

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 463 818

51 Int. Cl.:

B21G 1/08 (2006.01) **A61M 37/00** (2006.01) **B29C 67/00** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 16.08.2005 E 10183463 (8)
 (97) Fecha y número de publicación de la concesión europea: 12.02.2014 EP 2289646

(54) Título: Dispositivo que se aplicará a una barrera biológica

(30) Prioridad:

16.08.2004 GB 0418246 17.12.2004 GB 0427762

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.05.2014

(73) Titular/es:

FUNCTIONAL MICROSTRUCTURES LIMITED (100.0%)
110 Whitchurch Road
Cardiff CF14 3LY, GB

(72) Inventor/es:

KIRBY, DR. ANDREW

(74) Agente/Representante:

CARVAJAL Y URQUIJO, Isabel

DESCRIPCIÓN

Dispositivo que se aplicará a una barrera biológica

15

25

30

La presente invención se refiere a un método de producción de estructuras a pequeña escala, en particular microaquias o microimplantes, particular aunque no exclusivamente para uso en la industria farmacéutica.

La administración transdérmica de fármacos es una ruta importante para agentes activos farmacéuticos, pero la capa externa de la piel, la capa de 10-20 micrómetros de grosor llamada el estrato córneo, es una barrera eficaz para muchas entidades químicas. Por lo tanto, el número de materiales farmacéuticamente activos que pueden penetrar en el cuerpo a través de la piel está muy limitado, y está definido por factores tales como polaridad, logP y tamaño molecular. Al mismo tiempo, están siendo sintetizados muchos fármacos que son inadecuados para administración oral (por ejemplo, debido a la inestabilidad en el tracto gastrointestinal, o metabolismo de primer paso hepático). Por lo tanto, la piel es una ruta atractiva, aunque problemática, para la administración de estos fármacos, así como fármacos que actúan en la piel, pero quizás, tienen efectos secundarios sistémicos.

Se han desarrollado varios métodos para comprometer la función de barrera de la piel para permitir la penetración de fármacos en, y analitos fuera de (para fines de monitorización), el cuerpo. Estos incluyen sonoforesis, iontoforesis y microagujas. El documento US3964482 describe el uso de microagujas para ayudar a la administración de fármacos a través de la piel. Las microagujas perforan el estrato córneo, permitiendo el paso de fármaco al interior del sujeto, pero preferentemente no inducen una respuesta dolorosa, dado que las microagujas no penetran en la capa dérmica de la piel que está provista de células nerviosas.

Se han propuesto varios métodos para la fabricación de microagujas. El documento US6558361 desvela el uso de fotolitografía para producir microagujas. El documento WO2004/06289 desvela la formación de microagujas usando un molde. Otros métodos de fabricación de aguja y plancha maestra incluyen técnicas de grabado, oxidación térmica de silicio, Liga (litografía, galvanizado, moldeado), estereolitografía, maquinado por láser y ablación por láser.

Dichos métodos típicamente consumen tiempo y requieren costosas instalaciones para fabricar microagujas. El moldeo, por ejemplo, presenta otros problemas, tales como que la calidad de las microagujas está limitada por la calidad de la plancha maestra y la vida útil del molde. Además, los moldes presentan problemas en el caso de que las agujas tengan una elevada relación entre dimensiones; dichos moldes pueden ser difíciles de llenar y pueden no liberarse fácilmente de las microagujas formadas por el molde. La presente invención busca mitigar al menos uno o más de los problemas de la técnica anterior.

La presente invención se refiere a un dispositivo para aplicación a una barrera biológica tal como se expone en la reivindicación adjunta 1. Características preferidas se exponen en las reivindicaciones subordinadas.

Dicho dispositivo se fabrica mediante un método que comprende

- (i) depositar una sustancia sobre una primera superficie y
- (ii) formar una forma acicular sólida a partir de la sustancia, que comprende depositar una segunda parte o gotita de sustancia sobre esta primera sustancia, de modo que la forma acicular comprenda estratos de material.
- 35 Esto proporciona un método eficaz y generalmente económico para producir microagujas.

La etapa (i) puede comprender depositar una primera parte o gotita de sustancia sobre la primera superficie. Esto facilita, por ejemplo, la deposición secuencial de partes o gotitas para producir microagujas, o estructuras aciculares que se estirarán a partir de una parte o gotita. Como alternativa a la deposición de partes o gotitas discretas, una película o capa contigua de sustancia puede depositarse sobre la primera superficie.

40 La primera superficie es, preferentemente, una superficie sólida, pero puede ser una superficie no sólida.

La etapa (i) puede comprender depositar la sustancia en forma no sólida. Dicha sustancia no sólida puede fluir o ser fluida.

La sustancia en su forma no sólida puede estar, por ejemplo, en forma de un líquido, gel, emulsión, crema, pasta o material tixotrópico. Debe observarse que la sustancia en forma no sólida puede comprender sólidos, por ejemplo, en forma de partículas. Estas partículas pueden suspenderse o dispersarse en un portador, de modo que la sustancia en masa sea no sólida.

La etapa (i) puede comprender depositar la sustancia en forma sólida. Dichas sustancias pueden no fluir. Un ejemplo de dicha etapa puede incluir la deposición de una sustancia sólida mediante impresión láser.

En el caso de que la sustancia se deposite sobre la primera superficie en forma no sólida, entonces la etapa de formar un sólido a partir de la sustancia puede, por ejemplo, incluir exposición de la sustancia a radiación ultravioleta para formar un polímero sólido, pérdida de disolvente para formar un sólido y curado con el tiempo (por ejemplo, cuando la sustancia no sólida comprende una resina epoxi de dos partes que, con el tiempo, se cura para formar un sólido). La estructura acicular sólida puede no tener (y más probablemente no tendrá) la misma composición química que la sustancia no sólida.

5

15

35

40

45

50

Dado que la etapa (ii) comprende depositar una segunda parte o gotita de sustancia sobre la primera parte o gotita de sustancia, permite que una estructura acicular se acumule depositando una parte de sustancia sobre otra. Ésta permite, además, la producción rápida de estructuras aciculares usando tecnología de deposición de líquido automática.

Si la primera parte o gotita se deposita en forma no sólida, entonces se prefiere que la primera parte o gotita sea al menos parcialmente solidificada antes de la deposición de la segunda parte o gotita de sustancia. Solidificar parcialmente la primera parte o gotita de sustancia puede incluir exponer a la primera parte o gotita a radiación electromagnética, por ejemplo, o simplemente esperar durante un periodo de tiempo predeterminado antes de depositar la segunda parte o gotita.

Una o ambas de las primera y segunda partes de sustancia pueden depositarse en forma sólida. Esto facilitaría la producción de microagujas usando ciertas técnicas de impresión, tales como impresión láser.

Se prefiere que el volumen de la segunda gotita o parte sea más pequeño que el volumen de la primera gotita o parte. Esto facilita la producción de estructuras aciculares.

Estructuras aciculares pueden acumularse mediante la deposición secuencial de gotitas o partes de sustancia una encima de otra.

La etapa (ii) puede comprender la deposición secuencial de una pluralidad de partes o gotitas de sustancia sobre la primera parte o gotita. Si una o más de las partes o gotitas se deposita en forma no sólida, entonces se prefiere que dicha una o más parte o gotita se solidifique al menos parcialmente antes de la deposición de una parte o gotita adicional de sustancia sobre ella. Si una o más de las partes o gotitas se depositan en forma no sólida, entonces se prefiere que cada una de las partes o gotitas se deposite en forma no sólida. Esto facilita la producción de formas aciculares. En este caso, se prefiere que el volumen de la parte o gotita adicional sea más pequeño que el volumen de la parte o gotita inmediatamente subyacente.

Además de la deposición secuencial de gotitas o partes, tal como se ha descrito anteriormente, la etapa (ii) puede comprender proporcionar una segunda superficie que está en contacto con la sustancia (preferentemente no sólida) y mover la primera superficie y la segunda superficie una con respecto a la otra para formar una forma acicular. Este estiramiento de agujas es especialmente beneficioso cuando la sustancia está en forma no sólida. El estiramiento de agujas es relativamente sencillo de conseguir y se presta, además, a ser un proceso rápido y automatizado. Por ejemplo, el método de la presente invención puede comprender depositar una o más partes de sustancia usando el método de deposición secuencial tal como se ha descrito anteriormente y, a continuación, estirar una forma acicular a partir de dicha sustancia.

La etapa (i) puede comprender proporcionar una parte o gotita de sustancia no sólida sobre la segunda superficie, y mover la segunda superficie a las inmediaciones de la primera superficie de modo que la gotita o parte de sustancia no sólida contacte con la primera superficie. Proporcionar una parte o gotita de sustancia no sólida sobre la segunda superficie puede conseguirse, por ejemplo, proporcionando la sustancia no sólida en un depósito y poniendo en contacto a la segunda superficie con la sustancia no sólida en el depósito. Esto permite que la segunda superficie tome la sustancia de un depósito y la deposite sobre la primera superficie antes del estirado de la aguja. Como alternativa, la segunda superficie puede estar asociada con una abertura o diámetro interior a través de la cual se hace pasar a la sustancia no sólida para depositar la sustancia (posiblemente como una parte o gotita discreta) sobre la segunda superficie.

Como alternativa, la etapa (i) puede comprender depositar la sustancia no sólida sobre la primera superficie en ausencia de la segunda superficie. La sustancia no sólida puede depositarse en forma de una gotita o parte, o como una película o capa contigua.

Como alternativa adicional, la etapa (i) puede comprender llevar la segunda superficie a las inmediaciones de la primera superficie y posteriormente proporcionar la sustancia no sólida sobre la primera superficie para formar un contacto entre la sustancia no sólida y la segunda superficie. Esto podría conseguirse introduciendo la sustancia a

través de una abertura provista en o próxima a la primera superficie o una abertura provista en o próxima a la segunda superficie.

La segunda superficie puede proporcionarse mediante un sólido o un líquido.

5

10

15

35

45

50

Cuando el método comprende mover la segunda superficie con respecto a la primera superficie, la etapa (ii) puede comprender las etapas secuenciales de (a) mover la primera superficie y la segunda superficie una con respecto a la otra para formar una forma acicular y (b) formar una forma acicular sólida. El contacto puede mantenerse entre la sustancia y la segunda superficie durante la formación de la forma acicular sólida. Como alternativa, la segunda superficie puede retirarse de la sustancia después de la etapa (a) y antes de la etapa (b).

La etapa (ii) puede comprender formar una forma acicular sólida mientras se mueven la primera superficie y la segunda superficie una con respecto a la otra.

La deposición de la sustancia puede conseguirse usando un método de impresión, tal como deposición basada en estarcido, impresión por contacto (por ejemplo transferencia con agujas) y otros métodos de impresión tales como huecograbado, impresión offset, impresión electrónica incluyendo impresión xerográfica y láser, impresión por inyección de tinta o de burbujas, flexografía, magnetografía, y deposición por carga directa. Dichos métodos pueden usarse convencionalmente para depositar una primera parte o gotita de sustancia (en forma sólida o no sólida). Estos pueden usarse convenientemente para depositar secuencialmente una pluralidad de partes o gotitas unas sobre otras para formar una forma acicular.

Si las gotitas o partes se depositan en forma no sólida, entonces se prefiere que una parte o gotita esté al menos parcialmente solidificada antes de la deposición de una parte o gotita adicional de sustancia sobre ella.

La etapa (i) puede comprender proporcionar un cliché que comprende al menos una abertura, y depositar la sustancia (preferentemente en forma no sólida) a través de la al menos una abertura sobre la primera superficie. Depositar la sustancia (preferentemente en forma no sólida) a través de la al menos una abertura puede conseguirse empujando la sustancia en la al menos una abertura (en oposición a permitir que la sustancia pase espontáneamente a través de la al menos una abertura). Esto puede conseguirse, por ejemplo, depositando la sustancia sobre el cliché y barriendo la sustancia para que pase por el cliché y por la al menos una abertura.

La etapa (ii) puede comprender mover el cliché con respecto a la primera superficie, formando de este modo una forma acicular. De esta manera, el cliché está actuando como la segunda superficie mencionada anteriormente. La forma acicular puede solidificarse tal como se describe en otra parte en el presente documento.

Como alternativa, la etapa (ii) puede comprender mover el cliché con respecto a la primera superficie, aproximar la primera superficie a una segunda superficie, de modo que la segunda superficie contacte con la sustancia, y mover la segunda superficie con respecto a la primera superficie para formar una forma acicular.

La etapa (ii) puede comprender proporcionar un cliché que comprende al menos una abertura, y depositar una pluralidad de partes o gotitas de sustancia en (preferentemente en forma no sólida) a través de la al menos una abertura del cliché. Si una parte o gotita se deposita en forma no sólida, entonces se prefiere que dicha parte o gotita esté al menos parcialmente solidificada antes de la deposición de una parte o gotita adicional de sustancia sobre ella. Esto puede conseguirse, por ejemplo, depositando sustancia en forma no sólida sobre el cliché, barriendo la sustancia sobre la al menos una abertura, alejando el cliché y la primera superficie entre sí, solidificando la sustancia, aproximando el cliché a la primera superficie, y a continuación barriendo la sustancia en forma no sólida sobre la al menos una abertura.

40 La deposición de una parte o gotita de sustancia puede realizarse mediante uno o más de impresión por inyección de tinta, impresión en serigrafía o micropipeteo. Dichos materias pueden usarse convenientemente para producir microagujas y matrices de microagujas rápidamente.

La deposición de la sustancia (y preferentemente una parte o gotita de sustancia no sólida) puede ser mediante un sistema de manipulación automatizado. El sistema de manipulación automatizado puede emplear una o más de válvulas piezoeléctricas, válvulas solenoides, bombas de jeringa, dispositivos microelectromecánicos o medios de desplazamiento de aire u otro gas. Esto representa medios convenientes de controlar la deposición de la sustancia, especialmente si la sustancia es para depositarla en partes o gotitas.

La deposición de la sustancia puede ser mediante formador de micromatrices (*microarrayer*) u otro dispositivo de impresión por contacto automatizado. Estos representan medios convenientes de controlar la deposición de la sustancia, especialmente si la sustancia es para depositarla en partes o gotitas.

La primera superficie puede ser parte de, o un precursor de, un parche transdérmico.

La forma acicular sólida puede comprender uno o ambos de un polímero orgánico o de silicona, incluyendo resinas epoxi, polímeros acrílicos y resinas de silicona.

Como alternativa o adicionalmente, la forma acicular sólida puede comprender un metal, tal como titanio. La forma acicular sólida puede comprender una mezcla de un metal y no metales (tales como sílice). La aguja puede comprender silicio (por ejemplo, silicio poroso), una cerámica o un mineral,

La forma acicular sólida puede comprender sílice.

5

10

25

30

35

40

45

Materiales preferidos adicionales incluyen plásticos curables por UV tales como acrilatos, acrilatos de uretano y materiales biorreabsorbibles o biodegradables tales como polilactidos. Pueden usarse combinaciones de materiales para formar la aguja. Por ejemplo, la base de una aguja podría estar hecha de polímeros de acrilato, con uno o más estratos diferentes de otros materiales, tales como polilactidos, o materiales con características particulares, tales como facilidad de rotura para permitir que la punta de una aguja se quede en el organismo.

El método puede comprender insertar un formador alargado en la sustancia antes de la solidificación para formar un surco o diámetro interior en la forma acicular. Dicho surco puede ser útil para administrar fluidos a través de la aguja en el sujeto o artículo en el cual la aguja puede insertarse.

La forma acicular sólida puede ser porosa. Una aguja porosa puede formarse, por ejemplo, mediante uno o más de hacer pasar a un gas a través de la forma acicular durante su formación; proporcionando una sustancia que forma espontáneamente una forma acicular sólida que tiene una estructura porosa; proporcionando a la sustancia un componente que puede retirarse (mediante disolución, combustión o de otro modo) de la forma acicular sólida y proporcionando una sustancia que, durante la formación de una forma acicular sólida, forma una malla porosa de fibras. Dicha porosidad puede ser útil para administrar fluidos a través de la aguja al interior del sujeto o artículo en el que la aguja puede insertarse.

El método puede comprender, además, introducir un dopante en la sustancia para que el dopante sea liberado del sólido resultante en un momento posterior.

La etapa (i) o (ii) puede comprender deposición de un catalizador u otro promotor de reacción. Por ejemplo, un catalizador para curar la sustancia podría depositarse en primer lugar sobre la primera superficie, y la sustancia en forma no sólida depositarse encima del catalizador. El catalizador comenzaría a curar la sustancia por contacto.

La forma acicular puede ser completa o parcialmente biodegradable.

La forma acicular puede ser fácilmente separable de la primera superficie. Esto puede facilitar la transferencia de la aguja desde la primera superficie a una superficie adicional. Puede ser deseable que la forma acicular sea fácilmente desprendible durante el uso.

La forma acicular sólida puede ser fácilmente rompible para producir una primera parte asociada con la primera superficie y una segunda parte disociada.

La etapa de formar una forma acicular sólida a partir de una sustancia no sólida puede comprender uno o más de enfriar la sustancia, calentar la sustancia, esperar durante un periodo dado o exponer la sustancia no sólida a radiación electromagnética (típicamente radiación ultravioleta). Enfriar la sustancia puede hacer que la sustancia forme espontáneamente un sólido. Calentar puede eliminar el disolvente de la sustancia, haciendo de este modo que se forme una forma acicular sólida. Exponer la sustancia a radiación electromagnética puede provocar la formación de un sólido, por ejemplo, en el caso de que la sustancia no sólida esté en forma de una resina o adhesivo curable por UV. Esperar durante un periodo dado puede provocar la formación de un sólido si, por ejemplo, la sustancia en su forma no sólida es una resina epoxi de dos partes.

Las agujas pueden ser de aproximadamente 10 micrómetros a 3 mm de largo, preferentemente mayores de 100 micrómetros de largo y, más preferentemente, menores de 1 mm de largo. La longitud más preferida es de aproximadamente 200 a 400 micrómetros. Dicha longitud de proyección minimiza la probabilidad de que una proyección alcance la dermis que está provista de nervios que generan una respuesta dolorosa. La longitud preferida puede variar dependiendo de la capa biológica que se pretende perforar mediante las proyecciones. Por ejemplo, la capa mucosal puede requerir proyecciones de diferente longitud al estrato córneo. Además, si se pretende que la microaguja perfore el estrato córneo de un sujeto humano, entonces la longitud preferida de la microaguja puede depender del sitio anatómico en el que se pretende usar la microaguja, dado que el grosor del estrato córneo puede variar entre diferentes sitios anatómicos.

50 Lo más preferido es que la microaguja sea capaz de perforar una barrera biológica, de la forma más preferente el estrato córneo de un ser humano o animal. Además, el método es, preferentemente, un método para formar un

dispositivo para la perforación de una barrera biológica.

10

15

20

La primera superficie es, preferentemente, proporcionada por un sustrato que forma parte de un parche transdérmico. Como alternativa, la primera superficie puede proporcionarse mediante papel, vidrio, plástico, una película de apósito semipermeable adhesiva, metal y el lado adhesivo de cinta adhesiva sensible a la presión.

5 La estructura acicular sólida puede incluir un material farmacéuticamente activo. Esto puede conseguirse introduciendo el material farmacéuticamente activo en el líquido antes de la solidificación o después de la solidificación.

La primera superficie sobre la que puede formarse la forma acicular sólida de la presente invención puede proporcionarse mediante pilares, protuberancias o similares. El método de la presente invención puede usarse, por lo tanto, para fabricar microagujas sobre estructuras aciculares o sobresalientes existentes.

La forma acicular sólida puede ser cónica. La forma acicular sólida puede ser piramidal (por ejemplo, teniendo tres o cuatro lados que convergen en un punto). La forma acicular sólida puede ser curva. Esto puede conseguirse, por ejemplo, usando el método de estirado de la aguja mencionado anteriormente y moviendo las primera y segunda superficies una con respecto a la otra para producir una forma curva. La forma acicular sólida puede estar provista de un gancho, por ejemplo, usando el método de estirado de la aguja mencionado anteriormente y moviendo las primera y segunda superficies una con respecto a la otra para producir una forma de gancho.

De acuerdo con un segundo aspecto de la presente invención, se proporciona un método de producción de una matriz de microagujas, comprendiendo el método:

- (i) depositar una sustancia sobre una primera superficie y
- (ii) formar una matriz de formas aciculares sólidas a partir de la sustancia.

El método de acuerdo con el segundo aspecto de la presente invención preferentemente no implica el uso de un molde.

La etapa (i) puede comprender depositar una matriz de primeras partes o gotitas de sustancia sobre una primera superficie.

25 La etapa (i) puede comprender la deposición de una sustancia en forma no sólida o sólida.

La producción de una matriz de gotitas o partes puede conseguirse mediante la deposición en serie de gotitas o partes sobre la primera superficie. Como alternativa, una matriz de gotitas o partes correspondiente a la matriz de microagujas puede depositarse simultáneamente sobre la primera superficie.

- La etapa (ii) puede comprender depositar una matriz de segundas gotitas o partes de sustancia sobre la matriz de primeras gotitas o partes de sustancia. Una matriz de terceras partes o gotitas puede depositarse sobre la matriz de segundas partes o gotitas. Tal como se ha descrito anteriormente en relación con la producción de solamente una microaguja, una matriz de estructuras aciculares puede desarrollarse mediante la deposición secuencial de gotitas o partes de sustancia. El método usado en relación con la matriz puede incorporar aquellas características descritas anteriormente en relación con el método del primer aspecto de la presente invención.
- La sustancia puede depositarse en una forma no sólida y la etapa (ii) puede comprender proporcionar una segunda superficie en contacto con la sustancia y mover la primera superficie y la segunda superficie una con respecto a la otra para formar una forma acicular. Una matriz de estructuras aciculares puede, por lo tanto, estirarse a partir de la sustancia, tal como se ha descrito anteriormente con referencia al primer aspecto de la presente invención. Esta sustancia puede depositarse como una parte o gotita discreta, o como una película o capa contigua. La etapa (ii) puede comprender introducir una matriz de segundas superficies en contacto con la sustancia no sólida y estirar la sustancia a una matriz de formas aciculares. Como alternativa, las estructuras de microaguja pueden estirarse a partir de la matriz de gotitas o partes introduciendo una segunda superficie en contacto con la matriz de partes o gotitas y estirando la matriz de gotitas o partes a una matriz de formas aciculares. Esto puede conseguirse usando una única segunda superficie planar sustancialmente plana.
- Como alternativa, pueden usarse una o más segundas superficies para estirar secuencialmente formas aciculares a partir de la sustancia (opcionalmente depositada como gotitas o partes), moviéndose las una o más segundas superficies de modo que pueda producirse la matriz de agujas.

El método del segundo aspecto puede comprender aquellas características descritas anteriormente con referencia al método del primer aspecto de la presente invención. Por ejemplo, puede usarse un cliché para proporcionar una matriz, tal como se describe con referencia al primer aspecto de la presente invención.

De acuerdo con un tercer aspecto, se proporciona un método de fabricación de microagujas o microimplantes, de forma individual o en matrices, usando deposición de un líquido sobre una superficie sólida con posterior o concurrente curado u otra solidificación en una forma acicular sólida, sin el uso de un molde.

5

30

40

45

50

El método del tercer aspecto puede comprender aquellas características descritas anteriormente con referencia al método del primer aspecto de la presente invención.

La presente invención proporciona un dispositivo para aplicación a una barrera biológica, comprendiendo el dispositivo un sustrato provisto de una o más microagujas. El dispositivo puede comprender una primera superficie sobre la cual se han depositado una o más microagujas. La primera superficie puede ser flexible. El dispositivo puede ser, por ejemplo, un parche transdérmico. El dispositivo puede comprender un sensor, una bomba, o dispositivo de administración de fármacos. El dispositivo puede estar provisto de un medio para empujar las una o más microagujas al interior de una barrera biológica. El dispositivo puede comprender una endoprótesis liberadora de fármacos.

La invención se describirá a continuación a modo de ejemplo solamente con referencia a las siguientes figuras esquemáticas, de las cuales:

La figura 1 muestra un método de fabricación de una estructura a pequeña escala que implica el estirado de una microaguja a partir de material no sólido;

La figura 2 muestra un segundo método de fabricación de una estructura a pequeña escala que implica el estirado de una microaguja a partir de material no sólido;

La figura 3 muestra una realización de la presente invención que implica la deposición secuencial de gotitas de material no sólido para formar una microaguja; y

La figura 4 muestra una segunda realización de la presente invención que implica el uso de un cliché para depositar secuencialmente gotitas de material no sólido unas encima de otras para formar una microaguja.

Una primera realización del método de fabricación de una estructura a pequeña escala se describe a continuación con referencia a la figura 1. Con referencia a la figura 1a, una gotita 2 de líquido se dispensa sobre una primera superficie 1 sobre la cual se pretende formar microagujas. La gotita 2 es dispensada preferentemente por un medio de manipulación de líquido automatizado. Una segunda superficie 3 para producir una forma acicular se lleva hasta la gotita 2, para que la segunda superficie 3 esté tocando la superficie de la gotita 2. La segunda superficie en este caso es una superficie sólida, aunque podría usarse una superficie líquida, por ejemplo una superficie líquida formada por un líquido dispuesto sobre el extremo de una varilla o aguja sólida. La segunda superficie 3 se aleja a continuación de la primera superficie 1, estirando la gotita de líquido 2 a una forma de aguja 4. Se hace curar o solidificar de otra forma al líquido en una microaguja 5 y la segunda superficie 3 se retira a continuación.

La segunda superficie 3 puede retirarse antes de que el curado o la solidificación haya tenido lugar, o incluso durante el proceso de curado o solidificación. La retirada de la segunda superficie durante el curado o la solidificación puede dar como resultado agujas particularmente puntiagudas.

Como alternativa a presentar la segunda superficie 3 a la gotita 2 depositada sobre la primera superficie 1, la segunda superficie 3 puede estar provista del líquido y el líquido ponerse en contacto con la primera superficie 1. Como alternativa, la segunda superficie 3 puede acercarse a la primera superficie 1 y el líquido dispensarse para formar contacto con la primera superficie y la segunda superficie. Esto puede realizarse proporcionando un diámetro interior asociado con la segunda superficie y dispensando el líquido a través del diámetro interior.

El movimiento relativo de la primera superficie 1 y la segunda superficie 3 es importante y, por lo tanto, la posición de la segunda superficie 3 puede fijarse, con la primera superficie 1 moviéndose para poner a la segunda superficie 3 en contacto con la gotita 2.

La forma acicular puede solidificarse mediante refrigeración o mediante curado. Esto puede realizarse, por ejemplo, usando un líquido curable, tal como un adhesivo de acrilato curable por UV, y exponiendo el líquido a luz UV para curar el adhesivo. El líquido puede ser una resina epoxi. En este caso, la primera superficie puede moverse con respecto a la segunda superficie para producir una estructura alargada. Esta superficie alargada se deja solidificar con el tiempo. La estructura alargada se corta a continuación para permitir que la segunda superficie se retire de la primera superficie. Esta acción de corte provoca la formación de una estructura acicular sobre la primera superficie.

Un segundo ejemplo de un método de fabricación de una estructura a pequeña escala se describe a continuación con referencia a la figura 2. Un dispositivo de deposición puntual tal como un *microarrayer* puede usarse para colocar el líquido sobre una superficie para actuar como un depósito. Un alfiler P de 0,4 mm de diámetro se unió apuntando hacia abajo a un soporte inmóvil. Un depósito de sustancia no sólida a partir de la cual se debía preparar la microaguja (en este caso, un gran punto de adhesivo de acrilato de curado por UV disponible en el mercado) se movió sobre una plataforma de traslación de modo que la cabeza del alfiler P se sumergió en la sustancia durante tres segundos para producir una gotita de líquido 12 en contacto con el extremo del alfiler P. La superficie sólida 11 sobre la cual se iba a formar la microaguja se movió hacia la segunda superficie 13 (proporcionada por el alfiler P) hasta que el líquido 12 presente en el extremo del alfiler tocaba la superficie sólida 11. Se deja que la superficie sólida 11 toque el alfiler cubierto de líquido de tal manera que permita al líquido 12 formar un punto (véase (b)). Una fuente de UV (un diodo emisor de luz UV, no se muestra) suministra radiación UV para curar el líquido 12. Durante el curado, la superficie sólida 11 se aleja de la segunda superficie 13 de manera controlada usando la plataforma de traslación para producir una forma acicular 14 (véase (c)). Después del curado, la aguja acabada 15 se deja sobre la superficie 1 (véase (d)). Este proceso producía una estructura de aguja puntiaguda de aproximadamente 400 micrómetros de altura.

10

15

20

25

30

35

40

55

Se produjeron agujas usando diversas superficies sólidas, incluyendo papel, vidrio, plástico, un parche de suministro de fármacos transdérmico, una película de apósito semipermeable adhesiva y el lado adhesivo de cinta adhesiva sensible a la presión. El uso de alfileres de un diámetro mayor permitía la producción de agujas puntiagudas de altura superior a 1 mm. Los alfileres de un diámetro más pequeño permitían la producción de estructuras de 250 μm de altura.

Un tercer ejemplo del método de fabricación de una estructura a pequeña escala se describe a continuación. Puntos de una resina epoxi viscosa se dispensaron sobre una primera superficie de vidrio usando una impresión por contacto. La primera superficie de vidrio se colocó a continuación sobre una plataforma móvil en la dirección z. La primera superficie de vidrio se aproximó a una segunda superficie de vidrio fija, de modo que las gotas de resina epoxi estaban tocando la segunda superficie de vidrio. Las primera y segunda superficies de vidrio se separaron lentamente durante el curado de la resina, de este modo se estiraron estructuras de aguja a partir de cada superficie. Después de 3 horas, la resina se había solidificado, y cualesquiera hebras de conexión restantes entre las dos superficies se cortaron con tijeras. El resultado eran dos superficies de vidrio con estructuras de microaguja duras muy puntiagudas que se proyectan perpendiculares a la superficie. Durante el curado, las puntas de las agujas eran fáciles de doblar, y podrían desviarse a estructuras curvas o incluso en forma de gancho. También podrían formarse bucles presionando las puntas flexibles contra la superficie de vidrio. Estas formas persistían después de que el curado se completó.

En los ejemplos anteriores, la segunda superficie puede tener un bajo área superficial para contacto con el líquido. Esto permite que se produzcan estructuras aciculares finas. La segunda superficie puede proporcionarse mediante la punta de un objeto puntiagudo tal como un alfiler, que tiene típicamente un diámetro de 0,4 mm.

La segunda superficie puede permanecer en contacto de estiramiento de la aguja con el líquido gracias a las propiedades superficiales del líquido y la segunda superficie. Esto puede conseguirse, por ejemplo, usando un adhesivo como líquido. Como alternativa, la segunda superficie puede mantenerse en contacto con el líquido mediante el uso de un vacío con la segunda superficie. Como alternativa, la segunda superficie puede estar provista de una estructura provista de un diámetro interior en cuyo interior puede fluir el líquido gracias a la acción de capilaridad.

El método puede comprender además mover la primera superficie con respecto a la segunda superficie antes de la solidificación o el curado para formar una estructura de aguja que es una o más de curva o inclinada con respecto a la primera superficie o que porta un gancho.

Los tres ejemplos anteriores usaban un método de separar dos superficies para formar estirando una forma de aguja. Pueden usarse métodos de impresión tales como deposición con cliché o impresión por contacto para depositar gotas de diversos tamaños, o los mismos tamaños de material una encima de otra, para producir una forma acicular. Un ejemplo de dicho método de acuerdo con la presente invención se describe a continuación con referencia a la figura 3. Con referencia a la figura 3, una primera parte 32 de sustancia no sólida en forma de un adhesivo curable por UV se deposita sobre una primera superficie 31 usando un sistema de manipulación de líquido automatizado (no se muestra) (véase (a)).

La sustancia es curada o al menos parcialmente curada a continuación usando una fuente de luz UV (no se muestra). Una segunda parte 33 se deposita a continuación sobre la primera parte 32 de sustancia, y posteriormente se cura tal como se ha descrito anteriormente (véase (b)). Este proceso se repite hasta que varia partes 32, 33, 34, 35, 36, 37 y 38 se depositan una encima de otra (véase (c)). El volumen de cada parte es menor que el de la parte inmediatamente subyacente. De esta manera, puede construirse una estructura sólida cónica o acicular.

Una realización adicional de un método de producción de formas aciculares mediante la deposición secuencial de partes de sustancia se describe a continuación con referencia a la figura 4, que está de acuerdo con la presente invención. Un cliché 49 se acerca a una primera superficie 41 (véase la figura 4a). La primera superficie 41 es proporcionada por la superficie superior de un sustrato flexible. El cliché 49 está provisto de aproximadamente 1000 aberturas, cada una de 100 µm de diámetro, en un área de 1 cm². Solamente dos de las aberturas, 48a y 4 8b, se muestran en este caso para la claridad. Una sustancia no sólida, en este caso un acrilato curable por UV 42, se depositó sobre la superficie superior 49a del cliché 49 usando una rasqueta 50 que se barrió sobre la superficie superior 49a. Esta acción de barrido empujó al acrilato 42 al interior de las aberturas 48a y 48b y empuja al cliché 49 en contacto con la primera superficie 41. El acrilato 42 se adhiere a la primera superficie 41 de modo que, cuando el cliché 49 se aleja de la primera superficie 41 (véase las figuras 4b), partes 51a, 51b de acrilato se quedan sobre la primera superficie 41. Las partes de acrilato 51a, 51b se curan a continuación mediante exposición a radiación UV (mostrada esquemáticamente como 57) emitida desde una fuente "puntual" de UV 56 (figura 4c) para formar estructuras sólidas 53a, 53b. El cliché 49 se sustituyó, de modo que partes adicionales de sustancia no sólida 42 podrían depositarse sobre las estructuras existentes 53a, 53b, Las etapas, tal como se han descrito con referencia a la figuras 4a, 4b y 4c, se repitieron adicionalmente para formar una matriz de formas aciculares 52a, 52b de aproximadamente 0,7 mm de altura y que tienen un diámetro de la punta de aproximadamente 20 μm. Las matrices de aquias producidas mediante este método mostraron ser capaces de penetración del estrato córneo humano in

5

10

15

20

25

Usando esta técnica, la altura de las agujas puede incrementarse a cualquier tamaño, y el diámetro de la punta puede modificarse cambiando variables tales como reología del material, tamaño de abertura y velocidad de la rasqueta o movimiento en el eje z.

La técnica de deposición secuencial descrita anteriormente con referencia a la figuras 3 y 4 puede combinarse con una metodología de estiramiento de aguja tal como se ha descrito anteriormente. Dichas técnicas también pueden usarse para producir agujas de composición variada, por ejemplo con un tipo de material que forma una varilla u otra estructura dentro de una aguja de diferente composición. La estructura interna puede formarse a partir de un material poroso, o puede ser soluble para permitir una trayectoria a través de la microaguja,

REIVINDICACIONES

- 1. Un dispositivo para aplicación a una barrera biológica, comprendiendo el dispositivo un sustrato provisto de una o más microagujas producibles:
- (i) depositando una primera sustancia sobre una primera superficie;
- 5 (ii) formando una forma acicular sólida a partir de la sustancia;

15

- caracterizado porque la etapa (ii) comprende depositar una segunda parte o gotita de sustancia sobre la primera sustancia, de modo que la forma acicular sólida comprenda estratos de material.
- 2. Un dispositivo para aplicación a una barrera biológica de acuerdo con la reivindicación 1, caracterizado porque al menos un estrato de la forma acicular comprende un material biorreabsorbible.
- 10 3. Un dispositivo de acuerdo con la reivindicación 1, caracterizado porque la forma acicular es un material poroso.
 - 4. Un dispositivo de acuerdo con una cualquiera de las reivindicaciones 1 a 3, caracterizado porque la forma acicular comprende al menos un material farmacéuticamente activo dentro de su estructura.
 - 5. Un dispositivo de acuerdo con cualquier reivindicación anterior, caracterizado porque el sustrato comprende un material seleccionado entre un grupo que comprende: papel; vidrio; material plástico; película de apósito semipermeable adhesiva; y el lado adhesivo de cinta adhesiva sensible a la presión.

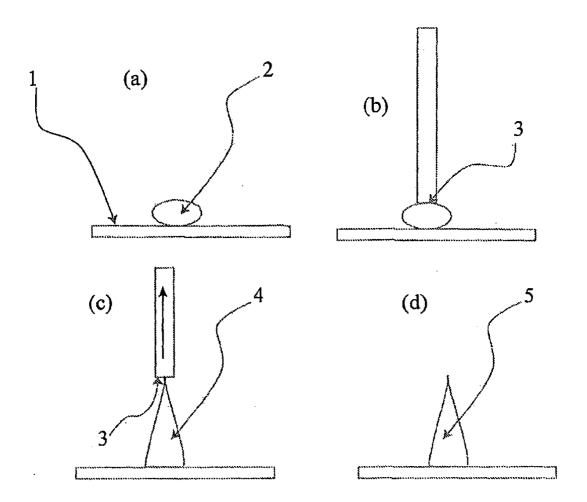


Figura 1

11

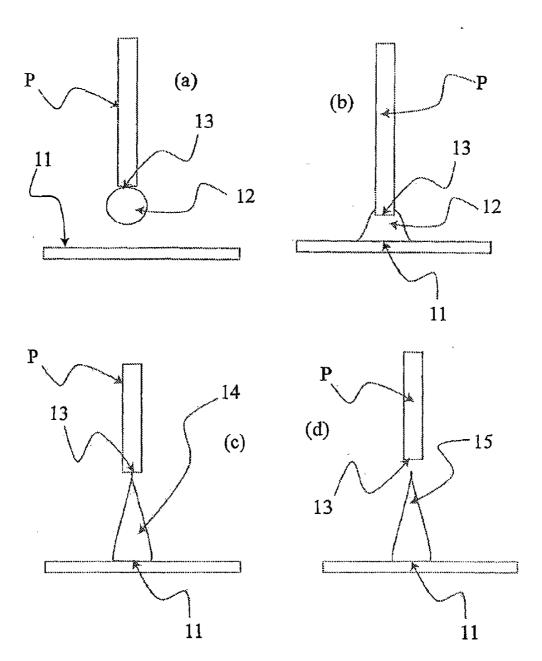
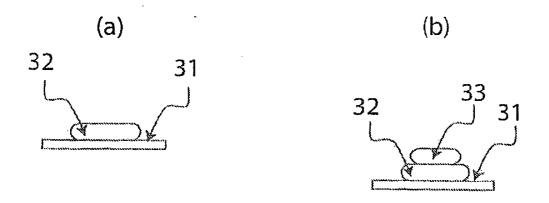
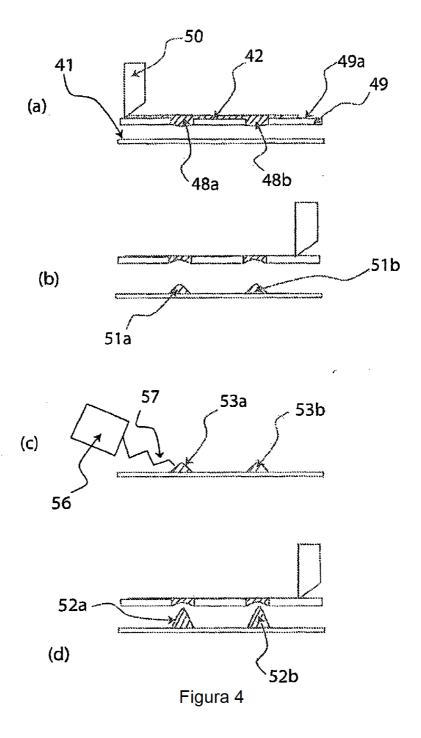




Figura 2

