

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 457 445

(51) Int. CI.:

C08G 73/12

(2006.01) **C08K 7/02**

(2006.01)

C07D 209/48 C08F 38/00 C08F 299/02

(2006.01) (2006.01)

(2006.01)

C07D 487/04 C08L 79/08

(2006.01)

C09D 179/08

C08J 5/24 C08F 290/06 (2006.01) (2006.01)

C08G 73/10

(2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 03.09.2009 E 09811545 (4)

(97) Fecha y número de publicación de la concesión europea:

EP 2333004

(54) Título: Oligómero de imida soluble modificado terminalmente mediante el uso de 2-fenil-4,4'diaminodifenil éter, barniz, producto curado del mismo, imida preimpregnada del mismo y laminado reforzado con fibra con una excelente resistencia térmica

(30) Prioridad:

03.09.2008 JP 2008225838 22.10.2008 JP 2008271903

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 25.04.2014

(73) Titular/es:

KANEKA CORPORATION (100.0%) 2-4, Nakanoshima 3-chome Kita-ku, Osaka-shi, Osaka 530-8288, JP

(72) Inventor/es:

MIYAUCHI MASAHIKO; **ISHIDA YUICHI**; **OGASAWARA TOSHIO y** YOKOTA RIKIO

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Oligómero de imida soluble modificado terminalmente mediante el uso de 2-fenil-4,4'-diaminodifenil éter, barniz, producto curado del mismo, imida preimpregnada del mismo y laminado reforzado con fibra con una excelente resistencia térmica

Campo técnico

La presente invención se refiere a un oligómero de imida modificado terminalmente, a un barniz y a un producto curado del mismo, en particular a un material para piezas usable en varios campos que demandan una moldeabilidad favorable y una elevada resistencia térmica, tales como piezas de aeronaves y dispositivos para la industria aeroespacial.

Antecedentes de la técnica

15

Las poliimidas aromáticas, que muestran una resistencia térmica del mayor nivel de entre los polímeros, también son superiores en sus propiedades mecánicas y eléctricas, se han usado como materiales de partida en un amplio abanico de aplicaciones.

20 Por otro lado, las poliimidas aromáticas tienen generalmente una procesabilidad mala y no son adecuadas para el moldeado en fundido o para su uso como una resina de matriz para materiales compuestos reforzados con fibra. Por esta razón se propusieron oligómeros de imida modificados con un grupo reticulable térmicamente en los terminales. En particular, los oligómeros de imida modificados con anhídrido 4-(2-feniletinil) ftálico en los terminales son claramente superiores en el equilibrio de moldeabilidad, resistencia térmica y propiedades mecánicas, y dichos oligómeros de imida se describen, por ejemplo, en los Documentos Patente 1, 2 y 3 y en la Bibliografía no Patente 1 y 2. Con el fin de proporcionar un oligómero de imida modificado terminalmente que proporcione un producto curado superior en resistencia térmica y propiedades mecánicas, y por lo tanto superior en su utilidad, y el producto curado del mismo, el Documento de Patente 1 desvela un oligómero de imida modificado terminalmente con una viscosidad logarítmica de 0,05 a 1 preparado en una reacción del dianhídrido 2,3,3',4-bifeniltetracarboxílico con un pliegue y una estructura no plana, un compuesto de diamina aromático y anhídrido 4-(2-feniletinil) ftálico y un producto curado del mismo. También describe que es posible, como efectos ventajosos de la invención, obtener un nuevo oligómero de imida modificado terminalmente superior en su utilidad y también obtener un producto curado de la nueva poliimida modificada terminalmente superior en su resistencia térmica y en sus propiedades mecánicas, tales como el módulo, la resistencia a la tracción y el alargamiento.

35

45

Sin embargo, estos oligómeros de imida modificados terminalmente sólo son solubles a una concentración del 20 % en peso o menos en disolventes orgánicos tales como N-metil-2-pirrolidona (en lo sucesivo, denominada simplemente NMP) a temperatura ambiente (la temperatura ambiente significa una temperatura de 23 °C \pm 2 °C en la presente descripción), y se ha observado un fenómeno que el barniz de los mismos gelifica en varios días, cuando se deja reposar, y por lo tanto dichos oligómeros de imida tienen un problema, que era difícil de almacenar el barniz a una concentración mayor, ya que se estabilizaba durante un periodo prolongado de tiempo.

Según se describe, por ejemplo, en los Documentos Patente 3 y 4, se usa un método de copolimerización de un monómero de un anhídrido de ácido con un plegamiento adicional y una estructura no plana, tal como el dianhídrido 2,2,3',3'-bifeniltetracarboxílico, como medio para aumentar la solubilidad, pero generalmente da lugar a una disminución en el alargamiento a rotura del polímero resultante, lo que lo hace más frágil.

Según se describe en los Documentos Patente 4 y 5, también puede usarse un método de copolimerización de un monómero de diamina con una estructura estérica voluminosa, tal como 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno, pero también da lugar generalmente a una disminución en la temperatura de transición vítrea y el alargamiento a rotura del polímero resultante, lo que lo hace más frágil.

Según se describe en el Documento de Patente 5, por ejemplo, en el caso de un oligómero de imida para su moldeo por inyección o por transferencia, el grado de polimerización está disminuido, o la estructura de la diamina usada se hace más flexible, para hacer que el oligómero de imida sea más fluido, pero dicho tratamiento sólo da lugar a una caída significativa en la temperatura de transición vítrea del producto crudo terminado, aunque hace que el oligómero de imida sea más soluble.

Lista de citas

60

65

55

Bibliografía de Patentes

Documento de Patente 1: JP-A N° 2000-219741 Documento de Patente 2: JP-A N° 2004-331801 Documento de Patente 3: JP-A N° 2006-312699 Documento de Patente 4: JP-A N° 2007-99969 Documento de Patente 5: JP-A Nº 2003-526704

Bibliografía que no es Patente

Bibliografía que no es Patente 1: P. M. Hergenrother y J. G. Smith Jr., Polymer, 35, 4857 (1994). Bibliografía que no es Patente 2: R. Yokota, S. Yamamoto, S. Yano, T. Sawaguchi, M. Hasegawa, H. Yamaguchi, H. Ozawa y R. Sato, High Perform. Polym., 13, S61 (2001).

Sumario de la invención

Problema técnico

5

10

15

25

30

35

40

45

50

55

Los objetivos de la presente invención son proporcionar un nuevo oligómero de imida modificado terminalmente superior en solubilidad en un disolvente orgánico, estabilidad de almacenamiento en solución y moldeabilidad, tal como una baja viscosidad en estado fundido, un barniz preparado mediante su disolución en un disolvente orgánico; y un producto curado, un preimpregnado y un laminado reforzado con fibra preparado mediante el uso del oligómero de imida modificado terminalmente, que son superiores en sus propiedades térmicas y mecánicas tales como resistencia térmica, módulo, resistencia a la tracción a rotura y alargamiento por tracción a rotura.

20 Solución al problema

Para resolver los problemas anteriores los inventores se centraron en polioligómeros de imida aromáticos preparados mediante el uso del ácido 3,3', 4,4'-bifeniltetracarboxílico, del ácido 1,2,4,5-bencenotetracarboxílico o del bis(3,4-carboxífenil) éter. Los inventores consideraron que, en particular, los polioligómeros de imida aromáticos preparados mediante el uso del ácido 1,2,4,5-bencenotetracarboxílico proporcionarían una película y un producto curado con una elevada resistencia térmica y elevada resistencia, debido a la fuerte interacción intermolecular causada por la estructura rígida y plana de la imida piromelítica. Sin embargo, por otro lado, dado que el oligómero de imida es a menudo menos fluido, menos fusible y menos soluble en un disolvente, debido a la fuerte interacción entre los grupos de imida piromelítica, actualmente no se conoce ningún oligómero de imida modificado terminalmente que pueda moldearse en un producto curado con una temperatura de transición vítrea de 270 °C o mayor y con una solubilidad favorable en disolvente. Los inventores han averiguado que es posible preparar un oligómero de imida modificado terminalmente con una fluidez en fundido suficientemente alta mediante el uso de una diamina aromática que contiene 2-fenil-4,4'-diaminodifenil éter, incluso cuando se usa ácido 1,2,4,5 bencenotetracarboxílico, y que el producto curado de la misma tiene una resistencia mecánica lo suficientemente alta

La presente invención proporciona, como nuevo oligómero de imida modificado terminalmente, un oligómero de imida soluble modificado terminalmente preparado mediante el uso de 2-fenil-4,4'-diaminodifenil éter representado por la Fórmula General (1):

[Fórmula 1]

Fórmula General (1)

(en la que, R_1 y R_2 representan cada uno un residuo de una diamina aromática bivalente; R_3 y R_4 representan cada uno un residuo de un ácido tetracarboxílico aromático tetravalente; R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo, y bien R_5 o bien R_6 son un grupo fenilo; m y n satisfacen las siguientes relaciones: $m \ge 1$, $n \ge 0$, $1 \le m + n \le 20$, y $0,05 \le m$ / $(m + n) \le 1$; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente).

El residuo de diamina aromática de la Fórmula General (1) anterior es un grupo orgánico aromático presente entre dos grupos amino de la diamina aromática. El residuo de ácido tetracarboxílico aromático de la Fórmula General (1) anterior es un aromático presente rodeado por 4 grupos carbonilo del ácido tetracarboxílico aromático. El grupo orgánico aromático es un grupo orgánico que contiene un anillo aromático. El grupo orgánico aromático es

preferentemente un grupo orgánico con entre 4 y 30 átomos de carbono, más preferentemente un grupo orgánico con entre 4 y 18 átomos de carbono, aún más preferentemente un grupo orgánico con entre 4 y 12 átomos de carbono. Además, el grupo orgánico aromático es preferentemente un grupo hidrocarbonado con entre 6 y 30 átomos de carbono, más preferentemente un grupo hidrocarbonado con entre 6 y 18 átomos de carbono, y aún más preferentemente un grupo hidrocarbonado con entre 6 y 12 átomos de carbono.

El ácido tetracarboxílico aromático es preferentemente ácido 1,2,4,5-bencenotetracarboxílico, ácido 3,3',4,4'-bifeniltetracarboxílico, bis(3,4-carboxifenil) éter, o una combinación de al menos dos de ellos, y en particular, más preferentemente es dianhídrido 1,2,4,5-bencenotetracarboxílico, dianhídrido 3,3',4,4'-bifeniltetracarboxílico o dianhídrido de bis(3,4-carboxifenil) éter. Cuando el ácido tetracarboxílico aromático es el ácido 1,2,4,5-bencenotetracarboxílico o el 3 ácido,3',4,4'-bifeniltetracarboxílico, el oligómero está representado por la siguiente Fórmula General (1-2) o (1-3).

[Fórmula 2]

10

15

25

30

35

45

 $\begin{array}{c|c}
 & R_5 & R_6 \\
 & N_{N_1} & N_{N_2} & N_{N_3} \\
 & N_{N_4} & N_{N_5} & N_{N_5} \\
 & N_{N_5} & N_{N_5} & N_{N_5} \\
 & N_{N_$

Fórmula General (1-2)

20 (en la que, R_1 y R_2 representan cada uno un residuo de diamina aromática bivalente; R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo, y bien R_5 o bien R_6 son un grupo fenilo; m y n satisfacen las siguientes relaciones: $m \ge 1$, $n \ge 0,1 \le m+n \le 20$ y $0,05 \le m$ / $(m+n) \le 1$; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente.)

[Fórmula 3]

Fórmula General (1-3)

(en la que, R_1 y R_2 representan cada uno un residuo de diamina aromática bivalente; R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo y bien R_5 o bien R_6 son un grupo fenilo; m y n satisfacen las siguientes relaciones: $m \ge 1$, $n \ge 0$, $1 \le m + n \le 20$ y $0,05 \le m/(m+n) \le 1$; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente.)

El oligómero de imida modificado terminalmente es preferentemente un oligómero de imida modificado terminalmente soluble en N-metil-2-pirrolidona a una concentración de materia sólida del 30 % en peso o más a temperatura ambiente.

40 La presente invención también proporciona un barniz preparado mediante la disolución del oligómero de imida modificado terminalmente en un disolvente orgánico.

La presente invención también proporciona un producto curado preparado mediante el curado del oligómero de imida modificado terminalmente o del barniz con calor. El producto curado tiene preferentemente una temperatura de transición vítrea (T g) de 300 °C o mayor.

La presente invención también proporciona una película preparada a partir del producto curado con un alargamiento por tracción a rotura del 10 % o más.

La presente invención también proporciona una imida preimpregnada, preparada mediante la impregnación de una fibra con el oligómero de imida modificado terminalmente o con el barniz, y el secado de la fibra.

La presente invención también proporciona una placa laminada reforzada con fibra producida a partir del oligómero de imida modificado terminalmente o del barniz, o una imida preimpregnada obtenida mediante el uso de la misma.

10 Efectos ventajosos de la invención

5

15

20

25

30

35

40

45

50

55

La presente invención proporciona un nuevo oligómero de imida modificado terminalmente superior en solubilidad en un disolvente orgánico, estabilidad de almacenamiento en solución y moldeabilidad, tal como una baja viscosidad en estado fundido, que proporciona un producto curado superior en resistencia térmica y propiedades mecánicas, tal como el módulo de tracción, la resistencia a la tracción a rotura y el alargamiento por tracción a rotura, y también un barniz que lo contiene y un producto curado del mismo. El barniz del oligómero de imida es significativamente superior en resistencia a la hidrólisis en comparación con los barnices de oligómero ácido de amida y permite su almacenamiento, por ejemplo, sin que se deteriore la viscosidad, de forma fiable durante un periodo prolongado de tiempo. También es posible obtener una imida preimpregnada superior en moldeabilidad, resistencia y fiabilidad, que puede producirse en unas condiciones de moldeo más suaves, porque no hay ninguna preocupación sobre la producción de agua por imidación, y por lo tanto sobre la generación de grandes poros en el laminado durante el curado con calor, mediante el recubrimiento o la impregnación de una fibra con el oligómero de imida y el barniz del oligómero de imida y o de la fibra resultante, y también obtener un laminado característico con una resistencia térmica muy alta mediante el uso de la imida preimpregnada.

Descripción de las realizaciones

El oligómero de imida soluble modificado terminalmente de acuerdo con la presente invención representado por la Fórmula General (1) que se prepara mediante el uso de 2-fenil-4,4-diaminodifenil éter es preferentemente uno de los siguientes:

[Fórmula 4]

Fórmula General (1)

(en la que, R_1 y R_2 representan cada uno un residuo de diamina aromática bivalente; R_3 y R_4 representan cada uno un residuo tetravalente de un ácido tetracarboxílico aromático; R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo y bien R_5 o bien R_6 son un grupo fenilo; m y n satisfacen las siguientes relaciones: $m \ge 1$, $n \ge 0$, $1 \le m + n \le 20$ y $0,05 \le m/(m+n) \le 1$; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente)

Es específicamente un oligómero de imida obtenido en la reacción de uno o más ácidos tetracarboxílicos seleccionados de entre el grupo que consiste en ácido 1,2,4,5-bencenotetracarboxílico (en particular, su dianhídrido de ácido), ácido 3,3',4,4'-bifeniltetracarboxílico (en particular, su dianhídrido de ácido) y bis(3,4-carboxífenil) éter (en particular, su dianhídrido de ácido), diaminas aromáticas e incluyen 2-fenil-4,4'-diaminodifenil éter, y anhídrido 4-(2-feniletinil) ftálico (en lo sucesivo, denominado simplemente PEPA) para la introducción de un grupo terminal insaturado en cada oligómero de imida en unas cantidades en las que la cantidad total de grupos ácidos dicarboxílicos y la cantidad total de grupos amina primaria son prácticamente la misma en presencia o en ausencia de disolvente orgánico. (En el caso de grupos ácidos dicarboxílicos vecinos, se asume que hay más de un mol de grupos anhídridos de ácido por dos moles de grupos carboxilo).

Por lo tanto, en la Fórmula anterior, R_3 y R_4 se eligen cada uno independientemente de entre los grupos derivados de los diversos ácidos tetracarboxílicos anteriores y pueden ser iguales o diferentes entre sí. Cuando se satisface que $m\ge 1$ y $n\ge 1$, los grupos R_3 (R_4) pueden ser iguales o diferentes entre sí. R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo, y bien R_5 o bien R_6 son un grupo fenilo; cuando se satisface que $m\ge 1$, las unidades en las que R_5 es un grupo fenilo y R_6 un átomo de hidrógeno, y las unidades en las que R_5 es un átomo de

hidrógeno y R₆ un grupo fenilo, pueden estar presentes en cualquier proporción.

Es preferentemente un oligómero de imida con enlaces imida en la cadena principal y uno o dos grupos terminales insaturados polimerizables adicionales derivados del anhídrido 4-(2-feniletinil) ftálico en uno o en los dos terminales (favorablemente en los dos terminales) que satisface la relación de 1≤m+n≤20 y es sólido (pulverulento) a una temperatura normal (23 °C).

El ácido 1,2,4,5-bencenotetracarboxílico es el ácido 1,2,4,5-bencenotetracarboxílico, el dianhídrido de ácido 1,2,4,5-bencenotetracarboxílico (PMDA) o un derivado de ácido del mismo tal como el éster o la sal 1,2,4,5-bencenotetracarboxílico, y en particular, el más favorable es el dianhídrido 1,2,4,5-bencenotetracarboxílico. El oligómero de imida, cuando R₃ y R₄ son el ácido 1,2,4,5-bencenotetracarboxílico, está representado por la Fórmula General (1-2) anterior.

El ácido 3,3',4,4'-bifeniltetracarboxílico es el ácido 3,3',4,4'-bifeniltetracarboxílico, el dianhídrido 3,3',4,4'-bifeniltetracarboxílico (s-BPDA) o un derivado de ácido del mismo tal como el éster o la sal 3,3',4,4'-bifeniltetracarboxílico, y en particular, el más favorable es el dianhídrido 3,3',4,4'-bifeniltetracarboxílico. El oligómero de imida, cuando R₃ y R₄ son el ácido 3,3', 4,4'-bifeniltetracarboxílico, está representado por la Fórmula General (1-3) anterior.

El bis(3,4-carboxifenil) éter anterior es bis(3,4-carboxifenil) éter, dianhídrido de bis(3,4-carboxifenil) éter (s-ODPA) o un derivado de ácido del mismo, tal como el éster o la sal de bis(3,4-carboxifenil) éter, y en particular, el más favorable es el dianhídrido de bis(3,4-carboxifenil) éter.

Básicamente, en la presente invención se usa ácido 1,2,4,5-bencenotetracarboxílico, ácido 3,3',4,4'-bifeniltetracarboxílico o bis(3,4-carboxifenil) éter, solos o en combinación, pero parte del ácido 1,2,4,5-bencenotetracarboxílico, del ácido 3,3',4,4'-bifeniltetracarboxílico o del bis(3,4-carboxifenil) éter puede sustituirse con otro compuesto ácido tetracarboxílico aromático, si se obtienen los efectos ventajosos de la presente invención. Puede sustituirse, por ejemplo, con dianhídrido 3,3',4,4'-benzofenonatetracarboxílico (BTDA), con dianhídrido 2,3,3',4'-bifeniltetracarboxílico (a-BPDA), con dianhídrido de 2,2-bis(3,4-dicarboxifenil)metano, con dianhídrido de bis(3,4-carboxifenil) éter o con dianhídrido 1,2,3,4-bencenotetracarboxílico, y estos ácidos tetracarboxílicos pueden usarse solos o en combinación de dos ácido o más.

En la presente invención, parte del 2-fenil-4.4'-diaminodifenil éter puede sustituirse con otro compuesto de diamina aromática, y algunos ejemplos de los mismos incluyen 1,4-diaminobenceno, 1,3-diaminobenceno, 1,2diaminobenceno, 2,6-dietil-1,3-diaminobenceno, 4,6-dietil-2metil-1,3-diaminobenceno, 3,5-dietiltolueno-2,6-diamina, 35 4,4'-diaminodifenil éter (4,4'-ODA), 3,4'-diaminodifenil éter (3,4'-ODA), 3,3'-diaminodifenil éter, 3,3'-diaminobenzofenona, 4,4'-diaminobenzofenona, 3,3'-diaminodifenilmetano, 4,4'-diaminodifenilmetano, bis(2,6-dietil-4-aminofenil)metano, 4,4'-metilen-bis(2,6-dietilanilina), bis(2-etil-6-metil-4-aminofenil)metano, 4,4'-metilen-bis(2-etil-6-metil-4-aminofenil)metano, 4,4'-metilen-bis(2-etil-6-metil-6-metil-4-aminofenil)metano, 4,4'-metilen-bis(2-etil-6-metil-6metilanilina), 2,2-bis(3-aminofenil)propano, 2,2-bis(4-aminofenil)propano, 1,3-bis(4-aminofenoxi)benceno, 1,3-bis(3-aminofenil)propano, 2,2-bis(4-aminofenil)propano, 2,2-bis(4-aminofenil)propano, 2,3-bis(4-aminofenil)propano, 2,3-bis(4-aminofenil 40 1,4-bis(4-aminofenoxi)benceno, 1,4-bis(3-aminofenoxi)benceno, dimetilbencidina, 2,2-bis(4-aminofenoxi)propano, 2,2-bis(3-aminofenoxi)propano, 2,2-bis [4'-(4"-aminofenoxi)fenil] hexafluoropropano, 9,9-bis(4-aminofenil) fluoreno, 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y similares, y estos compuestos pueden usarse solos o en combinación de dos o más. En particular, el compuesto de diamina aromática es lo más preferentemente 9,9-bis(4-aminofenil) fluoreno, 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno o 1,3-45 diaminobenceno.

La diamina anterior es preferentemente copolimerizada para aplicaciones que requieran una elevada resistencia mecánica, y la cantidad de diamina copolimérica es preferentemente de 0 a 50 % en moles, más preferentemente de 0 a 25 % en moles, y aún más preferentemente de 0 a 10 % en moles, con respecto a la cantidad total de diaminas. Específicamente, en la Fórmula General (1) anterior, es preferible que 0,50≤m/(m+n)≤1 para aplicaciones que requieran una resistencia mecánica mayor, y más preferentemente que 0,75≤m/(m+n)≤1, aún más preferentemente que 0,90≤m/(m+n)≤1 y lo más preferentemente que 0,90≤m/(m+n)≤0,95. La diamina para la copolimerización es particularmente preferentemente 9,9-bis(4-aminofenil) fluoreno, 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno o 1,3-diaminobenceno. Ventajosamente, el oligómero de imida así obtenido es superior en solubilidad y también en propiedades mecánicas. Por supuesto, en la presente invención, puede usarse una diamina sin copolimerización según las aplicaciones.

En la presente invención, el anhídrido de ácido insaturado usado para la modificación terminal (protección terminal) es preferentemente anhídrido 4-(2-feniletinil) ftálico. El anhídrido 4-(2-feniletinil) ftálico se usa preferentemente en una cantidad en el intervalo de 5 a 200 % en moles, particularmente de 5 a 150 % en moles con respecto a la cantidad total de ácidos.

En lo sucesivo en este documento se describirá el método de producción del oligómero de imida modificado terminalmente de acuerdo con la presente invención.

El oligómero de imida modificado terminalmente de acuerdo con la presente invención (es decir, el oligómero de

6

65

50

55

imida que contiene terminalmente un grupo anhídrido 4-(2-feniletinil) ftálico) se prepara, por ejemplo, mediante la preparación de un "oligómero que contiene un enlace amida-ácido" mediante la polimerización de uno o más compuestos ácidos tetracarboxílicos aromáticos elegidos de entre el grupo que consiste en ácido 3,3',4,4'-bifeniltetracarboxílico (en particular, su dianhídrido de ácido), ácido 1,2,4,5-bencenotetracarboxílico (en particular, el dianhídrido de ácido) y bis(3,4-carboxífenil) éter (en particular, su dianhídrido), diaminas aromáticas incluyendo 2-fenil-4,4'-diaminodifenil éter y anhídrido (2-feniletinil) ftálico, cada uno en unas cantidades a las que se asume que la cantidad total de grupos ácidos anhidros (en el caso de grupos ácidos dicarboxílicos vecinos, se asume que hay más de un mol de grupos anhídridos de ácido por dos moles de grupos carboxilo) y la cantidad total de grupos amino son prácticamente la misma, en un disolvente orgánico descrito a continuación a una temperatura de reacción de aproximadamente 100 °C o inferior, particularmente a 80 °C o inferior; y deshidratar y por lo tanto ciclar el oligómero ácido de amida (también denominado oligómero ácido ámico) mediante el método de añadir un agente de imidación a una baja temperatura de aproximadamente 0 a 140 °C o mediante el tratamiento de la mezcla a una alta temperatura de 140 a 275 °C.

10

45

50

55

60

65

- 15 Un método de producción particularmente favorable del oligómero de imida modificado terminalmente de acuerdo con la presente invención es como sigue: en primer lugar se disuelven las diaminas aromáticas que incluyen 2-fenil-4,4'-diaminodifenil éter en un disolvente orgánico descrito a continuación; aquí se añaden dianhídridos tetracarboxílicos aromáticos que contienen dianhídrido 3,3',4,4'-bifeniltetracarboxílico, dianhídrido 1,2,4,5bencenotetracarboxílico o bis(3,4-carboxifenil) éter y se disuelven uniformemente en la solución, y la mezcla se agita a una temperatura de reacción de aproximadamente 5 a 60 °C durante aproximadamente entre 1 y 180 minutos; se 20 añade anhídrido 4-(2-feniletinil) ftálico y se disuelve en la solución de reacción, y la mezcla se agita durante la reacción a la temperatura de la reacción de aproximadamente 5 a 60 °C durante entre aproximadamente 1 y 180 minutos, para dar un oligómero ácido de amida modificado terminalmente. Posteriormente, la solución de reacción se agita a entre 140 y 275 °C durante entre 5 minutos y 24 horas para la imidación del oligómero ácido de amida 25 para dar un oligómero de imida modificado terminalmente, y la solución de reacción se enfría hasta una temperatura cercana a la temperatura ambiente, según sea necesario, para dar el oligómero de imida modificado terminalmente de acuerdo con la presente invención. En la reacción anterior, todas o parte de las etapas de la reacción se llevan a cabo preferentemente en una atmósfera de un gas inerte tal como de gas nitrógeno o gas argón, o a vacío.
- 30 Algunos ejemplos de los disolventes orgánicos para su uso incluyen N-metil-2-pirrolidona (NMP), N,N-dimetilacetamida (DMAc), N,N-dietilacetamida, N-metilcaprolactama y-butirolactona (GBL), ciclohexanona y similares. Estos disolventes pueden usarse solos o en combinación de dos o más. En la selección de estos disolventes puede hacerse referencia a la tecnología conocida relativa a las poliimidas solubles.
- El oligómero de imida modificado terminalmente así preparado puede aislarse como un producto pulverulento, después la solución de reacción se vierte por ejemplo en agua, según sea necesario. El oligómero de imida puede usarse como un polvo o, según sea necesario, como una solución, ya que se disuelve en un disolvente. Además, la solución de reacción puede usarse directamente como tal o después de diluirla o de concentrarla, según sea necesario, como una composición líquida (barniz) que contiene el oligómero de imida modificado terminalmente.

El barniz del oligómero de imida, que es poco vulnerable a la hidrólisis, puede almacenarse durante un periodo prolongado de tiempo, por ejemplo, sin que se deteriore la viscosidad, en comparación con los barnices de oligómero ácido de amida. Para evitar la gelificación, el disolvente usado para el almacenamiento durante un periodo prolongado de tiempo es preferentemente un disolvente amida tal como N-metil-2-pirrolidona, que es un mejor disolvente.

Pueden usarse los oligómeros modificados terminalmente de acuerdo con la presente invención con diferentes pesos moleculares, ya que se mezclan. Como alternativa, puede usarse el oligómero de imida modificado terminalmente de acuerdo con la presente invención, ya que se mezcla con otra poliimida soluble.

El oligómero de imida soluble modificado terminalmente de acuerdo con la presente invención representado por la Fórmula General (1) preparado mediante el uso de 2-fenil-4,4'-diaminodifenil éter es preferentemente soluble en el disolvente orgánico, particularmente en NMP, a una concentración de materia sólida del 30 % en peso o más a temperatura ambiente.

El producto curado del oligómero de imida modificado terminalmente de acuerdo con la presente invención en forma de película puede prepararse, por ejemplo, mediante la aplicación del barniz del oligómero de imida modificado terminalmente en un soporte y el curado del soporte húmedo a una temperatura de entre 280 y 500 °C durante entre 5 y 200 minutos. El alargamiento por tracción a rotura de la película es preferentemente del 10 % o más. El método de ensayo se describirá a continuación.

El producto curado del oligómero de imida modificado terminalmente de acuerdo con la presente invención puede prepararse mediante la preparación de un moldeo intermedio rellenando un molde con el polvo de oligómero de imida modificado terminalmente tal como un molde de metal y moldear por compresión el polvo a entre 10 y 280 °C y a entre 1 y 10 kg/cm² durante aproximadamente 1 segundo y 100 minutos, y el curado del moldeo intermedio a entre 280 y 500 °C durante aproximadamente entre 10 minutos y 40 horas. La temperatura de transición vítrea (Tg) del

producto curado es preferentemente de 300 °C o mayor. El método de ensayo se describirá a continuación.

La imida preimpregnada de acuerdo con la presente invención puede prepararse, por ejemplo, de la siguiente forma.

Se prepara una composición líquida (barniz) del oligómero de imida modificado terminalmente mediante la disolución de un oligómero de imida modificado terminalmente en polvo en un disolvente orgánico o mediante el uso de la solución de reacción como tal o después de haber sido concentrada diluida. Se impregna una fibra o un tejido de fibra orientado unidireccionalmente en forma de placa plana con el barniz del oligómero de imida modificado terminalmente ajustado previamente a una concentración favorable y curado en una secador a entre 20 y 180 °C durante entre 1 minuto y 20 horas para dar un preimpregnado. La cantidad de resina depositada en la fibra o en el tejido de fibra a continuación es de entre aproximadamente el 30 y el 50 % en peso. La fibra o el tejido de fibra para su uso en la invención no está particularmente limitada, y algunos ejemplos de la misma incluyen fibra de carbono o su tejido y similares, para su uso, por ejemplo, en aeronaves.

15 El laminado reforzado con fibra de acuerdo con la presente invención puede prepararse, por ejemplo, de la siguiente forma.

Es posible la obtención de una lámina laminada apilando un número predeterminado de los preimpregnados y curando el material compuesto con calor a una temperatura de desde 280 hasta 500 °C y a una presión de desde 1 hasta 1.000 kg/cm² durante aproximadamente entre 10 minutos y 40 horas, por ejemplo mediante el uso de un autoclave o una prensa caliente. Además del uso de los preimpregnados anteriores, también es posible en la presente invención obtener la lámina laminada apilando tejidos portadores del polvo del oligómero de imida modificado terminalmente de acuerdo con la presente invención en la misma y curar la pila con calor de una forma similar a la anterior.

El laminado reforzado con fibra de acuerdo con la presente invención así obtenido tiene preferentemente una temperatura de transición vítrea (Tg) de 300 °C o mayor. El método de ensayo se describirá a continuación.

Ejemplos

25

30

45

60

65

En lo sucesivo en este documento se describirá la presente invención con referencia a algunos Ejemplos, pero debería entenderse que la presente invención no está restringida por estos Ejemplos. Las condiciones de medición de las diversas propiedades son como sigue:

35 < Métodos de ensayo>

- (1) Medición de la temperatura de pérdida del 5 % de peso: medida mediante el uso de un analizador termogravimétrico de tipo SDT-2960 (TGA) fabricado por TA Instruments bajo una corriente de nitrógeno a una velocidad de calentamiento de 5 °C / min.
- 40 (2) Medición de la temperatura de transición vítrea del producto curado: medida mediante el uso de un calorímetro diferencial de barrido de tipo DSC-2010 (DSC) fabricado por TA Instruments bajo una corriente de nitrógeno a una velocidad de calentamiento de 5 °C / min.
 - (3) Medición de la temperatura de transición vítrea del laminado reforzado con fibra: medida mediante el uso de un analizador mecánico dinámico de tipo DMA-Q-800 (DMA) fabricado por TA Instruments a una deformación del 0,1 % y una frecuencia 1 Hz en modo flotante bajo una corriente de nitrógeno a una velocidad de calentamiento de 3 °C / min. Se usó el punto de inflexión en el que el módulo de almacenamiento comienza a declinar como la temperatura de transición vítrea.
 - (4) Medición de la menor viscosidad en estado fundido: medida mediante el uso de reómetro de tipo AR2000 fabricado por TA Instruments y placas paralelas de 25 mm a una tasa de calentamiento de 4 °C / min.
- 50 (5) Ensayo de tracción (medición del módulo, resistencia a rotura y alargamiento): medido mediante el uso de TENSILON/UTM-II-20 fabricado por ORIENTECH. CO.,LTD a una velocidad de tensión de 3 mm/min a temperatura ambiente. La pieza de ensayo usada era una película con una longitud de 20 mm, una anchura de 3 mm, y un espesor de entre 80 y 175 μm.

55 (Ejemplo 1)

Se dispusieron y disolvieron 2,761 g (10 mmol) de 2-fenil-4,4'-diaminodifenil éter y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 2,4 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y

el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter, R_3 representa un residuo de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y m = 4 y n = 0 como promedio. (Más específicamente, una estructura está representada por la Fórmula General (1-3). Los oligómeros de imida modificados terminalmente se prepararon de forma similar en los Ejemplos 2 a 5).

[Fórmula 5]

Fórmula General (1)

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 104 Pa · s (340 °C) antes del curado. El producto curado en forma de película (espesor: 109 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 309 °C (DSC) y una temperatura de pérdida del 5 % de peso de 549 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,23 GPa, una resistencia a rotura de 139 MPa y un alargamiento a rotura del 14 %.

(Ejemplo Comparativo 1)

10

15

20

25

30

35

40

Se dispusieron y disolvieron 2,002 g (10 mmol) de 4,4'-diaminodifenil éter y 16 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 18 horas y después se agitó a 175 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (2), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter; y m = 4 y n = 0 como promedio.

[Fórmula 6]

Fórmula General (2)

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

10 (Ejemplo 2)

5

15

20

25

55

Se dispusieron y disolvieron 2,071 g (7,5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 1,332 g (2,5 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 3,7 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 200 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R₂ representa un residuo de fluoreniliden difenil éter; R₃ y R₄ representan cada uno un residuo de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y m = 3 y n = 1 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 251 Pa · s (352 °C) antes del curado. El producto curado en forma de película (espesor: 105 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 317 °C (DSC) y una temperatura de pérdida del 5 % de peso de 549 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,35 GPa, una resistencia a rotura de 125 MPa y un alargamiento a rotura del 10 %.

(Ejemplo 3)

Se dispusieron y disolvieron 1,3807 g (5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 2,6631 g (5 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 4,6 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida.

Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 200 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula

General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R_2 representa un residuo de 9,9-bis (4-(4-aminofenoxi)fenil) fluoreno; y R_3 y R_4 representan cada uno un residuo de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y m = 2 y n = 2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 398 Pa · s (354 °C) antes del curado. El producto curado en forma de película (espesor: 98 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 317 °C (DSC) y una temperatura de pérdida del 5 % de peso de 561 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,31 GPa, una resistencia a rotura de 126 MPa y un alargamiento a rotura del 18 %.

(Ejemplo Comparativo 2)

Se dispusieron y disolvieron 1,001 g (5 mmol) de 4,4'-diaminodifenil éter, 2,6631 g (5 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhidruro de 3,3',4,4'-bifeniltetracarboxílico y 4,6 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (2), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; y m = 2 y n = 2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 1084 Pa·s (349 °C) antes del curado. El producto curado en forma de película (espesor: 150 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 330 °C (DSC) y una temperatura de pérdida del 5 % de peso de 550 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,84 GPa una resistencia a rotura de 117 MPa y un alargamiento a rotura del 12 %.

(Ejemplo 4)

40

45

Se dispusieron y disolvieron 2,071 g (7,5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 0,8711 g (2,5 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhidruro de 3,3',4,4'-bifeniltetracarboxílico y 1,6 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 200 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-aminofenil) fluoreno; R₃ y R₄ representan cada uno un residuo de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y m = 3 y n = 1 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 2244 Pa · s (345 °C) antes del curado. El producto curado en forma de película (espesor: 113 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 346 °C (DSC) y una temperatura de pérdida del 5 % de peso de 553 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,99 GPa, una resistencia a rotura de 155 MPa y un alargamiento a rotura del 12 %.

(Ejemplo Comparativo 3)

10

25

30

35

50

55

60

65

Se dispusieron y disolvieron 1,5018 g (7,5 mmol) de 4,4'-diaminodifenil éter, 0,8711 g (2,5 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido de 3,3'4,4 bifeniltetracarboxílico y 1,6 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó cuando la solución se enfrió hasta temperatura ambiente después de la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (2), en la que R_1 representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R_2 representa un residuo de 9,9-bis(4-aminofenil) fluoreno; y m = 3 y n = 1 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 5)

Se dispusieron y disolvieron 1,3807 g (5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 1,7422 g (5 mmol) de 9,9-bis(440 aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 3,1 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida.

45 Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 200 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-aminofenil) fluoreno; R₃ y R₄ representan cada uno un residuo de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y m = 2 y n = 2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento de un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 2765 Pa · s (344 °C) antes del curado. El producto curado en forma de película (espesor: 156 μ m) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 366 °C (DSC) y una temperatura de pérdida del 5 % de peso de 552 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,47 GPa, una resistencia a rotura de 140 MPa y un alargamiento a rotura del 10 %.

(Ejemplo Comparativo 4)

10

15

20

25

35

40

45

55

60

Se dispusieron y disolvieron 1,0012 g (5 mmol) de 4,4'-diaminodifenil éter, 1,7422 g (5 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 1,6 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó cuando la solución se enfrió hasta temperatura ambiente después de la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-aminofenil) fluoreno; y m = 2 y n = 2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 1695 Pa · s (341 °C) antes del curado. El producto curado en forma de película (espesor: 155 μ m) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 345 °C (DSC) y una temperatura de pérdida del 5 % de peso de 547 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,82 GPa, una resistencia a rotura de 106 MPa y un alargamiento a rotura del 14 %.

30 (Ejemplo Comparativo 5)

Se dispusieron y disolvieron 3,4844 g (10 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,354 g (8 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 4,6 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 y R_2 representan cada uno un residuo de 9,9-bis(4-aminofenil) fluoreno, y m = 0 y n = 4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 6)

Se dispusieron y disolvieron 2,7613 g (10 mmol) de 2-fenil-4,4'-diaminodifenil éter y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 0,8 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente

a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se

filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter; R_3 representa un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 4 y n = 0 como promedio. (Más específicamente, una estructura está representada por la Fórmula General (1-2). Los oligómeros de imida modificados terminalmente se prepararon de forma similar en los Ejemplos 7 a 16).

[Fórmula 7]

Fórmula General (1)

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 208 Pa · s (343 °C) antes del curado. El producto curado en forma de película (espesor: 99 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 354 °C (DSC) y una temperatura de pérdida del 5 % de peso de 540 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,24 GPa, una resistencia a rotura de 133 MPa y un alargamiento a rotura del 17 %.

25 (Ejemplo Comparativo 6)

10

15

20

30

35

40

Se dispusieron y disolvieron 2,0024 g (10 mmol) de 4,4'-diaminodifenil éter y 9,3 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R_1 representa un residuo de 4,4'-diaminodifenil éter, y m = 4 y n = 0 como promedio.

[Fórmula 8]

Fórmula General (3)

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 7)

5

10

15

20

25

30

35

40

45

50

55

60

65

Se dispusieron y disolvieron 2,6232 g (9,5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 0,2661 g (0,5 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 1,1 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R_2 representa un residuo de 9,9-bis (4-(4-aminofenoxi)fenil) fluoreno; R_3 y R_4 representan cada uno un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 3,8 y n = 0,2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 159 Pa · s (341 °C) antes del curado. El producto curado en forma de película (espesor: 115 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 352 °C (DSC) y una temperatura de pérdida del 5 % de peso de 536 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,87 GPa, una resistencia a rotura de 122 MPa y un alargamiento a rotura del 21 %.

(Ejemplo Comparativo 7)

Se dispusieron y disolvieron 1,9023 g (9,5 mmol) de 4,4'-diaminodifenil éter, 0,2661 g (0,5 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 9,7 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R_1 representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R_2 representa un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; y m = 3,8 y n = 0,2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 8)

Se dispusieron y disolvieron 2,4850 g (9,0 mmol) de 2-fenil-4,4'-diaminodifenil éter, 0,5326 g (1,0 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 1,3 ml de N-metil-2-pirrolidona; y la mezcla se dejó

reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 200 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R_2 representa un residuo de 9,9-bis (4-(4-aminofenoxi)fenil) fluoreno; R_3 y R_4 representan cada uno un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 3,6 y n = 0,4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 76 Pa·s (335 °C) antes del curado. El producto curado en forma de película (espesor 115 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 350 °C (DSC) y una temperatura de pérdida del 5 % de peso de 538 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,79 GPa, una resistencia a rotura de 115 MPa y un alargamiento a rotura del 19 %.

(Ejemplo Comparativo 8)

10

25

30

35

40

45

50

55

60

65

Se dispusieron y disolvieron 1,8022 g (9,0 mmol) de 4,4'-diaminodifenil éter, 0,5326 g (1,0 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R_1 representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R_2 representa un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; y m = 3,6 y n = 0,4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 9)

Se dispusieron y disolvieron 2,0709 g (7,5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 1,3315 g (2,5 mmol) de 9,9-bis(4-(4-aminofenoxi) fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 2,1 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 200 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula

General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; R_2 representa un residuo de 9,9-bis (4-(4-aminofenoxi)fenil) fluoreno; R_3 y R_4 representan cada uno un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 3 y n = 1 como promedio.

5 El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 553 Pa·s (345 °C) antes del curado. El producto curado en forma de película (espesor: 151 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 358 °C (DSC) y una temperatura de pérdida del 5 % de peso de 538 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,96 GPa, una resistencia a rotura de 119 MPa y un alargamiento a rotura del 17 %.

(Ejemplo Comparativo 9)

15

20

25

30

35

40

Se dispusieron y disolvieron 1,5018 g (7,5 mmol) de 4,4'-diaminodifenil éter, 1,3315 g (2,5 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhidruro 1,2,4,5-bencenotetracarboxílico y 4,4 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; y m = 3 y n = 1 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo Comparativo 10)

Se dispusieron y disolvieron 5,3261 g (10 mmol) de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno y 15 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 0,9 ml de N-metil-2-pirrolidona; la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en que R₁ y R₂ representan cada uno un residuo de 9,9-bis(4-(4-aminofenoxi)fenil) fluoreno; y m = 0 y n = 4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

65

55

(Ejemplo 10)

10

15

20

25

30

Se dispusieron y disolvieron 2,6232 g (9,5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 0,1742 g (0,5 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 (8 mmol) de dianhidruro 1,2,4,5-bencenotetracarboxílico y 0,9 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-aminofenil) fluoreno; R₃ y R₄ representan cada uno un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 3,8 y n = 0,2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 226 Pa · s (341 °C) antes del curado. El producto curado en forma de película (espesor: 110 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 353 °C (DSC) y una temperatura de pérdida del 5 % de peso de 538 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,99 GPa, una resistencia a rotura de 122 MPa y un alargamiento a rotura del 15 %.

(Ejemplo Comparativo 11)

Se dispusieron y disolvieron 1,9023 g (9,5 mmol) de 4,4'-diaminodifenil éter, 0,1742 g (0,5 mmol) de 9,9-bis(4-aminofenil) fluoreno y 9,6 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico durante 30 minutos y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; y m = 3,8 y n = 0,2 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 11)

55

Se dispusieron y disolvieron 220,79 g (0,80 mol) de 2-fenil-4,4'-diaminodifenil éter, 30,95 g (0,089 mol) de 9,9-bis(4-aminofenil) fluoreno y 860 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 2000 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 155,04 g (0,711 mol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 33 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 88,22 g (0,355 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante

12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de refrigeración, parte de la solución de reacción se vertió en 500 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R_2 representa un residuo de 9,9-bis(4-ami-nofenil) fluoreno; R_3 y R_4 representan cada uno un residuo de dianhídrido 1,2,4,5-bencenotetracarbox(lico; y m = 3,6 y n = 0,4 como promedio.

10

15

20

25

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 154 Pa · s (325 °C) antes del curado. El producto curado en forma de película (espesor: 111 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 371 °C (DSC) y una temperatura de pérdida del 5 % de peso de 538 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,97 GPa, una resistencia a rotura de 119 MPa y un alargamiento a rotura del 13 %.

Se impregnó una tela tejida plana "BESFIGHT IM-600 6K" (hecha de fibra de carbono; peso de la base de fibra: 195 g/m) de 30 cm x 30 cm de tamaño (producida por TOHO TENAX Co., Ltd.) eliminando previamente el apresto con acetona, con la solución de reacción remanente (concentración de materia sólida: 35 % en peso) después de enfriar. La tela se secó a 100 °C en una secadora durante 10 minutos para dar una imida preimpregnada. El contenido de resina del preimpregnado obtenido era del 38 % y el contenido de material volátil residual era del 17 %.

(Ejemplo Comparativo 12)

Se dispusieron y disolvieron 1,8022 g (9,0 mmol) de 4,4'-diaminodifenil éter, 0,3484 g (1,0 mmol) de 9,9-bis(4-aminofenil) fluoreno y 9,6 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-aminofenil) fluoreno; y m = 3,6 y n = 0,4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 12)

50

Se dispusieron y disolvieron 2,0709 g (7,5 mmol) de 2-fenil-4,4'-diaminodifenil éter, 0,8711 g (2,5 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhidruro 1,2,4,5-bencenotetracarboxílico y 1,2 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,9929 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un

producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 9,9-bis(4aminofenil) fluoreno; R2 representa un residuo de 9,9-bis(4-aminofenil) fluoreno; R3 y R4 representan cada uno un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 3 y n = 1 como promedio.

5

10

15

20

25

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 1323 Pa · s (351 °C) antes del curado. El producto curado en forma de película (espesor: 175 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a entre 370 y 420 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 396 °C (DSC) y una temperatura de pérdida del 5 % de peso de 544 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,82 GPa, una resistencia a rotura de 101 MPa y un alargamiento a rotura del 11 %.

(Ejemplo Comparativo 13)

Se dispusieron y disolvieron 1,5018 g (7,5 mmol) de 4,4'-diaminodifenil éter, 0,8711 g (2,5 mmol) de 9,9-bis(4aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

35

30

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 60 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R₁ representa un residuo de 4,4'-diaminodifenil éter o un residuo de 9,9-bis(4-aminofenil) fluoreno; R₂ representa un residuo de 9,9-bis(4-aminofenil) fluoreno; y m = 3 y n = 1 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

40

(Ejemplo Comparativo 14)

45

un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 2,3 ml de Nmetil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, a 60 °C durante 1,5 horas y adicionalmente a temperatura ambiente durante 1 hora, para dar un oligómero ácido de amida. Se añadieron 0,993 g (4 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación. El oligómero de imida precipitó durante la reacción de imidación.

Se dispusieron y disolvieron 3,4844 g (10 mmol) de 9,9-bis(4-aminofenil) fluoreno y 10 ml de N-metil-2-pirrolidona en

50

55

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de aqua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (3), en la que R₁ y R₂ representan un residuo de 9,9-bis(4-aminofenil) fluoreno; y m = 0 y n = 4 como promedio.

60

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era insoluble en el disolvente NMP a temperatura ambiente. El oligómero de imida modificado terminalmente pulverulento no mostró fluidez en fundido incluso a 300 °C o más, y no dio un producto con una forma favorable (producto curado en forma de película).

(Ejemplo 13)

10

15

30

35

40

45

50

55

60

Se dispusieron y disolvieron 4,9703 g (18,0 mmol) de 2-fenil-4,4'-diaminodifenil éter, 0,2163 g (2,0 mmol) de 1,3-diaminobenceno y 20 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 3,4899 g (16 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 1 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, para dar un oligómero ácido de amida. Se añadieron 1,9858 g (8 mmol) de anhídrido (2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 12 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo se lavó con 80 ml de metanol durante 30 minutos y se filtró, y el polvo obtenido mediante filtración se secó a presión reducida a 130 °C durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter o un residuo de 1,3-diaminobenceno; R_2 representa un residuo de 1,3-diaminobenceno; R_3 y R_4 representan cada uno un residuo de carboxilato de 1,2,4,5-bencenotetradianhídrido; y m = 3,6 y n = 0,4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 199 Pa · s (343 °C) antes del curado. El producto curado en forma de película (espesor: 111 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 365 °C (DSC) y una temperatura de pérdida del 5 % de peso de 541 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,84 GPa, una resistencia a rotura de 116 MPa y un alargamiento a rotura del 15 %.

(Ejemplo 14)

Se dispusieron y disolvieron 4,4181 g (16 mmol) de 2-fenil-4,4'-diaminodifenil éter y 20 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 3 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, para dar un oligómero ácido de amida. Se añadieron 3,9717 g (16 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 18 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo obtenido mediante filtración se secó a 100 °C a presión reducida durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter; R₃ representa un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 1 y n = 0 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 0,8 Pa · s (325 °C) antes del curado. El producto curado en forma de película (espesor: 80 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 367 °C (DSC) y una temperatura de pérdida del 5 % de peso de 528 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,08 GPa, una resistencia a rotura de 121 MPa y un alargamiento a rotura del 12 %.

(Ejemplo 15)

Se dispusieron y disolvieron 3,3136 g (12 mmol) de 2-fenil-4,4'-diaminodifenil éter y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,7450 g (8 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 3 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, para dar un oligómero ácido de amida. Se añadieron 1,9858 g (8 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación

terminal bajo una corriente de nitrógeno a temperatura ambiente durante 18 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo obtenido mediante filtración se secó a 100 °C a presión reducida durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R₁ representa un residuo de 2-fenil-4,4'-diaminodifenil éter; R₃ representa un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 1 y n = 0 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso no gelificó incluso después de un almacenamiento durante un mes. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 30 Pa · s (338 °C) antes del curado. El producto curado en forma de película (espesor: 90 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 355 °C (DSC) y una temperatura de pérdida del 5 % de peso de 529 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,93 GPa, una resistencia a rotura de 120 MPa y un alargamiento a rotura del 12 %.

(Ejemplo 16)

20

25

30

35

40

45

50

55

60

Se dispusieron y disolvieron 3,0374 g (11 mmol) de 2-fenil-4,4'-diaminodifenil éter y 10 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 2,1812 g (10 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico y 3 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, para dar un oligómero ácido de amida. Se añadieron 0,4964 g (2 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 18 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo obtenido mediante filtración se secó a 100 °C a presión reducida durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 representa un residuo de 2-fenil-4,4'-diaminodifenil éter; R_3 representa un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; y m = 10 y n = 0 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contenía el oligómero de imida modificado terminalmente pulverulento y disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó una vez de nuevo 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 11.100 Pa · s (330 °C) antes del curado. El producto curado en forma de película (espesor: 175 μm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 341 °C (DSC) y una temperatura de pérdida del 5 % de peso de 542 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,82 GPa, una resistencia a rotura de 110 MPa y un alargamiento a rotura del 15 %.

(Ejemplo 17)

Se dispusieron y disolvieron 3,3136 g (12 mmol) de 2-fenil-4,4'-diaminodifenil éter y 12 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,8846 g (8,64 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico, 0,2824 g (0,96 mmol) de dianhídrido 3,3',4,4'-bifeniltetracarboxílico y 3 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, para dar un oligómero ácido de amida. Se añadieron 1,1915 g (4,8 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 18 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo obtenido mediante filtración se secó a 150 °C a presión reducida durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 y R_2 representan cada uno un residuo de 2-fenil-4,4'-diaminodifenil éter; R_3 representa un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; R_4 representa un

residuo de dianhídrido 3,3',4,4'-bifeniltetracarboxílico; y m = 3,6 y n = 0,4 como promedio.

El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 449 Pa · s (°C) antes del curado. El producto curado en forma de película (espesor: 85 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 350 °C (DSC) y una temperatura de pérdida del 5 % de peso de 539 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 3,15 GPa, una resistencia a rotura de 127 MPa y un alargamiento a rotura del 19 %.

15 (Ejemplo 18)

10

20

25

30

35

40

50

55

60

Se dispusieron y disolvieron 3,3136 g (12 mmol) de 2-fenil-4,4'-diaminodifenil éter y 12 ml de N-metil-2-pirrolidona en un matraz de tres bocas de 100 ml equipado con un termómetro, una barra de agitación y un tubo de suministro de nitrógeno; al mismo se añadieron 1,8846 g (8,64 mmol) de dianhídrido 1,2,4,5-bencenotetracarboxílico, 0,2978 g (0,96 mmol) de dianhídrido de bis(3,4-carboxi-fenil) éter y 3 ml de N-metil-2-pirrolidona; y la mezcla se dejó reaccionar en una reacción de polimerización bajo una corriente de nitrógeno a temperatura ambiente durante 2,5 horas, para dar un oligómero ácido de amida. Se añadieron 1,1915 g (4,8 mmol) de anhídrido 4-(2-feniletinil) ftálico a la solución de reacción; y la mezcla se dejó reaccionar para una modificación terminal bajo una corriente de nitrógeno a temperatura ambiente durante 18 horas y después se agitó a 195 °C durante 5 horas para la imidación.

Después de un periodo de enfriamiento, la solución de reacción se vertió en 900 ml de agua de intercambio iónico, y el polvo precipitado se recogió mediante filtración. El polvo obtenido mediante filtración se secó a 150 °C a presión reducida durante un día, para dar un producto. El oligómero de imida modificado terminalmente así obtenido tiene una estructura con la siguiente Fórmula General (1), en la que R_1 y R_2 representan cada uno un residuo de 2-fenil-4,4'-diaminodifenil éter; R_3 representa un residuo de dianhídrido 1,2,4,5-bencenotetracarboxílico; R_4 representa un residuo de dianhídrido de bis(3,4-carboxifenil) éter; y m = 3,6 y n = 0,4 como promedio.

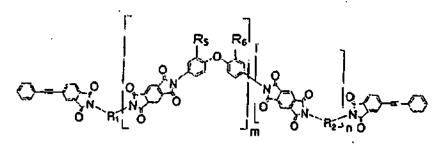
El producto sin curar pulverulento del oligómero de imida modificado terminalmente así obtenido era soluble en el disolvente NMP en una cantidad del 30 % en peso o más a temperatura ambiente. La solución de NMP (barniz) que contiene el oligómero de imida modificado terminalmente disuelto al 30 % en peso gelificó en varios días cuando se dejó reposar a temperatura ambiente, pero volvió al estado líquido cuando se calentó de nuevo a 80 °C. La solución gelificó de nuevo en varios días cuando se dejó reposar a temperatura ambiente. La menor viscosidad en estado fundido del oligómero de imida modificado terminalmente pulverulento era de 159 Pa · s antes del curado. El producto curado en forma de película (espesor: 85 µm) obtenido mediante el calentamiento del oligómero de imida modificado terminalmente pulverulento a 370 °C mediante el uso de una prensa caliente durante 1 hora tenía una Tg de 344 °C (DSC) y una temperatura de pérdida del 5 % de peso de 540 °C, según se determinó mediante TGA. El análisis de las propiedades mecánicas mediante ensayos de tracción demostró que tenía un módulo de 2,98 GPa, una resistencia a rotura de 135 MPa y un alargamiento a rotura del 17 %.

45 (Ejemplo 19)

Se formó una película de poliimida como una película de liberación sobre una placa de acero inoxidable de 30 cm x 30 cm de tamaño, y en la misma se laminaron 12 capas de los preimpregnados preparados en el Ejemplo 11. Además, la pila de películas de poliimida y la placa de acero inoxidable se calentaron en una prensa caliente a vacío, a una velocidad de calentamiento desde 5 °C / min hasta 260 °C, uniformemente a 260 °C durante 2 horas, a una velocidad de calentamiento desde 3 °C / min hasta 370 °C bajo una carga de 1,3 MPa, y adicionalmente a 370 °C bajo presión durante 1 hora. Se obtuvo un laminado favorable sin grandes vacíos, según se determinó a partir del aspecto, de un ensayo de defectos por ultrasonidos y de la observación de su sección transversal. La temperatura de transición vítrea del laminado obtenido era de 358 °C; la tasa de volumen de fibra (vf) era de 0,60; y el contenido de resina era del 33 % en peso.

Aplicabilidad industrial

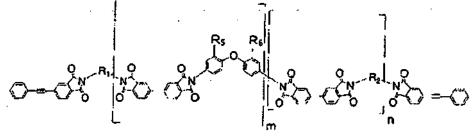
La presente invención proporciona un nuevo oligómero de imida modificado terminalmente con solubilidad superior en un disolvente orgánico y capaz de formar una película, estabilidad de almacenamiento en solución y moldeabilidad, tal como una baja viscosidad en estado fundido, que proporciona un producto curado con resistencia térmica y propiedades mecánicas superiores tales como el módulo de tracción, la resistencia a la tracción a rotura, y el alargamiento por tracción a rotura, y también un barniz que contiene el mismo y un producto curado del mismo, que son materiales que pueden usarse en un amplio abanico de aplicaciones que demanden una moldeabilidad favorable y una alta resistencia térmica, por ejemplo, como piezas de aeronaves y dispositivos para la industria aeroespacial.


REIVINDICACIONES

1. Un oligómero de imida modificado terminalmente, **caracterizado por** estar representado por la Fórmula General (1)

Fórmula General (1)

(en la que, R₁ y R₂ representan cada uno un residuo de una diamina aromática bivalente; R₃ y R₄ representan cada uno un residuo de un ácido tetracarboxílico aromático tetravalente; R₅ y R₆ representan cada uno un átomo de hidrógeno o un grupo fenilo, y bien R₆ o bien R₆ son un grupo fenilo; m y n satisfacen las siguientes relaciones: m≥1, n≥0, 1≤m+n≤20 y 0,05≤m/(m+n)≤1; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente).


2. El oligómero de imida de acuerdo con la reivindicación 1, representado por la siguiente Fórmula General (1-2), en donde el ácido tetracarboxílico aromático tetravalente es el ácido 1,2,4,5-bencenotetracarboxílico

Fórmula General (1-2)

(en la que, R_1 y R_2 representan cada uno un residuo de diamina aromática bivalente; R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo, y bien R_5 o bien R_6 son un grupo fenilo; m y n satisfacen las siguientes relaciones: $m \ge 1$, $n \ge 0$, $1 \le m + n \le 20$ y $0,05 \le m/(m+n) \le 1$; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente).

3. El oligómero de imida de acuerdo con la reivindicación 1, representado por la siguiente Fórmula General (1-3), en donde el ácido tetracarboxílico aromático tetravalente es el ácido 3,3',4,4'-bifeniltetracarboxílico

Fórmula General (I-3)

(en la que, R_1 y R_2 representan cada uno un residuo de diamina aromática bivalente; R_5 y R_6 representan cada uno un átomo de hidrógeno o un grupo fenilo y bien R_5 o bien R_6 son un grupo fenilo; m y n satisfacen las siguientes relaciones: $m \ge 1$, $n \ge 0$, $1 \le m + n \le 20$ y $0,05 \le m/(m+n) \le 1$; y las unidades de repetición pueden estar dispuestas en bloque o aleatoriamente).

35

30

20

25

- 4. El oligómero de imida de acuerdo con la reivindicación 1, en el que el ácido tetracarboxílico aromático tetravalente que se va a usar es una combinación de al menos dos compuestos elegidos de entre ácido 1,2,4,5-bencenotetracarboxílico, ácido 3,3',4,4'-bifeniltetracarboxílico y bis(3,4-carboxífenil) éter.
- 5. El oligómero de imida modificado terminalmente de acuerdo con la reivindicación 1, que es soluble en N-metil-2pirrolidona a una concentración de materia sólida del 30 % en peso o más a temperatura ambiente.
 - 6. Un barniz, **caracterizado por** ser producido mediante la disolución del oligómero de imida modificado terminalmente de acuerdo con una cualquiera de las reivindicaciones 1 a 5 en un disolvente orgánico.
 - 7. Un producto curado, **caracterizado por** ser producido mediante el curado con calor del oligómero de imida modificado terminalmente de acuerdo con una cualquiera de las reivindicaciones 1 a 5.
- 8. Un producto curado, **caracterizado por** ser producido mediante el curado con calor del barniz de acuerdo con la reivindicación 6.
 - 9. El producto curado de acuerdo con las reivindicaciones 7 u 8, con una temperatura de transición vítrea (Tg) de 300 °C o más.
- 20 10. Una película producida a partir del producto curado de acuerdo con las reivindicaciones 7 u 8, **caracterizada porque** el alargamiento por tracción a rotura de la misma es del 10 % o más.
 - 11. Una imida preimpregnada, **caracterizada por** ser producida mediante la impregnación de una fibra con el barniz de acuerdo con la reivindicación 6, y el secado de la fibra impregnada.
 - 12. La imida preimpregnada de acuerdo con la reivindicación 11, en la que el contenido de resina de la misma es del 30 al 50 % en peso.
- 13. Un laminado reforzado con fibra, **caracterizado por** ser producido mediante el laminado de las imidas preimpregnadas de acuerdo con las reivindicaciones 11 o 12 y el calentamiento del laminado.
 - 14. Un laminado reforzado con fibra, **caracterizado por** ser producido mediante el laminado de los tejidos de fibra impregnados con el oligómero de imida modificado terminalmente de acuerdo con una cualquiera de las reivindicaciones 1 a 5 y el curado del laminado con calor.
 - 15. El laminado reforzado con fibra de acuerdo con las reivindicaciones 13 o 14, en el que la temperatura de transición vítrea (Tg) del mismo es de 300 °C o más.