



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



11) Número de publicación: 2 465 165

51 Int. Cl.:

C12N 15/85 (2006.01) A61K 39/21 (2006.01)

(12)

### TRADUCCIÓN DE PATENTE EUROPEA

**T3** 

(96) Fecha de presentación y número de la solicitud europea: 08.11.2006 E 06820870 (1)
 (97) Fecha y número de publicación de la concesión europea: 05.03.2014 EP 1945777

(54) Título: Sistema de expresión que incorpora una secuencia promotora de la cápsida como potenciador de un promotor de citomegalovirus

(30) Prioridad:

08.11.2005 ZA 200509036

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.06.2014** 

(73) Titular/es:

SOUTH AFRICAN MEDICAL RESEARCH COUNCIL (50.0%) Francie van Zijl Drive Parow 7925 Cape Town, ZA y UNIVERSITY OF CAPE TOWN (50.0%)

(72) Inventor/es:

RYBICKI, EDWARD PETER y TANZER, FIONA LESLEY

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

#### **DESCRIPCIÓN**

Sistema de expresión que incorpora una secuencia promotora de la cápsida como potenciador de un promotor de citomegalovirus

#### Antecedentes de la invención

5 La invención describe un nuevo elemento de expresión potenciador/promotor compuesto de mamífero.

El elemento potenciador/promotor inmediato/temprano de citomegalovirus (Pcmv) es actualmente el elemento promotor de mamífero más fuerte que se conoce, y como tal pone un límite más alto a la expresión de transgenes en los sistemas *in vitro* e *in vivo*.

Por lo tanto, sería deseable poder incluir otro elemento más en un vector que permita alcanzar una mayor expresión del transgén.

#### Compendio de la invención

De acuerdo con una primera realización de la invención, se da a conocer un procedimiento *in vitro* para la estimulación de la expresión de un transgén en una célula hospedadora, en donde el procedimiento incluye las etapas de:

15 insertar una secuencia de un elemento promotor de la cápsida (Pcap) o de un complemento inverso de la misma (PcapR) que es al menos idéntica al 80% a alguna de las secuencias seleccionadas entre las SEQ ID n.º 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22 y 24 en un casete de expresión de mamífero por delante (en 5') de un promotor inmediato/temprano de citomegalovirus (Pcmv) o de un elemento promotor del SV40;

insertar el transgén en el casete de expresión por detrás (en 3') del elemento promotor de citomegalovirus o del 20 elemento promotor del SV40;

insertar el casete de expresión en la célula hospedadora; y

hacer que se exprese el transgén.

Se puede introducir un intrón de citomegalovirus por detrás (en 3') del Pcmv y se puede introducir un sitio de poliadenilación de la hormona de crecimiento bovina (poliA de la bgh) detrás (en 3') del transgén.

25 El transgén se expresa típicamente en más cantidad que cuando se expresa en el casete de expresión sin las secuencias Pcap o PcapR.

El elemento promotor de la cápsida o el complemento inverso del mismo puede ser de un circovirus tal como el circovirus porcino de tipo 1 (PCV-1), el circovirus porcino de tipo 2 (PCV-2), el virus de la enfermedad del pico y las plumas (BFDV), el circovirus del canario, el circovirus de los colúmbidos, el circovirus del pato, el circovirus del pinzón, el circovirus del ganso y el circovirus de la gaviota, o un elemento equivalente de un parvovirus o de un anelovirus.

El elemento promotor de la cápsida o un complemento inverso del mismo se puede localizar adyacente al promotor inmediato/temprano de citomegalovirus, o alternativamente se puede localizar hasta 1100 pares de bases por delante (en 5') del promotor inmediato/temprano de citomegalovirus.

35 La célula hospedadora puede ser una línea celular de mamífero para la expresión del transgén in vitro.

De acuerdo con una segunda realización de la invención, se da a conocer un casete de expresión de mamífero que incluye:

un elemento promotor inmediato/temprano de citomegalovirus (Pcmv) o un elemento promotor del SV40; y

una secuencia del elemento promotor de la cápsida (Pcap) o un complemento inverso (PcapR) de la misma localizada por delante (en 5') del elemento promotor de citomegalovirus o de un elemento promotor del SV40, en donde la secuencia de Pcap o de PcapR es al menos idéntica al 80% a alguna de las secuencias seleccionadas de SEQ ID n.º 1-18, 21, 22 y 24.

Se puede introducir un transgén en el casete de expresión por detrás (en 3') del promotor de CMV.

El casete de expresión puede ser capaz de expresar el transgén en más cantidad que un casete de expresión similar que no incluye las secuencias de Pcap ni de PcapR.

El elemento promotor de la cápsida o el complemento inverso del mismo puede ser de un circovirus tal como el circovirus porcino de tipo 1 (PCV-1), el circovirus porcino de tipo 2 (PCV-2), el virus del pico y las plumas (BFDV), el circovirus del canario, el circovirus de los colúmbidos, el circovirus del pato, el circovirus del pinzón, el circovirus del ganso y el circovirus de la gaviota, o un elemento equivalente de un parvovirus tal como el parvovirus canino o un anelovirus tal como el virus torque teno y el minivirus torque teno.

La secuencia de Pcap o PcapR puede ser al menos idéntica al 80%, más preferiblemente idéntica al menos al 90% e incluso más preferiblemente al menos al 95%, e incluso más preferiblemente idéntica al 100%, a alguna de las SEQ ID n.º 1 a 18, 21, 22 o 24.

De acuerdo con otro aspecto de la invención, se da a conocer un vector que incluye el casete de expresión que se 10 describe más arriba.

El vector o casete de expresión se puede introducir en una célula hospedadora, que puede ser una línea celular de mamífero para la expresión *in vitro* del transgén o una célula de un organismo hospedador de mamífero para la expresión *in vivo* del transgén.

De acuerdo con otro aspecto de la invención, se da a conocer una célula hospedadora transformada con el vector o el casete de expresión que se describe más arriba.

De acuerdo con otra realización de la invención, se da a conocer una vacuna de ADN que incluye un vector o casete de expresión que se describe más arriba.

De acuerdo con otra realización de la invención, se da a conocer una composición farmacéutica que incluye el vector o casete de expresión que se describe más arriba.

20 De acuerdo con otra realización de la invención, se da a conocer el uso de un vector de ADN según se describe más arriba en un procedimiento para la fabricación de un medicamento para ser usado en un procedimiento para el tratamiento de una enfermedad.

La composición farmacéutica o vacuna de ADN se puede utilizar para el tratamiento terapéutico o preventivo de una enfermedad o infección, tal como el VIH y/o el sida. Así pues, se da a conocer una composición farmacéutica según se describe en la presente memoria para ser usada en el tratamiento del VIH o del sida.

#### Breve descripción de los dibujos

Figura 1: clonación de las construcciones iniciales del vector que contienen PCV-1 y de las construcciones que contienen Pcap y PcapR:

- (a) Descripción del genoma circular nativo del circovirus porcino de tipo 1 (PCV-1); genoma linealizado del PCV-1 con el gen de la cápsida, con la adición de los sitios de restricción de Spe I en los extremos; pTHRep(R)grttnC, en donde el genoma linealizado de PCV-1 está clonado inmediatamente delante, en 5', del Pcmv (CMV I/E Pr);
  - (b) Descripción lineal de las regiones relevantes de los plásmidos pTHRepRgrttnC, pTHPcapgrttnC y pTHPcapRgrttnC, que ilustra las posiciones y orientaciones relativas, con respecto a Pcmv y grttnC, que tiene la secuencia clonada de 184 pb que contiene el Pcap.
- Figura 2: demostración de que los vectores que contienen PCV-1 no se replican en las células de mamífero: cuantificación por PCR en tiempo real del plásmido digerido con DpnI e intacto extraído de las células 293 de 1 a 3 días posteriores a la transfección (dpt):
- (a) Células 293 transfectadas con pTHgrttnC, pTHRepgrttnC o pTHRepRgrttnC, con o sin la adición del plásmido pcDNARep (expresa las proteínas Rep y Rep' de PCV-1 gracias al Pcmv y es posible que transreplique los ADN
   40 circulares que contienen el origen de replicación de PCV-1, según pTHRepgrttnC y pTHRepRgrttnC). El ADN se extrajo de las células transfectadas 48 h después de la transfección. Los resultados demuestran que los plásmidos que contienen el PCV-1 ni se replican ni se pueden transreplicar a partir de pcDNARep.
  - (b) Células 293 transfectadas con pCl y pClPCV (los plásmidos originales se recibieron de LSBC, y se presupone que son capaces de replicarse). Los resultados demuestran que al igual que el plásmido parental no replicativo, pCl, el plásmido que contiene el PCV-1, el pClPCV, no se replica en las células 293.

Figura 3: Demostración de que Prep estimula la expresión desde Pcmv, y que no interviene la replicación del plásmido:

La deleción del intrón del gen *rep* estimula la expresión a lo largo de pTHgrttnC, a pesar de que se ha perdido la capacidad para hacer que la proteína Rep completa reprima a Prep. La deleción del sitio de fijación de Rep/Rep' en

Prep y la mayor parte del gen *rep* en pTH∆RepgrttnC todavía permite cierta estimulación de la expresión a lo largo de pTHgrttnC, ya que el Prep residual aún codifica todos los sitios de fijación de los factores de transcripción del hospedador en Prep.

Figura 4: demostración de que la incorporación de la secuencia de Pcap o bien de la secuencia de PcapR sola en el pTHgrttnC genera un nivel de expresión similar del antígeno p24 al obtenido con la incorporación de todo el genoma de PCV-1 en el pTHgrttnC (a saber, pTHRepRgrttnC).

La adición del fragmento de 184 pb (PcapR) en la orientación opuesta solo en pTHgrttnC (para dar el pTHPcapRgrttnC) estimula la expresión en una cantidad parecida.

Figura 5: duración de la respuesta de LTC sensibilizados contra el epítopo RT CD8 de grttnC durante 90 días 10 mediante vectores que contienen la secuencia de PCV-1.

Las ratonas BALB/c hembra (5 animales por grupo) se inocularon por vía intramuscular con dosis de 2 x 100 μg, separadas por 28 días, de pTHgrttnC, pTHRepgrttnC, pTHRepRgrttnC, o del vector vacío pTHRepR (no se muestra). Las ratonas se sacrificaron a los 12, 40, 68 y 90 días de la segunda inoculación de ADN, y se recogieron los esplenocitos para el ensayo ELISPOT del IFN-γ. Se sustrajo el promedio de los puntos de ruido de fondo para dar valores netos /10<sup>8</sup> esplenocitos.

Figura 6: respuesta de LTC contra el epítopo RT CD8 de grttnC. Respuesta a la dosis de sensibilización con el ADN, con y sin una inyección de refuerzo con el MVA.

Las ratonas BALB/c hembra (5 animales por grupo) se inocularon por vía intramuscular con dosis de 2 x 100 μg o 2 x 10 μg, separadas por 28 días, de pTHgrttnC, pTHRepgrttnC, pTHRepRgrttnC, o del vector vacío pTHRepR (no se muestra). Las ratonas se sacrificaron 12 días después de la segunda inoculación de ADN, y se recogieron los esplenocitos para el ensayo ELISPOT del IFN-γ. Se les dio una inyección de refuerzo a otros grupos de ratonas, inoculadas según se describe más arriba con 10<sup>4</sup> ufp de SAABIMVA-C (r.grttnC clonado en MVA) 56 días después de la segunda inyección de refuerzo con ADN. Las ratonas se sacrificaron a los 12 días de la inyección de refuerzo con el MVA, y se recogieron los esplenocitos para el ensayo ELISPOT del IFN-γ. Se sustrajo el promedio del ruido de fondo para dar valores netos/10<sup>6</sup> esplenocitos.

Figura 7: respuesta de LTC contra el epítopo RT CD8 de grttnC. Se comparan las dosis de sensibilización con ADN entre pTHgrttnC, pTHRepRgrttnC, pTHPcapgrttnC y pTHPcapRgrttnC. Las ratonas BALB/c hembra (5 animales por grupo) se inocularon por vía intramuscular con dosis de 2 x 100 μg, separadas por 28 días, de pTHgrttnC, pTHRepRgrttnC, pTHPcapgrttnC o pTHPcapRgrttnC. Las ratonas se sacrificaron a los 12 días de la segunda inoculación de ADN, y se recogieron los esplenocitos para el ensayo ELISPOT del IFN-γ. Se sustrajo el promedio del ruido de fondo para dar valores netos/10<sup>6</sup> esplenocitos.

Figura 8: secuencia nucleotídica del fragmento Pcap que muestra los sitios de fijación a los factores de transcripción de la célula hospedadora.

Se muestran 190 pb (SEQ ID n.º 27), aunque, después de la clonación en el sitio *Spe* I del vector, esencialmente, el fragmento se puede considerar que es de 184 pb (SEQ ID n.º 1). La secuencia de Pcap se muestra en la misma orientación que la dirección de la transcripción del gen de la cápsida, Obsérvese que, como resultado, la secuencia mostrada más adelante es el complemento inverso de la convención publicada que describe la secuencia del ADN de circovirus en el sentido del virión (+).

La región central de Pcap (102 pb) según se identificó en Mankertz et al, 2004, se muestra subrayada.

40 Los sitios de clonación Spe I se muestran en cursiva (ACTAGT).

Nucleótido 44 = A se muestra en negrita = nucleótido variante (transición de C a T en la hebra con sentido) respecto a las secuencias de PCV-1 publicadas.

Según se describe en Mankertz et al, 2004,

Están resaltados los nucleótidos 47 a 59 de la secuencia = motivo para la fijación al factor de transcripción AP3 de la 45 célula hospedadora.

Están resaltados los nucleótidos 60 a 65 de la secuencia = motivo para la fijación al factor de transcripción Sp1 de la célula hospedadora .

Están resaltados los nucleótidos 139 a 144 de la secuencia = motivo para la fijación al factor de transcripción AP2 de la célula hospedador.

Según se identifican con la herramienta en línea de búsqueda en las bases de datos TFSEARCH ver. 1.3;

Están en negrita los nucleótidos 28 a 34 de la secuencia = motivo para la fijación al factor de transcripción cdxA de la célula hospedadora.

Están en negrita los nucleótidos 48 a 56 de la secuencia = motivo para la fijación al factor de transcripción STATx de 5 la célula hospedadora.

Están en negrita los nucleótidos 73 a 80 de la secuencia = motivo para la fijación al factor de transcripción CREB de la célula hospedadora.

Están en negrita los nucleótidos 140 a 152 de la secuencia = motivo para la fijación al factor de transcripción c-Ets de la célula hospedadora.

10 Están en negrita los nucleótidos 145 a 154 de la secuencia = motivo para la fijación al factor de transcripción HSF2 de la célula hospedadora.

Figura 9: secuencia nucleotídica del fragmento PcapR que muestra los sitios de fijación a los factores de transcripción de la célula hospedadora.

Se muestran 190 pb (SEQ ID n.º 28), aunque, tras la clonación en el sitio *Spe* I del vector, esencialmente, el fragmento se puede considerar que era de 184 pb (SEQ ID n.º 2). La secuencia de PcapR se muestra en la orientación opuesta a la dirección de la transcripción del gen de la cápsida. Obsérvese que, como resultado, la secuencia mostrada más adelante describe la secuencia del ADN con sentido (+) del virión del circovirus.

Los sitios de clonación Spe I se muestran en cursiva (ACTAGT).

Nucleótido 147 = T se muestra en negrita = nucleótido variante (transición de C a T en la hebra sentido) respecto a 20 las secuencias de PCV-1 publicadas.

Tal y como se identifican con la herramienta de búsqueda en línea en las bases de datos TFSEARCH ver. 1.3;

Están en negrita los nucleótidos 37 a 46 de la secuencia = motivo para la fijación al factor de transcripción HSF1/HSF2 de la célula hospedadora.

Están en negrita los nucleótidos 59 a 72 de la secuencia = motivo para la fijación al factor de transcripción c/EBPb de la célula hospedadora.

Están en negrita los nucleótidos 91 a 100 de la secuencia = motivo para la fijación al factor de transcripción GATA-1 de la célula hospedadora.

Están en negrita los nucleótidos 125 a 130 de la secuencia = motivo para la fijación al factor de transcripción AP2 de la célula hospedadora.

30 Están en negrita los nucleótidos 145 a 154 de la secuencia = motivo para la fijación al factor de transcripción HSF2 de la célula hospedadora.

Están resaltados los nucleótidos 120 a 129 y 149 a 158 = elemento tardío conservado (CLE, por su nombre en inglés) según se identifica en Velten et al., 2005.

Figura 10: secuencia de ADN de grttnC (SEQ ID n.º 19).

35 Sitio de *Hind* III (están en negrita y resaltados los nucleótidos 1 a 6) y el sitio de *Xba* I (están en negrita y resaltados los nucleótidos 3682 a 3687) = sitios para la clonación de la secuencia de grttnC en el pTH.

Figura 11: secuencia linealizada del ADN de PCV-1, tal y como está clonada en pTHgrttnC para dar pTHRepgrttnC (SEQ ID n.º 21 y 29).

Sitios de *Spe* I terminales (negrita) utilizados para clonar el genoma linealizado de PCV-1 en el sitio de restricción de 40 *Spe* I inmediatamente adyacente en 5' al promotor de CMV en el pTHgrttnC.

Figura 12: secuencia linealizada del ADN de PCV-1, tal y como se clonó (complemento inverso) en el pTHgrttnC para dar el pTHRepRgrttnC (SEQ ID n.º 22 y 30).

Sitios de Spe I terminales (negrita) utilizados para clonar el genoma linealizado de PCV-1 en el sitio de restricción de Spe I inmediatamente adyacente en 5' al promotor de CMV en el pTHgrttnC.

Figura 13: secuencia linealizada de pTH (SEQ ID n.º 20).

Se muestra el sitio de *Spe* I (los nucleótidos 751 a 756 están en negrita, subrayados y resaltados) inmediatamente en 5' a la región central del elemento promotor/potenciador inmediato/temprano de CMV del pTH. Es el sitio de inserción utilizado para el genoma linealizado de PCV-1 (en cualquier orientación) y para Pcap, y para PcapR.

5 Se muestran el sitio de *Hind* III (los nucleótidos 2300 a 2315 están en negrita y resaltados) y el sitio de *Xba* I (los nucleótidos 2394 a 2399 están en negrita y resaltados) = sitios de clonación para la inserción de grttnC.

Figura 14: secuencia de PCV-1 que muestra Prep y el gen rep sin el intrón (sólo codifica la proteína Rep') (SEQ ID n.º 23).

Según se describe en Mankertz et al., 2004.

10 Están resaltados los nucleótidos 59 a 80 de la secuencia = motivo para la fijación al factor de transcripción AP3 de la célula hospedadora.

Están resaltados los nucleótidos 120 a 125 de la secuencia = motivo para la fijación al factor de transcripción Sp1 de la célula hospedadora.

Están resaltados los nucleótidos 187 a 192 de la secuencia = motivo para la fijación al factor de transcripción AP4 de 15 la célula hospedadora.

Están resaltados los nucleótidos 153 a 164 de la secuencia = motivo USF/MLTF de la célula hospedadora.

Están resaltados los nucleótidos 166 a 172 de la secuencia = caja TATA.

Están resaltados los nucleótidos 174 a 180 de la secuencia = motivo ISRE.

Los motivos de fijación H1, H2, H3 y H4 de Rep/Rep' se muestran subrayados.

20 Se muestran en negrita el ATG y el TGA (truncado) del marco abierto de lectura de rep'.

Figura 15: secuencia de PCV-1 que muestra Prep con deleción de los sitios de fijación a la proteína Rep/Rep' y el gen *rep* con un truncamiento importante en 5' (lo que queda no es codificante) (SEQ ID n.º 24).

Secuencia de PCV-1 que muestra la deleción de 602 pb, que conduce a la deleción inclusiva de los sitios de fijación H2, H3 y H4 de Rep/Rep' en Prep y deleción de todos los nucleótidos del extremo en 3' del gen *rep*, excepto 133 nt.

25 II = lugar donde se han delecionado 602 pb.

Según se describe en Mankertz et al., 2004.

Están resaltados los nucleótidos 69 a 80 de la secuencia = motivo para la fijación del factor de transcripción AP3 de la célula hospedadora.

Están resaltados los nucleótidos 120 a 125 de la secuencia = motivo para la fijación del factor de transcripción Sp1 de la célula hospedadora.

Están resaltados los nucleótidos 187 a 192 de la secuencia = motivo para la fijación del factor de transcripción AP4 de la célula hospedadora.

Están resaltados los nucleótidos 153 a 164 de la secuencia = motivo USF/MLTF de la célula hospedadora.

Están resaltados los nucleótidos 166 a 172 de la secuencia = caja TATA.

35 Están resaltados los nucleótidos 174 a 180 de la secuencia = motivo ISRE.

El motivo de fijación H1 residual de Rep/Rep' se muestra subrayado.

Figura 16: (a) alineamiento de las secuencias seleccionadas de ADN de circovirus equivalentes a la región de PcapR de PCV-1.

(b) Complemento inverso de las secuencias seleccionadas de ADN de circovirus equivalentes a la secuencia de 40 Pcap de PCV-1.

Circovirus del canario: ACCESO DQ339095 (SEQ ID n.º 3 y 4);

Circovirus del ganso: ACCESO NC\_003054 (SEQ ID n.º 5 y 6);

Circovirus del pato: ACCESO AJ964962 (SEQ ID n.º 7 y 8);

Aislado zj1 del circovirus de los colúmbidos: ACCESO DQ090945 (SEQ ID n.º 9 y 10);

Circovirus de la gaviota: ACCESO NC\_008521 (SEQ ID n.º 11 y 12);

5 Circovirus del pinzón: ACCESO NC\_008522 (SEQ ID n.º 13 y 14);

Aislado AFG3-ZA del virus de la enfermedad del pico y las plumas: ACCESO AY450443 (SEQ ID n.º 15 y 16);

Cepa 375 del circovirus del cerdo de tipo 2: ACCESO AY256460 (SEQ ID n.º 17 y 18).

Figura 17: posibles sitios de fijación de factores de transcripción en las regiones de Pcap de los circovirus de la figura 16.

#### 10 Descripción detallada de la invención

La invención da a conocer un procedimiento *in vitro* para mejorar la expresión de un transgén en una célula hospedadora, que incluye las etapas de insertar un elemento de control transcripcional vírico en un casete de expresión de mamífero por delante (en 5') de un promotor principal para un vector; insertar el transgén en el casete de expresión por detrás (en 3') del promotor principal; insertar un vector que contiene el casete de expresión en la célula hospedadora; y hacer que se exprese el transgén. Como resultado, el transgén se expresa típicamente en mayor cantidad que cuando se expresa desde un vector que contiene el casete de expresión sin el elemento de control transcripcional.

El elemento de control transcripcional es un elemento promotor de la cápsida (Pcap) de un circovirus, tal como el circovirus porcino de tipo 1 (PCV-1), el circovirus porcino de tipo 2 (PCV-2), el virus de la enfermedad del pico y las plumas (BFDV), el circovirus del canario, el circovirus de los colúmbidos, el circovirus del pato, el circovirus del pinzón, el circovirus del ganso y el circovirus de la gaviota, o un elemento equivalente de un parvovirus o anelovirus, o una secuencia que comprende el complemento inverso del elemento promotor de la cápsida (PcapR). El promotor es generalmente una región potenciadora/promotora inmediata/temprana de citomegalovirus (Pcmv) y opcionalmente su secuencia del intrón A de CMV cadena abajo (3'), un elemento promotor del SV40 u otro elemento promotor adecuado.

Los ejemplos de células hospedadoras adecuadas son una línea de células de mamífero para la expresión del transgén *in vitro*.

El vector que se describe en la presente memoria tiene varios usos, entre ellos la producción de una composición farmacéutica o vacuna para tratar de forma preventiva o terapéutica a un humano o a un animal con una infección o enfermedad, tal como el VIH/sida.

En los ejemplos que vienen más adelante, un fragmento de ADN de 184 pb (figura 8; SEQ ID n.º 1) que contiene un elemento principal de 102 pb del promotor de la cápsida (Pcap) del circovirus del cerdo de tipo 1 (PCV-1), o el mismo fragmento de 184 pb clonado en la orientación inversa (PcapR) (figura 9; SEQ ID n.º 2), se insertó inmediatamente adyacente y en 5' a la región central de la región potenciadora/promotora inmediata/temprana de citomegalovirus (Pcmv) y su secuencia del intrón A de CMV cadena abajo (3') en un vector de expresión de mamífero (el fragmento era de 190 pb cuando estaba flanqueado por los sitios de restricción sin cortar (SEQ ID n.º 27)). Posteriormente se clonó un transgén en el vector. El plásmido purificado que contenía los elementos descritos más arriba se transfectó en una línea de células de mamífero para la expresión *in vitro* del transgén, o bien se inoculó en un organismo hospedador mamífero como un vacunógeno o como un agente genoterápico. El híbrido Pcap-Pcmv o PcapR-Pcmv estimuló de 2 a 3 veces la expresión *in vitro* de un transgén insertado en 3' del elemento híbrido Pcap-Pcmv o en 3' del elemento híbrido PcapR-Pcmv.

El elemento promotor Pcap de PCV-1 que se cita más arriba se había mapeado previamente mediante un sistema de expresión de la luciferasa (Mankertz et al.), pero hasta ahora no se ha contemplado que sea de utilidad en las aplicaciones prácticas de la expresión del transgén, ya que por sí mismo no es un promotor fuerte. Además, el fragmento de 184 pb completo incluye otros sitios de fijación de factores de transcripción del hospedador que no se habían observado previamente en Mankertz et al. Tampoco no se había contemplado previamente que la secuencia orientada en sentido inverso (PcapR) también conlleva una actividad estimulante de la expresión del transgén, ni que en la secuencia de PcapR se encuentran codificados otros sitios de fijación de factores de transcripción del hospedador. El elemento Pcmv se ha combinado previamente con diferentes elementos donante/aceptor del intrón cadena abajo (en 3'), que aumentan el nivel de expresión del transgén al mejorar la eficacia del procesamiento del ARNm transcrito del transgén (Barouch et al., 2005). El vector pTH es un vector que consigue expresar genes en gran cantidad y que contiene una secuencia intrónica residente detrás del promotor de CMV (figura 1A). Sin

embargo, la adición de un elemento Pcap o de un elemento PcapR en el plásmido pTHgrttnC delante del promotor de CMV de pTH (figura 1B) hace que aumente aún más el nivel de expresión de grttnC muy por encima de lo que contribuye la secuencia intrónica residente en el pTHgrttnC.

Se contempla que los elementos Pcap o PcapR conservarían la estimulación de la actividad cuando se clonan hasta a 1100 pb por delante (en 5') del elemento Pcmv (esto es, la distancia desde el elemento Pcap al Pcmv cuando Pcap está presente en la secuencia del RepR original del pTHRepRgrttnC). También se contempla que la invención funcionará con los correspondientes elementos Pcap o PcapR de otros circovirus (figuras 16 y 17), tales como el circovirus del cerdo de tipo 2 (PCV-2) (SEQ ID n.º 17 y 18), el virus de la enfermedad del pico y las plumas (BFDV) (SEQ ID n.º 15 y 16), el circovirus del canario (SEQ ID n.º 3 y 4), el circovirus de los colúmbidos (SEQ ID n.º 9 y 10), el circovirus del pato (SEQ ID n.º 7 y 8), el circovirus del pinzón (SEQ ID n.º 13 y 14), el circovirus del ganso (SEQ ID n.º 5 y 6) y el circovirus de la gaviota (SEQ ID n.º 11 y 12), o parvovirus tales como el parvovirus del perro, o anelovirus, tales como el virus torque teno o el minivirus torque teno, ya que estos géneros de virus pertenecen a la misma familia que los circovirus.

La presente invención se describe adicionalmente con los ejemplos que vienen a continuación. Tales ejemplos, sin embargo, no se deben considerar limitantes, de ninguna manera, ni del espíritu ni del alcance de la invención.

#### **Ejemplos**

Clonación y expresión de PCV:

Para facilitar las comparaciones con la construcción de la vacuna de ADN actual de los solicitantes, el pTHgrttnC (Burgers et al.; figuras 10 y 13; SEQ ID n.º 19 y 20), un genoma de PCV-1 linealizado (figura 11; SEQ ID n.º 21 y 29) procedente del plásmido pCIPCV 9 (obtenido de Large Scale Biology Corporation; EE.UU; y descrito en la publicación de solicitud de patente de los EE.UU. n.º 2003/0143741, se subclonó en el pTHgrttnC para que el genoma quedara colocado inmediatamente en 5' del promotor/potenciador inmediato/temprano de CMV (Pcmv) del pTHgrttnC. El genoma del PCV se clonó en ambas orientaciones (figura 1), lo que da el pTHRepgrttnC, en donde el gen asociado a la replicación del PCV (*rep*) se encuentra en la misma orientación que el inserto del poligén grttnC (figura 11; SEQ ID n.º 21 y 29) y el pTHRepRgrttnC, en donde *rep* se encuentra en la orientación opuesta a grttnC (figura 12; SEQ ID n.º 22 y 30).

En las células HEK293 se demostró que, en comparación con pTHgrttnC, tanto pTHRepgrttnC como pTHRepRgrttnC incrementaban el nivel de expresión del antígeno, en donde el pTHRepRgrttnC muestra la expresión más alta. La expresión de grttnC se ensayó por ELISA de p24 y se correlacionó con la cantidad de 30 plásmido presente en las muestras de células (analizado por PCR en tiempo real).

Se observó que la orientación del genoma de PCV insertado en pTHgrttnC afectaba tanto al nivel como al perfil de la expresión de grttnC obtenidos con el tiempo, y esto se analizó más en detalle.

El incremento de la expresión del vector de PCV se debe a los efectos del promotor y no a la replicación del vector:

Las células HEK293 (de la American Type Culture Collection [número de catálogo de la ATCC CRC-1573]) se transfectaron con el ADN plasmídico, y se recogieron 1, 2 y 3 días después de la transfección. Tras el lavado de las células se extrajo todo el ADN y se cuantificó por PCR en tiempo real la cantidad de plásmido presente en 20 ng del extracto, mediante la incorporación de Sybr-Green y de cebadores oligonucleotídicos específicos del vector. Las secuencias de los cebadores utilizados se fijaron a los plásmidos pTH (pTHgrttnC), pCl (Promega) y pcDNA3.1/Zeo (Invitrogen) – pTH17F; 5'-CCTAACTACGGCTACAC-3' (SEQ ID n.º 25); pTH18R; 5'-CGTAGTTATCTACACGAC-40 3' (SEQ ID n.º 26). Las secuencias cebadoras se obtuvieron de Jo van Harmelen, IIDMM, Sudáfrica. Adicionalmente, las alícuotas de ADN total se digirieron durante una noche con la enzima de restricción Dpn I (de Roche) que, debido

las alicuotas de ADN total se digirieron durante una noche con la enzima de restriccion Dpn I (de Roche) que, debido a su especificidad a la metilación, digiere sólo el ADN plasmídico transfectado que se produce en la bacteria (ADN de entrada), pero ningún otro ADN que pueda haberse replicado en las células de mamífero (p. ej., HEK293). El plásmido digerido (en el ADN total) también se cuantificó por PCR como antes. Se utilizaron cantidades equivalentes del ADN total digerido y sin digerir (replicable se refiere en la presente memoria a la capacidad del plásmido para replicarse en las células de mamífero, en vez de en las células bacterianas).

Se encontró que la expresión de los vectores con PCV mejoraba con respecto a los pTH (figura 13; SEQ ID n.º 20) y se demostró que se debía a que los promotores de PVC actúan en combinación con el Pcmv del pTH, y que no se debía a la replicación del vector (figura 2, figura 3). Así pues, en el pTHRepgrttnC, el promotor del gen rep (Prep) actúa en combinacón con el Pcmv, y en el pTHRepRgrttnC, el promotor del gen de la cápsida de PCV (Pcap) actúa con rl Pcmv.

Los experimentos que lo demuestran incluían:

- La demostración (mediante digestión de Dpn I/PCR en tiempo real) de que no se produjo ninguna

replicación plasmídica en las células transfectadas. Así pues, la proporción de plásmido extraído de las células transfectadas descendió con el tiempo a la misma velocidad que el plásmido original que no contenía el PCV y no se formó ningún plásmido nuevo en las células transfectadas durante ese tiempo. Esto se determinó para las dos construcciones que llevaban un PCV de Large Scale Biology Corporation y de los solicitantes (figura 2).

- La deleción del intrón de rep de PCV-1 (figura 14; SEQ ID n.º 23) de pTHRepgrttnC dio lugar a un incremento de la expresión de grttnC (figura 3). Esta deleción impide la formación de una de las proteínas Rep requeridas para la replicación. La misma proteína actúa para reprimir Prep y su ausencia permite aliviar la represión de Prep, con el resultante aumento de la acumulación del GrttnC que se expresa. Así pues, el incremento de la expresión en el pTHRepGrttnC es consecuencia de la actividad de Prep y no de que se incremente por replicación el número de copias del plásmido. La deleción de los sitios de fijación de la proteína Rep/Rep' en Prep y la deleción de la mayor parte del gen rep desde el extremo en 5', pero que aún deja sitios de fijación de factores de transcripción del hospedador en Prep (figura 15; SEQ ID n.º 24), produce un incremento modesto de la expresión en comparación con pTH, lo que además indica que la fuente del aumento de la expresión del transgén en los plásmidos que contienen la secuencia de PCV-1 es por la acción de los elementos promotores, y no por la replicación del plásmido inducida por el elemento de PCV-1 (figura 3).
- La adición únicamente de la secuencia de Pcap de 184 pb (SEQ ID n.º 1) en el pTHgrttnC mejoró la expresión de grttnC al mismo nivel que la adición de todo el genoma de PCV en la orientación de RepR.
   Inesperadamente, la adición de la secuencia de Pcap en la orientación inversa (PcapR) (SEQ ID n.º 2) también incrementó el nivel de expresión de grttnC por encima de la del plásmido original, pTHgrttnC (figura 4).

Comparación de la inmunogenia murina entre pTH y los vectores que llevan el PVC:

5

10

15

probados.

Las respuestas de LTC en las ratonas BALB/c hembra desencadenadas por el prototipo de clones que llevan el PCV, pTHRepgrttnC y pTHRepRgrttnC, se compararon con las desencadenadas por pTHgrttnC.

Los ensayos ELISPOT del IFN-γ mostraron que las tres construcciones generaron respuestas de LTC contra 10 de los 15 epítopos de GrttnC CD4 y CD8 analizados. Ya que el epítopo RT CD8 de GrttnC es inmunodominante en las ratonas Balb/c, este epítopo se eligió como marcador para la comparación de la inmunogenia entre las construcciones que llevan PCV y el pTHgrttnC.

- 30 La longevidad de la respuesta de LTC desencadenada por 2 inoculaciones de ADN administradas por vía intramuscular (i.m.) de 100 μg cada una, separadas por 28 días, se midió durante 90 días tras la segunda inoculación de ADN. Se analizaron cinco ratonas por grupo de tratamiento. Respuestas de LTC en el mismo intervalo de error fueron desencadenadas por pTHgrttnC y pTHRepRgrttnC, mientras que pTHRepgrttnC desencadenó una mejor respuesta (figura 5). Se observó que el nivel de respuesta de los LTC para pTHgrttnC y pTHRepRgrttnC descendió la misma magnitud durante el periodo de pruebas de 90 días. En cambio, la respuesta de LTC contra pTHRepgrttnC fue el doble que la de las otras construcciones a los 12 días de la sensibilización, y cayó por debajo del nivel de respuesta observado para las construcciones de pTH y pTHRepR a los 40 días, pero luego ascendió tanto que a los 90 días de la inoculación, la respuesta de LTC contra el pTHRepgrttnC fue de nuevo dos veces la observada contra pTHgrttnC y pTHRepRgrttnC. Este efecto era perceptible para la mayoría de los epítopos
- Los vectores que contienen el PCV se encontró que eran mejores que el pTH a una dosis 10 veces menor de sensibilización con ADN (2 x dosis de sensibilización, separadas por 28 días, de 10 µg por vía i.m., 5 ratonas BALB/c hembra por tratamiento). En este nivel, tanto pTHRepgrttnC como pTHRepRgrttnC desencadenaron respuestas de LTC significativamente mejores de lo que hizo el pTHgrttnC con el nivel de dosis de 10 µg o de 100 µg, en donde el pTHRepgrttnC desencadenó la mejor respuesta (figura 6).

El efecto de administrar una inyección de refuerzo a las ratonas BALB/c se analizó con una dosis baja (10<sup>4</sup> ufp) de SAAVIMVA-C administrada i.m. 56 días después de la segunda de las dos inoculaciones i.m. de ADN de 10 μg o bien de 100 μg por dosis, separadas por 28 días. La respuesta con refuerzo contra el epítopo RT CD8 en las ratonas sensibilizadas con 2 x 10 μg de pTHRepgrttnC o bien de pTHRepRgrttnC fue de más de dos veces que la desencadenada en las ratonas sensibilizadas con 2 x 10 μg de pTHgrttnC (figura 6). Además, la respuesta con refuerzo tras la sensibilización al nivel de 10 μg con pTHRepgrttnC fue casi tan grande como la respuesta con refuerzo tras la sensibilización con 2 x 100 μg de pTHgrttnC. La respuesta con refuerzo de las ratonas sensibilizadas con pTHRepRgrttnC fue similar tanto en el nivel de 10 μg como de 100 μg, y fue aproximadamente de 0,75 veces la desencadenada después de la sensibilización con 2 x 100 μg de pTHgrttnC o bien de pTHRepRgrttnC (figura 6).

55 Es decir, la sensibilización con una cantidad de 10 µg de un vector que lleva el PCV produjo una respuesta casi tan

buena, después del refuerzo con 10<sup>4</sup> ufp de SAAVIMVA-C, que la sensibilización con pTHgrttnC a diez veces la dosis de sensibilización.

Sin embargo, en los experimentos posteriores se observó que las secuencias de Prep/gen *rep* en los plásmidos pTHRep tendían a ser inestables, y por lo tanto todo el trabajo posterior se concentró en la construcción estable pTHRepR y sus derivados Pcap y PcapR. La secuencia de 184 pb que contiene el Pcap cortada con Spe I (figura 8) se sublclonó en el pTHgrttnC para que el fragmento se posicione inmediatamente en 5' del promotor/potenciador inmediato/temprano de CMV (Pcmv) en el pTHgrttnC, para dar el pTHPcapgrttnC. La secuencia de 184 pb que contiene el Pcap cortada con Spe I (figura 9) se subclonó en el pTHgrttnC para que el fragmento se posicione inmediatamente en 5' del promotor/potenciador inmediato/temprano de CMV (Pcmv) en el pTHgrttnC, para dar el pTHPcapRgrttnC.

Se encontró que los vectores que llevaban Pcap y PcapR eran mejores que el pTH para sensibilizar una respuesta de LTC contra el epítopo RT inmunodominante de GrttnC en las ratonas BALB/c (2 x dosis de sensibilización, separadas por 28 días, de 100 µg por vía i.m., 5 ratonas BALB/c hembra por tratamiento). Tanto el pTHPcapgrttnC como el pTHPcapRgrttnC desencadenaron respuestas de LTC en el mismo intervalo de error que el pTHRepRgrttnC, pero con menos variabilidad de respuesta entre los experimentos (figura 7).

Los vectores de expresión de mamífero descritos en la presente memoria muestran una estimulación del nivel de expresión de la proteína del transgén. Esto tiene utilidad al mejorar la eficacia de la dosis en las vacunas de ADN hechas de plásmidos, para los estudios de expresión *in vitro* en las células de mamífero y, posiblemente, para ser usados en terapias génicas.

20 En el desarrollo de vacunas de ADN, el mayor nivel de expresión del transgén que se puede alcanzar mediante el uso de las combinaciones de promotores Pcap-Pcmv y PcapR-Pcmv permite que posiblemente se reduzca unas 10 veces la dosis de vacuna necesaria para conseguir la misma respuesta inmunitaria celular que se puede conseguir con el uso de una construcción de vacuna casi idéntica que utiliza únicamente el Pcmv (como se ha demostrado hasta ahora en un modelo de inmunogenia murina).

#### 25 Bibliografía

Barouch DH, Yang ZY, Kong WP, et al. (2005). A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J Virol.; 79: 8828-8834.

Burgers W.A., J.H. van Harmelen, E. Shephard, et al. (2005). Design and preclinical evaluation of a multigene HIV-1 subtype C DNA vaccine for clinical trial. J. Gen Virol, 87:399-410.

Garmory HS, Brown KA, Titball RW (2003). DNA vaccines: improving expression of antigens. Genet Vaccines Ther. 1:2.

Hattermann K, Roedner C, Schmitt C, et al. (2004). Infection studies on human cell lines with porcine circovirus type 1 and porcine circovirus type 2. Xenotransplantation 11:284-294.

Mankertz A, Caliskan R, Hattermann K, et al. (2004). Molecular biology of porcine circovirus; analysis of gene expression and viral replication. Vet Microbiol 98:81-88.

Quintana J, Balasch M, Segales J, et al. (2002). Experimental inoculation of porcine Circoviruses type 1 (PCV1) and type 2 (PCV2) in rabbits and mice. Vet Res 33:229-237.

Velten J, Morey K, Cazzonelli C. (2005). Plant viral intergenic DNA sequence repeats with transcription enhancing activity. Virology Journal 2:16 doi:10.1186/1743-422X-2-16.

http://www.cbrc.jp/research/db/TFSEARCH.html

#### **LISTA DE SECUENCIAS**

<110> South African Medical Research council university of Cape Town

5 <120> Sistema de expresión que incorpora una secuencia promotora de la cápsida como potenciador de un promotor de citomegalovirus

<130> PA140583/PCT

10 <140> PCT/IB2006/003150

<141> 08-11-2006

<150> ZA 2005/09036

<151> 08-11-2005

15 <160> 41

<170> PatentIn versión 3.5

20 <210> 1

<211> 184

<212> ADN

<213> Circovirus porcino 1

25 <400> 1

| ctagtaggtg tcgctaggct cagcaaaatt acgggcccac tgactcttcc | cacaaccggg    | 60 |
|--------------------------------------------------------|---------------|----|
| cgggcccact atgacgtgta cagctgtctt ccaatcacgc tgctgcatct | tcccgctcac 12 | 20 |
| tttcaaaagt tcagccagcc cgcggaaatt tctcacatac gttacaggga | actgctccat 18 | 80 |
| atga                                                   | 18            | 84 |

<210> 2

30 <211> 184

<212> ADN

<213> Circovirus porcino 1

<400> 2

ctagtcatat ggagcagttc cctgtaacgt atgtgagaaa tttccgcggg ctggctgaac 60
ttttgaaagt gagcgggaag atgcagcagc gtgattggaa gacagctgta cacgtcatag 120
tgggcccgcc cggttgtggg aagagtcagt gggcccgtaa ttttgctgag cctagcgaca 180
ccta 184

35 ccta

<210> 3 <211> 175

<212> ADN

40 <213> Circovirus del canario

<400> 3

cgcgcgagag ttcagtgaga tctacgtcaa gtatgggcgt ggtctgaggg atttggccct 60 gatgattgga cagaaacccc gtgacttcaa gacggaagtc gtcgtcatca cagggccttc 120 cggggtgggc aagtcccgac ttgcctctga aatggaagga tcgaagttct acaag 175

45 <210> 4

<211> 175

<212> ADN

<213> Circovirus del canario

<400> 4

|    | cttgtagaac ttcgatcctt ccatttcaga ggcaagtcgg gacttgccca ccccggaagg | 60  |
|----|-------------------------------------------------------------------|-----|
|    | ccctgtgatg acgacgactt ccgtcttgaa gtcacggggt ttctgtccaa tcatcagggc | 120 |
|    | caaatccctc ágaccacgcc catacttgac gtagatctca ctgaactctc gcgcg      | 175 |
| 5  | <210> 5<br><211> 180<br><212> ADN<br><213> Circovirus del ganso   |     |
|    | <400> 5                                                           |     |
| 10 | tggcccggaa gtacccgacg acttatgtaa tgtttgggcg gggcttagag cggttgcgtc | 60  |
|    | agctgatcgt ggagaccgct cgtgattgga agacggaggt catcgttctg attgggcggc | 120 |
|    | ctggaagcgg gaagagccgt tacgcgtttg aatttcccgc gcgtgaaaag tattataaat | 180 |
| 15 | <210> 6<br><211> 180<br><212> ADN<br><213> Circovirus del ganso   |     |
|    | <400> 6                                                           |     |
|    | atttataata cttttcacgc gcgggaaatt caaacgcgta acggctcttc ccgcttccag | 60  |
|    | gccgcccaat cagaacgatg acctccgtct tccaatcacg agcggtctcc acgatcagct | 120 |
| 20 | gacgcaaccg ctctaagccc cgcccaaaca ttacataagt cgtcgggtac ttccgggcca | 180 |
| 25 | <210> 7<br><211> 190<br><212> ADN<br><213> Circovirus del pato    |     |
|    | <400> 7                                                           |     |
|    | tgaggtggcc cggaagttcc ccacgactta tgttatcttt gggcgtggcc tggaacgcct | 60  |
|    | ccgtcacctg atcgttgaga cgcaacgtga ttggaagacc gaagtcatcg ttctgattgg | 120 |
|    | tccgcccggc accgggaaga gccgttatgc atttgaattt cccgccgaaa acaagtatta | 180 |
| 30 | caaaccacgc                                                        | 190 |
|    | <210> 8<br><211> 190<br><212> ADN<br><213> Circovirus del pato    |     |
| 35 | <400> 8                                                           |     |
|    | gcgtggtttg taatacttgt tttcggcggg aaattcaaat gcataacggc tcttcccggt | 60  |
|    | gccgggcgga ccaatcagaa cgatgacttc ggtcttccaa tcacgttgcg tctcaacgat | 120 |
|    | caggtgacgg aggcgttcca ggccacgccc aaagataaca taagtcgtgg ggaacttccg | 180 |
|    | ggccacctca                                                        | 190 |
| 40 | <210> 9<br><211> 180<br><212> ADN                                 |     |

|          | <213> Circovirus de los colúmbidos                                                                                                                                                                              |          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          | <400> 9                                                                                                                                                                                                         |          |
|          | tcgcgcgaga cttcagtgag atatacgtca agtatgggcg tggcttgcgc gacctgaagc                                                                                                                                               | 60       |
|          | tgctgattgg tcagcagcct cgtgacttca aaacggaagt catcgtcatc acgggcccgc                                                                                                                                               | 120      |
| 5        | ccggttgcgg gaagagccgt tgggcagctg agtaccccgg aagtaaattt tacaagatga                                                                                                                                               | 180      |
| 10       | <210> 10<br><211> 180<br><212> ADN<br><213> Circovirus de los colúmbidos                                                                                                                                        |          |
|          | <400> 10                                                                                                                                                                                                        |          |
|          | tcatcttgta aaatttactt ccggggtact cagctgccca acggctcttc ccgcaaccgg                                                                                                                                               | . 6      |
|          | gcgggcccgt gatgacgatg acttccgttt tgaagtcacg aggctgctga ccaatcagca                                                                                                                                               | 12       |
| 15       | gcttcaggtc gcgcaagcca cgcccatact tgacgtatat ctcactgaag tctcgcgga <210> 11   <211> 180   <212> ADN   <213> Circovirus de la gaviota <400> 11   gtgaaatcgc gcgagagttc agtgaagtct acgtcaagta tgggcggggc ctccgtgatc | 18<br>60 |
|          | tccggttgct gattggttgc ccgccccgcg atttcaaaac agaagtcatc gttctgattg                                                                                                                                               | 120      |
| 20       | gcccacctgg ctgtggcaag tcaaaattgg ccaatgagat ggaagggtct aagttctaca                                                                                                                                               | 180      |
| 25       | <210> 12<br><211> 180<br><212> ADN<br><213> Circovirus de la gaviota                                                                                                                                            |          |
|          | <400> 12                                                                                                                                                                                                        |          |
|          | tgtagaactt agacccttcc atctcattgg ccaattttga cttgccacag ccaggtgggc                                                                                                                                               | 60       |
|          | caatcagaac gatgacttct gttttgaaat cgcggggcgg gcaaccaatc agcaaccgga                                                                                                                                               | 120      |
| 20       | gatcacggag gccccgccca tacttgacgt agacttcact gaactctcgc gcgatttcac                                                                                                                                               | 180      |
| 30<br>35 | <210> 13<br><211> 180<br><212> ADN<br><213> Circovirus del pinzón                                                                                                                                               |          |
| 33       | <400> 13<br>tcgcgcgaga gttcagtcta gcctacgtca gatatgggcg gggcctgcgt gatcttgcgc                                                                                                                                   | 60       |
|          | tgctgattgg ccagaagccc cgtgacttca aaacggaagt catagtgctg accggcccta                                                                                                                                               | 120      |
|          | gtgggtgtgg caaatcccgc tgggccaatg aacaagaagg aactaagttt tataaaatga                                                                                                                                               | 180      |
| 40       | <210> 14<br><211> 180<br><212> ADN<br><213> Circovirus del pinzón                                                                                                                                               |          |
| 45       | <400> 14                                                                                                                                                                                                        |          |

|    | tcattttata aaacttagtt ccttcttgtt cattggccca gcgggatttg ccacacccac tagggccggt cagcactatg acttccgttt tgaagtcacg gggcttctgg ccaatcagca | 60<br><b>1</b> 20 |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | gcgcaagatc acgcaggccc cgcccatatc tgacgtaggc tagactgaac tctcgcgcga                                                                   | 180               |
| 5  | <210> 15<br><211> 180<br><212> ADN<br><213> Virus AFG3-ZA de la enfermedad del pico y las plumas                                    |                   |
| 10 | <400> 15                                                                                                                            |                   |
| 10 | cgcgcgagag ttcccagata tctacgtcag gcatgggcgg ggcttacata atctctcgct                                                                   | 60                |
|    | aatggttggt tcccggccac gtgacttcaa gactgaggtc gacgtcatct acggaccacc                                                                   | 120               |
|    | ggggtgtggc aagagtagat gggccaatga gcagccgggg accaaatatt ataaaatgcg                                                                   | 180               |
| 15 | <210> 16<br><211> 180<br><212> ADN<br><213> Virus AFG3-ZA de la enfermedad del pico y las plumas                                    |                   |
|    | <400> 16 _<br>cgcattttat aatatttggt ccccggctgc tcattggccc atctactctt gccacacccc                                                     | 60                |
|    | ggtggtccgt agatgacgtc gacctcagtc ttgaagtcac gtggccggga accaaccatt                                                                   | 120               |
| 20 | agcgagagat tatgtaagcc ccgcccatgc ctgacgtaga tatctgggaa ctctcgcgcg                                                                   | 180               |
| 20 | <210> 17<br><211> 190<br><212> ADN<br><213> Circovirus porcino 2                                                                    |                   |
| 25 | <400> 17 ccgttgcaga gcagcaccct gtaacgtttg tcagaaattt ccgcgggctg gctgaacttt                                                          | 60                |
|    | tgaaagtgag cgggaaaatg cagaagcgtg attggaagac taatgtacac gtcattgtgg                                                                   | 120               |
|    | ggccacctgg gtgtggtaaa agcaaatggg ctgctaattt tgcagacccg gaaaccacat                                                                   | 180               |
|    | actggaaacc                                                                                                                          | 190               |
| 30 | <210> 18<br><211> 190<br><212> ADN<br><213> Circovirus porcino 2                                                                    |                   |
|    | <400> 18 ggtttccagt atgtggtttc cgggtctgca aaattagcag cccatttgct tttaccacac                                                          | 60                |
|    | ccaggtggcc ccacaatgac gtgtacatta gtcttccaat cacgcttctg cattttcccg                                                                   | 120               |
|    | ctcactttca aaagttcagc cagcccgcgg aaatttctga caaacgttac agggtgctgc                                                                   | 180               |
| 35 | tctgcaacgg                                                                                                                          | 190               |
| 40 | <210> 19<br><211> 3687<br><212> ADN<br><213> Artificial                                                                             |                   |
|    | <220> <223> Secuencia de gag subtipo C de HIV-1, transcriptasa inversa, regiones tat y nef                                          |                   |

<400> 19

|   | aagcttgcca | ccatggctgc | tcgcgcatct | atcctcagag | gcgaaaagtt | ggataagtgg | 60   |
|---|------------|------------|------------|------------|------------|------------|------|
|   | gaaaaaatca | gactcaggcc | aggaggtaaa | aaacactaca | tgctgaagca | tatcgtgtgg | 120  |
|   | gcatctaggg | agttggagag | atttgcáctg | aaccccggac | tgctggaaac | ctcagagggc | 180  |
|   | tgtaagcaaa | tcatgaaaca | gctccaacca | gccttgcaga | ccggaacaga | agagctgaag | 240  |
|   | tccctttaca | ataccgtggc | aaccctctat | tgcgtccacg | agaagatcga | ggtgagagac | 300  |
|   | acaaaggagg | ccctggacaa | aatcgaggag | gagcagaata | agtgccagca | gaagacccag | 360  |
|   | caggcaaagg | ctgctgacgg | aaaggtctct | cagaactatc | ctatcgttca | gaaccttcag | 420  |
|   | gggcagatgg | tgcaccaagc | aatcagccct | agaaccctga | acgcatgggt | gaaggtgatc | 480  |
|   | gaggagaaag | ccttttctcc | cgaggttatc | cccatgttta | ccgccctgag | cgaaggcgcc | 540  |
|   | actcctcaag | acctgaacac | tatgctgaac | acagtgggag | gacaccaggc | cgctatgcag | 600  |
|   | atgttgaagg | ataccatcaa | cgaggaggca | gccgaatggg | accgcctcca | cccgtgcac  | 660  |
|   | gccggaccta | tcgccccgg  | acaaatgaga | gaacctcgcg | gaagtgatat | tgccggtact | 720  |
|   | accagcaccc | ttcaagagca | gattgcttgg | atgaccagca | acccacccat | cccagtgggc | 780  |
|   | gatatttaca | aaaggtggat | tattctgggg | ctgaacaaaa | ttgtgagaat | gtactccccc | 840  |
|   | gtctccatcc | tcgacatccg | ccaaggaccc | aaggagcctt | ttagggatta | cgtggacaga | 900  |
|   | ttcttcaaaa | cccttagagc | tgagcaagcc | actcaggagg | ttaagaactg | gatgacagat | 960  |
|   | actctgctcg | tgcaaaacgc | taaccccgat | tgcaaaacca | tcttgagagc | tctcggtcca | 1020 |
|   | ggtgccaccc | ttgaggaaat | gatgacagca | tgtcaaggcg | tgggaggacc | tgggcacaag | 1080 |
|   | gccagagttc | tcgctgaggc | catgagccag | acaaactcag | gcaatatcat | gatgcagagg | 1140 |
|   | agtaacttta | agggtcccag | gagaatcgtc | aagtgcttca | attgtggcaa | ggagggtcac | 1200 |
|   | attgċcagga | actgccgcgc | ccccaggaag | aaaggctgct | ggaagtgtgg | caaagagggc | 1260 |
|   | caccagatga | aggattgcac | cgagcgccaa | gcaaacttcc | tgggaaagat | ttggcccagt | 1320 |
|   | cataagggcc | gccctggcga | attctgcggc | aagaaggcca | tcggcaccgt | gctggtgggc | 1380 |
|   | cccacccccg | tgaacatcat | cggccggaac | atgctgaccc | agctgggctg | caccctgaac | 1440 |
|   | ttccccatca | gccccatcga | gaccgtgccc | gtgaagctga | agcccggcat | ggacggcccc | 1500 |
|   | aaggtgaagc | agtggcccct | gaccgaggtg | aagatcaagg | ccctgaccgc | catctgcgag | 1560 |
|   | gagatggaga | aggagggcaa | gatcaccaag | atcggccccg | agaaccccta | caacaccccc | 1620 |
|   | atcttcgcca | tcaagaagga | ggacagcacc | aagtggcgga | agctggtgga | cttccgggag | 1680 |
|   | ctgaacaagc | ggacccagga | cttctgggag | gtgcagctgg | gcatccccca | cccgccggc  | 1740 |
|   | ctgaagaaga | agaagagcgt | gaccgtgctg | gacgtgggcg | acgcctactt | cagcgtgccc | 1800 |
|   | ctggacgagg | gcttccggaa | gtacaccgcc | ttcaccatcc | ccagcatcaa | caacgagacc | 1860 |
| - | cccggcatcc | ggtaccagta | caacgtgctg | ccccagggct | ggaagggcag | ccccgccatc | 1920 |

```
ttccaggcca gcatgaccaa gatcctggag cccttccggg ccaagaaccc cgagatcgtg
                                                                      1980
atctaccagt acatggccgc cctgtacgtg ggcagcgacc tggagatcgg ccagcaccgg
                                                                       2040
                                                                      2100
gccaagatcg aggagctgcg ggagcacctg ctgaagtggg gcttcaccac ccccgacaag
aagcaccaga aggagccccc cttcctgtgg atgggctacg agctgcaccc cgacaagtgg
                                                                       2160
                                                                       2220
accgtgcagc ccatccagct gcccgagaag gacagctgga ccgtgaacga catccagaag
                                                                       2280
ctggtgggca agctgaactg gaccagccag atctaccccg gcatcaaggt gcggcagctg
tgcaagctgc tgcggggcac caaggccctg accgacatcg tgcccctgac cgaggaggcc
                                                                       2340
gagctggagc tggccgagaa ccgggagatc ctgaaggagc ccgtgcacgg cgtgtactac
                                                                       2400
gaccccagca aggacctgat cgccgagatc cagaagcagg gcgacgacca gtggacctac
                                                                       2460
cagatctacc aggagccctt caagaacctg aaaaccggca agtacgccaa gcggcggacc
                                                                       2520
acccacacca acgacgtgaa gcagctgacc gaggccgtgc agaagatcag cctggagagc
                                                                       2580
atcgtgacct ggggcaagac ccccaagttc cggctgccca tccagaagga gacctgggag
                                                                       2640
atctggtgga ccgactactg gcaggccacc tggatccccg agtgggagtt cgtgaacagc
                                                                       2700
ggccgcaagc ttgccaccat ggtgggcatc agctacggcc gcaagaagcg ccgccagcgc
                                                                       2760
                                                                       2820
cgcagcaccc cgcccagcag cgaggaccac cagaacccca tcagcaagca gcccctgccc
cagacccgcg gcgaccccac cggcagcgag gagagcaaga agaaggtgga gagcaagacc
                                                                       2880
aagaccgacc ccttcgactg caagtactgc agctaccact gtctggtgtg cttccagacc
                                                                       2940
                                                                       3000
aagggcctgg gcatctccta cgggcgcaag aaacggatgg agcccatcga ccccaacctg
                                                                       3060
gagecetgga accaeeeegg cageeageee aacaeeeeet geaacaagtg etaetgeaaa
                                                                       3120
tactgctcct accactgcct cgtggtgggc tggcccgccg tgcgcgagcg catccgccgc
                                                                       3180
accgagcccg ccgccgaggg cgtgggcccc gccagccagg acctggacaa gcacggcgcc
ctgaccagca gcaacaccgc ccacaacaac cccgactgcg cctggctgca ggcccaggag
                                                                       3240
gaggaggagg acgtgggctt ccccgtgcgc ccccaggtgc ccctgcgccc catgacctac
                                                                       3300
                                                                       3360
aaggccgcct tcgacctgag cttcttcctg aaggagaagg gcggcctgga gggcctgatc
cacagcaagc gccgccagga catcctggac ctgtgggtgt accacaccca gggctacttc
                                                                       3420
                                                                       3480
cccgactggc agaactacac ccccggcccc ggcgtgcgct accccctgac cttcggctgg
tgcttcaagc tggtgcccgt ggacccccgc gaggtggagg aggccaacaa gggcgagaac
                                                                       3540
                                                                       3600
aactgcctgc tgcaccccat gagccagcac ggcatggagg acgccgaccg cgaggtgctg
cgctgggtgt tcgacagcag cctggcccgc cgccacctgg cccgcgagaa gcaccccgag
                                                                       3660
                                                                       3687
tactacaagg actgagaatt ctctaga
<210> 20
```

<211> 4912

<400> 20

60 gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg

<sup>5 &</sup>lt;212> ADN <213> Circovirus porcino

| ccgcatagtt | aagccagtat | ctgctccctg | cttgtgtgtt  | ggaggtcgct | gagtagtgcg | 120   |
|------------|------------|------------|-------------|------------|------------|-------|
| cgagcaaaat | ttaagctaca | acaaggcaag | gcttgaccga  | caattgcatg | aagaatctgc | 180   |
| ttagggttag | gcgttttgcg | ctgcttcgcg | atgtacgggc  | cagatatacg | cgttttgaga | 240 ` |
| tttctgtcgc | cgactaaatt | catgtcgcgc | gatagtggtg  | tttatcgccg | atagagatgg | 300   |
| cgatattgga | aaaatcgata | tttgaaaata | tggcatattg  | aaaatgtcgc | cgatgtgagt | 360   |
| ttctgtgtaa | ctgatatcgc | catttttcca | aaagtgattt  | ttgggcatac | gcgatatctg | 420   |
| gcgatagcgc | ttatatcgtt | tacgggggat | ggcgatagac  | gactttggtg | acttgggcga | 480   |
| ttctgtgtgt | cgcaaatatc | gcagtttcga | tataggtgac  | agacgatatg | aggctatatc | 540   |
| gccgatagag | gcgacatcaa | gctggcacat | ggccaatgca  | tatcgatcta | tacattgaat | 600   |
| caatattggc | cattagccat | attattcatt | ggttatatag  | cataaatcaa | tattggctat | 660   |
| tggccattgc | atacgttgta | tccatatcat | aatatgtaca  | tttatattgg | ctcatgtcca | 720   |
| acattaccgc | catgttgaca | ttgattattg | actagttatt  | aatagtaatc | aattacgggg | 780   |
| tcattagttc | atagcccata | tatggagttc | cgcgttacat  | aacttacggt | aaatggcccg | 840   |
| cctggctgac | cgcccaacga | ccccgccca  | ttgacgtcaa  | taatgacgta | tgttcccata | 900   |
| gtaacgccaa | tagggacttt | ccattgacgt | caatgggtgg  | agtatttacg | gtaaactgcc | 960   |
| cacttggcag | tacatcaagt | gtatcatatg | ccaagtacgc  | cccctattga | cgtcaatgac | 1020  |
| ggtaaatggc | ccgcctggca | ttatgcccag | tacatgacct  | tatgggactt | tcctacttgg | 1080  |
| cagtacatct | acgtattagt | catcgctatt | accatggtga  | tgcggttttg | gcagtacatc | 1140  |
| aatgggcgtg | gatagcggtt | tgactcacgg | ggatttccaa  | gtctccaccc | cattgacgtc | 1200  |
| aatgggagtt | tgttttggca | ccaaaatcaa | cgggactttc  | caaaatgtcg | taacaactcc | 1260  |
| gccccattga | cgcaaatggg | cggtaggcgt | gtacggtggg  | aggtctatat | aagcagagct | 1320  |
| cgtttagtga | accgtcagat | cgcctggaga | cgccatccac  | gctgttttga | cctccataga | 1380  |
| agacaccggg | accgatccag | cctccgcggc | cgggaacggt  | gcattggaac | gcggattccc | 1440  |
| cgtgccaaga | gtgacgtaag | taccgcctat | agagtctata  | ggcccacccc | cttggcttct | 1500  |
| tatgcatgct | atactgtttt | tggcttgggg | tctatacacc  | cccgcttcct | catgttatag | 1560  |
| gtgatggtat | agcttagcct | ataggtgtgg | gttattgacc  | attattgacc | actcccctat | 1620  |
| tggtgacgat | actttccatt | actaatccat | .aacatggctc | tttgccacaa | ctctctttat | 1680  |
| tggctatatg | ccaatacact | gtccttcaga | gactgacacg  | gactctgtat | ttttacagga | 1740  |
| tggggtctca | tttattattt | acaaattcac | atatacaaca  | ccaccgtccc | cagtgcccgc | 1800  |
| agtttttatt | aaacataacg | tgggatctcc | acgcgaatct  | cgggtacgtg | ttccggacat | 1860  |
| gggctcttct | ccggtagcgg | cggagcttct | acatccgagc  | cctgctccca | tgcctccagc | 1920  |
| gactcatggt | cgctcggcag | ctccttgctc | ctaacagtgg  | aggccagact | taggcacagc | 1980  |
| acgatgccca | ccaccaccag | tgtgccgcac | aaggccgtgg  | cggtagggta | tgtgtctgaa | 2040  |
| aatgagctcg | gggagcgggc | ttgcaccgct | gacgcatttg  | gaagacttaa | ggcagcggca | 2100  |

| gaagaagatg | caggcagctg | agttgttgtg | ttctgataag | agtcagaggt | aactcccgtt              | 2160              |
|------------|------------|------------|------------|------------|-------------------------|-------------------|
| gcggtgctgt | taacggtgga | gggcagtgta | gtctgagcag | tactcgttgc | tgccgcgcgc              | 2220              |
| gccaccagac | ataatagctg | acagactaac | agactgttcc | tttccatggg | tcttttctgc              | 2280              |
| agtcaccgtc | cttgacacga | agcttggtac | cgagctcgga | tccactagta | acggccgcca              | 2340              |
| gtgtgctgga | attctgcaga | tatccatcac | actggcggcc | gctcgagcat | gcatctagag              | 2400              |
| ggccctattc | tatagtgtca | cctaaatgct | agagctcgct | gatcagcctc | gactgtgcct              | 2460              |
| tctagttgcc | agccatctgt | tgtttgcccc | tccccgtgc  | cttccttgac | cctggaaggt              | 2520              |
| gccactccca | ctgtcctttc | ctaataaaat | gaggaaattg | catcgcattg | tctgagtagg              | 2580              |
| tgtcattcta | ttctgggggg | tggggtgggg | caggacagca | agggggagga | ttgggaagac              | 2640              |
| aatagcaggc | atgctgggga | tgcggtgggc | tctatggctt | ctgaggcgga | aagaaccagc              | 2700              |
| tggggctcga | ggggggatcg | atcccgtcga | cctcgagagc | ttggcgtaat | catggtcata              | 2760              |
| gctgtttcct | gtgtgaaatt | gttatccgct | cacaattcca | cacaacatac | gagccggaag              | 2820              |
| cataaagtgt | aaagcctggg | gtgcctaatg | agtgagctaa | ctcacattaa | ttgcgttgcg              | 2880              |
| ctcactgccc | gctttccagt | cgggaaacct | gtcgtgccag | ctgcattaat | gaatcggcca              | 2940              |
| acgcgcgggg | agaggcggtt | tgcgtattgg | gcgctcttcc | gcttcctcgc | tcactgactc              | 3000              |
| gctgcgctcg | gtcgttcggc | tgcggcgagc | ggtatcagct | cactcaaagg | cggtaatacg              | 3060              |
| gttatccaca | gaatcagggg | ataacgcagg | aaagaacatg | tgagcaaaag | gccagcaaaa              | 3120              |
| ggccaggaac | cgtaaaaagg | ccgcgttgct | ggcgttttc  | cataggctcc | gccccctga               | 3180              |
| cgagcatcac | aaaaatcgac | gctcaagtca | gaggtggcga | aacccgacag | gactataaag              | 3240              |
| ataccaggcg | tttcccctg  | gaagctccct | cgtgcgctct | cctgttccga | ccctgccgct              | 3300              |
| taccggatac | ctgtccgcct | ttctcccttc | gggaagcgtg | gcgctttctc | aatgctcacg              | 3360              |
| ctgtaggtat | ctcagttcgg | tgtaggtcgt | tcgctccaag | ctgggctgtg | tgcacgaacc              | 3420              |
| ccccgttcag | cccgaccgct | gcgccttatc | cggtaactat | cgtcttgagt | ccaacccggt              | 3480              |
| aagacacgac | ttatcgccac | tggcagcagc | cactggtaac | aggattagca | gagcgaggta              | 3540              |
| tgtaggcggt | gctacagagt | tcttgaagtg | gtggcctaac | tacggctaca | ctagaaggac              | 3600 <sup>.</sup> |
| agtatttggt | atctgcgctc | tgctgaagcc | agttaccttc | ggaaaaagag | ttggtagctc              | 3660              |
| ttgatccggc | aaacaaacca | ccgctggtag | cggtggtttt | tttgtttgca | agcagcagat              | 3720              |
| tacgcgcaga | aaaaaaggat | ctcaagaaga | tcctttgatc | ttttctacgg | ggtctgacgc              | 3780              |
| tcagtggaac | gaaaactcac | gttaagggat | tttggtcatg | agattatcaa | aaaggatctt              | 3840              |
| cacctagatc | cttttaaatt | aaaaatgaag | ttttaaatca | atctaaagta | tatatgagta              | 3900              |
| aacttggtct | gacagttacc | aatgcttaat | cagtgaggca | cctatctcag | cgatctgtct              | 3960              |
| atttcgttca | tccatagttg | cctgactccc | cgtcgtgtag | ataactacga | tacgggaggg              | 4020              |
| cttaccatct | ggccccagtg | ctgcaatgat | accgcgagac | ceacgctcac | cggctccaga <sup>-</sup> | 4080              |
| tttatcagca | ataaaccagc | cagccggaag | ggccgagcgc | agaagtggtc | ctgcaacttt              | 4140              |

| atccgcctcc | atccagtcta | ttaattgttg | ccgggaagct | agagtaagta | gttcgccagt | 4200         |
|------------|------------|------------|------------|------------|------------|--------------|
| taatagtttg | cgcaacgttg | ttgccattgc | tacaggcatc | gtggtgtcac | gctcgtcgtt | 4260         |
| tggtatggct | tcáttcagct | ccggttccca | acgatcaagg | cgagttacat | gatcccccat | 432 <u>0</u> |
| gttgtgcaaa | aaagcggtta | gctccttcgg | tcctccgatc | gttgtcagaa | gtaagttggc | 4380         |
| cgcagtgtta | tcactcatgg | ttatggcagc | actgcataat | tctcttactg | tcatgccatc | 4440         |
| cgtaagatgc | ttttctgtga | ctggtgagta | ctcaaccaag | tcattctgag | aatagtgtat | 4500         |
| gcggcgaccg | agttgctctt | gcccggcgtc | aatacgggat | aataccgcgc | cacatagcag | 4560         |
| aactttaaaa | gtgctcatca | ttggaaaacg | ttcttcgggg | cgaaaactct | caaggatctt | 4620         |
| accgctgttg | agatccagtt | cgatgtaacc | cactcgtgca | cccaactgat | cttcagcatc | 4680         |
| ttttactttc | accagcgttt | ctgggtgagc | aaaaacagga | aggcaaaatg | ccgcaaaaaa | 4740         |
| gggaataagg | gcgacacgga | aatgttgaat | actcatactc | ttcctttttc | aatattattg | 4800         |
| aagcatttat | cagggttatt | gtctcatgag | cggatacata | tttgaatgta | tttagaaaaa | 4860         |
| taaacaaata | ggggttccgc | gcacatttcc | ccgaaaagtg | ccacctgacg | tc         | 4912         |

<210> 21 <211> 1777 5 <212> ADN

<213> Circovirus porcino

<400> 21

ctagtctcga cattggtgtg ggtatttaaa tggagccaca gctggtttct tttattattt 60 ggctggaacc aatcaattgt ttggtccagc tcaggtttgg gggtgaagta cctggagtgg 120 taggtaaagg gctgccttat ggtgtggcgg gaggagtagt taatataggg gtcataggcc 180 240 aagttggtgg agggggttac aaagttggca tccaagataa cagcagtgga cccaacacct 300 ctttgattag aggtgatggg gtctctgggg taaaattcat atttagcctt tctaatacgg tagtattgga aaggtagggg taggggggttg gtgccgcctg agggggggag gaactggccg 360 atgttgaatc tgagctggtt aacattccaa gatggctgcg agtgtcctcc ttctatggtg 420 480 agtacaaatt ctctagaaag gcggcaattg aagatacccg tctttcggcg ccatctgtaa cggtttctga aggcggggtg tgccaaatat ggtcttctgc ggaggatgtt tccaagatgg 540 ctgcgggggc gggtccttct tctgcggtaa cgcctccttg gccacgtcat cctataaaag 600 tgaaagaagt gcgctgctgt agtattacca gcgcacttcg gcagcggcag cacctcggca 660 gcgtcggtga aaatgccaag caagaaaagc ggcccgcaac cccataagag gtgggtgttc 720 accottaata atcottocga ggaggagaaa aacaaaatac gggaggottoc aatctcoott 780 tttgattatt ttgtttgcgg agaggaaggt ttggaagagg gtagaactcc tcacctccag 840 gggtttgcga attttgctaa gaagcagact tttaacaagg tgaagtggta ttttggtgcc 900 960 cgctgccaca tcgagaaagc gaaaggaacc gaccagcaga ataaagaata ctgcagctgc 1020 agtaaagaag gccacatact tatcgagtgt ggagctccgc ggaaccaggg gaagcgcagc

|   | gacctgtcta | ctgctgtgag | tacccttttg | gagacggggt | ctttggtgac | tgtagccgag | 1080 |
|---|------------|------------|------------|------------|------------|------------|------|
|   | cagttccctg | taacgtatgt | gagaaatttc | cgcgggctgg | ctgaactttt | gaaagtgagc | 1140 |
| • | gggaagatgc | agcagcgtga | ttggaagaca | gctgtacacg | tcatagtggg | cccgcccggt | 1200 |
|   | tgtgggaaga | gccagtgggc | ccgtaatttt | gctgagccta | gcgacaccta | ctggaagcct | 1260 |
|   | agtagaaata | agtggtggga | tggatatcat | ggagaagaag | ttgttgtttt | ggatgatttt | 1320 |
|   | tatggctggt | taccttggga | tgatctactg | agactgtgtg | accggtatcc | attgactgta | 1380 |
|   | gagactaaag | ggggtactgt | tccttttttg | gcccgcagta | ttttgattac | cagcaatcag | 1440 |
|   | gccccccagg | aatggtactc | ctcaactgct | gtcccagctg | tagaagctct | ctatcggagg | 1500 |
|   | attactactt | tgcaattttg | gaagactgct | ggagaacaat | ccacggaggt | acccgaaggc | 1560 |
|   | cgatttgaag | cagtggaccc | accctgtgcc | cttttcccat | ataaaataaa | ttactgagtc | 1620 |
|   | ttttttgtta | tcacatcgta | atggttttta | tttttattca | tttagagggt | cttttaggat | 1680 |
|   | aaattctctg | aattgtacat | aaatagtcag | ccttaccaca | taattttggg | ctgtggctgc | 1740 |
|   | attttggagc | gcatagccga | ggcctgtgtg | acaatca    |            |            | 1777 |

<210> 22

<211> 1777 5 <212> ADN

<213> Circovirus porcino

<400> 22

| • | ctagtgattg | tcacacaggc | ctcggctatg- | cgctccaaaa | tgcagccaca | gcccaaaatt | 60   |
|---|------------|------------|-------------|------------|------------|------------|------|
|   | •          | gctgactatt |             |            |            |            | 120  |
|   | atgaataaaa | ataaaaacca | ttacgatgtg  | ataacaaaaa | agactcagta | atttatttta | 180  |
|   | tatgggaaaa | gggcacaggg | tgggtccact  | gcttcaaatc | ggccttcggg | tacctccgtg | 240  |
|   |            | cagcagtctt |             |            |            |            | 300  |
|   | acagctggga | cagcagttga | ggagtaccat  | tcctgggggg | cctgattgct | ggtaatcaaa | 360  |
|   | atactgcggg | ccaaaaaagg | aacagtaccc  | cctttagtct | ctacagtcaa | tggataccgg | 420  |
|   |            | tcagtagatc |             |            |            |            | 480  |
|   |            |            |             | ,          |            | gtaggtgtcg | 540  |
|   | ctaggctcag | caaaattacg | ggcccactgg  | ctcttcccac | aaccgggcgg | gcccactatg | 600  |
|   | acgtgtacag | ctgtcttcca | atcacgctgc  | tgcatcttcc | cgctcacttt | caaaagttca | 660  |
|   | gccagcccgc | ggaaatttct | cacatacgtt  | acagggaact | gctcggctac | agtcaccaaa | 720  |
|   | gaccccgtct | ccaaaagggt | actcacagca  | gtagacaggt | cgctgcgctt | cccctggttc | 780  |
|   |            | cacactcgat |             | •          |            |            | 840  |
|   |            | cggttccttt |             |            | •          |            | 900  |
|   |            | aagtctgctt |             |            |            |            | 960  |
|   |            | aaccttcctc |             |            |            |            | 1020 |
|   |            | ttttctcctc |             |            | •          |            | 1080 |
|   |            |            |             |            |            |            |      |

| ggttgcgggc                                                        | cgcttttctt  | gcttggcatt | ttcaccgacg | ctgccgaggt | gctgccgctg | 1140              |
|-------------------------------------------------------------------|-------------|------------|------------|------------|------------|-------------------|
| ccgaagtgcg                                                        | ctggtaatac  | tacagcagcg | cacttctttc | acttttatag | gatgacgtgg | 1200              |
| ccaaggaggc                                                        | gttaccgcag  | aagaaggacc | cgccccgca  | gccatcttgg | aaacatcctc | <sup>-</sup> 1260 |
| cgcagaagac                                                        | catatttggc  | acaccccgcc | ttcagaaacc | gttacagatg | gcgccgaaag | 1320              |
| acgggtatct                                                        | tcaattgccg  | cctttctaga | gaatttgtac | tcaccataga | aggaggacac | 1380              |
| tcgcagccat                                                        | cttggaatgt  | taaccagctc | agattcaaca | tcggccagtt | cctcccccc  | 1440              |
| tcaggcggca                                                        | ccaaccccct  | acccctacct | ttccaatact | accgtattag | aaaggctaaa | 1500              |
| tatgaatttt                                                        | accccagaga  | ccccatcacc | tctaatcaaa | gaggtgttgg | gtccactgct | 1560              |
| gttatcttgg                                                        | atgccaactt  | tgtaaccccc | tccaccaact | tggcctatga | cccctatatt | 1620              |
| aactactcct                                                        | cccgccacac  | cataaggcag | ccctttacct | accactccag | gtacttcacc | 1680              |
| cccaaacctg                                                        | agctggacca  | aacaattgat | tggttccagc | caaataataa | aagaaaccag | 1740              |
| ctgtggctcc                                                        | atttaaatac  | ccacaccaat | gtcgaga    |            |            | 1777              |
| <210> 23<br><211> 752<br><212> ADN<br><213> Circoviru<br><400> 23 | ıs porcino  |            |            |            |            |                   |
|                                                                   |             |            |            |            |            | <b>CO</b>         |
|                                                                   | aaggcggcaa  |            |            | •          |            | 120               |
|                                                                   | gtgtgccaaa  |            | •          |            |            | 120<br>180        |
|                                                                   | tcttctgcgg  | •          |            |            |            | 240               |
|                                                                   | tgtagtatta  |            |            |            |            | 300               |
| _                                                                 | aagcaagaaa  |            |            | ,          | •          | 360               |
|                                                                   | cgaggaggag  |            |            | •          |            | 420               |
|                                                                   | cggagaggaa  |            | *          |            |            | 480               |
| •                                                                 | taagaagcag  |            |            | •          |            | 540               |
|                                                                   | agcgaaagga  |            |            |            |            | 600               |
|                                                                   | cgagtgtgga  |            |            |            |            | 660               |
|                                                                   | ttaccagcaa  |            |            |            |            | 720               |
|                                                                   | ctctctatcg  |            |            | cccggaagac | tyctygagaa | 752               |
|                                                                   | aggtacccga  | ayyccyaccc | ya         |            |            | , , , ,           |
| <210> 24<br><211> 350<br><212> ADN<br><213> Circoviru             | ıs porcino  |            |            |            |            |                   |
| <400> 24                                                          | 22000000023 | ttasaastac | reatettea  | acaccatcta | taacqqtttc | 60                |
|                                                                   | aaggcggcaa  | •          |            |            |            | 120               |
| LyaayyLyyy                                                        | gtgtgccaaa  | catygittit | cccyyayyat | gillaga    | -333-333   | 120               |

|    | ggcgggtcct tcttctgcgg taacgcctcc ttggccacgt catcctataa aagtgaaaga              |     |
|----|--------------------------------------------------------------------------------|-----|
|    | agtgcgctgc tgtagtatta ccagcgcact tcggcagatc aggcccccca ggaatggtac              |     |
|    | tcctcaactg ctgtcccagc tgtagaagct ctctatcgga ggattactac tttgcaattt              |     |
|    | tggaagactg ctggagaaca atccacggag gtacccgaag gccgatttga                         |     |
| 5  | <210> 25<br><211> 17<br><212> ADN<br><213> Artificial                          |     |
| 10 | <220> <223> Secuencia del cebador                                              |     |
| 10 | <400> 25<br>cctaactacg gctacac 17                                              |     |
| 15 | <210> 26<br><211> 18<br><212> ADN<br><213> Artificial                          |     |
| 20 | <220><br><223> Secuencia del cebador                                           |     |
|    | <400> 26 cgtagttatc tacacgac 18                                                |     |
| 25 | <210> 27<br><211> 190<br><212> ADN<br><213> Circovirus porcino                 |     |
| 30 | <400> 27 actagtaggt gtcgctaggc tcagcaaaat tacgggccca ctgactcttc ccacaaccgg     | 60  |
|    | gcgggcccac tatgacgtgt acagctgtct tccaatcacg ctgctgcatc ttcccgctca              | 120 |
|    | ctttcaaaag ttcagccagc ccgcggaaat ttctcacata cgttacaggg aactgctcca              | 180 |
|    | tatgactagt                                                                     | 190 |
| 35 | <210> 28<br><211> 190<br><212> ADN<br><213> Circovirus porcino                 |     |
|    | <400> 28_<br>actagtcata tggagcagtt ccctgtaacg tatgtgagaa atttccgcgg gctggctgaa | 60  |
|    | cttttgaaag tgagcgggaa gatgcagcag cgtgattgga agacagctgt acacgtcata              | 120 |
|    | gtgggcccgc ccggttgtgg gaagagtcag tgggcccgta attttgctga gcctagcgac              | 180 |
| 40 | acctactagt                                                                     | 190 |
| 40 | <210> 29<br><211> 1783<br><212> ADN<br><213> Circovirus porcino                |     |
| 45 | <400> 29                                                                       |     |

```
actagtctcg acattggtgt gggtatttaa atggagccac agctggtttc ttttattatt
                                                                        60
                                                                       120
tggctggaac caatcaattg tttggtccag ctcaggtttg ggggtgaagt acctggagtg
                                                                       180
gtaggtaaag ggctgcctta tggtgtggcg ggaggagtag ttaatatagg ggtcataggc
caagttggtg gagggggtta caaagttggc atccaagata acagcagtgg acccaacacc
                                                                       240
tctttgatta gaggtgatgg ggtctctggg gtaaaattca tatttagcct ttctaatacg
                                                                       300
gtagtattgg aaaggtaggg gtagggggtt ggtgccgcct gaggggggga ggaactggcc
                                                                       360
gatgttgaat ctgagctggt taacattcca agatggctgc gagtgtcctc cttctatggt
                                                                       420
                                                                       480
gagtacaaat tototagaaa ggoggcaatt gaagatacco gtotttoggo gocatotgta
acggtttctg aaggcggggt gtgccaaata tggtcttctg cggaggatgt ttccaagatg
                                                                       540
                                                                       600
gctgcggggg cgggtccttc ttctgcggta acgcctcctt ggccacgtca tcctataaaa
                                                                       660
gtgaaagaag tgcgctgctg tagtattacc agcgcacttc ggcagcggca gcacctcggc
                                                                       720
agcgtcggtg aaaatgccaa gcaagaaaag cggcccgcaa ccccataaga ggtgggtgtt
                                                                       780
caccettaat aateetteeg aggaggagaa aaacaaaata egggagette caateteeet-
                                                                       840
ttttgattat tttgtttgcg gagaggaagg tttggaagag ggtagaactc ctcacctcca
ggggtttgcg aattttgcta agaagcagac ttttaacaag gtgaagtggt attttggtgc
                                                                       900
                                                                       960
ccgctgccac atcgagaaag cgaaaggaac cgaccagcag aataaagaat actgcagctg
                                                                      1020
cagtaaagaa ggccacatac ttatcgagtg tggagctccg cggaaccagg ggaagcgcag
                                                                      1080
cgacctgtct actgctgtga gtaccctttt ggagacgggg tctttggtga ctgtagccga
gcagttccct gtaacgtatg tgagaaattt ccgcgggctg gctgaacttt tgaaagtgag
                                                                      1140
                                                                      1200
cgggaagatg cagcagcgtg attggaagac agctgtacac gtcatagtgg gcccgcccgg
ttgtgggaag agccagtggg cccgtaattt tgctgagcct agcgacacct actggaagcc
                                                                      1260
                                                                      1320
tagtagaaat aagtggtggg atggatatca tggagaagaa gttgttgttt tggatgattt
ttatggctgg ttaccttggg atgatctact gagactgtgt gaccggtatc cattgactgt
                                                                      1380
                                                                      1440
agagactaaa gggggtactg ttcctttttt ggcccgcagt attttgatta ccagcaatca
ggcccccag gaatggtact cctcaactgc tgtcccagct gtagaagctc tctatcggag
                                                                      1500
                                                                      1560
gattactact ttgcaatttt ggaagactgc tggagaacaa tccacggagg tacccgaagg
ccgatttgaa gcagtggacc caccctgtgc ccttttccca tataaaataa attactgagt
                                                                      1620
cttttttgtt atcacatcgt aatggttttt atttttattc atttagaggg tcttttagga
                                                                      1680
taaattctct gaattgtaca taaatagtca gccttaccac ataattttgg gctgtggctg
                                                                      1740
                                                                      1783
cattttggag cgcatagccg aggcctgtgt gacaatcact agt
```

<sup>&</sup>lt;210> 30

<sup>&</sup>lt;211> 1783

<sup>5 &</sup>lt;212> ADN

<sup>&</sup>lt;213> Circovirus porcino

<sup>&</sup>lt;400> 30

60

actagtgatt gtcacacagg cctcggctat gcgctccaaa atgcagccac agcccaaaat

| tatgtggtaa                                            | ggctgactat   | ttatgtacaa | ttcagagaat | ttatcctaaa | agaccctcta | 120  |
|-------------------------------------------------------|--------------|------------|------------|------------|------------|------|
| aatgaataaa                                            | aataaaaacc   | attacgatgt | gataacaaaa | aagactcagt | aatttattt  | 180  |
| atatgggaaa                                            | agggcacagg   | gtgggtccac | tgcttcaaat | cggccttcgg | gtacctccgt | 240  |
| ggattgttct                                            | ccagcagtct   | tccaaaattg | caaagtagta | atcctccgat | agagagcttc | 300  |
| tacagctggg                                            | acagcagttg   | aggagtacca | ttcctggggg | gcctgattgc | tggtaatcaa | 360  |
| aatactgcgg                                            | gccaaaaaag   | gaacagtacc | ccctttagtc | tctacagtca | atggataccg | 420  |
| gtcacacagt                                            | ctcagtagat   | catcccaagg | taaccagcca | taaaaatcat | ccaaaacaac | 480  |
| aacttcttct                                            | ccatgatatc   | catcccacca | cttatttcta | ctaggcttcc | agtaggtgtc | 540  |
| gctaggctca                                            | gcaaaattac   | gggcccactg | gctcttccca | caaccgggcg | ggcccactat | 600  |
| gacgtgtaca                                            | gctgtcttcc   | aatcacgctg | ctgcátcttc | ccgctcactt | tcaaaagttc | 660  |
| agccagcccg                                            | cggaaatttc   | tcacatacgt | tacagggaac | tgctcggcta | cagtcaccaa | 720  |
| agaccccgtc                                            | tccaaaaggg   | tactcacagc | agtagacagg | tcgctgcgct | tccctggtt  | 780  |
| ccgcggagct                                            | ccacactcga   | taagtatgtg | gccttcttta | ctgcagctgc | agtattcttt | 840  |
| attctgctgg                                            | tcggttcctt   | tcgctttctc | gatgtggcag | cgggcaccaa | aataccactt | 900  |
| caccttgtta                                            | aaagtctgct   | tcttagcaaa | attcgcaaac | ccctggaggt | gaggagttct | 960  |
| accctcttcc                                            | aaaccttcct   | ctccgcaaac | aaaataatca | aaaagggaga | ttggaagctc | 1020 |
| ccgtattttg                                            | ttttctcct    | cctcggaagg | attattaagg | gtgaacaccc | acctcttatg | 1080 |
| gggttgcggg                                            | ccgcttttct   | tgcttggcat | tttcaccgac | gctgccgagg | tgctgccgct | 1140 |
| gccgaagtgc                                            | gctggtaata   | ctacagcagc | gcacttcttt | cacttttata | ggatgacgtg | 1200 |
| gccaaggagg                                            | cgttaccgca   | gaagaaggac | ccgccccgc  | agccatcttg | gaaacatcct | 1260 |
| ccgcagaaga                                            | ccatatttgg   | cacaccccgc | cttcagaaac | cgttacagat | ggcgccgaaa | 1320 |
| gacgggtatc                                            | ttcaattgcc   | gcctttctag | agaatttgta | ctcaccatag | aaggaggaca | 1380 |
| ctcgcagcca                                            | tcttggaatg   | ttaaccagct | cagattcaac | atcggccagt | tcctccccc  | 1440 |
| ctcaggcggc                                            | accaaccccc   | tacccctacc | tttccaatac | taccgtatta | gaaaggctaa | 1500 |
| atatgaattt                                            | taccccagag   | accccatcac | ctctaatcaa | agaggtgttg | ggtccactgc | 1560 |
| tgttatcttg                                            | gatgccaact   | ttgtaacccc | ctccaccaac | ttggcctatg | acccctatat | 1620 |
| taactactcc                                            | tcccgccaca   | ccataaggca | gccctttacc | taccactcca | ggtacttcac | 1680 |
| ccccaaacct                                            | gagctggacc   | aaacaattga | ttggttccag | ccaaataata | aaagaaacca | 1740 |
| gctgtggctc                                            | catttaaata   | cccacaccaa | tgtcgagact | agt        |            | 1783 |
| <210> 31<br><211> 180<br><212> ADN<br><213> Circoviru | us porcino 1 |            |            |            |            |      |
| <400> 31<br>gcagttccct                                | gťaacgtatg   | tgagaaattt | ccgcgggctg | gctgaactti | tgaaagtgag | 60   |
|                                                       |              |            |            |            | gcccgcccgg | 120  |
|                                                       |              |            |            |            | actggaagcc | 180  |
|                                                       |              |            |            |            |            |      |

| 5  | <210> 32<br><211> 184<br><212> ADN<br><213> Circovirus porcino 2                         |      |
|----|------------------------------------------------------------------------------------------|------|
|    | <400> 32<br>cagagcagca ccctgtaacg tttgtcagaa atttccgcgg gctggctgaa cttttgaaag            | 60   |
|    | tgagcgggaa aatgcagaag cgtgattgga agactaatgt acacgtcatt gtggggccac                        | 120  |
|    | ctgggtgtgg taaaagcaaa tgggctgcta attttgcaga cccggaaacc acatactgga                        | 180  |
|    | aacc                                                                                     | 184. |
| 10 | <210> 33<br><211> 166<br><212> ADN<br><213> Virus de la enfermedad del pico y las plumas |      |
| 15 | <400>33<br>cgagagttcc cagatatcta cgtcaggcat gggcggggct tacataatct ctcgctaatg             | 60   |
|    | gttggttccc ggccacgtga cttcaagact gaggtcgacg tcatctacgg accaccgggg                        | 120  |
|    | tgtggcaaga gtagatgggc caatgagcag ccggggacca aatatt                                       | 166  |
| 20 | <210> 34<br><211> 180<br><212> ADN<br><213> Circovirus del canario                       |      |
|    | <400>34<br>tggtggagat cgcgcgagag ttcagtgaga tctacgtcaa gtatgggcgt ggtctgaggg             | 60   |
|    | atttggccct gatgattgga cagaaacccc gtgacttcaa gacggaagtc gtcgtcatca                        | 120  |
| 25 | cagggccttc cggggtgggc aagtcccgac ttgcctctga aatggaagga tcgaagttct                        | 180  |
| 25 | <210> 35<br><211> 174<br><212> ADN<br><213> Circovirus de los colúmbidos                 |      |
| 30 | <400> 35                                                                                 |      |
|    | tcgcgcgaga cttcagtgag atatacgtca agtatgggcg tggcttgcgc gacctgaagc                        | 60   |
|    | tgctgattgg tcagcagcct cgtgacttca aaacggaagt catcgtcatc acgggcccgc                        | 120  |
|    | ccggttgcgg gaagagccgt tgggcagctg agtaccccgg aagtaaattt taca                              | 174  |
| 35 | <210> 36<br><211> 182<br><212> ADN<br><213> Circovirus del pato                          |      |
| 40 | <400> 36<br>tgaggtggcc cggaagttcc ccacgactta tgttatcttt gggcgtggcc tggaacgcct            | 60   |
|    | ccgtcacctg atcgttgaga cgcaacgtga ttggaagacc gaagtcatcg ttctgattgg                        | 120  |
|    | tccgcccggc accgggaaga gccgttatgc atttgaattt cccgccgaaa acaagtatta                        | 180  |
|    | ca                                                                                       | 182  |

| 5  | <210> 37<br><211> 201<br><212> ADN<br><213> Circovirus del pinzó | n            |              |              |              |     |
|----|------------------------------------------------------------------|--------------|--------------|--------------|--------------|-----|
|    | <400> 37<br>ccgtgaaagc cggaagagg                                 | t atggccgaag | tcgcgcgaga   | gttcagtcta   | gcctacgtca   | 60  |
|    | gatatgggcg gggcctgcg                                             | t gatcttgcgc | tgctgattgg   | ccagaagccc   | cgtgacttca   | 120 |
|    | aaacggaagt catagtgct                                             | g accggcccta | gtgggtgtgg   | caaatcccgc   | tgggccaatg   | 180 |
|    | aacaagaagg aactaagtt                                             | t t          |              |              |              | 201 |
| 10 | <210> 38<br><211> 200<br><212> ADN<br><213> Circovirus del ganso | )            |              |              |              |     |
| 15 | <400> 38<br>tggtctgccg ataactgac                                 | g tggcccggaa | gtacccgacg   | acttatgtaa   | tgtttgggcg   | 60  |
|    | gggcttagag cggttgcgt                                             | c agctgatcgt | ggagaccgct   | cgtgattgga   | agacggaggt   | 120 |
|    | catcgttctg attgggcgg                                             | c ctggaagcgg | gaagagccgt   | tacgcgtttg   | aatttcccgc   | 180 |
|    | gcgtgaaaag tattataaa                                             | t            |              |              |              | 200 |
| 20 | <210> 39<br><211> 180<br><212> ADN<br><213> Circovirus de la gav | iota         |              |              |              |     |
|    | <400> 39<br>gtgaaatcgc gcgagagtt                                 | c agtgaagtct | acgtcaagta   | tgggcggggc   | ctccgtgatc   | 60  |
|    | tccggttgct gattggttg                                             | c ccgccccgcg | atttcaaaac   | agaagtcatc   | gttctgattg   | 120 |
|    | gcccacctgg ctgtggcaa                                             | g tcaaaattgg | ccaatgagat   | ggaagggtct   | aagttctaca   | 180 |
| 25 | <210> 40<br><211> 190<br><212> ADN<br><213> Circovirus porcino 1 |              |              |              |              |     |
| 30 | <400> 40 ctgtagccga gcagttcc                                     | t gtaacgtate | g tgagaaatti | t ccgcgggct  | g gctgaacttt | 60  |
|    | tgaaagtgag cgggaaga                                              | g cagcagcgt  | g attggaagad | agctgtaca    | gtcatagtgg   | 120 |
|    | gcccgcccgg ttgtgggaa                                             | ig agccagtgg | g cccgtaatti | t tgctgagcc1 | t agcgacacct | 180 |
|    | actggaagcc                                                       |              | •            |              |              | 190 |
| 35 | <210> 41<br><211> 190<br><212> ADN<br><213> Circovirus porcino 1 |              |              |              |              |     |
|    | <400> 41:                                                        |              |              |              |              |     |

| ggcttccagt | aggtgtcgct | aggctcagca | aaattacggg | cccactggct | cttcccacaa | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| ccgggcgggc | ccactatgac | gtgtacagct | gtcttccaat | cacgctgctg | catcttcccg | 120 |
| ctcactttca | aaagttcagc | cagcccgcgg | aaatttctca | catacgttac | agggaactgc | 180 |
| tcggctacag |            |            |            |            | •          | 190 |

#### **REIVINDICACIONES**

- Procedimiento in vitro para estimular la expresión de un transgén en una célula hospedadora, en donde el procedimiento incluye las etapas de:
- (a) inserción de una secuencia de un elemento promotor de la cápsida (Pcap) o un complemento inverso de la misma (PcapR) que es al menos idéntica al 80% a cualquiera de las secuencias seleccionadas de las SEQ ID n.º 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22 y 24 en un casete de expresión de mamífero delante (5') de un promotor inmediato/temprano de citomegalovirus (Pcmv) o un elemento promotor del SV40:
- (b) inserción del transgén en el vector por detrás (3') del elemento promotor de citomegalovirus o del elemento promotor del SV40;
  - (c) inserción del casete de expresión en la célula hospedadora; y
  - (d) hacer que se exprese el transgén.

5

15

20

30

- 2. Procedimiento de acuerdo con la reivindicación 1, en donde se inserta un intrón de citomegalovirus por detrás (3') del Pcmv y se inserta un sitio de poliadenilación de la hormona de crecimiento bovina (poliA de la bgh) por detrás (3') del transgén.
- 3. Procedimiento de acuerdo con cualquiera de las reivindicaciones 1 o 2, que hace que el transgén se exprese a un nivel más alto que cuando se expresa en un vector que contiene el casete de expresión sin el elemento promotor de la cápsida (Pcap) ni el complemento inverso del mismo.
- 4. Procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 3, en donde el elemento promotor de la cápsida o el complemento inverso del mismo es de un circovirus.
- 5. Procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 4, en donde la secuencia de Pcap es cualquiera de las secuencias seleccionadas entre SEQ ID n.º 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 24 y 29, o la secuencia de PcapR es cualquiera de las secuencias seleccionadas entre SEQ ID n.º 2, 4, 6, 8, 10, 12, 14, 16, 18, 22 y 30.
- 25 6. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde el elemento promotor de la cápsida o el complemento inverso del mismo se inserta inmediatamente por delante (5') del elemento promotor inmediato/temprano de citomegalovirus o del elemento promotor del SV40.
  - 7. Procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 6, en donde el elemento promotor de la cápsida o el complemento inverso del mismo se inserta hasta 1100 pares de bases por delante (5') del elemento promotor inmediato/temprano de citomegalovirus o del elemento promotor del SV40.
    - 8. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde la célula hospedadora es una línea de células de mamífero.
  - 9. Casete de expresión de mamífero, que incluye:
  - (a) un elemento promotor inmediato/temprano de citomegalovirus (Pcmv) o un elemento promotor del SV40; y
- (b) una secuencia del elemento promotor de la cápsida (Pcap) o un complemento inverso (PcapR) de la misma localizada por delante (5') del elemento promotor de CMV o del elemento promotor del SV40, en donde la secuencia de Pcap o la secuencia de PcapR es al menos idéntica al 80% a cualquiera de las secuencias seleccionadas entre SEQ ID n.º 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22 y 24.
  - 10. Casete de expresión de acuerdo con la reivindicación 9, que incluye un transgén por detrás (3') del elemento promotor inmediato/temprano de citomegalovirus o del elemento promotor del SV40.
  - 11. Vector que incluye un casete de expresión de acuerdo con cualquiera de las reivindicaciones 9 o 10.
  - 12. Célula hospedadora transformada con un vector de acuerdo con la reivindicación 11.
  - 13. Vacuna de ADN que incluye un vector o casete de expresión de acuerdo con cualquiera de las reivindicaciones 9 a 11.
- 45 14. Composición farmacéutica que incluye un vector o casete de expresión de acuerdo con cualquiera de las reivindicaciones 9 a 11.

15. Composición farmacéutica de acuerdo con la reivindicación 14, para ser usada en el tratamiento del VIH o

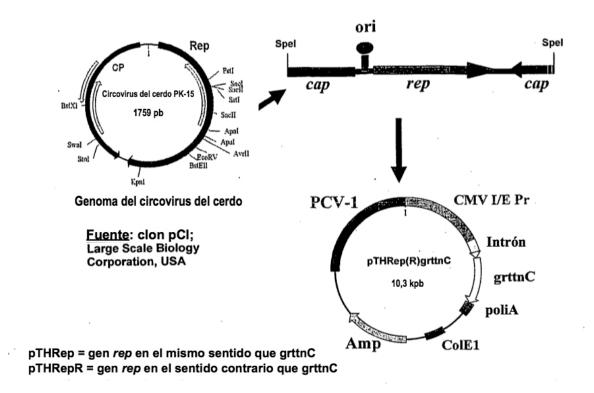



Fig. 1 (a)

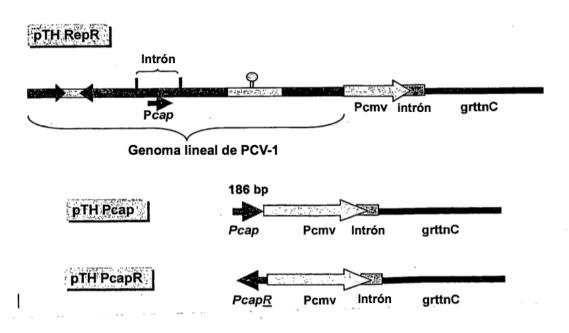
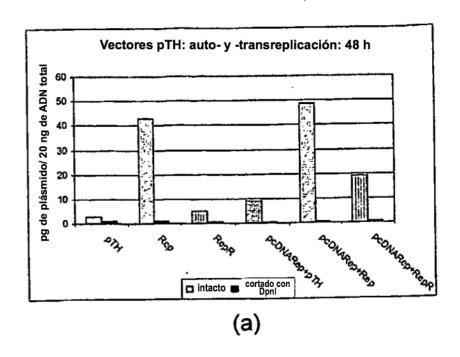




Fig. 1 (b)



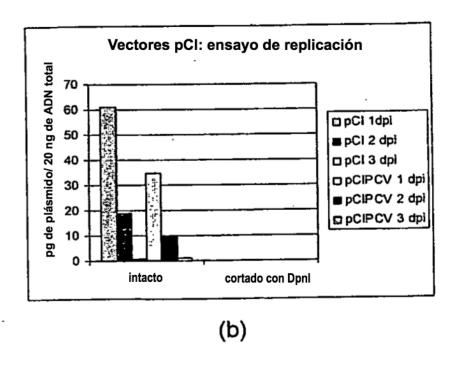



Fig. 2

- Prep: diferenciar la replicación del efecto del promotor
- La replicación necesita las proteínas Rep y Rep' codificadas por el gen rep
- Ambas se fijan a Prep: sólo Rep puede inhibir a Prep

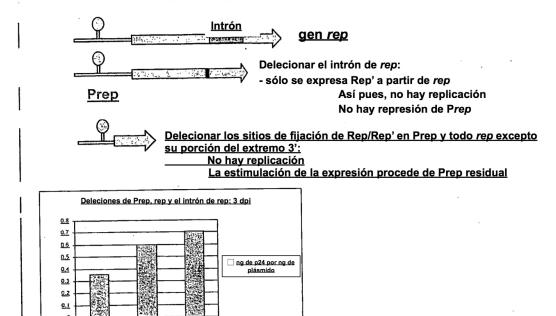



Fig. 3

pTHARoportinC pTHReportinC 3 dnl 3dp

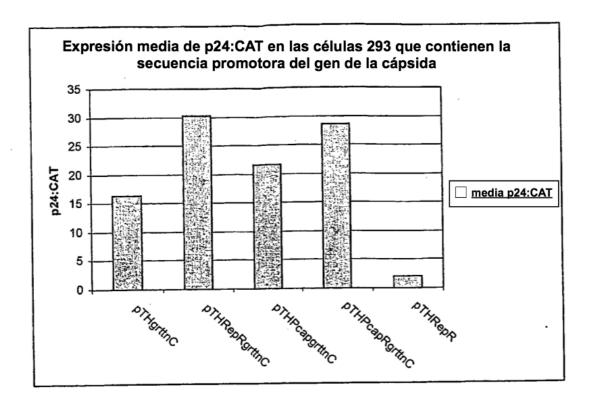



Fig. 4

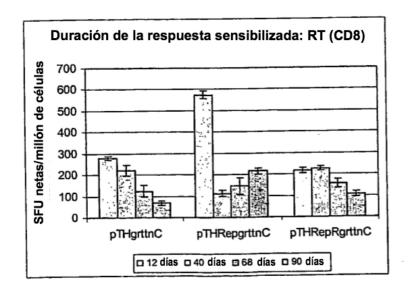



Fig. 5

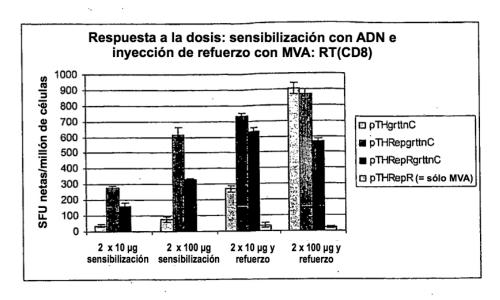



Fig. 6

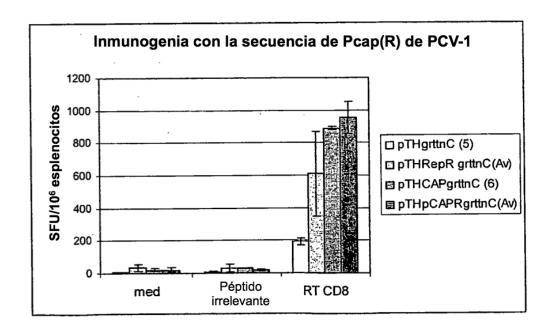



Fig. 7

### SEQ Pcap: 190 pb

#### ORIGEN

| 1   | ACTAGTAGGT | GTCGCTAGGC | TCAGCAAAAT | TACGGGCCCA | CTGACTCTTC | CCACAACCGG |
|-----|------------|------------|------------|------------|------------|------------|
| 61  | GCGGGCCCAC | TATGACGTGT | ACAGCTGTCT | TCCAATCACG | CTGCTGCATC | TTCCCGCTCA |
| 121 | CTTTCAAAAG | TTCAGCCAGC | CCGCGGAAAT | TTCTCACATA | CGTTACAGGG | AACTGCTCCA |
| 181 | TATGACTAGT |            |            |            |            |            |

### Fig. 8

SEQ PcapR: 190 pb;

#### ORIGEN

| 1   | ACTAGTCATA | TGGAGCAGTT | CCCTGTAACG  | TATGTGAGAA | <b>ATTTCC</b> GCGG | GCTGGCTGAA |
|-----|------------|------------|-------------|------------|--------------------|------------|
| 61  | CTTTTGAAAG | TGAGCGGGAA | GATGCAGCAG  | CGTGATTGGA | AGACAGCTGT         | ACACGTCATA |
| 121 | GTGGGCCCGC | CCGGTTGTGG | GAAGAGTCAG- | TGGGCCCGTA | ATTTTGCTGA         | GCCTAGCGAC |
| 181 | ACCTACTAGT |            |             | ,          | ·.                 |            |

### Fig. 9

SEQ grttnC: 3687 pb

#### ORIGEN

| 1     | AAGCTTGCCA | CCATGGCTGC | TCGCGCATCT | ATCCTCAGAG | GCGAAAAGTT | GGATAAGTGG |   |
|-------|------------|------------|------------|------------|------------|------------|---|
| 61    | GAAAAAATCA | GACTCAGGCC | AGGAGGTAAA | AAACACTACA | TGCTGAAGCA | TATCGTGTGG |   |
| 121   | GCATCTAGGG | AGTTGGAGAG | ATTTGCACTG | AACCCCGGAC | TGCTGGAAAC | CTCAGAGGGC |   |
| 181   | TGTAAGCAAA | TCATGAAACA | GCTCCAACCA | GCCTTGCAGA | CCGGAACAGA | AGAGCTGAAG |   |
| 241   | TCCCTTTACA | ATACCGTGGC | AACCCTCTAT | TGCGTCCACG | AGAAGATCGA | GGTGAGAGAC |   |
| 301   | ACAAAGGAGG | CCCTGGACAA | AATCGAGGAG | GAGCAGAATA | AGTGCCAGCA | GAAGACCCAG | • |
| 361   | CAGGCAAAGG | CTGCTGACGG | AAAGGTCTCT | CAGAACTATC | CTATCGTTCA | GAACCTTCAG |   |
| 421   | GGGCAGATGG | TGCACCAAGC | AATCAGCCCT | AGAACCCTGA | ACGCATGGGT | GAAGGTGATC |   |
| 481   | GAGGAGAAAG | CCTTTTCTCC | CGAGGTTATC | CCCATGTTTA | CCGCCCTGAG | CGAAGGCGCC |   |
| 541   | ACTCCTCAAG | ACCTGAACAC | TATGCTGAAC | ACAGTGGGAG | GACACCAGGC | CGCTATGCAG |   |
| 601   | ATGTTGAAGG | ATACCATCAA | CGAGGAGGCA | GCCGAATGGG | ACCGCCTCCA | CCCCGTGCAC |   |
| 661 . | GCCGGACCTA | TCGCCCCCGG | ACAAATGAGA | GAACCTCGCG | GAĄGTGATAT | TGCCGGTACT |   |
| 721   | ACCAGCACCC | TTCAAGAGCA | GATTGCTTGG | ATGACCAGCA | ACCCACCCAT | CCCAGTGGGC | • |
| 781   | GATATTTACA | AAAGGTGGAT | TATTCTGGGG | CTGAACAAAA | TTGTGÅGAAT | GTACTCCCCC |   |
| 841   | GTCTCCATCC | TCGACATCCG | CCAAGGACCC | AAGGAGCCTT | TTAGGGATTA | CGTGGACAGA |   |
| 901   | TTCTTCAAAA | CCCTTAGAGC | TGAGCAAGCC | ACTCAGGAGG | TTAAGAACTG | GATGACAGAT |   |
| 961   | ACTCTGCTCG | TGCAAAACGC | TAACCCCGAT | TGCAAAACCA | TCTTGAGAGC | TCTCGGTCCA |   |
| 1021. |            |            |            |            | TGGGAGGACC |            |   |
| 1081  |            |            |            |            | GCAATATCAT |            |   |
| 1141  | AGTAACTTTA | AGGGTCCCAG | GAGAATCGTC | AAGTGCTTCA | ATTGTGGCAA | GGAGGGTCAC |   |
| 1201  | ATTGCCAGGA | ACTGCCGCGC | CCCCAGGAAG | AAAGGCTGCT | GGAAGTGTGG | CAAAGAGGGC |   |
| 1261  | CACCAGATGA | AGGATTGCAC | CGAGCGCCAA | GCAAACTTCC | TGGGAAAGAT | TTGGCCCAGT |   |
| 1321  | CATAAGGGCC | GCCCTGGCGA | ATTCTGCGGC | AAGAAGGCCA | TCGGCACCGT | GCTGGTGGGC |   |
| 1381  | CCCACCCCCG | TGAACATCAT | CGGCCGGAAC | ATGCTGACCC | AGCTGGGCTG | CACCCTGAAC |   |
| 1441  | TTCCCCATCA | GCCCCATCGA | GACCGTGCCC | GTGAAGCTGA | AGCCCGGCAT | GGACGGCCCC |   |
| 1501  | AAGGTGAAGC | AGTGGCCCCT | GACCGAGGTG | AAGATCAAGG | CCCTGACCGC | CATCTGCGAG |   |
| 1561  | GAGATGGAGA | AGGAGGGCAA | GATCACCAAG | ATCGGCCCCG | AGAACCCCTA | CAACACCCCC |   |
| 1621  | ATCTTCGCCA | TCAAGAAGGA | GGACAGCACC | AAGTGGCGGA | AGCTGGTGGA | CTTCCGGGAG |   |
| 1681  | CTGAACAAGC | GGACCCAGGA | CTTCTGGGAG | GTGCAGCTGG | GCATCCCCCA | CCCCGCCGGC |   |
| 1741  | CTGAAGAAGA | AGAAGAGCGT | GACCGTGCTG | GACGTGGGCG | ACGCCTACTT | CAGCGTGCCC |   |

| 1801 | CTGGACGAGG | GCTTCCGGAA | GTACACCGCC | TTCACCATCC | CCAGCATCAA | CAACGAGACC |
|------|------------|------------|------------|------------|------------|------------|
| 1861 | CCCGGCATCC | GGTACCAGTA | CAACGTGCTG | CCCCAGGGCT | GGAAGGGCAG | CCCCGCCATC |
| 1921 | TTCCAGGCCA | GCATGACCAA | GATCCTGGAG | CCCTTCCGGG | CCAAGAACCC | CGAGATCGTG |
| 1981 | ATCTACCAGT | ACATGGCCGC | CCTGTACGTG | GGCAGCGACC | TGGAGATCGG |            |
| 2041 | GCCAAGATCG | AGGAGCTGCG | GGAGCACCTG | CTGAAGTGGG | GCTTCACCAC |            |
| 2101 |            | AGGAGCCCCC |            | ATGGGCTACG | AGCTGCACCC | CGACAAGTGG |
| 2161 | ACCGTGCAGC |            | GCCCGAGAAG |            | CCGTGAACGA | CATCCAGAAG |
| 2221 |            | AGCTGAACTG | GACCAGCCAG | ATCTACCCCG | GCATCAAGGT |            |
| 2281 | TGCAAGCTGC | TGCGGGGCAC | CAAGGCCCTG | ACCGACATCG | TGCCCCTGAC |            |
| 2341 | GAGCTGGAGC | TGGCCGAGAA | CCGGGAGATC | CTGAAGGAGC |            |            |
| 2401 |            | AGGACCTGAT | CGCCGAGATC | CAGAAGCAGG | GCGACGACCA |            |
| 2461 |            | AGGAGCCCTT | CAAGAACCTG | AAAACCGGCA | AGTACGCCAA | GCGGCGGACC |
| 2521 | ACCCACACCA | ACGACGTGAA | GCAGCTGACC | GAGGCCGTGC | AGAAGATCAG |            |
| 2581 | ATCGTGACCT | GGGGCAAGAC | CCCCAAGTTC |            |            | GACCTGGGAG |
| 2641 | ATCTGGTGGA | CCGACTACTG | GCAGGCCACC | TGGATCCCCG | AGTGGGAGTT | CGTGAACAGC |
| 2701 | GGCCGCAAGC |            |            | AGCTACGGCC | GCAAGAAGCG | CCGCCAGCGC |
| 2761 | CGCAGCACCC | CGCCCAGCAG | CGAGGACCAC | CAGAACCCCA |            | GCCCTGCCC  |
| 2821 | CAGACCCGCG | GCGACCCCAC | CGGCAGCGAG | GAGAGCAAGA | AGAAGGTGGA | GAGCAAGACC |
| 2881 | AAGACCGACC |            |            | AGCTACCACT | GTCTGGTGTG | CTTCCAGACC |
| 2941 | AAGGGCCTGG | GCATCTCCTA | CGGGCGCAAG | AAACGGATGG |            | CCCCAACCTG |
| 3001 | GAGCCCTGGA | ACCACCCCGG | CAGCCAGCCC | AACACCCCCT |            | CTACTGCAAA |
| 3061 | TACTGCTCCT | ACCACTGCCT | CGTGGTGGGC | TGGCCCGCCG |            | CATCCGCCGC |
| 3121 | ACCGAGCCCG | CCGCCGAGGG |            |            | ACCTGGACAA |            |
| 3181 | CTGACCAGCA | GCAACACCGC | CCACAACAAC | CCCGACTGCG |            | GGCCCAGGAG |
| 3241 | GAGGAGGAGG | ACGTGGGCTT | CCCCGTGCGC | CCCCAGGTGC | CCCTGCGCCC | CATGACCTAC |
| 3301 | AAGGCCGCCT | TCGACCTGAG |            |            | GCGGCCTGGA | GGGCCTGATC |
| 3361 | CACAGCAAGC | GCCGCCAGGA | CATCCTGGAC |            |            | GGGCTACTTC |
| 3421 | CCCGACTGGC | AGAACTACAC |            |            | ACCCCTGAC  |            |
| 3481 | TGCTTCAAGC | TGGTGCCCGT |            |            |            | GGGCGAGAAC |
| 3541 |            | TGCACCCCAT |            | GGCATGGAGG | ACGCCGACCG | CGAGGTGCTG |
| 3601 |            | TCGACAGCAG |            | CGCCACCTGG | CCCGCGAGAA | GCACCCGAG  |
| 3661 | TACTACAAGG | ACTGAGAATT | CTCTAGA    |            |            |            |

## Fig. 10

SEQ: PCV-1: 1783 pb

#### ORIGEN

| OKIGEN |                    |            |            |            |             |             |
|--------|--------------------|------------|------------|------------|-------------|-------------|
| 1      | <b>ACTAGT</b> CTCG | ACATTGGTGT | GGGTATTTAA | ATGGAGCCAC |             |             |
| 61     | TGGCTGGAAC         | CAATCAATTG | TTTGGTCCAG | CTCAGGTTTG | 00001011101 |             |
| 121    | GTAGGTAAAG         | GGCTGCCTTA | TGGTGTGGCG | GGAGGAGTAG | TTAATATAGG  | GGTCATAGGC  |
| 181    | CAAGTTGGTG         | GAGGGGGTTA | CAAAGTTGGC | ATCCAAGATA | ACAGCAGTGG  | ACCCAACACC  |
| 241    | TCTTTGATTA         | GAGGTGATGG | GGTCTCTGGG | GTAAAATTCA | TATTTAGCCT  | TTCTAATACG  |
| 301    | GTAGTATTGG         | AAAGGTAGGG | GTAGGGGGTT | GGTGCCGCCT | GAGGGGGGA   | GGAACTGGCC  |
| 361    | GATGTTGAAT         | CTGAGCTGGT | TAACATTCCA | AGATGGCTGC | GAGTGTCCTC  | CTTCTATGGT  |
| 421    | GAGTACAAAT         | TCTCTAGAAA | GGCGGCAATT | GAAGATACCC | GTCTTTCGGC  | GCCATCTGTA  |
| 481    | ACGGTTTCTG         | AAGGCGGGGT | GTGCCAAATA | TGGTCTTCTG | CGGAGGATGT  | TTCCAAGATG  |
| 541    | GCTGCGGGGG         | CGGGTCCTTC | TTCTGCGGTA | ACGCCTCCTT | GGCCACGTCA  | TCCTATAAAA  |
| 601    | GTGAAAGAAG         | TGCGCTGCTG | TAGTATTACC | AGCGCACTTC | GGCAGCGGCA  | GCACCTCGGC  |
| 661    | AGCGTCGGTG         | AAAATGCCAA | GCAAGAAAAG | CGGCCCGCAA | CCCCATAAGA  | GGTGGGTGTT  |
| 721    | CACCCTTAAT         | AATCCTTCCG | AGGAGGAGAA | AAACAAAATA | CGGGAGCTTC  | CAATCTCCCT  |
| 781    | TTTTGATTAT         | TTTGTTTGCG | GAGAGGAAGG | TTTGGAAGAG | GGTAGAACTC  | CTCACCTCCA  |
| 841    | GGGGTTTGCG         | AATTTTGCTA | AGAAGCAGAC | TTTTAACAAG | GTGAAGTGGT  | ATTTTGGTGC- |
| 901    |                    |            |            |            | AATAAAGAAT  |             |
| 961    |                    |            |            |            | CGGAACCAGG  |             |
| 1021   |                    |            |            |            | TCTTTGGTGA  |             |

| 1081 | GCAGTTCCCT | GTAACGTATG | TGAGAAATTT | CCGCGGGCTG | GCTGAACTTT | TGAAAGTGAG |
|------|------------|------------|------------|------------|------------|------------|
| 1141 | CGGGAAGATG | CAGCAGCGTG | ATTGGAAGAC | AGCTGTACAC | GTCATAGTGG | GCCCGCCCGG |
| 1201 | TTGTGGGAAG | AGCCAGTGGG | CCCGTAATTT | TGCTGAGCCT | AGCGACACCT | ACTGGAAGCC |
| 1261 | TAGTAGAAAT | AAGTGGTGGG | ATGGATATCA | TGGAGAAGAA | GTTGTTGTTT | TGGATGATTT |
| 1321 | TTATGGCTGG | TTACCTTGGG | ATGATCTACT | GAGACTGTGT | GACCGGTATC | CATTGACTGT |
| 1381 | AGAGACTAAA | GGGGGTACTG | TTCCTTTTTT | GGCCCGCAGT | ATTTTGATTA | CCAGCAATCA |
| 1441 |            | GAATGGTACT |            |            |            |            |
| 1501 | GATTACTACT | TTGCAATTTT | GGAAGACTGC | TGGAGAACAA | TCCACGGAGG | TACCCGAAGG |
| 1561 | CCGATTTGAA | GCAGTGGACC | CACCCTGTGC | CCTTTTCCCA | TATAAAATAA | ATTACTGAGT |
| 1621 | CTTTTTTGTT | ATCACATCGT | AATGGTTTTT | ATTTTTATTC | ATTTAGAGGG | TCTTTTAGGA |
| 1681 | TAAATTCTCT | GAATTGTACA | TAAATAGTCA | GCCTTACCAC | ATAATTTTGG | GCTGTGGCTG |
| 1741 | CATTTTGGAG | CGCATAGCCG | AGGCCTGTGT | GACAATCACT | AGT        |            |

Fig. 11

SEQ: Complemento inverso de PCV-1: 1783 pb

#### ORIGEN

| 1     | <b>ACTAGT</b> GATT | GTCACACAGG | CCTCGGCTAT | GCGCTCCAAA |            |             |
|-------|--------------------|------------|------------|------------|------------|-------------|
| 61    | TATGTGGTAA         | GGCTGACTAT | TTATGTACAA | TTCAGAGAAT | TTATCCTAAA |             |
| 121   | AATGAATAAA         | AATAAAAACC | ATTACGATGT | GATAACAAAA |            | AATTTATTTT. |
| 181   | ATATGGGAAA         | AGGGCACAGG | GTGGGTCCAC | TGCTTCAAAT | CGGCCTTCGG | GTACCTCCGT  |
| 241   | GGATTGTTCT         | CCAGCAGTCT | TCCAAAATTG | CAAAGTAGTA |            | AGAGAGCTTC  |
| 301   | TACAGCTGGG         | ACAGCAGTTG | AGGAGTACCA | TTCCTGGGGG |            | TGGTAATCAA  |
| 361   | AATACTGCGG         | GCCAAAAAAG | GAACAGTACC | CCCTTTAGTC |            | ATGGATACCG  |
| 421   | GTCACACAGT         | CTCAGTAGAT | CATCCCAAGG | TAACCAGCCA | TAAAAATCAT | CCAAAACAAC  |
| 481   | AACTTCTTCT         | CCATGATATC | CATCCCACCA | CTTATTTCTA |            | AGTAGGTGTC  |
| 541   | GCTAGGCTCA         | GCAAAATTAC | GGGCCCACTG | GCTCTTCCCA |            | GGCCCACTAT  |
| 601   | GACGTGTACA         | GCTGTCTTCC | AATCACGCTG | CTGCATCTTC | CCGCTCACTT | TCAAAAGTTC  |
| 661   | AGCCAGCCCG         | CGGAAATTTC | TCACATACGT | TACAGGGAAC | TGCTCGGCTA |             |
| 721   | AGACCCCGTC         | TCCAAAAGGG | TACTCACAGC | AGTAGACAGG | TCGCTGCGCT | TCCCCTGGTT  |
| 781   | CCGCGGAGCT         | CCACACTCGA | TAAGTATGTG | GCCTTCTTTA |            | AGTATTCTTT  |
| 841   | ATTCTGCTGG         | TCGGTTCCTT | TCGCTTTCTC | GATGTGGCAG |            | AATACCACTT  |
| 901 ' | CACCTTGTTA         | AAAGTCTGCT |            | ATTCGCAAAC |            | GAGGAGTTCT  |
| 961   | ACCCTCTTCC         | AAACCTTCCT |            | AAAATAATCA |            |             |
| 1021  | CCGTATTTTG         | TTTTTCTCCT | CCTCGGAAGG | ATTATTAAGG |            | ACCTCTTATG  |
| 1081  | GGGTTGCGGG         | CCGCTTTTCT | TGCTTGGCAT | TTTCACCGAC | GCTGCCGAGG | TGCTGCCGCT  |
| 1141  | GCCGAAGTGC         | GCTGGTAATA | CTACAGCAGC | GCACTTCTTT | CACTTTTATA | GGATGACGTG  |
| 1201  | GCCAAGGAGG         | CGTTACCGCA | GAAGAAGGAC | CCGCCCCCGC | AGCCATCTTG | GAAACATCCT  |
| 1261  | CCGCAGAAGA         | CCATATTTGG | CACACCCCGC | CTTCAGAAAC | CGTTACAGAT | GGCGCCGAAA  |
| 1321  | GACGGGTATC         | TTCAATTGCC | GCCTTTCTAG | AGAATTTGTA |            | AAGGAGGACA  |
| 1381  | CTCGCAGCCA         | TCTTGGAATG | TTAACCAGCT | CAGATTCAAC |            | TCCTCCCCC   |
| 1441  | CTCAGGCGGC         | ACCAACCCCC | TACCCCTACC | TTTCCAATAC |            |             |
| 1501  | ATATGAATTT         | TACCCCAGAG | ACCCCATCAC | CTCTAATCAA |            | GGTCCACTGC  |
| 1561  | TGTTATCTTG         | GATGCCAACT | TTGTAACCCC | CTCCACCAAC | TTGGCCTATG |             |
| 1621  | TAACTACTCC         | TCCCGCCACA |            |            |            | GGTACTTCAC  |
| 1681  | CCCCAAACCT         |            |            | TTGGTTCCAG |            | AAAGAAACCA  |
| 1741  | GCTGTGGCTC         | CATTTAAATA | CCCACACCAA | TGTCGAGACT | AGT        |             |
|       |                    |            |            |            |            |             |

Fig. 12

 $_{\mbox{\scriptsize SEQ}}$  pTH - sin inserto: 4912 pb  $_{\mbox{\scriptsize ORIGEN}}$ 

|   | 1    | GACGGATCGG                            | GAGATCTCCC | GATCCCCTAT   | GGTCGACTCT    | CAGTACAATC   | TGCTCTGATG   |
|---|------|---------------------------------------|------------|--------------|---------------|--------------|--------------|
|   | 61   | CCCCATAGTT                            | AAGCCAGTAT | CTGCTCCCTG   | CTTGTGTGTT    | GGAGGTCGCT   | GAGTAGTGCG   |
|   | 121  | CGAGCAAAAT                            | TTAAGCTACA | ACAAGGCAAG   | GCTTGACCGA    | CAATTGCATG   | AAGAATCTGC   |
|   | 181  | TTACCCTTAC                            | GCGTTTTGCG | CTGCTTCGCG   | ATGTACGGGC    | CAGATATACG   | CGTTTTGAGA   |
|   | 241  | TTTCTCTCCC                            | CGACTAAATT | CATGTCGCGC   | GATAGTGGTG    | TTTATCGCCG   | ATAGAGATGG   |
|   | 301  | CCATATTGGA                            | AAAATCGATA | TTTGAAAATA   | TGGCATATTG    | AAAATGTCGC   | CGATGTGAGT   |
|   | 361  | TTCTCTCTAA                            | CTGATATCGC | CATTTTTCCA   | AAAGTGATTT    | TTGGGCATAC   | GCGATATCTG   |
|   | 421. | CCCATACCCC                            | TTATATCGTT | TACGGGGGAT   | GGCGATAGAC    | GACTTTGGTG   | ACTTGGGCGA   |
|   |      | TTCTCTCTCT                            | CGCAAATATC | GCAGTTTCGA   | TATAGGTGAC    | AGACGATATG   | AGGCTATATC   |
|   | 481  | CCCCATACAG                            | GCGACATCAA | GCTGGCACAT   | GGCCAATGCA    | TATCGATCTA   | TACATTGAAT   |
|   | 541  | CANTAGEC                              | CATTAGCCAT | ATTATTCATT   | GGTTATATAG    | CATAAATCAA   | TATTGGCTAT   |
|   | 601  | TCCCCATTCC                            | ATACGTTGTA | TCCATATCAT   | AATATGTACA    | TTTATATTGG   | CTCATGTCCA   |
|   | 661  | A CARTA CCCC                          | CATGTTGACA | TTGATTATTG   | ACTAGTTATT    | AATAGTAATC   | AATTACGGGG   |
|   | 721  | MCATTACCGC                            | ATAGCCCATA | TATGGAGTTC   | CGCGTTACAT    | AACTTACGGT   | AAATGGCCCG   |
|   | 781  | TCATTAGTTC                            | CGCCCAACGA | CCCCCCCCA    | TTGACGTCAA    | TAATGACGTA   | TGTTCCCATA   |
|   | 841  | CCTGGCTGAC                            | TAGGGACTTT | CCATTCACCT   | CAATGGGTGG    | AGTATTTACG   | GTAAACTGCC   |
|   | 901  | GTAACGCCAA                            | TACATCAAGT | CTATCATATC   | CCAAGTACGC    | CCCCTATTGA   | CGTCAATGAC   |
|   | 961  | CACTTGGCAG                            | CCGCCTGGCA | TTATCCCCAC   | TACATCACCT    | TATEGERACTT  | TCCTACTTGG   |
|   | 1021 | GGTAAATGGC                            | ACGTATTAGT | CATCCCTATT   | ACCATGGTGA    | TGCGGTTTTG   | GCAGTACATC   |
|   | 1081 | CAGTACATCT                            | GATAGCGGTT | TCACCCCACCC  | CCATTTCCAA    | GTCTCCACCC   | CATTGACGTC   |
|   | 1141 | AATGGGCGTG                            | TGTTTTGGCA | CCANAMECAA   | CCCCACTTTC    | CAAAATGTCG   | TAACAACTCC   |
|   | 1201 | AATGGGAGTT                            | CGCAAATGGG | CCAAAATCAA   | CTACCCTCCC    | ACCTCTATAT   | AAGCAGAGCT   |
|   | 1261 | GCCCCATTGA                            | CGCAAATGGG | CGGTAGGCGT   | CCCCATCCAC    | CCTCTTTTCA   | CCTCCATAGA   |
|   | 1321 | CGTTTAGTGA                            | ACCGTCAGAT | CGCCTGGAGA   | CCCCAACCCT    | CCATTCCAAC   | CCGCATTCCC   |
|   | 1381 | AGACACCGGG                            | ACCGATCCAG | CCTCCGCGGC   | T CT CTCTT TO | CCCCCACCCC   | CTTCCCTTCT   |
|   | 1441 | CGTGCCAAGA                            | GTGACGTAAG | TACCGCCTAT   | AGAGICIAIA    | CCCCCTTCCT   | CATGTTATAG   |
|   | 1501 | TATGCATGCT                            | ATACTGTTTT | TGGCTTGGGG   | TCTATACACC    | ADDATECT     | ACTCCCCTAT   |
|   | 1561 | GTGATGGTAT                            | AGCTTAGCCT | ATAGGTGTGG   | GTTATTGACC    | ATTATTGACC   | CTCTCTTTAT   |
|   | 1621 | TGGTGACGAT                            | ACTTTCCATT | ACTAATCCAT   | AACATGGCTC    | TTTGCCACAA   | CICICITIAL   |
|   | 1681 | TGGCTATATG                            | CCAATACACT | GTCCTTCAGA   | GACTGACACG    | GACTCTGTAT   | TTTTACAGGA   |
|   | 1741 | TGGGGTCTCA                            | TTTATTATTT | ACAAATTCAC   | ATATACAACA    | CCACCGTCCC   | TTTCCCCA CAT |
|   | 1801 | AGTTTTTATT                            | AAACATAACG | TGGGATCTCC   | ACGCGAATCT    | CGGGTACGTG   | TICCGGACAI   |
|   | 1861 | GGGCTCTTCT                            | CCGGTAGCGG | CGGAGCTTCT   | ACATCCGAGC    | CCTGCTCCCA   | TGCCTCCAGC   |
|   | 1921 | GACTCATGGT                            | CGCTCGGCAG | CTCCTTGCTC   | CTAACAGTGG    | AGGCCAGACT   | TAGGCACAGC   |
|   | 1981 | ACGATGCCCA                            | CCACCACCAG | TGTGCCGCAC   | AAGGCCGTGG    | CGGTAGGGTA   | TGTGTCTGAA   |
|   | 2041 | AATGAGCTCG                            | GGGAGCGGGC | TTGCACCGCT   | GACGCATTTG    | GAAGACTTAA   | GGCAGCGGCA   |
|   | 2101 | GAAGAAGATG                            | CAGGCAGCTG | AGTTGTTGTG   | TTCTGATAAG    | AGTCAGAGGT   | AACTCCCGTT   |
|   | 2161 | GCGGTGCTGT                            | TAACGGTGGA | GGGCAGTGTA   | GTCTGAGCAG    | TACTCGTTGC   | TGCCGCGCGC   |
|   | 2221 | GCCACCAGAC                            | ATAATAGCTG | ACAGACTAAC   | AGACTGTTCC    | TTTCCATGGG   | TCTTTTCTGC   |
|   | 2281 | ACTCACCGTC                            | CTTGACACG  | BACCTIGGTAC  | : CGAGCTCGGA  | TCCACTAGTA   | ACGGCCGCCA   |
|   | 2341 | CTCTCCTCCA                            | ATTCTGCAGA | TATCCATCAC   | ACTGGCGGCC    | GCTCGAGCAT   | GCATCTAGAG   |
|   | 2401 | CCCCTATTC                             | TATAGTGTCA | CCTAAATGCT   | AGAGCTCGCT    | GATCAGCCTC   | GACTGTGCCT   |
|   | 2461 | TCTAGTTGCC                            | AGCCATCTGT | TGTTTGCCCC   | TCCCCCGTGC    | CTTCCTTGAC   | CCTGGAAGGT   |
|   | 2521 | CCCACTCCCA                            | CTGTCCTTTC | CTAATAAAAI   | GAGGAAATTO    | CATCGCATTG   | TCTGAGTAGG   |
|   | 2581 | TCTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | TTCTGGGGGG | TGGGGTGGG    | CAGGACAGCA    | A AGGGGGAGGA | TTGGGAAGAC   |
|   | 2641 | AATAGCAGGC                            | ATGCTGGGG  | TGCGGTGGGC   | : TCTATGGCT   | CTGAGGCGGA   | AAGAACCAGC   |
|   | 2701 | TEGGGCTCGA                            | GGGGGGATCG | ATCCCGTCGF   | CCTCGAGAG(    | : TTGGCGTAAI | CATGGTCATA   |
|   | 2761 | CCTCTTTCCT                            | CTGTGAAATI | GTTATCCGCT   | CACAATTCC     | A CACAACATAC | GAGCCGGAAG   |
|   | 2821 | CATAAAGTGT                            | PAAGCCTGGG | GTGCCTAATO   | AGTGAGCTA!    | A CTCACATTAP | A TTGCGTTGCG |
|   | 2881 | CTCACTGCCC                            | GCTTTCCAGT | CGGGAAACCI   | GTCGTGCCA(    | G CTGCATTAAT | GAATCGGCCA   |
|   | 2941 | ACCCCCCCCC                            | ACAGGCGGT1 | TGCGTATTGC   | GCGCTCTTC     | C GCTTCCTCGC | TCACTGACTC   |
|   | 3001 | CCTCCCCCTCC                           | GTCGTTCGGC | TGCGGCGAG    | GGTATCAGC     | CACTCAAAGO   | G CGGTAATACG |
|   | 3061 | CTTATCCACA                            | GAATCAGGG  | ATAACGCAG    | -AAAGAACAT(   | G TGAGCAAAAC | GCCAGCAAAA   |
| - | 3121 | CCCCACCAA                             | CGTAAAAAGG | G CCGCGTTGCT | r GGCGTTTTT(  | C CATAGGCTC  | GCCCCCTGA    |
|   | 3121 | CCACCAGGAAC                           | AAAAATCGAC | GCTCAAGTC    | A GAGGTGGCG   | AACCCGACAC   | GACTATAAAG   |
|   | 2101 | CONGCATOR                             | , muunicon |              |               | -            |              |
|   |      |                                       |            |              |               |              |              |

| 3241 | ATACCAGGCG | TTTCCCCCTG | GAAGCTCCCT | CGTGCGCTCT | CCTGTTCCGA  | CCCTGCCGCT |
|------|------------|------------|------------|------------|-------------|------------|
| 3301 | TACCGGATAC | CTGTCCGCCT | TTCTCCCTTC | GGGAAGCGTG | GCGCTTTCTC  | AATGCTCACG |
| 3361 | CTGTAGGTAT | CTCAGTTCGG | TGTAGGTCGT | TCGCTCCAAG | CTGGGCTGTG  | TGCACGAACC |
| 3421 | CCCCGTTCAG | CCCGACCGCT | GCGCCTTATC | CGGTAACTAT | CGTCTTGAGT  | CCAACCCGGT |
| 3481 | AAGACACGAC | TTATCGCCAC | TGGCAGCAGC | CACTGGTAAC | AGGATTAGCA  | GAGCGAGGTA |
| 3541 | TGTAGGCGGT | GCTACAGAGT | TCTTGAAGTG | GTGGCCTAAC | TACGGCTACA  | CTAGAAGGAC |
| 3601 | AGTATTTGGT | ATCTGCGCTC | TGCTGAAGCC | AGTTACCTTC | GGAAAAAGAG  | TTGGTAGCTC |
| 3661 | TTGATCCGGC | AAACAAACCA | CCGCTGGTAG | CGGTGGTTTT | TTTGTTTGCA  |            |
| 3721 | TACGCGCAGA | AAAAAAGGAT | CTCAAGAAGA | TCCTTTGATC | TTTTCTACGG  | GGTCTGACGC |
| 3781 | TCAGTGGAAC | GAAAACTCAC | GTTAAGGGAT | TTTGGTCATG | AGATTATCAA  | AAAGGATCTT |
| 3841 | CACCTAGATC | CTTTTAAATT | AAAAATGAAG | TTTTAAATCA | ATCTAAAGTA  | TATATGAGTA |
| 3901 | AACTTGGTCT | GACAGTTACC | AATGCTTAAT | CAGTGAGGCA | CCTATCTCAG  | CGATCTGTCT |
| 3961 | ATTTCGTTCA | TCCATAGTTG | CCTGACTCCC | CGTCGTGTAG | ATAACTACGA  | TACGGGAGGG |
| 4021 | CTTACCATCT | GGCCCCAGTG |            |            | CCACGCTCAC  |            |
| 4081 | TTTATCAGCA | ATAAACCAGC | CAGCCGGAAG | GGCCGAGCGC | AGAAGTGGTC  | CTGCAACTTT |
| 4141 | ATCCGCCTCC | ATCCAGTCTA | TTAATTGTTG | CCGGGAAGCT | AGAGTAAGTA  | GTTCGCCAGT |
| 4201 | TAATAGTTTG | CGCAACGTTG |            |            | GTGGTGTCAC  |            |
| 4261 | TGGTATGGCT | TCATTCAGCT |            |            | CGAGTTACAT  |            |
| 4321 |            | AAAGCGGTTA |            |            | GTTGTCAGAA  | GTAAGTTGGC |
| 4381 | CGCAGTGTTA | TCACTCATGG |            |            |             | TCATGCCATC |
| 4441 | CGTAAGATGC | TTTTCTGTGA | CTGGTGAGTA | CTCAACCAAG | TCATTCTGAG  | AATAGTGTAT |
| 4501 | GCGGCGACCG | AGTTGCTCTT |            |            | 1211100000  | CACATAGCAG |
| 4561 | AACTTTAAAA | GTGCTCATCA |            |            |             | CAAGGATCTT |
| 4621 | ACCGCTGTTG | AGATCCAGTT | CGATGTAACC | CACTCGTGCA | CCCAACTGAT  | CTTCAGCATC |
| 4681 | TTTTACTTTC | ACCAGCGTTT | CTGGGTGAGC | AAAAACAGGA | 11000111111 | CCGCAAAAAA |
| 4741 | GGGAATAAGG | GCGACACGGA |            | ACTCATACTC |             | AATATTATTG |
| 4801 | AAGCATTTAT | CAGGGTTATT | -          |            | TTTGAATGTA  |            |
| 4861 | TAAACAAATA | GGGGTTCCGC | GCACATTTCC | CCGAAAAGTG | CCACCTGACG  | TC         |

Fig. 13

#### SEQ: PCV1 Prep y rep sin el intrón: 752 pb

#### ORIGEN ATTCTCTAGA AAGGCGGCAA TTGAAGATAC CCGTCTTTCG GCGCCATCTG TAACGGTTTC TGAAGGCGGG GTGTGCCAAA TATGGTCTTC TCCGGAGGAT GTTTCCAAGA TGGCTGCGGE GGGGGTCCT TCTTCTGCGG TAACGCCTCC TTGGCAGCGG CAGCACCTCG GCAGCGTCAG 121 181 TGAAAATGCC AAGCAAGAAA AGCGGCCCGC AACCCCATAA GAGGTGGGTG TTCACCCTTA 241 ATAATCCTTC CGAGGAGGAG AAAAACAAAA TACGGGAGCT TCCAATCTCC CTTTTTGATT 301 ATTTTGTTTG CGGAGAGGAA GGTTTGGAAG AGGGTAGAAC TCCTCACCTC CAGGGGTTTG 361 CGAATTTTGC TAAGAAGCAG ACTTTTAACA AGGTGAAGTG GTATTTTGGT GCCCGCTGCC 421 ACATCGAGAA AGCGAAAGGA ACCGACCAGC AGAATAAAGA ATACTGCAGT AAAGAAGGCC 481 ACATACTTAT CGAGTGTGGA GCTCCGCGGA ACCAGGGGAA GCGCAGCGAC CTGTCTACTG 541 CTTATTTTGA TTACCAGCAA TCAGGCCCCC CAGGAATGGT ACTCCTCAAC TGCTGTCCCA 601 GCTGTAGAAG CTCTCTATCG GAGGATTACT ACTTTGCAAT TTTGGAAGAC TGCTGGAGAA 661 CAATCCACGG AGGTACCCGA AGGCCGATTT GA

Fig. 14

### ES 2 465 165 T3

# SEQ: PCV-1 con Prep/rep truncados: 150 pb ORIGEN

| 1   | ATTCTCTAGA AAGGCGGCAA |            |            |                    |            |
|-----|-----------------------|------------|------------|--------------------|------------|
| 61  | TGAAGGCGGG GTGTGCCAAA | TATGGTCTTC | TCCGGAGGAT | GTTTCCAAGA         | TGGCTGCGG  |
| 121 | GGCGGGTCCT TCTTCTGCGG | TAACGCCTCC | TTSSOCTOR  | CATECTATAA         | AAG        |
| 181 | AGTGCGTATTA           | CCAGCGCACT | TCGGCAG//A | TCAGGCCCCC         | CAGGAATGGT |
| 139 | ACTECTCAAC TGCTGTCCCA | GCTGTAGAAG | CTCTCTATCG | GAGGATTACT         | ACTTTGCAAT |
| 199 | TTTGGAAGAC TGCTGGAGAA | CAATCCACGG | AGGTACCCGA | AGGCCGATT <b>T</b> | GA         |
|     |                       |            |            |                    |            |

Fig. 15

#### Alineamiento de determinadas secuencias de ADN de circovirus equivalentes a la región PcapR de PCV-1

```
pcv-1
                           ---CTGTAGC CGAGCAGTTC CCTGTAACGT ATGTGAGAAA TTTCCGCGGG
pcv-2
                           ---CCGTTGC AGAGCAGCAC CCTGTAACGT TTGTCAGAAA TTTCCGCGGG
BFDV-AFG
                           -----CGC GCGAGAGTTC CCAGATATCT ACGTCAGGCA TGGGCGGGGC
CV_canario
                          -----CGC GCGAGAGTTC AGTGAGATCT ACGTCAAGTA TGGGCGTGGT
CV colúmbidos
                          -----TCGC GCGAGACTTC AGTGAGATAT ACGTCAAGTA TGGGCGTGGC
CV_pato
                          -TGAGGTGGC CCGGAAGTTC CCCACGACTT ATGTTATCTT TGGGCGTGGC
CV pinzón
                           ----TCGC GCGAGAGTTC AGTCTAGCCT ACGTCAGATA TGGGCGGGGC
CV_ganso
                          ----TGGC CCGGAAGTAC CCGACGACTT ATGTAATGTT TGGGCGGGGC
                           GTGAAATCGC GCGAGAGTTC AGTGAAGTCT ACGTCAAGTA TGGGCGGGGC
CV_gaviota
                           CTGGCTGAAC TTTTGAAAGT GAGCGGGAAG ATGCAGCAGC GTGATTGGAA
pcv-1
pcv-2_ CTGGCTGAAC TTTTGAAAGT GAGCGGGAAA ATGCAGCAGC GTGATTGGAA
BFDV-AFG TTACATAATC TCTCGCTAAT GGTTGGTTCC CGGCCA---C GTGACTTCAA
CV_canario CTGAGGGATT TGGCCCTGAT GATTGGACA AAACCC---C GTGACTTCAA
CV_colúmbidos TTGCGCGACC TGAAGCTGCT GATTGGTCAG CAGCCT---C GTGACTTCAA
CV_pato CTGGAACGCC TCCGTCACCT GATCGTTGAG ACGCAA---C GTGACTTCAA
CV_pinzón CTGCGTGATC TTGCGCTGCT GATTGGCCAG AAGCCC---C GTGACTTCAA
CV_ganso TTAGAGCGGT TGCGTCAGCT GATCGTGGAG ACCGCT---C GTGACTTCAA
                         CTCCGTGATC TCCGGTTGCT GATTGGTTGC CCGCCC---C GCGATTTCAA
CV_gaviota
pcv-1
                           GACAGCTGTA CACGTCATAG TGGGCCCGCC CGGTTGTGGG AAGAGCCAGT
pcv-2
                           GACTAATGTA CACGTCATTG TGGGGCCACC TGGGTGTGGT AAAAGCAAAT
BFDV-AFG GACTGATGT CACGTCATTG TGGGGCCACC TGGGTGTGGT AAAAGCAAAT
BFDV-AFG GACTGAGGT GACGTCATCT ACGGACCACC GGGGTGTGC AAGAGTAGAT
CV_canario GACGGAAGTC GTCGTCATCA CAGGGCCTTC CGGGGTGGGC AAGTCCCGAC
CV_pato GACCGAAGTC ATCGTCATCA CGGGCCCGC CGGTTGCGG AAGAGCCGTT
CV_pinzón AACGGAAGTC ATCGTTCTGA TTGGTCCGC CGGCACCGG AAGAGCCGTT
CV_ganso GACGGAGGTC ATCGTTCTGA TTGGGCGGC TGGAAGCGG AAGAGCCGTT
CV ganso
                         AACAGAAGTC ATCGTTCTGA TTGGCCCACC TGGCTGTGGC AAGTCAAAAT
CV_gaviota
pcv-1
                           GGGCCCGTAA TTTTGCTGAG CCTAGCGACA CCTACTGGAA GCC-
pcv-2
                           GGGCTGCTAA TTTTGCAGAC CCGGAAACCA CATACTGGAA ACC-
BFDV-AFG GGGCCAATGA GCAGCCGG-- -GGACCAAAT ATTATAAAAT GCG-
CV_canario TTGCCTCTGA AATGGAAG-- -GATCGAAGT TCTACAAG-- ---
CV_colúmbidos GGGCAGCTGA GTACCCCG-- -GAAGTAAAT TTTACAAGAT GA--
CV_pato ATTCCCGCC GAAAACAAGT ATTACAAACC ACGC
CV_pinzón
                           GGGCCAATGA ACAAGAAG-- -GAACTAAGT TTTATAAAAT GA--
                          ACGCGTTTGA ATTTCCCGCG CGTGAAAAGT ATTATAAAT- ----
CV_ganso
CV_gaviota
                          TGGCCAATGA GATGGAAG-- -GGTCTAAGT TCTACA----
```

Fig. 16 (a)

## Secuencias de ADN complementarias inversas de determinados circovirus. Las secuencias mostradas son equivalentes a la secuencia Pcap de PCV-1

| PCV-1 GGCTTCCAGT AGGTGTCGCT AGGCTCAGCA AAATTACGGG CCCACTGGCT CTTCCCACAA CCGGGCGGGC CCACTATGAC GTGTACAGCT GTCTTCCAAT CACGCTGCTG CATCTTCCCG CTCACTTTCA AAAGTTCAGC CAGCCCGCGG AAATTTCTCA CATACGTTAC AGGGAACTGC TCGGCTACAG       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCV-2 GGTTTCCAGT ATGTGGTTTC CGGGTCTGCA AAATTAGCAG CCCATTTGCT TTTACCACAC CCAGGTGGCC CCACAATGAC GTGTACATTA GTCTTCCAAT CACGCTTCTG CATTTTCCCG CTCACTTTCA AAAGTTCAGC CAGCCCGCGG AAATTTCTGA CAAACGTTAC AGGGTGCTGC TCTGCAACGG       |
| BFDV-AFG CGCATTTTAT AATATTTGGT CCCCGGCTGC TCATTGGCCC ATCTACTCTT GCCACACCCC GGTGGTCCGT AGATGACGTC GACCTCAGTC TTGAAGTCAC GTGGCCGGGA ACCAACCATT AGCGAGAGAT TATGTAAGCC CCGCCCATGC CTGACGTAGA TATCTGGGAA CTCTCGCGCG               |
| CV de canario CTTGTAGAAC TTCGATCCTT CCATTTCAGA GGCAAGTCGG GACTTGCCCA CCCCGGAAGG CCCTGTGATG ACGACGACTT CCGTCTTGAA GTCACGGGGT TTCTGTCCAA TCATCAGGGC CAAATCCCTC AGACCACGCC CATACTTGAC GTAGATCTCA CTGAACTCTC GCGCG               |
| CV de colúmbidos  TCATCTTGTA AAATTTACTT CCGGGGTACT CAGCTGCCCA ACGGCTCTTC CCGCAACCGG GCGGGCCCGT GATGACGATG ACTTCCGTTT TGAAGTCACG AGGCTGCTGA CCAATCAGCA GCTTCAGGTC GCGCAAGCCA CGCCCATACT TGACGTATAT CTCACTGAAG TCTCGCGCGA      |
| CV de pato  GCGTGGTTTG TAATACTTGT TTTCGGCGGG AAATTCAAAT GCATAACGGC TCTTCCCGGT GCCGGGCGGA CCAATCAGAA CGATGACTTC GGTCTTCCAA TCACGTTGCG TCTCAACGAT CAGGTGACGG AGGCGTTCCA GGCCACGCCC AAAGATAACA TAAGTCGTGG GGAACTTCCG GGCCACCTCA |
| CV de pinzón TCATTTTATA AAACTTAGTT CCTTCTTGTT CATTGGCCCA GCGGGATTTG CCACACCCAC TAGGGCCGGT CAGCACTATG ACTTCCGTTT TGAAGTCACG GGGCTTCTGG CCAATCAGCA GCGCAAGATC ACGCAGGCCC CGCCCATATC TGACGTAGGC TAGACTGAAC TCTCGCGCGA           |
| CV de ganso ATTTATAATA CTTTTCACGC GCGGGAAATT CAAACGCGTA ACGGCTCTTC CCGCTTCCAG GCCGCCCAAT CAGAACGATG ACCTCCGTCT TCCAATCACG AGCGGTCTCC ACGATCAGCT GACGCAACCG CTCTAAGCCC CGCCCAAACA TTACATAAGT CGTCGGGTAC TTCCGGGCCA            |
| CV de gaviota  TGTAGAACTT AGACCCTTCC ATCTCATTGG CCAATTTTGA CTTGCCACAG CCAGGTGGGC CAATCAGAAC GATGACTTCT GTTTTGAAAT CGCGGGGCGG GCAACCAATC AGCAACCGGA GATCACGGAG GCCCCGCCCA TACTTGACGT AGACTTCACT GAACTCTCGC GCGATTTCAC         |

5

Fig. 16 (b)

### 1. Región Pcap de PCV-1

| GCAGTTCC                  | CT GTAACGTAT | <                     | M00147 HSF2<br>M00147 HSF2<br>M00147 HSF2<br>M00146 HSF1<br>M00074 c-Ets- | Puntuación<br>91.0<br>88.5<br>87.3<br>86.6 |
|---------------------------|--------------|-----------------------|---------------------------------------------------------------------------|--------------------------------------------|
| 451 GCTGAACTTT TGAAAGTGAG | CGGGAAGATG   | CAGCAGCGTG ATTGGAAGAC | entrada<br><u>M00075</u> GATA-1<br><u>M00109</u> C/EBPb                   |                                            |
| 501 AGCTGTACAC GTCATAGTGG | GCCCGCCCGG   | TTGTGGGAAG AGCCAGTGGG | entrada<br>M00223 STATX<br>M00039 CREB                                    | Puntuación<br>88.5<br>87.6                 |
| 551 CCCGTAATTT            | TGCTGAGCCT   | AGCGACACCT ACTGGAAGCC | entrada<br>M00032 c-Ets-<br>M00101 CdxA                                   | Puntuación<br>- 89.2<br>85.7               |

### Fig. 17 (a)

### 2. Región Pcap de PCV-2

|     | CAGA          | GCAGCACCCT                              | GTAACGTTTG | TCAGAAATTT    | CCGCGGGCTG   | entrad | a      | Puntuación |
|-----|---------------|-----------------------------------------|------------|---------------|--------------|--------|--------|------------|
|     | 0.1011        | • • • • • • • • • • • • • • • • • • • • |            | <             |              | M00101 | CdxA   | 93.6       |
|     |               |                                         |            | <             |              | M00147 | HSF2   | 91.0       |
|     |               |                                         |            | <             |              | M00100 | CdxA   | 89.7       |
|     |               |                                         |            |               | >            | M00147 | HSF2   | 88.5       |
|     |               |                                         |            |               | >            | M00146 | HSF1   | 87.3       |
|     |               |                                         |            | <             |              | M00074 | c-Ets- | 86.6       |
|     |               |                                         |            | CD CD D CCCTC | ATTECCA ACAC | entrad | la     | Puntuación |
| 451 | GCTGAACTTT    | TGAAAGTGAG                              | CGGGAAAATG |               |              | M00075 |        |            |
|     |               |                                         |            |               | >            | M00073 |        | 90.8       |
|     |               | <-                                      |            |               |              |        |        |            |
|     |               |                                         |            |               |              | M00101 |        |            |
|     |               | >                                       |            |               |              | M00109 | C/EBPE | 85.5       |
|     |               |                                         |            |               |              |        | 1-     | D          |
| 501 | TAATGTACAC    | GTCATTGTGG                              | GGCCACCTGG | GTGTGGTAAA    | AGCAAATGGG   | entrac |        | Puntuación |
|     |               |                                         |            | >             |              | M00271 |        | 100.0      |
|     | <             |                                         |            |               |              | M00251 |        |            |
|     | •             |                                         |            |               | >            | M00159 | C/EBP  | 87.7       |
|     | <             |                                         |            |               |              | M00039 | CREB   | 87.6       |
|     | >             |                                         |            |               |              | M00101 | CdxA   | 86.4       |
|     |               |                                         |            |               | >            | M00148 | SRY    | 86.4       |
|     |               |                                         |            |               |              | M00162 | Oct-1  | 85.7       |
|     | <             |                                         |            |               |              |        |        |            |
|     | CTCCTT A TTTT | TGCAGACCCG                              | GAAACCACAT | ACTGGAAACC    |              | entra  | da     | Puntuación |
| 221 | CIGCIAMITI    | IGCNGACCCG                              | <          |               |              | M00271 | AML-1  | a 100.0    |
|     |               |                                         | >          |               |              |        | c-Ets  |            |
|     |               |                                         |            |               |              |        |        |            |

Fig. 17 (b)

### 3. Virus de la enfermedad del pico y las plumas (African grey)-BFDV-AFG

| CGAGAG TTCCCA | GATA entrada | Puntuación |
|---------------|--------------|------------|
|               | M00076 GATA- | 2 90.1     |
| <             | M00087 Ik-2  | 89.5       |
|               | M00075 GATA- | 1 86.9     |
| <             | M00050 E2F   | 86.2       |

```
--- M00157 RORalp 86.2
                                                                           M00147 HSF2 85.9
401 TCTACGTCAG GCATGGGCGG GGCTTACATA ATCTCTCGCT AATGGTTGGT entrada
                                                                                             Puntuación
                                                                              M00039 CREB 91.6
                                                                              M00045 E4BP4 90.7
M00228 VBP 90.7
                                    <-----
                                     ---->
                                                                              M00076 GATA-2 90.1
                                                                              M00008 Spl 89.0
                                                                              M00040 CRE-BP 89.0
                                                                           M00109 C/EBPb 88.7
                                  <-----
                                                                              M00260 HLF 88.2
                                                                              M00075 GATA-1 86.9
                                                                              M00040 CRE-BP 86.7
                                                                              M00157 RORalp 86.2
M00077 GATA-3 85.9
M00101 CdxA 85.7
                                           <----
451 TCCCGGCCAC GTGACTTCAA GACTGAGGTC GACGTCATCT ACGGACCACC entrada
                                                                                               Puntuación
                                                                                               97.9
95.1
94.5
                                                                              M00217 USF
                                                                               M00236 Arnt
                                                                               M00121 USF
                                                                              M00121 USF 94.5

M00122 USF 94.2

M00122 USF 94.2

M00039 CREB 93.6

M00217 USF 93.2
          <-----
                                                                               M00113 CREB 91.8
                                                                              M00271 AML-1a 88.7

M00055 N-Myc 88.7

M00119 Max 87.9

M00119 Max 87.9
                                                                               M00041 CRE-BP 87.2

M00041 CRE-BP 87.2

M00041 CRE-BP 86.9

M00041 CRE-BP 86.2

M00039 CRE-BP 86.1
                                               <----
                                               ---->
                                                                               M00055 N-Myc 85.9
M00039 CREB 85.6
M00039 CREB 85.6
                                               ---->
501 GGGGTGTGGC AAGAGTAGAT GGGCCAATGA GCAGCCGGGG ACCAAATATT entrada
                                                                                              Puntuación
                                                                        < M00101 CdxA 92.9
                                                                        --- M00101 CdxA 91.4

--- M00101 CdxA 91.4

-- M00252 TATA 91.4

M00075 GATA-1 87.3
                                                                           < M00100 CdxA 87.2
                                                              <----- M00131 HNF-3b 86.1
--- M00216 TATA 85.5</pre>
                                                                               M00083 MZF1 85.2
                                            Fig. 17 (c)
```

#### 

```
M00039 CREB 91.6
M00008 Sp1 89.0
M00240 Nkx-2. 88.4
                                    ____>
                                                              --- M00075 GATA-1 88.2
----> M00050 E2F 86.2
401 GATGATTGGA CAGAAACCCC GTGACTTCAA GACGGAAGTC GTCGTCATCA entrada
                                                                                          Puntuación
                          ----->
                                                                  M00025 Elk-1 88.7
                                                          M00075 GATA-1 88.2

M00075 GATA-1 87.8

M00113 CREB 87.7

M00041 CRE-BP 87.2
                                                                           M00217 USF 86.6
M00041 CRE-BP 86.2
M00039 CREB 86.1
M00039 CREB 85.6
                           ---->
                                 <----
                                  ---->
                                                                 rggaagga entrada Puntuación
----- M00147 HSF2 92.9
451 CAGGGCCTTC CGGGGTGGGC AAGTCCCGAC TTGCCTCTGA AATGGAAGGA entrada
                                                                           M00054 NF-kap 91.3
M00025 Elk-1 88.3
M00113 CREB 87.7
                                                                            M00032 c-Ets- 86.3
          <-----
                                                                            M00108 NRF-2 86.0
                                                                            M00208 NF-kap 85.7
                                                                            M00052 NF-kap 85.4
                            <-----
                                                                  ----- M00146 HSF1 85.1
M00053 c-Rel 85.1
       ---->
                                                                            entrada Puntuación

M00147 HSF2 92.9

M00146 HSF1 85.1
501 TCGAAGTTCT
     -->
```

Fig. 17 (d)

#### 5- Circovirus de los colúmbidos TCGCGCGAGA CTTCAGTGAG ATATACGTCA AGTATGGGCG entrada Puntuación <----> M00039 CREB 93.1 ----> M00240 Nkx-2. 88.4 501 TGGCTTGCGC GACCTGAAGC TGCTGATTGG TCAGCAGCCT CGTGACTTCA entrada Puntuación M00075 GATA-1 93.5 - M00074 c-Ets- 90.5 -- M00025 Elk-1 90.0 M00209 NF-Y 89.6 ----> -----> M00041 CRE-BP 87.2 M00096 Pbx-1 86.3 <----- M00041 CRE-BP 86.2 -----> M00039 CREB 86.1 -- M00003 v-Myb 85.9 <---- M00039 CREB 85.6 GAGCCGT entrada Puntuación <---- M00227 v-Myb 96.8 M00223 STATX 92.3 M00075 GATA-1 91.0 M00074 C-Pto 00.5 551 AAACGGAAGT CATCGTCATC ACGGGCCCGC CCGGTTGCGG GAAGAGCCGT entrada M00074 c-Ets- 90.5 M00025 Elk-1 90.0 M00108 NRF-2 87.7 ----> \_\_\_\_\_> ----> M00032 c-Ets- 86.3 ----M00003 v-Myb 85.9 601 TGGGCAGCTG AGTACCCCGG AAGTAAATTT TACA entrada Puntuación

|   | M00227 v-Myb 96.8  |
|---|--------------------|
| > | M00032 c-Ets- 95.1 |
| > | M00074 c-Ets- 90.9 |
| > | M00025 Elk-1 90.4  |

Fig. 17 (e)

#### 6. Circovirus del pato

```
TGAGGTGGCC CGGAAGTTCC entrada Puntuación
                                                       <-- M00083 MZF1 95.7
                                                     -----> M00035 Elk-1 92.6
----> M00032 c-Ets- 92.2
<----- M00054 NF-kap 91.6
                                                     -----> M00074 c-Ets- 90.1
<----- M00053 c-Rel 89.3
                                                           <---- M00052 NF-kap 88.7
                                                      -----> M00053 c-Rel 86.8
----> M00108 NRF-2 86.0
                                                                      G entrada Puntuación

M00083 MZF1 95.7
401 CCACGACTTA TGTTATCTTT GGGCGTGGCC TGGAACGCCT CCGTCACCTG entrada
                                                                 M00054 NF-kap 91.6
---- M00075 GATA-1 90.6
                                                           M00073 GATA-1 90.6
M00080 Evi-1 90.4
M000220 SREBP- 89.8
M00082 Evi-1 89.8
M00073 deltaE 89.6
M00079 Evi-1 89.4
M00053 C-Rel 89.3
                                                            MO0052 NF-kap 88.7
M00001 MyoD 88.4
M00101 CdxA 86.4
M00220 SREBP- 85.9
                                                           ----- M00122 USF 85.3
                                                           <---- M00122 USF
451 ATCGTTGAGA CGCAACGTGA TTGGAAGACC GAAGTCATCG TTCTGATTGG entrada
                                                                                       Puntuación
                                                                        M00075 GATA-1 92.2
M00075 GATA-1 90.6
                        ---->
                                                                        M00220 SREBP- 89.8
                                                                        M00073 deltaE 89.6
     ->
                                                                        M00001 MyoD 88.4
     ---
                                                            ----- M00075 GATA-1 87.8
<----- M00096 Pbx-1 86.3
                                                             M00220 SREBP- 85.9
M00209 NF-Y 85.9
     ->
                                                                        M00122 USF
                                                                                          85.3
                                                                         M00122 USF
                                                                                       Puntuación
501 TCCGCCCGGC ACCGGGAAGA GCCGTTATGC ATTTGAATTT CCCGCCGAAA entrada
                                                                       M00227 v-Myb 93.6
                                <----
                                                                     -- M00148 SRY
                                                                        M00050 E2F
                                                                                          90.8
                                                                         M00075 GATA-1 87.8
     >
                                                                         M00133 Tst-1 87.5
                                                                         M00096 Pbx-1 86.3
M00209 NF-Y 85.9
                 -----
                                                                         M00003 v-Myb 85.9
                                                                         entrada
                                                                                        Puntuación
551 ACAAGTATTA CA
                                                                         M00148 SRY
```

### Fig. 17 (f)

#### 7. Circovirus del pinzón

| CCGTGAAAGC CGGAAGAGGT ATGGCCGAAG TCGCC                  | GCGAGA entrada Puntuación<br>M00108 NRF-2 93.0<br>M00032 c-Ets- 88.2<br>M00050 E2F 86.2                                 |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                         | 1100000 1121 0012                                                                                                       |
| 401 GTTCAGTCTA GCCTACGTCA GATATGGGCG GGGCCTGCGT GATCTTC | GCGC entrada Puntuación  M00039 CREB 91.6  M000128 GATA-1 91.5  M00077 GATA-3 89.1  M00008 Sp1 89.0  M00076 GATA-2 88.9 |
| >                                                       |                                                                                                                         |
|                                                         | M00075 GATA-1 87.3                                                                                                      |
| 451 TGCTGATTGG CCAGAAGCCC CGTGACTTCA AAACGGAAGT CATAGTC | GCTG entrada Puntuación<br>M00075 GATA-1 91.8<br>M00074 c-Ets- 90.5                                                     |
|                                                         | M00025 Elk-1 90.0                                                                                                       |
| >                                                       |                                                                                                                         |
| >                                                       | M00209 NF-Y 89.4                                                                                                        |
| >                                                       | M00108 NRF-2 87.7                                                                                                       |
| >                                                       | M00041 CRE-BP 87.2                                                                                                      |
| >                                                       | M00217 USF 86.6                                                                                                         |
|                                                         | M00032 c-Ets- 86.3                                                                                                      |
| >                                                       |                                                                                                                         |
| <                                                       | M00041 CRE-BP 86.2                                                                                                      |
| >                                                       | M00039 CREB 86.1                                                                                                        |
| >                                                       | M00003 v-Myb 85.9                                                                                                       |
| <                                                       | M00039 CREB 85.6                                                                                                        |
|                                                         |                                                                                                                         |
| 501 ACCGGCCCTA GTGGGTGTGG CAAATCCCGC TGGGCCAATG AACAAG  | AAGG entrada Puntuación                                                                                                 |
| . <                                                     | M00054 NF-kap 88.8                                                                                                      |
| . <                                                     | M00208 NF-kap 86.2                                                                                                      |
| <                                                       | M00053 c-Rel 85.1                                                                                                       |
| • ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                 |                                                                                                                         |
| 551 AACTAAGTTT T                                        | entrada Puntuación                                                                                                      |

Fig. 17 (g)

#### 8. Circovirus del ganso

| <del></del>                                                |                       |
|------------------------------------------------------------|-----------------------|
| TGGTCTGCCG ATAACTGACG TGGCCCGG                             | AA entrada Puntuación |
| ******                                                     | M00032 c-Ets- 95.1    |
|                                                            | M00025 Elk-1 93.0     |
| >                                                          | M00076 GATA-2 89.3    |
|                                                            | M00074 c-Ets- 87.7    |
| · <                                                        | M00053 c-Rel 86.8     |
| >                                                          | M00127 GATA-1 86.7    |
| >                                                          | M00075 GATA-1 86.5    |
| >                                                          | M00039 CREB 86.1      |
|                                                            |                       |
| 401 GTACCCGACG ACTTATGTAA TGTTTGGGCG GGGCTTAGAG CGGTTGCGTC | entrada Puntuación    |
| >                                                          | M00032 c-Ets- 95.1    |
| >                                                          | M00045 E4BP4 93.1     |
|                                                            | M00025 Elk-1 93.0     |
| >                                                          | M00109 C/EBPb 90.6    |
| <                                                          | M00228 VBP 89.8       |
| >                                                          | M00008 Sp1 89.0       |
|                                                            |                       |

|   | <br>     | ><br>>                | <br>            | ·>         |            | M00040<br>M00074<br>M00141<br>M00053<br>M00040<br>M00116<br>M00101<br>M00072<br>M00039 | C-Ets-<br>Lyf-1<br>c-Rel<br>CRE-BP<br>C/EBPa<br>CdxA<br>CP2 | 87.7<br>87.0<br>86.8<br>86.7<br>86.5<br>86.4 |
|---|----------|-----------------------|-----------------|------------|------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|
|   | •        |                       |                 |            |            |                                                                                        |                                                             |                                              |
| - | CTGATCGT | ·>                    | CGTGATTGGA      | AGACGGAGGT |            | M00075<br>M00075<br>M00075<br>M00077<br>M00076                                         | GATA-1<br>GATA-1<br>GATA-3                                  | 91.4<br>89.4<br>87.5<br>85.8                 |
|   |          |                       |                 |            |            |                                                                                        |                                                             |                                              |
|   | TGGGCGGC | CTGGAAGCGG            | GAAGAGCCGT<br>< | TACGCGTTTG | AATTTCCCGC | M000227<br>M00050<br>M00075                                                            | v-Myb                                                       | 96.3<br>90.8<br>89.4                         |
|   | GTGAAAAG | TATTATAAAT<br><<br><> |                 |            |            | M00100<br>M00101<br>M00101                                                             | a<br>CdxA<br>CdxA<br>CdxA<br>CdxA<br>E2F                    | 96.2<br>91.4<br>91.4                         |

#### Fig. 17 (h)

### 

551 CTGTGGCAAG TCAAAATTGG CCAATGAGAT GGAAGGGTCT AAGTTCTACA entrada Puntuación

|   |   | <br>M00011 | Evi-1  | 89.1 |
|---|---|------------|--------|------|
|   | > | M00147     | HSF2   | 87.2 |
|   |   | M00073     | deltaE | 86.2 |
| > |   | M00116     | C/EBPa | 85.3 |
|   |   |            |        |      |
|   |   |            |        |      |

### Fig. 17 (i)

| Región | Peap of | <u>le PCV-1</u> |
|--------|---------|-----------------|
|        |         |                 |

| <del></del>                       |                            |                                                                            |
|-----------------------------------|----------------------------|----------------------------------------------------------------------------|
| GCAGTTCCCT GTAAC                  | CGTATG TGAGAAATTT CCGCGGGC | rg entrada Puntuación                                                      |
| 1.1                               | <                          | M00147 HSF2 91.0                                                           |
|                                   | >                          | M00147 HSF2 88.5                                                           |
|                                   | >                          | M00146 HSF1 87.3                                                           |
|                                   | <                          | M00074 c-Ets- 86.6                                                         |
| 451 GCTGAACTTT TGAAAGTGAG CGGGAAG | GATG CAGCAGCGTG ATTGGAAGAC | M00075 GATA-1 92.2                                                         |
| >                                 |                            | M00109 C/EBPb 85.5                                                         |
| 501 AGCTGTACAC GTCATAGTGG GCCCGCC | CCGG TTGTGGGAAG AGCCAGTGGG | M00223 STATx 88.5                                                          |
| <                                 |                            | M00039 CREB 87.6                                                           |
| 551 CCCGTAATTT TGCTGA             | GCCT AGCGACACCT ACTGGAAGCC | entrada Puntuación<br><u>M00032</u> c-Ets- 89.2<br><u>M00101</u> CdxA 85.7 |
|                                   |                            |                                                                            |

### Fig. 17 (j)

#### Región Pcap de PCV2

| *   | CAGA       | GCAGCACCCT | GTAACGTTTG | TCAGAAATTT    | CCGCGGGCTG | entrada | a I    | Puntuación |
|-----|------------|------------|------------|---------------|------------|---------|--------|------------|
|     |            |            |            | <             |            | M00101  | CdxA   | 93.6       |
|     |            | <          |            |               | M00147     | HSF2    | 91.0   |            |
|     |            |            |            | <             |            | M00100  | CdxA   | 89.7       |
|     | >          |            |            |               | M00147     | HSF2    | 88.5   |            |
|     | >          |            |            | M00146        | HSF1       | 87.3    |        |            |
|     |            |            |            | <             |            | M00074  | c-Ets- | - 86.6     |
| 451 | GCTGAACTTT | TGAAAGTGAG | CGGGAAAATG | CAGAAGCGTG    | ATTGGAAGAC | entrad  | a :    | Puntuación |
|     |            |            |            |               | >          | M00075  | GATA-1 |            |
|     |            | <-         |            |               |            | M00050  |        | 90.8       |
|     |            |            |            |               |            | M00101  |        |            |
|     |            | >          |            |               |            | M00109  | C/EBP  | o 85.5     |
| 501 | TAATGTACAC | GTCATTGTGG | GGCCACCTGG |               | AGCAAATGGG | entrada | a 1    | Puntuación |
|     |            |            |            | >             |            |         |        | a 100.0    |
|     | <          |            |            |               |            | M00251  |        |            |
|     |            |            |            |               | >          | M00159  |        |            |
|     | <          |            |            |               |            | M00039  |        |            |
|     | >          |            |            |               |            | M00101  |        |            |
|     |            |            |            | - · - · · · - | >          | M00148  |        |            |
|     | <          |            |            |               |            | M00162  | Oct-1  | 85.7       |
| 551 | CTGCTAATTT | TGCAGACCCG | GAAACCACAT | ACTGGAAACC    |            | entrad  | a      | Puntuación |

-----> M00271 AML-1a 100.0 c-Ets- 86.3

Fig. 17 (k)