dependiendo de la región Fc de inmunoglobulina, se puede escoger la región bisagra que se va a fusionar. Es preferente una región bisagra que sea la misma en origen que la región Fc de inmunoglobulina. En la práctica real de la presente invención, se preparó una secuencias de nucleótidos que codifica una región Fc de inmunoglobulina recombinante que consiste en una secuencia de aminoácidos expuesta como SEQ. ID. NO.: 7, 9, 11 o 13, en la que una región Fc derivada de IgG4 se fusiona a una región bisagra que consiste en una secuencia de aminoácidos expuesta como SEQ. ID. NO.: 18, 19, 20 o 21. Las secuencias de nucleótidos que codifican las regiones Fc de inmunoglobulina recombinantes se representan por SEQ. ID. NO.: 6, 8, 10 y 12, respectivamente.

En otra implementación, se preparó una secuencia de nucleótidos que codifican una región Fc de inmunoglobulina recombinante que consiste en una secuencia de aminoácidos expuesta como en SEQ. ID. NO. 25, 29, 31, 33, 35 o 37, en la que una región Fc derivada de IgG1 se fusiona a una región bisagra que consiste en una secuencia de aminoácidos expuesta como una de SEQ. ID. NO.: 49 y 51 a 55. Las secuencias de nucleótidos resultantes que codifican las regiones Fc de inmunoglobulina recombinantes se representan por SEQ. ID. NO.: 24, 28, 30, 32, 34 y 36.

En otra implementación, se preparó una secuencia de nucleótidos que codifican una región Fc de inmunoglobulina recombinante que consiste en una secuencia de aminoácidos expuesta como en SEQ. ID. NO. 39, 41, 43, 45 o 47, en la que una región Fc derivada de IgG2 se fusiona a una región bisagra que consiste en una secuencia de aminoácidos expuesta como una de SEQ. ID. NO.: 56 a 60. Las secuencias de nucleótidos resultantes que codifican las regiones Fc de inmunoglobulina recombinantes se representan por SEQ. ID. NO.: 38, 40, 42, 44 y 46.

De acuerdo con la presente invención, se proporcionan vectores de expresión recombinantes a los que están unidos de forma funcional las secuencias de nucleótidos que codifican las regiones Fc de inmunoglobulina recombinantes.

El término "vector de expresión recombinante", como se usa en el presente documento, que describe un vector que puede expresar una proteína diana en una célula huésped adecuada, se refiere a una construcción genética que comprende elementos reguladores esenciales a los que se une de forma funcional un inserto de gen de tal forma que se exprese en una célula huésped.

El término "unido de forma funcional", como se usa en el presente documento, se refiere a un enlace funcional entre una secuencia de control de expresión de ácidos nucleicos y una segunda secuencia de ácidos nucleicos que codifica una proteína diana de tal forma que permita funciones generales. El enlace funcional a un vector recombinante se puede preparar usando técnica recombinante genética bien conocida en la técnica, y la escisión y ligación de ADN específica de sitio se puede llevar a cabo usando enzimas conocidas generalmente en la técnica. Un vector de expresión adecuado incluye elementos reguladores de la expresión, tales como un promotor, un codón de iniciación, un codón de detención, una señal de poliadenilación y un potenciador. Los codones de iniciación y detención son necesarios para la funcionalidad en un individuo al que se le ha administrado una construcción genética, y deben estar en fase con la secuencia codificante. El promotor del vector puede ser constitutivo o inducible. Además, los vectores de expresión incluyen un marcador seleccionable que permite la selección de células huésped que contienen el vector, y los vectores de expresión replicables incluyen un origen de replicación. En la práctica detallada de la presente

invención, se preparan los siguientes vectores de expresión recombinantes: pmSCPFc, pmPSCFc, pmCPSFc, pmCPFc, pMSCKFcl, pMCPAFcl, pMCPAFcl, pMCPPFcl, pMPPCFc, pMPCPFc, pmPPCG2Fc, pmPCPG2Fc, pmCPG2Fc, pmCCVG2Fc y pmCVE2Fc.

Los vectores de expresión recombinantes que expresan las proteínas se transforman en las células huésped.

5 La presente invención utiliza células huésped que son células procariotas en las que no se produce glucosilación, estas son específicamente E. coli. Ejemplos ilustrativos, no limitantes de cepas de E. coli incluyen BL21 (DE3), JM109, serie DH, TOP10 y HB101. Es más preferente la cepa BL21 (DE3). Debido a que falta un sistema para la glucosilación de proteínas, se puede usar E. coli como célula huésped en la que se produce una región Fc de inmunoglobulina en la forma de estar desprovista de restos de azúcar que están presentes en un dominio CH2 de una inmunoglobulina 10 natural. Los restos de azúcar del dominio CH2 de inmunoglobulina no afectan a la estabilidad estructural de las inmunoglobulinas, pero provocan que las inmunoglobulinas medien en la citotoxicidad mediada por células dependiente de anticuerpos (ADCC) en asociación con células que expresan receptores de Fc y células inmunitarias, para secretar citocinas para inducir inflamación. Además, los restos de azúcar se unen a la parte de C1q del primer componente C1 del complemento, lo que da lugar a la fijación del complemento. Por tanto, cuando se produce una 15 región Fc de inmunoglobulina en una forma aglucosilada y se une a una proteína terapéutica, la proteína terapéutica está presente en el suero durante un periodo de tiempo prolongado sin las funciones efectoras no deseadas de las inmunoglobulinas.

La transformación de los vectores de expresión recombinantes en células procariotas se puede lograr por cualquier procedimiento que permita que los ácidos nucleicos se introduzcan en las células y, como es conocido en la técnica, se puede realizar seleccionando técnicas estándar adecuadas de acuerdo con las células huésped. Estos procedimientos incluyen, pero no se limitan a, electroporación, fusión de protoplastos, precipitación de fosfato de calcio (CaPO₄), precipitación de cloruro de calcio (CaCl₂), agitación con fibra de carburo de silicio, y transformación mediada por PEG, dextranosulfato y lipofectamina.

20

25

30

35

40

45

50

55

En la práctica detallada de la presente invención, los vectores de expresión recombinantes se introducen individualmente

en *E. coli*, generando así los siguientes transformantes: BL21/pmSCPFc(HM11200), BL21/pmPSCFc(HM11201), BL21/pmCPSFc(HM11204), BL21/pmCPAFc(HM11205), BL21/pMSCDFcl(HM11207), BL21/pMCPAFcl(HM11209), BL21/pMPKSFcl(HM11210), BL21/pMCPPFcl(HM11211), BL21/pMPPCFcl(HM11212), BL21/pMPCPFcl(HM11213), BL21/pmPCPG2Fc(HM11214), BL21/pmPCPG2Fc(HM11215), BL21/pmCPG2Fc(HM11216) y BL21/pmCVG2Fc(HM11217), BL21/pmCVEG2Fc (HM11218).

Los transformantes que se anclan a los vectores de expresión recombinantes de los mismos se cultivan por medio de un procedimiento general.

Las condiciones de cultivo se pueden ajustar fácilmente de acuerdo con la cepa bacteriana por los expertos en la técnica. Típicamente, el medio usado para el cultivo debe contener todos los nutrientes esenciales para el crecimiento y supervivencia de las células. El medio debe contener una variedad de fuentes de carbono, fuentes de nitrógeno y elementos traza. Los ejemplos de fuentes de carbono disponibles incluyen glucosa, sacarosa, lactosa, fructosa, maltosa, almidón, carbohidratos tales como celulosa, grasas tales como aceite de soja, aceite de girasol, aceite de ricino y aceite de coco, ácidos grasos tales como ácido palmítico, ácido esteárico y ácido linoleico, alcoholes tales como glicerol y etanol, y ácidos orgánicos tales como ácido acético. Estas fuentes de carbono se pueden usar por separado o en combinaciones de dos o más. Los ejemplos de fuentes de nitrógeno disponibles incluven fuentes de nitrógeno orgánicas, tales como peptona, extracto de levaduras, extracto de carne, extracto de malta, licor de maíz macerado (CSL) y suero de leche de soja, y fuentes de nitrógeno inorgánicas, tales como urea, sulfato de amonio, cloruro de amonio, fosfato de amonio, carbonato de amonio y nitrato de amonio. Estas fuentes de nitrógeno se pueden usar por separado o en combinaciones de dos o más. En el medio puede estar contenida una fuente de fósforo, que incluye dihidrogenofosfato de potasio, hidrogenofosfato de dipotasio y las sales que contienen sodio correspondientes. Además, el medio puede contener una sal metálica, tal como sulfato de magnesio o sulfato de hierro. El medio puede incluir además aminoácidos, vitaminas y precursores adecuados. El pH del cultivo se puede ajustar añadiendo un compuesto, tal como hidróxido de amonio, hidróxido de potasio, amoniaco, ácido fosfórico y ácido sulfúrico, al cultivo usando un procedimiento adecuado. Además, durante el cultivo, se pueden usar agentes antiespumantes, tales como ésteres de ácidos grasos poliglicólicos, para evitar la formación de burbujas. Para mantener el cultivo en un estado deseable, en el cultivo se introduce oxígeno o un gas que contenga oxígeno (por ejemplo, aire). En general, la temperatura del cultivo es de 20 °C a 45 °C, y preferentemente de 25 °C a 45 °C. Además, se puede usar un fermentador para la producción de proteínas en una gran escala. La producción de proteínas usando un fermentador se debe llevar a cabo teniendo en cuenta varios factores, incluyendo la tasa de crecimiento de las células huésped y los niveles de expresión de proteínas. Se puede inducir la expresión de proteínas por medio de la adición, por ejemplo, de IPTG al medio en condiciones de cultivo adecuadas.

Se puede purificar una región Fc de inmunoglobulina sobreexpresada como cuerpos de inclusión por medio de una técnica general. Las regiones Fc de inmunoglobulina producidas en los transformantes se pueden obtener rompiendo las células usando un sistema French Press, un ultrasonicador, etc., recogiendo sólo cuerpos de inclusión insolubles

en agua que contienen la región Fc de inmunoglobulina por medio de centrifugación, solubilizando y desnaturalizando la fracción recogida con agentes de replegado, tales como urea, guanidina, arginina, cisteína, beta-mercaptoetanol, etc. para el replegado de la misma, y purificando la proteína de fusión replegada por medio de diálisis, varias cromatografías, tales como cromatografía de filtración en gel, de intercambio iónico y en columna de fase inversa, y ultrafiltración, sola o en combinación. En general, este procedimiento de replegado es muy complicado y se sabe que produce un rendimiento de replegado muy bajo y asegura la proteína replegada sólo de menor actividad que la proteína soluble en agua.

5

10

15

20

25

30

35

40

50

Sin embargo, el procedimiento de la presente invención puede superar los problemas mencionados anteriormente y producir una región Fc de inmunoglobulina activa desprovista del residuo de metionina inicial en una escala en masa. En conjunto, cuando se expresa y se produce en *E. coli*, una proteína exógena tiene un residuo de metionina inicial codificado por el codón de iniciación. La administración repetitiva o excesiva del producto de proteína que tiene la metionina inicial para cuerpos humanos puede provocar una respuesta inmunitaria suficiente para reducir el efecto terapéutico del mismo para que sea tóxico. Sin embargo, cuando la región Fc de inmunoglobulina recombinante producida por la presente invención se expresa en *E. coli*, se descubre que el residuo de metionina inicial se escinde por una aminopeptidasa, una enzima citoplásmica intrínseca, medido por análisis de secuenciación N terminal (Adams et al., J. Mol. Biol. 33:571-589, 1968, Takeda, Proc. Natl. Acad. Sci. USA 60:1487-1494, 1968). Se sabe que la actividad de dichas aminopeptidasas depende de la secuencia y la estructura de la proteína de interés (Moerschell et al., J. Biol. Chem. 265:19638-19643, 1990, James et al., Protein Expression and Purification 41:45-52, 2005). Una región bisagra, cuando se fusiona a una región Fc de inmunoglobulina, se ve afectada por una aminopeptidasa de modo que la metionina inicial se procesa hasta un punto que depende de la secuencia de aminoácidos de la misma.

Debido a que las propiedades de la región bisagra determinan la modificación post-traduccional de las proteasas, la proporción de dímeros con respecto a monómeros se puede controlar eficazmente seleccionando regiones bisagra apropiadas. Además, cuando se repliegan los cuerpos de inclusión, la formación de dímeros precisos está impedida por el emparejamiento erróneo de las cisteínas en los enlaces disulfuro. Sin embargo, el procedimiento de acuerdo con la presente invención garantiza la formación de enlaces disulfuro precisos, dando lugar, de este modo, a la formación de dímeros activos.

Además, la presente invención puede producir regiones Fc de inmunoglobulina a una escala mayor que los procedimientos convencionales. Por ejemplo, se produce una región Fc de inmunoglobulina en un rendimiento de 15 mg/l de acuerdo con el procedimiento de la patente europea n.º EP0227110, en la que la región Fc de G1 se sobreexpresa y se purifica sólo a partir de lisado celular que contiene la forma soluble en agua de la misma, y en un rendimiento de 50 a 600 mg/l de acuerdo con el procedimiento de la solicitud de patente coreana n.º 0092783, en la que una región Fc de inmunoglobulina fusionada a una secuencia señal de *E. coli* se expresa en una forma soluble en agua, pero no como un cuerpo de inclusión. Sin embargo, la presente invención puede producir una región Fc de inmunoglobulina en un rendimiento tan alto como de 3 a 6 g/l purificando un cuerpo de inclusión de recombinante región Fc de inmunoglobulina una región Fc de inmunoglobulina que contiene una región bisagra. Por tanto, el procedimiento de la presente invención garantiza un sistema altamente útil para producir regiones Fc de inmunoglobulina en una escala industrial en un rendimiento mucho mayor que los procedimientos convencionales.

La región Fc de inmunoglobulina producida en células procariotas tales como *E. coli* de acuerdo con el presente procedimiento no tiene aplicaciones industriales específicamente limitadas. Una aplicación ejemplar es el uso como vehículo para la formación de un conjugado con un fármaco determinado. La construcción del conjugado que comprende la región Fc de inmunoglobulina unida a un fármaco no está específicamente limitada. Por ejemplo, la región Fc de inmunoglobulina y el fármaco pueden estar unidos juntos en varias proporciones, y el enlace puede estar mediado, por ejemplo, por medio de un enlazador.

El fármaco incluye polipéptidos, compuestos, extractos y ácidos nucleicos. Es preferente un fármaco de polipéptido (usado para tener un significado idéntico a la palabra "proteína"). Los ejemplos del enlazador útil en la presente invención incluyen enlazadores peptídicos y no peptídicos, con preferencia por un enlazador no peptídico y mayor preferencia por un polímero no peptídico. Un ejemplo preferente de la cadena pesada de inmunoglobulina es Fc.

Si se necesita potenciar la semivida en suero, se puede usar cualquier polipéptido fisiológicamente activo sin limitación específica como compañero de proteína de la región Fc de inmunoglobulina preparado de acuerdo con el presente procedimiento para formar un conjugado. Dichos polipéptidos fisiológicamente activos incluyen los usados para tratar o prevenir enfermedades humanas, que incluyen citocinas, interleucinas, proteína de unión a interleucina, enzimas, anticuerpos, factores de crecimiento, factores reguladores de la transcripción, factores de coagulación, vacunas, proteínas estructurales, proteínas o receptores ligandos, antígenos de superficie celular, antagonistas de receptores, y derivados y análogos de los mismos.

En detalle, ejemplos no limitantes del polipéptido fisiológicamente activo incluyen hormona de crecimiento humana, hormona liberadora de la hormona del crecimiento, péptido liberador de la hormona de crecimiento, interferones y receptores de interferones (por ejemplo, interferón-α, -β y -γ, receptor de interferón tipo I soluble en agua, etc.), factores estimuladores de colonias de granulocitos, interleucinas (por ejemplo, interleucina-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, etc.) y receptores de interleucinas (por ejemplo, receptor de IL-1, receptor de IL-4, etc.), enzimas (por ejemplo, glucocerebrosidasa,

iduronato-2-sulfatasa, alfa-galactosidasa-A, agalsidasa alfa y beta, alfa-L-iduronidasa, butirilcolinesterasa, quitinasa, glutamato descarboxilasa, imiglucerasa, lipasa, uricasa, factor activador plaquetario acetilhidrolasa, endopeptidasa neutra, mieloperoxidasa, etc.), proteínas de unión a interleucina y citocina (por ejemplo, IL-18bp, proteína de unión a TNF, etc.), factor activador de macrófagos, péptido de macrófagos, factor de linfocitos B, factor de linfocitos T, proteína A, inhibidor de alergia, glucoproteínas de necrosis celular, inmunotoxina, linfotoxina, factor de necrosis tumoral, supresores tumorales, factor de crecimiento de metástasis, antitripsina alfa-1, albúmina, alfa-lactalbúmina, apolipoproteína-E, eritropoyetina, eritropoyetina altamente glucosilada, angiopoyetinas, hemoglobina, trombina, péptido activador del receptor de trombina, trombomodulina, factor VII, factor VIII, factor VIII, factor IX, factor XIII, factor activador de plasminógeno, péptido de unión a fibrina, urocinasa, estreptocinasa, hirudina, proteína C, proteína C reactiva, inhibidor de renina, inhibidor de colagenasa, superóxido dismutasa, leptina, factor de crecimiento derivado plaquetario, factor de crecimiento epitelial, factor de crecimiento epidérmico, angioestatina, angiotensina, factor de crecimiento óseo, proteína estimuladora ósea, calcitonina, insulina, atriopeptina, factor inductor de cartílago, elcatonina, factor activador de tejido conectivo, inhibidor de la ruta del factor tisular, hormona estimuladora de folículo, hormona luteinizante, hormona liberadora de la hormona luteinizante, factores de crecimiento nervioso (por ejemplo, factor de crecimiento nervioso, factor neutrófico ciliar, factor de axogénesis 1, péptido natriurético cerebral, factor neurotrófico derivado glial, netrina, factor inhibidor neutrófilo, factor neurotrófico, neuturina, etc.), hormona paratiroidea, relaxina, secretina, somatomedina, factor de crecimiento tipo insulina, hormona adrenocorticoide, glucagón, colecistocinina, polipéptido pancreático, péptido liberador de gastrina, factor liberador de corticotropina, hormona estimuladora tiroidea, autotaxina, lactoferrina, mioestatina, receptores (por ejemplo, TNFR(P75), TNFR(P55), receptor de IL-1, receptor de VEGF, receptor del factor de activación de linfocitos B, etc.), antagonistas de receptores (por ejemplo, ILI-Ra etc.), antígenos de superficie celular (por ejemplo, CD 2, 3, 4, 5, 7, 11a, 11b, 18, 19, 20, 23, 25, 33, 38, 40, 45, 69, etc.), anticuerpos monoclonales, anticuerpos policionales, fragmentos de anticuerpos (por ejemplo, scFv, Fab, Fab', F(ab')2 y Fd), y antígenos de vacuna derivados de virus. El polipéptido fisiológicamente activo útil en la presente invención puede ser una forma natural, se puede producir por recombinación genética usando células procariotas, tales como E. coli, o células eucariotas, tales como células de levaduras, células de insectos y células animales, o puede ser un derivado que tenga una o más mutaciones de aminoácidos pero que muestre actividad biológica idéntica a la de la forma natural.

En un modo de realización preferente de la presente invención, se unió un fragmento de la región Fc de inmunoglobulina producido usando el transformante HM11201 a eritropoyetina humana (EPO) usando polietilenglicol, proporcionando así un conjugado de proteínas EPO-PEG-región Fc de inmunoglobulina. Se descubrió que este conjugado de proteínas presentaba una semivida en suero prolongada en comparación no sólo con la EPO natural sino también con Aranesp (Amgen), conocido como un EPO de segunda generación con una semivida mejorada. Por tanto, se puede usar la región Fc de inmunoglobulina desprovista del residuo de metionina inicial, obtenida a partir de cuerpos de inclusión usando una región bisagra de acuerdo con la presente invención, para potenciar la semivida en suero y la actividad fisiológica del polipéptido fisiológicamente activo unido a la misma, sin riesgo de inducción de respuesta inmunitaria.

Se puede obtener una mejor comprensión de la presente invención por medio de los siguientes ejemplos, que se exponen para ilustrar, pero no deben interpretarse como límite de la presente invención.

Ejemplo 1: Construcción del vector de expresión de la región Fc de inmunoglobulina IgG4 humana, expresión y purificación de la región Fc de IgG4, y análisis de secuencia N terminal

<1-1> Construcción del vector de expresión de la región Fc de IgG4

10

15

20

25

30

35

40

45

50

Para clonar una región Fc de cadena pesada que incluye la región bisagra de inmunoglobulina IgG4 humana, se llevó a cabo una RT-PCR sirviendo el ARN de células sanguíneas humanas como molde, como sigue. En primer lugar, se aisló ARN total de aproximadamente 6 ml de sangre usando un kit para sangre Qiamp RNA (Qiagen), y se realizó la amplificación génica usando el ARN total como molde con la ayuda de un kit de RT-PCR de una etapa (Qiagen). Para amplificar genes que tienen secuencia N terminales diferentes, se usaron pares de cebadores representados por SEQ ID NOS. 1 y 2, 3 y 2, 4 y 2, y 5 y 2. Para facilitar un procedimiento de clonación génica posterior, se introdujeron un sitio de reconocimiento de Nde I y el codón de iniciación ATG, necesarios para la expresión de la proteína, en cebadores en 5' de SEQ ID NOS. 1, 3, 4 y 5, y un sitio de reconocimiento de BamHI que contiene un codón de detención en cebadores en 3' de SEQ ID NO. 2. Se digirieron los productos de región Fc amplificados con Nde I y Hind III, y se insertaron en un a pET22b (Novagen) tratado con la misma enzima de restricción, dando así los respectivos plásmidos recombinantes. Estos plásmidos se diseñaron para tener partes de la secuencia de aminoácidos total Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys-Pro-Ser-Cys-Pro [SEQ ID NO: 17] de la región bisagra de IgG4, como sigue.

El plásmido que contenía un gen amplificado con SEQ ID NOS. 1 y 2 se denominó pmSCPFc y se ancló al mismo una secuencia de ADN que codifica una secuencia de aminoácidos N terminal que comienza con Met-Ser-Cys-Pro (Met-[SEQ ID NO: 18]), que se determinó por medio de secuenciación de bases para tener SEQ ID NO. 6, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 7. El plásmido que contenía un gen amplificado con SEQ ID NOS. 3 y 2 se denominó pmPSCFc y se ancló al mismo una secuencia de ADN que codifica una secuencia de aminoácidos N terminal que comienza con Met-Pro-Ser-Cys-Pro (Met-[SEQ id NO: 19]), que se determinó por medio de secuenciación de bases para tener SEQ ID NO. 8, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 9. Un plásmido que contenía un gen amplificado con SEQ ID NOS. 4 y 2 se denominó pmCPSFc y se ancló al mismo

una secuencia de ADN que codifica una secuencia de aminoácidos N terminal que comienza con Met-Cys-Pro-Ser-Cys-Pro (Met-[SEQ ID NO: 20]), que se determinó por medio de secuenciación de bases para tener SEQ ID NO. 10, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 11. Un plásmido que contenía un gen amplificado con SEQ ID NOS. 5 y 2 se denominó pmCPFc y se ancló al mismo una secuencia de ADN que codifica una secuencia de aminoácidos N terminal que comienza con Met-Cys-Pro (Met-[SEQ ID NO: 21]), que se determinó por medio de secuenciación de bases para tener SEQ ID NO. 12 correspondiente a SEQ ID NO. 13.

Los vectores de expresión se transformaron en BL21 (DE3) de *E. coli* para preparar transformantes designados respectivamente BL21/pmSCPFc(HM11200), BL21/pmPSCFc(HM11201), BL21/pmCPSFc(HM11204) y BL21/pmCPFc(HM11205). Los transformantes BL21/pmSCPFc(HM11200) y BL21/pmPSCFc(HM11201) se depositaron en Korean Culture Center of Microorganisms (KCCM) el 20 de junio de 2005 con los números de acceso KCCM-10659P y KCCM-10660P, respectivamente, y los transformantes BL21/pmCPSFc(HM11204) y BL21/pmCPFc(HM11205) en KCCM el 28 de julio de 2005 con los números de acceso KCCM-10666P, respectivamente.

<l-2> Expresión y purificación de Fc de IgG4

5

10

20

25

30

35

40

45

50

55

60

Los transformantes bacterianos preparados en el ejemplo <l-2> se inocularon en fermentadores respectivos (Marubishi Company) y se dejó que crecieran, seguido de la determinación de si expresaban los fragmentos de región Fc de inmunoglobulina.

En primer lugar, se hizo crecer cada transformante en 100 ml de medio LB con agitación durante la noche y se inoculó en un fermentador para un cultivo a gran escala. Se mantuvo el fermentador a 28 °C o 35 °C. Para evitar la conversión de un entorno aerobio a uno anaerobio, se airearon los cultivos con 20 vvm de aire y se agitó a 500 rpm. Para compensar la insuficiencia de nutrientes para el crecimiento bacteriano durante la fermentación, se complementaron los cultivos con glucosa y extractos de levaduras de acuerdo con los estados de fermentación de las bacterias. Cuando los cultivos alcanzaron un valor de DO₆₀₀ de 80, se añadió un inductor, IPTG, a los cultivos para inducir la expresión de proteínas. Se cultivaron los cultivos adicionalmente durante de 40 a 45 h para incrementar el valor de DO a 600 nm hasta de 100 a 120.

La expresión de inmunoglobulina Fc, la formación de cuerpos de inclusión, y la formación de dímeros del Fc de Ig expresado en los transformantes de E. coli se examinaron como sique. Para investigar la expresión intracelular global de las regiones Fc de inmunoglobulina, se mezclaron partes de las soluciones fermentadas con volúmenes iguales de tampón de muestra de proteína 2x y se sometió a electroforesis en un gel SDS-PAGE al 15 % (Criterion Gel, Bio-Rad). Como resultado, se observó que el Fc de inmunoglobulina se sobreexpresaba en todos los transformantes producidos. A continuación, se rompieron las células usando un ultrasonicador (Misonix Company). Se centrifugó el lisado celular así obtenido para separar las sustancias solubles en agua de las sustancias insolubles en agua. Se descubrió que la mayoría de las sustancias sobreexpresadas existían como cuerpos de inclusión, medido por electroforesis en SDS-PAGE al 15 %. Los cuerpos de inclusión se sometieron al siguiente procedimiento de replegado para examinar hasta qué grado se replegó el Fc y si se formaron y hasta qué grado las regiones Fc diméricas. Se sometieron a unitrasonicación 10 g de la solución fermentada en 100 ml de un tampón de lisis (Tris 10 mM, pH 9,0, EDTA 1 mM, Triton X-100 0,5 %, NaCl 0,2 M) para romper las células. La centrifugación a 10.000 rpm durante 20 min dividió el lisado celular en una fracción soluble en agua y una fracción insoluble en agua como un cuerpo de inclusión. Se disolvieron 2 g de este cuerpo de inclusión en una mezcla de 20 ml de Tris 1 M (pH 9,0) y 20 ml de un tampón de solubilización (guanidina 6 M, Tras 50 mM) y se dejó que reaccionara mientras se agitaba suavemente a 4 ºC durante 30 min. Después de que se completara la reacción, se mezcló la solución del cuerpo de inclusión durante la noche con 10 volúmenes de un tampón de replegado (urea 2 M, Tras 50 mM, arginina 0,25 M, cisteína 3 mM, pH 9,0) con agitación suave. A esta mezcla se le añadió un tampón de muestra de proteína libre de cualquier agente reductor, tal como DTT o beta-mercaptoetanol, seguido de electroforesis en SDS-PAGE al 15 % (Criterion Gel, Bio-Rad). Se visualizaron las bandas de proteína con un colorante tal como Coomassie Brilliant. La FIG. 1 es una fotografía tomada de un gel en el que se hicieron correr proteínas replegadas de los cuerpos de inclusión expresados por el reformante HM11201 a 32 °C (carril 1) y 28 °C (carril 2), por HM11200 a 28 °C (carril 3) y 32 °C (carril 4), por HM11204 a 28 °C (carril 5) y 32 °C (carril 6), y por HM11205 a 32 °C (carril 7) y 28 °C (carril 8) en presencia de un campo eléctrico, junto con una proteína Fc, como control, purificada a partir de E. coli de acuerdo con un procedimiento convencional (carril C). Como se observa en la FIG. 1, una porción significativa de las proteínas totales se atribuye a la proteína Fc, de la que gran parte existe en forma dimérica después de replegarse. Sin embargo, las proteínas Fc difieren en la proporción de dímeros con respecto a monómeros de un transformante a otro, esto es, de acuerdo con la secuencia de aminoácidos N terminal expresada por el transformante. Por ejemplo, una porción significativa de las proteínas Fc de HM11201, que comienza con Met-Pro-Ser-Cys-Pro-CH2-CH3 (Met-[SEQ ID NO:19]), existe en forma dimérica. Casi todas las proteínas Fc de HM11205, que comienzan con Met-Cys-Pro-CH2-CH3 (Met-[SEQ ID N0:21]), existen como monómeros, pero ninguna existe en forma dimérica. Se cree que esto debe atribuirse al hecho de que la especificidad del procesado de la aminopeptidasa en células huésped de E. coli varía dependiendo de la secuencia N terminal de Fc.

<l-3> Análisis de secuencia N terminal

Los fragmentos de región Fc diméricos replegados de los cuerpos de inclusión son diferentes en la secuencia de aminoácidos del tipo natural debido a la presencia del residuo de metionina inicial. Para determinar si el residuo de

metionina se procesa por proteasas de *E. coli*, se analizaron secuencias de aminoácidos N terminales de las proteínas por el Basic Science Research Institute, Seúl, Corea. Las muestras usadas en el análisis de secuencia de aminoácidos N terminal se prepararon como sigue.

En primer lugar, se sumergió una membrana de PVDF (Bio-Rad) en metanol durante aproximadamente 2-3 s para activarlo, y se humedeció suficientemente con un tampón de bloqueo (glicina 170 mM, Tris-HCl 25 mM (pH 8,0), metanol al 20 %). Las muestras de proteínas separadas en un gel SDS-PAGE no reductor, preparadas en el ejemplo <l-2>, se sometieron a transferencia de bandas sobre una membrana PVDF durante aproximadamente una hora usando un kit de transferencia de bandas (Hoefer Semi-Dry Transfer unit, Amersham). Las proteínas transferidas sobre la membrana de PVDF se tiñeron con un colorante de proteína, Coomassie Blue R-250 (Amnesco), durante un momento (3-4 s), y se lavaron con una solución de decoloración (agua:ácido acético:metanol =5: 1: 4). A continuación, se cortaron los fragmentos de membrana que contienen las proteínas con tijeras y se sometieron a análisis de secuencia N terminal.

Como resultado, se descubrió que las proteínas Fc de IgG4 que incluyen una región bisagra tenían una secuencia N terminal de Glu-Ser-Lys-Tyr-Gly-Pro-Pro-Cys Pro-Ser-Cys-Pro-CH2-CH3 [SEQ ID NO: 17. Las secuencias de aminoácidos y las secuencias N terminales de las proteínas expresadas en los transformantes se dan en la siguiente tabla 1.

Tabla 1

5

10

15

20

25

30

35

40

45

Transformantes	Secuencias N terminales Met-[SEQ ID NO:]-CH2-	Resultados del análisis	Resultados del análisis de secuencias					
HM11200	NO.]-0112-	Dímero	Monómero					
HM11200	Met-Ser-Cys-Pro-CH2- [18]	Ser-Cys-Pro-CH2	Pro-CH2					
HM11201	Met-Pro-Ser-Cys-Pro-CH2-[19]	Pro-Ser-Cys-Pro-CH2	Pro-Ser-Cys-Pro-CH2					
HM11204	Met-Cys-Pro-Ser-Cys-Pro-CH2 [20]	Pro-Ser-Cys-Pro-CH2	mezclado					
HM11205	Met-Cys-Pro-CH2-CH3 [21]	-	Pro-CH2					

Los datos del análisis de secuenciación de aminoácidos reveló que se procesaron los fragmentos Fc replegados de los cuerpos de inclusión producidos por los transformantes de E. coli utilizados en la presente invención para tener una secuencia N terminal precisa desprovista del residuo de metionina inicial. El producto de proteína que permanece en forma monomérica aún después del replegado está privado de residuos cisteína, y por tanto, no puede formar dímeros. Además, como es evidente de la FIG. 1, la porción de monómero en los fragmentos Fc replegados difiere de un transformante a otro, y no existen dímeros en HM11205. Estos resultados indican que la secuencia de aminoácidos del sitio N terminal tiene una gran influencia sobre el procesado del extremo N terminal, de modo que se puede obtener una proteína que tenga una secuencia N terminal deseada modulando la secuencia N terminal. Las proteínas, aún si tienen la misma secuencia de aminoácidos, se pueden procesar de forma diferente dependiendo de las condiciones de cultivo de las células huésped de E. coli, en especial la temperatura del cultivo, como se reveló por medio de las siguientes pruebas. El HM11200, cuando se hizo crecer a bajas temperaturas (28 °C~32 °C), expresó la proteína de fusión Fc en forma solubilizada en la misma cantidad que en forma de cuerpo de inclusión. La forma solubilizada de la proteína de fusión Fc existió como monómero desprovisto de la secuencia de aminoácidos N terminal Met-Ser-Cys. Por tanto, los presentes inventores reconocieron que se puede obtener una proporción controlada de fragmentos Fc de inmunoglobulina monoméricos y diméricos modulando la secuencia de aminoácidos N terminal de la proteína Fc de fusión y la condición del cultivo de células huésped.

Para determinar cuantitativamente la expresión de regiones Fc de inmunoglobulina en los transformantes de *E. coli*, se purificaron regiones Fc de inmunoglobulina de la solución de replegado usando una columna de afinidad de proteína-A conocida por tener una fuerte afinidad para inmunoglobulinas, como sigue.

Se replegaron los cuerpos de inclusión recogidos por centrifugación, y a continuación se purificaron por medio de cromatografía en columna. Después de que se equilibraran 5 ml de una columna de afinidad de proteína A (Pharmacia) con PBS, se cargaron los lisados celulares en la columna a un caudal de 5 ml/min. Se separaron por lavado las proteínas no unidas con PBS, y se eluyeron la proteínas unidas con citrato 100 mM (pH 3,0). Se desalaron las fracciones recogidas usando una columna de desalado HiPrep 26/10 (Pharmacia) con tampón Tris 10 mM (pH 8,0). A continuación, se llevó a cabo una cromatografía en columna de intercambio aniónico secundaria usando 50 ml de una columna Q HP 26/10 (Pharmacia). Se cargaron las regiones de Fc de inmunoglobulina recombinante purificadas primarias en la columna Q-Sepharose HP 26/10 (pharmacia), y se eluyó la columna con un gradiente lineal (NaCl 0-0,2 M) en tampón Tris 10 mM (pH 8,0), proporcionando así fracciones altamente puras. Después de purificarse parcialmente usando la columna de afinidad de proteína A, se determinaron los niveles de expresión de las regiones Fc de Ig recombinante, y los resultados se dan en la tabla 2 a continuación.

Tabla 2

Plásmidos	Transformantes	Rendimientos de expresión después de purificación de proteína-A
pmSCPFc	HM11200	5-6 g/l
pmPSCFc	HM11201	4-5 g/l
pmCPSFc	HM11204	4-5 g/l
pmCPFc	HM11205	3-4 g/l

Ejemplo 2: Construcción del vector de expresión de la región Fc de inmunoglobulina IgG1 humana, expresión y purificación de la región Fc de IgG1, y análisis de secuencia N terminal

5 <2-l> Construcción del vector de expresión de la región Fc de IgG1

Para clonar una región Fc de cadena pesada que incluye la región bisagra de inmunoglobulina IgG1 humana, se llevó a cabo una RT-PCR de la misma manera que en el ejemplo <1-1>. Para amplificar genes que tienen secuencias N terminales diferentes, se usaron los siguientes cebadores.

Tabla 3

10

15

20

25

Secuencia de cebadores en 5' usados

	Secuencia de cebador 5' [SEQ ID NO:]
MEPK	5'GGA ATT CCA TAT GGA GCC CAA ATC TTG TGA CAA AAC TCA C 3' [61]
MSCD	5'GGA ATT CCA TAT GTC TTG TGA CAA AAC TCA CAC ATG CCC 3' [62]
MDKT	5'GGA ATT CCA TAT GGA CAA AAC TCA CAC ATG CCC ACC GTG C 3' [63]
МСРА	5'GGG AAT TCC ATA TGT GCC CAG CAC CTG AAC TCC TGG GG [64]
MPKS	5'GGG AAT TCC ATA TGC CCA AAT CTT GTG ACA AAA CTC AC [65]
MCPP	5'GGG AAT TCC ATA TGT GCC CAC CGT GCC CAG CAC CTG AAC TCC [66]
MPPC	5'GGA ATT CCA TAT GCC ACC GTG CCC AGC ACC TGA ACT CCT G 3' [67]
MPCP	5'GGA ATT CCA TAT GCC GTG CCC AGC ACC TGA ACT CCT GGG G 3' [68]

Como para el cebador 3', presentó la secuencia de 5' -CGC GGA TCC TCA TTT ACC CGG AGA CAG GGA GAG GCT CTT C-3' [SEQ ID NO: 69] y se usó para la amplificación de todos los genes con secuencias N terminales diferentes. Para facilitar un procedimiento de clonación génica posterior, se introdujo un sitio de reconocimiento Nde I en cada uno de los cebadores en 5', y un sitio de reconocimiento BamHI en el cebador en 3'. Los productos de región Fc amplificados con pares de cebadores se insertaron en un vector, dando así los respectivos plásmidos recombinantes partes secuencia designados por tener de la de aminoácidos Glu-Pro-Lys-Ser-Cys-Asp-Lys-Thr-His-Thr-Cys-Pro-Pro-Cys-Pro [SEQ ID NO: 14] de la región bisagra de IgG1 como sique. El plásmido que contenía un gen amplificado con el cebador de MEPK se denominó pMEPKFc1, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Glu-Pro-Lys (Met-[SEQ ID NO: 48]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 22, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 23. El plásmido que contenía un gen amplificado con el cebador de MSCD se denominó pMSCKFcl, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Ser-Cys-Asp (Met-[SEQ ID NO: 49]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 24, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 25. Un plásmido que contenía un gen amplificado con el cebador de MDKT se denominó pMDKTFc1, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Asp-Lys-Thr (Met-[SEQ ID NO: 50]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 26, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 27. Un plásmido que contenía un gen amplificado con el cebador de MCPA se denominó pMCPAFc1, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Cys-Pro (Met-SEQ ID NO: 51]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 28, que corresponde a SEQ ID NO. 29. Un plásmido que contenía un gen amplificado con el cebador MPKS se denominó pMPKSFc1, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Pro-Lys-Ser (Met-[SEQ ID NO:52]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 30, que corresponde a SEQ ID NO. 31. Un plásmido que contenía un gen amplificado con el cebador de MCPP se denominó pMCPPFc1, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Cys-Pro-Pro (Met-[SEQ ID NO: 53]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 32, que corresponde a SEQ ID NO. 33. Un plásmido que contenía un gen amplificado con el cebador de MPPC se denominó pMPPCFc, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Pro-Pro-Cys (Met-[SEQ ID NO: 54]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 34, que corresponde a SEQ ID NO. 35. Un plásmido que contenía un gen amplificado con el cebador de MPCP se denominó pMPCPFc, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG1, comenzando con Met-Pro-Cys-Pro (Met-[SEQ ID NO: 55]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 36, correspondiente a SEQ ID NO. 37. Los vectores de expresión se transformaron en BL21 (DE3) de E. coli para preparar transformantes respectivamente BL21/pMSCDFcl(HM11207), como BL21/pMEPKFcl(HM11206), BL21/pMDKTFcl(HM11208), BL21/pMCPAFcI(HM11209) BL21/pMPKSFcI(HM11210), BL21/pMCPPFcI(HM11211), BL21/pMPPCFcI(HM11212) y BL21/pMPCPFcl(HM11213).

<2-2> Expresión y purificación de Fc de IgG1

5

10

15

20

35

40

45

55

Como en el caso de IgG4, los transformantes bacterianos preparados en el ejemplo <2-l> se inocularon en fermentadores respectivos (Marubishi Company) y se dejó que crecieran, seguido de la determinación de si expresaban los fragmentos de región Fc de inmunoglobulina.

En primer lugar, se hizo crecer cada transformante en 100 ml de medio LB con agitación durante la noche y se inoculó en el fermentador para un cultivo a gran escala. Se mantuvo el fermentador a 28 °C o 35 °C. Para evitar la conversión de un entorno aerobio a uno anaerobio, se airearon los cultivos con 20 vvm de aire y se agitó a 500 rpm. Para compensar la insuficiencia de nutrientes para el crecimiento bacteriano durante la fermentación, se complementaron los cultivos con glucosa y extractos de levaduras de acuerdo con los estados de fermentación de las bacterias. Cuando los cultivos alcanzaron un valor de DO₆₀₀ de 80, se añadió un inductor, IPTG, a los cultivos para inducir la expresión de proteínas. Se cultivaron los cultivos adicionalmente durante de 40 a 45 h para incrementar el valor de DO a 600 nm hasta de 100 a 120.

La expresión de inmunoglobulina Fc, la formación de cuerpos de inclusión, y la formación de dímeros del Fc de Ig expresado en los transformantes de *E. coli* se examinaron como sigue. Para investigar la expresión intracelular global de las regiones Fc de inmunoglobulina, se alicuotaron las soluciones fermentadas antes y después de la inducción.

Se mezclaron partes de las soluciones fermentadas con volúmenes iguales de tampón de muestra de proteína 2x y se sometió a electroforesis en un gel SDS-PAGE al 15 % (Criterion Gel, Bio-Rad) en las siguientes condiciones reductoras. Los resultados de la electroforesis se dan en la FIG. 7. Se hizo correr un control de Fc de IgG4 en el carril 1, mientras que los niveles de expresión del transformante HM11208 de acuerdo con el tiempo se muestran en los carriles 2 a 4 y los niveles de expresión del transformante HM11206 de acuerdo con el tiempo en los carriles 5 a 7. Los niveles de expresión en los transformantes HM11207, HM11212, HM11209, HM11210, HM11213 y HM11211 se muestran en los carriles 8 a 13, respectivamente. Como se observa en la FIG. 7, una única banda de 30 kDa (región Fc), que no se observó antes de la inducción de IPTG, apareció de forma muy clara en todas las muestras sometidas a inducción de IPTG, lo que indica que se expresaron las regiones Fc de IgG1 recombinante en contraste con el control G4Fc. Además, se sobreexpresaron las regiones Fc, ascendiendo a al menos aproximadamente un 30 % de la cantidad total de proteínas expresadas.

Para determinar cuantitativamente la expresión de regiones Fc de inmunoglobulina en los transformantes de *E. coli*, se purificaron regiones Fc de inmunoglobulina de la solución de replegado usando una columna de afinidad de proteína-A conocida por tener una fuerte afinidad para inmunoglobulinas de la misma manera que se usó para Fc de IgG4.

De los transformantes, se midió el transformante de plásmido pMSCDFc para tener la mayor tasa de expresión, que ascendía hasta 340 mg por 10 g de cuerpo de inclusión, mientras que los transformantes pMDKTFc, pMEPKFc, pMPPCFc y pMPCPFc mostraron tasas de expresión de 133,3 mg, 159 mg, 110 mg y 120 mg, respectivamente.

Se midió el contenido de Fc de IgG1 dimérico en los productos expresados de la misma manera que se usó para el contenido de Fc de IgG4 dimérico. Se rompieron las células de las soluciones de fermentación usando un ultrasonicador (Misonix Company). Se centrifugó el lisado celular así obtenido para separar las sustancias solubles en agua de las sustancias insolubles en agua. Se descubrió que la mayoría de las sustancias sobreexpresadas existían como cuerpos de inclusión, medido por electroforesis en SDS-PAGE al 15 %. Se replegaron los cuerpos de inclusión para examinar hasta qué grado se replegó el Fc y si se formaron y hasta qué grado las regiones Fc diméricas. Se purificaron las proteínas Fc replegadas usando una columna de afinidad de proteína-A y se mezclaron con un tampón

de muestra de proteína libre de agente reductor, tal como DTT o beta-mercaptoetanol, seguido de electroforesis en SDS-PAGE al 15 % (Criterion Gel, Bio-Rad). Se visualizaron las bandas de proteína con un colorante tal como Coomassie Brilliant.

La FIG. 8 es una fotografía tomada de un gel en el que se hicieron correr los aislados de la columna de proteína-A de las proteínas replegadas a partir de los cuerpos de inclusión expresados por el reformante HM11208 (carril 1), por el reformante HM11206 (carril 2), por el reformante HM11207 (carril 4), por el reformante HM11212 (carril 5) y por el reformante HM11213 (carril 7) en presencia de un campo eléctrico en una condición no reductora, junto con una proteína Fc de IgG4 usada como control (carriles 3, 6, y 8). Como se muestra en la FIG. 8, se descubrió que todos los fragmentos Fc de IgG1 usados en la muestra forman dímeros, aunque la cantidad de los mismos difería en cierto grado.

<2-3> Análisis de secuencia N terminal

Como se reconoce en el caso de Fc de IgG4, la secuencia de aminoácidos N terminal determinó el procesado postraduccional en cuanto a si permaneció el residuo de metionina inicial o si se procesó con precisión el residuo de metionina inicial, o junto con otros residuos para dar secuencias de aminoácidos diferentes de la deseada. Para examinar si el residuo de metionina se procesó por proteasas de *E. coli*, se analizaron diferentes secuencias de aminoácidos N terminales de las regiones Fc de IgG1 por el Basic Science Research Institute, Seúl, Corea. Los resultados del análisis se resumen en la tabla 4, a continuación.

Tabla 4

15

Transformantes	Resultados de secuenciación N terminal (dímeros)
HM11208	Met
HM11206	Met
HM11207	Ser
HM11212	Pro
HM11213	Pro

Como se observa en la tabla 4, el residuo de metionina inicial permanece sin procesar en los transformantes de
HM11208 y HM11206, en los que se sobreexpresaron las regiones Fc de IgG1 en formas diméricas mientras los
productos fermentados de HM11207, HM11212 y HM11213 no tienen residuos de metionina iniciales como resultado
del procesado postraduccional preciso.

Tomados juntos, los datos obtenidos por medio de los experimentos mencionados anteriormente indican que cuando se expresa una región Fc de IgG1 en *E. coli*, la secuencia N terminal de la misma determina la expresión, el nivel de expresión, la proporción de dímero y el procesado N terminal de la misma, y esas regiones Fc desprovistas de residuos de metionina iniciales se pueden producir en una escala en masa aprovechando la secuencia N terminal. Las regiones Fc de IgG1 obtenidas de acuerdo con la presente invención se pueden usar para potenciar la semivida en suero y la actividad fisiológica del polipéptido fisiológicamente activo unido a las mismas sin inducción de respuesta inmunitaria debida a la adición de residuos de aminoácidos exógenos.

30 Ejemplo 3: Construcción del vector de expresión de la región Fc de inmunoglobulina IgG2 humana

<3-l> Construcción del vector de expresión de la región Fc de IgG2

Para clonar una región Fc de cadena pesada que incluye la región bisagra de IgG2, se llevó a cabo una RT-PCR de la misma manera que se usó para la región Fc de IgG4. Para amplificar genes que tienen secuencias N terminales diferentes, se usaron los siguientes cebadores.

35

Tabla 5

10

15

20

25

30

35

40

45

	Secuencias de cebador 5' [SEQ ID NO:]
G2MPPCSS	5' GGG AAT TCC ATA TGC CAC CGT GCC CAG CAC CAC CTG TGG CAG G 3' [70]
G2MPCPSS	5' GGG AAT TCC ATA TGC CGT GCC CAG CAC CAC CTG TGG CAG GAC 3' [71]
G2MCPSS	5' GGG AAT TCC ATA TGC GCC CAG CAC CAC CTG TGG CAG GAC 3' [72]
G2MCCVSS	5' GGG AAT TCC ATA TGC GTT GTG TCG AGT GCC CAC CGT GCC CAG C 3' [73]
G2MCVESS	5' GGG AAT TCC ATA TGC GTG TCG AGT GCC CAC CGT GCC CAG CAC C 3' [74]

El cebador 3', presentó la secuencia de 5' -CGC GGA TCC TCA TTT ACC CGG AGA CAG GGA GAG GCT CTT C-3' [SEQ ID NO: 75] y se aplicó para la amplificación de todos los genes con secuencias N terminales diferentes. Para facilitar un procedimiento de clonación génica posterior, se introdujo un sitio de reconocimiento Nde I en cada uno de los cebadores en 5', y un sitio de reconocimiento BamHI en el cebador en 3'. Los productos de región Fc amplificados con pares de cebadores se insertaron en un vector, dando así los respectivos plásmidos recombinantes designados por tener partes de la secuencia de aminoácidos total Glu-Arg-Lys-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro [SEQ ID NO: 15] de la región bisagra de IgG2, como sigue. El plásmido que contenía un gen amplificado con el cebador de G2MPPCSS se denominó pmPPCG2Fc, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG2, comenzando con Met-Pro-Pro-Cys (Met-[SEQ ID NO: 56]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 38, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 39. El plásmido que contenía un gen amplificado con el cebador G2MPCPSS se denominó pmPCPG2Fc y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG2, comenzando con Met-Pro-Cys-Pro (Met-[SEQ ID NO: 57]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 40, correspondiente a la secuencia de aminoácidos de SEQ ID NO. 41. Un plásmido que contenía un gen amplificado con el cebador G2MCPSS se denominó pmCPG2Fc y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG2, comenzando con Met-Cys-Pro (Met-[SEQ ID NO: 58]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 42. correspondiente a la secuencia de aminoácidos de SEQ ID NO. 43. Un plásmido que contenía un gen amplificado con el cebador G2MCCVSS se denominó pmCCVG2Fc, y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG2, comenzando con Met-Cys-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro (Met-[SEQ ID NO: 59]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 44, que correspondía a SEQ ID NO. 45. Un plásmido que contenía un gen amplificado con el cebador G2MCVESS se denominó pmCVEG2Fc y se ancló al mismo una secuencia de ADN que codifica el CH2 y CH3 de IgG2, comenzando con Met-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro (Met-[SEQ ID NO: 60]), que se analizó por medio de secuenciación de bases para tener SEQ ID NO. 46, que corresponde a SEQ ID NO. 47. Los vectores de expresión se transformaron en BL21 (DE3) de E. coli para preparar transformantes designados respectivamente BL21/pmPPCPG2Fc (HM11206), BL21/pmPCPG2Fc (HM11207), BL21/pmCPG2Fc (HM11216), BL21/pmCCVG2Fc (HM11217) y BL21/pmCVEG2Fc (HM11218).

<3-2> Expresión, purificación y análisis de la secuencia N terminal de Fc de IgG2

Como en el caso de IgG4, los transformantes bacterianos preparados en el ejemplo <3-l> se inocularon en fermentadores respectivos (Marubishi Company) y se dejó que crecieran, seguido de la determinación de si expresaban los fragmentos de región Fc de inmunoglobulina. Las condiciones de cultivo no eran significativamente diferentes de las establecidas para Fc de IgG4. Se descubrió que los fragmentos de región Fc de IgG2 se sobreexpresaron en varias condiciones, incluyendo temperatura, composición del medio, concentración inductora, etc. medido por SDS-PAGE en una condición reductora. La FIG. 9 muestra el resultado de un SDS-PAGE al 15 % de las soluciones de fermentación mezclado con volúmenes iguales de tampón de muestra de proteína 2x. Se usó un fragmento Fc de IgG4 como control en el carril 1 mientras se hicieron correr los fragmentos expresados por el HM11214, HM11215, HM11216, HM11217 y HM11218 en los carriles 2 a 6, respectivamente. Como se observa en la FIG. 9, los cinco transformantes usados en el experimento sobreexpresaron los fragmentos Fc.

Se midió el contenido de Fc de IgG4 dimérico en los productos expresados de la misma manera que se describió anteriormente. Se rompieron las células de las soluciones de fermentación y se replegaron las sustancias insolubles en agua del lisado celular, después de eso sólo se purificaron los fragmentos de región Fc usando una columna de afinidad de proteína-A. Se mezclaron los productos de expresión purificados con un tampón de muestra de proteína, tal como DTT o beta-mercaptoetanol, y se separaron en un SDS-PAGE al 15 % (Criterion Gel, Bio-Rad). Se visualizaron las bandas de proteína con un colorante tal como Coomassie Brilliant. La FIG. 10 muestra el resultado de la electroforesis. Se usó un fragmento Fc de IgG4 como control en los carriles 1 y 7 mientras que se observaron

dímeros del fragmento del HM11214, HM11215, HM11216, HM11217, y HM11218 en los carriles 2 a 6. Como se entiende de los datos de la FIG. 10, los productos de expresión de los transformantes, aunque son diferentes entre sí con respecto a la secuencia N terminal o condición de expresión, todos pueden formar dímeros.

Para examinar si el residuo de metionina se procesa por proteasas de *E. coli*, se analizaron diferentes secuencias de aminoácidos N terminales de las regiones Fc de IgG4 dimérico por el Basic Science Research Institute, en Seúl, Corea. Se retiró el residuo de metionina inicial de los productos de los transformantes HM11214 y HM11215, de los que ambos tienen un residuo prolina en la posición 2.

Como es evidente de estos experimentos, las regiones Fc de IgG2 se pueden expresar en una escala en masa en *E. coli.* Además, los datos obtenidos en los experimentos mencionados anteriormente indican que la secuencia N terminal de una región Fc de IgG1 determina la expresión, el nivel de expresión, la proporción de dímero y el procesado N terminal de la misma, y esas regiones Fc desprovistas de residuos de metionina iniciales se pueden producir en una escala en masa aprovechando la secuencia N terminal. Las regiones Fc de IgG1 obtenidas de acuerdo con la presente invención se pueden usar para potenciar la semivida en suero y la actividad fisiológica del polipéptido fisiológicamente activo unido a las mismas sin inducción de respuesta inmunitaria debida a la adición de residuos de aminoácidos exógenos.

Ejemplo 4: Ensayo de unión a C1q usando ELISA

10

15

20

25

30

35

40

45

50

55

Para determinar si los derivados preparados en el ejemplo <l-2> y las proteínas correspondientes a las regiones Fc de las inmunoglobulinas, expresadas en los transformantes de E. coli y purificadas, se unen a C1g humana, se llevó a cabo un ensavo inmunoabsorbente ligado a enzimas (ELISA) como sigue. Como grupos de prueba, se usaron regiones Fc de inmunoglobulina producidas por los transformantes HM11200 y HM11201 preparados en los ejemplos anteriores. Como estándar, se usó una inmunoglobulina glucosilada (IVIGG-globulin S, Green Cross PBM). Se prepararon muestras de prueba y estándar en tampón carbonato 10 mM (pH 9,6) a una concentración de 1 µg/ml. Se tomaron alícuotas de las muestras en una placa de 96 pocillos (Nunc) en una cantidad de 200 ng por pocillo, y se recubrió la placa durante la noche a 4 °C. A continuación, se lavó tres veces cada pocillo con PBS-T (NaCl 137 mM, KCI 2 mM,Na₂HPO₄ 10 mM, KH₂PO₄ 2 mM, Tween 20 al 0,05 %), se bloqueó con 250 µl de un tampón de bloqueo (seroalbúmina bovina al 1 % en PBS-T) a temperatura ambiente durante 1 h, y se lavó de nuevo con el mismo PBS-T tres veces. Se diluyeron las muestras estándar y de prueba en PBS-T hasta una concentración predeterminada y se añadieron a pocillos recubiertos de anticuerpo, y se incubó la placa a temperatura ambiente durante 1 h y se lavó con PBS-T tres veces. Después de esto, se añadieron 2 µg/ml de C1q (R&D Systems) a la placa y se hicieron reaccionar a temperatura ambiente durante 2 h, y se lavó la placa con PBS-T seis veces. Se añadieron a cada pocillo 200 µl de un dilución 1:1000 de un conjugado anticuerpo anti-C1q humana humano-peroxidasa (Biogenesis, EE. UU.) en el tampón de bloqueo y se hicieron reaccionar a temperatura ambiente durante 1 h. Después de que se lavara cada pocillo con PBS-T tres veces, se mezclaron volúmenes iguales de reactivos colorantes A y B (Color A: peróxido estabilizado y Color B: cromógeno estabilizado; DY 999, R&D Systems), y se añadieron 200 µl de la mezcla a cada pocillo, seguido de incubación durante 30 min. A continuación, se añadieron a cada pocillo 50 µl de una solución de terminación de reacción, ácido sulfúrico 2 M. Se leyó la placa usando un lector de microplacas (Molecular Device). Se midió la absorbancia de las muestras estándar v de prueba a 450 nm. v los resultados se dan en la FIG. 2.

Como se muestra en la FIG. 2, las proteínas de región Fc de inmunoglobulina producidas en *E. coli* de acuerdo con la presente invención presentaron una reducción marcada en la afinidad de unión a C1q. Estos resultados indican que las proteínas de región Fc de inmunoglobulina producidas por la presente invención rara vez presentan el riesgo de inducir respuestas inmunitarias tales como citotoxicidad e inflamación en el cuerpo cuando se usa un vehículo para polipéptidos fisiológicamente activos en una forma conjugada.

Ejemplo 5: Ensayo de unión a FcyRI, FcyRHI y FcRnαβ₂ usando ELISA

Se sabe que el Fc de inmunoglobulina se une a los receptores de hematocitos a FcγRI y FcvRIII para mediar en las funciones efectoras tales como citotoxicidad dependiente de anticuerpo. Para determinar si el Fc de inmunoglobulina producido en *E. coli* media en dichas funciones efectoras, se obtuvo cada uno de los receptores y se sometió a ensayo para determinar la capacidad de unión por medio de un ELISA. Además, se sometió a ensayo el Fc de inmunoglobulina para determinar la unión al receptor FcRn, que se sabe que tiene influencia sobre el metabolismo *in vivo* de inmunoglobulina, de la misma manera.

<5-l> Construcción de cepas de expresión de FcγRI/ FcvRIII y FcRnαβ₂ humanos

Se aisló ARN total de células mononucleares de sangre periféricas humanas usando un kit (Qiagen), y se usó para buscar genes que codifican dominios de unión a ligandos extracelulares de FcγRI, FcvRIII y FcRnαβ₂ humanos por medio de RT-PCR y PCT. Se fusionaron los genes a un gen GST (glutatión S-transferasa) y se clonaron en vectores de expresión de células de mamíferos respectivos anclando a los mismos un gen deshidrofolato reductasa. Se transfectó el plasma pHM000 recombinante así preparado en células CHO. A este respecto, se inocularon células CHO en un recuento de 1x10⁶ células por placa de cultivo de 6 cm, se incubó a 37 °C o 24 horas en una incubadora con CO₂ al 5 %, y se lavó dos veces con Opti-MEM (Gibco., n.º Cat. 31985-070). Se mezcló un 1 ml de Opti-MEM que contenía 10 μg de pHM000 con 1 ml de reactivo Lipofectamine™ (Invitrogen, n.º Cat. 18324-020). Después de que se dejara en

reposo durante 20 min, se añadió la mezcla resultante a las células CHO preparadas. Se incubaron estas células a 37 °C durante 18 horas en una incubadora con CO_2 al 5 % y se refrescaron con DMEM/F12, complementado con suero fetal bovino al 10 % y penicilina-estreptomicina al 1 %, antes de la incubación durante 48 horas adicionales. Para seleccionar cepas transformadas, se trataron las células con tripsina al 0,5 % (Gibco., n.º Cat. 15400-054) en el medio de selección α -MEM (Welgene, n.º Cat. LM008-02) que incluía suero fetal bovino dializado al 10 %, penicilina-estreptomicina al 1 %, y 800ug/ml de geneticina (Mediatech, n.º Cat. 61-234RG), seguido de centrifugación. Se transfectaron las células así transformadas a una placa de cultivo T25 (Nunc) y se cultivó a 37 °C en una incubadora de CO_2 al 5 % hasta una confluencia de un 90 % o mayor. Para determinar los niveles de expresión de FcyRI, FcyRIII y FcRn α 2, se incubaron las cepas seleccionadas a 37 °C en una incubadora de CO_2 al 5 % con concentraciones incrementadas de MTX (Sigma, n.º Cat. M-8407) de 20 nM por un incremento de 20 nM cada dos semanas.

<5-2> Producción y purificación de FcγRI, FcγRIII y FcRnαβ₂ humanos

Se purificaron los $Fc\gamma RIII$ y $FcRn\alpha\beta 2$ como sigue. Se inocularon las cepas de células seleccionadas en Cell Factory (Nunc, n.º Cat. 170009) en un recuento de 3,5*10⁸ células por fábrica se dejó que crecieran a 37 °C durante 48 horas en una incubadora de CO_2 al 5 %, y a continuación se lavó dos veces con 1 litro de PBS por fábrica. Se complementaron las células con 1 litro del medio de producción CHO-A-SFM que contenía butirato de sodio 0,3 mM (Sigma, n.º Cat. B-5887) y se cultivó a 33 °C en una incubadora de CO_2 al 5 %, durante esto se recuperó el sobrenadante de expresión cada dos días 7 veces en total. Se centrifugó el sobrenadante recogido, se filtró a través de un sistema de filtración de 0,22 μ m (Corning), se concentró usando un sistema de concentración (PALL, n.º Cat. PN OS010C70), y se cargó en resina Sepharose FF quelante (Amersharm Pharmacia, n.º Cat. 17-0575-02) se cargó con sulfuro de níquel 0,1 M (Sigma, n.º Cat. N4887), de modo que los GST de Fc γ RI, Fc γ RIII, y FcRn α B2 se unieron al níquel. Se separaron los Fc γ RI, Fc γ RIII, y FcRn α B2 unidos y se purificó a partir de la columna usando NaPi(pH 8,0) 50 mM, NaCl 300 mM, y imidazol 250 mM.

<5-3> Ensavo de unión a FcvRI

5

10

15

20

50

55

60

25 Se diluyó el FcyRl purificado en el ejemplo <5-2> hasta una concentración de 0,75 µg/ml en PBS (pH 7,4), se alicuotó en una placa de 96 pocillos (Nunc, Maxisorp) en una cantidad de 100 µl por pocillo, y se incubó durante 18 horas a 4 °C de modo que el receptor se unió al fondo de la placa de 96 pocillos. Se lavó tres veces cada pocillo de la placa de 96 pocillos con 300 µl de un tampón de lavado PBS (pH 7,4) que contenía Tween-20 al 0,05 % (Amresco, n.º Cat. 0777). A continuación, se añadieron 300 µl de PBS (pH 7,4) que contenía Tween-20 al 0,1 % y BSA al 3 % (seroalbúmina 30 bovina, Amresco, n.º Cat. 0332) a cada pocillo para evitar la unión no deseada de otras sustancias al fondo del pocillo y se incubó a 37 °C durante 1 hora, después de esto la solución de reacción se retiró completamente de los mismos. Con la IgG sérica humana y el Fc separados por el tratamiento de IgG sérica humana sirviendo la papaína como controles, se diluyeron HM11200 y el producto de HM11201 purificado en el ejemplo 2 hasta una concentración de 9 µg/ml en tampones de ensayo respectivos, seguido de la repetición de la dilución en serie 1:3 con el tampón de ensayo 35 siete veces. Se colocaron 100 µl de la dilución en cada pocillo de una placa de 96 pocillos y se dejó que reaccionara a 25 °C durante 2 horas con agitación a una tasa constante, y los pocillos se lavaron seis veces con un tampón de lavado. Para examinar si el HM11200, el producto de HM11201 y los controles, de los que todos se anclaron al fondo de la placa de pocillos, se unieron a FcyRl, se colocó una dilución 1:100000 de un anticuerpo de cadena pesada anti-humano de cabra conjugado con HRP (Chemicon, AP309P) en un tampón de ensayo en un volumen de 100 µl en 40 cada pocillo y se dejó que reaccionara a 25 ºC durante 2 horas con agitación a una tasa constante. Después de lavar seis veces con un tampón de lavado, se colocaron 100 µl de un sustrato (BD bioscience, n.º Cat. 555214), que podía reaccionar con la HRP conjugada con el anticuerpo, en cada pocillo y se hizo reaccionar a 25 ºC durante 20 min. Se terminó la reacción con ácido sulfúrico 2 N y se midió la intensidad de color con un lector de ELISA (Molecular Devices, lector de microplacas) a 450 nm. Como se observa en la FIG. 3, casi ninguna de las proteínas Fc producidas en E. coli 45 se unieron a FcyRI mientras que la IgG humana y Fc, ambos glucosilados, se asociaron fuertemente con FcyRI.

<5-4> Ensayo de unión a FcyRIII

Con la IgG sérica humana y el Fc separados por el tratamiento de IgG sérica humana sirviendo la papaína como controles, se diluyeron HM11200 y el producto de HM11201 purificado en el ejemplo <I-2> hasta una concentración de 9 μg/ml en el tampón carbonato respectivo (pH 9,0), seguido de la repetición de la dilución en serie 1:3 con el tampón carbonato siete veces. Se colocaron 100 μl de la dilución en cada pocillo de una placa de 96 pocillos y se incubó a 4 °C durante 18 horas de modo que se unieron al fondo de la placa de 96 pocillos. Se lavó tres veces cada pocillo de la placa de 96 pocillos con 300 μl de un tampón de lavado que consistía en PBS (pH 7,4) que contenía Tween-20 al 0,05 % (Amresco, n.° Cat. 0777). A continuación, se añadieron 300 μl de un tampón de ensayo que consistía en PBS (pH 7,4) que contenía Tween-20 al 0,1 % y leche en polvo desnatada al 5 % (Difco, n.º Cat. 232100) a cada pocillo para evitar la unión no deseada de otras sustancias en el fondo del pocillo, y se incubó a 37 °C durante 1 hora, seguido de la retirada completa de la solución de reacción. Se diluyó el FcγRIII purificado en el ejemplo <4-2> hasta una concentración de 1 μg/ml en la solución de ensayo. Se colocaron 100 μl de la dilución en cada pocillo de una placa de 96 pocillos y se dejó que reaccionara a 25 °C durante 2 horas con agitación a una tasa constante. Se lavaron los pocillos seis veces con un tampón de lavado. Se diluyó 1:10000 un anticuerpo anti-GST de conejo (Chemicon, AB3282), que se podía unir a la GST (glutatión S-transferasa) de FcγRIII asociado con el HM11200, el producto de HM11201 y los controles, en el tampón de ensayo, y se colocaron 100 μl de la dilución en cada pocillo y se dejó que

reaccionara a 25 $^{\circ}$ C durante 2 horas con agitación a una tasa constante. Posteriormente, después de lavar seis veces con un tampón de lavado, se colocaron 100 μ l de una dilución 1:7500 del anticuerpo contra el anticuerpo de conejo en el tampón de ensayo en cada pocillo.

Después de la reacción a 25 °C durante 2 horas con agitación a una tasa constante, se lavó seis veces la placa de 96 pocillos con un tampón de lavado. Se añadió un sustrato de la misma manera que en el ejemplo <5-3> y se midió la intensidad de color con un lector de ELISA. Como se observa en la FIG. 4, casi ninguna de las proteínas FcγRIII producidas en *E. coli* se unieron a FcγRI mientras que la IgG humana y Fc, ambos glucosilados, se asociaron fuertemente con FcFcγRIII.

<5-5> Ensayo de unión a FcRnαβ₂

5

30

45

50

55

10 Con la IgG sérica humana y el Fc separados por el tratamiento de IgG sérica humana sirviendo la papaína como controles, se diluyeron HM11200 y el producto de HM11201 purificado en el ejemplo <l-2> hasta una concentración de 20 µg/ml en el tampón carbonato respectivo (pH 9,0), seguido de la repetición de la dilución en serie 1:3 con el tampón carbonato siete veces. Se colocaron 100 µl de la dilución en cada pocillo de una placa de 96 pocillos y se incubó a 4 ºC durante 18 horas de modo que se unieron en el fondo de la placa de 96 pocillos. Se lavó tres veces cada 15 pocillo de la placa de 96 pocillos con 300 µl de un tampón de lavado que consistía en PBS (pH 7,4) que contenía Tween-20 al 0,05 % (Amresco, n.º Cat. 0777). A continuación, se añadieron 300 µl de un tampón de ensayo que consistía en PBS (pH 7,4) que contenía Tween-20 al 0,1 % y BSA al 0,5 % (Amresco, n.º Cat. 0332) a cada pocillo para evitar la unión no deseada de otras sustancias al fondo del pocillo, y se incubó a 37 ºC durante 1 hora, seguido de la retirada completa de la solución de reacción. Se diluyó el FcRnαβ₂ purificado en el ejemplo <5-2> hasta una 20 concentración de 3 µg/ml en la solución de ensayo. Se colocaron 100 µl de la dilución en cada pocillo de una placa de 96 pocillos y se deió que reaccionara a 25 °C durante 2 horas con agitación a una tasa constante. Se lavaron los pocillos seis veces con el tampón de lavado. Se diluyó 1:10000 un anticuerpo anti-GST de conejo (Chemicon, AB3282), que se podía unir a la GST (glutatión S-transferasa) de FcRnαβ₂ asociado con el HM11200, el producto de HM11201 y los controles, en el tampón de ensayo, y se colocaron 100 µl de la dilución en cada pocillo y se dejó que 25 reaccionara a 25 ºC durante 2 horas con agitación a una tasa constante. Posteriormente, después de lavar seis veces con un tampón de lavado, se colocaron 100 µl de una dilución 1:7500 de un anticuerpo contra el anticuerpo de conejo en el tampón de ensayo en cada pocillo.

Después de la reacción a 25 °C durante 2 horas con agitación a una tasa constante, se lavó seis veces la placa de 96 pocillos con un tampón de lavado. Se añadió un sustrato de la misma manera que en el ejemplo <5-2> y se midió la intensidad de color con un lector de ELISA. Al igual que la IgG humana y el Fc glucosilado, como se observa en la FIG. 5, las proteínas Fc producidas en *E. coli* se unen fuertemente a FcRnαβ₂.

Ejemplo 6: Preparación y análisis farmacocinético del conjugado de EPO humana

<6-l> Preparación de EPO humana

Para preparar un conjugado de EPO humana (eritropoyetina), en primer lugar, se amplificó un gen de EPO por medio de RT-PCR usando ARN total aislado de células sanguíneas y se clonó en un vector pBluscript II (Stratagen), generando así un vector pBlueEP. Para transferir el gen de EPO clonado en un vector de expresión de célula animal pCMV/dhfr-(pCDNA3,1 (Invitrogen Company) que contenía un gen dhfr), se digirió el pBlueEP con HindIII y BamHI, y se insertó el fragmento que contenía el gen de EPO así obtenido en el vector de expresión de célula animal tratado con las mismas enzimas de restricción, proporcionando así el pcmvEP. Este vector de expresión que lleva el gen de EPO se transfectó en células CHO, una cepa de expresión de proteína, usando un reactivo Lipofectamine (Gibco). Se trataron las células con concentraciones gradualmente incrementadas de MTX hasta 120 nM para elevar los niveles de expresión de las mismas. Se expresó la EPO en niveles altos, mayores de 100 mg por litro.

<6-2> Preparación del complejo EPO humana-PEG

Se mezcló ALD-PEG-ALD (Shearwater), un polietilenglicol de 3,4 kDa que tiene un grupo reactivo aldehído en ambos extremos, con cantidades de tampón fosfato 100 mM que contenía la EPO preparada en <6-l> en una concentración de 5 mg/ml apropiada para formar un EPO: PEG de 1:1, 1:2,5, 1:5, 1:10 y 1:20. A esta mezcla, se le añadió un agente reductor, cianoborohidruro de sodio (NaCNBH₃, Sigma), a una concentración final de 20 mM y se dejó que reaccionaran a 4 °C durante 2 h agitación suave para dejar que el PEG se una de forma selectiva al extremo amino terminal de la EPO. Para obtener un complejo 1:1 de PEG y EPO, se sometió la mezcla de reacción a cromatografía de exclusión por tamaño usando una columna Superdex^R (Pharmacia). Se eluyó el complejo EPO-PEG de la columna usando tampón fosfato de potasio 10 mM (pH 6,0) como tampón de elución, y se retiraron la EPO no unida a PEG, PEG sin reaccionar y subproductos dímeros donde PEG se unió a dos moléculas de EPO. Se concentró el complejo purificado EPO-PEG hasta 5 mg/ml. Por medio de este experimento, se descubrió que la proporción molar óptima para EPO con respecto a PEG, que proporciona la mayor reactividad y que genera la menor cantidad de subproductos tales como dímeros, era de 1:2,5 a 1:5.

<6-3> Preparación del conjugado del complejo EPO humana-PEG y la región Fc de inmunoglobulina recombinante Se unió el complejo EPO-PEG preparado en el ejemplo <6-2> a una región Fc de inmunoglobulina producida usando el HM11201 en el ejemplo <l-3>. En detalle, se disolvió el fragmento de región Fc de inmunoglobulina (aproximadamente 53 kDa) preparado en el ejemplo <l-3> en tampón fosfato 10 mM y se mezcló con el complejo EPO-PEG en una proporción molar de complejo EPO-PEG: región Fc de 1:1, 1:2, 1:4 y 1:8. Después de que se ajustara la concentración de tampón fosfato de la solución de reacción a 100 mM, se añadió un agente reductor, NaCNBH₃, a la solución de reacción a una concentración final de 20 mM y se dejó que reaccionara a 4 °C durante 20 h con agitación suave. Por medio de este experimento, se descubrió que la proporción molar óptima para el complejo EPO-PEG con respecto al fragmento de región Fc, que proporciona la mayor reactividad y que genera la menor cantidad de subproductos tales como dímeros, era de 1:2.

Después de la reacción de acoplamiento, se sometió la mezcla de reacción a cromatografía líquida de alta presión para eliminar sustancias sin reaccionar y subproductos. Se desaló la solución de reacción de acoplamiento usando una columna de desalado HiPrep 26/10 (Pharmacia) con tampón Tris 10 mM (pH 8,0). A continuación, la solución de reacción se cargó en 50 ml de una columna Q HP 26/10 (Pharmacia) en un caudal de 8 ml/min, y esta columna se eluyó con un gradiente lineal de NaCl de 0 M-0,2 M para obtener las fracciones deseadas. Se cargaron de nuevo las fracciones recogidas en una columna polyCAT 21,5x250 equilibrada con tampón acetato 10 mM (pH 5,2) en un caudal de 15 ml/min, y se eluyó esta columna con un gradiente lineal NaCl de 0,1-0,3 M, proporcionando así fracciones altamente puras.

<6-4> Análisis farmacocinético

La EPO natural preparada en el ejemplo <5-l>, Aranesp (Amgen) con un mayor contenido en ácido siálico para incrementar la semivida del mismo, y el conjugado EPO-PEG-Fc (grupo de prueba) preparado en el ejemplo <5-3> se inyectaron por vía subcutánea en una dosis de 100 μg/kg en cinco ratas SD por grupo. Después de la inyección subcutánea, se recogieron las muestras de sangre a 0,5, 1, 2, 4, 6, 12, 24 y 48 h en los grupos de control y a 1, 12, 24, 30, 48, 72, 96, 120, 144, 168, 192, 240, 288, 336 y 384 h en los grupos de prueba. Se recogieron las muestras de sangre en tubos de 1,5 ml, se coagularon y se centrifugaron durante 10 min usando un microcentrifugador de alta velocidad Eppendorf para retirar las células sanguíneas. Se midieron los niveles de proteína en suero por ELISA usando un anticuerpo específico para EPO.

La tabla 6, a continuación, y la FIG. 6 muestran semividas en suero de la proteína natural y el conjugado de proteínas. El conjugado de proteínas EPO-PEG-Fc (*E. coli*), preparado usando la región Fc de inmunoglobulina producida de acuerdo con la presente invención como vehículo, presentó una semivida en suero mucho mayor que la de la EPO natural. Se descubrió que la semivida extendida será mayor que la de Aranesp, conocido por ser una EPO de segunda generación EPO que tiene una semivida en suero larga.

Tabla 6

5

20

25

30

35

	EPO	Conjugado EPO-PEG-Fc	Aranesp
C _{max} ¹ (ng/ml)	30,4	192,8	96,8
T _{max} ² (h)	12,0	48,0	12,0
T _{1/2} ³ (h)	6,1	47,0	16,4
AUC ⁴ (ng.h/ml)	713	20436	4064
MKT ⁵ (h)	15,1	88	32

¹Concentración máxima en suero

Aplicabilidad industrial

Como se ha descrito hasta ahora, el procedimiento de acuerdo con la presente invención permite una producción en masa de una región Fc de inmunoglobulina en una forma de cuerpo de inclusión en *E. coli* usando una región Fc de inmunoglobulina recombinante que comprende una región bisagra. Cuando se une a una proteína fisiológicamente activa, la región Fc de inmunoglobulina producida se puede usar eficazmente para potenciar la semivida en suero y la actividad fisiológica de la proteína fisiológicamente activa sin riesgo de inducir respuestas inmunitarias.

²Tiempo que tarda en alcanzar la concentración de fármaco máxima

³Semivida en suero de un fármaco

⁴Área bajo la curva de concentración en suero frente al tiempo

⁵Media del tiempo que una molécula de fármaco reside en el cuerpo

LISTADO DE SECUENCIAS

	<110>	Hanmi	
	<120> metionina	Un procedimiento para la producción en masa de una región Fc de inmunoglobulina con riniciales eliminados	esiduos de
5	<130>	HAN_P840EP	
	<140>	PCT/KR 06/003207	
	<141>	16/10/2006	
	<160>	75	
	<170>	Patentln versión 3.3	
10	<210>	1	
	<211>	39	
	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
15	<223>	cebador en 5' para amplificación de Fc de IgG4	
	<400>	1	
	gggcatatg	t catgcccagc acctgagttc ctgggggga	39
	<210>	2	
	<211>	32	
:0	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 3' para amplificación de Fc de IgG4	
	<400>	2	
25	gggggatco	cc tatttaccca gagacaggga ga	32
	<210>	3	
	<211>	39	
	<212>	ADN	
	<213>	Secuencia artificial	
30	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG4	
	<400>	3	
	gggcatatg	c catcatgccc agcacctgag ttcctgggg	39
	<210>	4	
35	<211>	40	
	<212>	ADN	
	<213>	Secuencia artificial	

	<220>													
	<223>	cebador en 5' para amplificación de Fc de IgG4												
	<400>	4												
	gggcatatgt	gcccatcatg cccagcacct gagttcctgg	40											
5	<210>	5												
	<211>	36												
	<212>	ADN												
	<213>	Secuencia artificial												
	<220>													
10	<223>	cebador en 5' para amplificación de Fc de IgG4												
	<400>	5												
	gggcatatgt gcccagcacc tgagttcctg ggggga													
	<210>	6												
	<211>	663												
15	<212>	ADN												
	<213>	Homo sapiens												
	<220>													
	<221>	misc_feature												
	<222>	(1)(663)												
20	<223>	proteína recombinante que codifica nucleótidos												
	Met-(fragmento de región bisagra de IgG4) fusionado a (región Fc de IgG4)													
	Met-(Ser-Cys-Pro)-IgG4 Fc													
	<400> atgtca	6 tgcc cagcacctga gttcctgggg ggaccatcag tetteetgtt ecceccaaaa	60											
	cecaag	gaca cteteatgat eteceggace cetgaggtea egtgegtggt ggtggaegtg	120											
	agccag	gaag accccgaggt ccagttcaac tggtacgtgg atggcgtgga ggtgcataat	180											
	gccaag	acaa agccgcggga ggagcagttc aacagcacgt accgtgtggt cagcgtcctc	240											
	accgtc	ectge accaggaetg getgaacgge aaggagtaca agtgeaaggt etecaacaaa	300											
	ggcctc	cegt ectecatega gaaaaccate tecaaageca aagggeagee eegagageca	360											

```
caggigtaca ccctgcccc atcccaggag gagatgacca agaaccaggi cagcctgacc
                                                                                   420
      tgcctggtca aaggcttcta ccccagcgac atcgccgtgg agtgggagag caatgggcag
                                                                                   480
      coggagaca actacaagac cacgcotoco gtgctggact cogacggoto ottottooto
                                                                                   540
      tacagcagge taaccgtgga caagagcagg tggcaggagg ggaatgtett etcatgetee
                                                                                   600
      gtgatgcatg aggetetgca caaccactae acacagaaga geeteteeet gtetetgggt
                                                                                   660
                                                                                   663
      aaa
     <210>
              7
     <211>
              221
     <212>
              PRT
 5
     <213>
             Homo sapiens
     <220>
     <221>
             mat_peptide
     <222>
              (1)..(221)
     <223>
              proteína recombinante
10
     Met-(fragmento de región bisagra de IgG4) fusionado a (región Fc de IgG4)
     Met-(Ser-Cys-Pro)-IgG4 Fc
     <220>
     <221>
              SITIO
     <222>
              (2)..(4)
15
     <223>
             fragmento de región bisagra de IgG4 = SEQ ID NO: 18
     <220>
     <221>
              SITIO
     <222>
             (5)..(221)
     <223>
             Fc de IgG4
20
     <400>
              7
     Met Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu
     Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
                                                                   30
                    20
                                           25
     Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln
               35
                                                              45
```

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu 70 75 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 90 Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys 100 105 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 115 120 125 Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 130 135 140 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 145 150 155 160 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 165 170 175 Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln 180 185 Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 210 215 <210> 8 <211> 666 <212> ADN <213> Homo sapiens

<222> (1)..(666)

<220> <221>

misc_feature

^{10 &}lt;223> proteína recombinante que codifica nucleótidos

Met-(fragmento de región bisagra de IgG4) fusionado a (región Fc de IgG4)
Met-(Pro-Ser-Cys-Pro)-IgG4Fc

	<400>	8						
		tcat g	cccagcacc	tgagttcctg	gggggaccat	cagtetteet	gttcccccca	60
	aaaccc	aagg a	cactctcat	gatetecegg	acccctgagg	tcacgtgcgt	ggtggtggac	120
	gtgagc	cagg a	agaccccga	ggtccagttc	aactggtacg	tggatggcgt	ggaggtgcat	180
	aatgcc	aaga c	aaagccgcg	ggaggagcag	ttcaacagca	cgtaccgtgt	ggtcagcgtc	240
	ctcacc	gtcc t	gcaccagga	ctggctgaac	ggcaaggagt	acaagtgcaa	ggtctccaac	300
	aaaggc	ctcc c	gtcctccat	cgagaaaacc	atctccaaag	ccaaagggca	gccccgagag	360
	ccacag	gtgt a	caccetgee	cccatcccag	gaggagatga	ccaagaacca	ggtcagcctg	420
	acctge	ctgg t	caaaggctt	ctaccccagc	gacatcgccg	tggagtggga	gagcaatggg	480
	cagccg	gaga a	caactacaa	gaccacgcct	cccgtgctgg	actccgacgg	ctccttcttc	540
	ctctac	agca g	gctaaccgt	ggacaagagc	aggtggcagg	aggggaatgt	cttctcatgc	600
					tacacacaga			660
	ggtaaa	-	3 33	•	•		•	666
	<210>	9						
5	<211>	222						
	<212>	PRT						
	<213>	Homo sa	apiens					
	<220>							
	<221>	mat_pep	otide					
10	<222>	(1)(222	2)					
	<223>	proteína	a recombinant	е				
	Met-(fragm	ento de re	egión bisagra d	de IgG4) fusiona	do a (región Fc d	e IgG4)		
	Met-(Pro-S	er-Cys-Pr	ro)-IgG4 Fc					
	<220>							
15	<221>	SITIO						
	<222>	(2) (5)						
	<223>	fragmen	to de región bi	sagra de IgG4 =	SEQ ID NO:19			
	<220>							
20	<221>	SITIO						
	<222>	(6)(222	2)					
	<223>	Fc de Ig	gG4					
	<400>	9						

Met 1	Pro	Ser	Cys	Pro 5	Ala	Pro	Glu	Phe	Leu 10	Gly	Gly	Pro	Ser	Val 15	Phe
Lev	Phe	Pro	Pro 20	Lys	Pro	Lys	Asp	Thr 25	Leu	Met	Ile	Ser	Arg 30	Thr	Pro
Glu	Val	Thr 35	Cys	Val	Val	Val	Asp 40	Val	Ser	Gln	Glu	Asp 45	Pro.	Glu	Val
Gln	Phe 50	Asn	Trp	Tyr	Val	Asp 55	Gly	Val	Glu	Val	His 60	Asn	Ala	Lys	Thr
Lys 65	Pro	Arg	Glu	Glu	Gln 70	Phe	Asn	Ser	Thr	T yr 75	Arg	Val	Val	Ser	Val 80
Leu	Thr	Val	Leu	His 85	Gln	Asp	Trp	Leu	Asn 90	Gly	Lys	Glu	Туг	Lys 95	Cys
Lys	Val	Ser	Asn 100	Lys	Gly	Leu	Pro	Ser 105	Ser	Ile	Glu	Lys	Thr 110	Ile	Ser
Lys	Ala	Lys 115	Gly	Gln	Pro	Arg	Glu 120	Pro	Gln	Val	Tyr	Thr 125	Leu	Pro	Pro
Ser	Gln 130	G1u	Glu	Met	Thr	Lys 135	Asn	Gln	Val	Ser	Leu 140	Thr	Cys	Leu	Val
Lys 145	Gly	Phe	Tyr	Pro	Ser 150	Asp	Ile	Ala	Val	Glu 155	Trp	Glu	Ser	Asn	Gly 160
Gln	Pro	G1u	Asn	Азп 165	Tyr	Lys	Thr	Thr	Pro 170	Pro	Val	Leu	Asp	Ser 175	Asp
Gly	Ser	Phe	Phe 180	Leu	Tyr	Ser	Arg	Leu 185		Val	Asp	Lys	Ser 190	Arg	Trp
Gln	Glu	Gly 195	Asn	Val	Phe	Ser	Cys 200	Ser	Val	Met	His	Glu 205	Ala	Leu	His
Asn	His 210	Tyr	Thr	Gln	Lys	Ser 215		Ser	Leu	Ser	Leu 220	Gly	Lys		•

<210>

```
<211>
               669
               ADN
     <212>
     <213>
               Homo sapiens
     <220>
 5
     <221>
               misc_feature
     <222>
               (1)..(669)
     <223>
               proteína recombinante que codifica nucleótidos
     Met-(fragmento de región bisagra de IgG4) fusionado a (región Fc de IgG4)
     Met-Cys-Pro-Ser-Cys-Pro-IgG4 Fc
       <400> 10
       atgtgcccat catgcccagc acctgagttc ctggggggac catcagtctt cctgttcccc
                                                                                      60
       ccaaaaccca aggacactct catgatetee eggacecetg aggteaegtg egtggtggtg
                                                                                     120
       gacgtgagcc aggaagaccc cgaggtccag ttcaactggt acgtggatgg cgtggaggtg
                                                                                     180
       cataatgcca agacaaagcc gcgggaggag cagttcaaca gcacgtaccg tgtggtcagc
                                                                                     240
       qtcctcaccg tcctgcacca ggactggctg aacggcaagg agtacaagtg caaggtctcc
                                                                                    300
       aacaaaggcc tcccgtcctc catcgagaaa accatctcca aagccaaagg gcagccccga
                                                                                    360
                                                                                    420
       gaqccacagg tgtacaccct gcccccatcc caggaggaga tgaccaagaa ccaggtcagc
       ctgacctgcc tggtcaaagg cttctacccc agcgacatcg ccgtggagtg ggagagcaat
                                                                                     480
       gggcagccgg agaacaacta caagaccacg coteccgtgc tggactccga cggctccttc
                                                                                     540
       tteetetaca geaggetaac egtggacaag ageaggtgge aggaggggaa tgtettetea
                                                                                     600
                                                                                     660
       tgctccgtga tgcatgaggc tctgcacaac cactacacac agaagagcct ctccctgtct
                                                                                     669
       ctgggtaaa
10
     <210>
               11
     <211>
               223
               PRT
     <212>
15
     <213>
               Homo sapiens
     <220>
     <221>
               mat_peptide
     <222>
               (1)..(223)
     <223>
               proteína recombinante
20
     Met-(fragmento de región bisagra de IgG4) fusionado a (región Fc de IgG4)
     Met-Cys-Pro-Ser-Cys-Pro-IgG4 Fc
     <220>
```

<221> SITIO <222> (2)..(6)<223> fragmento de región bisagra de IgG4 = SEQ ID NO:20 <220> <221> SITIO <222> (7)..(223) Fc de IgG4 <223> <400> 11 Met Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val 10 15 Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30 Pro Giu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 45 35 40 Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys

	Cys	Lys	Val	Ser 100	Asn	Lys	Gly	Leu	Pro 105	Ser	Ser	Ile	Glu	Lys 110	Thr	Ile	
	Ser	Lys	Ala 115	Lys	Gly	Gln	Pro	Arg 120	Glu	Pro	Gln	Val	Tyr 125	Thr	Leu	Pro	
	Pro	Ser 130	Gln	Glu	Glu	Met	Thr 135	Lys	Asn	Gln	Val	Ser 140	Leu	Thr	Суѕ	Leu	
	Val 145	Lys	Gly	Phe	Tyr	Pro 150	Ser	Asp	Ile	Ala	Val 155	Glu	Trp	Glu	Ser	Asn 160	
	Gly	Gln	Pro	Glu	Asn 165	Asn	Туr	Lys	Thr	Thr 170	Pro	Pro	Val	Leu	Asp 175	Ser	
	Asp	Gly	Ser	Phe 180	Phe	Leu	Tyr	Ser	Arg 185	Leu	Thr	Val	Asp	Lys 190	Ser	Arg	
	Trp	Gln	Glu 195	Gly	Asn	Val	Phe	Ser 200	Cys	Ser	Val	Met	His 205	Glu	Ala	Leu	
	His	Asn 210	His	Tyr	Thr	Gln	Lys 215	Ser	Leu	Ser	L eu	Ser 220	Leu	Gly	Lys		
	<210>	12	2														
	<211>	66	60														
	<212>	Α	DN														
5	<213>	Н	omo sa	apiens													
	<220>																
	<221>	m	isc_fea	ature													
	<222>	(1)(660)													
	<223>	pr	oteína	recom	binant	e que	codifica	a nucle	éótidos								
10	Met-(frag	gment	de re	gión bi	sagra	de IgG	4) fusi	onado	a (regi	ión Fc	de IgG	64)					
	Met-Cys	-Pro-Iç	gG4 Fo	;													
	<400> atgtg			cctg	agtt	cctq	igggç	ga c	catc	agtc	t tç	etgtt	ccc	ccca	aaac	cc	60
	aagga	icact	c tc	atga	tctc	¢cg¢	gacco	ct g	aggt	cacg	t gc	gtgg1	ggt	ggaç	gtga	gc	120

```
caggaagacc ccgaggtcca gttcaactgg tacgtggatg gcgtggaggt gcataatgcc
                                                                                  180
     aaqacaaaqc cgcgggagga gcagttcaac agcacgtacc gtgtggtcag cgtcctcacc
                                                                                  240
     gtcctgcacc aggactggct gaacggcaag gagtacaagt gcaaggtctc caacaaaggc
                                                                                  300
     ctcccgtcct ccatcgagaa aaccatctcc aaagccaaag ggcagccccg agagccacag
                                                                                  360
     gtgtacaccc tgcccccatc ccaggaggag atgaccaaga accaggtcag cctgacctgc
                                                                                  420
     ctggtcaaag gcttctaccc cagcgacatc gccgtggagt gggagagcaa tgggcagccg
                                                                                  480
     gagaacaact acaagaccac gcctcccgtg ctggactccg acggctcctt cttcctctac
                                                                                  540
     agcaggctaa ccgtggacaa gagcaggtgg caggagggga atgtettete atgetecgtg
                                                                                  600
     atgcatgagg ctctgcacaa ccactacaca cagaagagcc tctccctgtc tctgggtaaa
                                                                                  660
     <210>
               13
     <211>
               220
               PRT
     <212>
 5
     <213>
              Homo sapiens
     <220>
     <221>
               mat_peptide
     <222>
               (1)..(220)
     <223>
               proteína recombinante
10
     Met-(fragmento de región bisagra de IgG4) fusionado a (región Fc de IgG4)
     Met-Cys-Pro-IgG4 Fc
     <220>
     <221>
               SITIO
     <222>
               (2)..(3)
15
               fragmento de región bisagra de IgG4 = SEQ ID NO: 21
     <223>
     <220>
               SITIO
     <221>
     <222>
               (4)..(220)
     <223>
               Fc de IgG4
20
     <400>
               13
      Met Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe
                        5
                                                                       15
      Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
```

30

25

Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 55 Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 70 Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 90 85 Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala 105 100 Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln 120 115 Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 150 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 220 210 215 <210> 14 <211> 15 <212> PRT <213> Homo sapiens

<220>

<221>

DOMINIO

```
<222>
               (1)..(15)
     <223>
               región bisagra de IgG1
     <400>
               14
       Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
 5
     <210>
               15
     <211>
               12
     <212>
               PRT
     <213>
              Homo sapiens
     <220>
10
     <221>
               DOMINIO
     <222>
               (1)..(12)
     <223>
               región bisagra de IgG2
     <400>
               15
      Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
15
     <210>
               16
     <211>
              62
     <212>
              PRT
     <213>
              Homo sapiens
     <220>
20
     <221>
              DOMINIO
     <222>
              (1)..(62)
     <223>
              región bisagra de IgG3
     <400>
               16
      Glu Leu Lys Thr Pro Leu Gly Asp Thr Thr His Thr Cys Pro Arg Cys
                         5
                                                 10
                                                                        15
      Pro Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys Pro
                    20
                                            25
                                                                    30
        Glu Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys Pro Glu
                 35
                                                                 45
        Pro Lys Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys Pro
25
     <210>
               17
```

```
<211>
                 12
     <212>
                 PRT
     <213>
                 Homo sapiens
     <220>
5
     <221>
                 DOMINIO
     <222>
                 (1)..(12)
     <223>
                 IgG4 región bisagra
     <400>
                 17
      Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro
                                                      10
10
     <210>
                 18
     <211>
                 3
     <212>
                 PRT
     <213>
                 Homo sapiens
     <220>
                 PÉPTIDO
15
     <221>
     <222>
                 (1)..(3)
     <223>
                 fragmento de región bisagra de IgG4
     <400>
                 18
      Ser Cys Pro
20
     <210>
                 19
     <211>
                 4
     <212>
                 PRT
     <213>
                 Homo sapiens
     <220>
                 PÉPTIDO
25
     <221>
     <222>
                 (1) .. (4)
     <223> fragmento de región bisagra de IgG4
                                            <400> 19
      Pro Ser Cys Pro
30
     <210>
                20
     <211>
                5
     <212>
                PRT
```

```
<213>
                 Homo sapiens
      <220>
                 PÉPTIDO
      <221>
      <222>
                 (1)..(5)
 5
      <223>
                 fragmento de región bisagra de IgG4
      <400>
        Cys Pro Ser Cys Pro
      <210>
                 21
      <211>
                 2
10
      <212>
                 PRT
      <213>
                 Homo sapiens
      <220>
                 PÉPTIDO
      <221>
      <222>
                 (1)..(2)
15
      <223>
                 fragmento de región bisagra de IgG4
      <400>
                 21
        Cys Pro
      <210>
                 22
      <211>
                 699
20
                 ADN
      <212>
      <213>
                 Homo sapiens
      <220>
      <221>
                 misc_feature
      <222>
                 (1)..(699)
25
      <223>
                 proteína recombinante que codifica nucleótidos
      Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1) Met-Glu-Pro-Lys-IgG1 Fc
```

```
<400> 22
  atggagecca aatettgtga caaaacteae acatgeecae egtgeecage acetgaacte
                                                                              60
  ctgggggac cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc
                                                                             120
                                                                             180
  cggacccetg aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag
                                                                             240
  ttcaactggt acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag
                                                                             300
  cagtacaaca gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg
                                                                             360
  aatggcaagg agtacaagtg caaggtotoo aacaaagcco toocagcooc catogagaaa
                                                                             420
  accateteca aagecaaagg geageceega gagecacagg tgtacaceet geeeceatee
  cgggatgagc tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc
                                                                             480
  agegacateg eegtggagtg ggagageaat gggcageegg agaacaacta caagaccaeg
                                                                             540
                                                                             600
  cotcoegtgo tggacteega eggeteette tteetetaca geaageteac egtggacaag
                                                                             660
  agcaggtggc agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac
                                                                             699
  cactacacgo agaagageet etceetgtet eegggtaaa
<210>
         23
<211>
         233
<212>
         PRT
<213>
         Homo sapiens
<220>
<221>
         mat_peptide
<222>
         (1)..(233)
<223>
         proteína recombinante
Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
Met-Glu-Pro-Lys-IgG1 Fc
<220>
<221>
         SITIO
<222>
         (2).. (4)
<223>
         fragmento de región bisagra de IgG1 = SEQ ID NO: 48
<220>
<221>
        SITIO
<222>
        (5).. (233)
<223>
        Fc de IgG1
<400>
        23
```

5

10

15

Met 1	Glu	Pro	ГÀЗ	Ser 5	Cys	Asp	Lys	Thr	His 10	Thr	Суѕ	Pro	Pro	Cys 15	Pro
Ala	Pro	Glu	Leu 20	Leu	Gly	Gly	Pro	Ser 25	Val	Phe	Leu	Phe	Pro 30	Pro	Lys
Pro	Lys	Asp 35	Thr	Leu	Met	Ile	Ser 40	Arg	Thr	Pro	Glu	Val 45	Thr	Суѕ	Val
Va l	Val 50	Asp	Val	Ser	His	Glu 55	Asp	Pro	Glu	Val	Lys 60	Phe	Asn	Trp	Tyr
Val 65	Asp	Gly	Val	Glu	Val 70	His	Asn	Ala	Lys	Thr 75	Lys	Pro	Arg	Glu	Glu 80
Gln	Tyr	Asn	Ser	Thr 85	Tyr	Arg	Val	Val	Ser 90	Val	Leu	Thr	Val	Leu 95	His
Gln	Asp	Trp	Leu 100	Asn	Gly	Lys	Glu	Tyr 105	Lys	Cys	Lys	Val	Ser 110	Asn	Lys
Ala	Leu	Pro 115	Ala	Pro	Ile	Glu	Lys 120	Thr	Ile	Ser	Lys	Ala 125	Lys	Gly	Gln
Pro	Arg 130	Glu	Pro	Gln	Val	Tyr 135	Thr	Leu	Pro	Pro	Ser 140	Arg	Asp	Glu	Leu
Thr 145	Lys	Asn	Gln	Val	Ser 150	Leu	Thr	Cys	Leu	Val 155	Lys	Gly	Phe	Tyr	Pro 160
Ser	Asp	Ile	Ala	Val 165	Glu	Trp	Glu	Ser	A sn 170	Gly	Gln	Pro	Glu	Asn 175	Asn
Tyr	Lys	Thr	Thr 180	Pro	Pro	Val	Leu	Asp 185	Ser	Asp	Gly	Ser	Phe 190	Phe	Leu

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 195 200 205

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 210 215 220

Lys Ser Leu Ser Leu Ser Pro Gly Lys 225 230

<210> 24

<211> 690

<212> ADN

5 <213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(690)

<223> proteína recombinante que codifica nucleótidos

10 Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)

Met-Ser-Cys-Asp-IgG1 Fc

<400> 24

atgtettgtg acaaaactca cacatgeeca cegtgeecag cacetgaact eetgggggga 60 ecgteagtet teetetteec eccaaaacce aaggacacce teatgatete eeggaceeet 120 qaqqtcacat qcqtqqtqqt qqacqtqaqc cacqaaqacc ctqaqqtcaa qttcaactqq 180 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac 240 agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 300 gagtacaagt gcaaggtete caacaaagee etcecageee ecategagaa aaceatetee 360 aaagccaaag ggcagccccg agagccacag gtgtacaccc tgcccccatc ccgggatgag 420 ctgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 480 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 540 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 600 cagcagggga acgicticic atgctccgtg atgcatgagg ctctgcacaa ccactacacg 660 690 cagaagagcc tctccctgtc tccgggtaaa

<210> 25

15 <211> 230

<212> PRT

```
<213>
              Homo sapiens
     <220>
     <221>
              mat_peptide
     <222>
              (1).. (230)
 5
     <223>
              proteína recombinante
     Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
     Met-Ser-Cys-Asp-IgG1 Fc
     <220>
              SITIO
     <221>
10
     <222>
              (2)..(4)
     <223>
              fragmento de región bisagra de IgG1 = SEQ ID NO:49
     <220>
     <221>
              SITIO
     <222>
              (5)..(230)
15
              Fc de IgG1
     <223>
     <400>
              25
      Met Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
                                                  10
                                                                         15
                          5
      Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
                     20
                                             25
                                                                     30
      Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
                35
                                        40
                                                                45
      Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
           50
                                                           60
      Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
       65
      Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
                                                  90
                          85
```

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 100 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 120 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 135 140 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 150 155 160 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 165 170 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 180 185 190

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 195 200 205

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 210 215 220

Ser Leu Ser Pro Gly Lys 225 230

<210> 26

<211> 684

<212> ADN

5 <213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(684)

<223> proteína recombinante que codifica nucleótidos

10 Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)

Met-Asp-Lys-Thr-IgG1 Fc

```
<400> 26
 atggacaaaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg gggaccgtca
                                                                              60
 gtottoctot toccccaaa acccaaggac accetcatga totcceggac cootgaggte
                                                                             120
 acatgogtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg
                                                                             180
 gacqqcqtqq aqqtqcataa tqccaaqaca aaqccqcqqq aqqaqcaqta caacaqcacq
                                                                             240
 taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac
                                                                             300
 aagtgcaagg totocaacaa agecotocca gcooccatog agaaaaccat otocaaagco
                                                                             360
                                                                             420
 aaagggcage cccgagagee acaggtgtac accctgcccc catcccggga tgagetgace
 aagaaccagg teageetgae etgeetggte aaaggettet ateceagega eategeegtg
                                                                             480
 gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac
                                                                             540
 tecgaegget cettetteet etacageaag eteacegtgg acaagageag gtggcageag
                                                                             600
                                                                             660
 gggaacgtet teteatgete egtgatgeat gaggetetge acaaceacta cacgeagaag
 agectetece tgteteeggg taaa
                                                                             684
<210>
        27
<211>
        228
        PRT
<212>
<213>
        Homo sapiens
<220>
<221>
        mat_peptide
<222>
        (1)..(228)
<223>
        proteína recombinante
Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
Met-Asp-Lys-Thr-IgG1 Fc
<220>
<221>
        SITIO
<222>
        (2) .. (4)
<223>
        fragmento de región bisagra de IgG1 = SEQ ID NO:50
<220>
<221>
        SITIO
<222>
        (5)..(228)
<223>
        Fc de IgG1
```

5

10

< 4	Λ	0>	27

Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 1 5 10 15

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser 35 40 45

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 65 70 75 80

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

```
Ser Pro Gly Lys 225
     <210>
               28
     <211>
               660
     <212>
              ADN
 5
     <213>
              Homo sapiens
     <220>
     <221>
              misc_feature
     <222>
              (1) .. (660)
     <223>
               proteína recombinante que codifica nucleótidos
10
     Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
     Met-Cys-Pro-IgG1 Fc
      <400> 28
      atgtgcccag cacctgaact cctgggggga ccgtcagtct tcctcttccc cccaaaaccc
                                                                                     60
      aaggacacco tcatgatete eeggaceeet gaggteacat gegtggtggt ggacgtgage
                                                                                    120
      cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc
                                                                                    180
      aaqacaaaqc cqcqqqagga qcagtacaac agcacgtacc gtqtqqtcaq cqtcctcacc
                                                                                    240
      gtectgeace aggactggct gadtggcaag gagtacaagt gcaaggtete caacaaagee
                                                                                    300
      ctcccaqccc ccatcgagaa aaccatctcc aaagccaaag ggcagccccg agagccacag
                                                                                    360
      gtgtacaccc tgcccccatc ccgggatgag ctgaccaaga accaggtcag cctgacctgc
                                                                                    420
      ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg
                                                                                    480
      gagaacaact acaagaccac gcctcccgtg ctggactccg acggctcctt cttcctctac
                                                                                    540
      agcaagetea cegtggacaa gagcaggtgg cagcagggga acgtettete atgeteegtg
                                                                                    600
      atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tccgggtaaa
                                                                                    660
     <210> 29
     <211> 220
15
     <212> PRT
     <213>
               Homo sapiens
     <220>
               mat_peptide
     <221>
20
     <222>
               (1)..(220)
     <223>
               proteína recombinante
     Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
     Met-Cys-Pro-IgG1 Fc
     <220>
```

	<221>	S	ITIO													
	<222>	(2	2)(3)													
	<223>	fra	agmen	to de r	egión	bisagra	a de Ig	G1 = S	SEQ ID	NO: 5	1					
	<220>															
5	<221>	S	ITIO													
	<222>	(4	.) (22	0)												
	<223>	F	c de Iç	gG1												
	<400>	29	9													
	Met 1	Cys	Pro	Ala	Pro 5	Glu	Leu	Leu	Gly	Gly 10	Pro	Ser	Val	Phe	Leu 15	Ph∈
	Pro	Pro	Lys	Pro 20	Lys	Asp	Thr	Leu	Met 25	Ile	Ser	Arg	Thr	Pro 30	Glu	Val
	Thr	Cys	Val 35	Val	Val	Asp	Val	Ser 40	His	Glu	Asp	Pro	Glu 45	Val	Lys	Ph∈
	Asn	Trp 50	Tyr	Val	Asp	Gly	Val 55	Glu	Val	His	Asn	Ala 60	Lys	Thr	Lys	Pro
	Arg 65	Glu	Glu	Gln	Tyr	Asn 70	Sér	Thr	Туг	Arg \	Val 75	Val	Ser	Val	Leu	Thr 80
	Val	Leu	His	Gln	Asp 85	Trp	Leu	Asn	Gly	Lys 90	Glu	Tyr	Lys	Cys	Lys 95	Val
	Ser	Asn	Lys	Ala 100	Leu	Pro	Ala	Pro	Ile 105	Glu	Lys	Thr	Ile	Ser 110	Lys	Ala

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 115 Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 150 145 155 160 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 180 185 190 Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220 <210> 30 <211> 696 <212> ADN <213> Homo sapiens <220> <221> misc_feature <222> (1)..(696) <223> proteína recombinante que codifica nucleótidos 10 Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1) Met-Pro-Lys-Ser-IgG1 Fc <400> atgcccaaat cttgtgacaa aactcacaca tgcccaccgt gcccagcacc tgaactcctg 60 gggggaccgt cagtetteet etteccecca aaacccaagg acaccetcat gateteecgg 120 acccctgagg tcacatgcgt ggtggtggac gtgagccacg aagaccctga ggtcaagttc 180 aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagcag 240

```
300
 tacaacagca cqtaccqtqt qqtcaqcqtc ctcaccqtcc tqcaccaqqa ctqqctqaat
 qqcaaqqaqt acaaqtqcaa qqtctccaac aaaqccctcc caqcccccat cqaqaaaacc
                                                                              360
 atotocaaag ccaaagggca gccccgagag ccacaggtgt acaccctgcc cccatcccgg
                                                                              420
 qatqagctqa ccaaqaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc
                                                                              480
                                                                              540
 gacategeeg tggagtggga gageaatggg cageeggaga acaactacaa gaccaegeet
 cccqtqctqq actccqacqq ctccttcttc ctctacagca agctcaccqt qqacaaqaqc
                                                                              600
                                                                              660
 aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac
                                                                              696
 tacacgcaga agageetete cetgteteeg ggtaaa
<210>
         31
<211>
         232
<212>
         PRT
<213>
         Homo sapiens
<220>
         mat_peptide
<221>
<222>
         (1)..(232)
<223>
         proteína recombinante
Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
Met-Pro-Lys-Ser-IgG1 Fc
<220>
<221>
         SITIO
<222>
         (2)..(4)
<223>
         fragmento de región bisagra de IgG1 = SEQ ID NO:52
<220>
         SITIO
<221>
<222>
         (5)..(232)
<223>
         Fc de IgG1
<400>
         31
 Met Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
                                                                    15
 Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
                20
                                        25
                                                                30
```

5

10

15

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 55 Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 75 70 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 85 90 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 130 135 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 1.65 170 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220 Ser Leu Ser Leu Ser Pro Gly Lys 225 230 <210> 32 <211> <212> ADN

<213>

Homo sapiens

```
<220>
     <221>
              misc_feature
     <222>
              (1)..(669)
     <223>
              proteína recombinante que codifica nucleótidos
5
     Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
     Met-Cys-Pro-Pro-IgG1 Fc
      <400> 32
      atgtgccae cgtgcccage acctgaacte ctggggggac cgtcagtett cetetteece
                                                                                       60
      ccaaaaccca aggacaccct catgatetee eggacecetg aggteacatg egtggtggtg
                                                                                     120
      gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg
                                                                                     180
      cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc
                                                                                     240
      gtecteaceg teetgeacea ggactggetg aatggeaagg agtacaagtg caaggtetee
                                                                                     300
      aacaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga
                                                                                     360
      gagecacagg tgtacaccet geocceatee egggatgage tgaccaagaa ccaggtcage
                                                                                     420
      ctgacctgcc tggtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat
                                                                                     480
      gggcagccgg agaacaacta caagaccacg cetecegtge tggactccga eggeteette
                                                                                     540
      tteetetaca geaageteae egtggacaag ageaggtgge ageaggggaa egtettetea
                                                                                     600
      tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct
                                                                                     660
                                                                                     669
      ccgggtaaa
     <210>
              33
     <211>
              223
10
     <212>
              PRT
     <213>
              Homo sapiens
     <220>
     <221>
              mat_peptide
     <222>
              (1)..(223)
15
     <223>
              proteína recombinante
     Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
     Met-Cys-Pro-Pro-IgG1 Fc
     <220>
                SITIO
     <221>
20
     <222>
                (2)..(4)
                fragmento de región bisagra de IgG1 = SEQ ID NO: 53
     <223>
     <220>
```

<221> SITIO <222> (5)..(223)Fc de IgG1 <223> <400> 33 Met Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 25 30 20 Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 35 40 45 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser 70 75 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 90 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 105 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115

5

130

Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu

140

Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn

145 150 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 170 165 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 180 185 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220 <210> 34 <211> 663 <212> ADN <213> Homo sapiens <220> <221> misc_feature <222> (1) .. (663) <223> proteína recombinante que codifica nucleótidos Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1) Met-Pro-Pro-Cys-IgG1 Fc atgccaccgt gcccagcacc tgaactcctg gggggaccgt cagtcttect cttcccccca 60 asacccaagg acaccctcat gateteeegg acccctgagg teacatgegt ggtggtggae 120 gtgagccacg aagaccctga ggtcaagttc aactggtacg tggacggcgt ggaggtgcat 180 aatgccaaga caaagccgcg ggaggagcag tacaacagca cgtaccgtgt ggtcagcgtc 240 ctcaccgtcc tgcaccagga ctggctgaat ggcaaggagt acaagtgcaa ggtctccaac 300 aaagccctcc cagcccccat cgagaaaacc atctccaaag ccaaagggca gccccgagag 360 ccacaggtgt acaccctgcc cccacgggat gagetgacca agaaccaggt cagcctgacc 420 tgcctggtca aaggetteta teccagegae ategcegtgg agtgggagag caatgggeag 480

5

```
coggagaaca actacaagac cacgcetece gigetggact cegacggete ettetteete
                                                                                     540
      tacagcaagc tcaccgtgga caagagcagg tggcagcagg ggaacgtctt ctcatgctcc
                                                                                     600
      gtgatgcatg aggetetgca caaccactac acgcagaaga geeteteeet gteteegggt
                                                                                     660
      aaa
                                                                                     663
     <210>
               35
     <211>
               222
               PRT
     <212>
5
     <213>
               Homo sapiens
     <220>
     <221>
               mat_peptide
     <222>
               (1)..(222)
     <223>
               proteína recombinante
10
     Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)
     Met-Pro-Pro-Cys-IgG1 Fc
     <220>
     <221>
               SITIO
     <222>
               (2)..(4)
15
     <223>
               fragmento de región bisagra de IgG1 = SEQ ID NO:54
     <220>
     <221>
               SITIO
     <222>
               (5)..(222)
               Fc de IgG1
     <223>
20
     <400>
               35
      Met Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
                                                                          15
       1
                          5
      Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
                     20
                                             25
                                                                     30
       Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
                35
                                        40
      Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
```

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 70 75 65 80 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 85 90 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 100 105 110 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 115 120 125 Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 130 135 140 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 145 150 160 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 185 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 195 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220 <210> 36 <211> 663 <212> ADN <213> Homo sapiens <220> <221> misc_feature <222> (1)..(663)<223> proteína recombinante que codifica nucleótidos

5

10

Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)

Met-Pro-Cys-Pro-IgG1 Fc

```
<400> 36
atgeogtgee cageacetga acteetgggg ggacegteag tetteetett eecceeaaaa
                                                                      60
cccaaggaca ccctcatgat ctcccggacc cctgaggtca catgcgtggt ggtggacgtg
                                                                     120
agccacgaag accctgaggt caagttcaac tggtacgtgg acggcgtgga ggtgcataat
                                                                     180
gccaagacaa agccgcggga ggagcagtac aacagcacgt accgtgtggt cagcgtcctc
                                                                     240
accytectyc accaggacty getgaatyge aaggagtaca agtgeaaggt etecaacaaa
                                                                     300
geceteccag eccecatega gaaaaceate tecaaageea aagggeagee eegagageea
                                                                     360
caggigtaca ccctgcccc atcccgggat gagctgacca agaaccaggi cagcctgacc
                                                                     420
tgcctggtca aaggcttcta tcccagcgac atcgccgtgg agtgggagag caatgggcag
                                                                     480
ceggagaaca actaeaagae caegeeteee gtgetggaet eegaeggete ettetteete
                                                                     540
                                                                     600
tacagcaagc tcaccgtgga caagagcagg tggcagcagg ggaacgtctt ctcatgctcc
gtgatgcatg aggetetgca caaccactae aegeagaaga geeteteest gteteegggt
                                                                     660
                                                                     663
aaa
```

<210> 37

<211> 221

<212> PRT

5 <213> Homo sapiens

<220>

<221> mat_peptide

<222> (1)..(221)

<223> proteína recombinante

10 Met-(fragmento de región bisagra de IgG1) fusionado a (región Fc de IgG1)

Met-Pro-Cys-Pro-IgG1 Fc

<220>

<221> SITIO

<222> (2)..(4)

15 <223> fragmento de región bisagra de IgG1 = SEQ ID NO:55

<220>

<221> SITIO

<222> (5)..(221)

<223> IgG1 Fc

<400> 37

Met Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 1 5 10 15

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 20 25 30

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 35 40 45

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 50 55 60

Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 70 75 80

Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 85 90 95

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 100 105 110

Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 115 120 125

Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
130 135 140

Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 145 150 155 160

Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
165 170 175

Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 180 185 190

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 195 200 205

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220

<210> 38

<211> 663

<212> ADN

5 <213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(663)

<223> proteína recombinante que codifica nucleótidos

10 Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2)

Met-Pro-Pro-Cys-IgG2 Fc

<400> 38 atgccaccgt gcccagcacc tccggtggcg ggaccgtcag tcttcctctt ccccccaaaa 60 cocaaggaca coctcatgat otocoggaco cotgaggtca catgogtggt ggtggacgtg 120 agccacgaag accctgaggt ccagttcaac tggtacgtgg acggcgtgga ggtgcataat 180 gccaagacaa agccgcggga ggagcagttt aacagcacgt ttcgtgtggt cagcgtcctc 240 accqtcqtqc accaqqactq qctqaatqqc aaqqaqtaca aqtqcaaqqt ctccaacaaa 300 ggcctcccag cccccatcga gaaaaccatc tccaaaacca aagggcagcc ccgagagcca 360 caggtgtaca ccctgccccc atcccgggaa gagatgacca agaaccaggt cagcctgacc 420 tgcctggtca aaggetteta teccagegae ategcegtgg agtgggagag caatgggcag 480 coggagaaca actacaagac cacgootooc atgotggact cogacggoto ottottooto 540 tacagcaagc tcaccgtgga caagagcagg tggcagcagg ggaacgtctt ctcatgctcc 600 gtgatgcatg aggetetgca caaccactac acgeagaaga geeteteeet gteteegggt 660 663 aaa

<210> 39

<211> 221

<212> PRT

<213> Homo sapiens

<220>

15 <221> mat_peptide

<222> (1)..(221) <223> proteína recombinante Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2) Met-Pro-Pro-Cys-IgG2 Fc 5 <220> SITIO <221> <222> (2).. (4) <223> fragmento de región bisagra de IgG2 = SEQ ID NO: 56 <220> 10 SITIO <221> <222> (5)..(221) <223> Fc de IgG2 <400> 39 Met Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln 40 45 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 50 55 60 Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu 70 75 65 Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 85 90 Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys

15

100

105

Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 115 120 125

	Arg	Glu 130	Glu	Met	Thr	Lys	Asn 135	Gln	Val	Ser	Leu	Thr 140	Cys	Leu	Val	Lys	
	Gly 145	Phe	Tyr	Pro	Ser	Asp 150	Ile	Ala	Val	Glu	Trp 155	Glu	Ser	Asn	Gly	Gln 160	
	Pro	Glu	Asn	Asn	T yr 165	Lys	Thr	Thr	Pro	Pro 170	Met	Leu	Asp	Ser	Asp 175	Gly	
	Ser	Phe	Phe	Leu 180	Tyr	Ser	Lys	Leu	Thr 185	Val	Asp	Lys	Ser	Arg 190	Trp	Gln	
	Gln	Gly	Asn 195	Val	Phe	Ser	Cys	Ser 200	Val	Met	His	Glu	Ala 205	Leu	His	Asn	
	His	Tyr 210	Thr	Gln	Lys	Ser	Le u 2 1 5	Ser	Leu	Ser	Pro	Gly 220	Lys				
	<210>	4	0														
	<211>	6	60														
	<212>	А	DN														
5	<213>	Н	lomo s	apiens	;												
	<220>																
	<221>	m	nisc_fe	ature													
	<222>	(*	1)(660	0)													
	<223>	р	roteína	a recon	nbinan	te que	codific	a nucl	eótidos	6							
10	Met-(frag	gment	o de re	gión b	isagra	de IgG	32) fus	sionado	a (reg	gión Fo	de Ig	G2)					
	Met-Pro-	-Cys-F	ro-IgG	32 Fc													
)> 4 ccgtc		agca	cctc	c gg1	tggcç	ggga	ccgt	cagt	ct t	cctct	teçe	ccc	aaaa	cec	60
	aagg	gacac	cc t	catg	atct	0 00	ggaco	ect	gagg	tcac	at g	cgtg	gtggt	gga	cgtg	agc	120
	cacq	gaaga	acc c	tgag	gtcc	a gti	tcaac	tgg	tacg	tgga	cg g	cgtgo	gaggt	gca	taat	gcc	180
	aaga	acaaa	age c	gcgg	gagg	a gca	agttt	aac	agca	cgtt	tc g	tgtgç	gtcag	cgt	cctc	acc	240
											-						

300

360

420

480

540

600

660

gtcgtgcacc aggactggct gaatggcaag gagtacaagt gcaaggtctc caacaaaggc

```
ctcccagccc ccatogagaa aaccatctcc aaaaccaaag ggcagccccg agagccacag
       gtgtacaccc tgcccccatc ccgggaagag atgaccaaga accaggtcag cctgacctgc
       ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg
       gagaacaact acaagaccac gcctcccatg ctggactccg acggctcctt cttcctctac
       agcaagctca cogtggacaa gagcaggtgg cagcagggga acgtettete atgeteegtg
       atgcatgagg ctctgcacaa ccactacacg cagaagagec tctccctgtc tccgggtaaa
     <210>
               41
     <211>
               220
     <212>
               PRT
 5
     <213>
               Homo sapiens
     <220>
     <221>
               mat_peptide
     <222>
               (1)..(220)
     <223>
               proteína recombinante
10
     Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2)
     Met-Pro-Cys-Pro-IgG2 Fc
     <220>
     <221>
               SITIO
     <222>
               (2)..(4)
15
     <223>
               fragmento de región bisagra de IgG2 = SEQ ID NO: 57
     <220>
               SITIO
     <221>
     <222>
               (5)..(220)
     <223>
               Fc de IgG2
20
     <400>
               41
       Met Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe
                           5
                                                  10
        Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
                      20
                                             25
                                                                     30
        Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe
                 35
                                                                45
```

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 50 55 Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr 70 Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 90 85 Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr 100 105 Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 120 Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 135 130 140 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 145 150 155 160 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser 165 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 180 185 Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 <210> 42 <211> 657 <212> ADN <213> Homo sapiens <220>

<221>

<222>

misc_feature

(1)..(657)

proteína recombinante que codifica nucleótidos

Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2)

<223>

Met-Cys-Pro-IgG2 Fc <400> 42 atgtgcccag cacctccggt ggcgggaccg tcagtcttcc tcttcccccc aaaacccaag 60 gacaccetea tgateteeeg gaceeetgag gteacatgeg tggtggtgga egtgageeae 120 gaagaccctg aggtccagtt caactggtac gtggacggcg tggaggtgca taatgccaag 180 acaaagccgc gggaggagca gtttaacagc acgtttcgtg tggtcagcgt cctcaccgtc 240 300 gtgcaccagg actggctgaa tggcaaggag tacaagtgca aggtctccaa caaaggcctc ccagccccca tcgagaaaac catctccaaa accaaagggc agccccgaga gccacaggtg 360 tacaccetge ecceateeg ggaagagatg accaagaace aggteageet gacetgeetg 420 480 gtcaaaggct tctatcccag cgacatcgcc gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc teccatgetg gacteegacg geteettett eetetacage 540 aageteaceg tggacaagag caggtggcag caggggaacg tetteteatg etcegtgatg 600 catgaggete tgcacaacca etacacgcag aagagcetet cectgtetee gggtaaa 657 5 <210> 43 <211> 219 <212> PRT <213> Homo sapiens <220> 10 <221> mat_peptide <222> (1)..(219)<223> proteína recombinante Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2) Met-Cys-Pro-IgG2 Fc 15 <220> <221> SITIO <222> (2)..(3)<223> fragmento de región bisagra de IgG2 = SEQ ID NO: 58 20 <220> <221> SITIO <222> (4)..(219)<223> Fc de IgG2

<400> 43

Met Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro 1 5 10 15

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 20 25 30

Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn 35 40 45

Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 50 55 60

Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val 65 70 75 80

Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 85 90 95

Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys
100 105 110

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu 115 120 125

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 130 135 140

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 145 150 155 160

Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe 165 170 175

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 180 185 190

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 195 200 205

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215

<210> 44

```
<211>
                678
                ADN
     <212>
     <213>
                Homo sapiens
     <220>
 5
     <221>
                rnisc_feature
     <222>
                (1)..(678)
     <223>
                proteína recombinante que codifica nucleótidos
     Met-(fragmento de región bisagra de IgG2 ) fusionado a (región Fc de IgG2)
     Met-Cys-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro-IgG2 Fc
        <400> 44
        atgtgttgtg tcgagtgccc accgtgccca gcacctccgg tggcgggacc gtcagtcttc
                                                                                      60
        ctcttccccc caaaacccaa ggacaccctc atgatctccc ggacccctga ggtcacatgc
                                                                                     120
        gtggtggtgg acgtgagcca cgaagaccct gaggtccagt tcaactggta cgtggacggc
                                                                                     180
        gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agtttaacag cacgtttcgt
                                                                                     240
                                                                                     300
        gtggtcagcg tectcaccgt cgtgcaccag gactggctga atggcaagga gtacaagtgc
        aaggtotoca acaaaggoot oocagoooco atogagaaaa coatotocaa aaccaaaggg
                                                                                     360
        cageccegag agecacaggt gtacaccetg eccecatece gggaagagat gaccaagaac
                                                                                     420
        caggicages tgacetgest ggicaaagge tietateesa gegasatege egiggagigg
                                                                                     480
        qaqaqcaatq qqcaqccqqa qaacaactac aaqaccacqc ctcccatqct qqactccqac
                                                                                     540
        ggeteettet teetetaeag eaageteace gtggaeaaga geaggtggea geaggggaae
                                                                                     600
        gtottotoat gotoogtgat goatgaggot otgoacaaco actacacgoa gaagagooto
                                                                                     660
        tecetgtete egggtaaa
                                                                                     678
10
     <210>
                45
     <211>
                226
                PRT
     <212>
     <213>
                Homo sapiens
15
     <220>
     <221>
                mat_peptide
     <222>
                (1)..(226)
     <223>
                proteína recombinante
     Met-(fragmento de región bisagra de IgG2 ) fusionado a (región Fc de IgG2)
20
     Met-Cys-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro-IgG2 Fc
     <220>
     <221>
                SITIO
     <222>
```

(2)..(10)

<223> fragmento de región bisagra de IgG2 = SEQ ID NO: 59

<220>

<221> SITIO

<222> (11)..(226)

5 <223> Fc de IgG2

<400> 45

Met Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly
1 10 15

Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 20 25 30

Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 35 40 45

Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 50 55 60

Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 65 70 75 80

Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 115 120 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 130 135 140 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 145 150 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 165 170 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 180 185 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 200 205 195 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 215 220 Gly Lys 225 <210> 46 675 <211> <212> ADN <213> Homo sapiens <220> <221> misc_feature <222> (1)..(675) <223> proteína recombinante que codifica nucleótidos Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2) Met-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro-IgG2 Fc <400> 46

```
atqtqtqtcq aqtqcccacc qtqcccaqca cctccqqtqq cqqqaccqtc aqtcttcctc
                                                                      60
ttcccccaa aacccaagga caccttatg atctcccgga cccctgaggt cacatgcgtg
                                                                     120
qtqqtqqacq tqaqccacqa agaccctqaq qtccaqttca actgqtacqt qqacqqcqtq
                                                                     180
gaggtgcata atgccaagac aaagccgcgg gaggagcagt ttaacagcac gtttcgtgtg
                                                                     240
gtcagcgtcc tcaccgtcgt gcaccaggac tggctgaatg gcaaggagta caagtgcaag
                                                                     300
gtotocaaca aaggootoco agoococato gagaaaacca totocaaaac caaagggoag
                                                                     360
                                                                     420
coccagagage cacaggtgta caccetgeee ccateceggg aagagatgae caagaaceag
gtcagectga cetgeetggt caaaggette tateceageg acategeegt ggagtgggag
                                                                     480
agcaatgggc agccggagaa caactacaag accacgcctc ccatgctgga ctccgacggc
                                                                     540
                                                                     600
teettettee tetacageaa geteacegtg gacaagagea ggtggeagea ggggaacgte
ttctcatgct ccgtgatgca tgaggctctg cacaaccact acacgcagaa gagcctctcc
                                                                     660
                                                                     675
ctgtctccgg gtaaa
      47
```

```
<210> 47
<211> 225
<212> PRT
<213> Homo sapiens
<220>
<221> mat_peptide
<222> (1)..(225)
<223> proteína recombinante
```

5

10 Met-(fragmento de región bisagra de IgG2) fusionado a (región Fc de IgG2)

Met-Cys-Val-Glu-Cys-Pro-Pro-Cys-Pro-IgG2 Fc

```
<220>
      <221>
                   SITIO
      <222>
                   (2)..(9)
15
      <223>
                   fragmento de región bisagra de IgG2 = SEQ ID NO: 60
      <220>
      <221>
                   SITIO
      <222>
                   (10)..(225)
      <223>
                   Fc de IgG2
20
      <400>
                   47
```

Met 1	Cys	Val	GIU	Cys 5	Pro	Pro	Суѕ	Pro	A1a 10	Pro	Pro	vai	Ala	G1y 15	Pro
Ser	Val	Phe	Leu 20	Phe	Pro	Pro	Lys	Pro 25	Lys	Asp	Thr	Leu	Met 30	Ile	Ser
Arg	Thr	Pro 35	Glu	Val	Thr	Cys	Val 40	Val	Val	Asp	Val	Ser 45	His	Glu	Asp
Pro	Glu 50	Val	Gln	Phe	Asn	Trp 55	Tyr	Val	Asp	Gly	Val 60	Glu	Val	His	Asn
Ala 65	Lys	Thr	Lys	Pro	Arg 70	Glu	Glu	Gln	Phe	Asn 75	Ser	Thr	Phe	Arg	Val 80
Val	Ser	Val	Leu	Thr 85	Val	Val	His	Gln	Asp 90	Trp	Leu	Asn	Gly	Lys 95	Glu
Tyr	Lys	Суѕ	Lys 100	Val	Ser	Asn	Lys	Gly 105	Leu	Pro	Ala	Pro	Ile 110	Glu	Lys
Thr	Ile	Ser 115	Lys	Thr	Lys	Gly	Gln 120	Pro	Arg	Glu	Pro	Gln 125	Val	Tyr	Thr
Leu ⁻	Pro 130	Pro	Ser	Arg	Glu	Glu 135	Met	Thr	Lys	Asn	Gln 140	Val	Ser	Leu	Thr
Cys 145	Leu	Val	Lys	Gly	Phe 150	Tyr	Pro	Ser	Asp	Ile 155	Ala	Val	Glu	Trp	Glu 160
		_		165			Asn		170					175	
			180				Leu	185					190		
Ser	Arg	Trp 195	Gln	Gln	Gly	Asn	Val 200	Phe	Ser	Cys	Ser	Val 205	Met	His	Glu

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 210 215 220

```
Lys
       225
      <210>
                 48
      <211>
                 3
      <212>
                 PRT
 5
      <213>
                 Homo sapiens
      <220>
      <221>
                 PÉPTIDO
      <222>
                 (1) .. (3)
      <223>
                 fragmento de región bisagra de IgG1
10
      <400>
                 48
       Glu Pro Lys
      <210>
                 49
      <211>
                 3
      <212>
                 PRT
15
      <213>
                 Homo sapiens
      <220>
                 PÉPTIDO
      <221>
      <222>
                 (1)..(3)
      <223>
                 fragmento de región bisagra de IgG1
20
      <400>
                 49
        Ser Cys Asp
      <210>
                 50
      <211>
                 3
                 PRT
      <212>
25
      <213>
                 Homo sapiens
      <220>
                 PÉPTIDO
      <221>
      <222>
                 (1)..(3)
      <223>
                 fragmento de región bisagra de IgG1
```

```
<400>
                50
       Asp Lys Thr
     <210>
                51
     <211>
                2
     <212>
                PRT
 5
     <213>
                Homo sapiens
     <220>
     <221>
                PÉPTIDO
     <222>
                (1)..(2)
     <223>
                fragmento de región bisagra de IgG1
10
     <400>
                51
       Cys Pro
     <210>
                52
     <211>
                PRT
     <212>
15
     <213>
                Homo sapiens
     <220>
                PÉPTIDO
     <221>
     <222>
                (1)..(3)
     <223>
                fragmento de región bisagra de IgG1
20
     <400>
                52
       Pro Lys Ser
      <210>
                53
      <211>
                3
     <212>
                PRT
25
     <213>
                Homo sapiens
     <220>
                PÉPTIDO
      <221>
      <222>
                (1)..(3)
      <223>
                fragmento de región bisagra de IgG1
```

```
<400>
                 53
       Cys Pro Pro
       1
      <210>
                54
      <211>
                3
 5
     <212>
                PRT
     <213>
                Homo sapiens
      <220>
                PÉPTIDO
      <221>
      <222>
                (1).. (3)
10
     <223>
                fragmento de región bisagra de IgG1
      <400>
                54
       Pro Pro Cys
      <210>
                55
     <211>
                3
15
     <212>
                PRT
      <213>
                Homo sapiens
     <220>
                PÉPTIDO
      <221>
     <222>
                (1)..(3)
20
     <223>
                fragmento de región bisagra de IgG1
      <400>
                55
        Pro Cys Pro
      <210>
                56
      <211>
25
                PRT
     <212>
     <213>
                Homo sapiens
      <220>
                PÉPTIDO
      <221>
      <222>
30
      <223>
                fragmento de región bisagra de IgG2
      <400>
                56
```

```
Pro Pro Cys
      <210>
                57
     <211>
                3
 5
     <212>
                PRT
     <213>
                Homo sapiens
     <220>
                PÉPTIDO
      <221>
      <222>
                (1)..(3)
10
     <223>
                fragmento de región bisagra de IgG2
      <400>
                57
       Pro Cys Pro
      <210>
                58
     <21L>
                2
15
     <212>
                PRT
                Homo sapiens
     <213>
     <220>
                PÉPTIDO
     <221>
      <222>
                (1) .. (2)
20
     <223>
                fragmento de región bisagra de IgG2
      <400>
                58
       Cys Pro
      <210>
                59
     <211>
                9
25
                PRT
     <212>
     <213>
                Homo sapiens
      <220>
                PÉPTIDO
      <221>
      <222>
                (1)..(9)
30
     <223>
                fragmento de región bisagra de IgG2
      <400>
                59
```

Cys Cys Val Glu Cys Pro Pro Cys Pro

```
<210>
                  60
      <211>
                  8
 5
      <212>
                  PRT
                  Homo sapiens
      <213>
      <220>
                  PÉPTIDO
      <221>
      <222>
                  (1)..(8)
10
      <223>
                  fragmento de región bisagra de IgG2
      <400>
                  60
         Cys Val Glu Cys Pro Pro Cys Pro
      <210>
                  61
      <211>
                  40
15
                  ADN
      <212>
      <213>
                  Secuencia artificial
      <220>
      <223>
                  cebador en 5' para amplificación de Fc de IgG1
      <400>
                  61
20
                                                                                                    40
      ggaattccat atggagccca aatcttgtga caaaactcac
      <210>
                  62
                  39
      <211>
                  ADN
      <212>
                  Secuencia artificial
      <213>
25
      <220>
      <223>
                  cebador en 5' para amplificación de Fc de IgG1
      <400>
                  62
      ggaattccat atgtcttgtg acaaaactca cacatgccc
                                                                                                    39
      <210>
                  63
30
      <211>
                  40
      <212>
                  ADN
                  Secuencia artificial
      <213>
      <220>
```

	<223>	cebador en 5' para amplificación de Fc de IgG1	
	<400>	63	
	ggaattco	cat atggacaaaa ctcacacatg cccaccgtgc	40
5	<210>	64	
	<211>	38	
	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
10	<223>	cebador en 5' para amplificación de Fc de IgG1	
	<400>	64	
	gggaatto	cca tatgtgccca gcacctgaac tcctgggg	38
	<210>	65	
	<211>	38	
15	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG1	
	<400>	65	
20	gggaatto	cca tatgcccaaa tcttgtgaca aaactcac	38
	<210>	66	
	<211>	42	
	<212>	ADN	
	<213>	Secuencia artificial	
25	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG1	
	<400>	66	
	gggaatto	cca tatgtgccca ccgtgcccag cacctgaact cc	42
	<210>	67	
30	<211>	40	
	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG1	
35	<400>	67	
	ggaattco	cat atgccaccgt gcccagcacc tgaactcctg	40

	<210>	68	
	<211>	40	
	<212>	ADN	
5	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG1	
	<400>	68	
	ggaattcca	at atgccgtgcc cagcacctga actcctgggg	40
10	<210>	69	
	<211>	40	
	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
15	<223>	cebador en 3' para amplificación de Fc de IgG1	
	<400>	69	
	cgcggatc	ct catttacccg gagacaggga gaggctcttc	40
	<210>	70	
	<211>	43	
20	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG2	
	<400>	70	
25	gggaattc	ca tatgccaccg tgcccagcac cacctgtggc agg	43
	<210>	71	
	<211>	42	
	<212>	ADN	
	<213>	Secuencia artificial	
30	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG2	
	<400>	71	
	gggaattc	ca tatgccgtgc ccagcaccac ctgtggcagg ac	42
	<210>	72	
35	<211>	39	
	<212>	ADN	

	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG2	
5	<400>	72	
	gggaattc	ca tatgtgccca gcaccacctg tggcaggac	39
	<210>	73	
	<211>	43	
	<212>	ADN	
10	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 5' para amplificación de Fc de IgG2	
	<400>	73	
	gggaattc	ca tatgtgttgt gtcgagtgcc caccgtgccc agc	43
15	<210>	74	
	<211>	43	
	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
20	<223>	cebador en 5' para amplificación de Fc de IgG2	
	<400>	74	
	gggaattc	ca tatgtgtgtc gagtgcccac cgtgcccagc acc	43
	<210>	75	
	<211>	40	
25	<212>	ADN	
	<213>	Secuencia artificial	
	<220>		
	<223>	cebador en 3' para amplificación de Fc de IgG2	
	<400>	75	
30	cgcggato	cct catttacccg gagacaggga gaggctcttc	40

REIVINDICACIONES

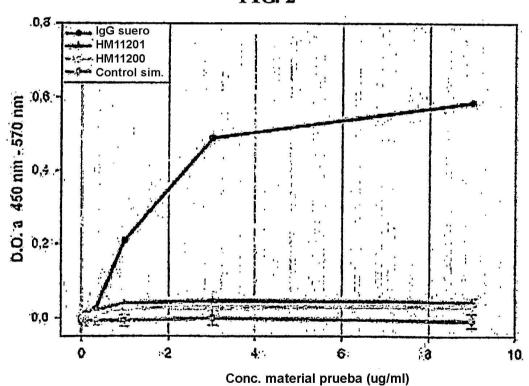

- Un procedimiento de producción de una región Fc de inmunoglobulina libre de un residuo de metionina codificada por un codón de iniciación en una escala en masa, que comprende:
- preparar un vector de expresión recombinante que incluye una secuencia de nucleótidos que codifica una región 5 Fc de inmunoglobulina recombinante compuesta de una región Fc de inmunoglobulina unida a un extremo N terminal de la misma a una región bisagra de la inmunoglobulina por medio de un enlace peptídico;
 - transformar un E. coli con el vector de expresión recombinante para crear un transformante;
 - cultivar el transformante para expresar la región Fc de inmunoglobulina como un cuerpo de inclusión;
 - aislar y purificar la región Fc de inmunoglobulina del cuerpo de inclusión; y
- solubilizar y replegar el fragmento Fc de inmunoglobulina,
 - en el que dicha región bisagra de inmunoglobulina tiene cisteína, serina o prolina como aminoácido inicial del extremo N terminal.
 - 2. El procedimiento de acuerdo con la reivindicación 1, en el que la región Fc de inmunoglobulina está aislada en una forman monomérica o dimérica.
- 15 3. El procedimiento de acuerdo con la reivindicación 1, en el que la región bisagra tiene dos o más secuencias de aminoácidos consecutivas derivadas de la región bisagra de IgG, IgA, IgM, IgE, o IgD.
 - 4. El procedimiento de acuerdo con la reivindicación 3, en el que la región bisagra tiene dos o más secuencias de aminoácidos consecutivas, incluyendo cada una al menos un residuo de cisteína.
- 5. El procedimiento de acuerdo con la reivindicación 3, en el que la IgG está seleccionada del grupo que consiste en IgG1, IgG2, IgG3 y IgG4.
 - 6. El procedimiento de acuerdo con la reivindicación 5, en el que la región bisagra tiene una secuencia de aminoácidos representada por SEQ ID NO. 18, 19, 20, 21, 49, 51, 53, 54, 55, 56, 57, 58, 59 o 60.
 - 7. El procedimiento de acuerdo con la reivindicación 1, en el que la región Fc de inmunoglobulina está seleccionada del grupo que consiste en regiones Fc de IgG, IgA, IgM, IgE, IgD, y combinaciones e híbridos de las mismas.
- 8. El procedimiento de acuerdo con la reivindicación 7, en el que la región Fc de inmunoglobulina es la región Fc de la IgG seleccionada del grupo que consiste en IgG1, IgG2, IgG3, IgG4, y combinaciones e híbridos de las mismas.
 - 9. El procedimiento de acuerdo con la reivindicación 1, en el que la región Fc de inmunoglobulina está compuesta de uno a cuatro dominios seleccionados del grupo que consiste en los dominios C_H2, C_H3 y C_H4.
- 10. El procedimiento de acuerdo con la reivindicación 1, en el que la región Fc de inmunoglobulina tiene una secuencia de aminoácidos representada por SEQ ID NO. 7, 9, 11, 13, 25, 29, 31, 33, 35, 37, 39, 41,43, 45 o 47.
 - 11. El procedimiento de acuerdo con la reivindicación 1, en el que el vector de expresión recombinante comprende una secuencia de ácidos nucleicos que codifica una secuencia de aminoácidos representada por SEQ ID NO. 7, 9, 11, 13, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45 o 47.
- 12. El procedimiento de acuerdo con la reivindicación 1, en el que el transformante se transforma por un vector que comprende una secuencia de ácidos nucleicos que codifica una secuencia de aminoácidos representada por SEQ ID NO. 7, 9, 11, 13, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45 o 47.
 - El procedimiento de acuerdo con la reivindicación 12, en el que el transformante está seleccionado del grupo que consiste en los números de acceso KCCM-10659P, KCCM-10660P, KCCM-10665P y KCCM-10666P.

FIG. 1

FIG. 2

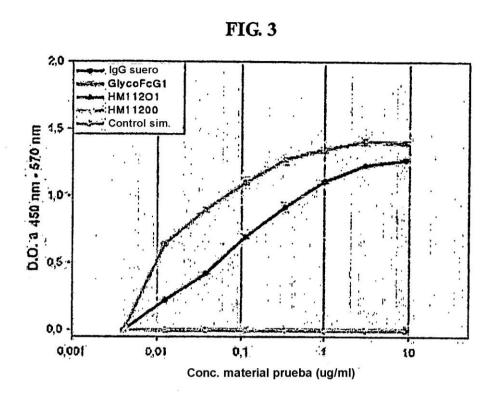
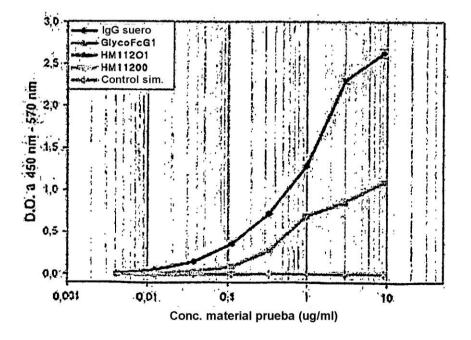
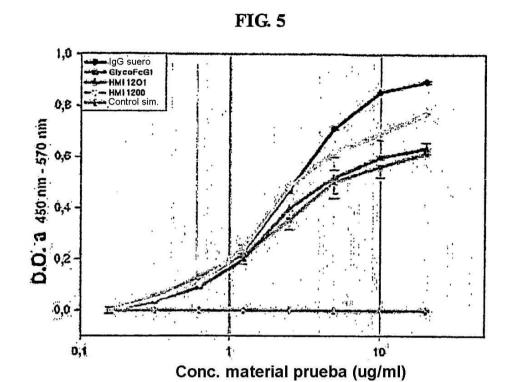
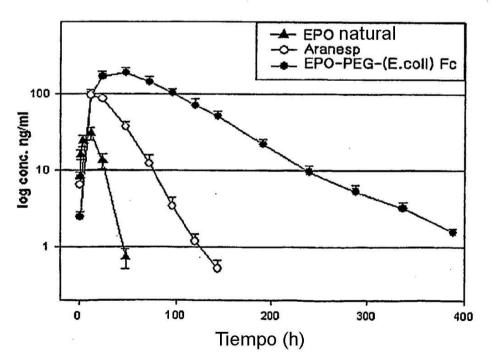





FIG. 4

FIG. 7

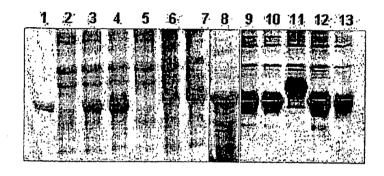


FIG. 8

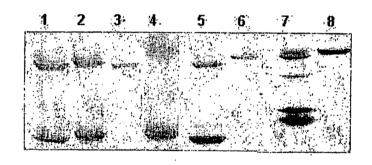


FIG. 9

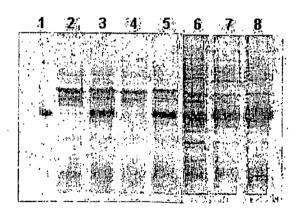
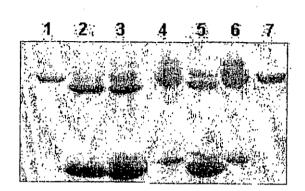



FIG. 10

