

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 457 074

61 Int. Cl.:

F15B 15/04 (2006.01) F15B 11/15 (2006.01) F15B 21/12 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 13.11.2007 E 07848142 (1)
 (97) Fecha y número de publicación de la concesión europea: 08.01.2014 EP 2094974
- (54) Título: Un dispositivo destinado a controlar un cilindro oscilante
- (30) Prioridad:

13.11.2006 FI 20060991

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **24.04.2014**

(73) Titular/es:

POLARTEKNIK PMC OY AB (100.0%) KLAAVOLANTIE 1 32700 HUITTINEN, FI

(72) Inventor/es:

ROPPONEN, VESA

(74) Agente/Representante:

LINAGE GONZÁLEZ, Rafael

DESCRIPCIÓN

Un dispositivo destinado a controlar un cilindro oscilante

25

- La presente invención se refiere a un dispositivo ideado para controlar un cilindro oscilante que efectua un movimiento de vaivén, en el cual el cilindro oscilante comprende un cuerpo de cilindro, una cámara de cilindro que está formada dentro del mencionado cuerpo, un pistón que puede moverse en la cámara de cilindro con la ayuda de un medio a presión, unos canales de suministro del medio a presión que conducen a la cámara de cilindro, y dispositivos de control para dirigir el medio a presión hasta la cámara de cilindro en los diversos lados del pistón y para evacuar la cámara de cilindro para crear un movimiento de vaivén en el pistón, y en el cual unas válvulas de impulso pertenecen a los dispositivos de control, cuya operación está confiada a al menos un brazo que explora mecánicamente la posición del brazo de pistón, ajustándose el movimiento de dicho brazo para abrir el canal de alivio de presión de la válvula de impulso.
- Son conocidos los cilindros oscilantes en los que la posición del brazo de pistón es explorada mecánicamente con la ayuda de varillas y brazos, y las arandelas o elementos correspondientes que han sido fijados al brazo de pistón se ajustan para que hagan contacto con los mencionados brazos en el punto de retorno deseado del movimiento del pistón. Un ligero movimiento, generado por ejemplo por el contacto de la arandela anteriormente mencionada con estos brazos, transfiere el brazo en contacto con la válvula de impulso, y el brazo abre la válvula de alivio de presión que está situada en la válvula de impulso, de tal modo que, como resultado de esto, la válvula de impulso haga que el pistón cambie la dirección de movimiento. El brazo está situado muy cerca de la válvula de impulso, de tal modo que el movimiento del brazo haga contacto con el elemento de apertura situado en la válvula de impulso. Este tipo de soluciones son conocidas, por ejemplo, por las publicaciones FI 20041503, US 3.620.126, US 4.680.930, DE 803271.
 - La publicación WO 2006/056642, correspondiente a la anterior FI 20041503, también da a conocer una solución de ajuste para la longitud de carrera del cilindro oscilante como el anteriormente descrito, es decir el brazo que abre la válvula de impulso no comprende ninguna parte suplementaria móvil o ajustable, tal como un tornillo.
- En las soluciones conocidas, debe ajustarse la posición del movimiento de retorno del pistón por medio de unos elementos de transferencia que están sujetos al brazo de pistón, tales como unas arandelas. Las arandelas están situadas en el brazo de pistón que sale por el extremo del cilindro oscilante, y sus ajustes deben llevarse a cabo en un espacio estrecho entre las válvulas de impulso, por ejemplo trasladando y bloqueando las arandelas en una posición diferente sobre la superficie del brazo de pistón. Otra opción conocida para trasladar las arandelas es girar las mismas en la espiral que está situada sobre la superficie del brazo de pistón, y adicionalmente con la ayuda del tornillo de bloqueo se evita la rotación de las mismas una vez que han alcanzado la posición ajustada. Para estas operaciones de ajuste se necesita una herramienta que tiene que introducirse en el espacio disponible, o en cualquier caso siempre habrá que retirar alguna pieza de la parte delantera. Adicionalmente a esto, durante el ajuste deberá detenerse el movimiento de oscilación del cilindro. Tras el ajuste, aún resulta necesario probar el cilindro y debe observarse dónde han quedado situados los puntos de retorno del pistón y posiblemente ajustar los mismos una vez más.
- Para eliminar las desventajas anteriormente mencionadas se ha desarrollado una nueva estructura de brazo ideada para controlar el cilindro oscilante, que controla la válvula de alivio de presión de la válvula de impulso, caracterizada porque se ha ajustado al brazo un elemento de contacto, que es móvil con respecto al brazo, cuyo elemento de contacto abre el mencionado canal de alivio de presión.
- La ventaja del dispositivo de acuerdo con la invención, que controla los puntos de retorno del cilindro oscilante, es el hecho de que los elementos fijados al brazo de pistón, tales como las arandelas, no tienen que ser trasladados cuando se desee variar ligeramente la distancia de movimiento del pistón del cilindro. Los tornillos situados en los brazos móviles son fáciles de girar hasta la nueva profundidad, por lo que puede modificarse el punto de retorno del pistón en un par de milímetros. Pueden girarse las válvulas de impulso, y dirigirse los tornillos, hasta que ambos adopten una posición en la cual puedan girarse los tornillos incluso cuando el pistón esté en movimiento. El elemento de apertura de la válvula de impulso no tiene necesariamente que ser el propio tornillo rotativo mencionado, sino que con la ayuda del mismo puede trasladarse indirectamente dicho elemento de contacto que abre la válvula de impulso.

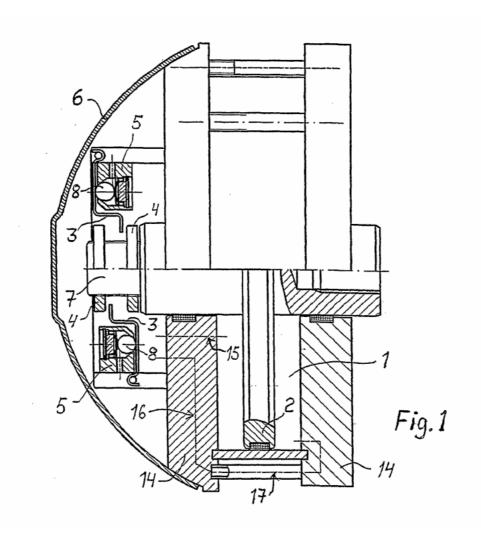
A continuación se describirá en mayor detalle la invención, con referencia a los dibujos adjuntos, en los cuales:

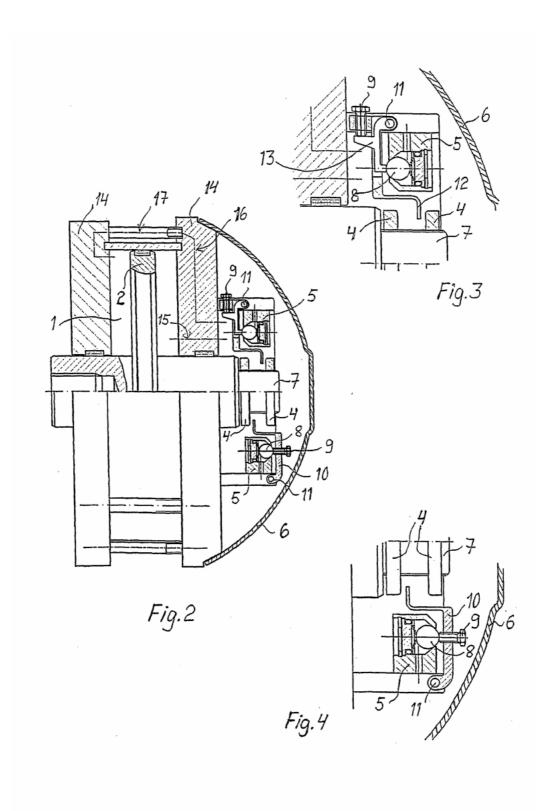
- 60 La figura 1 muestra una vista en sección de un cilindro oscilante conocido, equipado con válvulas de impulso.
 - La figura 2 muestra una vista en sección de un cilindro oscilante de acuerdo con la invención, equipado con válvulas de impulso.
- 65 La figura 3 muestra un sistema de brazo sujeto a la válvula de impulso.

ES 2 457 074 T3

La figura 4 muestra otro sistema de brazo sujeto a la válvula de impulso.

En la figura 1 se muestra un cilindro oscilante que comprende una cámara de cilindro 1, un pistón 2 y un brazo de pistón 7. Unos limitadores del movimiento, tales como unas arandelas 4, se han girado hasta la superficie del brazo de pistón 7. Las arandelas 4 pueden trasladarse a posiciones diferentes en el brazo de pistón 7 girándo las mismas. Unas válvulas de impulso 5, que están ajustadas para abrirse con la ayuda del brazo 3 cuando los brazos 3 hacen contacto con las arandelas 4, controlan el punto de retorno del pistón del cilindro en ambos extremos del movimiento. El movimiento de las bolas 8 de las válvulas de impulso abre el canal y alivia la presión proveniente de la válvula de control actual del cilindro 1, y provoca el movimiento del vástago de la válvula de control entre dos posiciones, de tal modo que en una posición se dirija el movimiento del pistón 2 hacia el lado derecho y en otra hacia el lado izquierdo. Cuando se desea cambiar ligeramente la distancia de movimiento del cilindro, deben moverse las arandelas 4 girando las mismas y al mismo tiempo sujetando el brazo de pistón 7, de tal modo que se evite el giro del mismo.


- Para eliminar las pequeñas dificultades en el ajuste anteriormente mencionado, en la figura 2 se muestra una nueva estructura a modo de dispositivo de ajuste, observándose en dicha figura dos soluciones diferentes de válvula de impulso 5 unidas al mismo cilindro oscilante. La figura 4 muestra una ampliación de una solución más sencilla en la cual el tornillo 9, cuya parte superior está dispuesta para su conexión con las bola 8 que abre la válvula de impulso 5, se ajusta al brazo 10 que gira con la ayuda de una bisagra 11. El tornillo 9 puede girarse fácilmente y, si se desea, la válvula de impulso puede girarse hasta otra posición que permita girar el tornillo 9 desde una dirección más sencilla, si resultara necesario por la presencia de obstáculos en la localización de instalación. Durante la operación del cilindro los brazos 10 apenas se mueven, por lo que pueden efectuarse el ajuste incluso cuando el cilindro está operativo.
- El tornillo de ajuste 9 situado en el brazo 19 también puede ajustarse para mover uno cualquiera de los elementos que se muevan en relación con el brazo, cuando el elemento esté a punto de tocar la bola 8. A continuación también puede disponerse el tornillo en una dirección diferente. La solución de la figura 3 es un ejemplo de lo mencionado, en el cual otro brazo de rotación 13, que entra en contacto con la bola 8 y abre la válvula, está fijado a la misma bisagra 11 con el brazo móvil 12. El brazo 12 mueve el brazo 13 con la ayuda del tornillo 9. Con la ayuda del tornillo 9, puede cambiarse la posición entre los brazos 12, 13, pudiéndose entonces ajustar el brazo 13 para que haga contacto con la bola 8 con diferentes posiciones del brazo 12 entre las arandelas 4. En este caso, el tornillo de ajuste 9 se encuentra en una dirección ventajosa en lo referente a la efectividad del ajuste. Por ejemplo, la dirección del brazo de pistón 7 y la dirección del radio del brazo de pistón 7 son direcciones ventajosas para el tornillo de ajuste 9.


REIVINDICACIONES

- 1. Una estructura de brazo, en combinación con un cilindro oscilante, ideada para controlar una válvula de impulso (5) de dicho cilindro oscilante que lleva a cabo un movimiento de vaivén, en la que el cilindro oscilante comprende un cuerpo de cilindro (14), una cámara de cilindro (1) formada dentro del mencionado cuerpo, un pistón (2) que puede moverse en la cámara de cilindro con la ayuda de un medio a presión, unos canales de suministro (15, 16, 17) que suministran el medio a presión a la cámara de cilindro (1), y unos dispositivos de control para dirigir el medio a presión hasta la cámara de cilindro a ambos lados del pistón y para evacuar la cámara de cilindro, para crear un movimiento de vaivén en el pistón, y en la que los dispositivos de control comprenden al menos dos válvulas de impulso (5), cuya operación está controlada mediante al menos un brazo (10, 12), en la cual dicho brazo está dispuesto para detectar mecánicamente la posición del brazo de pistón (7), y el movimiento de dicho brazo se ajusta para abrir el canal de alivio de presión de la válvula de impulso (5), caracterizada porque el brazo (10, 12) comprende un elemento de contacto que puede moverse mediante un tornillo (9) en relación con dicho brazo, y cuyo elemento de contacto abre el mencionado canal de alivio de presión del cilindro oscilante al ponerse en contacto con la bola (8) dispuesta para abrir dicha válvula de impulso (5).
 - 2. Dispositivo de acuerdo con la reivindicación 1, caracterizado porque el elemento de contacto es un tornillo rotativo (9).
- 20 3. Dispositivo de acuerdo con la reivindicación 1, caracterizado porque el elemento de contacto es una parte móvil (13) y puede moverse en relación con el brazo (12), con la ayuda del tornillo (9).

15

Dispositivo de acuerdo con la reivindicación 1, caracterizado porque al girar el elemento de ajuste, tal como el tornillo (9), se dirige el movimiento del mismo en dirección al radio del brazo de pistón (7), o en dirección al brazo de pistón.

