

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 463 828

(51) Int. CI.:

A61K 39/35 (2006.01) C07K 16/16 (2006.01) G01N 33/68 (2006.01) C07K 14/415 (2006.01) C12N 15/62 (2006.01) A61K 39/36 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 09.09.2010 E 10752799 (6) (97) Fecha y número de publicación de la concesión europea: 09.04.2014 EP 2475386
- (54) Título: Polipéptidos híbridos hipoalergénicos para el tratamiento de alergia
- (30) Prioridad:

10.09.2009 EP 09169958 10.09.2009 US 241049 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.05.2014

(73) Titular/es:

BIOMAY AG (100.0%) Lazarettgasse 19 1090 Wien , AT

(72) Inventor/es:

VALENTA, RUDOLF; LINHART, BIRGIT; FOCKE-TEJKL, MARGARETE; **NEUBAUER, ANGELA;** VALENT, PETER y **BLATT, KATHARINA**

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Polipéptidos híbridos hipoalergénicos para el tratamiento de alergia

Antecedentes de la invención

5

10

15

20

25

30

35

40

45

50

Más del 10 % de la población mundial sufre alergia al polen de gramíneas. Aquí, los presentes inventores describen el desarrollo de una vacuna basada en moléculas híbridas hipoalergénicas recombinantes que se construyeron a partir de elementos derivados de los cuatro principales alérgenos del polen de hierba timotea PhI p 1, PhI p 2, PhI p 5 y PhI p 6 para el tratamiento de alergia al polen de gramíneas. Los genes sintéticos de codones optimizados que codifican bloques de construcción y combinaciones de los cuatro alérgenos se diseñaron según estudios de mapeo de epítopes y datos estructurales y posteriormente se expresaron en *Escherichia coli*. Diecisiete moléculas híbridas recombinantes se purificaron por cromatografía de afinidad y se evaluaron con respecto a la expresión, pureza y plegamiento, solubilidad y actividad alergénica reducida. Se identificaron cuatro moléculas híbridas hipoalergénicas que consisten en elementos reensamblados de los cuatro alérgenos del polen de gramíneas que tras la inmunización en diferentes modelos animales indujeron anticuerpos IgG que bloquean el reconocimiento de IgE de los alérgenos del polen de gramíneas por pacientes alérgicos. Estas moléculas híbridas hipoalergénicas representan vacunas seguras para la inmunoterapia de la alergia al polen de gramíneas.

Las alergias mediadas por IgE representan un problema de salud en el mundo con prevalencia creciente (1). El distintivo de la enfermedad alérgica es la producción de anticuerpos IgE específicos para alérgenos medioambientales, principalmente del polen, ácaros, caspa animal y mohos (1). Los síntomas alérgicos se producen cuando la IgE unida al receptor sobre mastocitos o basófilos se entrecruza por alérgeno multivalente, conduciendo a la liberación de mediadores inflamatorios (2). Además, la presentación facilitada por IgE mediante FcɛRI y FcɛRII sobre células presentadoras de antígeno potencia fuertemente la activación de linfocitos T específicos para alérgenos que contribuye a inflamación alérgica mediada por linfocitos T (3, 4). La inmunoterapia específica para alérgenos actualmente representa el único tratamiento etiológico de alergias con efecto a largo plazo, aunque su éxito está alterado por el uso de extractos de alérgeno en bruto (5, 6). Estas preparaciones contienen material alergénico y no alergénico en cantidades variables, por lo que la presencia de compuestos biológicamente activos aumenta el riesgo de efectos secundarios anafilácticos. Además, la falta de o escasa inmunogenicidad de alérgenos clínicamente relevantes reduce la eficacia de vacunas basadas en extractos (7). Se ha hecho un progreso sustancial en el campo de la caracterización de alérgenos durante los últimos 20 años mediante la aplicación de técnicas inmunoquímicas y de biológica molecular. Hoy en día, los alérgenos más comunes e importantes se han caracterizado con respecto a su estructura y propiedades inmunológicas. Se han producido alérgenos recombinantes que se parecen mucho a las propiedades de los alérgenos naturales y pueden ahora usarse para el diagnóstico y terapia de alergia (5). Además, se ha mostrado que pueden manipularse los derivados de alérgenos con propiedades inmunológicas beneficiosas (8). Se han generado variantes modificadas de alérgenos con actividad alergénica con el fin de evitar los efectos secundarios mediados por IgE en el transcurso de la inmunoterapia y ya se han usado fragmentos derivados de Bet v 1 recombinantes con capacidad de unión a IgE fuertemente reducida en un ensayo clínico (9). Moléculas híbridas que consisten en combinaciones de diferentes alérgenos han mostrado que aumentan la inmunogenicidad de sus componentes individuales (10-12).

Linhart y col. (Ref. 21) prepararon una molécula híbrida hipoalergénica con elevada inmunogenicidad combinando derivados hipoalergénicos de los dos principales alérgenos del polen de gramíneas PhI p 2 y PhI p 6, concretamente una molécula del mosaico de PhI p 2 y un mutante de deleción de PhI p 6, lo cual no fue sorprendente en vista de datos previos (Ref. 15, 17).

El documento EP 1219301 A1 desvela polipéptidos híbridos que consisten en al menos dos proteínas alergénicas diferentes o fragmentos de las mismas.

El documento WO 2007/124526 A1 describe procedimientos para producir derivados del alérgeno de proteína natural Phl p 1 con actividad alergénica reducida que comprenden fragmentar el alérgeno de proteína natural y volver a unir los fragmentos en un orden diferente.

El documento EP 1440979 A1 desvela un procedimiento para la preparación de proteínas de mosaico hipoalergénicas que comprende fragmentar el alérgeno en fragmentos sin reactividad de IgE y volver a unir los fragmentos en un orden diferente.

Schramm y col. (1999) The Journal of Immunology, 162, páginas 2406-2414, describen la producción de variantes del alérgeno Phl p 5 con capacidad de unión a IgE reducida, pero reactividad de linfocitos T conservada.

Westritschnig y col. (2007) The Journal of Immunology, 179, páginas 7624-7634, investigan una vacuna hipoalergénica obtenida por reestructuración de la cola a la cabeza de PhI p 12 para el tratamiento de sensibilización cruzada a profilina.

Los presentes inventores han encontrado ahora que una combinación de la tecnología híbrida y la tecnología de mosaico

no conduce en todos los casos a moléculas hipoalergénicas. Sorprendentemente, se ha observado que dos polipéptidos de fusión que consistieron en los mismos fragmentos, pero en un orden diferente, presentaron reactividades de IgE muy diferentes. Por tanto, la presente invención proporciona un procedimiento para identificar polipéptidos que tienen propiedades hipoalergénicas y pueden servir de posible vacuna.

5 Resumen de la invención

La presente invención se refiere a un polipéptido hipoalergénico que comprende una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 22, 23, 24, 25, 36 y 37.

En una realización, el polipéptido hipoalergénico consiste en una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 39, 40, 41, 42, 53 y 54.

Otro aspecto de la invención es una composición farmacéutica que comprende el polipéptido de la invención y un diluyente o excipiente farmacéuticamente aceptable.

Otro aspecto de la invención es el uso del polipéptido de la invención para la fabricación de un medicamento para la prevención y/o tratamiento de alergia, preferentemente de alergia al polen de gramíneas.

Otro aspecto de la invención es un ácido nucleico que codifica el polipéptido de la presente invención.

15 Breve descripción de los dibujos

20

25

30

La Figura 1 representa el diseño de moléculas híbridas por el ensamblaje de fragmentos de alérgenos derivados de los principales alérgenos del polen de la hierba timotea PhI p 1, PhI p 2, PhI p 5 y PhI p 6 (véase el Ejemplo 1).

La Figura 2 muestra un gel de PAA teñido con Coomassie que contiene las proteínas híbridas purificadas A-Q (véase el Ejemplo 1). Los pesos moleculares se indican en el margen izquierdo (m, marcador de peso molecular).

La Figura 3 muestra los espectros de CD en el UV lejano de las proteínas B, C, P y Q disueltas en agua recogidos en un espectropolarímetro Jasco J-810 (Japan Spectroscopic Co., Tokio, Japón), véase el Ejemplo 2.

La Figura 4 representa la reactividad de IgE sobre híbridos unidos a nitrocelulosa y proteínas de control para tres pacientes alérgicos al polen de gramíneas representativos (véase el Ejemplo 3).

La Figura 5 representa reactividad alergénica reducida de híbridos en comparación con los alérgenos naturales como se detecta por expresión de CD203c (véase el Ejemplo 4).

La Figura 6 representa reactividad de IgG después de la inmunización de ratones con una mezcla de Phl p 1 y Phl p 5, o una mezcla de Phl p 2 y Phl p 6, o una mezcla de B y C, o P o Q. El desarrollo de niveles de anticuerpos IgG₁ específicos para Phl p 1, Phl p 2, Phl p 5 y Phl p 6 se comparó por medidas de ELISA (véase el Ejemplo 6).

La Figura 7 muestra los resultados del Ejemplo 7. La figura representa la reactividad de IgG después de la inmunización de conejos con B, C, P o Q, concretamente respuestas de anticuerpos IgG a los alérgenos naturales PhI p 1 (Figura 7A), PhI p 5 (Figura 7B), PhI p 2 y PhI p 6 (Figura 7C).

La Figura 8 representa la reactividad de IgG después de la inmunización de conejos con B, C, P o HPG (un híbrido derivado de alérgenos del polen de gramíneas descrito en la Ref. 11), concretamente respuestas de anticuerpos IgG al alérgeno natural PhI p 1 (véase el Ejemplo 8).

35 Descripción detallada de la invención

El procedimiento de la presente divulgación es un procedimiento para identificar polipéptidos hipoalergénicos. Alternativamente, el procedimiento de la presente divulgación es un procedimiento de cribado para identificar polipéptidos hipoalergénicos. El término "hipoalergénico", como se usa en el presente documento, significa la reducción de la reactividad y capacidad de IgE para inducir desgranulación de mastocitos o basófilos mediada por IgE.

40 En su primera etapa, el procedimiento de la presente divulgación comprende proporcionar un grupo de polipéptidos, en el que cada polipéptido dentro de dicho grupo comprende independientemente N fragmentos derivados de al menos dos alérgenos diferentes.

Los polipéptidos

El grupo de polipéptidos consiste en al menos dos polipéptidos diferentes. Preferentemente, el grupo de polipéptidos consiste en 2 a 100, preferentemente de 3 a 75, más preferentemente de 4 a 50, lo más preferentemente de 5 a 30 polipéptidos diferentes.

Cada polipéptido comprende, o consiste independientemente en, N fragmentos derivados de al menos dos alérgenos diferentes. N es un número entero superior a 3, preferentemente N es 4 a 25, más preferentemente 4 a 20, todavía más preferentemente 4 a 15, lo más preferentemente 4 a 10 (por ejemplo 4, 5, 6, 7, 8, 9 ó 10). Los polipéptidos dentro del grupo pueden comprender o consistir en el mismo número de fragmentos o un número diferente. Es decir, N puede ser igual o diferente para los polipéptidos respectivos dentro del grupo. Preferentemente, todos los fragmentos dentro de un polipéptido dado son diferentes entre sí.

Cada fragmento consiste en al menos 8, preferentemente de 8 a 100, más preferentemente de 10 a 90, todavía más preferentemente de 12 a 80, más preferentemente de 15 a 70, más preferentemente de 20 a 60 aminoácidos consecutivos de una secuencia de aminoácidos del alérgeno.

El polipéptido preparado según la presente invención no consiste necesariamente solo en secuencias de aminoácidos derivadas de los alérgenos. Es posible que secuencias no nativas (por ejemplo, secuencias espaciadoras) se inserten entre los fragmentos (fragmentos que son secuencias de aminoácidos consecutivas de diferentes alérgenos). También es posible que los polipéptidos comprendan una secuencia de marca que facilita la purificación del polipéptido tras la expresión en una célula huésped. Un ejemplo de una secuencia de marca tal es una marca de hexahistidina que permite la purificación por cromatografía en quelato de Ni²⁺. Otras marcas son conocidas para aquellos expertos en la materia. Además, el polipéptido puede contener un residuo de metionina extraño en la posición de aminoácido 1 que resulta de la expresión en células huésped. La metionina estará frecuentemente presente si la porción del extremo N del polipéptido es un fragmento de alérgeno interno o del extremo C.

En una realización de la presente divulgación, el polipéptido puede consistir en una cualquiera de las siguientes estructuras (I) a (VII):

```
(I) Met-F1-F2- ... -FN-marca,
```

(II) Met-F1-F2- ... -FN,

(III) F1-F2- ... -FN-marca,

(IV) Met-marca-F1-F2- ... -FN,

(V) marca-F1-F2- ... -FN,

(VI) marca-F1-F2- ... -FN-marca,

(VII) F1-F2- ... -FN

en las que Met es un residuo de metionina del extremo N, F1, F2 y FN son el primer, segundo y enésimo fragmento, respectivamente, y marca es una secuencia de marca (por ejemplo, una marca de hexahistidina (His)6). En las realizaciones (I) a (VII) anteriores no hay aminoácidos extraños entre los fragmentos. Es decir, F1-F2- ... -FN es una secuencia consecutiva de fragmentos de alérgenos. En otras realizaciones, puede haber uno o más (por ejemplo 1, 2 ó 3) aminoácidos extraños entre los fragmentos. Sin embargo, lo cual no se prefiere.

El polipéptido según la presente invención puede prepararse por diversos procedimientos. En una realización el polipéptido se prepara expresando un polinucleótido en una célula huésped. La célula huésped puede ser una célula procariota o eucariota. Si se usan células procariotas la célula huésped es preferentemente *E. coli.* Ejemplos de células eucariotas incluyen levadura, células de insecto o líneas celulares tales como células CHO. Después de introducir un polinucleótido adecuado que codifica el polipéptido de la invención en una célula huésped la célula huésped se cultiva en condiciones tales que el polipéptido se exprese en la célula. El polipéptido puede ser secretado por la célula o se acumula dentro de la célula. Pueden usarse técnicas de purificación conocidas para recuperar el polipéptido de la célula o del medio de cultivo.

En otra realización el polipéptido se prepara por síntesis química, por ejemplo, por síntesis en fase sólida según técnicas que son por sí conocidas.

Alérgenos

25

30

35

40

45

El término "alérgeno" como se usa en el presente documento indica una sustancia que puede provocar una reacción de hipersensibilidad tipo I en individuos atópicos. La mayoría de los seres humanos organizan respuestas de inmunoglobulina E (IgE) significativas solo como defensa contra las infecciones parasíticas. Sin embargo, algunos individuos organizan una respuesta de IgE contra antígenos medioambientales comunes. Esta predisposición hereditaria se llama atopía. En individuos atópicos, los antígenos no parasíticos estimulan la producción de IgE inapropiada, conduciendo a hipersensibilidad tipo I.

Alérgenos en el sentido de la presente divulgación incluyen alérgenos de plantas y animales (base de datos Allergome: www.allergome.org). Los alérgenos son normalmente alérgenos naturales. Los alérgenos pueden ser alérgenos de una o más de las siguientes especies: Acarus siro, Blomia tropicalis, Dermatophagoides farinae, Dermafophagoides microceras, Dermatophagoides pteronyssinus, Euroglyphus maynei, Glycyphagus domesticus, Lepidoglyphus destructor, Tyrophagus putrescentiae, Blattella germanica, Periplaneta americana, Harmonia axyridis, Archaeopotamobius sibiriensis, Artemia franciscana, Charybdis feriatus, Crangon crangon, Homarus americanus, Litopenaeus vannamei, Metapenaeus ensis, Panulirus stimpsoni, Penaeus aztecus, Penaeus indicus, Penaeus monodon, Pontastacus leptodactylus, Aedes aegypti, Chironomus kiiensis, Chironomus thummi thummi, Forcipomyia taiwana, Triatoma protracta, Apis cerana, Apis dorsata, Apis mellifera, Bombus pennsylvanicus, Bombus terrestris, Dolichovespula arenaria, Dolichovespula maculata, Myrmecia pilosula, Polistes annularis, Polistes dominulus, Polistes exclamans, Polistes fuscatus, Polistes gallicus, Polistes metricus, 10 Polybia paulista, Polybia scutellaris, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri, Solenopsis saevissima, Vespa crabro, Vespa mandarinia, Vespula flavopilosa, Vespula germanica, Vespula maculifrons, Vespula pensylvanica, Vespula squamosa, Vespula vidua, Vespula vulgaris, Argas reflexus, Thaumetopoea pityocampa, Ctenocephalides felis felis, Lepisma saccharina, Rana esculenta, Canis familiaris, Felis domesticus, Bos domesticus, Sardinops sagax, Gadus 15 callarias, Gallus domesticus, Oryctolagus cuniculus, Xiphias gladius, Equus caballus, Lepidorhombus whiffiagonis, Cavia porcellus, Mus musculus, Rattus norvegius, Salmo salar, Dendronephthya nipponica, Todarodes pacificus, Helix aspersa, Haliotis midae, Anisakis simplex, Ascaris suum, Alternaria alternata, Cladosporium cladosporioides, Cladosporium herbarum, Curvularia lunata, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Penicillium brevicompactum, Penicillium chrysogenum, Penicillium citrinum, Penicillium oxalicum, Fusarium culmorum, Trichophyton rubrum, Trichophyton tonsurans, Candida albicans, Candida boidinii, Epicoccum purpurascens, Coprinus comatus, 20 Psilocybe cubensis, Rhodotorula mucilaginosa, Malassezia furfur, Malassezia sympodialis, Chamaecyparis obtusa, Cryptomeria japonica, Cupressus arizonica, Cupressus sempervirens, Juniperus ashei, Juniperus oxycedrus, Juniperus sabinoides, Juniperus virginiana, Phoenix dactylifera, Asparagus officinalis, Crocus sativus, Ananas comosus, Anthoxanthum odoratum, Cynodon dactylon, Dactylis glomerata, Festuca pratensis, Holcus lanatus, Hordeum vulgare, 25 Lolium perenne, Oryza sativa, Paspalum notatum, Phalaris aquatica, Phleum pratense, Poa pratensis, Secale cereale, Sorghum halepense, Triticum aestivum, Zea mays, Musa acuminata, Apium graveolens, Daucus carota, Ambrosia artemisiifolia, Ambrosia psilostachya, Ambrosia trifida, Artemisia vulgaris, Helianthus annuus, Lactuca sativa, Brassica juncea, Brassica napus, Brassica oleracea, Brassica rapa, Sinapis alba, Beta vulgaris, Chenopodium album, Salsola kali, Cucumis melo, Actinidia chinensis, Actinidia deliciosa, Bertholletia excelsa, Arachis hypogaea, Glycine max, Lens culinaris, 30 Lupinus angustifolius, Pisum sativum, Phaseolus vulgaris, Vigna radiata, Alnus glutinosa, Betula verrucosa, Carpinus betulus, Castanea sativa, Corylus avellana, Juglans nigra, Juglans regia, Quercus alba, Catharanthus roseus, Fraxinus excelsior, Ligustrum vulgare, Olea europea, Plantago lanceolata, Sesamum indicum, Syringa vulgaris, Persea americana, Hevea brasiliensis, Mercurialis annua, Ricinus communis, Platanus acerifolia, Platanus orientalis, Fragaria ananassa, Humulus japonicus, Malus domestica, Morus nigra, Parietaria judaica, Parietaria officinalis, Prunus armeniaca, Prunus 35 avium, Prunus domestica, Prunus dulcis, Prunus persica, Pyrus communis, Rubus idaeus, Ziziphus mauritiana, Vitis vinifera, Anacardium occidentale, Citrus limon, Citrus reticulata, Citrus sinensis, Litchi chinensis, Pistacia vera, Capsicum annuum, Lycopersicon esculentum, Solanum tuberosum.

Preferentemente, uno o más alérgenos de la presente divulgación son alérgenos de las especies *Phleum pratense, Betula verrucosa, Dermatophagoides pteronyssinus*. Lo más preferentemente, uno o más alérgenos son alérgenos de las especies *Phleum pratense*.

En una realización preferida del procedimiento de la presente divulgación, todos los alérgenos de los que se derivan fragmentos son de una única especie de la lista citada anteriormente. Es decir, los diferentes 'alérgenos fuente' se derivan todos de las mismas especies.

Un grupo preferido de alérgenos según esta divulgación son alérgenos del polen de gramíneas, por ejemplo, alérgenos de la especie *Phleum pratense*. Preferentemente, los alérgenos están seleccionados del grupo que consiste en Phl p 1, Phl p 2, Phl p 3, Phl p 4, Phl p 5, Phl p 6, Phl p 7, Phl p 11, Phl p 12 y Phl p 13. Los alérgenos de la presente invención están seleccionados del grupo que consiste en Phl p 1, Phl p 2, Phl p 5 y Phl p 6.

Los fragmentos se derivan de al menos dos alérgenos diferentes, preferentemente de 2 a 10 alérgenos diferentes, más preferentemente de 2 a 5 alérgenos diferentes, por ejemplo, de 2, 3, 4 ó 5 alérgenos diferentes.

50 En una realización especial, el grupo de polipéptidos comprende al menos 2 polipéptidos que consisten en los mismos fragmentos pero en los que los fragmentos se ensamblan en un orden diferente.

Determinación de la reactividad de IgE

40

55

En otra etapa, el procedimiento de la presente divulgación comprende determinar la reactividad de IgE de los polipéptidos. En un sentido más amplio, el término "reactividad de IgE" indica la capacidad de una sustancia para unirse a anticuerpos IgE. Más específicamente, como se usa en el presente documento, el término "reactividad de IgE" se refiere a la capacidad del polipéptido para unirse a anticuerpos IgE de individuos que son alérgicos a uno o más de los alérgenos de

los que se derivan los fragmentos dentro del polipéptido.

La reactividad de IgE puede medirse determinando el grado de unión entre (1) IgE de suero de individuos que son alérgicos a uno o más de los alérgenos de los que se derivan los fragmentos y (2) el polipéptido. Esto puede hacerse mediante el procedimiento descrito en la referencia (18) o (19).

Alternativamente, la reactividad de IgE y actividad alergénica pueden determinarse analizando la expresión de CD203c sobre basófilos humanos que se aislaron de individuos alérgicos a uno o más de dichos alérgenos. Véase el Ejemplo 4 y la referencia (20).

Determinación de la reactividad de linfocitos T

En otra etapa, el procedimiento de la presente divulgación comprende determinar la reactividad de linfocitos T de los polipéptidos. El término "reactividad de linfocitos T" como se usa en el presente documento se refiere a la capacidad de una sustancia para unirse específicamente a receptores de linfocitos T. Más específicamente, "reactividad de linfocitos T" significa la capacidad del polipéptido para inducir proliferación de linfocitos T.

La reactividad de linfocitos T de los polipéptidos puede medirse (1) proporcionando células mononucleares de sangre periférica (CMSP) aisladas de individuos alérgicos a uno o más de los alérgenos de los que se derivan los fragmentos, y (2) determinando el grado de proliferación de linfocitos T contenidos en dichas CMSP. Véase el Ejemplo 5 y la referencia (16).

Inducción de una respuesta de IgG protectora

En otra etapa, el procedimiento de la presente divulgación comprende determinar la capacidad de los polipéptidos para inducir una respuesta de IgG contra uno o más de los alérgenos de los que se derivan los fragmentos. Esto puede hacerse (1) inmunizando un mamífero no humano (por ejemplo, un ratón, rata o conejo) con el polipéptido y (2) determinando la cantidad de anticuerpos IgG producidos en dicho mamífero no humano que son específicos para dicho uno o más alérgenos de los que se derivan los fragmentos. Los anticuerpos IgG medidos son preferentemente anticuerpos IgG1. Preferentemente, la etapa (2) se realiza usando un ensayo de ELISA. Véase el Ejemplo 6.

El procedimiento comprende además determinar a qué grado los polipéptidos pueden inducir una respuesta de IgG protectora. Esto puede hacerse (1) proporcionando una composición que contiene anticuerpos IgG inmunizando un mamífero no humano (por ejemplo, un ratón, rata o conejo) con el polipéptido; (2) proporcionando una composición que contiene anticuerpos IgE de individuos que son alérgicos a uno o más de dichos alérgenos de los que se derivan los fragmentos del polipéptido, y (3) midiendo si y/o a qué grado dicha composición que contiene anticuerpos IgG puede bloquear la unión de dichos anticuerpos IgE a uno o más de dichos alérgenos.

Esta prueba se realiza preferentemente usando un ensayo de ELISA. Por ejemplo, los alérgenos naturales de los que se derivan los fragmentos pueden inmovilizarse sobre una placa de ELISA. La placa de ELISA así pretratada puede entonces ponerse en contacto con dicha composición que contiene los anticuerpos IgG para permitir la unión de anticuerpos IgG a dichos alérgenos inmovilizados. Después de lavar la composición que contiene dichos anticuerpos IgE se pone en contacto con la placa de ELISA. Después de lavar se determina la cantidad de anticuerpos IgE. Véase el Ejemplo 7.

35 Selección del polipéptido

El procedimiento de la presente divulgación comprende la etapa final de seleccionar aquellos polipéptidos que presentan propiedades favorables y así son útiles para el posible uso como vacuna. Para seleccionar un polipéptido debe tener las siguientes propiedades:

- (i) menor reactividad de IgE que uno o más de los alérgenos de los que se derivan los fragmentos del polipéptido;
- (ii) reactividad de linfocitos T
- (iii) capacidad para inducir una respuesta de IgG dirigida contra los alérgenos de los que se derivan los fragmentos del polipéptido; y
- (iv) capacidad para inducir una respuesta de IgG protectora que bloquee la unión de IgE de pacientes alérgicos a dichos alérgenos de los que se derivan los fragmentos del polipéptido.

Con respecto al punto (i) anterior, el polipéptido se selecciona si su reactividad de IgE es inferior a la de al menos un alérgeno del que se deriva. Preferentemente, el polipéptido se selecciona solo si su reactividad de IgE es inferior a la de cada alérgeno del que se deriva. Por ejemplo, si el polipéptido consiste en fragmentos derivados de PhI p 2 y PhI p 5, el polipéptido debe tener una menor reactividad de IgE que PhI p 2, y debe tener una menor reactividad de IgE que PhI p 5

6

40

15

20

25

para seleccionarse.

Para ser seleccionado, la reactividad de IgE y la actividad alergénica se reducen preferentemente al menos el 25 %, más preferentemente al menos el 50 %, lo más preferentemente al menos el 90 %, determinado por mediciones de IgE cuantitativas como se describe en la Ref. 16, y como se describe en el Ejemplo 4.

5 Con respecto al requisito (ii), el polipéptido se selecciona solo si puede provocar la activación de linfocitos T específica para alérgenos (Ejemplo 5).

Con respecto a la condición (iii), el polipéptido se selecciona solo si puede inducir un respuesta de IgG específica para alérgenos tras la inmunización (véase, por ejemplo, el Ejemplo 6).

Con respecto a la condición (iv), el polipéptido se selecciona solo si los anticuerpos IgG inducidos por inmunización pueden inhibir la unión de IgE de pacientes alérgicos al alérgeno natural (véase, por ejemplo, el Ejemplo 7).

Polipéptidos hipoalergénicos identificados mediante el procedimiento descrito en el presente documento

En otro aspecto la presente divulgación se refiere a un polipéptido hipoalergénico identificado y producido según esta divulgación.

El polipéptido hipoalergénico puede comprender o consistir en al menos cuatro fragmentos derivados de al menos dos alérgenos diferentes, en el que la secuencia de aminoácidos de cualquiera de dos fragmentos adyacentes dentro del polipéptido no está presente como una secuencia de aminoácidos consecutiva en dicho alérgenos, caracterizado porque al menos un fragmento se deriva de PhI p 1 o PhI p 5. El número de fragmentos puede ser N, en el que N tiene el significado que se ha definido anteriormente.

En otra realización, el polipéptido hipoalergénico de la presente divulgación puede comprender o consistir en al menos cuatro fragmentos derivados de al menos dos alérgenos diferentes, en el que la secuencia de aminoácidos de cualquier par de dos fragmentos adyacentes dentro del polipéptido de fusión no está presente como una secuencia de aminoácidos consecutiva en dicho alérgenos, caracterizado porque cada uno de dichos fragmentos consiste en una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 55 a 76. Estas secuencias de aminoácidos están comprendidas en los fragmentos usados en los ejemplos de la presente solicitud. El número de fragmentos puede ser N, en el que N tiene el significado que se ha definido anteriormente. Preferentemente, el polipéptido hipoalergénico puede consistir en una cualquiera de las siguientes estructuras (VIII) a (XIV):

```
(VIII) Met-F1-F2- ... -FN-marca,

(IX) Met-F1-F2- ... -FN,

(X) F1-F2- ... -FN-marca,

30 (XI) Met-marca-F1-F2- ... -FN,

(XII) marca-F1-F2- ... -FN,

(XIII) marca-F1-F2- ... -FN-marca,

(XIV) F1-F2- ... -FN
```

en las que Met es un residuo de metionina del extremo N, F1, F2 y FN son el primer, segundo y enésimo fragmento, respectivamente, y marca es una secuencia de marca (por ejemplo (His)₆), consistiendo cada fragmento en una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 55 a 76. La secuencia de marca tiene normalmente 5 a 10 aminoácidos de longitud.

El polipéptido hipoalergénico de la presente invención comprende una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 22, 23, 24, 25, 36 y 37. Estas secuencias de aminoácidos están comprendidas en las construcciones B, C, D, E, P y Q, respectivamente (véanse los ejemplos). El polipéptido hipoalergénico puede consistir en una cualquiera de las siguientes estructuras (XV) a (XXI):

```
(XV) Met-SEC-marca,
(XVI) Met-SEC,
(XVII) SEC-marca,
(XVIII) Met-marca-SEC,
```

35

40

(XIX) marca-SEC,

(XX) marca-SEC-marca,

(XXI) SEC

en la que Met es un residuo de metionina del extremo N, SEC es una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 22, 23, 24, 25, 36 y 37, y marca es una secuencia de marca (por ejemplo (His)₆). La secuencia de marca tiene normalmente 5 a 10 aminoácidos de longitud.

El polipéptido puede consistir en una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 39, 40, 41, 42, 53 y 54. Las construcciones B, C, D, E, P y Q consisten en estas secuencias de aminoácidos, respectivamente (véanse los ejemplos). Estas realizaciones se corresponden con la estructura (VIII) o (XV) anterior.

Todas las realizaciones descritas anteriormente a propósito del procedimiento de la presente divulgación son aplicables al polipéptido hipoalergénico de la invención y viceversa.

Otros aspectos de la invención

15

25

30

35

40

45

La invención se refiere adicionalmente a un polinucleótido que codifica el polipéptido de la presente invención. Debido a la degeneración del código genético, muchas moléculas de polinucleótidos diferentes pueden codificar un único polipéptido. El polinucleótido de la invención es preferentemente una construcción de expresión para obtener el polipéptido después de la expresión en células huésped. La construcción de expresión puede comprender además componentes que generalmente son conocidos en la técnica tales como secuencias promotoras, genes que codifican factores de resistencia contra antibióticos, un origen de replicación y similares.

La presente divulgación se refiere adicionalmente a una célula transfectada o transformada con un polinucleótido de la presente invención. Células adecuadas incluyen células eucariotas y células procariotas. Las células eucariotas pueden transfectarse mediante procedimientos conocidos en la técnica tales como transfección mediada por fosfato de calcio, electroporación, lipofección, etc.

La invención se refiere además a una composición farmacéutica que contiene el polipéptido según la presente invención. La composición farmacéutica puede contener adicionalmente uno o más vehículos o diluyentes farmacéuticamente aceptables tales como un tampón o disolución de sal. Preferentemente, la composición farmacéutica de la invención es una composición de vacuna. En una realización particular, la composición farmacéutica contiene además un adyuvante tal como hidróxido de aluminio.

La presente divulgación también se refiere a un procedimiento para la preparación del polipéptido de la invención. El procedimiento comprende proporcionar un polinucleótido que codifica el polipéptido, introducir dicho polinucleótido en una célula huésped, cultivar la célula huésped así obtenida en condiciones tales que el polipéptido híbrido se exprese, recuperar el producto de expresión de la célula. El polinucleótido puede prepararse mediante procedimientos conocidos en la técnica. Puede preferirse usar tecnología de PCR para preparar el polinucleótido que codifica el polipéptido de la invención. Las secuencias de ADNc de los alérgenos del polen de gramíneas Phl p 1, 2, 3, 4, 5, 6, 7, 11, 12 y 13 se muestran en SEC ID N°: 11 a 20, respectivamente. Basándose en estas secuencias y en la divulgación en la presente solicitud, el experto puede diseñar fácilmente ácidos nucleicos adecuados que codifican polipéptidos de la presente divulgación.

La invención se refiere además al uso del polipéptido descrito en el presente documento para la preparación de un medicamento para el tratamiento y/o la prevención de un trastorno alérgico. Un medicamento tal puede estar compuesto por el polinucleótido que codifica una vacuna que puede usarse directamente para la vacunación basada en ADN contra alergia tipo 1. El polipéptido recombinante o sintético puede usarse para preparar formulaciones para el tratamiento oral, sublingual o parenteral de trastornos alérgicos de tipo 1 ya que se usan ahora rutinariamente para inmunoterapia. Ejemplos de formulaciones para inmunoterapia sublingual o polipéptido híbrido unido a adyuvante para inmunoterapia de inyección. Posibles aplicaciones también incluyen formas basadas en células de inmunoterapia que pueden basarse en, por ejemplo, células dendríticas u otras células presentadoras de antígeno. Aquellas células se transforman y se expresan en antígeno *in vivo*. Preferentemente se usan células ortólogas transformadas con vectores adecuados. Un modo de aplicación puede ser la inyección subcutánea de polipéptido unido a adyuvante. Otra posibilidad es administración oral o nasal del polipéptido con el fin de inducir tolerancia inmunológica o anergia contra los componentes del polipéptido. Todas las posibles formulaciones pueden prepararse según medidas que son conocidas para aquellos expertos en la materia (esquema de administración de adyuvantes de dosificación).

La presente divulgación se refiere además al uso del polipéptido descrito en el presente documento o de un polipéptido o una célula descrita en el presente documento para la preparación de un medicamento para vacunación profiláctica o inducción de tolerancia. Administración profiláctica de polipéptidos híbridos significa la administración del polipéptido a individuos, preferentemente niños que todavía no sufren alergia tipo 1 con el fin de inducir un estado de tolerancia

inmunológica, anergia o no sensibilidad, o una inmunidad protectora contra los componentes de la vacuna híbrida. Esto puede lograrse por los diversos protocolos explicados brevemente para el tratamiento de un trastorno alérgico establecido. El tratamiento profiláctico puede realizarse con los polipéptidos o polinucleótidos descritos en el presente documento anteriormente.

En otra realización, la presente divulgación se refiere al uso de un polipéptido descrito en el presente documento para la detección de anticuerpos contra una proteína alergénica en una muestra. El anticuerpo puede ser un anticuerpo IgM, IgE, IgG o IgA. La concentración del anticuerpo puede determinarse a partir de una muestra que ha sido obtenida de un líquido corporal. La muestra puede derivarse de animales o seres humanos. Tales pruebas pueden basarse en un polipéptido inmovilizado en fase sólida o el polipéptido en la fase líquida. Ejemplos de tales pruebas incluyen pruebas de ELISA, pruebas de transferencia Western o cualquier otra prueba en la que el polipéptido se inmovilice para unirse a anticuerpos específicos fuera de la muestra. Alternativamente, el polipéptido se añade directamente al líquido que contiene anticuerpos con el fin de adsorber anticuerpos específicos como, por ejemplo, en ensayos inmunológicos competitivos.

El polipéptido de la invención también puede usarse para pruebas celulares tales como una prueba de proliferación de linfocitos T, etc.

15 Resumen de las secuencias de aminoácidos y de nucleótidos mostradas en el listado de secuencias:

SEC ID Nº:	secuencia / construcción				
1	secuencia de aminoácidos de PhI p 1				
2	secuencia de aminoácidos de PhI p 2				
3	secuencia de aminoácidos de PhI p 3				
4	secuencia de aminoácidos de PhI p 4				
5	secuencia de aminoácidos de PhI p 5				
6	secuencia de aminoácidos de PhI p 6				
7	secuencia de aminoácidos de PhI p 7				
8	secuencia de aminoácidos de PhI p 11				
9	secuencia de aminoácidos de PhI p 12				
10	secuencia de aminoácidos de PhI p 13				
11	ADNc de Phl p 1				
12	ADNc de Phl p 2				
13	ADNc de Phl p 3				
14	ADNc de Phl p 4				
15	ADNc de Phl p 5				
16	ADNc de Phl p 6				
17	ADNc de Phl p 7				
18	ADNc de Phl p 11				
19	ADNc de Phl p 12				
20	ADNc de Phl p 13				

(continuación)

SEC ID Nº:	secuencia / construcción
21	construcción A sin Met del extremo N y (His)6 del extremo C
22	construcción B sin Met del extremo N y (His) $_{\!6}$ del extremo C
23	construcción C sin Met del extremo N y (His) $_{\!\scriptscriptstyle 6}$ del extremo C
24	construcción D sin Met del extremo N y (His) $_{\!\scriptscriptstyle 6}$ del extremo C
25	construcción E sin Met del extremo N y (His) $_{\!6}$ del extremo C
26	construcción F sin Met del extremo N y (His) ₆ del extremo C
27	construcción G sin Met del extremo N y (His) ₆ del extremo C
28	construcción H sin Met del extremo N y (His)₀ del extremo C
29	construcción I sin Met del extremo N y (His) $_{\!\scriptscriptstyle 6}$ del extremo C
30	construcción J sin Met del extremo N y (His) ₆ del extremo C
31	construcción K sin Met del extremo N y (His) $_{\!6}$ del extremo C
32	construcción L sin Met del extremo N y (His) ₆ del extremo C
33	construcción M sin Met del extremo N y (His) ₆ del extremo C
34	construcción N sin Met del extremo N y (His) $_{\!\scriptscriptstyle 6}$ del extremo C
35	construcción O sin Met del extremo N y (His) ₆ del extremo C
36	construcción P sin Met del extremo N y (His) $_{\!6}$ del extremo C
37	construcción Q sin Met del extremo N y (His) ₆ del extremo C
38	construcción A con Met del extremo N y (His)₀ del extremo C
39	construcción B con Met del extremo N y (His)₀ del extremo C
40	construcción C con Met del extremo N y (His) ₆ del extremo C
41	construcción D con Met del extremo N y (His)₀ del extremo C
42	construcción E con Met del extremo N y (His)₀ del extremo C
43	construcción F con Met del extremo N y (His)₀ del extremo C
44	construcción G con Met del extremo N y (His) ₆ del extremo C
45	construcción H con Met del extremo N y (His) ₆ del extremo C
46	construcción I con Met del extremo N y (His) ₆ del extremo C
47	construcción J con Met del extremo N y (His) ₆ del extremo C
48	construcción K con Met del extremo N y (His) ₆ del extremo C
49	construcción L con Met del extremo N y (His) ₆ del extremo C
50	construcción M con Met del extremo N y (His)₀ del extremo C
51	construcción N con Met del extremo N y (His) ₆ del extremo C
52	construcción O con Met del extremo N y (His) ₆ del extremo C
53	construcción P con Met del extremo N y (His) ₆ del extremo C

(continuación)

SEC ID Nº:	secuencia / construcción
54	construcción Q con Met del extremo N y (His) ₆ del extremo C
55	P1a
56	P1b
57	P1c
58	P1d
59	P1a1
60	P1a2
61	P1c1
62	P1c2
63	P2A
64	P2B
65	P2a
66	P2b
67	P2c
68	P2a1
69	P2b2
70	P5a
71	P5b
72	P5c
73	P5d
74	P5c1
75	P5c2
76	P6b

Las secuencias de aminoácidos SEC ID Nº: 1-10 muestran los péptidos maduros que carecen del péptido señal, cuando corresponda.

5 Los siguientes ejemplos ilustran adicionalmente la invención.

Ejemplos

En este estudio los presentes inventores demuestran que estos enfoques pueden combinarse y extenderse para una fuente de alérgenos compleja como polen de gramíneas. Los presentes inventores construyeron una vacuna basada en los cuatro alérgenos principales de la hierba timotea (Phl p 1, Phl p 2, Phl p 5, Phl p 6) para el tratamiento de alergia al polen de gramíneas (13, 14). Con referencia a datos estructurales y estudios de mapeo de epítopes, los alérgenos se fraccionaron en fragmentos con actividad alergénica reducida. Los presentes inventores describen la producción de diferentes combinaciones de estos fragmentos como proteínas híbridas, sus propiedades bioquímicas e inmunológicas y cómo se seleccionaron cuatro proteínas híbridas como moléculas candidatas para la vacunación contra alergia al polen de gramíneas.

Ejemplo 1: Design, expresión y purificación de las moléculas híbridas

10

Para la construcción de moléculas hipoalergénicas híbridas se diseñaron diecisiete moléculas híbridas diferentes por el ensamblaje de fragmentos de alérgenos derivados de los principales alérgenos del polen de la hierba timotea Phl p 1, Phl p 2, Phl p 5, y Phl p 6 como se muestra en la Figura 1. Las secuencias de aminoácidos de las proteínas resultantes (diseñadas A-Q) se enumeran en la Tabla 1. P1M y P2M se refieren a derivados de alérgenos previamente diseñados (Referencias 15, 16). Todas las secuencias fueron de codones optimizados para la expresión en *Escherichia coli*, se añadió un codón de iniciación (ATG) en el extremo 5' y se añadió una marca de 6xhistidina en el extremo 3' de cada secuencia, seguido de un codón de terminación. Los genes resultantes que codifican las moléculas híbridas A-Q se clonaron en el vector de expresión pET17b (Novagen) y se expresaron en cultivo líquido en células BL21 de *Eschericha coli* (DE3) (Stratagene). Todas las proteínas se purificaron por cromatografía de afinidad usando un protocolo convencional (Qiagen). La pureza de las moléculas híbridas expresadas se analizó por SDS-PAGE. (Figura 2)

Fragme	Fragmentos derivados de PhI p 1
Pla	IPKVPPGPNTTATYGDKLDAKSTWYGKPTGAGPKDNGGACGYKDVDKPPFSGMTGCGNTPIFK
B	SGRGCGSCFEIKCTKPEACSGEPVVVHITDDNEEPIAPYHFDLSGHAFGAMAKKGDEQKLR
Pic	SAGELELQFRRVKCKYPEGTKVIFHVEKGSNPNYLALLVKYVNGDGDVVANDIKEKGKDKWIELKESWGAIWRIDTPDKL
Pld	TGPFTVRYTTEGGTKTEAEDVIPEGWKADTSYESK
Pla1	IPKPPGPNTTATYGDKWLDAKSTWYGKPTGA
Pla2	GPKDNGGACGYKDVDKPPFSGMTGCGNTPIFK
Plc1	SAGELELQFRRVKCKYPEGTKVTFHVEKGSNPNYLLALLV
Plc2	KYVNGDGDVVAVDIKEKGKDKWIELKESWGAIWRIDTPDKL
Fragme	Fragmentos derivados de PhI p 5
P5a	ADLGYGPATPAAPAAGYTPATPAAPAEAAPAGKATTEEQKLIEKINAGFKAALAAAAGVQPADKYRTFVATF
P5b	GAASNKAFAEGLSGEPKGAAESSSKAALTSKLDAAYKLAYKTAEGATPEAKYDAYVATLSEALRHAGTLEVHAVKPA
P5c	ADDVKVIPAGELQVIEKVDAAFKVAATAANAAPANDKFTVFEAAFNDAIKASTGGAYESYKFIPALEA
P5d	AVKQAYAATVATAPEVKYTVFETALKKAITAMSEAQKAAKPAAAATATATAAVGAATGAATAATGGYKV
P5c1	AEEVKVIPAGELQVIEKVDAAFKVAATAANAAPA
P5c2	NDKFTVFEAAFNDAIKASTGGAYESYKFIPALEA
Fragme	Fragmentos derivados de PhI p 2
P2A	VPKVTFTVEKGSNEKHLAVLVKYEGDTMAEVELREHGSDEWVAMTKGEG
P2B	GVW/TFDSEEPLQGPFNFRFLTEKGMKNVFDDVVPDKYTIGATYAPEE
P2a	VPKVTFTVEKGSNEKHLAVLVKYEGDTMAEVEL
Tabla I.	Tabla I . Secuencias de aminoácidos de fragmentos derivados de PhI p 1, PhI p 2, PhI p 5 y PhI p 6.
Fragme	Fragmentos derivados de PhI p 2
P2b	REHGSDEWVAMTKGEGGVWTFDSEEPLQGPFN
P2c	FRFLTEKGMKNVFDDVVPEKYTIGATYAPEE
P2a1	VPKVTFTVEKGSNEKHLAVLVKYTEGDTMAEVELREHGS
P2b2	DEWVAMTKGEGGVTTFDSEEPIQGPFN
Fragme	Fragmentos derivados de PhI p 6
400	* CONTACT TO THE TATE OF THE T

Ejemplo 2: Estimación de la estructura secundaria de las moléculas híbridas

Para evaluar la estructura secundaria de moléculas híbridas, espectros del CD de UV lejano de las proteínas B, C, P y Q disueltas en agua se recogieron en un espectropolarímetro Jasco J-810 (Japan Spectroscopic Co., Tokio, Japón) como se ha descrito (16). Todas las proteínas híbridas, que se analizaron con respecto a su estructura secundaria, presentaron una estructura enrollada al azar, que se ha observado previamente para varios otros derivados de alérgeno (18, 19).

Ejemplo 3: Reactividad de IgE de las moléculas híbridas

Para analizar la reactividad de IgE de moléculas híbridas, la unión directa de IgE del suero de pacientes alérgicos al polen de gramíneas a las moléculas híbridas derivadas de PhI p 1, PhI p 2, PhI p 5 y PhI p 6 A-Q, o rPhI p 1, rPhI p 2, rPhI p 5 y rPhI p 6, o HSA como control negativo, se investigó por experimentos de transferencia puntual no desnaturalizante como se ha descrito (18, 19). Los anticuerpos IgE de pacientes se unieron a los alérgenos 'naturales' recombinantes PhI p 1, PhI p 2, PhI p 5 y PhI p 6, pero no a la proteína de control HSA. Inesperadamente, los presentes inventores observaron reactividades de IgE diferentes de IgE de pacientes alérgicos a las moléculas híbridas A-Q, que no pudo explicarse por la estructura primaria (por ejemplo, híbridos A y C e híbridos E y F contienen exactamente los mismos fragmentos derivados de alérgeno).

Ejemplo 4: Actividad alergénica reducida de las moléculas híbridas B, C, P y Q

Se seleccionaron cuatro moléculas híbridas, B, C, P y Q para posteriores análisis. Para determinar la reactividad de IgE de los híbridos B, C, P y Q sobre la activación de células efectoras dependientes de IgE se analizó la expresión de CD203c sobre basófilos humanos aislados de pacientes alérgicos al polen de gramíneas. CD203c se ha descrito previamente como un marcador de activación sobre basófilos humanos, que está regulado por incremento tras la entrecruzamiento inducido por alérgenos de IgE unida a receptor (20). Como se muestra en la Figura 5, las células toleraron una concentración al menos 10 veces superior de las moléculas híbridas en comparación con la cantidad equimolar de los alérgenos naturales (pacientes 1-12). Estos datos sugieren una actividad alergénica fuertemente reducida de las cuatro moléculas híbridas B, C, P y Q.

25 Ejemplo 5: Proliferaciones de linfocitos T

Para evaluar la reactividad de linfocitos T de moléculas híbridas se realizaron experimentos de proliferación *in vitro* con CMSP aisladas de cuatro pacientes alérgicos al polen de gramíneas como se ha descrito (16). Aunque la actividad alergénica de las moléculas híbridas se redujo, se preservó la mayoría de los epítopes de los linfocitos T de los alérgenos PhI p 1, PhI p 2, PhI p 5 y PhI p 6 naturales (Tabla II).

30

5

10

15

20

Tabla. II. CMSP de pacientes alérgicos al polen de gramíneas responden a las moléculas híbridas

	20 μg/ml	10 μg/ml	5 μg/ml	2,5 μg/ml	1,25 μg/ml
rPhlp1+rPhlp 5	2,5 (±1,5)	2,6 (±1,8)	2.,0 (±1,1)	1,3 (±0,1)	1,6 (±0,7)
B+C	1,7 (±1,1)	2,1 (±1,5)	2,2 (±1,4)	2,0 (±0,9)	1,4 (±0,3)
Р	2,0 (±1,5)	2,2 (±1,4)	2,0 (±0,6)	2,7 (±1,2)	2,5 (±1,2)
rPhlp2+rPhlp6	1,6 (±0,9)	1,3 (±0,69)	1,5 (±0,6)	1,3 (±0,7)	1,5 (±0,4)
0	1,4 (±1,0)	1,6 (±0,8)	2,0 (±0,5)	2,9 (±1,0)	2,8 (±0,7)

Ejemplo 6: La inmunización con las moléculas híbridas B, C, P y Q indujo una respuesta de IgG dirigida contra los alérgenos naturales

Para investigar si anticuerpos IgG inducidos por inmunización con B, C, P o Q fueron capaces de reconocer o no los alérgenos naturales rPhI p 1, rPhI p 2, rPhI p 5 y rPhI p 6 se usaron dos modelos animales diferentes (ratones BALB/c, conejos). Los presentes inventores inmunizaron ratones BALB/c con una mezcla de PhI p 1 y PhI p 5, o una mezcla de PhI p 2 y PhI p 6, o una mezcla de B y C, o P, o Q, y compararon el desarrollo de niveles de anticuerpos específicos para PhI p 1, PhI p 2, PhI p 5 y PhI p 6 por medidas de ELISA (Figura 6). Los híbridos B+C, además de P y Q, pudieron inducir una

respuesta de anticuerpos IgG₁ específica para PhI p 1, PhI p 2, PhI p 5 y PhI p 6, que fue superior a la respuesta de anticuerpos inducida por los propios alérgenos naturales.

El desarrollo de respuestas de anticuerpos IgG específicas para alérgenos también se investigó por inmunización de conejos con B, C, P o Q. Se probaron diluciones sucesivas de anticuerpos de conejo para anticuerpos IgG específicos para Phl p 1, Phl p 2, Phl p 5 y Phl p 6 por ELISA. Las construcciones B, C, P y Q pudieron inducir una respuesta de anticuerpos IgG a los alérgenos naturales Phl p 1 (Figura 7A), Phl p 5 (Figura 7B), Phl p 2 y Phl p 6 (Figura 7C).

Ejemplo 7: La inmunización con los alérgenos híbridos B, C, P y Q indujo una respuesta de IgG protectora que bloquea la unión de IgE de pacientes alérgicos a los alérgenos naturales y extracto de polen de gramíneas

Para examinar la capacidad de anticuerpos IgG inducidos con las moléculas híbridas B, C, P y Q para inhibir la unión de IgE de pacientes alérgicos al polen de gramíneas a rPhl p 1, Phl p 2, Phl p 5 y rPhl p 6, o a un extracto de polen de gramíneas natural. Por tanto, en experimentos de inhibición de ELISA, los presentes inventores preincubaron un extracto de polen de gramíneas natural unido a placas de ELISA con una mezcla de antisuero anti-P y Q de conejo, o una mezcla de antisuero anti-B, C y Q, o un antisuero de conejo obtenido por inmunización con un híbrido de polen de gramíneas previamente descrito (HPG) (11) que consiste en Phl p 1, Phl p 2, Phl p 5 y Phl p 6 o los sueros preinmunes correspondientes. Estos anticuerpos IgG de conejo podrían inhibir la unión de IgE de 14 pacientes alérgicos al polen de gramíneas a los siguientes extractos de polen de gramíneas: P+Q: 73 %; B+C+Q: 78 %; HPG: 75 % (Tabla III). Se realizaron experimentos similares con rPhl p 1, rPhl p 2, rPhl p 5 y Phl p 6 unidos a placas de ELISA, conduciendo a una inhibición promedio del 81-94 % para Phl p 1 (Tabla IV), 86-90 % para Phl p 5 (Tabla V), 45 % para Phl p 2 (Tabla VI) y 34 % para Phl p 6 (Tabla VII).

Tabla III. % de inhibición de IgE de pacientes que se une a GPE después de la preincubación con antisueros de conejo

paciente	P+Q	B+C+Q	HPG
1	90	93	92
2	28	23	14
3	84	89	87
4	75	81	78
5	61	71	70
6	78	84	86
7	81	86	86
8	80	80	80
9	76	83	73
10	66	71	75
11	76	87	86
12	70	80	72
13	72	81	75
14	84	89	82
media	73	78	75
DE	15,0	17,1	18,9

5

10

Tabla IV. % de inhibición de IgE de pacientes que se une a rPhI p 1 después de la preincubación con antisueros de conejo

paciente	B+C	В	С	Р	HPG
1	84	86	91	90	66
2	97	82	97	94	46
3	92	77	93	90	44
4	73	69	79	76	47
5	90	86	91	89	57
6	94	80	96	92	43
7	93	81	98	96	44
8	98	93	100	99	67
9	96	82	98	92	44
10	98	78	99	94	44
media	92	81	94	91	50
DE	7,8	6,4	6,2	6,1	9,5

Tabla V. % de inhibición de IgE de pacientes que se une a rPhI p 5 después de la preincubación con antisueros de conejo

paciente	B+C	В	С	Р	HPG
1	92	93	94	94	94
2	93	91	90	95	97
3	92	86	90	92	93
4	86	82	86	89	89
5	87	83	90	91	92
6	93	88	91	94	96
7	95	91	95	96	98
8	95	92	94	97	98
9	68	63	66	52	52
10	95	90	92	97	99
media	90	86	89	90	91
DE	8,2	8,9	8,4	13,5	14,0

	de conejo						
paciente	Q	HPG					
1	52	86					
2	50	87					
3	41	71					
4	60	76					
5	46	83					
6	43	74					
7	47	60					
8	31	45					
9	30	54					
media	45	71					
DE	8,7	14,8					

Tabla VII. % de inhibición de IgE de pacientes que se une a rPhI p 6 después de preincubación con antisueros de conejo

paciente	Q	HPG
1	38	55
2	38	53
3	36	52
4	29	47
5	32	46
6	40	51
7	32	38
8	41	59
9	23	32
media	34	48
DE	5,9	8,5

Ejemplo 8: La inmunización con las moléculas híbridas B, C y P indujo una respuesta de IgG dirigida contra el alérgeno PhI p 1 natural

Diluciones sucesivas de antisueros de conejo se probaron para anticuerpos IgG específicos para PhI p 1 por ELISA. Las construcciones B, C y P fueron capaces de inducir una respuesta de anticuerpos IgG al alérgeno natural PhI p 1. La respuesta de IgG se comparó con niveles de anticuerpos IgG inducidos por inmunización con una molécula híbrida que consiste en los alérgenos naturales PhI p 1, PhI p 2, PhI p 5 y PhI p 6 (híbrido del polen de gramíneas, HPG), que se ha descrito previamente como una molécula altamente inmunogénica (11). Inesperadamente, C y P indujeron niveles incluso mayores de anticuerpos IgG específicos para PhI p 1 en conejos. Los resultados se muestran en la Figura 8.

Referencias

5

10

15

20

25

30

- 1. Kay AB., Kaplan AP, Bousquet J, Holt PJ. Allergy and Allergic Diseases. Blackwell Scientific Publ./ Oxford, United Kingdom; 2008.
- 2. Bischoff SC. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol. 2007.7:93-104.
- 3. van Nerveen, R.J., Knol, E.F., Ejrnaes, A., Würtzen, P.A. IgE-mediated allergen presentation and blocking antibodies: regulation of T-cell activation in allergy. Int. Arch. Allergy Immunol. 2006. 141: 119.
- 4. Bieber T. Fc epsilon RI on human epidermal Langerhans cells: an old receptor with new structure and functions. Int Arch Allergy Immunol. 1997.113:30-4:
- 5. Valenta, R. y Niederberger, V. (2007).Recombinant allergens for immunotherapy. J. Allergy Clin. Immunol. 119. 826-830.
- 6. Focke M, Marth K, Flicker S, Valenta R. Heterogeneity of commercial timothy grass pollen extracts. Clin Exp Allergy. 2008, 38:1400-8.
- 7. Mothes, N., Heinzkill, M., Drachenberg, K.J., Sperr, W.R., Krauth, M.T., Majlesi, Y., Semper, H., Valent, P., Niederberger, V., Kraft, D., y Valenta, R. (2003). Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin. Exp. Allergy 33, 1198-1208.
- 8. Linhart B. y Valenta, R. (2005). Molecular design of allergy vaccines. Curr. Opin. Immunol. 17, 646-655.
- 9. Niederberger, V., Horak, F., Vrtala, S., Spitzauer, S., Krauth, M.T., Valent, P., Reisinger, J., Pelzmann, M., Hayek,B., Kronqvist, M., Gafvelin, G., Gronlund, H., Purohit, A., Suck, R., Fiebig, H., Cromwell, O., Pauli, G., van Hage-Hamsten, M. y Valenta, R. (2004). Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc. Natl. Acad. Sci. 101, 14677-14682.
- 10. Linhart, B., Jahn-Schmid, B., Verdino, P., Keller, W., Ebner, C., Kraft, D. y Valenta, R. (2002). Combination vaccines for the treatment of grass pollen allergy consisting of genetically engineered hybrid molecules with increased immunogenicity. FASEB J. 16, 1301-1303.
- 11. Linhart, B., Hartl, A., Jahn-Schmid, B., Verdino, P., Keller, W., Krauth, M.T., Valent, P., Horak, F., Wiedermann, U., Thalhammer, J., Ebner, C., Kraft, D. y Valenta, R. (2005). A hybrid molecule resembling the epitope spectrum of grass pollen for allergy vaccination. J. Allergy Clin. Immunol. 115, 1010-1016.
 - 12. Linhart, B. y Valenta, R. (2004). Vaccine engineering improved by hybrid technology. Int. Arch. Allergy Immunol. 134, 324-331.
- 13. Vrtala S., Susani M., Sperr W.R., Valent P., Laffer S., Dolecek C., Kraft D. y Valenta R. (1996) Immunologic characterization of purified recombinant timothy grass pollen (Phleum pratense) allergens (Phl p 1, Phl p 2, Phl p 5). J Allergy Clin. Immunol 97, 781-787.
- 14. Vrtala S., Fischer S., Grote M., Vangelista L., Pastore A., Sperr W.R., Valent P., Reichelt R., Kraft D. y Valenta R. (1999) Molecular, immunological, and structural characterization of Phl p 6, a major allergen and P-particle-associated protein from timothy grass (Phleum pratense) pollen. J. Immunol. 163, 5489-5496
- 15. Mothes-Luksch, N., S. Stumvoll, B. Linhart, M. Focke, M.T. Krauth, A. Hauswirth, P. Valent, P. Verdino, T. Pavkov, W. Keller, M. Grote, R. Valenta. 2008. Disruption of allergenic activity of the major grass pollen allergen Phl p 2 by reassembly as a mosaic protein. J. Immunol. 181:4864-73.
- 16. Ball, T., B. Linhart, K. Sonneck, . Blatt, H. Hermann, P. Valent, A. Stoecklinger, C. Lupinek, J. Thalhamer,
 A.A. Fedorov, S.C. Almo, R. Valenta. 2009. Reducing allergenicity by altering allergen fold: A mosaic protein of Phl p 1 for allergy vaccination. Allergy 64:569-80.
 - 17. Vrtala S., Focke M, Kopec J, Verdino P, Hartl A, Sperr WR, Fedorov AA, Ball T, Almo S, Valent P, Thalhamer J, Keller W, Valenta R. Genetic engineering of the major timothy grass pollen allergen, Phl p 6, to reduce allergenic activity and preserve immunogenicity. J. Immunol. 2007. 179: 1730-9
- 45 18. Vrtala, S., K. Hirtenlehner, L. Vangelista, A. Pastore, H.-G. Eichler, W. R. Sperr, P. Valent, C. Ebner, D. Kraft, R. Valenta. 1997. Conversion of the major birch pollen allergen, Bet v 1, into two nonanaphylactic T cell epitope-containing fragments. Candidates for a novel form of specific immunotherapy. J. Clin. Invest. 99: 1673-1681.
 - 19. Swoboda I, Bugajska-Schretter A, Linhart B, Verdino P, Keller W, Schulmeister U, Sperr WR, Valent P, Peltre

- G, Quirce S, Douladiris N, Papadopoulos NG, Valenta R, Spitzauer S. A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy. J Immunol. 2007.178:6290-6.
- 20. Hauswirth AW, Natter S, Ghannadan M, Majlesi Y, Schernthaner GH, Sperr WR, Bühring HJ, Valenta R, Valent P.J. Recombinant allergens promote expression of CD203c on basophils in sensitized individuals. Allergy Clin Immunol. 2002. 110:102-9.
- 21. Linhart, B., Mothes-Luksch, N., Vrtala, S., Kneidinger, M., Valent, P. y Valenta, R. 2008. A hypoallergenic hybrid molecule with increased immunogenicity consisting of derivatives of the major grass pollen allergens, Phl p 2 and Phl p 6. Biol. Chem. 389:925-33.

LISTADO DE SECUENCIAS

10 <110> Biomay AG

<120> Polipéptidos híbridos hipoalergénicos para el tratamiento de alergia

<130> moléculas hipoalergénicas híbridas

15

5

<160> 76

<170> PatentIn versión 3.5

20 <210> 1

<211> 240

<212> PRT

<213> Phleum pratense

Ile 1	Pro	Lys	Val	Pro 5	Pro	Gly	Pro	Asn	11e 10	Thr	Ala	Thr	Tyr	Gly 15	Asj
Lys	Trp	Leu	Asp 20	Ala	Lys	Ser	Thr	Trp 25	Tyr	Gly	Lys	Pro	Thr 30	Gly	Ala
Gly	Pro	Lys 35	Asp	Asn	Gly	Gly	Ala 40	Cys	Gly	Tyr	Lys	Asp 45	Val	Asp	Ly
Pro	Pro 50	Phe	Ser	Gly	Met	Thr 55	Gly	Cys	Gly	Asn	Thr 60	Pro	Ile	Phe	Lys
Ser 65	Gly	Arg	Gly	Суз	Gly 70	Ser	Cys	Phe	Glu	Ile 75	Lys	Суз	Thr	Lys	Pr(
Glu	Ala	Cys	Ser	Gly 85	Glu	Pro	Val	Val	Val 90	His	Ile	Thr	Asp	Asp 95	Ası
Glu	G1u	Pro	Ile 100	Ala	Pro	Tyr	His	Phe 105	Asp	Leu	Ser	Gly	His 110	Ala	Phe
Gly	Ala	Met 115	Ala	Lys	Lys	Gly	Asp 120	Glu	Gln	Lys	Leu	Arg 125	Ser	Ala	G13
Glu	Leu 130	Glu	Leu	Gln	Phe	Arg 135	Arg	Val	Lys	Суз	Lys 140	Tyr	Pro	Glu	G13
Thr 145	Lys	Val	Thr	Phe	His 150	Val	Glu	Lys	Gly	Ser 155	Asn	Pro	Asn	Tyr	Leu 160
Ala	Leu	Leu	Val	Lys 165	Tyr	Val	Asn	Gly	Asp 170	Gly	Asp	Val	Val	Ala 175	۷al
-		-	180	-	-	-	-	Lys 185	-				190		
Trp	Gly	Ala 195	Ile	Trp	Arg	Ile	Asp 200	Thr	Pro	Asp	Lys	Leu 205	Thr	Gly	Pro
Phe	Thr 210	Val	Arg	Tyr	Thr	Thr 215	Glu	Gly	Gly	Thr	Lys 220	Thr	Glu	Ala	Gl
Asp 225	Val	Ile	Pro	Glu	Gly 230	Trp	Lys	Ala	Asp	Thr 235	Ser	Tyr	Glu	Ser	Ly: 240

<210> 2

5 <211>96

<212> PRT

<213> Phleum pratense

Val Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His Leu Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu Gly Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp Val Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu <210>3 <211>97 <212> PRT <213> Phleum pratense <400>3 Ala Val Gln Val Thr Phe Thr Val Gln Lys Gly Ser Asp Pro Lys Lys Leu Val Leu Asp Ile Lys Tyr Thr Arg Pro Gly Asp Ser Leu Ala Glu Val Glu Leu Arg Gln His Gly Ser Glu Glu Trp Glu Pro Leu Thr Lys Lys Gly Asn Val Trp Glu Val Lys Ser Ser Lys Pro Leu Val Gly Pro 50 55 60 Phe Asn Phe Arg Phe Met Ser Lys Gly Gly Met Arg Asn Val Phe Asp Glu Val Ile Pro Thr Ala Phe Ser Ile Gly Lys Thr Tyr Lys Pro Glu 90 Glu

5

10

<210>4

<211> 508

-04	0-		-
</td <td>2></td> <td>PRT</td> <td></td>	2>	PRT	

<213> Phleum pratense

<400> 4

5

Ser 1	Ser	Суз	Glu	Val 5	Ala	Leu	Ser	Tyr	Tyr 10	Pro	Thr	Pro	Leu	Ala 15	Lys
Glu	Asp	Phe	Leu 20	Arg	Cys	Leu	Val	Lys 25	G1u	Ile	Pro	Pro	Arg 30	Leu	Leu

Tyr Ala Lys Ser Ser Pro Ala Tyr Pro Ser Val Leu Gly Gln Thr Ile 35 40 45

Arg Asn Ser Arg Trp Ser Ser Pro Asp Asn Val Lys Pro Ile Tyr Ile 50 60

Val Thr Pro Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly 65 70 75 80

Arg Arg His Gly Val Arg Ile Arg Val Arg Ser Gly Gly His Asp Tyr 85 90 95

Glu Gly Leu Ser Tyr Arg Ser Leu Gln Pro Glu Glu Phe Ala Val Val 100 105 110

Asp Leu Ser Lys Met Arg Ala Val Trp Val Asp Gly Lys Ala Arg Thr 115 120 125

Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile 130 135

Ile Gly Val Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu 165

Arg	гАз	Tyr	180	TT6	ALA	ATA	GIU	185	Val	TJ6	Asp	Val	Lуs 190	rén	va.
Asp	Ala	Asn 195	Gly	Thr	Leu	His	Asp 200	Lys	Lys	Ser	Met	Gly 205	Asp	Asp	His
Phe	Trp 210	Ala	Val	Arg	Gly	Gly 215	Gly	Gly	Glu	Ser	Phe 220	Gly	Ile	Val	Val
Ala 225	Trp	Lys	Val	Arg	Leu 230	Leu	Pro	Val	Pro	Pro 235	Thr	Val	Thr	Val	Phe 240
Lys	Ile	Pro	Lys	Lys 245	Ala	Ser	Gl u	Gly	Ala 250	Val	Asp	Ile	Ile	Asn 255	Arq
Trp	Gln	Val	Val 260	Ala	Pro	Gln	Leu	Pro 265	Asp	Asp	Leu	Met	Ile 270	Arg	Va]
Ile	Ala	Gln 275	Gly	Pro	Thr	Ala	Thr 280	Phe	Glu	Ala	Met	Tyr 285	Leu	Gly	Thi
Cys	Gl n 290	Thr	Leu	Thr	Pro	Met 295	Met	Ser	Ser	Lys	Phe 300	Pro	Glu	Leu	Gly
Met 305	Asn	Ala	Ser	His	Cys 310	Asn	Glu	Met	Ser	Trp 315	Ile	Gln	Ser	Ile	Pro 320
Phe	Val	His	Leu	Gly 325	His	Arg	Asp	Asn	11e 330	Glu	Asp	Asp	Leu	Leu 335	Asr
Arg	Asn	Asn	Thr 340	Phe	Lys	Pro	Phe	Ala 345	Glu	Tyr	Lys	Ser	Asp 350	Туг	Va]
Tyr	Glu	Pro 355	Phe	Pro	Lys	Glu	Val 360	Trp	Glu	Gln	Ile	Phe 365	Ser	Thr	Trp
Leu	Leu 370	Lys	Pro	Gly	Ala	Gly 375	Ile	Met	Ile	Phe	Asp 380	Pro	Tyr	Gly	Ala
Thr 385	Ile	Ser	Ala	Thr	Pro 390	Glu	Trp	Ala	Thr	Pro 395	Phe	Pro	His	Arg	Lys 400
G1y	Val	Leu	Phe	Asn 405	Ile	Gln	Tyr	Val	Asn 410	Tyr	Trp	Phe	Ala	Pro 415	Gly

Ala Gly Ala Ala Pro Leu Ser Trp Ser Lys Glu Ile Tyr Asn Tyr Met 420 425 430

Glu Pro Tyr Val Ser Lys Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg 435 $440 \hspace{1.5cm} 445$

Asp Ile Asp Leu Gly Arg Asn Glu Val Val Asn Asp Val Ser Thr Phe 450 460

Ser Ser Gly Leu Val Trp Gly Gln Lys Tyr Phe Lys Gly Asn Phe Gln 465 470 475 480

Arg Leu Ala Ile Thr Lys Gly Lys Val Asp Pro Thr Asp Tyr Phe Arg 485 490 495

Asn Glu Gln Ser Ile Pro Pro Leu Ile Gln Lys Tyr 500 505

<210> 5

<211> 287

5 <212> PRT

<213> Phleum pratense

Ala 1	Asp	Leu	Gly	Tyr 5	Gly	Pro	Ala	Thr	Pro 10	Ala	Ala	Pro	Ala	Ala 15	Gly
Туг	Thr	Pro	Ala 20	Thr	Pro	Ala	Ala	Pro 25	Ala	Glu	Ala	Ala	Pro 30	Ala	Gly
Lys	Ala	Thr 35	Thr	Glu	Glu	Gln	Lys 40	Leu	Ile	Glu	Lys	Ile 45	Asn	Ala	G13
Phe	Lys 50	Ala	Ala	Leu	Ala	Ala 55	Ala	Ala	Gly	Val	G1n 60	Pro	Ala	Asp	Ļys
Tyr 65	Arg	Thr	Phe	Val	Ala 70	Thr	Phe	Gly	Ala	Ala 75	Ser	Asn	Lys	Ala	Ph∈ 80
Ala	Glu	Gly	Leu	Ser 85	Gly	Glu	Pro	Lys	Gly 90	Ala	Ala	Glu	Ser	Ser 95	Ser
Lys	Ala	Ala	Leu 100	Thr	Ser	Lys	Leu	Asp 105	Ala	Ala	Tyr	Lys	Leu 110	Ala	Туг
Lys	Thr	Ala 115	Glu	Gly	Ala	Thr	Pro 120	Glu	Ala	Lys	Tyr	Asp 125	Ala	Tyr	Val
Ala	Thr 130	Leu	Ser	Glu	Ala	Leu 135	Arg	Ile	Ile	Ala	Gly 140	Thr	Leu	Glu	Val
His 145	Ala	Val	Lys	Pro	Ala 150	Ala	G1u	Glu	Val	Lys 155	Val	Ile	Pro	Ala	Gly 160
Glu	Leu	Gln	Val	Ile 165	Glu	Lys	Val	Asp	Ala 170	Ala	Phe	Lys	Val	Ala 175	Ala
Thr	Ala	Ala	Asn 180	Ala	Ala	Pro	Ala	Asn 185	Asp	Lys	Phe	Thr	Val 190	Phe	Glu
Ala	Ala	Phe 195	Asn	Asp	Ala	Ile	Lys 200	Ala	Ser	Thr	Gly	Gly 205	Ala	Tyr	Glu
Ser	Tyr 210	Lys	Phe	Ile	Pro	Ala 215	Leu	Glu	Ala	Ala	Val 220	Lys	Gln	Ala	Туз
Ala 225	Ala	Thr	Val	Ala	Thr 230	Ala	Pro	Glu	Val	Lys 235	Tyr	Thr	Val	Phe	G11 240
Thr	Ala	Leu	Lys	Lys 245	Ala	Ile	Thr	Ala	Met 250	Ser	Glu	Ala	Gln	Lys 255	Ala
Ala	Lys	Pro	Ala 260	Ala	Ala	Ala	Thr	Ala 265	Thr	Ala	Thr	Ala	Ala 270	Val	Gl _y
Ala	Ala	Thr 275	Gly	Ala	Ala	Thr	Ala 280	Ala	Thr	Gly	Gly	Tyr 285	Lys	Val	

	<210> 6																
	<211> 110	0															
	<212> PR	T															
	<213> Ph	leum	prate	nse													
5	.400- 0																
	<400> 6																
		Gly 1	Lys	Ala	Thr	Thr 5	Glu	Glu	Gln	Lys	Leu 10	Ile	Glu	Asp	Val	Asn 15	Ala
		Ser	Phe	Arg	Ala 20	Ala	Met	Ala	Thr	Thr 25	Ala	Asn	Val	Pro	Pro 30	Ala	Asp
		Lys	Туг	Lys 35	Thr	Phe	Glu	Ala	Ala 40	Phe	Thr	Val	Ser	Ser 45	Lys	Arg	Asn
		Leu	Ala 50	Asp	Ala	Val	Ser	Lys 55	Ala	Pro	Gln	Leu	Val 60	Pro	Lys	Leu	Asp
		G1u 65	Val	Tyr	Asn	Ala	Ala 70	Туг	Asn	Ala	Ala	Asp 75	His	Ala	Ala	Pro	Glu 80
		Asp	Lys	Tyr	Glu	A la 85	Phe	Val	Leu	His	Phe 90	Ser	Glu	Ala	Leu	Arg 95	Ile
			Ile	Ala	Gly	Thr 100	Pro	Glu	Val	His	Ala 105	Val	Lys	Pro	Gly	Ala 110	
10																	
	<210> 7																
	<211> 78																
	<212> PR	T															
	<213> Ph	leum	prate	nse													
15																	

Met Ala Asp Asp Met Glu Arg Ile Phe Lys Arg Phe Asp Thr Asn Gly $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Asp Gly Lys Ile Ser Leu Ser Glu Leu Thr Asp Ala Leu Arg Thr Leu 20 25 30

Gly Ser Thr Ser Ala Asp Glu Val Gln Arg Met Met Ala Glu Ile Asp 35 40 45

Thr Asp Gly Asp Gly Phe Ile Asp Phe Asn Glu Phe Ile Ser Phe Cys 50 60

Asn Ala Asn Pro Gly Leu Met Lys Asp Val Ala Lys Val Phe 65 70 75

<210> 8

<211> 143

5 <212> PRT

<213> Phleum pratense

<400> 8

Asp Lys Gly Pro Gly Phe Val Val Thr Gly Arg Val Tyr Cys Asp Pro 1 5 10 15

Cys Arg Ala Gly Phe Glu Thr Asn Val Ser His Asn Val Gln Gly Ala 20 25 30

Thr Val Ala Val Asp Cys Arg Pro Phe Asn Gly Gly Glu Ser Lys Leu 35 40 45

Lys Ala Glu Ala Thr Thr Asp Gly Leu Gly Trp Tyr Lys Ile Glu Ile 50 55

Asp Gln Asp His Gln Glu Glu Ile Cys Glu Val Val Leu Ala Lys Ser 65 70 75 80

Pro Asp Thr Thr Cys Ser Glu Ile Glu Glu Phe Arg Asp Arg Ala Arg 85 90 95

Val Pro Leu Thr Ser Asn Asn Gly Ile Lys Gln Gln Gly Ile Arg Tyr

Ala Asn Pro Ile Ala Phe Phe Arg Lys Glu Pro Leu Lys Glu Cys Gly 115 120 125

Gly Ile Leu Gln Ala Tyr Asp Leu Arg Asp Ala Pro Glu Thr Pro 130 135 140

<210>9

	<211> 13	1															
	<212> PR	T.															
	<213> Ph	leum	prate	nse													
5	<400> 9																
		Met 1	Ser	Trp	Gln	Thr 5	Tyr	Val	Asp	Glu	His 10	Leu	Met	Суз	Glu	Ile 15	Glu
		Gly	His	His	Leu 20	Ala	Ser	Ala	Ala	Ile 25	Leu	Gly	His	Asp	Gly 30	Thr	Val
		Trp	Ala	Gln 35	Ser	Ala	Asp	Phe	Pro 40	Gln	Phe	Lys	Pro	Glu 45	Glu	Ile	Thr
		Gly	11e 50	Met	Lys	Asp	Phe	Asp 55	Glu	Pro	Gly	His	Leu 60	Ala	Pro	Thr	Gly
		Met 65	Phe	Val	Ala	Gly	Ala 70	Lys	Tyr	Met	Val	Ile 75	G1n	Gly	Glu	Pro	Gly 80
		Arg	Val	Ile	Arg	Gly 85	Lys	Lys	G1y	Ala	Gly 90	Gly	Ile	Thr	Ile	Lys 95	Lys
		Thr	Gly	Gln	Ala 100	Leu	Val	Val	Gly	Ile 105	Tyr	Asp	Glu	Pro	Met 110	Thr	Pro
		Gly	Gln	Cys 115	Asn	Met	Val	Val	Glu 120	Arg	Leu	Gly	Asp	Tyr 125	Leu	Val	Glu
		Gln	Gly 130	Met													
	<210> 10																
10	<211> 360	0															
	<212> PR																
	<213> Ph		prate	nse													
45	<400> 10																
15		Gly 1	Lys	Lys	Glu	Glu 5	Lys	Lys	Glu	Glu	Lys 10	Lys	Gl u	Ser	Gly	Asp 15	Ala

Ala Ser Gly Ala Asp Gly Thr Tyr Asp Ile Thr Lys Leu Gly Ala Lys 20 25 30

- Pro Asp Gly Lys Thr Asp Cys Thr Lys Glu Val Glu Glu Ala Trp Ala 35 40 45
- Ser Ala Cys Gly Gly Thr Gly Lys Asn Thr Ile Val Ile Pro Lys Gly 50 55
- Asp Phe Leu Thr Gly Pro Leu Asn Phe Thr Gly Pro Cys Lys Gly Asp 65 70 75 80
- Ser Val Thr Ile Lys Leu Asp Gly Asn Leu Leu Ser Ser Asn Asp Leu 85 90 95
- Ala Lys Tyr Lys Ala Asn Trp Ile Glu Ile Met Arg Ile Lys Lys Leu 100 105 110
- Thr Ile Thr Gly Lys Gly Thr Leu Asp Gly Gln Gly Lys Ala Val Trp
 115 120 125
- Gly Lys Asn Ser Cys Ala Lys Asn Tyr Asn Cys Lys Ile Leu Pro Asn 130 135 140
- Thr Leu Val Leu Asp Phe Cys Asp Asp Ala Leu Ile Glu Gly Ile Thr 145 150 150 155
- Leu Leu Asn Ala Lys Phe Phe His Met Asn Ile Tyr Glu Cys Lys Gly
 165 170 175
- Val Thr Val Lys Asp Val Thr Ile Thr Ala Pro Gly Asp Ser Pro Asn 180 185 190
- Thr Asp Gly Ile His Ile Gly Asp Ser Ser Lys Val Thr Ile Thr Asp 195 200 205
- Thr Thr Ile Gly Thr Gly Asp Asp Cys Ile Ser Ile Gly Pro Gly Ser 210 215 220
- Thr Gly Leu Asn Ile Thr Gly Val Thr Cys Gly Pro Gly His Gly Ile 225 230 235 240
- Ser Val Gly Ser Leu Gly Arg Tyr Lys Asp Glu Lys Asp Val Thr Asp 245 250 255
- Ile Thr Val Lys Asn Cys Val Leu Lys Lys Ser Thr Asn Gly Leu Arg 260 265 270
- Ile Lys Ser Tyr Glu Asp Ala Lys Ser Pro Leu Thr Ala Ser Lys Leu 275 280 285

Thr Tyr Glu Asn Val Lys Met Glu Asp Val Gly Tyr Pro Ile Ile Ile 290 295 300

Asp Gln Lys Tyr Cys Pro Asn Lys Ile Cys Thr Ser Lys Gly Asp Ser 305 310 315 320

Ala Arg Val Thr Val Lys Asp Val Thr Phe Arg Asn Ile Thr Gly Thr 325 330 335

Ser Ser Thr Pro Glu Ala Val Ser Leu Leu Cys Ser Asp Lys Gln Pro

Cys Asn Gly Val Thr Met Asn Asp 355 360

<210> 11

<211> 1066

5 <212> ADN

<213> Phleum pratense

<400> 11

atggettett eetegteggt tetgetggte gtggtgettt tegeegtett eetgggetet 60 gegtatggca tecceaaggt tecceegggt eegaacatea eggegaeeta eggegaeaag 120 tggctcgacg cgaagagcac atggtacggc aagccgaccg gcgccggtcc caaggacaac 180 ggcggcgctt gcgggtacaa ggatgtggac aagcccccgt tcagcggcat gaccggctgc 240 ggcaacaccc ccatcttcaa gtccggacgc ggctgcggct cctgctttga gatcaagtgc 300 accaageeeg aggeetgete tggegageee gtggtagtee acateacega egacaacgag 360 gageceateg ecceetacea ettegacete teeggeeaeg egttegggge gatggeeaag 420 aagggcgatg agcagaagct gcgcagcgcc ggcgagctgg agctccagtt ccggcgcgtc 480 aagtgcaagt acccggaggg caccaaggtg accttccacg tggagaaggg gtccaaccc 540 aactacctgg cgctgcttgt gaagtacgtt aacggcgacg gagacgtggt ggcggtggac 600 atcaaggaga agggcaagga caagtggatc gagctcaagg agtcgtgggg agccatctgg 660 720 aggategaca etecegacaa geteaeggge eeetteaeeg teegetacae eaeegaggge ggcaccaaga ccgaagccga ggacgtcatc cctgagggct ggaaggccga caccagctac 780 qaqtccaaqt qaacaaqqaq aaqtqatcct ctqccttcct cttccqqccc ctqcttaatt 840 aattttgcct caaggttacc aataaaccgg ccacagcgag aagacaacca caagcttccg 900 gatgcatgag catattcatg ctgatacgag aataatagtt tgaggtcgag atcttgtgag 960 gtgaaattat gtaggagaca accaatgaag aattggctgc cctcccgccc actcccgacc 1020 gccttgttca tgtatctaaa acagttcatg attatgaaga tatatt 1066

<211> 525

	<212> ADN	
	<213> Phleum pratense	
5	<400> 12	
	ttggatatca accegtateg atceatgtce atggegteet ceteaageag cagettgetg	60
	gccatggcgg tgctggcggc gctgtttgcc ggcgcgtggt gcgtcccgaa ggtgacgttc	120
	acggtggaga agggggtccaa cgagaagcac ctggcggtgc tggtgaagta cgagggggac	180
	accatggcgg aggtggagct ccgggagcac ggctccgacg agtgggtcgc catgaccaag	240
	ggggagggeg gegtgtggae gttegaeage gaggageege teeaggggee etteaaette	300
	cggttcctca ccgagaaggg catgaagaac gtcttcgacg acgtcgtccc agagaagtac	360
	accattgggg ccacctacge gccagaagag tagccatcgg tccatccaca tgcatgatga	420
	teetteeate catetgattt agttegattt teettgtgtt ttggaaegaa ttgttgeaaa	480
	ttacatgtte aaagacatat gttgcacgaa attttttact aaaaa	525
	<210> 13	
10	<211> 294	
	<212> ADN	
	<213> Phleum pratense	
	<400> 13	
15		
	geegtgeagg tgaeetttae tgtgeagaag ggtteegaee eeaagaaget ggtgetggae	60
	atcaagtaca cgaggccagg ggacagcctc gcggaggtgg agctccggca gcacggctcc	120
	gaggagtggg agcccctgac gaagaagggc aacgtgtggg aggtgaagag ctccaagccg	180
	ctcgttggcc ccttcaactt ccgcttcatg tccaagggtg gcatgaggaa cgtcttcgac	240
	gaggtcatcc ccaccgcctt ctcgatcggc aaaacctaca aaccggaaga gtga	294
	z0405-44	
	<210> 14	
20	<211> 1567	
20	<212> ADN	
	<213> Phleum pratense	
	<400> 14	
	<u>`4UU/ 14</u>	

tcctcctgcg	aggtcgccct	ctcctactat	ccgacgccgt	tagcgaagga	ggacttcctc	60
cgatgcctcg	tgaaggagat	cccgccgcgc	ctcctctacg	ccaagagctc	gcccgcctac	120
ccctcagtcc	tggggcagac	catccggaac	tcgcggtggt	cgtcgccgga	caacgtgaag	180
ccgatctaca	tegteacece	caccaacgcc	tcccacatcc	agtccgccgt	ggtgtgcggc	240
cgccggcacg	gtgtccgcat	ccgcgtgcgc	ageggeggge	acgactacga	gggcctctcg	300
taccggtccc	tgcagcccga	ggagttcgcc	gtcgtcgacc	ttagcaagat	gcgggccgtg	360
tgggtggacg	ggaaggcccg	cacggcgtgg	gtcgactccg	gcgcgcagct	cggcgagctc	420
tactacgcca	tccacaaggc	gagtccagtg	ctggcgttcc	cggccggcgt	gtgcccgacc	480
atcggcgtgg	gcggcaactt	cgcgggcggc	ggcttcggca	tgctgctgcg	caagtacggc	540
ategeggeeg	agaacgtcat	cgacgtgaag	ctcgtcgacg	ccaacggcac	gctgcacgac	600
aagaagtcca	tgggcgacga	ccatttctgg	gccgtcaggg	gcggcggggg	cgagagcttc	660
ggcatcgtgg	tegegtggaa	ggtgaggete	ctgccggtgc	cgcccacggt	gaccgtgttc	720
aagatcccca	agaaggegag	cgagggcgcc	gtggacatca	tcaacaggtg	gcaggtggtc	780
gegeegeage	teceegaega	cctcatgate	cgcgtcatcg	cgcagggccc	cacggccacg	840
ttcgaggcca	tgtacctggg	cacctgccaa	accctgacgc	cgatgatgag	cagcaagttc	900
cccgagctcg	gcatgaacgc	ctcgcactgc	aacgagatgt	cgtggatcca	gtccatcccc	960
ttcgtccacc	teggecacag	ggacaacatc	gaggacgacc	tectcaaceg	gaacaacacc	1020
ttcaagccct	tcgccgaata	caagtcggac	tacgtctacg	agccgttccc	caaggaagtg	1080
tgggagcaga	tetteageae	ctggctcctg	aagcccggcg	cggggatcat	gatettegae	1140
ccctacggcg	ccaccatcag	cgccaccccg	gagtgggcga	cgccgttccc	tcaccgcaag	1200
ggcgtcctct	tcaacatcca	gtacgtcaac	tactggttcg	cecegggage	eggegeggeg	1260
ccattgtcgt	ggagcaagga	gatctacaac	tacatggagc	catacgtgag	caagaacccc	1320
aggcaggcct	acgccaacta	cagggacatc	gacctcggga	ggaacgaggt	ggtgaacgac	1380
gtctccacct	tcagcagcgg	tttggtgtgg	ggccagaaat	acttcaaggg	caatttccag	1440
aggctcgcca	tcaccaaggg	caaggtggat	cccaccgact	acttcaggaa	cgagcagagc	1500
atcccgccgc	tcatccagaa	gtactagcta	gggagatcga	tcatgcattt	gctggggcgt	1560
tegtgga						1567

<210> 15

5 <211> 1192

<212> ADN

<213> Phleum pratense

<400> 15

ccccatatct	teccaectae	ggtacaaaca	acagcaagca	gcaatggcgg	tgcaccagta	60
cactgtggcg	ctgttcctcg	ccgtggccct	cgtggcgggc	ceggeegeet	cctacgcggc	120
cgatctcggt	tacggccccg	ccaccccage	tgeceeggee	gccggctaca	eccegecae	180
cecegeegee	ccggccgaag	eggegeeage	aggtaaggcg	acgaccgagg	agcagaagct	240
gatcgagaag	atcaacgccg	gcttcaaggc	ggecetggee	geegeegeeg	gcgtccagcc	300
agcggacaag	tacaggacgt	tcgtcgcaac	cttcggcgcg	gcctccaaca	aggccttcgc	360
ggagggcctc	tcgggcgagc	ccaagggcgc	cgccgaatcc	agctccaagg	ccgcgctcac	420
ctccaagctc	gacgccgcct	acaagctcgc	ctacaagaca	gccgagggcg	cgacgcctga	480
ggccaagtac	gacgcctacg	tcgccaccct	aagcgaggcg	ctccgcatca	togooggcac	540
cctcgaggtc	cacgccgtca	agcccgcggc	cgaggaggtc	aaggtcatcc	ccgccggcga	600
gctgcaggtc	atcgagaagg	tegaegeege	cttcaaggtc	gctgccaccg	ccgccaacgc	660
cgccccgcc	aacgacaagt	tcaccgtctt	cgaggccgcc	ttcaacgacg	ccatcaaggc	720
gagcacgggc	ggcgcctacg	agagctacaa	gttcatcccc	gccctggagg	ccgccgtcaa	780
gcaggcctac	gccgccaccg	tegecacege	gccggaggtc	aagtacactg	tctttgagac	840
cgcactgaaa	aaggccatca	ccgccatgtc	cgaggcacag	aaggctgcca	agcccgccgc	900
cgctgccacc	gccaccgcaa	cegeegeegt	tggegeggee	accggcgccg	ccaccgccgc	960
tactggtggc	tacaaagtct	gatcaactcg	cgaatagtat	acatcaatca	cgcacatata	1020
cgaccgtacg	tatgtgtgca	tgcattgccg	tegegtegag	caattttgct	gataattaat	1080
tcttgagttt	ttegttgeat	gcatccgcgc	gttatagagc	gcatgcacgc	attgccattt	1140
gtgtataata	atcaaatatc	tgcaattcat	ttatgaaaaa	aaaaaaaa	aa	1192

<210> 16

5 <211> 571

<212> ADN

<213> Phleum pratense

<400> 16

ccaacgcacg	agtagcaatg	gcagcgcaca	agttcatggt	ggcgatgttc	ctcgctgttg	60
ccgttgtgtt	gggcttggcc	acatccccaa	ctgcagaggg	agggaaggcc	acgaccgagg	120
agcaaaaatt	gattgaggac	gtcaatgcca	gctttagggc	ggccatggcc	accactgcta	180
acgtccctcc	agcagacaag	tataagacat	tcgaagccgc	cttcacggtg	tcctcaaaga	240
gaaacctcgc	tgacgccgtt	tcaaaggcgc	cccagctggt	ccccaagete	gatgaagtct	300
acaacgccgc	ctacaatgct	gccgatcatg	ccgccccaga	agacaagtat	gaagccttcg	360
tccttcactt	ttccgaggct	ctccgtatca	tcgccggtac	ccccgaggtt	cacgctgtca	420
ageceggege	gtagttgttc	agcacggtca	agateettga	cagcgtcgct	gccaccggcg	480
ctgcagccaa	cactgccagt	ggctaaaaaa	ttcgactagc	tccttcatac	aatgaataca	540
catgtatcat	tcaaaaaaaa	aaaaaaaaa	a			571

<210> 17

<211> 575

5 <212> ADN

<213> Phleum pratense

<400> 17

ccgattcgaa gagtgattcg agctagaagg aggagggatc gatcgataat ggcggacgac 60 atggagagga tetteaagag gttegacacg aacggtgacg ggaagatete tetgteggag 120 180 ctgacggacg cactgcggac gctgggctcg acgtcggcgg acgaggtgca gcgcatgatg geggagateg acacegaegg egaeggette ategaettea acgagtteat eteettetge 240 300 ceteaqueqt eccateetge ateageateg atttategta eggeeggett tgatttettt 360 gatetattet ceggtactga geeteetett cagttgagge eggeeetaaa ttttgateat 420 ttatttgctt ctagtaactg ttggtgacca ctgtactatc attttttccc tattaatttt 480 cctgtatttc tctttctttt tataccactc attttgtatc tctggcttca gctcgaaccg 540 tacgttacgt gcttccaatt gtctgtgtgc ggact 575

<210> 18

<211> 786

15 <212> ADN

10

<213> Phleum pratense

gacaagggcc	cgggcttcgt	ggtgacggga	cgcgtctact	gcgacccctg	ccgcgccggc	60
ttcgagacca	acgtctccca	caacgtccaa	ggggcgaccg	tggc ggtgga	ctgccggccg	120
ttcaacggcg	gcgagagcaa	getcaaggeg	gaggegaega	cggacggtct	gggctggtac	180
aagatcgaga	tcgaccagga	ccaccaggag	gagatetgeg	aggtggtgct	ggccaagagc	240
cccgacacga	cgtgctccga	gatcgaggag	ttccgcgacc	gegeeegegt	cccgctcacc	300
agcaacaacg	gcatcaagca	gcagggcatc	cgctacgcca	accccatcgc	attetteege	360
aaggagccgc	tcaaggagtg	cggcgggatc	ctccaggcct	acgacetcag	ggacgccccc	420
gagacgccat	gaagccccac	accagcacga	cgtaccacct	atagttactt	gccgccggcc	480
gagacgatgt	tacctctgcg	agccgctgcc	ggagaggara	tgacaacctt	ttaatgggcc	540
tcacgtgcgc	cttaatattc	regteetget	ttctctttta	ttcatgttat	tgtcttcctg	600
tyctctaatt	atttacgtgt	tgacctatat	gtgagctagt	tccaaggatc	tgttctatgt	660
gtaataagag	aacacaaata	tttsgtacgt	gcatatccga	tgtatatcct	cttttcgggg	720
aaaaaaawa	ytctgatgta	tatcctctgg	acacaaatta	artggccagc	taatgaatts	780
agtact						786

<210> 19

<211>396

5 <212> ADN

<213> Phleum pratense

<400> 19

atgtcgtggc	agacgtacgt	ggacgagcac	ctgatgtgcg	agatcgaggg	ccaccacctc	60
geeteggegg	ccatcctcgg	ccacgacggc	accgtctggg	cccagagcgc	cgacttcccc	120
cagttcaagc	ctgaggagat	caccggcatc	atgaaggatt	tcgacgagcc	ggggcacctc	180
gcccccaccg	gcatgttcgt	cgcaggtgcc	aagtacatgg	tcatccaggg	tgaacccggt	240
cgcgtcatcc	gtggcaagaa	gggagcagga	ggcatcacca	taaagaagac	cgggcaggcg	300
ctggtcgtcg	gcatctatga	cgagcccatg	acccctgggc	agtgcaacat	ggtggtggag	360
aggettggeg	actacctcgt	tgaacaaggc	atgtag			396

10

<210> 20

<211> 1492

<212> ADN

15 <213> Phleum pratense

gggaagaagg	aggagaagaa	ggaggagaag	aaggagagtg	gagatgctgc	gtccggggcc	60
gacggaacct	acgacatcac	caagctcggc	gccaaacccg	acggcaagac	ggactgcacc	120
aaggaggtgg	aggaggcatg	ggettegget	tgcggtggta	ccgggaagaa	tacgatcgtc	180
atccccaagg	gtgatttcct	gaccgggcct	ctgaatttca	ccgggccatg	caagggcgac	240
agcgtcacca	tcaagctgga	cggcaacctg	ctgagctcca	acgacctggc	caagtacaag	300
gctaactgga	tcgagatcat	gcggatcaag	aaactcacta	tcaccggcaa	aggcacgctc	360
gacggccaag	gcaaggccgt	gtggggcaag	aacagctgcg	ccaagaacta	caactgcaag	420
atcttgccaa	acacattggt	gctggacttc	tgtgacgacg	ctctcatcga	aggcatcacc	480
ctcctaaacg	ccaagttctt	ccatatgaac	atctacgagt	gcaagggcgt	gaccgtcaag	540
gacgtgacca	tcaccgcgcc	cggggacage	cccaacaccg	acggcatcca	catcggcgac	600
tcgtccaagg	tcaccatcac	cgacaccacc	atcggcaccg	gcgacgactg	catctccatc	660
ggccccggaa	gcaccggcct	caacatcacc	ggcgtgacct	gcggtccagg	ccacggcatc	720
agcgttggca	gcctgggacg	gtacaaggac	gagaaggacg	tgaccgacat	caccgtaaag	780
aactgcgtgc	tcaagaagtc	caccaacggc	ctccggatca	agtcgtacga	ggacgccaag	840
tegeegetga	cggcgtcgaa	gctgacctac	gagaacgtga	agatggagga	cgtgggctac	900
cccatcatca	tcgaccagaa	gtactgcccc	aacaagatct	gcacctccaa	gggagactcc	960
gccagggtca	ccgtcaagga	cgtcaccttc	cgcaacatca	ceggeacete	ctccaccccc	1020
gaggccgtca	gcctgctctg	ctccgacaag	cagecetgea	atggtgtcac	catgaacgac	1080
gtcaagatcg	agtacagcgg	caccaacaac	aagaccatgg	ctgtctgcac	caacgccaag	1140
gtcaccgcca	agggtgtcag	cgaggctaac	acctgcgccg	cctgatgagc	gactcttctc	1200
cacctgcttc	cacgttccat	caattcgtcc	tacctcccac	acatgtcctt	ttttctgaag	1260
agataattaa	caagaccgcg	cgtgcatatc	ctggcgatca	ttttctgcta	actctggaga	1320
tgtaccctag	acataaatac	tgtgcgatat	tatggtaaat	gcgaatcctt	taatctacct	1380
gtgctcaagt	tgtgccgggt	ttttgtatga	taaacagatt	atgtaacttt	tttctgtaat	1440
ctttttattg	catccgaatt	tctggaattt	taotcaaaaa	aaaaaaaaa	aa	1492

<210> 21

<211> 246

<212> PRT

<213> Secuencia artificial

<220>

<223> construcción A sin Met del extremo N y hexahistidina del extremo C

10

5

Ser 1	Gly	Arg	Gly	Cys 5	Gly	Ser	Сув	Phe	Glu 10	Ile	Lys	Cys	Thr	Lys 15	Pr
Glu	Ala	Суз	Ser 20	Gly	Glu	Pro	Val	Val 25	Val	His	Ile	Thr	Asp 30	Asp	As
Glu	G1u	Pro 35	Ile	Ala	Pro	Туг	His 40	Phe	Asp	Leu	Ser	Gly 45	His	Ala	Ph
Gly	Ala 50	Met	Ala	Lys	Lys	Gly 55	Asp	Glu	Gln	Lys	Leu 60	Arg	Thr	Gly	Pr
65			Arg	-	70			_	_	75	-				80
			Pro	85					90					95	
			Ser 100		_			105					110		
_	_	115	Ala				120	-				125		_	
	130		Tyr			135					140				
145		-	Tyr	-	150	-				155					16
			Gly	165					170		-			175	
	~	-	180					185					190	-	
		195	Glu				200					205			
	210		Ala			215					220				
225	-			-	230		1			235		F	-7-	-1-	240

<210> 22

<211> 281

5 <212> PRT

<213> Secuencia artificial

Thr Phe Val Ala Thr Phe 245

<220>

<223> construcción B sin Met del extremo N y hexahistidina del extremo C

<400> 22

Ala 1	Val	Lys	Gln	Ala 5	Tyr	Ala	Ala	Thr	Val 10	Ala	Thr	Ala	Pro	Glu 15	Val
Lys	Tyr	Thr	Val 20	Phe	Glu	Thr	Ala	Leu 25	Lys	Lys	Ala	Ile	Thr 30	Ala	Met
Ser	Glu	Al a 35	Gln	Lys	Ala	Ala	Lys 40	Pro	Ala	Ala	Ala	Ala 45	Thr	Ala	Thr
Ala	Thr 50	Ala	Ala	Va1	Gly	Ala 55	Ala	Thr	Gly	Ala	Ala 60	Thr	Ala	Ala	Thr
Gly 65	Gly	Tyr	Lys	Val	Ala 70	Glu	Glu	Val	Lys	Val 75	Ile	Pro	Ala	Gly	Glu 80
Leu	G1n	Val	Ile	G1u 85	Lys	Val	Asp	Ala	Ala 90	Phe	Lys	Val	Ala	Ala 95	Thr
Ala	Ala	Asn	Ala 100	Ala	Pro	Ala	Asn	Asp 105	Lys	Phe	Thr	Val	Phe 110	Glu	Ala
Ala	Phe	As n 115	Asp	Ala	Ile	Lys	Ala 120	Ser	Thr	Gly	G1y	Ala 125	Туг	Glu	Ser
Tyr	Lys 130	Phe	Ile	Pro	Ala	Leu 135	Glu	Ala	Ile	Pro	Lys 140	Val	Pro	Pro	Gly
Pro 145	Asn	Ile	Thr	Ala	Thr 150	Tyr	Gly	Asp	Lys	Trp 155	Leu	Asp	Ala	Lys	Ser 160
Thr	Trp	Tyr	Gly	Lys 165	Pro	Thr	Gly	Ala	Gly 170	Pro	Lys	Asp	Asn	Gly 175	Gly
Ala	Cys	Gly	Tyr 180	Lys	Asp	Val	Asp	Lys 185	Pro	Pro	Phe	Ser	Gly 190	Met	Thr
Gly	Cys	Gly 195	Asn	Thr	Pro	Ile	Phe 200	Lys	Ser	Ala	Gly	Glu 205	Leu	Glu	Leu

Gln Phe Arg Arg Val Lys Cys Lys Tyr Pro Glu Gly Thr Lys Val Thr 210 $$ 215 $$ 220

	Phe 225	His	Val	Glu	Lys	Gly 230	Ser	Asn	Pro	Asn	Tyr 235	Leu	Ala	Leu	Leu	Val 240
	Lys	Tyr	Val	Asn	Gly 245	Asp	Gly	Asp	Val	Val 250	Ala	Val	Asp	Ile	Lys 255	Glu
	Lys	Gly	Lys	Asp 260	Lys	Trp	Ile	Glu	Leu 265	Lys	Glu	Ser	Trp	Gly 270	Ala	Ile
	Trp	Arg	Ile 275	Asp	Thr	Pro	Asp	Lys 280	Leu							
<210> 23																
<211> 24	6															
<212> PF	RT															
<213> Se	cuen	cia art	ificial													
<220>																
<223> co	nstruc	ción (C sin	Met d	el ext	remo	N y h	exahi	stidina	a del e	extren	no C				

5

10

<400> 23

Gly 1	Ala	Ala	Ser	Asn 5	Lys	Ala	Phe	Ala	Glu 10	Gly	Leu	Ser	Gly	Glu 15	Pro
Lys	Gly	Ala	Ala 20	Glu	Ser	Ser	Ser	Lys 25	Ala	Ala	Leu	Thr	Ser 30	Lys	Leu
Asp	Ala	Ala 35	Tyr	Lys	Leu	Ala	Tyr 40	Lys	Thr	Ala	Glu	Gly 45	Ala	Thr	Pro
Glu	Ala 50	Lys	Tyr	Asp	Ala	Tyr 55	Val	Ala	Thr	Leu	Ser 60	Glu	Ala	Leu	Arg
Ile 65	Ile	Ala	Gly	Thr	Leu 70	Glu	Val	His	Ala	Val 75	Lys	Pro	Ala	Ala	Asp 80
Leu	Gly	Tyr	Gly	Pro 85	Ala	Thr	Pro	Ala	Ala 90	Pro	Ala	Ala	Gly	Туг 95	Thr
Pro	Ala	Thr	Pro 100	Ala	Ala	Pro	Ala	Glu 105	Ala	Ala	Pro	Ala	Gly 110	Lys	Ala
Thr	Thr	Glu 115	Glu	Gln	Lys	Leu	Ile 120	Glu	Lys	Ile	Asn	Ala 125	Gly	Phe	Lys
Ala	Ala 130	Leu	Ala	Ala	Ala	Ala 135	Gly	Val	Gln	Pro	A1a 140	Asp	Lys	Туг	Arg
Thr 145	Phe	Val	Ala	Thr	Phe 150	Ser	Gly	Arg	Gly	Cys 155	G1y	Ser	Суз	Phe	G1u 160
Ile	Lys	Cys	Thr	Lys 165	Pro	Glu	Ala	Cys	Ser 170	Gly	Glu	Pro	Val	Val 175	Val
His	Ile	Thr	Asp 180	Asp	Asn	Glu	Glu	Pro 185	Ile	Ala	Pro	Tyr	His 190	Phe	Asp
Leu	Ser	Gly 195	His	Ala	Phe	Gly	Ala. 200	Met	Ala	Lys	Lys	Gly 205	Asp	Glu	Gln
Lys	Leu 210	Arg	Thr	Gly	Pro	Phe 215	Thr	Val	Arg	Tyr	Thr 220	Thr	Glu	Gly	Gly
Thr 225	Lys	Thr	Glu	Ala	G1u 230	Asp	Val	Ile	Pro	Glu 235	G1y	Trp	Lys	Ala	Asp 240

<210> 24

5 <211> 281

<212> PRT

<213> Secuencia artificial

Thr Ser Tyr Glu Ser Lys

<220	>
------	---

<223> construcción D sin Met del extremo N y hexahistidina del extremo C

<400> 24

5

Ile Pro Lys Val Pro Pro Gly Pro Asn Ile Thr Ala Thr Tyr Gly Asp 1 5 10

Lys Trp Leu Asp Ala Lys Ser Thr Trp Tyr Gly Lys Pro Thr Gly Ala 20 25 30

Gly Pro Lys Asp Asn Gly Gly Ala Cys Gly Tyr Lys Asp Val Asp Lys 35 40

Pro Pro Phe Ser Gly Met Thr Gly Cys Gly Asn Thr Pro Ile Phe Lys 50 55

Ser Ala Gly Glu Leu Glu Leu Gln Phe Arg Arg Val Lys Cys Lys Tyr 65 70 75 80

Pro Glu Gly Thr Lys Val Thr Phe His Val Glu Lys Gly Ser Asn Pro 85 90 95

Asn Tyr Leu Ala Leu Leu Val Lys Tyr Val Asn Gly Asp Gly Asp Val 100 105 110

Val Ala Val Asp Ile Lys Glu Lys Gly Lys Asp Lys Trp Ile Glu Leu

			115				120					125				
	Lys	Glu 130	Ser	Trp	Gly	Ala	Ile 135	Trp	Arg	Ile	Asp	Thr 140	Pro	Asp	Lys	Leu
	Ala 145	Val	Lys	Gln	Ala	Tyr 150	Ala	Ala	Thr	Val	Ala 155	Thr	Ala	Pro	Glu	Val 160
	Lys	Tyr	Thr	Val	Phe 165	Glu	Thr	Ala	Leu	Lys 170	Lys	Ala	Ile	Thr	Ala 175	Met
	Ser	Glu	Ala	Gln 180	Lys	Ala	Ala	Lys	Pro 185	Ala	Ala	Ala	Ala	Thr 190	Ala	Thr
	Ala	Thr	Ala 195	Ala	Val	Gly	Ala	Ala 200	Thr	Gly	Ala	Ala	Thr 205	Ala	Ala	Thr
	Gly	Gly 210	Tyr	Lys	Val	Ala	Glu 215	Glu	Val	Lys	Val	Ile 220	Pro	Ala	Gly	Glu
	Leu 225	Gln	Val	Ile	Glu	Lys 230	Val	Asp	Ala	Ala	Phe 235	Lys	Val	Ala	Ala	Thr 240
	Ala	Ala	Asn	Ala	Ala 245	Pro	Ala	Asn	Asp	Lys 250	Phe	Thr	Val	Phe	G1u 255	Ala
	Ala	Phe	Asn	Asp 260	Ala	Ile	Lys	Ala	Ser 265	Thr	Gly	Gly	Ala	Tyr 270	Glu	Ser
	Tyr	Lys	Phe 275	Ile	Pro	Ala	Leu	Glu 280	Ala							
<210> 25																
<211> 29	4															
<212> PR	T															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> coi	nstruc	ción E	E sin I	Met d	el extr	remo	N y he	exahis	stidina	del e	extrem	ю С				

5

10

<400> 25

Gly	Ala	Ala	Ser	Asn	Lys	Ala	Phe	Ala	Glu	Gly	Leu	Ser	Gly	Glu	Pro
1				5					10					15	

- Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys Leu 20 25 30
- Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu Arg
 50 55 60
- Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala Ala Asp
 65 70 75 80
- Leu Gly Tyr Gly Pro Ala Thr Pro Ala Ala Pro Ala Ala Gly Tyr Thr
 85 90 95
- Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly Lys Ala 100 105 110
- Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly Phe Lys 115 120 125
- Ala Ala Leu Ala Ala Ala Ala Gly Val Gln Pro Ala Asp Lys Tyr Arg 130 135 140
- Thr Phe Val Ala Thr Phe Ile Pro Lys Val Pro Pro Gly Pro Asn Ile 145 150 155 160
- Thr Ala Thr Tyr Gly Asp Lys Trp Leu Asp Ala Lys Ser Thr Trp Tyr

 165 170 175
- Gly Lys Pro Thr Gly Ala Gly Pro Lys Asp Asn Gly Gly Ala Cys Gly 180 185 190
- Tyr Lys Asp Val Asp Lys Pro Pro Phe Ser Gly Met Thr Gly Cys Gly 195 200 205
- Asn Thr Pro Ile Phe Lys Ser Ala Gly Glu Leu Glu Leu Gln Phe Arg 210 215 220
- Arg Val Lys Cys Lys Tyr Pro Glu Gly Thr Lys Val Thr Phe His Val 225 230 235
- Glu Lys Gly Ser Asn Pro Asn Tyr Leu Ala Leu Leu Val Lys Tyr Val
 245 250 255
- Asn Gly Asp Gly Asp Val Val Ala Val Asp Ile Lys Glu Lys Gly Lys 260 265 270
- Asp Lys Trp Ile Glu Leu Lys Glu Ser Trp Gly Ala Ile Trp Arg Ile 275 280 285

Asp Thr Pro Asp Lys Leu 290

	<210> 26
	<211> 294
	<212> PRT
	<213> Secuencia artificial
5	
	<220>
	<223> construcción F sin Met del extremo N y hexahistidina del extremo C
	<400> 26
10	

		Lys				-					Ala		-		Asp
T.vze	Trr.	Len	Acn	בומ	T.vze	Ser	The	Trn	Tur	G1 _v	T.ve	Pro	Thr.	G1 v	Ala

20 25 30

Gly Pro Lys Asp Asn Gly Gly Ala Cys Gly Tyr Lys Asp Val Asp Lys 35 40

Pro Pro Phe Ser Gly Met Thr Gly Cys Gly Asn Thr Pro Ile Phe Lys 50 60

Ser Ala Gly Glu Leu Glu Leu Gln Phe Arg Arg Val Lys Cys Lys Tyr 65 70 75 80

Pro Glu Gly Thr Lys Val Thr Phe His Val Glu Lys Gly Ser Asn Pro 85 90 95

Asn Tyr Leu Ala Leu Leu Val Lys Tyr Val Asn Gly Asp Gly Asp Val 100 105 110

Val Ala Val Asp Ile Lys Glu Lys Gly Lys Asp Lys Trp Ile Glu Leu 115 120 125

Lys Glu Ser Trp Gly Ala Ile Trp Arg Ile Asp Thr Pro Asp Lys Leu 130 135 140

Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu Pro 145 150 155 160

Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys Leu 165 170 175

Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr Pro 180 185 190

Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu Arg 195 200 205

Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala Ala Asp 210 215 220

		Leu 225	Gly	Tyr	Gly	Pro	Ala 230	Thr	Pro	Ala	Ala	Pro 235	Ala	Ala	Gly	Tyr	Th 24
		Pro	Ala	Thr	Pro	Ala 245	Ala	Pro	Ala	Glu	Ala 250	Ala	Pro	Ala	Gly	Lys 255	Al
		Thr	Thr	Glu	Glu 260	Gln	Lys	Leu	Ile	Glu 265	Lys	Ile	Asn	Ala	Gly 270	Phe	Ly
		Ala	Ala	Leu 275	Ala	Ala	Ala	Ala	Gly 280	Val	Gln	Pro	Ala	Asp 285	Lys	Tyr	Ar
		Thr	Phe 290	Val	Ala	Thr	Phe										
	<210> 27																
	<211> 23	3															
5	<212> PF	RT															
	<213> Se	cuenc	cia art	ificial													
	<220>																
	<223> co	nstruc	ción (G sin	Met d	el ext	remo	N y h	exahi	stidina	a del e	extren	no C				
10																	

<400> 27

Ser Gly Arg Gly Cys Gly Ser Cys Phe Glu Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser Gly Glu Pro Val Val Wal His Ile Thr Asp Asp Asn Glu Glu Pro Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe Gly Ala Met Ala Lys Lys Gly Asp Glu Gln Lys Leu Arg Thr Gly Pro 55 Phe Thr Val Arg Tyr Thr Thr Glu Gly Gly Thr Lys Thr Glu Ala Glu Asp Val Ile Pro Glu Gly Trp Lys Ala Asp Thr Ser Tyr Glu Ser Lys 90 Ala Val Lys Gln Ala Tyr Ala Ala Thr Val Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr Ala Leu Lys Lys Ala Ile Thr Ala Met Ser Glu Ala Gln Lys Ala Ala Lys Pro Ala Ala Ala Ala Thr Ala Thr Ala Thr Ala Ala Val Gly Ala Ala Thr Gly Ala Ala Thr Ala Ala Thr Gly Gly Tyr Lys Val Ala Glu Glu Val Lys Val Ile Pro Ala Gly Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala Ala Thr 180 185 Ala Ala Asn Ala Ala Pro Ala Asn Asp Lys Phe Thr Val Phe Glu Ala 200 Ala Phe Asn Asp Ala Ile Lys Ala Ser Thr Gly Gly Ala Tyr Glu Ser 220

225 230

Tyr Lys Phe Ile Pro Ala Leu Glu Ala

<210> 28

5 <211> 233

<212> PRT

<213> Secuencia artificial

<220>

<223> construcción H sin Met del extremo N y hexahistidina del extremo C

<400> 28

Ala Val Lys Gln Ala Tyr Ala Ala Thr Val Ala Thr Ala Pro Glu Val 1 5 10 15

Lys Tyr Thr Val Phe Glu Thr Ala Leu Lys Lys Ala Ile Thr Ala Met 20 25 30

Ser Glu Ala Gln Lys Ala Ala Lys Pro Ala Ala Ala Ala Thr Ala Thr 35 40 45

Ala Thr Ala Ala Val Gly Ala Ala Thr Gly Ala Ala Thr Ala Ala Thr 50 60

Gly Gly Tyr Lys Val Ala Glu Glu Val Lys Val Ile Pro Ala Gly Glu 65 75 80

Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala Ala Thr 85 90 95

Ala Ala Asn Ala Ala Pro Ala Asn Asp Lys Phe Thr Val Phe Glu Ala
100 105 110

Ala Phe Asn Asp Ala Ile Lys Ala Ser Thr Gly Gly Ala Tyr Glu Ser 115 120 125

Tyr Lys Phe Ile Pro Ala Leu Glu Ala Ser Gly Arg Gly Cys Gly Ser 130 135 140

Cys Phe Glu Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser Gly Glu Pro 145 150 155 160

Val Val Val His Ile Thr Asp Asp Asn Glu Glu Pro Ile Ala Pro Tyr 165 170 175

His Phe Asp Leu Ser Gly His Ala Phe Gly Ala Met Ala Lys Lys Gly 180 185

Asp Glu Gln Lys Leu Arg Thr Gly Pro Phe Thr Val Arg Tyr Thr Thr

Glu Gly Gly Thr Lys Thr Glu Ala Glu Asp Val Ile Pro Glu Gly Trp 210 215 220

Lys Ala Asp Thr Ser Tyr Glu Ser Lys 230

<210> 29

5

<211> 176

<212> PRT

<213> Secuencia artificial

	<220>																
5	<223> coi	nstruc	ción I	sin M	1et de	l extre	emo N	l y he	xahis	tidina	del ex	ktrem	οС				
	<400> 29																
		Ala 1	Asp	Lys	Tyr	Lys 5	Thr	Phe	Glu	Ala	Ala 10	Phe	Thr	Val	Ser	Ser 15	Lys
		Arg	Asn	Leu	Ala 20	Asp	Ala	Val	Ser	Lys 25	Ala	Pro	Gl n	Leu	Val 30	Pro	Lys
		Leu	Asp	G1u 35	Val	Tyr	Asn	Ala	Ala 40	Tyr	Asn	Ala	Ala	Asp 45	His	Ala	Ala
		Pro	G1 u 50	Asp	Lys	Tyr	Glu	Ala 55	Phe	Val	Leu	His	Phe 60	Ser	Glu	Ala	Leu
		Arg 65	Ile	Ile	Ala	Gly	Thr 70	Pro	Gl u	Val	His	Ala 75	Val	Lys	Pro	Gly	Ala 80
		Gly	Val	Trp	Thr	Phe 85	Asp	Ser	Glu	Glu	Pro 90	Leu	Gl n	Gly	Pro	Phe 95	Asn
		Phe	Arg	Phe	Leu 100	Thr	Glu	Lys	Gly	Met 105	Lys	Asn	Val	Phe	Asp 110	Asp	Val
		Val	Pro	Glu 115	Lys	Tyr	Thr	Ile	Gly 120	Ala	Thr	Tyr	Ala	Pro 125	Glu	Gl u	Val
		Pro	Lys 130	Val	Thr	Phe	Thr	Val 135	Glu	Lys	Gly	Ser	Asn 140	Glu	Lys	His	Leu
		Ala 145	Val	Leu	Val	Lys	Tyr 150	Glu	Gly	Asp	Thr	Met 155	Ala	Glu	Val	Glu	Leu 160
10		Arg	Glu	His	Gly	Ser 165	Asp	Glu	Trp	Val	Ala 170	Met	Thr	Lys	Gly	Glu 175	Gly
	<210> 30																
	<211> 30																
	<211> 170																
15	<213> Se		cia art	ificial													

-000	
< 7.71	Г.

<223> construcción J sin Met del extremo N y hexahistidina del extremo C

<400> 30

5

Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn 1 5 10 15

Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp Val 20 25 30

Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu Val 35 40 45

Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His Leu 50 60

Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu 65 70 75 80

Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu Gly 85 90 95

Ala Asp Lys Tyr Lys Thr Phe Glu Ala Ala Phe Thr Val Ser Ser Lys
100 105 110

Arg Asn Leu Ala Asp Ala Val Ser Lys Ala Pro Gln Leu Val Pro Lys 115 120 125

Leu Asp Glu Val Tyr Asn Ala Ala Tyr Asn Ala Ala Asp His Ala Ala 130 140

Pro Glu Asp Lys Tyr Glu Ala Phe Val Leu His Phe Ser Glu Ala Leu 145 150 155 160

Arg Ile Ile Ala Gly Thr Pro Glu Val His Ala Val Lys Pro Gly Ala 165 170 175

<210> 31

10 <211> 176

<212> PRT

<213> Secuencia artificial

<220>

15 <223> construcción K sin Met del extremo N y hexahistidina del extremo C

<400> 31

	Gly 1	Val	Trp	Thr	Phe 5	Asp	Ser	Glu	Glu	Pro 10	Leu	Gln	Gly	Pro	Phe 15	Asn
	Phe	Arg	Phe	Leu 20	Thr	Glu	Lys	Gly	Met 25	Lys	Asn	Val	Phe	Asp 30	Asp	Val
	Val	Pro	Glu 35	Lys	Tyr	Thr	Ile	Gly 40	Ala	Thr	Tyr	Ala	Pro 45	Glu	Glu	Ala
	Asp	Lys 50	Tyr	Lys	Thr	Phe	Glu 55	Ala	Ala	Phe	Thr	Val 60	Ser	Ser	Lys	Arg
	Asn 65	Leu	Ala	Asp	Ala	Val 70	Ser	Lys	Ala	Pro	G1n 75	Leu	Val	Pro	Lys	Leu 80
	Asp	Gl u	Val	Tyr	Asn 85	Ala	Ala	Tyr	Asn	Ala 90	Ala	Asp	His	Ala	Ala 95	Pro
	Glu	Asp	Lys	Tyr 100	Glu	Ala	Phe	Val	Leu 105	His	Phe	Ser	Glu	Ala 110	Leu	Arg
	Ile	Ile	Ala 115	Gly	Thr	Pro	Glu	Val 120	His	Ala	Val	Lys	Pro 125	Gly	Ala	Val
	Pro	Lys 130	Val	Thr	Phe	Thr	Val 135	Gl u	Lys	Gly	Ser	Asn 140	Glu	Lys	His	Leu
	Ala 145	Val	Leu	Val	Lys	Tyr 150	Glu	Gly	Asp	Thr	Met 155	Ala	Glu	Val	Glu	Leu 160
	Arg	G lu	His	Gly	Ser 165	Asp	Glu	Trp	Val	Al a 170	Met	Thr	Lys	Gly	Glu 175	Gly
<210> 32																
<211> 176	3															
<212> PR																
<213> Sec		cia art	ificial													
<220>																
<223> cor	nstruc	ción l	_ sin N	viet de	el extr	emo I	N y he	exahis	stidina	del e	xtrem	ю С				

5

10

<400> 32

	Val 1	Pro	Lys	Val	Thr 5	Phe	Thr	Val	Glu	Lys 10	Gly	Ser	Asn	Glu	Lys 15	His
	Leu	Ala	Val	Leu 20	Val	Lys	Tyr	Glu	Gly 25	Asp	Thr	Met	Ala	Glu 30	Val	Glu
	Leu	Arg	G1u 35	His	Gly	Ser	Asp	Glu 40	Trp	Val	Ala	Met	Thr 45	Lys	Gly	Glu
	Gly	Ala 50	Asp	Lys	Tyr	Lys	Thr 55	Phe	G1u	Ala	Ala	Phe 60	Thr	Val	Ser	Ser
	Lys 65	Arg	Asn	Leu	Ala	Asp 70	Ala	Val	Ser	Lys	Ala 75	Pro	Gln	Leu	Val	Pro 80
	Lys	Leu	Asp	Glu	Val 85	Tyr	Asn	Ala	Ala	Tyr 90	Asn	Ala	Ala	Asp	His 95	Ala
	Ala	Pro	Glu	Asp 100	Lys	Tyr	Glu	Ala	Phe 105	Val	Leu	His	Phe	Ser 110	Glu	Ala
	Leu	Arg	Ile 115	Ile	Ala	Gly	Thr	Pro 120	Glu	Val	His	Ala	Val 125	Lys	Pro	Gly
	Ala	Gly 130	Val	Trp	Thr	Phe	Asp 135	Ser	Glu	Glu	Pro	Leu 140	Gl n	Gly	Pro	Phe
	Asn 145	Phe	Arg	Phe	Leu	Thr 150	Glu	Lys	Gly	Met	Lys 155	Asn	Val	Phe	Asp	Asp 160
	Val	Val	Pro	Glu	Lys 165	Tyr	Thr	Ile	Gly	Ala 170	Thr	Tyr	Ala	Pro	G1u 175	Glu
<210> 33																
<211> 703	3															
<212> PR	Т															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> cor	nstruc	ción M	M sin	Met d	el ext	remo	N y h	exahi	stidina	a del e	extren	no C				
<400> 33																

5

10

Ala Asp Lys Tyr Lys Thr Phe Glu Ala Ala Phe Thr Val Ser Ser Lys 1 5 10 10

arg	Asn	Leu	ATA	Asp	ALZ	AST	Ser	тÀа	ATS	PTO	GIN	ren	var	Pro	Lys
			20					25					30		

- Leu Asp Glu Val Tyr Asn Ala Ala Tyr Asn Ala Ala Asp His Ala Ala 35 40 45
- Pro Glu Asp Lys Tyr Glu Ala Phe Val Leu His Phe Ser Glu Ala Leu 50 60
- Arg Ile Ile Ala Gly Thr Pro Glu Val His Ala Val Lys Pro Gly Ala 65 70 75 80
- Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn 85 90 95
- Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp Val 100 105 110
- Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu Val 115 120 125
- Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His Leu 130 135 140
- Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu 145 150 155 160
- Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu Gly 165 170 175
- Ser Gly Arg Gly Cys Gly Ser Cys Phe Glu Ile Lys Cys Thr Lys Pro 180 185 190
- Glu Ala Cys Ser Gly Glu Pro Val Val Val His Ile Thr Asp Asp Asn 195 200 205
- Glu Glu Pro Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe 210 215 220
- Gly Ala Met Ala Lys Lys Gly Asp Glu Gln Lys Leu Arg Thr Gly Pro 225 230 235 240
- Phe Thr Val Arg Tyr Thr Thr Glu Gly Gly Thr Lys Thr Glu Ala Glu 245 250 255
- Asp Val Ile Pro Glu Gly Trp Lys Ala Asp Thr Ser Tyr Glu Ser Lys 260 265 270
- Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu Pro

		275					280					285			
Lys	Gly 290	Ala	Ala	Glu	Ser	Ser 295	Ser	Lys	Ala	Ala	Leu 300	Thr	Ser	Lys	Leu
Asp 305	Ala	Ala	Tyr	Lys	Leu 310	Ala	Tyr	ГЛа	Thr	Ala 315	Glu	Gly	Ala	Thr	Pro 320
Glu	Ala	Lys	Tyr	Asp 325	Ala	Tyr	Val	Ala	Thr 330	Leu	Ser	Glu	Ala	Leu 335	Arg
Ile	Ile	Ala	Gly 340	Thr	Leu	Glu	Val	His 345	Ala	Val	Lys	Pro	Ala 350	Ala	Asp
Leu	Gly	Tyr 355	Gly	Pro	Ala	Thr	Pro 360	Ala	Ala	Pro	Ala	Ala 365	Gly	Tyr	Thr
Pro	Ala 370	Thr	Pro	Ala	Ala	Pro 375	Ala	Glu	Ala	Ala	Pro 380	Ala	Gly	Lys	Ala
Thr 385	Thr	Glu	Glu	Gln	Lys 390	Leu	Ile	Gl u	Lys	Ile 395	Asn	Ala	Gly	Phe	Lys 400
Ala	Ala	Leu	Ala	Ala 405	Ala	Ala	Gly	Val	Gln 410	Pro	Ala	Asp	Lys	Tyr 415	Arg
Thr	Phe	Val	Ala 420	Thr	Phe	Ala	Val	Lys 425	Gln	Ala	Tyr	Ala	Ala 430	Thr	Val
Ala	Thr	Ala 435	Pro	Glu	Val	Lys	Tyr 440	Thr	Val	Phe	Glu	Thr 445	Ala	Leu	Lys
Lys	Ala 450	Ile	Thr	Ala	Met	Ser 455	Glu	Ala	Gln	Lys	Ala 460	Ala	Lүs	Pro	Ala
Ala 465	Ala	Ala	Thr	Ala	Thr 470	Ala	Thr	Ala	Ala	Val 475	Gly	Ala	Ala	Thr	Gly 480
Ala	Ala	Thr	Ala	A1a 485	Thr	Gly	Gly	Tyr	Lys 490	Val	Ala	Glu	Glu	Val 495	Lys
Val	Ile	Pro	Ala 500	Gly	Glu	Leu	Gln	Val 505	Ile	Glu	Lys	Val	Asp 510	Ala	Ala
Phe	Lys	Val 515	Ala	Ala	Thr	Ala	Ala 520	Asn	Ala	Ala	Pro	Ala 525	Asn	Asp	Lys
Phe	Thr 530	Val	Phe	G1u	Ala	Ala 535	Phe	Asn	Asp	Ala	Ile 540	Lys	Ala	Ser	Thr

	Gly 545	Gly	Ala	Tyr	Glu	Ser 550	Tyr	Lys	Phe	Ile	Pro 555	Ala	Leu	Glu	Ala	11e 560
	Pro	Lys	Val	Pro	Pro 565	Gly	Pro	Asn	Ile	Thr 570	Ala	Thr	Tyr	Gly	Asp 575	Lys
	Trp	Leu	Asp	Ala 580	Lys	Ser	Thr	Trp	Tyr 585	Gly	Lys	Pro	Thr	G1y 590	Ala	Gly
	Pro	Lys	Asp 595	Asn	Gly	Gly	Ala	Cys 600	Gly	Tyr	Lys	Asp	Val 605	Asp	Lys	Pro
	Pro	Phe 610	Ser	Gly	Met	Thr	Gly 615	Суз	Gly	Asn	Thr	Pro 620	Ile	Phe	Lys	Ser
	Ala 625	Gly	Glu	Leu	Glu	Leu 630	Gln	Phe	Arg	Arg	Val 635	Lys	Cya	Lys	Tyr	Pro 640
	Glu	Gly	Thr	Lys	Val 645	Thr	Phe	His	Val	Glu 650	Lys	Gly	Ser	Asn	Pro 655	Asn
	Tyr	Leu	Ala	Leu 660	Leu	Val	Lys	Tyr	Val 665	Asn	Gly	Asp	Gly	Asp 670	Val	Val
	Ala	Val	Asp 675	Ile	Lys	Glu	Lys	Gly 680	Lys	Asp	Lys	Trp	Ile 685	Glu	Leu	Lys
	Glu	Ser 690	Trp	Gly	Ala	Ile	Trp 695	Arg	Ile	Asp	Thr	Pro 700	Asp	Lys	Leu	
<210> 34																
<211> 70	3															
<212> PR	RT.															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> coi	nstruc	ción l	N sin	Met d	el exti	remo	N y h	exahi	stidina	a del e	extren	10 С				
							,			•						

5

10

<400> 34

55

Ala Asp Lys Tyr Lys Thr Phe Glu Ala Ala Phe Thr Val Ser Ser Lys 1 10 15

Arg Asn Leu Ala Asp Ala Val Ser Lys Ala Pro Gln Leu Val Pro Lys 20 25

Leu Asp Glu Val Tyr Asn Ala Ala Tyr Asn Ala Ala Asp His Ala Ala 35 40 45

Pro Glu Asp Lys Tyr Glu Ala Phe Val Leu His Phe Ser Glu Ala Leu

	50					55					60				
Arg 65	Ile	Ile	Ala	Gly	Thr 70	Pro	Glu	V al	His	Ala 75	Val	Lys	Pro	Gly	Al a 80
Val	Pro	Lys	Val	Thr 85	Phe	Thr	Val	Glu	Lys 90	Gly	Ser	Asn	Glu	Lys 95	His
Leu	Ala	Val	Leu 100	Va1	Lys	Tyr	Gl u	Gly 105	Asp	Thr	Met	Ala	Glu 110	Val	Glu
Leu	Phe	Arg 115	Phe	Leu	Thr	Gl u	Lys 120	Gly	Met	Lys	Asn	Val 125	Phe	Asp	Asp
Val	Val 130	Pro	Glu	Lys	Tyr	Thr 135	Ile	Gly	Ala	Thr	Tyr 140	Ala	Pro	Glu	Gl u
Arg 145	Glu	His	Gly	Ser	A sp 150	Gl u	Trp	Val	Ala	Met 155	Thr	Lys	Gly	Glu	Gly 160
Gly	Val	Trp	Thr	Phe 165	Asp	Ser	G1u	Glu	Pro 170	Leu	Gln	Gly	Pro	Phe 175	Asn
Gly	Ala	Ala	Ser 180	Asn	Lys	Ala	Phe	Ala 185	Gl u	Gly	Leu	Ser	Gly 190	G1u	Pro
Lys	Gly	Ala 195	Ala	Glu	Ser	Ser	Ser 200	Lya	Ala	Ala	Leu	Thr 205	Ser	Lys	Leu
Asp	Ala 210	Ala	Tyr	Lys	Leu	Ala 215	Tyr	Lys	Thr	Ala	Glu 220	Gly	Ala	Thr	Pro
Glu 225	Ala	Lys	Tyr	Asp	Ala 230	Tyr	Val	Ala	Thr	Leu 235	Ser	Glu	Ala	Leu	Arg 240
Ile	Ile	Ala	Gly	Thr 245	Leu	Glu	Val	His	Ala 250	Val	Lys	Pro	Ala	Ala 255	Asp
Leu	G1y	Tyr	Gly 260	Pro	Ala	Thr	Pro	Ala 265	Ala	Pro	Ala	Ala	Gly 270	Tyr	Thr
Pro	Ala	Thr 275	Pro	Ala	Ala	Pro	Ala 280	Glu	Ala	Ala	Pro	Ala 285	Gly	Lys	Ala
Thr	Thr 290	Glu	Glu	Gl n	Lys	Leu 295	Ile	Glu	Lys	Ile	As n 300	Ala	Gly	Phe	Lys
Ala 305	Ala	Leu	Ala	Ala	Ala 310	Ala	Gly	Val	Gln	Pro 315	Ala	Asp	Lys	Tyr	Arg 320

- Thr Phe Val Ala Thr Phe Ala Val Lys Gln Ala Tyr Ala Ala Thr Val 325 330 335
- Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr Ala Leu Lys 340 345 350
- Lys Ala Ile Thr Ala Met Ser Glu Ala Gln Lys Ala Ala Lys Pro Ala 355 360 365
- Ala Ala Ala Thr Ala Thr Ala Thr Ala Ala Val Gly Ala Ala Thr Gly 370 375 380
- Ala Ala Thr Ala Ala Thr Gly Gly Tyr Lys Val Ala Glu Glu Val Lys 385 390 395 400
- Val Ile Pro Ala Gly Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala 405 410 415
- Phe Lys Val Ala Ala Thr Ala Ala Asn Ala Ala Pro Ala Asn Asp Lys
 420 425 430
- Phe Thr Val Phe Glu Ala Ala Phe Asn Asp Ala Ile Lys Ala Ser Thr 435 440 445
- Gly Gly Ala Tyr Glu Ser Tyr Lys Phe Ile Pro Ala Leu Glu Ala Ser 450 455 460
- Gly Arg Gly Cys Gly Ser Cys Phe Glu Ile Lys Cys Thr Lys Pro Glu 465 470 475
- Ala Cys Ser Gly Glu Pro Val Val Val His Ile Thr Asp Asp Asn Glu 485 490 495
- Glu Pro Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe Gly 500 505 510
- Ala Met Ala Lys Lys Gly Asp Glu Gln Lys Leu Arg Thr Gly Pro Phe 515 520 525
- Thr Val Arg Tyr Thr Thr Glu Gly Gly Thr Lys Thr Glu Ala Glu Asp 530 540
- Val Ile Pro Glu Gly Trp Lys Ala Asp Thr Ser Tyr Glu Ser Lys Ile 545 550 555 560
- Pro Lys Val Pro Pro Gly Pro Asn Ile Thr Ala Thr Tyr Gly Asp Lys 565 570 575

	Trp	Leu	Asp	Ala 580	Lys	Ser	Thr	Trp	Tyr 585	Gly	Lys	Pro	Thr	Gly 590	Ala	Gl
	Pro	Lys	Asp 595	Asn	Gly	Gly	Ala	Cys 600	Gly	Tyr	Lys	Asp	Val 605	Asp	Lys	Pro
	Pro	Phe 610	Ser	Gly	Met	Thr	Gly 615	Cys	Gly	Asn	Thr	Pro 620	Ile	Phe	Lys	Se
	Ala 625	Gly	Glu	Leu	Glu	Leu 630	Gl n	Phe	Arg	Arg	Val 635	Lys	Cys	Lys	Tyr	Pro 640
	Glu	Gly	Thr	Lys	Val 645	Thr	Phe	His	Val	Glu 650	Lys	Gly	Ser	Asn	Pro 655	Ası
	Tyr	Leu	Ala	Leu 660	Leu	Val	Lys	Tyr	Val 665	Asn	Gly	Asp	Gly	Asp 670	Val	Va.
	Ala	Val	Asp 675	Ile	Lys	Glu	Lys	Gly 680	Lys	Asp	Lys	Trp	Ile 685	Glu	Leu	Lys
	Glu	Ser 690	Trp	Gly	Ala	Ile	Trp 695	Arg	Ile	Asp	Thr	Pro 700	Asp	Lys	Leu	
<210> 35																
<211> 52	7															
<212> PR	T															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> cor	nstruc	ción (O sin	Met d	el ext	remo	N y h	exahi	stidina	a del e	extren	no C				
<400> 35																

5

10

- Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu Pro 1 $$ 5 $$ 10 $$ 15
- Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys Leu 20 25 30
- Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr Pro 35 40 40
- Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu Arg 50 60
- Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala Ala Asp 65 70 75 80
- Leu Gly Tyr Gly Pro Ala Thr Pro Ala Ala Pro Ala Ala Gly Tyr Thr 85 90 95

- Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly Lys Ala 100 105 110
- Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly Phe Lys 115 120 125
- Ala Ala Leu Ala Ala Ala Ala Gly Val Gln Pro Ala Asp Lys Tyr Arg 130 135 140
- Thr Phe Val Ala Thr Phe Ser Gly Arg Gly Cys Gly Ser Cys Phe Glu 145 150 155 160
- Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser Gly Glu Pro Val Val Val 165 170 175
- His Ile Thr Asp Asp Asn Glu Glu Pro Ile Ala Pro Tyr His Phe Asp 180 185 190
- Leu Ser Gly His Ala Phe Gly Ala Met Ala Lys Lys Gly Asp Glu Gln
 195 200 205
- Lys Leu Arg Thr Gly Pro Phe Thr Val Arg Tyr Thr Thr Glu Gly Gly 210 215 220
- Thr Lys Thr Glu Ala Glu Asp Val Ile Pro Glu Gly Trp Lys Ala Asp 225 230 235 240
- Thr Ser Tyr Glu Ser Lys Ala Glu Glu Val Lys Val Ile Pro Ala Gly 245 250 255
- Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala Ala 260 265 270
- Thr Ala Ala Asn Ala Ala Pro Ala Ala Val Lys Gln Ala Tyr Ala Ala
- Thr Val Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr Ala 290 295 300
- Leu Lys Lys Ala Ile Thr Ala Met Ser Glu Ala Gln Lys Ala Ala Lys 305 310 315 320
- Pro Ala Ala Ala Ala Thr Ala Thr Ala Thr Ala Ala Val Gly Ala Ala
 325 330 335
- Thr Gly Ala Ala Thr Ala Ala Thr Gly Gly Tyr Lys Val Asn Asp Lys 340 345 350

	Phe	Thr	Val 355	Phe	Glu	Ala	Ala	Phe 360	Asn	Asp	Ala	Ile	Lys 365	Ala	Ser	Thi
	Gly	Gly 370	Ala	Tyr	Glu	Ser	Туг 375	Lys	Phe	Ile	Pro	Ala 380	Leu	Glu	Ala	Sei
	Ala 385	Gly	Glu	Leu	Glu	Leu 390	Gln	Phe	Arg	Arg	Val 395	Lys	Суз	Lys	Tyr	Pro 400
	Glu	Gly	Thr	Lys	Val 405	Thr	Phe	His	Val	Glu 410	Lys	Gly	Ser	Asn	Pro 415	Asr
	Tyr	Leu	Ala	Leu 420	Leu	Val	Ile	Pro	Lys 425	Val	Pro	Pro	Gly	Pro 430	Asn	Ile
	Thr	Ala	Thr 435	Tyr	Gly	Asp	Lys	Trp 440	Leu	Asp	Ala	Lys	Ser 445	Thr	Trp	Туз
	Gly	Lys 450	Pro	Thr	Gly	Ala	Gly 455	Pro	Lys	Asp	Asn	Gly 460	Gly	Ala	Cys	Gly
	Tyr 465	Lys	Asp	Val	Asp	Lys 470	Pro	Pro	Phe	Ser	Gly 475	Met	Thr	Gly	Cys	G1 <u>y</u> 480
	Asn	Thr	Pro	Ile	Phe 485	Lys	Lys	Туг	Val.	Asn 490	Gly	Asp	Gly	Asp	Val 495	Val
	Ala	Val	Asp	Ile 500	Lys	Glu	Lys	Gly	Lys 505	Asp	Lys	Trp	Ile	Glu 510	Leu	Lys
	Glu	Ser	Trp 515	Gly	Ala	Ile	Trp	Arg 520	Ile	Asp	Thr	Pro	Asp 525	Lys	Leu	
<210> 36																
<211> 52	7															
<212> PR	T															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> cor	nstruc	ción l	⊃ sin l	Met d	el extr	remo	N y he	exahis	stidina	a del e	extrem	по С				

5

10

<400> 36

Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu Pro

-				•											
Lys	Gly	Ala	Al a 20	Glu	Ser	Ser	Ser	Lys 25	Ala	Ala	Leu	Thr	Ser 30	Lys	Le
Asp	Ala	Ala 35	Tyr	Lys	Leu	Ala	Tyr 40	Lys	Thr	Ala	Glu	Gly 45	Ala	Thr	Pro
Glu	Ala 50	Lys	Tyr	Asp	Ala	Tyr 55	Val	Ala	Thr	Leu	Ser 60	Glu	Ala	Leu	Arg
11e 65	Ile	Ala	Gly	Thr	Leu 70	Glu	Val	His	Ala	Val 75	Lys	Pro	Ala	Ala	Asp 80
Leu	Gly	Tyr	Gly	Pro 85	Ala	Thr	Pro	Ala	Ala 90	Pro	Ala	Ala	Gly	Tyr 95	Thr
Pro	Ala	Thr	Pro 100		Ala	Pro	Ala	Glu 105	Ala	Ala	Pro	Ala	Gly 110	Lys	Ala
Thr	Thr	Glu 115	Glu	Gln	Lys	Leu	Ile 120	Glu	Lys	Ile	Asn	Ala 125	Gly	Phe	Lys
Ala	Ala 130		Ala	Ala	Ala	Ala 135	Gly	Val	Gln	Pro	Ala 140	Asp	Lys	Tyr	Arg
Thr 145		Val	Ala	Thr	Phe 150	Ser	Gly	Arg	Gly	Cys 155	Gly	Ser	Суз	Phe	Glu 160
Ile	Lys	Cys	Thr	Lys 165	Pro	Glu	Ala	Cys	Ser 170	Gly	Glu	Pro	Val	Val 175	Val
His	Ile	Thr	Asp 180	Asp	Asn	Glu	Glu	Pro 185	Ile	Ala	Pro	Tyr	His 190	Phe	Asp
Leu	Ser	Gly 195	His	Ala	Phe	Gly	Ala 200	Met	Ala	Lys	Lys	Gly 205	Asp	Glu	Gln
Lys	Leu 210		Thr	Gly	Pro	Phe 215	Thr	Val	Arg	Туг	Thr 220	Thr	Glu	Gly	Gly
Thr 225	_	Thr	Glu	Ala	Glu 230	Asp	Val	Ile	Pro	Glu 235	Gly	Trp	Lys	Ala	Asp 240

Thr Val Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr Ala 290 295 300

Thr Ser Tyr Glu Ser Lys Ala Glu Glu Val Lys Val Ile Pro Ala Gly

Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala Ala 260 265265270

Thr Ala Ala Asn Ala Ala Pro Ala Ala Val Lys Gln Ala Tyr Ala Ala 275 280 285

Leu 305	Lys	Lys	Ala	Ile	Thr 310	Ala	Met	Ser	Gl u	Ala 315	Gln	Lys	Ala	Ala	Lys 320
Pro	Ala	Ala	Ala	Ala 325	Thr	Ala	Thr	Ala	Thr 330	Ala	Ala	Val	Gly	Ala 335	Ala
Thr	Gly	Ala	Ala 340	Thr	Ala	Ala	Thr	Gly 345	Gly	Tyr	Lys	Val	Asn 350	Asp	Lys
Phe	Thr	Val 355	Phe	Glu	Ala	Ala	Phe 360	Asn	Asp	Ala	Ile	Lys 365	Ala	Ser	The
_	370		-			375	-	Phe			380				
385					390			Ile		395					400
_		_		405				Tyr	410	_				415	
			420					Arg 425 Val	_		-	-	430	-	
		435	_				440			_		445			
-	450					455	_	Lys			460		-		
465		-		-	470	-	-	Ile	-	475	_				480
		_		485		_		Gly	490			_	_	495	_
			500					505 Gly					510		
		515	-				520					525			

<210> 37

<211> 176

5 <212> PRT

<213> Secuencia artificial

<220>

<223> construcción Q sin Met del extremo N y hexahistidina del extremo C

10

<400> 37

Phe	Arg	Phe	Leu	Thr	Glu	Lys	Gly	Met	Lys	Asn	Val	Phe	Asp	Asp	Val
1				5					10					15	

Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu Asp 20 25 30

Glu Trp Val Ala Met Thr Lys Gly Glu Gly Gly Val Trp Thr Phe Asp 35 40 45

Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn Ala Asp Lys Tyr Lys Thr 50 55 60

Phe Glu Ala Ala Phe Thr Val Ser Ser Lys Arg Asn Leu Ala Asp Ala 65 70 75 80

Val Ser Lys Ala Pro Gln Leu Val Pro Lys Leu Asp Glu Val Tyr Asn 85 90 95

Ala Ala Tyr Asn Ala Ala Asp His Ala Ala Pro Glu Asp Lys Tyr Glu 100 105 110

Ala Phe Val Leu His Phe Ser Glu Ala Leu Arg Ile Ile Ala Gly Thr 115 120 125

Pro Glu Val His Ala Val Lys Pro Gly Ala Val Pro Lys Val Thr Phe 130 135 140

Thr Val Glu Lys Gly Ser Asn Glu Lys His Leu Ala Val Leu Val Lys 145 150 155 160

Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu Arg Glu His Gly Ser 165 170 175

5 <210> 38

<211> 253

<212> PRT

<213> Secuencia artificial

10 <220>

<223> construcción A con Met del extremo N y hexahistidina del extremo C

<400> 38

Met 1	Ser	Gly	Arg	Gly 5	Cys	Gly	Ser	Cys	Phe 10	Glu	Ile	Lys	Суз	Thr 15	Ly
Pro	Glu	Ala	Cys 20	Ser	Gly	Glu	Pro	Val 25	Val	Val	His	Ile	Thr 30	Asp	As
Asn	G1u	G1u 35	Pro	Ile	Ala	Pro	ту <i>г</i> 40	His	Phe	Asp	Leu	Ser 45	G1y	His	A1
Phe	Gly 50	Ala	Met	Ala	Lys	Lys 55	Gly	Asp	Glu	Gln	Lys 60	Leu	Arg	Thr	G1;
Pro 65	Phe	Thr	Val	Arg	Tyr 70	Thr	Thr	Glu	Gly	Gly 75	Thr	Lys	Thr	Glu	A1.
Glu	Asp	Val	Ile	Pro 85	Glu	Gly	Trp	Lys	Ala 90	Asp	Thr	Ser	Tyr	Glu 95	Se
Lys	Gly	Ala	Ala 100	Ser	Asn	Lys	Ala	Phe 105	Ala	Glu	Gly	Leu	Ser 110	Gly	Gl
Pro	Lys	Gly 115	Ala	Ala	Glu	Ser	Ser 120	Ser	Lys	Ala	Ala	Le u 125	Thr	Ser	Lу
Leu	Asp 130	Ala	Ala	Tyr	Lys	Leu 135	Ala	Tyr	Lys	Thr	Ala 140	Glu	Gly	Ala	Th
Pro 145	Glu	Ala	Lys	Туг	Asp 150	Ala	Tyr	Val	Ala	Thr 155	Leu	Ser	Glu	Ala	Le:
Arg	Ile	Ile	Ala	Gly 165	Thr	Leu	Glu	Val	His 170	Ala	Val	Lys	Pro	Ala 175	Ala
Asp	Leu	Gly	Tyr 180	Gly	Pro	Ala	Thr	Pro 185	Ala	Ala	Pro	Ala	Ala 190	Gly	Ту
Thr	Pro	Ala 195	Thr	Pro	Ala	Ala	Pro 200	Ala	Glu	Ala	Ala	Pro 205	Ala	Gly	Ly
Ala	Thr 210	Thr	Glu	Glu	Gln	Lys 215	Leu	Ile	Glu	Lys	Ile 220	Asn	Ala	Gly	Phe
Lys 225	Ala	Ala	Leu	Ala	Ala 230	Ala	Ala	Gly	Val	Gln 235	Pro	Ala	Asp	Lys	Ty:
Arg	Thr	Phe	Val	Ala 245	Thr	Phe	His	His	His 250	His	His	His			

<210> 39

5 <211> 288

<212> PRT

<213> Secuencia artificial

<220>

<223> construcción B con Met del extremo N y hexahistidina del extremo C

5

<400> 39

Met 1	Ala	Val	Lys	Gln 5	Ala	Tyr	Ala	Ala	Thr 10	Val	Ala	Thr	Ala	Pro 15	Glu
Val	Lys	Tyr	Thr 20	Val	Phe	Glu	Thr	Ala 25	Leu	Lys	Lys	Ala	Ile 30	Thr	Ala
Met	Ser	G1u 35	Ala	Gln	Lys	Ala	Ala 40	Lys	Pro	Ala	Ala	Ala 45	Ala	Thr	Ala
Thr	Ala 50	Thr	Ala	Ala	Val	Gly 55	Ala	Ala	Thr	Gly	Ala 60	Ala	Thr	Ala	Ala
Thr 65	Gly	Gly	Tyr	Lys	Val 70	Ala	Glu	Gl u	Val	Lys 75	Val	Ile	Pro	Ala	Gl y 80
G1u	Leu	Gln	Val	Ile 85	Glu	Lys	Val	Asp	Ala 90	Ala	Phe	Lys	Val	Ala 95	Ala
Thr	Ala	Ala	As n 100	Ala	Ala	Pro	Ala	Asn 105	Asp	Lys	Phe	Thr	Val 110	Phe	Glu
Ala	Ala	Phe 115	Asn	Asp	Ala	Ile	Lys 120	Ala	Ser	Thr	Gly	Gly 125	Ala	Tyr	Glu
Ser	Туг 130	Lys	Phe	Ile	Pro	Ala 135	Leu	Glu	Ala	Ile	Pro 140	Lys	Val	Pro	Pro
Gly 145	Pro	Asn	Ile	Thr	Ala 150	Thr	Tyr	Gly	Asp	Lys 155	Trp	Leu	Asp	Ala	Lys 160
Ser	Thr	Trp	Tyr	Gly 165	Lys	Pro	Thr	Gly	Ala 170	Gly	Pro	Lys	Asp	Asn 175	Gly
Gly	Ala	Cys	Gly 180	Tyr	Lys	Asp	Val	Asp 185	Lys	Pro	Pro	Phe	Ser 190	Gly	Met
Thr	Gly	Cys 195	Gly	Asn	Thr	Pro	11e 200	Phe	Lys	Ser	Ala	Gly 205	Gl u	Leu	Glu
Leu	Gln 210	Phe	Arg	Arg	Val	Lys 215	Суз	Lys	Tyr	Pro	Glu 220	Gly	Thr	Lys	Val
Thr 225	Phe	His	Val	Glu	Lys 230	G1y	Ser	Asn	Pro	Asn 235	Tyr	Leu	Ala	Leu	Leu 240
Val	Lys	Tyr	Val	Asn 245	Gly	Asp	G1y	Asp	Val 250	Va1	Ala	Val	Asp	Ile 255	Lys
Glu	Lys	Gly	Lys	Asp	Lys	Trp	Ile	Gl u	Leu	Lys	Glu	Ser	Trp	Gly	Ala
		2	60					265					27	0	

Ile Trp Arg Ile Asp Thr Pro Asp Lys Leu His His His His His His His 275

<210> 40

5 <211> 253

<212> PRT

<213> Secuencia artificial

<220>

5

<223> construcción C con Met del extremo N y hexahistidina del extremo C

<400> 40

Met Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu 1 5 15

Pro Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys 20 25 30

Leu Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr 35 40 45

Pro Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu 50 60

Arg Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala Ala 65 70 75 80

Asp Leu Gly Tyr Gly Pro Ala Thr Pro Ala Ala Pro Ala Ala Gly Tyr 85 90 95

Thr Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly Lys
100 105 110

Ala Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly Phe 115 120 125

Lys Ala Ala Leu Ala Ala Ala Gly Val Gln Pro Ala Asp Lys Tyr 130 140

Arg Thr Phe Val Ala Thr Phe Ser Gly Arg Gly Cys Gly Ser Cys Phe 145 150 155 160

Glu Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser Gly Glu Pro Val Val

Val His Ile Thr Asp Asp Asn Glu Glu Pro Ile Ala Pro Tyr His Phe 180 185 190

	Asp	Leu	Ser 195	Gly	His	Ala	Phe	Gly 200	Ala	Met	Ala	Lys	Lys 205	Gly	Asp	Glu
	Gln	Lys 210	Leu	Arg	Thr	Gly	Pro 215	Phe	Thr	Val	Arg	Туг 220	Thr	Thr	Glu	Gly
	Gly 225	Thr	Lys	Thr	Glu	Ala 230	Glu	Asp	Val	Ile	Pro 235	Glu	Gly	Trp	Lys	Ala 240
	Asp	Thr	Ser	Tyr	Glu 245	Ser	Lys	His	His	His 250	His	His	His			
<210> 41																
<211> 28	8															
<212> PRT																
<213> Secuencia artificial																
<220>																
<223> construcción D con Met del extremo N y hexahistidina del extremo C																
<400> 41																

Met 1	Ile	Pro	Lys	Val 5	Pro	Pro	Gly	Pro	Asn 10	Ile	Thr	Ala	Thr	Tyr 15	Gly
Asp	Lys	Trp	Leu 20	Asp	Ala	Lys	Ser	Thr 25	Trp	Tyr	Gly	Lys	Pro 30	Thr	Gly
Ala	Gly	Pro 35	Lys	Asp	Asn	Gly	Gly 40	Ala	Cys	Gly	Tyr	Lys 45	Asp	Val	Asp
Lys	Pro 50	Pro	Phe	Ser	Gly	Met 55	Thr	Gly	Cys	Gly	Asn 60	Thr	Pro	Ile	Phe
Lys 65	Ser	Ala	Gly	Glu	Leu 70	Glu	Leu	Gln	Phe	Arg 75	Arg	Va1	Lys	Cys	L ys 80
Tyr	Pro	Glu	Gly	Thr 85	Lys	Val	Thr	Phe	His 90	Val	Glu	Lys	Gly	Ser 95	Asn
Pro	Asn	Tyr	Leu 100	Ala	Leu	Leu	Val	Lys 105	Tyr	Va1	Asn	G1y	Asp 110	Gly	Asp
Val	Val	Ala 115	Val	Asp	Ile	Lys	Glu 120	Lys	Gly	Lys	Asp	Lys 125	Trp	Ile	Glu
Leu	Lys 130	Glu	Ser	Trp	Gly	Ala 135	Ile	Trp	Arg	Ile	Asp 140	Thr	Pro	Asp	Lys
Leu 145	Ala	Va1	Lys	Gln	Ala 150	Tyr	Ala	Ala	Thr	Val 155	Ala	Thr	Ala	Pro	Glu 160
Val	Lys	Tyr	Thr	Val 165	Phe	Glu	Thr	Ala	Leu 170	Lys	Lys	Ala	Ile	Thr 175	Ala
Met	Ser	Glu	Ala 180	Gln	Lys	Ala	Ala	Lys 185	Pro	Ala	Ala	Ala	Ala 190	Thr	Ala
Thr	Ala	Thr 195	Ala	Ala	Val	Gly	Ala 200	Ala	Thr	Gly	Ala	Ala 205	Thr	Ala	Ala
Thr	Gly 210	Gly	Tyr	Lys	Val	Ala 215	G1u	Glu	Val	Lys	Val 220	Ile	Pro	Ala	G1y
Glu 225	Leu	G1n	Val	Ile	G1u 230	Lys	Val	Asp	Ala	Ala 235	Phe	Lys	Val	Ala	Ala 240
Thr	Ala	Ala	Asn	Ala 245	Ala	Pro	Ala	Asn	Asp 250	Lys	Phe	Thr	Va1	Phe 255	Glu
Ala	Ala	Phe	As n 260	Asp	Ala	Ile	Lys	Ala 265	Ser	Thr	Gly	Gly	Ala 270	Tyr	G1u
Ser	Tyr	Lys 275	Phe	Ile	Pro	Ala	Leu 280	Glu	Ala	His	His	His 285	His	His	His

	<211> 30	1															
	<212> PRT <213> Secuencia artificial																
5																	
	<220>																
	<223> construcción E con Met del extremo N y hexahistidina del extremo C																
	<400> 42																
10																	
		-	Gly	Ala	Ala	_	Asn	Lys	Ala	Phe		Glu	Gly	Leu	Ser		G1
		1				5					10					15	
		Pro	Lys	Gly	A la 20	Ala	Glu	Ser	Ser	Ser 25	Lys	Ala	Ala	Leu	Thr 30	Ser	Ly
					20					23					30		
		Leu	Asp	Ala 35	Ala	Tyr	Lys	Leu	Ala 40	Tyr	Lys	Thr	Ala	Glu 45	Gly	Ala	Th
				55													
		Pro	Glu 50	Ala	Lys	Tyr	Asp	Ala 55	Tyr	Val	Ala	Thr	Leu 60	Ser	Glu	Ala	Le
			50					J J					00				
		Arg 65	Ile	Ile	Ala	Gly	Thr	Leu	Glu	Val	His	Ala 75	Val	Lys	Pro	Ala	A1.
							. •					· -					
		Asp	Leu	Gly	Tyr	Gly 85	Pro	Ala	Thr	Pro	Al a 90	Ala	Pro	Ala	Ala	Gly 95	Ty:
											-					-	

<210> 42

	Thr	Pro	Ala	Thr 100	Pro	Ala	Ala	Pro	Ala 105	Glu	Ala	Ala	Pro	Ala 110	Gly	Lys
	Ala	Thr	Thr 115	Glu	Glu	Gl n	Lys	Leu 120	Ile	Glu	Lys	Ile	Asn 125	Ala	Gly	Phe
	Lys	Ala 130	Ala	Leu	Ala	Ala	Ala 135	Ala	Gly	Val	Gln	Pro 140	Ala	Asp	Lys	Tyr
	Arg 145	Thr	Phe	Val	Ala	Thr 150	Phe	Ile	Pro	Lys	Val 155	Pro	Pro	Gly	Pro	Asn 160
	Ile	Thr	Ala	Thr	Tyr 165	Gly	Asp	Lys	Trp	Leu 170	Asp	Ala	Lys	Ser	Thr 175	Trp
	Tyr	Gly	Lys	Pro 180	Thr	Gly	Ala	Gly	Pro 185	Lys	Asp	Asn	Gly	Gly 190	Ala	Cys
	Gly	Tyr	Lys 195	Asp	Val	Asp	Lys	Pro 200	Pro	Phe	Ser	Gly	Met 205	Thr	Gly	Cys
	Gly	Asn 210	Thr	Pro	Ile	Phe	Lys 215	Ser	Ala	Gly	Glu	Leu 220	Glu	Leu	Gln	Phe
	Arg 225	Arg	Val	Lys	Суз	Lys 230	Tyr	Pro	G1u	Gly	Thr 235	Lys	Val	Thr	Phe	His 240
	Val	Glu	Lys	Gly	Ser 245	Asn	Pro	Asn	Tyr	Leu 250	Ala	Leu	Leu	Val	Lys 255	Tyr
	Val	Asn	Gly	Asp 260	Gly	Asp	Val	Val	Ala 265	Val	Asp	Ile	Lys	Glu 270	Lys	Gly
	Lys	Asp	Lys 275	Trp	Ile	Glu	Leu	Lys 280	Glu	Ser	Trp	Gly	Ala 285	Ile	Trp	Arg
	Ile	Asp 290	Thr	Pro	Asp	Lys	Leu 295	His	His	His	His	His 300	His			
<210> 43																
<211> 30°	1															
<212> PR	T															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> cor	nstruc	ción f	- con	Met d	lel ext	remo	N y h	exahi	stidin	a del (extrer	no C				

73

5

10

<400> 43

ì	Met	11	e P	ro I	ys V	Val	Pro	Pro	Gly	Pro	Asn	Ile	Thi	Al	a Th	r Ty	yr Gly
	1					5					10					15	
	As	зp	Lys	Trp	Leu 20	Asp	Ala	Lys	Ser	Thr 25	Trp	туг	Gly	Lys	Pro 30	Thr	Gly
	A	la	Gly	Pro 35	Lys	Asp	Asn	Gly	Gly 40	Ala	Суз	Gly	Tyr	Lys 45	Asp	Val	Asp
	L	/s	Pro 50	Pro	Phe	Ser	Gly	Met 55	Thr	Gly	Суз	Gly	Asn 60	Thr	Pro	Ile	Phe
	L <u>y</u> 65		Ser	Ala	Gly	Glu	Leu 70	Gl u	Leu	Gln	Phe	Arg 75	Arg	Val	Lys	Cys	Lys 80
	T	ŗ	Pro	Glu	Gly	Thr 85	Lys	Val	Thr	Phe	His 90	Val	Glu	Lys	Gly	Ser 95	Asn
	Pı	co.	Asn	Туг	Leu 100	Ala	Leu	Leu	Val	Lys 105	Tyr	Val	Asn	Gly	Asp 110	Gly	Asp
	Va	1	Val	Ala 115	Val	Asp	Ile	Lys	Glu 120	Lys	Gly	Lys	Asp	Lys 125	Trp	Ile	Gl u
	Le	au	130	Glu	Ser	Тгр	Gly	Ala 135	Ile	Trp	Arg	Ile	Asp 140	Thr	Pro	Asp	Lys
	Le 14		Gly	Ala	Ala	Ser	Asn 150	Lys	Ala	Phe	Ala	Glu 155	Gly	Leu	Ser	Gly	G1u 160
	Pı	0	Lys	Gly	Ala	Ala 165	Glu	Ser	Ser	Ser	Lys 170	Ala	Ala	Leu	Thr	\$er 175	Lys
	L€	•u	Asp	Ala	Ala 180	Tyr	Lys	Leu	Ala	Tyr 185	Lys	Thr	Ala	Glu	Gly 190	Ala	Thr
	Pı	0		Ala 195		Tyr	Asp	Ala	Туг 200	Val	Ala	Thr	Leu	Ser 205	Glu	Ala	Leu
	Ar	_	Ile 210	Ile	Ala	Gly	Thr	Leu 215	Glu	Val	His		Val 220	Lys	Pro	Ala	Ala
	As 22	-	Leu	Gly	туг	Gly	Pro 230	Ala	Thr	Pro	Ala	Ala 235	Pro	Ala	Ala	Gly	Tyr 240
	Th	ır	Pro	Ala	Thr	Pro 245	Ala	Ala	Pro	Ala	G1u 250	Ala	Ala	Pro	Ala	Gly 255	Lys
					260			Lys		265					270	_	
	пÀв	A.		1a 1 75	eu 1	n1d	wrg	wrg	280	ста	val	GIU	PIC	28		.h τι]	ys Tyı
1	Arg	Th 29		he V	al 1	Ala	Thr	Phe 295	His	His	His	His	His 300		s		

	<210> 44																
	<211> 240	0															
	<212> PR	RT.															
	<213> Se	cuenc	cia art	ificial													
5																	
	<220>																
	<223> coi	nstruc	ción (G con	Met	del ex	tremo	Nyl	nexah	nistidir	na del	extre	mo C				
	<400> 44																
0																	
		Met 1	Ser	Gly	Arg	Gly 5	Cys	Gly	Ser	Cys	Phe 10	Glu	Ile	Lys	Cys	Thr 15	Ly
		Pro	Glu	Ala	Суз 20	Ser	Gly	Glu	Pro	Val 25	Val	Val	His	Ile	Thr 30	Asp	Asj
		Asn	Glu	Gl u 35	Pro	Ile	Ala	Pro	Tyr 40	His	Phe	Asp	Leu	Ser 45	Gly	His	Ala
		Phe	Gly 50	Ala	Met	Ala	Lys	Lys 55	Gly	Asp	Glu	Gln	Lys 60	Leu	Arg	Thr	Gly
		Pro 65	Phe	Thr	Val	Arg	Tyr 70	Thr	Thr	Glu	Gly	Gly 75	Thr	Lys	Thr	Glu	Ala 80
		Glu	Asp	Val	Ile	Pro 85	Glu	Gly	Trp	Lys	Ala 90	Asp	Thr	Ser	Tyr	Glu 95	Sei
		Lys	Ala	Val	Lys 100	Gln	Ala	Tyr	Ala	Ala 105	Thr	Val	Ala	Thr	Ala 110	Pro	Gl
		Val	Lys	Tyr 115	Thr	Val	Phe	G1u	Thr 120	Ala	Leu	Lys	Lys	Ala 125	Ile	Thr	Ala
		Met	Ser 130	Gl u	Ala	Gln	Lys	Ala 135	Ala	Lys	Pro	Ala	Ala 140	Ala	Ala	Thr	Ala
		Thr 145	Ala	Thr	Ala	Ala	Val 150	Gly	Ala	Ala	Thr	Gly 155	Ala	Ala	Thr	Ala	Ala 160
		mb	C1	C3	M	T	17 n 1	81-	Cl.	C1	¥7.0.7	T	17 n T	T1.	Dws	87 a	61 -

Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala Ala

					180					185					190		
		Thr	Ala	Ala 195	Asn	Ala	Ala	Pro	Ala 200	Asn	Asp	Lys	Phe	Thr 205	Val	Phe	Glu
		Ala	Ala 210	Phe	Asn	Asp	Ala	Ile 215	Lys	Ala	Ser	Thr	Gly 220	Gly	Ala	Tyr	Glu
		Ser 225	Tyr	Lys	Phe	Ile	Pro 230	Ala	Leu	Glu	Ala	His 235	His	His	His	His	His 240
	<210> 45																
	<211> 240)															
5	<212> PR	T															
	<213> Se	cuenc	cia art	ificial													
	<220>																
	<223> cor	nstruc	ción l	H con	Met	del ex	tremo	Nyh	nexah	istidin	a del	extre	mo C				
10																	

<400> 45

Met 1	Ala	Val	Lys	Gln 5	Ala	Tyr	Ala	Ala	Thr 10	Val	Ala	Thr	Ala	Pro 15	G1:
Val	Lys	туг	Thr 20	Val	Phe	Glu	Thr	Ala 25	Leu	Lys	Lys	Ala	Ile 30	Thr	Ala
Met	Ser	Glu 35	Ala	Gln	Lys	Ala	Ala 40	Lys	Pro	Ala	Ala	Ala 45	Ala	Thr	Ala
Thr	Ala 50	Thr	Ala	Ala	Val	Gly 55	Ala	Ala	Thr	Gly	Ala 60	Ala	Thr	Ala	Ala
Thr 65	Gly	Gly	Тук	Lys	Val 70	Ala	Glu	Glu	Val	Lys 75	Val	Ile	Pro	Ala	G1 ₃
Glu	Leu	Gln	Val	Ile 85	Glu	Lys	Val	Asp	Ala 90	Ala	Phe	Lys	Val	Ala 95	Ala
Thr	Ala	Ala	Asn 100	Ala	Ala	Pro	Ala	Asn 105	Asp	Lys	Phe	Thr	Val 110	Phe	Glı
		115	Asn				120					125		_	
	130		Phe			135					140				
Ser 145	Cys	Phe	Glu	Ile	Lys 150	Суз	Thr	Lys	Pro	Glu 155	Ala	Cys	Ser	Gly	Glu 160
Pro	Val	Val	Val	His 165	Ile	Thr	Asp	Asp	Asn 170	Glu	Glu	Pro	Ile	Ala 175	Pr
Tyr	His	Phe	Asp 180	Leu	Ser	Gly	His	Ala 185	Phe	Gly	Ala	Met	Ala 190	Lys	Ly
Gly	Asp	Glu 195	Gln	Lys	Leu	Arg	Thr 200	Gly	Pro	Phe	Thr	Val 205	Arg	Tyr	Th
Thr	Glu 210	Gly	Gly	Thr	Lys	Thr 215	G1u	Ala	Glu	Asp	Val 220	Ile	Pro	Glu	Gly
Trp 225	Lys	Ala	Asp	Thr	Ser 230	Туг	Glu	Ser	Lys	His 235	His	His	His	His	Hi: 240

<210> 46

5 <211> 183

<212> PRT

<213> Secuencia artificial

<220>

<223> construcción I con Met del extremo N y hexahistidina del extremo C

<400> 46

Met Ala Asp Lys Tyr Lys Thr Phe Glu Ala Ala Phe Thr Val Ser Ser 1 10 15

Lys Arg Asn Leu Ala Asp Ala Val Ser Lys Ala Pro Gln Leu Val Pro 20 25 30

Lys Leu Asp Glu Val Tyr Asn Ala Ala Tyr Asn Ala Ala Asp His Ala 35 40 45

Ala Pro Glu Asp Lys Tyr Glu Ala Phe Val Leu His Phe Ser Glu Ala 50 55 60

Leu Arg Ile Ile Ala Gly Thr Pro Glu Val His Ala Val Lys Pro Gly 65 70 75 80

Ala Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe 85 90 95

Asn Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp 100 105 110

Val Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu 115 120 125

Val Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His 130 140

Leu Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu 145 150 155 160

Leu Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu 165 170 175

Gly His His His His His His 180

<210> 47

<211> 183

10 <212> PRT

<213> Secuencia artificial

<220>

<223> construcción J con Met del extremo N y hexahistidina del extremo C

15

5

<400> 47

Met 1	Gly	Val	Trp	Thr 5	Phe	Asp	Ser	Glu	Glu 10	Pro	Leu	Gln	Gly	Pro 15	Phe
Asn	Phe	Arg	Phe 20	Leu	Thr	G1u	Lys	Gly 25	Met	Lys	Asn	Val	Phe 30	Asp	Asp
Val	Val	Pro 35	Glu	Lys	Tyr	Thr	Ile 40	Gly	Ala	Thr	Tyr	Ala 45	Pro	Glu	Glu
Val	Pro 50	Lys	Val	Thr	Phe	Thr 55	Val	Glu	Lys	Gly	Ser 60	Asn	Glu	Lys	His
Leu 65	Ala	Val	Leu	Val	Lys 70	Tyr	Glu	Gly	Asp	Thr 75	Met	Ala	Glu	Val	G1u 80
Leu	Arg	Glu	His	G1y 85	Ser	Asp	Glu	Trp	Val 90	Ala	Met	Thr	Lys	Gly 95	Glu
Gly	Ala	Asp	Lys 100	Tyr	Lys	Thr	Phe	Glu 105	Ala	Ala	Phe	Thr	Val 110	Ser	Ser
Lys	Arg	Asn 115	Leu	Ala	Asp	Ala	Val 120	Ser	Lys	Ala	Pro	Gln 125	Leu	Val	Pro
Lys	Leu 130	Asp	Glu	Val	Tyr	Asn 135	Ala	Ala	Tyr	Asn	Ala 140	Ala	Asp	His	Ala
Ala 145	Pro	Glu	Asp	Lys	Tyr 150	Glu	Ala	Phe	Val	Leu 155	His	Phe	Ser	Glu	Al a 160
Leu	Arg	Ile	Ile	Ala 165	Gly	Thr	Pro	Glu	Val 170	His	Ala	Val	Lys	Pro 175	Gly
				Al	la Hi	s Hi	is Hi 18		is H	is H	is				

5

<210> 48

<211> 183

<212> PRT

<213> Secuencia artificial

10

<220>

<223> construcción K con Met del extremo N y hexahistidina del extremo C

<400> 48

15

	Met 1	Gly	Val	Trp	Thr 5	Phe	Asp	Ser	Glu	Glu 10	Pro	Leu	Gln	Gly	Pro 15	Phe
	Asn	Phe	Arg	Phe 20	Leu	Thr	Gl u	Lys	Gly 25	Met	Lys	Aşn	Val	Phe 30	Asp	Asp
	Val	Val	Pro 35	Glu	Lys	Tyr	Thr	Ile 40	Gly	Ala	Thr	Tyr	Ala 45	Pro	Glu	Glu
	Ala	Asp 50	Lys	Tyr	Lys	Thr	Phe 55	Glu	Ala	Ala	Phe	Thr 60	Val	Ser	Ser	Lys
	Arg 65	Asn	Leu	Ala	Asp	Ala 70	Val	Ser	Lys	Ala	Pro 75	Gln	Leu	Val	Pro	Lys 80
	Leu	Asp	Glu	Val	Tyr 85	Asn	Ala	Ala	Tyr	Asn 90	Ala	Ala	Asp	His	Ala 95	Ala
	Pro	Glu	Asp	Lys 100	Tyr	Glu	Ala	Phe	Val 105	Leu	His	Phe	Ser	Glu 110	Ala	Leu
	Arg	Ile	Ile 115	Ala	Gly	Thr	Pro	G1u 120	Val	His	Ala	Val	Lys 125	Pro	Gly	Ala
	Val	Pro 130	Lys	Val	Thr	Phe	Thr 135	Val	Glu	Lys	Gly	Ser 140	Asn	Glu	Lys	His
	Leu 145	Ala	Val	Leu	Val	Lys 150	Tyr	Glu	Gly	Asp	Thr 155	Met	Ala	Glu	Val	Glu 160
	Leu	Arg	Glu	His	Gly 165	Ser	Asp	Glu	Trp	Val 170	Ala	Met	Thr	Lys	Gly 175	G1u
	Gly	His	His	His 180	His	His	His									
<210> 49																
<211> 18	3															
<212> PR	RT															
<213> Se	cuend	cia art	ificial													
<220>																
<223> coi	nstruc	ción l	_ con	Met d	lel ext	remo	N y h	exahi	stidina	a del (extrer	no C				
<400> 49																

5

10

	Met 1	Val	Pro	Lys	Val 5	Thr	Phe	Thr	Val	Glu 10	Lys	Gly	Ser	Asn	Glu 15	Lys
	His	Leu	Ala	Val 20	Leu	Val	Lys	Tyr	Glu 25	Gly	Asp	Thr	Met	Ala 30	Glu	V al
	Glu	Leu	Arg 35	Glu	His	Gly	Ser	Asp 40	Glu	Trp	Val	Ala	Met 45	Thr	Lys	G1 y
	Glu	Gly 50	Ala	Asp	Lys	Tyr	Lys 55	Thr	Phe	Glu	Ala	Ala 60	Phe	Thr	Val	Ser
	Ser 65	Lys	Arg	Asn	Leu	Ala 70	Asp	Ala	Val	Ser	Lys 75	Ala	Pro	Gln	Leu	Val 80
	Pro	Lys	Leu	Asp	Glu 85	Val	Tyr	Asn	Ala	Ala 90	Tyr	Asn	Ala	Ala	Asp 95	His
	Ala	Ala	Pro	Glu 100	Asp	Lys	Tyr	Glu	Ala 105	Phe	Val	Leu	His	Phe 110	Ser	Glu
	Ala	Leu	Arg 115	Ile	Ile	Ala	Gly	Thr 120	Pro	Glu	Val	His	Ala 125	Val	Lys	Pro
	Gly	Ala 130	Gly	Val	Trp	Thr	Phe 135	Asp	Ser	Glu	Glu	Pro 140	Leu	Gln	Gly	Pro
	Phe 145	Asn	Phe	Arg	Phe	Leu 150	Th <i>r</i>	Glu	Lys	Gly	Met 155	Lys	Asn	Val	Phe	Asp 160
	Asp	Val	Val	Pro	Glu 165	Lys	Tyr	Thr	Ile	Gly 170	Ala	Thr	Tyr	Ala	Pro 175	Glu
	Glu	His	His	His 180	His	His	His									
<210> 50																
<211> 710	0															
<212> PR	T.															
<213> Se	cuend	cia art	ificial													
<220>																
<223> cor	nstruc	ción l	M con	Met	del ex	tremo	Nyh	nexah	istidin	a del	extre	mo C				
<400> 50																

5

10

Met 1	Ala	Asp	Lys	Tyr 5	Lys	Thr	Phe	Glu	Ala 10	Ala	Phe	Thr	Val	Ser 15	Ser
Lys	Arg	Asn	Leu 20	Ala	Asp	Ala	Val	Ser 25	Lys	Ala	Pro	Gln	Leu 30	Val	Pro
Lys	Leu	Asp 35	Glu	Val	Туг	Asn	Ala 40	Ala	Туг	Asn	Ala	Ala 45	Asp	His	Ala
Ala	Pro 50	Glu	Asp	Lys	Tyr	Glu 55	Ala	Phe	Val	Leu	His 60	Phe	Ser	Glu	Ala
Leu 65	Arg	Ile	Ile	Ala	Gly 70	Thr	Pro	Glu	Val	His 75	Ala	Val	Lys	Pro	Gly 80
Ala	Gly	Val	Trp	Thr 85	Phe	Asp	Ser	Glu	Glu 90	Pro	Leu	Gln	Gly	Pro 95	Phe
Asn	Phe	Arg	Phe 100	Leu	Thr	Glu	Lys	Gly 105	Met	Lys	Asn	Val	Phe 110	Asp	Asp
Val	Val	Pro 115	Glu	Lys	Tyr	Thr	Ile 120	Gly	Ala	Thr	Tyr	Ala 125	Pro	Glu	Glu
Val	Pro 130	Lys	Val	Thr	Phe	Thr 135	Val	Gl u	Lys	Gly	Ser 140	Asn	Glu	Lys	His
Leu 145	Ala	Val	Leu	Val	Lys 150	Tyr	Glu	Gly	Asp	Thr 155	Met	Ala	Glu	Val	Glu 160
Leu	Arg	G1u	His	Gly 165	Ser	Asp	G1u	Trp	Val 170	Ala	Met	Thr	Lys	Gly 175	Glu
Gly	Ser	Gly	Arg 180	Gly	Cys	Gly	Ser	Cys 185	Phe	Gl u	Ile	Lys	Cys 190	Thr	ГĀЗ
Pro	Glu	Ala 195	Cys	Ser	Gly	Glu	Pro 200	Val	Val	Val	His	11e 205	Thr	Asp	Asp
Asn	Glu 210	Glu	Pro	Ile	Ala	Pro 215	Tyr	His	Phe	Asp	Leu 220	Ser	Gly	His	Ala
Phe 225	Gly	Ala	Met	Ala	Lys 230	Lys	Gly	Asp	G1u	G1n 235	Lys	Leu	Arg	Thr	G1y 240
Pro	Phe	Thr	Val	Arg 245	Tyr	Thr	Thr	Gl u	Gly 250	Gly	Thr	Lys	Thr	Glu 255	Ala

- Glu Asp Val Ile Pro Glu Gly Trp Lys Ala Asp Thr Ser Tyr Glu Ser 260 265 270
- Lys Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu 275 280 285
- Pro Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys 290 295 300
- Leu Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr 305 310 315
- Pro Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu
 325 330 335
- Arg Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala Ala 340 345 350
- Asp Leu Gly Tyr Gly Pro Ala Thr Pro Ala Ala Pro Ala Ala Gly Tyr 355 360 365
- Thr Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly Lys 370 380
- Ala Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly Phe 385 390 395 400
- Lys Ala Ala Leu Ala Ala Ala Ala Gly Val Gln Pro Ala Asp Lys Tyr 405 410 415
- Arg Thr Phe Val Ala Thr Phe Ala Val Lys Gln Ala Tyr Ala Ala Thr 420 425 430
- Val Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr Ala Leu 435 440 445
- Lys Lys Ala Ile Thr Ala Met Ser Glu Ala Gln Lys Ala Ala Lys Pro 450 460
- Ala Ala Ala Ala Thr Ala Thr Ala Thr Ala Ala Val Gly Ala Ala Thr 465 470 475 480
- Gly Ala Ala Thr Ala Ala Thr Gly Gly Tyr Lys Val Ala Glu Glu Val
 485 490 495
- Lys Val Ile Pro Ala Gly Glu Leu Gln Val Ile Glu Lys Val Asp Ala 500 505 510

	Ala	Phe	Lys 515	Val	Ala	Ala	Thr	Ala 520	Ala	Asn	Ala	Ala	Pro 525	Ala	Asn	Asp
	Lys	Phe 530	Thr	Val	Phe	Glu	Al a 535	Ala	Phe	Asn	Asp	Ala 540	Ile	Lys	Ala	Ser
	Thr 545	Gly	Gly	Ala	Туг	Glu 550	Ser	Tyr	Lys	Phe	Ile 555	Pro	Ala	Leu	Glu	Ala 560
	Ile	Pro	Lys	Val	Pro 565	Pro	Gly	Pro	Asn	Ile 570	Thr	Ala	Thr	Tyr	Gly 575	Asp
	Lys	Trp	Leu	Asp 580	Ala	Lys	Ser	Thr	Trp 585	Tyr	Gly	Lys	Pro	Thr 590	Gly	Ala
	Gly	Pro	Lys 595	Asp	Asn	Gly	Gly	Ala 600	Cys	Gly	Tyr	Lys	Asp 605	Val	Asp	Lys
	Pro	Pro 610	Phe	Ser	Gly	Met	Thr 615	Gly	Cys	Gly	Asn	Thr 620	Pro	Ile	Phe	Lys
	Ser 625	Ala	Gly	Glu	Leu	G1u 630	Leu	Gln	Phe	Arg	Arg 635	Val	Lys	Cys	Lys	Tyr 640
	Pro	Glu	Gly	Thr	Lys 645	Val	Thr	Phe	His	Val 650	Glu	Lys	Gly	Ser	Asn 655	Pro
	Asn	Tyr	Leu	Ala 660	Leu	Leu	Val	Lys	Tyr 665	Val	Asn	Gly	Asp	Gly 670	Asp	Val
	Val	Ala	Val 675	Asp	Ile	Lys	Glu	Lys 680	Gly	Lys	Asp	Lys	Trp 685	Ile	Glu	Leu
	Lys	Glu 690	Ser	Trp	Gly	Ala	Ile 695	Trp	Arg	Ile	Asp	Thr 700	Pro	Asp	Lys	Leu
	His 705	His	His	His	His	His 710										
<210> 51																
<211> 710)															
<212> PR	Т															
<213> Se	cuenc	cia arti	ificial													
<220>																
<223> cor	nstruc	ción N	N con	Met o	del ex	tremo	Nyh	nexah	istidin	a del	extre	no C				

5

10

<400> 51

Met 1	Ala	Asp	Lys	Tyr 5	Lys	Thr	Phe	Glu	Ala 10	Ala	Phe	Thr	Val	Ser 15	Sei
Lys	Arg	Asn	Leu 20	Ala	Asp	Ala	Val	Ser 25	Lys	Ala	Pro	Gln	Leu 30	Val	Pro
Lys	Leu	Asp 35	Glu	Val	Туг	Asn	Ala 40	Ala	Tyr	Asn	Ala	Ala 45	Asp	His	Ala
Ala	Pro 50	Glu	Asp	Lys	Туг	Gl u 55	Ala	Phe	Val	Leu	His 60	Phe	Ser	Glu	Ala
Leu 65	Arg	Ile	Ile	Ala	Gly 70	Thr	Pro	Glu	Val	His 75	Ala	Val	Lys	Pro	Gly 80
Ala	Val	Pro	Lys	Val 85	Thr	Phe	Thr	Val	Glu 90	Lys	Gly	Ser	Asn	G1u 95	Lys
His	Leu	Ala	Val 100	Leu	Va1	Lys	туг	Glu 105	Gly	Asp	Thr	Met	Ala 110	G1u	Val
Glu	Leu	Phe 115	-	Phe	Leu	Thr	Glu 120	Lys	Gly	Met	Lys	Asn 125	Val	Phe	Asp
Asp	Val 130	Val	Pro	Glu	Lys	Tyr 135	Thr	Ile	Gly	Ala	Thr 140	Tyr	Ala	Pro	Glu
Glu 145	Arg	Glu	His	Gly	Ser 150	Asp	Glu	Trp	Val	Ala 155	Met	Thr	Lys	Gly	Glu 160
G1y	Gly	Val	Trp	Thr 165	Phe	Asp	Ser	Glu	Glu 170	Pro	Leu	Gln	Gly	Pro 175	Phe
Asn	Gly	Ala	Ala 180	Ser	Asn	Lys	Ala	Phe 185	Ala	Gl u	Gly	Leu	Ser 190	Gly	Glu
Pro	Lys	Gly 195	Ala	Ala	Glu	Ser	Ser 200	Ser	Lys	Ala	Ala	Leu 205	Thr	Ser	Lys
Leu	Asp 210	Ala	Ala	Tyr	Lys	Leu 215	Ala	Tyr	Lys	Thr	Ala 220	Glu	Gly	Ala	Thr
Pro 225	Glu	Ala	Lys	тут	Asp 230	Ala	Tyr	Val	Ala	Thr 235	Leu	Ser	Glu	Ala	Leu 240
Arg	Ile	Ile	Ala	Gly 245	Thr	Leu	Glu	Val	His 250	Ala	Val	Lys	Pro	Ala 255	Ala
Asp	Leu	Gly	Tyr 260	Gly	Pro	Ala	Thr	Pro 265	Ala	Ala	Pro	Ala	Ala 270	Gly	Tyr

- Thr Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly Lys 275 280 285
- Ala Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly Phe 290 295 300
- Lys Ala Ala Leu Ala Ala Ala Gly Val Gln Pro Ala Asp Lys Tyr 305 310 315 320
- Arg Thr Phe Val Ala Thr Phe Ala Val Lys Gln Ala Tyr Ala Ala Thr 325 330 335
- Val Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr Ala Leu 340 345 350
- Lys Lys Ala Ile Thr Ala Met Ser Glu Ala Gln Lys Ala Ala Lys Pro 355 360 365
- Ala Ala Ala Thr Ala Thr Ala Thr Ala Ala Val Gly Ala Ala Thr 370 375 380
- Gly Ala Ala Thr Ala Ala Thr Gly Gly Tyr Lys Val Ala Glu Glu Val 385 390 390 395 400
- Lys Val Ile Pro Ala Gly Glu Leu Gln Val Ile Glu Lys Val Asp Ala 405 410 415
- Ala Phe Lys Val Ala Ala Thr Ala Ala Asn Ala Ala Pro Ala Asn Asp 420 425 430
- Lys Phe Thr Val Phe Glu Ala Ala Phe Asn Asp Ala Ile Lys Ala Ser 435 440 445
- Thr Gly Gly Ala Tyr Glu Ser Tyr Lys Phe Ile Pro Ala Leu Glu Ala 450 455 460
- Ser Gly Arg Gly Cys Gly Ser Cys Phe Glu Ile Lys Cys Thr Lys Pro 465 470 475 480
- Glu Ala Cys Ser Gly Glu Pro Val Val Val His Ile Thr Asp Asp Asn 485 490 495
- Glu Glu Pro Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe 500 505 510
- Gly Ala Met Ala Lys Lys Gly Asp Glu Gln Lys Leu Arg Thr Gly Pro 515 520 525
- Phe Thr Val Arg Tyr Thr Thr Glu Gly Gly Thr Lys Thr Glu Ala Glu

		530					535					540				
	Asp 545	Val	Ile	Pro	Glu	Gly 550	Trp	Lys	Ala	Asp	Thr 555	Ser	Tyr	Glu	Ser	Ly: 56
	Ile	Pro	Lys	Val	Pro 565	Pro	Gly	Pro	Asn	11e 570	Thr	Ala	Thr	Туг	Gly 575	Ası
	Lys	Trp	Leu	Asp 580	Ala	Lys	Ser	Thr	Trp 585	Tyr	Gly	Lys	Pro	Thr 590	Gly	Ala
	Gly	Pro	Lys 595	Asp	Aşn	Gly	Gly	Ala 600	Суз	Gly	Туг	Lys	Asp 605	Val	Asp	Ly
	Pro	Pro 610	Phe	Ser	Gly	Met	Thr 615	Gly	Cys	Gly	Asn	Thr 620	Pro	Ile	Phe	Ly
	Ser 625	Ala	Gly	Glu	Leu	Glu 630	Leu	Gln	Phe	Arg	Arg 635	Val	Lys	Cys	Lys	Ty:
	Pro	Glu	Gly	Thr	Lys 645	Val	Thr	Phe	His	Val 650	Glu	Lys	Gly	Ser	As n 655	Pro
	Asn	Tyr	Leu	Ala 660	Leu	Leu	Val	Lys	Tyr 665	Val	Asn	Gly	Asp	Gly 670	Asp	Va:
	Val	Ala	Val 675	Asp	Ile	Lys	Glu	Lys 680	Gly	Lys	Asp	Lys	Trp 685	Ile	Glu	Let
	Lys	Glu 690	Ser	Trp	Gly	Ala	Ile 695	Trp	Arg	Ile	Asp	Thr 700	Pro	Asp	Lys	Let
	His 705	His	His	His	His	His 710										
<210> 52																
<211> 53	4															
<212> PR	RT.															
<213> Se	cuenc	cia art	ificial													
<220>																
<223> col	nstruc	ción (O con	Met	del ex	tremo	Nyl	nexah	istidin	a del	extre	mo C				

5

10

<400> 52

- Met Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu
 1 10 15
- Pro Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys 20 25 30
 - Leu Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr 35 40 45
 - Pro Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu 50 55 60
 - Arg Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala Ala 65 70 75 80
 - Asp Leu Gly Tyr Gly Pro Ala Thr Pro Ala Ala Pro Ala Ala Gly Tyr 85 90 95
 - Thr Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly Lys
 100 105 110
 - Ala Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly Phe 115 120 125
 - Lys Ala Ala Leu Ala Ala Ala Ala Gly Val Gln Pro Ala Asp Lys Tyr 130 135 140
 - Arg Thr Phe Val Ala Thr Phe Ser Gly Arg Gly Cys Gly Ser Cys Phe 145 150 150 165
 - Glu Ile Lys Cys Thr Lys Pro Glu Ala Cys Ser Gly Glu Pro Val Val 165 170 175
 - Val His Ile Thr Asp Asp Asn Glu Glu Pro Ile Ala Pro Tyr His Phe 180 185 190
 - Asp Leu Ser Gly His Ala Phe Gly Ala Met Ala Lys Lys Gly Asp Glu 195 200 205
 - Gln Lys Leu Arg Thr Gly Pro Phe Thr Val Arg Tyr Thr Thr Glu Gly 210 215 220
 - Gly Thr Lys Thr Glu Ala Glu Asp Val Ile Pro Glu Gly Trp Lys Ala 225 230 235 240
 - Asp Thr Ser Tyr Glu Ser Lys Ala Glu Glu Val Lys Val Ile Pro Ala 245 250 255
 - Gly Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala 260 265 270
 - Ala Thr Ala Ala Asn Ala Ala Pro Ala Ala Val Lys Gln Ala Tyr Ala 275 280 285
 - Ala Thr Val Ala Thr Ala Pro Glu Val Lys Tyr Thr Val Phe Glu Thr

	290					295					300				
Ala 305	Leu	Lys	Lys	Ala	11e 310	Thr	Ala	Met	Ser	Glu 315	Ala	Gln	Lys	Ala	Ala 320
Lys	Pro	Ala	Ala	Ala 325	Ala	Thr	Ala	Thr	Ala 330	Thr	Ala	Ala	Val	Gly 335	Ala
Ala	Thr	Gly	Ala 340	Ala	Thr	Ala	Ala	Thr 345	Gly	Gly	Tyr	Lys	Val 350	Asn	Asp
Lys	Phe	Thr 355	Val	Phe	Glu	Ala	Ala 360	Phe	Asn	Asp	Ala	11e 365	Lys	Ala	Ser
Thr	Gly 370	Gly	Ala	Tyr	Glu	Ser 375	Tyr	Lys	Phe	Ile	Pro 380	Ala	Leu	Glu	Ala
Ser 385	Ala	Gly	Glu	Leu	Glu 390	Leu	Gln	Phe	Arg	Arg 395	Val	Lys	СЛа	Lys	Tyr 400
				405	Val				410					415	
			420		Leu			425					430		
		435		_	Gly	_	440	_		_		445			-
	450				Gly	455					460				
465		_	_		Asp 470					475	_			_	480
			,	485	Phe				490				_	495	
			500		Lys			505					510		
Lys	Glu	Ser 515	Trp	Gly	Ala	Ile	Trp 520	Arg	Ile	Asp	Thr	Pro 525	Asp	Lys	Leu

<210> 53

<211> 534

5 <212> PRT

<213> Secuencia artificial

His His His His His His 530

<220>

<223> construcción P con Met del extremo N y hexahistidina del extremo C

<400> 53

5

Met 1	Gly	Ala	Ala	Ser 5	Asn	Lys	Ala	Phe	Ala 10	Glu	Gly	Leu	Ser	Gly 15	G1
Pro	Lys	Gly	Ala 20	Ala	G1u	Ser	Ser	Ser 25	Lys	Ala	Ala	Leu	Thr 30	Ser	Ly
Leu	Asp	Ala 35	Ala	Tyr	Lys	Leu	Ala 40	Tyr	Lys	Thr	Ala	Glu 45	Gly	Ala	Th
Pro	Glu 50	Ala	Lys	Tyr	Asp	Ala 55	Tyr	Val	Ala	Thr	Leu 60	Ser	Glu	Ala	Le
Arg 65	Ile	Ile	Ala	Gly	Thr 70	Leu	Glu	Val	His	Ala 75	Val	Lys	Pro	Ala	A1 80
Asp	Leu	Gly	Tyr	Gly 85	Pro	Ala	Thr	Pro	Ala 90	Ala	Pro	Ala	Ala	Gly 95	Ty
Thr	Pro	Ala	Thr 100	Pro	Ala	Ala	Pro	Ala 105	Glu	Ala	Ala	Pro	Ala 110	Gly	Ly
		115			Gln	_	120					125			
	130				Ala	135					140				
145					Thr 150			_		155	-	_		-	16
		_	_	165	Lys				170		-			175	
			180	-	Asp			185					190		
		195			Ala		200					205			
GTU	210	TAN	wed	Inr	Gly	215	r ne	INE	AGT	wrd	220	rnr	rnr	GIU	ĠΤ.

Gly Thr Lys Thr Glu Ala Glu Asp Val Ile Pro Glu Gly Trp Lys Ala

225					230					235					240
Asp	Thr	Ser	Tyr	Glu 2 45	Ser	Lys	Ala	Gl u	G1u 250	Val	Lys	Va1	Ile	Pro 255	Ala
Gly	Glu	Leu	Gln 260	Val	Ile	Glu	ГÀа	Val 265	Asp	Ala	Ala	Phe	Lys 270	Val	Ala
Ala	Thr	Ala 275	Ala	Asn	Ala	Ala	Pro 280	Ala	Ala	Val	Lys	Gln 285	Ala	Tyr	Ala
Ala	Thr 290	Val	Ala	Thr	Ala	Pro 295	Glu	Val	Lys	Tyr	Thr 300	Val	Phe	Glu	Thr
Ala 305	Leu	Lys	Lys	Ala	Ile 310	Thr	Ala	Met	Ser	Glu 315	Ala	Gln	Lys	Ala	Ala 320
Lys	Pro	Ala	Ala	Ala 325	Ala	Thr	Ala	Thr	A la 330	Thr	Ala	Ala	Val	Gly 335	Ala
Ala	Thr	Gly	Ala 340	Ala	Thr	Ala	Ala	Thr 345	Gly	Gly	Tyr	Lys	Val 350	Asn	Asp
Lys	Phe	Thr 355	Val	Phe	Glu	Ala	Ala 360	Phe	Asn	Asp	Ala	11e 365	Lys	Ala	Ser
Thr	Gly 370	Gly	Ala	Tyr	Glu	Ser 3 7 5	Tyr	Lys	Phe	Ile	Pro 380	Ala	Leu	Glu	Ala
Ile 385	Pro	Lys	Val	Pro	Pro 390	Gly	Pro	Asn	Ile	Thr 395	Ala	Thr	Tyr	Gly	Asp 400
Lys	Trp	Leu	Asp	Ala 405	Lys	Ser	Thr	Trp	Tyr 410	Gly	Lys	Pro	Thr	Gly 415	Ala
Ser	Ala	Gly	Glu 420	Leu	Glu	Leu	Gln	Phe 425	Arg	Arg	Val	Lys	Cys 430	Lys	Tyr
Pro	Glu	Gly 435	Thr	Lys	Val	Thr	Phe 440	His	Val	Gl u	Lys	Gly 445	Ser	Asn	Pro
Asn	Tyr 450	Leu	Ala	Leu	Leu	Val 455	Lys	Tyr	Val	Asn	Gly 460	Asp	Gly	Asp	Val
Val 465	Ala	Val	Asp	Ile	Lys 470	Glu	Lys	Gly	Lys	Asp 475	Lys	Trp	Ile	Glu	Leu 480
Lys	Glu	Ser	Trp	Gly 485	Ala	Ile	Trp	Arg	Ile 490	Asp	Thr	Pro	Asp	Lys 495	Leu
Gly Pr	o L		sp 2	Asn (Gly	Gly	Ala	Cys 505	Gly	Тул	Ly.	s As	р V а 51		sp Lys
Pro Pi		he S 15	er (Sly I	Met	Thr	Gly 520	Суз	Gly	Asr	n Th	r Pr 52		le Pi	he Lys

His His His His His

530

<210> 54	
<211> 183	
<212> PRT	

<213> Secuencia artificial

5

<220>

<223> construcción Q con Met del extremo N y hexahistidina del extremo C

<400> 54

10

Met Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp 1 5 10 15

Val Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu 20 25 30

Asp Glu Trp Val Ala Met Thr Lys Gly Glu Gly Gly Val Trp Thr Phe 35 40 45

Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn Ala Asp Lys Tyr Lys
50 55 60

Thr Phe Glu Ala Ala Phe Thr Val Ser Ser Lys Arg Asn Leu Ala Asp 65 70 75 80

Ala Val Ser Lys Ala Pro Gln Leu Val Pro Lys Leu Asp Glu Val Tyr 85 90 95

Asn Ala Ala Tyr Asn Ala Ala Asp His Ala Ala Pro Glu Asp Lys Tyr 100 105 110

Glu Ala Phe Val Leu His Phe Ser Glu Ala Leu Arg Ile Ile Ala Gly 115 120 125

Thr Pro Glu Val His Ala Val Lys Pro Gly Ala Val Pro Lys Val Thr 130 140

Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His Leu Ala Val Leu Val 145 150 155 160

Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu Arg Glu His Gly
165 170 175

Ser His His His His His His 180

<210> 55

<211>64

```
<212> PRT
           <213> Secuencia artificial
5
           <220>
           <223> fragmento P1a
           <400> 55
                    Ile Pro Lys Val Pro Pro Gly Pro Asn Ile Thr Ala Thr Tyr Gly Asp
                    Lys Trp Leu Asp Ala Lys Ser Thr Trp Tyr Gly Lys Pro Thr Gly Ala
                   Gly Pro Lys Asp Asn Gly Gly Ala Cys Gly Tyr Lys Asp Val Asp Lys 35 40 45
                   Pro Pro Phe Ser Gly Met Thr Gly Cys Gly Asn Thr Pro Ile Phe Lys 50 55
10
           <210> 56
           <211>61
           <212> PRT
15
           <213> Secuencia artificial
           <220>
           <223> fragmento P1b
20
           <400> 56
                   Ser Gly Arg Gly Cys Gly Ser Cys Phe Glu Ile Lys Cys Thr Lys Pro 1 5 10 15
                    Glu Ala Cys Ser Gly Glu Pro Val Val His Ile Thr Asp Asp Asn
                    Glu Glu Pro Ile Ala Pro Tyr His Phe Asp Leu Ser Gly His Ala Phe
                   Gly Ala Met Ala Lys Lys Gly Asp Glu Gln Lys Leu Arg
                                              55
```

<210> 57 <211>80 <212> PRT <213> Secuencia artificial 5 <220> <223> fragmento P1c <400> 57 10 Ser Ala Gly Glu Leu Glu Leu Gln Phe Arg Arg Val Lys Cys Lys Tyr Pro Glu Gly Thr Lys Val Thr Phe His Val Glu Lys Gly Ser Asn Pro Asn Tyr Leu Ala Leu Leu Val Lys Tyr Val Asn Gly Asp Gly Asp Val Val Ala Val Asp Ile Lys Glu Lys Gly Lys Asp Lys Trp Ile Glu Leu Lys Glu Ser Trp Gly Ala Ile Trp Arg Ile Asp Thr Pro Asp Lys Leu 65 70 75 80 <210> 58 <211> 35 15 <212> PRT <213> Secuencia artificial <220> <223> fragmento P1d 20 <400> 58 Thr Gly Pro Phe Thr Val Arg Tyr Thr Thr Glu Gly Gly Thr Lys Thr Glu Ala Glu Asp Val Ile Pro Glu Gly Trp Lys Ala Asp Thr Ser Tyr 25 30 Glu Ser Lys

35

<210> 59 <211> 32 <212> PRT <213> Secuencia artificial 5 <220> <223> fragmento P1a1 <400> 59 10 Ile Pro Lys Val Pro Pro Gly Pro Asn Ile Thr Ala Thr Tyr Gly Asp Lys Trp Leu Asp Ala Lys Ser Thr Trp Tyr Gly Lys Pro Thr Gly Ala 20 25 30<210> 60 <211> 32 <212> PRT 15 <213> Secuencia artificial <220> <223> fragmento P1a2 20 <400> 60 Gly Pro Lys Asp Asn Gly Gly Ala Cys Gly Tyr Lys Asp Val Asp Lys
1 5 10 15 Pro Pro Phe Ser Gly Met Thr Gly Cys Gly Asn Thr Pro Ile Phe Lys 20 25 30 25 <210> 61 <211>39 <212> PRT <213> Secuencia artificial 30 <220>

<223> fragmento P1c1

<400> 61

Ser Ala Gly Glu Leu Glu Leu Gln Phe Arg Arg Val Lys Cys Lys Tyr 1 5 10 15

Pro Glu Gly Thr Lys Val Thr Phe His Val Glu Lys Gly Ser Asn Pro

Asn Tyr Leu Ala Leu Leu Val 35

5 <210> 62

<211>41

<212> PRT

<213> Secuencia artificial

10 <220>

<223> fragmento P1c2

<400> 62

Lys Tyr Val Asn Gly Asp Gly Asp Val Val Ala Val Asp Ile Lys Glu
1 10 15

Lys Gly Lys Asp Lys Trp Ile Glu Leu Lys Glu Ser Trp Gly Ala Ile 20 25 30

Trp Arg Ile Asp Thr Pro Asp Lys Leu 35

<210> 63

15

<211>49

<212> PRT

20 <213> Secuencia artificial

<220>

<223> fragmento P2A

25 <400> 63

Val Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His Leu Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu 40 Gly <210> 64 <211>47 5 <212> PRT <213> Secuencia artificial <220> <223> fragmento P2B 10 <400> 64 Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp Val Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu 15 <210>65 <211>33 <212> PRT <213> Secuencia artificial <220> 20 <223> fragmento P2a <400> 65

Val Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His

Leu Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu Leu <210>66 <211> 32 5 <212> PRT <213> Secuencia artificial <220> <223> fragmento P2b 10 <400> 66 Arg Glu His Gly Ser Asp Glu Trp Val Ala Met Thr Lys Gly Glu Gly Gly Val Trp Thr Phe Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn 15 <210> 67 <211>31 <212> PRT <213> Secuencia artificial 20 <220> <223> fragmento P2c <400> 67 Phe Arg Phe Leu Thr Glu Lys Gly Met Lys Asn Val Phe Asp Asp Val Val Pro Glu Lys Tyr Thr Ile Gly Ala Thr Tyr Ala Pro Glu Glu 25 <210> 68

```
<211> 38
            <212> PRT
            <213> Secuencia artificial
5
            <220>
            <223> fragmento P2a1
            <400> 68
                    Val Pro Lys Val Thr Phe Thr Val Glu Lys Gly Ser Asn Glu Lys His
                    Leu Ala Val Leu Val Lys Tyr Glu Gly Asp Thr Met Ala Glu Val Glu 20 25 30
                    Leu Arg Glu His Gly Ser
10
                             35
            <210> 69
            <211> 27
            <212> PRT
15
            <213> Secuencia artificial
            <220>
            <223> fragmento P2b2
20
            <400> 69
                    Asp Glu Trp Val Ala Met Thr Lys Gly Glu Gly Gly Val Trp Thr Phe
                                                             10
                    Asp Ser Glu Glu Pro Leu Gln Gly Pro Phe Asn
            <210> 70
25
            <211>72
            <212> PRT
            <213> Secuencia artificial
```

<220>

<223>	fragmento	P5a
-------	-----------	-----

<400> 70

Ala Asp Leu Gly Tyr Gly Pro Ala Thr Pro Ala Ala Pro Ala Ala Gly
1 5 10

Tyr Thr Pro Ala Thr Pro Ala Ala Pro Ala Glu Ala Ala Pro Ala Gly 20 25 30

Lys Ala Thr Thr Glu Glu Gln Lys Leu Ile Glu Lys Ile Asn Ala Gly 35 40

Phe Lys Ala Ala Leu Ala Ala Ala Gly Val Gln Pro Ala Asp Lys 50 55

Tyr Arg Thr Phe Val Ala Thr Phe 65 70

<210> 71

5

<211> 78

<212> PRT

10 <213> Secuencia artificial

<220>

<223> fragmento P5b

15 <400> 71

Gly Ala Ala Ser Asn Lys Ala Phe Ala Glu Gly Leu Ser Gly Glu Pro 1 5 10 15

Lys Gly Ala Ala Glu Ser Ser Ser Lys Ala Ala Leu Thr Ser Lys Leu 20 25 30

Asp Ala Ala Tyr Lys Leu Ala Tyr Lys Thr Ala Glu Gly Ala Thr Pro 35 40 45

Glu Ala Lys Tyr Asp Ala Tyr Val Ala Thr Leu Ser Glu Ala Leu Arg
50 55 60

Ile Ile Ala Gly Thr Leu Glu Val His Ala Val Lys Pro Ala 65 70 75

	<210> 72																
	<211> 68																
	<212> PR	T.															
	<213> Se	cuenc	cia art	tificial													
5																	
	<220>																
	<223> fraç	gmen	to P5	С													
	<400> 72																
10																	
		Ala 1	Glu	Glu	Val	Lys 5	Val	Ile	Pro	Ala	Gly 10	Glu	Leu	Gln	Val	Ile 15	Glu
		Lys	Val	Asp	A la 20	Ala	Phe	Lys	Val	Ala 25	Ala	Thr	Ala	Ala	Asn 30	Ala	Ala
		Pro	Ala	Asn 35	Asp	Lys	Phe	Thr	Val 40	Phe	Glu	Ala	Ala	Phe 45	Asn	Asp	Ala
		Ile	Lys 50	Ala	Ser	Thr	Gly	Gly 55	Ala	туг	Glu	Ser	Tyr 60	Lys	Phe	Ile	Pro
		Ala 65	Leu	Glu	Ala												
	<210> 73																
	<211>69																
15	<212> PR	T															
	<213> Se	cuend	cia art	tificial													
	<220>																
	<223> fraç	gmen	to P5	d													
20																	
	<400> 73																

Ala Val Lys Gln Ala Tyr Ala Ala Thr Val Ala Thr Ala Pro Glu Val

Lys Tyr Thr Val Phe Glu Thr Ala Leu Lys Lys Ala Ile Thr Ala Met

Ser Glu Ala Gln Lys Ala Ala Lys Pro Ala Ala Ala Ala Thr Ala Thr Ala Thr Ala Ala Val Gly Ala Ala Thr Gly Ala Ala Thr Ala Ala Thr Gly Gly Tyr Lys Val <210> 74 <211> 34 5 <212> PRT <213> Secuencia artificial <220> <223> fragmento P5c1 10 <400> 74 Ala Glu Glu Val Lys Val Ile Pro Ala Gly Glu Leu Gln Val Ile Glu Lys Val Asp Ala Ala Phe Lys Val Ala Ala Thr Ala Ala Asn Ala Ala Pro Ala 15 <210> 75 <211> 34 <212> PRT <213> Secuencia artificial 20 <220> <223> fragmento P5c2 <400> 75

Asn Asp Lys Phe Thr Val Phe Glu Ala Ala Phe Asn Asp Ala Ile Lys 1 5 10 10

		Ala Glu		Thr	Gly 20	Gly	Ala	Tyr	Glu	Ser 25	Tyr	Lys	Phe	Ile	Pro 30	Ala	Leu
	<210> 76																
5	<211> 80																
	<212> PR	T															
	<213> Se	cuenc	cia art	ificial													
	<220>																
10	<223> fraç	gmen	to P6	b													
	<400> 76																
		.1-	3	•			m1	-1	61			D 1-	-m1	1	.		_
		1	Asp	гйа	туг	шу я 5	THE	Pne	GIU	Ala	10	hué	THE	vai	ser	ser 15	тАз
		Arg	Asn	Leu	Ala	Asp	Ala	Val	Ser	Lys	Ala	Pro	Gln	Leu	Val	Pro	Lvs
		3			20					25					30		-2+
		Leu	Asp	Glu	Val	Tyr	Asn	Ala	Ala	Tyr	Asn	Ala	Ala	Asp	His	Ala	Ala
				35					40					45			
				_	_						_			_			_
		Pro	G1u 50	Asp	Lys	Tyr	Glu	A1a 55	Phe	Val	Leu	His	Phe 60	Ser	Glu	Ala	Leu
		3	T1.a	T1.0	31.	C1	mb	Dwa	c1	77 n 1	u: ~	21-	17 n 3	T	Dma	C1	21-
15		65	116	116	Ala	GIA	70	PIO	GIU	Val	uis	75	vai	гуз	PLO	GIA	80

REIVINDICACIONES

- 1. Un polipéptido hipoalergénico que comprende una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID N° : 22, 23, 24, 25, 36 y 37.
- 2. El polipéptido hipoalergénico de la reivindicación 1, que consiste en una secuencia de aminoácidos seleccionada del grupo que consiste en SEC ID Nº: 39, 40, 41, 42, 53 y 54.
 - 3. Una composición farmacéutica que comprende el polipéptido de la reivindicación 1 ó 2 y un diluyente o excipiente farmacéuticamente aceptable.
 - 4. El uso del polipéptido de la reivindicación 1 ó 2 para la fabricación de un medicamento para la prevención y/o tratamiento de alergia.
- 5. El uso de la reivindicación 4, en el que dicha alergia es alergia al polen de gramíneas.
 - 6. Un ácido nucleico que codifica el polipéptido de la reivindicación 1 ó 2.

Figura 1

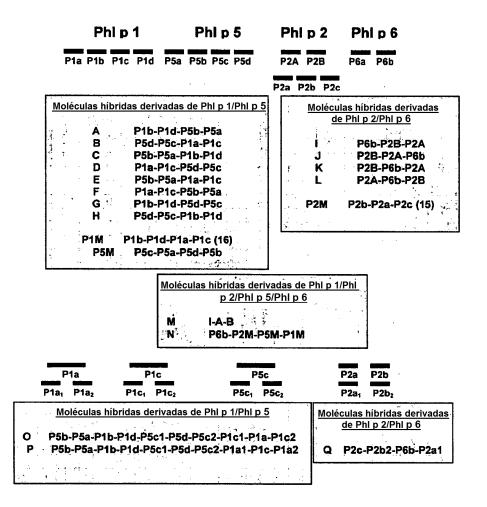


Figura 2

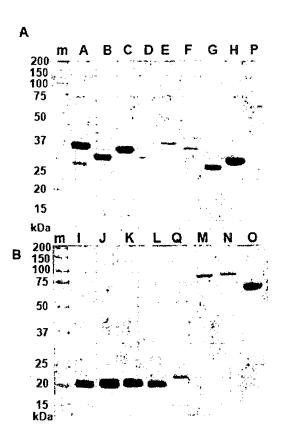


Figura 3

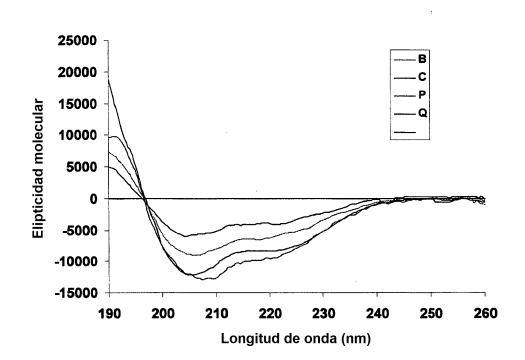


Figura 4

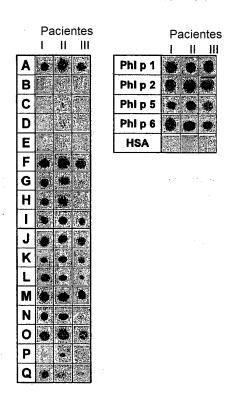


Figura 5

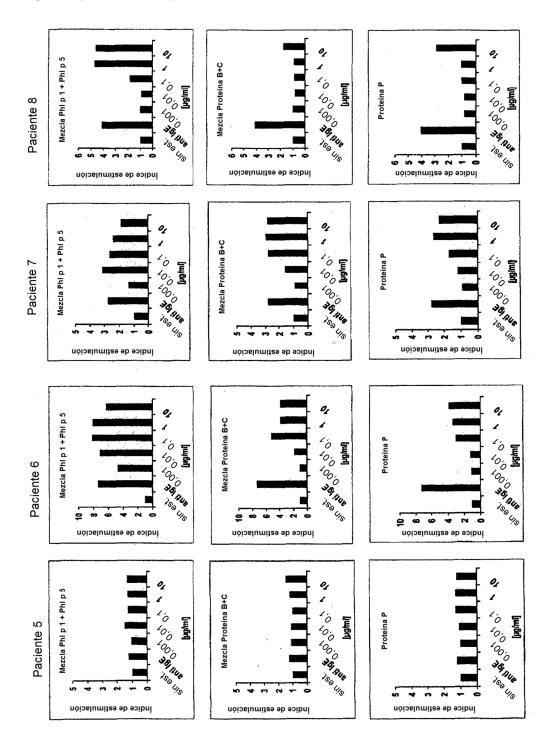



Figura 5 (continuación)

Figura 5 (continuación)

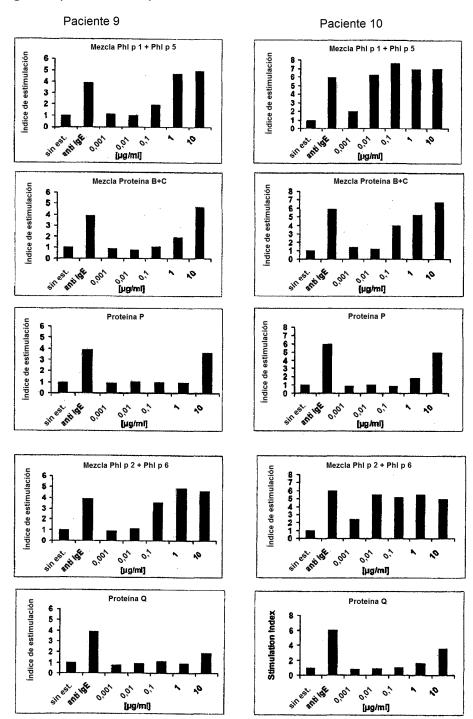


Figura 5 (continuación)

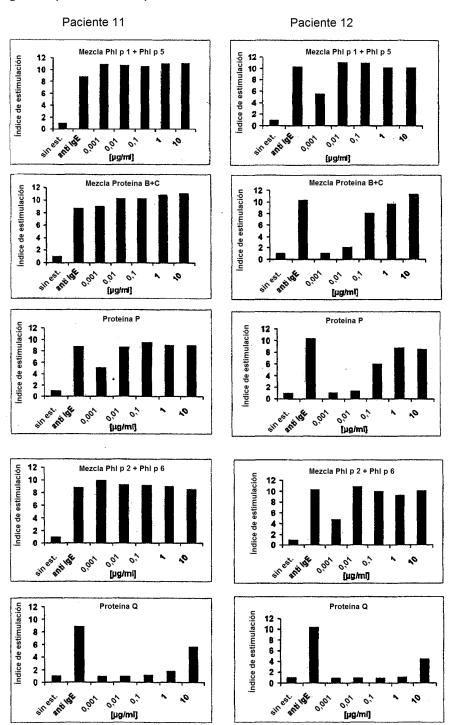
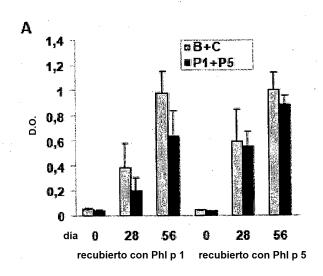
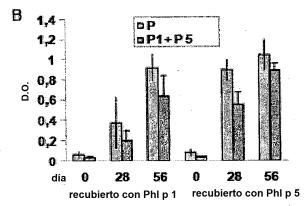




Figura 6

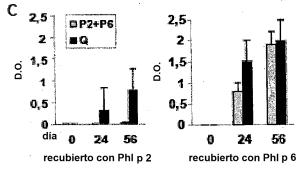


Figura 7

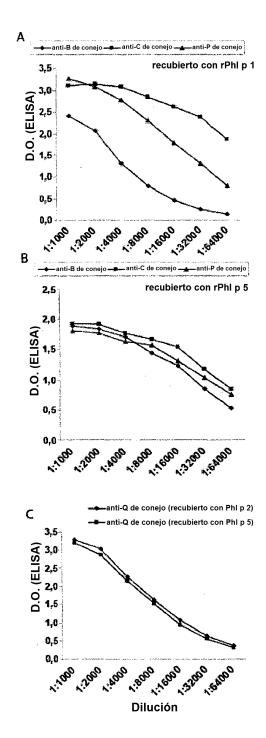
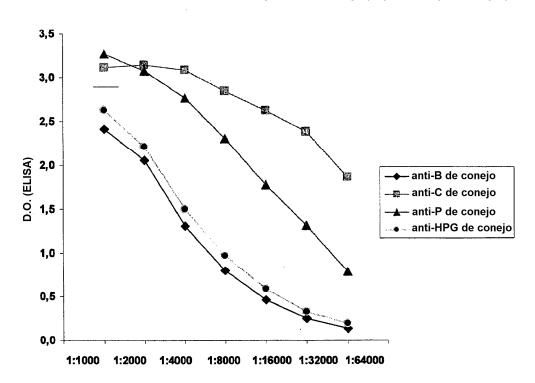



Figura 8

Valoración de antisueros anti-B, -C, -P y -HPG de conejo (específicos para PhI p 1)

