

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 462 976

51 Int. Cl.:

A47C 1/026 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

96) Fecha de presentación y número de la solicitud europea: 01.03.2011 E 11707633 (1)

(97) Fecha y número de publicación de la concesión europea:

12.02.2014 EP 2544567

54 Título: Herraje de encastre

(30) Prioridad:

12.03.2010 DE 202010000368 U

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.05.2014

(73) Titular/es:

HETTICH FRANKE GMBH & CO. KG (100.0%) Hinter dem Ziegelwasen 6/1 72336 Balingen-Weilstetten, DE

(72) Inventor/es:

RIEDMÜLLER, HOLGER

74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Herraje de encastre

10

15

25

30

35

40

45

50

55

El invento se refiere a un herraje de encastre, especialmente para mover piezas de muebles, con una primera palanca y una segunda palanca apoyada de manera giratoria en ella, en donde en la primera palanca hay situado un dentado de forma anular colocado alrededor de un eje, dentado que engrana en una corona dentada, en donde dentado y corona dentada están enclavados uno respecto al otro en una primera dirección de giro y en una segunda dirección de giro pueden girar una zona angular predeterminada uno respecto de otro.

El documento DE 2006 004 076 pública una articulación de encastre que comprende un primer y un segundo brazo articulado que están acoplados uno con otro mediante un mecanismo de encastre. En un brazo articulado está conformada una corona dentada que esta engranada con un elemento de corona dentada en forma de disco. Al alcanzarse una posición final el elemento corona dentada puede ser levantado en dirección axial mediante un disco de elevación para poner el dentado fuera de encastre. Con ello los brazos articulados pueden ser hechos girar retrocediendo a una posición de partida, hasta que por un lado llegan a engranar nuevamente con un dentado provisto de marcha libre. El elemento de corona dentada está para ello pretensado en dirección axial mediante un muelle helicoidal, con lo que debido a la disposición del muelle así como a la elevación del disco dentado la construcción es relativamente voluminosa. Además la conformación del dentado en la palanca articulada es una desventaja porque no se puede producir ninguna adaptación flexible por lo que respecta al ángulo de ajuste y al diseño de la palanca.

Otro herraje de encastre está mostrado en el documento DE 203 19 484.

Por tanto es misión del presente invento crear un herraje de encastre que pueda ser adaptado de manera flexible a la correspondiente aplicación y posea una construcción compacta.

Esta misión será resuelta con un herraje de encastre con las características de la reivindicación 1.

De acuerdo con el invento la corona dentada está construida en forma anular y puede ser desplazada en paralelo al eje de giro hacia un elemento de acoplamiento situado en la corona dentada, de manera que para desenclavar la corona dentada con el dentado sólo se desplazará la corona dentada en forma anular mientras que el elemento de acoplamiento permanece estacionario axialmente y está acoplado con la segunda palanca. Con ello el herraje de encastre puede ser construido especialmente compacto, pudiéndose además conseguir una adaptación del ángulo de desplazamiento, porque la posición angular del elemento de acoplamiento con relación a la segunda palanca será regulada. Con ello se obtiene una posibilidad de adaptación sencilla según si el herraje de encastre es utilizado para el ajuste de apoyos posteriores, apoyos de brazo, piezas de pata u otras piezas de mueble regulables.

En la periferia exterior el elemento de acoplamiento presenta un perfilado que está en engrane por cierre de forma con un perfilado en la corona dentada de manera que se garantiza una unión solidaria al giro entre el elemento de acoplamiento y la corona dentada, independientemente de si la corona dentada está levantada del dentado o está engranada con éste. El elemento de acoplamiento está construido además con como mínimo un arrastrador sobre el lado orientado hacia la segunda palanca, arrastrador que está acoplado con la segunda palanca de manera que aquí igualmente existe una unión solidaria al giro. El elemento de acoplamiento puede entonces presentar, en dirección axial, varios resaltes que están introducidos en correspondientes vaciados o aberturas en la segunda palanca. Con ello se puede obtener de manera sencilla un elemento de acoplamiento que se fije a la segunda palanca en diferentes posiciones angulares, especialmente si los resaltes están situados sobre una pista en forma de anillo y correspondientemente en la segunda palanca están previstas aberturas situadas en forma de anillo

Según otra configuración del invento el dentado está construido en la primera palanca como una parte separada que puede ser fijada a la primera palanca en diferentes posiciones angulares. También con esto se consigue una adaptación sencilla a las zonas angulares regulables por que se ajustará la posición del dentado con respecto a la primera palanca. También aquí pueden estar previstas varias aberturas y/ o resaltes sobre una pista en forma de anillo de manera que es posible un montaje sencillo en diferentes posiciones angulares.

Preferentemente, como elemento de unión está previsto un disco de encastre en el que hay construida como mínimo una rampa de entrada para desplazar la corona dentada en dirección axial. El disco de encastre puede estar situado entonces entre el elemento de acoplamiento y el dentado y presentar repartidas por la periferia exterior varias rampas de entrada, especialmente tres o cuatro rampas de entrada, de manera que se evita un desplazamiento en oblicuo de la corona dentada al levantarla del dentado. La corona dentada puede presentar, en sus bordes frontales interiores, como mínimo un resalte, preferentemente tres o cuatro resaltes, que pueden moverse a lo largo de una rampa de entrada del disco de encastre. La rampa de entrada puede estar construida en forma de V de manera que tanto al levantar como también al bajar la corona dentada se produce un movimiento por igual en dirección axial. Éste movimiento por igual en dirección axial puede ser influido mediante el valor angular de la rampas de entrada en forma de V. En tanto en cuanto el ángulo de las rampas de entrada en forma de V sea mayor tanto más larga será la

ES 2 462 976 T3

construcción de los planos oblicuos y tanto más se retrasará el descenso (enhebrar) de la corona dentada. Éste descenso relativamente retrasado de la corona dentada tiene la ventaja de que con él se amortiguan fuertes ruidos de tope.

Para una construcción especialmente compacta la corona dentada está pretensada hacia el dentado mediante un muelle plano situado entre la segunda palanca y la corona dentada. El muelle plano puede presentar una zona interior en forma anular que se apoya en la segunda palanca y patas exteriores que se apoya en sobre la corona dentada.

5

10

15

35

40

45

Preferentemente el dentado está fijado a la primera palanca mediante como mínimo un perno, y el perno atraviesa un taladro alargado de un disco de encastre. Con ello puede predeterminarse la zona angular en la que el dentado está engranado con la corona dentada, puesto que el disco de encastre predetermina la zona angular regulable por medio de la longitud del taladro alargado de la zona angular regulable. Mediante la sustitución del disco de encastre se puede regular la longitud del taladro alargado o de los taladros alargados en el disco de encastre.

Para una transmisión de fuerza especialmente estable los dientes del dentado y de la corona dentada pueden presentar un corte posterior situado inclinado hacia el eje de giro. Se ha comprobado que en el caso de la transmisión de grandes momentos de giro una disposición de los dientes ligeramente inclinada se ocupa de que los dientes engranen uno dentro de otro mediante la compresión con una fuerza.

El invento será descrito a continuación con más detalle sobre la base de varios ejemplos constructivos con referencia a los dibujos adjuntos. Se muestra:

20	Fig. 1	una representación despiezada en perspectiva de un ejemplo constructivo de un herraje de encastre acorde con el invento;
	Fig. 2	una vista en planta superior sobre el herraje de encastre de la figura 1, en la posición montado;
	Fig. 3	una vista lateral seccionada del herraje de encastre de la figura 1, en la posición montado;
	Fig. 4	una vista en detalle, en perspectiva, del disco de encastre;
25	Fig. 5	una vista en perspectiva de la corona dentada y del dentado, en una posición levantada;
	Fig. 6	una vista en perspectiva del dentado y de la corona dentada en una posición descendida;
	Fig. 7	una vista en detalle de la corona dentada en una posición descendida;
	Fig. 8	una vista lateral del dentado y de la corona dentada;
	Fig. 9	una vista en detalle del dentado y de la corona dentada;
30	Figuras 10A y 10B	dos vistas de una palanca modificada de un herraje de encastre acorde con el invento; y
	Figuras 11A y 11B	dos vistas de otra palanca modificada de un herraje de encastre acorde con el invento.

Un herraje de encastre 1 sirve para mover piezas de mueble, como por ejemplo, apoyos de brazos o respaldos, apoyos de cabeza, piezas de patas, clapetas en muebles con cajones u otras piezas de mueble regulables. Una primera palanca 2 se apoya pudiendo girar alrededor de un eje de giro con respecto a una segunda palanca 3, en donde para el apoyo está prevista un roblón central 4, que atraviesa una abertura 20 en la palanca 2 y una abertura 31 en la palanca 3.

En la palanca 2 hay construido un alojamiento 21 en forma de cubeta en el que hay introducido un dentado 5. El dentado 5 presenta una abertura central 50 a través del cual está guiado el roblón central 4. Además el dentado 5 en forma de disco comprende aberturas 51 dispuestas en forma de anillo que están situadas estrechándose hacia las aberturas 22 en el alojamiento 21. En dos de estas aberturas 21 hay introducidos pernos 52 de manera que el dentado 5 está unido solidario al giro con la palanca 2. La posición del dentado 5 puede ser regulada en relación con la palanca 2 mediante los pernos 52

En el dentado 5 hay situado muy próximo un elemento de conexión en forma de un disco de encastre 6 que presenta una abertura central 62 la cual es atravesada por el roblón central 4. El disco de encastre 6 presenta además dos taladros alargados 61 curvados que cada uno de ellos está atravesado por una zona 53 regruesada de los pernos 52. En el disco de encastre 6, en la periferia exterior, hay construidos cuatro resalte 60 en forma de V orientados hacia arriba que sirven para la elevación de una corona dentada 8.

La corona dentada 8 comprende numerosos dientes que están engranados con dientes del dentado 5. La corona dentada 8 está construida en forma de anillo y en su borde frontal interior comprende resaltes 81 y vaciados 80. El perfilado así construido con vaciados 80 y resaltes 81 está situado en engrane por cierre de forma con un perfilado de un elemento de acoplamiento 7 que está situado en el interior de la corona dentada 8. El elemento de acoplamiento comprende una abertura 70 que está atravesada por el roblón central 4. En la periferia exterior del elemento de acoplamiento 7 están previstos resaltes 72 que están introducidos en vaciados 80 en la corona dentada 8. Además en el elemento de acoplamiento 7, sobre el lado orientado hacia la palanca 3, hay construidos resaltes 71 en forma cilíndrica que están situados sobre una pista circular y pueden introducirse en las correspondientes aberturas 30 en la palanca 3. Según sea la posición angular, la palanca 3 puede unirse en una posición angular predeterminada con el elemento de acoplamiento 7.

10

15

20

25

35

55

El roblón central 4 mantiene unido por tanto en dirección axial al herraje de encastre en donde un ensanchamiento 43 en forma de roblón soporta por la parte exterior a la palanca 3. Sobre la cara opuesta hay construida una brida 40 que sobresale radialmente, la cual soporta a la palanca 2. El roblón central 4 comprende una zona 41 regruesada que atraviesa la abertura 20, la abertura 50 así como la abertura 62 del disco de encastre 6. Una zona 42 cilíndrica que termina en punta, del roblón central 4 atraviesa una abertura 70 del elemento de acoplamiento 7 así como una abertura 90 de un elemento de muelle 9 y la abertura 31 de la palanca 3.

En la figura 2 se muestra el herraje de encastre en una vista en planta superior. Las palancas 2 y 3 pueden ser hechas girar un ángulo predeterminado en una dirección relativa de una a la otra, mientras que en la dirección opuesta están enclavadas una respecto a la otra. Al alcanzarse una posición final la corona dentada 8 se levanta y la palanca 2 o 3 puede ser hecha girar hacia atrás hasta que se alcance una posición de partida.

En la figura 3 se muestra la zona central del herraje de encastre 1 en posición de ensamblado. Los distintos componentes se apoyan pudiendo girar en el roblón central 4, el muelle 9 está construido como muelle plano y se apoya sobre la palanca 3 en una zona central 91 en forma de anillo. En una zona exterior las patas 92 del muelle plano se apoyan en la corona dentada 8 y la presionan contra el dentado 5. Además se puede apreciar que los pernos 52 atraviesan la palanca 2 así como el dentado 5 y en la zona del disco de encastre pueden girar con la zona regruesada 53 en los taladros alargados 61.

En la figura 4 el disco de encastre 6 está representado en detalle, y comprende dos taladros alargados 61 curvados y cuatro resaltes 60 en forma de V.

Como se muestra en la figura 5 el disco de encastre 6 con los resaltes 60 puede ocasionar que la corona dentada 8 se levante desde el dentado 5 cuando un resalte 81 de la corona dentada orientado hacia el interior es hecho pasar sobre el resalte 60 por una rampa de entrada. Cuando pasa esto, entonces la zona regruesada 53 del perno 52 ha alcanzado el extremo del taladro alargado 62 y con ello el disco de encastre 6 es hecho girar junto con el perno 52.

En la figura 6 se muestra la posición en la que la corona dentada 8 está engranada con el dentado 5 y se mantiene engranada mediante el elemento de muelle 9. Repartidos por la periferia los resaltes 60 están situados en correspondientes vaciados entre dos resaltes 81 en la cara interior de la corona dentada 8. Repartidos por la periferia hay situados cuatro resaltes 60.

Como se puede ver en la figura 7, cada resalte 60 posee dos rampas de entrada 63 y 64 que pueden levantan o después descender de nuevo al resalte 81 de forma cuadrada en la corona dentada 8 en el caso de un movimiento giratorio de uno respecto al otro

- Esta elevación y nuevo descenso en dirección axial puede ser influido por el valor angular de las rampas de entrada 63, 64 diseñadas en forma de V. Cuanto mayor sea el ángulo de diseño de las rampas de entrada 63, 64 más largo es el diseño de los planos inclinados y tanto más se retrasa el descenso (enhebrar) de la corona dentada 8. Este descenso relativamente retrasado de la corona dentada 8 tiene la ventaja de que con él se amortiguan altos ruidos de tope.
- En las figuras 8 y 9 se muestran el dentado 5 y la carona dentada 8 en una vista lateral.. El dentado comprende dientes con un flanco de diente 82 que está construido como rampa de entrada, de manera que la corona dentada 8 puede girar libremente en una dirección sobre el dentado 5, en donde mediante la rampa de entrada se eleva la corona dentada 8 y entonces mediante la fuerza del muelle 9 es empujada en el siguiente hueco de diente. El segundo flanco de diente 83 está situado inclinado en una dirección paralela al eje de giro a través del roblón central 4, preferentemente en un ángulo entre 2º y 5º de manera que en el caso de un momento de giro alto los dientes del dentado 5 y de la corona dentada 8 se traban entre sí.

En las figuras 10A y 10B se muestra un ejemplo constructivo modificado de una palanca 2', que puede ser utilizada en el caso de un herraje de encastre 1 según la figura 1. La palanca 2' comprende un brazo giratorio 20' y un alojamiento 21' en forma de disco en el que se ha vaciado una abertura central 22' en forma de un hexágono. En el vaciado 22' se introduce un resalte 24' en forma de hexágono de una cubeta 23'en la que después se monta el

ES 2 462 976 T3

dentado 5. Mediante la construcción en dos partes de la palanca 2' es posible ajustar la dirección del brazo giratorio 20' respecto de la cubeta 23'. Además se puede variar la longitud del brazo giratorio 20' y la geometría, lo cual es una ventaja para casos de aplicaciones especiales. En lugar de los resaltes 24', 24" hexagonales mostrados y los alojamientos 21', 21" se puede pensar también naturalmente en otras uniones, referiblemente uniones por cierre de forma, para transmitir la fuerza del momento de giro.

5

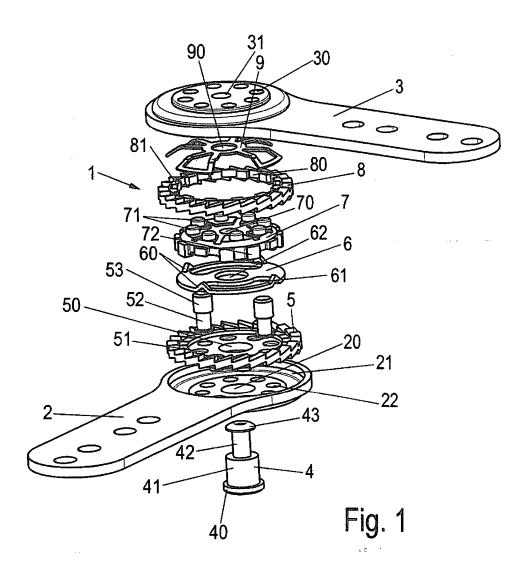
10

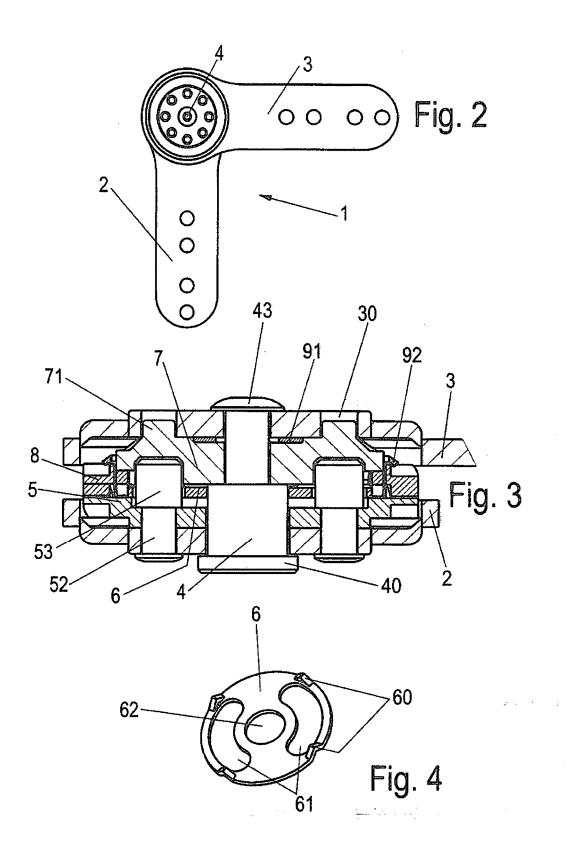
En las figuras 11A y 11B se muestra un diseño modificado de una palanca 2" en la que en una cubeta 23" está construido un resalte 24" hexagonal, como se muestra en el ejemplo constructivo precedente. De nuevo, en la cubeta 23" se puede montar el dentado 5. En lugar de un brazo giratorio 20" está prevista una prolongación axial con un alojamiento 21" para acoplamiento con el resalte 24". Al alojamiento 21" hay unida una barra 20" que por un extremo está provista con un elemento de acoplamiento 26". La forma de la palanca 2, 2', 2" y 3 puede ser libremente variada, por tanto, en amplios márgenes. Así, por ejemplo, es posible configurar una barra 20" alargada como elemento de unión de tal manera que ella transmita esfuerzos entre un primer y un segundo herraje de encastre para un movimiento sincronizado del primer y segundo herraje de encastre.

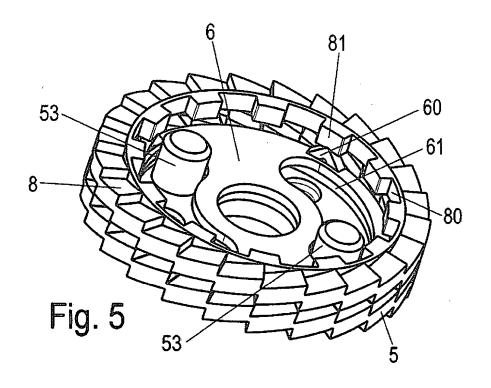
Además también se puede pensar en utilizar solo un herraje de encastre para enclavamiento, para transmitir movimientos sincronizados deseados con un elemento de unión de este tipo sobre una articulación simple o una articulación que está provista sin enclavamiento.

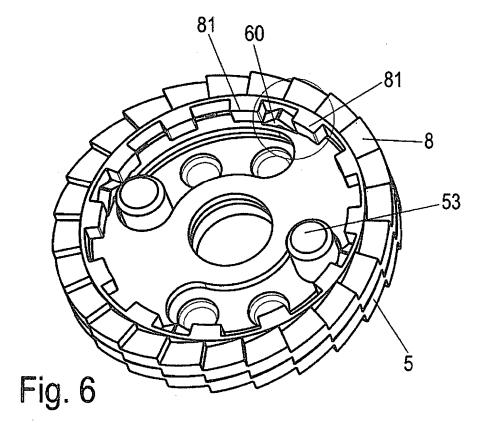
REIVINDICACIONES

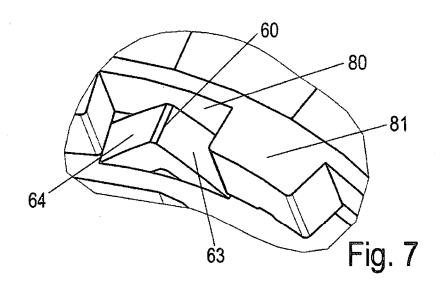
5

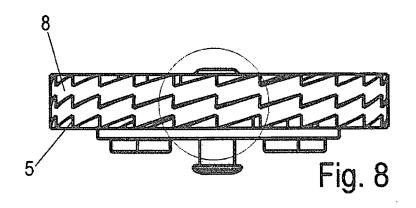

10

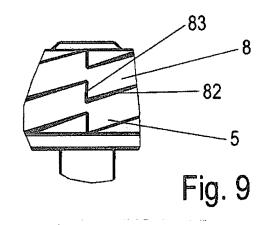

25


30


35


- 1. Herraje de encastre (1) especialmente para desplazar partes de muebles, con una primera palanca (2, 2', 2") y una segunda palanca (3) que se apoya en ella pudiendo girar, en donde en la primera palanca (2, 2', 2") y colocado en forma de anillo alrededor de un eje de giro, hay situado un dentado (5) que está engranado con una corona dentada (8) en forma de anillo, en donde el dentado (5) y la corona dentada (8) están enclavados uno respecto al otro en una primera dirección de giro y en una segunda dirección de giro pueden moverse uno respecto del otro una zona angular predeterminada, caracterizado por que mediante un elemento de conexión (6) la corona dentada (8) puede desplazarse en paralelo al eje de giro en relación a un elemento de acoplamiento (7) y el elemento de acoplamiento (7) presenta en la periferia exterior un perfilado (72) que está engranado por cierre de forma con un perfilado (80) en la corona dentada (8), de manera que queda garantizada una unión solidaria al giro entre el elemento de acoplamiento (7) y la corona dentada (8).
- Herraje de encastre (1), caracterizado por que sobre la cara orientada a la segunda palanca (3) hay construido como minimo un arrastrador (71) que está acoplado con la segunda palanca (3).
- 15 3. Herraje de encastre según la reivindicación 2, caracterizado por que en el elemento de acoplamiento (7), en dirección axial, están previstos varios resaltes (71) que están introducidos en alojamientos (30) en la segunda palanca (3).
 - 4. Herraje de encastre según una de las reivindicaciones 1 a 3, caracterizado por que el elemento de acoplamiento (7) puede ser fijado a la segunda palanca (3) en diferentes posiciones angulares.
- 5. Herraje de encastre según una de las reivindicaciones 1 a 4, caracterizado por que el dentado (5) está construido en la primera palanca (2, 2', 2") como un componente separado, que puede ser fijado a la palanca (2, 2', 2") en diferentes posiciones angulares.
 - 6. Herraje de encastre según una de las reivindicaciones 1 a 5, caracterizado por que como elemento de conexión está previsto un disco de encastre (6) en el que está previsto como minimo una rampa de entrada (63, 64) para desplazar la corona dentada (8) en dirección axial.
 - 7. Herraje de encastre según la reivindicación 6, caracterizado por que el disco de encastre (6) presenta como minimo tres, preferentemente cuatro rampas de entrada (63, 64) repartidas por la periferia.
 - 8. Herraje de encastre según una de las reivindicaciones 1 a 7, caracterizado por que la corona dentada (8) presenta por su borde frontal inferior, como minimo un resalte (81) que puede moverse a lo largo de una rampa de entrada (63, 64) del disco de encastre (6).
 - 9. Herraje de encastre según una de las reivindicaciones 6 a 8, caracterizado por que el disco de encastre (6) está situado entre el elemento de acoplamiento (7) y el dentado (5) en forma de disco.
 - 10. Herraje de encastre según una de las reivindicaciones 1 a 9, caracterizado por que la corona dentada (8) está pretensada hacia el dentado (5) mediante un muelle plano (9) situado entre la segunda palanca (3) y la corona dentada (8).
 - 11. Herraje de encastre según una de las reivindicaciones 1 a 10, caracterizado por que el dentado (5) está fijado a la primera palanca (2) mediante como minimo un perno (52), y el perno (52) atraviesa un taladro alargado (61) de un disco de encastre (6).
- 12. Herraje de encastre según una de las reivindicaciones 1 a 11, caracterizado por que los dientes del dentado (5) y de la corona dentada (8) presentan un corte posterior que está situado inclinado hacia el eje de giro.





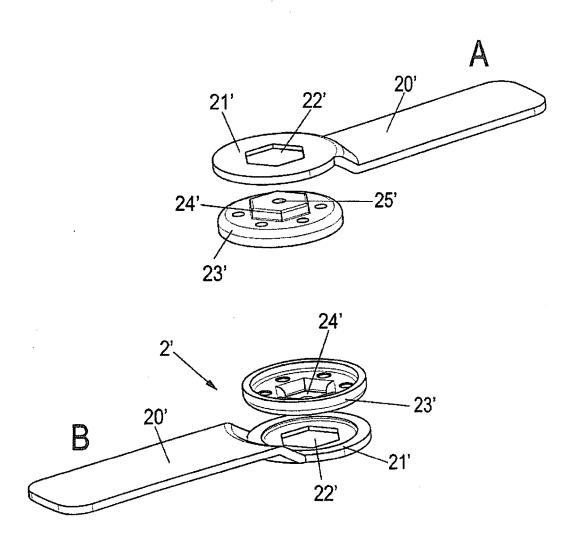
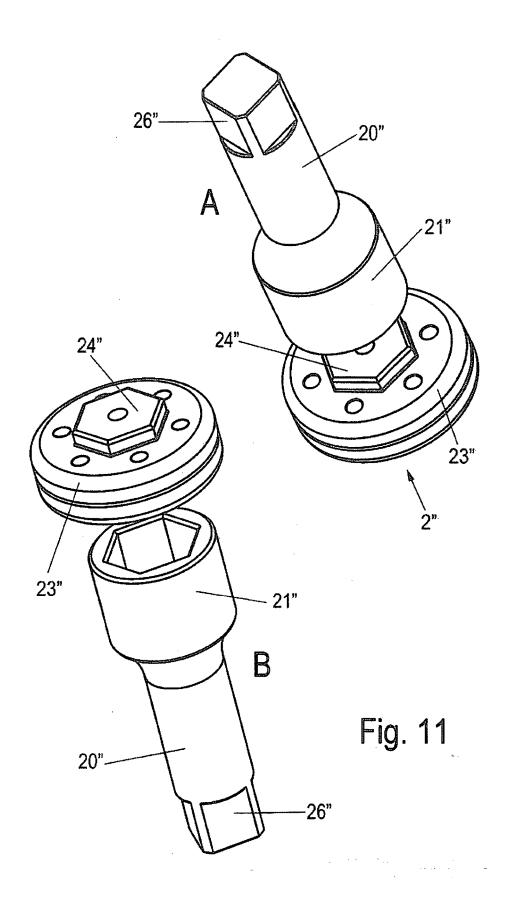



Fig. 10

