

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 461 863

51 Int. Cl.:

C10J 3/72 (2006.01) C10J 3/66 (2006.01) C10B 1/04 (2006.01) C10B 49/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 13.11.2007 E 07823244 (4)
(97) Fecha y número de publicación de la concesión europea: 12.02.2014 EP 2092043

(54) Título: Procedimiento para gasificar combustible y generador de gasificación

(30) Prioridad:

17.11.2006 FI 20065733

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.05.2014

73) Titular/es:

CCM-POWER OY (100.0%) Lentokatu 2 90460 Oulunsalo, FI

(72) Inventor/es:

RUOKAMO, LEO

74) Agente/Representante:

CURELL AGUILÁ, Mireia

S 2 461 863 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento para gasificar combustible y generador de gasificación.

20

35

40

50

55

60

65

- La presente invención se refiere a un procedimiento para gasificar combustible en el canal de combustible de un generador de gasificación, presentando el canal de combustible una zona de combustión para la combustión de combustible y uno o más tubos de oxidación para suministrar gas de oxidación a la zona de combustión. La invención se refiere asimismo a un generador de gasificación utilizado en el procedimiento.
- El combustible se suministra a la parte superior del generador de gasificación, desde el cual fluye por la gravedad a través de las zonas de reducción, combustión y pirolisis. El calor requerido para la gasificación se obtiene quemando el combustible, de manera que se forme una zona de pirolisis entre la zona de combustión y el combustible, en la que los materiales volátiles se separan del combustible. Estos materiales volátiles forman el gas de producto del generador de gasificación junto con los gases generados en la zona de reducción.
 - Los generadores de gasificación de la técnica anterior se dividen en gasificadores de cocorriente y gasificadores de contracorriente según el procedimiento de suministro de gas de oxidación. En los gasificadores de cocorriente, se alimenta el gas de oxidación directamente a la zona de combustión. En estas soluciones, es difícil conseguir que la zona de combustión esté igual de caliente en toda su extensión. Además, la eficiencia permanece baja, puesto que el residuo carbonizado creado en los procesos no se quema totalmente. En los gasificadores de contracorriente, se conduce el gas de oxidación hacia arriba desde abajo, en el sentido opuesto al flujo de combustible. En este procedimiento, los productos de pirolisis acaban en el gas de producto casi como tales, es decir, los alquitranes no se descomponen.
- Una propiedad esencial del gas de producto creado en el generador de gasificación con respecto a su uso es su pureza. En particular, el alquitrán generado en la gasificación es un ingrediente problemático del gas de producto, debido a las emisiones causadas por el mismo, las limitaciones de uso y los problemas causados al equipo. Los compuestos de alquitrán se descomponen en temperaturas superiores a 850°C. Otra impureza esencial que aparece en la gasificación son los óxidos de nitrógeno que se generan en temperaturas superiores a 1000°C. Por estos motivos, el control de temperatura, en particular, en la zona de combustión tras la fase de pirolisis resulta importante en la gasificación.
 - La publicación de patente GB 456 111 A describe un generador de gasificación, en el que el gas de oxidación se alimenta mediante tubos de oxidación al canal de combustible. Los tubos de oxidación se pueden desplazar dentro del canal de combustible. Se ha realizado esta posibilidad de ajuste para permitir la adaptación del generador de gasificación para diferentes combustibles. La ubicación de los tubos de oxidación no se cambia durante la combustión. Se lleva a cabo un intento de controlar la combustión ajustando la cantidad de gas de oxidación que entra en los tubos de oxidación. Según la memoria, la ventaja que se consigue con la posibilidad de desplazar los tubos es que los tubos de oxidación se pueden instalar a diferentes alturas en el canal de combustible. El ajuste de la temperatura de la combustión resulta pesado con el procedimiento descrito en la memoria. Además, los tubos de oxidación que proceden de la parte superior provocan una fricción adicional en el flujo de combustible, y el gas de oxidación puede formar unos canales de flujo en la proximidad de la superficie del tubo de oxidación.
- En el documento EP 1 148 295 A1, se divulga un horno de gasificación que presenta una lanza central de horno móvil verticalmente a lo largo del eje del horno y adaptado para purgar un gas de mantenimiento de la combustión hacia abajo dentro del horno.
 - En el generador de gasificación divulgado en la memoria de patente FI 113 781 B, la sección transversal horizontal del cuello está ajustada mediante un cono de ajuste que se mueve en dirección vertical, cuyos movimientos controlan el flujo del gas y por lo tanto, controlan el funcionamiento del generador. En la memoria de patente FI 112 798 B, se divulga un procedimiento con conexiones de alimentación fijas del gas oxidante con diferentes partes del generador de gasificación, y el uso del vapor de agua para limitar la combustión. Asimismo, se ha hallado una solución similar en la memoria de patente US nº 5.226.927, en la que se alimenta gas oxidante a la zona de combustión desde las aberturas en la carcasa del generador de gasificación. A pesar de que estos procedimientos mejoran el resultado de la gasificación, la combustión por sí misma y su temperatura no se pueden regular de manera precisa.
 - En el documento GB 884 740, se divulga un productor de gas que comprende una lanza que pasa a través del centro de la cámara de reacción para suministrar aire que contiene oxígeno.
 - Un objetivo de la invención es proporcionar un procedimiento para gasificar combustible en un generador de gasificación y un generador de gasificación, mediante el cual los inconvenientes y deficiencias relacionados con la técnica anterior puedan ser sustancialmente reducidos. En particular, la temperatura de combustión puede ser bien controlada en la invención.
 - El procedimiento y el equipo según la invención se caracterizan por lo expuesto en las reivindicaciones

independientes. Algunas formas de realización preferidas de la invención se exponen en las reivindicaciones subordinadas.

En el generador de gasificación utilizado en el procedimiento según la invención, está previsto un cuerpo, un canal de combustible para los procesos de gasificación y alimentación de combustible, y uno o más tubos de oxidación para alimentar con gas oxidante el canal de combustible. Los extremos de descarga de gas de oxidación de los tubos de oxidación pueden desplazarse dentro del canal de combustible, de manera que el punto de oxidación pueda desplazarse en el proceso de gasificación.

Se controla la temperatura de la zona de combustión mediante el desplazamiento de los tubos de oxidación contra la corriente de combustible o en el sentido de la corriente de combustible. Los tubos de oxidación pueden desplazarse de manera separada o en grupos. El número de tubos de oxidación puede seleccionarse según el tamaño del generador de gasificación y la precisión de control deseada del proceso de combustión. Cada tubo de oxidación puede tener su propia zona de combustión, pero los mismos tienen una zona de combustión inferior y de alimentación de combustible común.

20

25

30

45

50

55

65

El canal de combustible del generador de gasificación tiene un estrechamiento, que limita el libre flujo del combustible. La zona de combustión está situada en este estrechamiento. La temperatura de la zona de combustión se mide mediante un termómetro. El termómetro está preferentemente conectado con el primer accionador, que controla los tubos de oxidación y en particular, sus extremos de descarga de gas oxidación dentro del canal de combustible. El primer accionador ajusta la ubicación de los tubos de oxidación en función de las lecturas obtenidas a partir del termómetro según unas instrucciones predeterminadas. El primera accionador puede ser controlado por ordenador, automatizado de algún otro modo o controlable manualmente. En el procedimiento, se le da a la temperatura un valor establecido deseado, que se proporciona al primer accionador a algún dispositivo que la controle. Si la temperatura medida es mayor que el valor establecido de la temperatura, el primer accionador mueve el extremo de descarga del gas de oxidación de los tubos de oxidación en la dirección de la zona de pirolisis. De este modo, la zona de combustión recibe menos gas de oxidación, la combustión se ralentiza en la zona de combustión, y por lo tanto, la temperatura desciende. De manera correspondiente, si la temperatura medida es menor que el valor establecido, el extremo de descarga de gas de oxidación de los tubos de oxidación se mueve hacia el proceso de combustión, de manera que en la zona de combustión se acelera y la temperatura aumenta. Se ha descubierto experimentalmente que los mejores resultados con respecto a los procesos de gasificación y el gas de producto se obtienen cuando una temperatura superior a 850ºC se selecciona como el valor establecido de la temperatura.

La zona de sección transversal del canal de combustible puede ser modificada por uno o más dispositivo(s) de ajuste móviles para ajustar el flujo de combustible y para determinar el tamaño de la zona de combustión. Estos dispositivos de ajuste están realizados conforme a la técnica anterior como tal. Un posible modo de realizar los dispositivos de ajuste es colocar en el canal de combustible dos placas resistentes al calor perpendiculares con respecto al eje principal del canal de combustible, que se muevan una hacia la otra desde los lados opuestos del canal de combustible y por lo tanto, reduzcan la zona de sección transversal del estrechamiento. Con el fin de aumentar la zona de sección transversal del canal de combustión, las placas se mueven una lejos de la otra.

El termómetro que mide la temperatura de la zona de combustión está conectado con el segundo accionador, que cambia la posición de los accionadores móviles que ajustan la zona de sección transversal del canal de combustible. El segundo accionador controla la posición de los dispositivos de ajuste en función de las lecturas obtenidas del termómetro según unas instrucciones predeterminadas. Cuando la zona de sección transversal se reduce, la cantidad de materiales evaporados en la zona de pirolisis se reduce y se quema más carbón en la zona de combustión, en cuyo caso la temperatura aumenta. Cuando las zonas de sección transversal aumentan, la temperatura de la zona de combustión puede reducirse, porque la fase de pirolisis se acelera y más material que va a ser calentado llega a la zona de combustión. Cuando la temperatura del proceso de combustión aumenta demasiado, la combustión puede ser limitada incrementando la zona de sección transversal, además de desplazando el tubo de oxidación, de manera que pueda hacerse descender la temperatura. De manera correspondiente, cuando la temperatura es demasiado baja, el proceso de combustión puede acelerarse reduciendo la zona de sección transversal mencionada anteriormente. Este segundo accionador puede ser controlado por ordenador, automatizado de algún otro modo o controlable manualmente. Por lo tanto, el ajuste de la zona de sección transversal cambia el tamaño de la zona de combustión. Esto puede utilizarse para ajustar la potencia del generador de gasificación y para compensar las propiedades del combustible.

En el procedimiento según la invención, al ajustar la ubicación de los tubos de oxidación en el canal de combustible y de los dispositivos de ajuste que cambian la zona de sección transversal del canal de combustible juntos o separados por el primer y segundo accionador, el proceso de combustión del generador de gasificación puede ser controlado y es posible hacer que su temperatura permanezca dentro de los límites deseados.

La invención también se refiere a un equipo para aplicar el procedimiento mencionado anteriormente. El equipo comprende un generador de gasificación con un cuerpo, un canal de combustible procesos de gasificación y alimentación de combustible y uno o más tubos de oxidación, mediante los cuales se alimenta con gas de oxidación

la zona de combustión. Los tubos de oxidación se pueden desplazar dentro del canal de combustible para alimentar con gas de oxidación el punto deseado en el canal de combustión.

En una forma de realización preferida del equipo según la invención, los tubos de oxidación están dispuestos para ajustarse de manera separada o en uno o más grupos.

Hay un estrechamiento en el canal de combustible del generador de gasificación, con un termómetro para medir la temperatura de la zona de combustión. El termómetro está preferentemente conectado con el primer accionador, que ha sido programado para ajustar la ubicación del extremo de descarga de gas de oxidación de los tubos de oxidación dentro del canal de combustible según los resultados de medición obtenidos del termómetro.

El generador de gasificación tiene un tubo de oxidación esencialmente paralelo al eje longitudinal del canal de combustible, hacia el cual se ha dirigido el gas de oxidación y a partir de cuyo extremo de descarga el gas de oxidación fluye fuera de la zona deseada. El canal de combustible es vertical y el combustible está dispuesto para ser alimentado a la parte superior del canal de combustible. El mecanismo de desplazamiento del tubo es una solución apta para la finalidad, que podría ser, por ejemplo, una solución hidráulica o motorizada. El desplazamiento del extremo del tubo se produce entre las zonas de combustión y pirolisis. El flujo del gas se consigue por sobrepresión o subpresión.

20 El extremo de descarga del tubo de oxidación se ha formado de tal manera que el gas oxidante que procede del mismo permanece en el sitio deseado y no obstaculiza los movimientos del flujo de combustible. En una forma de realización preferida de la invención, esto se ha conseguido añadiendo al extremo de descarga del tubo de oxidación un controlador de gas oxidante, que guía el gas hacia el entorno próximo del tubo de oxidación hacia una zona en la que se desea que el gas oxidante tenga un efecto. Asimismo, son posibles otras soluciones para formar el extremo del tubo. Por ejemplo, el tubo puede cerrarse y pueden realizarse orificios en el mismo, que dirijan la descarga del 25 gas oxidante en la dirección deseada. En estas formas de realización, los tubos de oxidación pueden tener extremos de descarga giratorios para guiar el gas oxidante.

El lugar de la oxidación puede ser controlado de distintos modos. Por ejemplo, pueden estar previstos una serie de tubos como los descritos anteriormente, y pueden ajustarse todos por separado en grupo. El tubo o tubos pueden 30 venir de los lados del cuerpo del generador de gasificación, por ejemplo, y pueden dirigirse desde los mismos hasta el punto deseado, o por el contrario, los tubos están colocados totalmente fuera del cuerpo, pero sus extremos de descarga que salen del canal de combustible se han conformado de tal manera que sus movimientos puedan utilizarse para guiar los chorros de gas de oxidación al canal de combustible.

En una forma de realización preferida del procedimiento de la invención, hay una zona de combustión inferior en la parte inferior del generador de gasificación, en la que se guema el residuo carbonizado formado en los procesos de gasificación. El gas oxidante se dirige hacia esta zona de combustión inferior por su propia conexión de alimentación separada. Esta combustión inferior hace que la zona de reducción fluya hacia abajo, y la ceniza creada en la zona de combustión real, por lo tanto, no puede bloquear el canal de combustible. Esto también reduce la cantidad de ceniza creada.

El gas de producto del generador de gasificación según la invención puede dirigirse fuera del gasificador para la finalidad deseada. El gas creado puede asimismo entrar en combustión en el propio gasificador tras la zona de reducción, en cuyo caso el generador de gasificación según la invención puede utilizarse para la producción de calor, por ejemplo.

Los materiales de las piezas utilizadas en el generador de gasificación descrito son preferentemente metálicos, cerámicos u otros materiales, que soporten temperaturas elevadas.

La invención presenta la ventaja de que mejora la pureza y la calidad del gas de producto. En los análisis, se ha descubierto que la composición del gas de producto obtenida mediante el procedimiento según la invención es, de media, de un 21% de CO, un 15% de H₂ 11% de CO₂ 2% de CH₄, mientras que el resto es principalmente nitrógeno, lo cual es un resultado relativamente bueno. La pureza del gas de producto permite su uso de una manera versátil. Además, simplifica y hace que los costes de fabricación y uso del equipo sean menores que anteriormente. El proceso de purificación del gas de producto también se simplifica sustancialmente.

Además, la invención tiene la ventaja de que las temperaturas son controladas de manera precisa, y por lo tanto las reacciones de gasificación también se mantienen bajo control y no producen ingredientes no deseados, tales como compuestos de alquitrán, que pudieran perjudicar los procesos y el funcionamiento del generador de gasificación por su acumulación sobre la superficie interior del canal de combustible, por ejemplo.

Además, la invención tiene la ventaja de que el combustible se utilizará de la manera más eficiente posible, y el proceso resultará más económico que las soluciones anteriores.

A continuación, el equipo y el procedimiento según la invención se describirán de manera más precisa haciendo

4

50

55

60

65

35

40

45

5

10

15

referencia al dibujo adjunto, en el que:

la figura 1 muestra una sección transversal de una forma de realización preferida de un generador de gasificación según la invención.

5

10

15

La figura 1 muestra un ejemplo de un generador de gasificación según la invención, en una posición vertical, en sección transversal. El generador de gasificación tiene un cuerpo 1, dentro del cual está previsto un canal de combustible 2, que principalmente sigue la forma del cuerpo. En la parte superior del canal de combustible, está previsto un equipo de alimentación 3. El equipo de alimentación 3 se cierra mediante una cubierta hermética 25, que solo se abre cuando se añade el combustible. El canal de combustible 2 puede dividirse en las siguientes zonas: la zona del combustible no quemado 4, la zona de pirolisis 5, la zona de combustión 6, la zona de reducción 7 y la zona de combustión inferior 8. Cuando el generador de gasificación está en la posición vertical mostrada en la figura 1, la zona 4 de combustible no quemado es la superior y la zona de combustión inferior 8 es la inferior. Dentro del canal de combustible, está previsto un tubo de oxidación 10, en cuyo primer extremo orientado hacia arriba está previsto un extremo de descarga 11, desde el cual el gas oxidante se dirige a la zona de combustión 6. El tubo de oxidación 10 se extiende en el canal de combustible 2 en el sentido de su eje longitudinal. Un extremo del tubo de oxidación se extiende a través de la parte inferior del canal de combustible hasta la cámara 13 en la parte inferior del cuerpo.

20

El sistema de transporte de gas de oxidación que pertenece al generador de gasificación también comprende una tubería de transporte de gas de oxidación 12 que pasa alrededor del canal de combustible 2, abriéndose su primer extremo fuera del cuerpo 1 y dirigiéndose su segundo extremo hacia una cámara 13 en la parte inferior del cuerpo. El gas de oxidación se bombea a través de la tubería de transporte hacia la cámara, en la que se forma la sobrepresión. El segundo extremo del tubo de oxidación 10 que se extiende hasta la cámara 13 está conectado con el primer accionador 14, mediante el cual se puede desplazar el tubo de oxidación en las direcciones ascendente y descendente dentro de la cámara de combustible. El tubo de oxidación 10 está rodeado en su parte inferior por un tubo de recubrimiento 9 instalado de manera fija en el cuerpo 1, que penetra a través de la parte inferior del cuerpo 1 del generador de gasificación, y cuya abertura dirigida hacia arriba ha sido sellada, de manera que cuando el tubo de oxidación 10 se mueve, el gas de oxidación no llega al canal de combustible desde la cámara de gas de oxidación sobrepresionada 13.

30

25

La zona de combustión inferior 8 en la parte inferior del canal de combustible 2 obtiene su gas de oxidación a lo largo del tubo de oxidación 15. Se eliminan las cenizas y otros materiales acumulados en la parte inferior del canal de combustible 2 mediante un sistema de eliminación de cenizas 16, que dirige las cenizas hacia el contenedor 17. Esta técnica es conocida de por sí.

35

El canal de combustible 2 presenta un estrechamiento 18, que se ha realizado mediante la conformación del canal de combustible en este punto para que se adapte a la forma de un estrechamiento y un conducto de apertura. En el punto del estrechamiento en el canal de combustible, está previsto un termómetro 20 y unos dispositivos de ajuste móviles 19 para cambiar la zona de sección transversal del canal de combustible. Los dispositivos de ajuste 19 que cambian la zona de sección transversal del canal de combustible son controlados por el segundo accionador 21.

40

El termómetro 20 y el primer y segundo accionadores 14 y 21 de los medios de control de zona de sección transversal están conectados con una unidad de control 22, que controla su funcionamiento. Esta unidad de control es preferentemente un ordenador.

45

El gas de producto creado en el canal de combustible se dirige hacia fuera desde el generador de gasificación hasta el tubo de salida de gas de producto 23. El tratamiento del gas de producto en el generador y el procedimiento para llevarlo fuera del cuerpo dependen de la finalidad de uso del gas de producto y del generador.

50

55

En el procedimiento según la invención, el proceso de gasificación tiene lugar del siguiente modo: dentro del cuerpo 1 del generador de gasificación, está previsto un canal de combustible 2, en el que se producen los procesos de gasificación. Se alimenta el combustible a la parte superior del canal de combustible 2 mediante el equipo de alimentación de combustible 3. El combustible fluye por medio de la gravedad hacia la zona de pirolisis 5 calentada por la zona de combustión 6, donde los materiales volátiles se separan del combustible. El combustible sigue fluyendo hacia la zona de combustión 6, en la que participa en la reacción de combustión, que se mantiene mediante el gas de oxidación que procede del extremo de descarga 11 del tubo de oxidación 10. Los gases de combustión, el residuo carbonizado y las cenizas creados en la zona de combustión 6 se desplazan hacia la zona de reducción 7, en la que se reducen los gases de combustión. El residuo carbonizado creado en las reacciones mencionadas anteriormente se quema en la zona de combustión inferior 8, hacia la cual se dirige el gas de oxidación desde el tubo 15. Los desechos de la combustión creados pueden ser eliminados mediante un equipo de eliminación de cenizas 16, que dirige los desechos hacia el contenedor 17. El gas de producto generado en el proceso sale del generador de gasificación a lo largo del tubo de descarga 23.

60

65

En el procedimiento según la invención, la temperatura de la zona de combustión 6 se mide mediante un termómetro 20. La unidad de control 22 lee los resultados de la medición proporcionados por el termómetro. Si la temperatura de

medición es superior al valor de temperatura establecido proporcionado a la unidad de control 22, el primer accionador 14 eleva el tubo de oxidación 10. A continuación, el extremo de descarga 11 del tubo de oxidación se mueve hacia la zona de pirolisis 5, de manera que se reduce la cantidad de gas de oxidación en la zona de combustión 6, el proceso de combustión se ralentiza y la temperatura desciende. En caso necesario, la unidad de control 22 también puede utilizarse para controlar el segundo accionador 21, el cual, cuando se desea que la temperatura medida por el termómetro 20 descienda, aumenta la zona de sección transversal del canal de combustible 2 mediante los dispositivos de ajuste. De este modo, las reacciones de la pirolisis se aceleran y llega más material que debe ser calentado a la zona de combustión, y por lo tanto, la temperatura de la zona de combustión desciende. Cuando la unidad de control 22 certifica que la temperatura de la zona de combustión 6 medida por el termómetro 20 es demasiado baja en comparación con el valor establecido, se hace descender el tubo de oxidación 10 mediante el primer accionador 14. El extremo de descarga 11 del tubo de oxidación dirige más cantidad de gas de oxidación a la zona de combustión 6, provocando que el proceso de combustión se acelere y que la temperatura aumente.

5

10

25

Además, al cerrar los dispositivos de ajuste 19 para la zona de sección transversal del canal de combustible 2 mediante el segundo accionador 21, la reacción de la pirolisis se atenúa y como consecuencia, más carbón, que puede participar en la combustión, llega a la zona de combustión 6. Por lo tanto, la reacción de la combustión se intensifica. Mediante las funciones descritas anteriormente, se puede conseguir que la temperatura de la zona de combustión 6 permanezca dentro los límites deseados. El ajuste de la temperatura del proceso de combustión se consigue principalmente al desplazar los tubos de oxidación 10.

El sistema según la invención también se puede poner en práctica de maneras distintas a las descritas anteriormente. Se pueden realizar algunos ajustes de manera manual o automática según una programación predeterminada. En la figura 1, solo se muestra un tubo de oxidación en la forma de realización preferida del generador de gasificación. Naturalmente, pueden estar previstos más de uno tubo de oxidación, y pueden desplazarse cada uno por separado o en grupos.

REIVINDICACIONES

1. Procedimiento para gasificar combustible en el canal de combustible de un generador de gasificación que funciona según el principio de cocorriente, presentando el canal de combustible (2) una zona de pirolisis (5) y una zona de combustión (6) para la combustión del combustible y el combustible es alimentado a la parte superior del canal de combustible y a uno o más de los tubo(s) de oxidación (10) móviles para alimentar con gas de oxidación la zona de combustión (6) y dicho tubo o tubos son móviles dentro del canal de combustible (2) sustancialmente en la dirección del eje longitudinal del canal de combustible y el tubo o tubos de oxidación (10) presenta(n) unos extremos de descarga (11) y la temperatura de la zona de combustión (6) es medida por un termómetro (20), caracterizado porque en el canal de combustible hay un estrechamiento para limitar el flujo del combustible y la zona de combustión está formada en el estrechamiento y el tubo o tubos de oxidación son desplazados dentro del canal de combustión durante el proceso de combustión para alimentar con gas de oxidación el punto deseado en el canal de combustible y el desplazamiento de los extremos de descarga tiene lugar entre las zonas de pirolisis y de combustión, y los tubos de oxidación (10) son desplazados en función de la temperatura medida según unas instrucciones predeterminadas para mantener la temperatura de la zona de combustión (6) en el intervalo deseado desplazando los tubos de oxidación y los extremos de descarga contra el flujo de combustible cuando la temperatura es demasiado alta y en el sentido del flujo de combustible cuando la temperatura es demasiado baja y la zona de sección transversal del canal de combustible (2) es modificada por unos dispositivos de ajuste (19) móviles en función de la temperatura medida de la zona de combustión según unas instrucciones predeterminadas para mantener la temperatura de la zona de combustión (6) dentro del intervalo deseado.

10

15

20

55

65

- 2. Procedimiento según la reivindicación 1, caracterizado porque cada tubo de oxidación (10) es desplazado de manera independiente.
- 3. Generador de gasificación que funciona según el principio de cocorriente, que comprende un cuerpo (1), un 25 canal de combustible (2) que presenta una zona de pirolisis (5) y una zona de combustión (6), en el que los procesos de alimentación y de gasificación están dispuestos para tener lugar en dicho canal de combustible, y el combustible está dispuesto para ser alimentado a la parte superior del canal de combustible y a uno o más tubos de oxidación (10) móviles que están dispuestos para alimentar con gas de oxidación el canal de combustible y dicho tubo o tubos 30 son móviles dentro del canal de combustible (2) sustancialmente en la dirección del eje longitudinal del canal de combustible, y el tubo o tubos de oxidación (10) presentan unos extremos de descarga (11) y en el canal de combustible, está previsto un termómetro (20) que está dispuesto para medir la temperatura de la zona de combustión (6), caracterizado porque en el canal de combustible hay un estrechamiento (18) para limitar el flujo de combustible, y la zona de combustión (6) está situada en dicho estrechamiento, y el tubo o tubos de oxidación (10) 35 son móviles durante el proceso de combustión dentro del canal de combustible para alimentar con gas de oxidación el punto deseado en el canal de combustible y el desplazamiento de los extremos de descarga tiene lugar entre las zonas de pirolisis y de combustión y el tubo o tubos de oxidación están dispuestos para poder ser desplazados en función de la temperatura medida según unas instrucciones predeterminadas para mantener la temperatura de la zona de combustión (6) en el intervalo deseado, en el que los tubos de oxidación y los extremos de descarga están 40 dispuestos para poder ser desplazados contra el flujo de combustible cuando la temperatura es demasiado alta y en el sentido del flujo de combustible cuando la temperatura es demasiado baja y están previstos unos dispositivos de ajuste (19) móviles en el canal de combustible (2) que están dispuestos para cambiar la zona de sección transversal del estrechamiento (18).
- 4. Generador de gasificación según la reivindicación 3, caracterizado porque el tubo o tubos de oxidación (10) son móviles dentro del canal de combustible (2) sustancialmente en la dirección del eje longitudinal del canal de combustible.
- 5. Generador de gasificación según cualquiera de las reivindicaciones 3 o 4, caracterizado porque el tubo o tubos de oxidación (10) están dispuestos para llegar al canal de combustible (2) sustancialmente desde abajo.
 - 6. Generador de gasificación según cualquiera de las reivindicaciones 3 a 5, caracterizado porque el tubo o tubos de oxidación (10) presentan unos extremos de descarga (11), que han sido conformados para dirigir el gas de oxidación hacia el canal de combustible (2) de la manera deseada.
 - 7. Generador de gasificación según la reivindicación 6, caracterizado porque los extremos de descarga (11) del tubo o tubos de oxidación (10) han sido conformados para evitar flujos en el sentido del flujo de combustible.
- 8. Generador de gasificación según cualquiera de las reivindicaciones 3 a 7, caracterizado porque comprende asimismo un primer accionador (14) que está dispuesto para desplazar el tubo o tubos de oxidación y una unidad de control (22) que está dispuesta para controlar el primer accionador.
 - 9. Generador de gasificación según la reivindicación 3, caracterizado porque hay un estrechamiento (18) en el canal de combustible (2) que está dispuesto para formar una zona de combustión (6) en el canal de combustible.
 - 10. Generador de gasificación según la reivindicación 9, caracterizado porque, en conexión con el estrechamiento

- (18) del canal de combustible (2), está previsto un termómetro (20), que ha sido conectado con la unidad de control (22) que está dispuesta para desplazar los tubos de oxidación (10) en función de la temperatura de la zona de combustión (6).
- 5 11. Generador de gasificación según cualquiera de las reivindicaciones 3 a 10, caracterizado porque el tubo o tubos de oxidación (10) han sido dispuestos para poder ser desplazados de manera independiente.
- 12. Generador de gasificación según cualquiera de las reivindicaciones 8 a 11, caracterizado porque la unidad de control (22) es un ordenador, en cuya memoria ha sido cargado el programa de control del generador de gasificación.

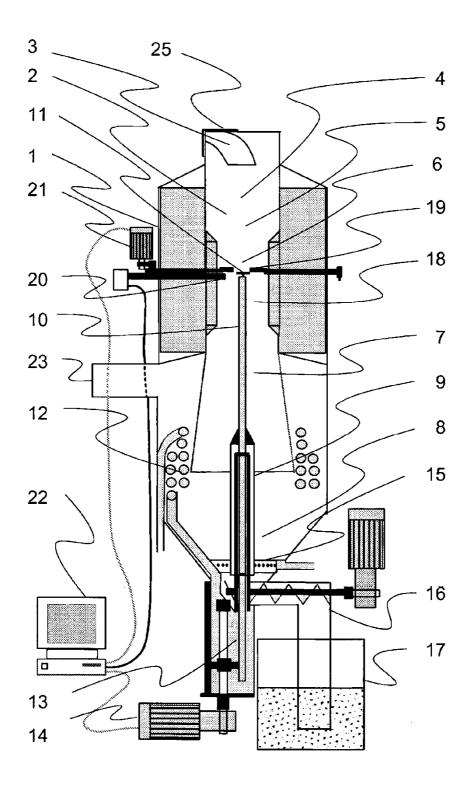


Fig. 1