

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 467 566

(21) Número de solicitud: 201231933

51 Int. Cl.:

A61K 33/44 (2006.01) A61K 9/10 (2006.01) B01F 5/00 (2006.01) B01F 5/10 (2006.01) B01F 3/12 (2006.01)

(12)

SOLICITUD DE PATENTE

Α1

22 Fecha de presentación:

12.12.2012

43) Fecha de publicación de la solicitud:

12.06.2014

(71) Solicitantes:

LAINCO, S.A. (100.0%) Avda. Bizet, 8-10-12 08191 Rubí (Barcelona) ES

(72) Inventor/es:

BALLESTA PÉREZ, Jordi

(74) Agente/Representante:

ISERN JARA, Jorge

54) Título: Composición farmacéutica de carbón activado en suspensión

(57) Resumen:

La presente invención se refiere a una composición farmacéutica que contiene una alta concentración de carbón activado suspendido en una fase externa dispersante continua acuosa, así como al procedimiento de obtención de la misma. La presente invención también se refiere al uso de dicha composición farmacéutica para la fabricación de un medicamento con indicaciones para el tratamiento de intoxicaciones por vía oral. Dicha composición se define en farmacia como jarabe en suspensión acuosa de administración oral.

COMPOSICIÓN FARMACÉUTICA DE CARBÓN ACTIVADO EN SUSPENSIÓN

DESCRIPCION

CAMPO DE LA INVENCIÓN

La presente invención se enmarca dentro del campo químico y farmacéutico. Concretamente la presente invención se refiere a una composición farmacéutica que contiene una alta concentración de carbón activado suspendido en una fase externa dispersante continua acuosa.

La presente invención también se refiere al uso de dicha composición farmacéutica para la fabricación de un medicamento con indicaciones para el tratamiento de intoxicaciones por vía oral. Dicha composición se define en farmacia como jarabe en suspensión acuosa de administración oral.

ANTECEDENTES DE LA INVENCIÓN

La Intoxicación por medicamentos aguda (IMA) es la primera causa de consulta por intoxicación en los servicios de urgencias españoles, tanto en la población adulta como pediátrica [OSES, I. et al. Intoxicaciones medicamentosas (I): Psicofármacos y antiarrítmicos. Anales Sis San Navarra [online]. 2003, vol.26, suppl.1 [citado 2012-07-20], pp. 49-63]. Además se ha observado que los grandes grupos de medicamentos que causan IMA son:

25

5

10

15

20

- psicofármacos como las benzodiacepinas, antidepresivos tricíclicos o litio
- medicación cardiovascular como los digitálicos, betabloqueantes y antagonistas del calcio, y
- medicación analgésica-antiinflamatoria y antiepiléptica.

30

Los servicios de urgencias, tanto de atención primaria como hospitalarios, junto con los servicios de emergencias extrahospitalarios, son el primer escalón en la atención al paciente intoxicado, y generalmente el lugar donde se diagnostican, tratan y resuelven la mayoría de

los casos [Riquelme A, Burillo-Putze G, Jiménez A, Hardisson A. Epidemiología global de la Intoxicación Aguda en un Área de Salud. Aten Primaria 2001; 28: 506].

En estas situaciones, la práctica más utilizada es la descontaminación digestiva para disminuir la absorción del fármaco en un intervalo máximo 1-2 horas y debe realizarse con carbón activado a dosis de 1g/Kg. Sin embargo, con esta técnica existe riesgo de broncoaspiración, que puede ser más grave que la propia intoxicación [OSES, I. et al. Intoxicaciones medicamentosas (I): Psicofármacos y antiarrítmicos. Anales Sis San Navarra [online]. 2003, vol.26, suppl.1 [citado 2012-07-20], pp. 49-63], por ello se hace necesario el desarrollo de una formulación con elevada concentración de carbón activado que sea estable en volúmenes pequeños para que no se requiera reconstitución extemporánea y para evitar al máximo posible la broncoaspiración.

El término carbón activado es un término genérico que describe una familia de adsorbentes carbonáceos altamente cristalinos y con una estructura porosa interna extensivamente desarrollada. Existe una amplia variedad de productos de carbón activado que muestran diferentes características, dependiendo del material de partida y la técnica de activación usada en su producción.

El carbón activado tiene varios usos conocidos en el estado del arte. Así, se observa que se utiliza en la extracción de metales, en la purificación del agua (tanto para la potabilización a nivel público como doméstico), en medicina para casos de intoxicación, en el tratamiento de aguas residuales, clarificación de jarabe de azúcar, purificación de glicerina, en máscaras antigás, en filtros de purificación y en controladores de emisiones de automóviles, entre otros muchos usos.

Las formulaciones utilizadas actualmente para distribuir uniformemente carbón vegetal activado se encuentran generalmente en forma de polvo seco, polvo humectable, suspensión líquida, espuma o granulado seco.

30

5

10

15

Aunque en cierta medida son eficaces, cada uno de los productos existentes arriba mencionados presenta importantes limitaciones de aplicación. Así observamos que por ejemplo cuando se utilizan polvos secos, forman suspensiones inestables y sedimentan, por lo que para mantener una dispersión razonable dentro del depósito contenedor la

suspensión generalmente acuosa debe agitarse vigorosamente. Además, estas suspensiones en polvo cuando están configuradas para ser pulverizadas provocan un desgaste excesivo del equipo de distribución, tal como las bombas y boquillas del pulverizador. Por lo tanto, las suspensiones de polvo presentan dificultades de aplicación extremas para el usuario final.

5

10

15

20

25

30

Observando los distintos antecedentes del estado de la técnica, encontramos que hay patentes que han ahondado en la investigación de diferentes fenómenos fisicoquímicos para solucionar esta compactación. Así, encontramos la patente número US4732805 que se refiere a un material de carbono activo que incluye un revestimiento con un material particulado hidrófobo que hace que el carbón activo sea impermeable aunque permita la adsorción de componentes indeseables. Preferiblemente, el material hidrófobo es politetrafluoroetileno que tiene un tamaño medio de partícula de una décima parte de una micra. El carbón activo se impermeabiliza por inmersión en una suspensión acuosa del material hidrófobo que luego se seca para eliminar el agua para dejar el recubrimiento de partículas de material hidrófobo en la superficie externa del carbón activo.

En lo que se refiere a formulaciones líquidas de carbón vegetal activado, los datos conocidos en el estado de la técnica se refieren fundamentalmente a suspensiones de muy baja concentración de carbón vegetal activado en agua. Además, estas formulaciones contienen habitualmente grandes cargas de agentes de suspensión para asegurar la estabilidad del producto formulado. Aunque estos productos líquidos ofrecen la ventaja de facilitar el manejo y evitar los problemas de formación de polvo, mezclado y aplicación inherentes al uso de polvos, las bajas concentraciones requieren el transporte de grandes volúmenes de agua. Adicionalmente, estas formulaciones tienden a hacerse inestables después de varios cambios de temperatura, por ejemplo una congelación y descongelación. Por consiguiente, estas formulaciones líquidas también tienden a ser costosas para el usuario final. En relación con estas composiciones líquidas encontramos por ejemplo, la patente US4585753 que describe una formulación líquida de carbón vegetal activado como fitosanitario.

En la técnica también se conocen formas granuladas de carbón vegetal activado que superan muchos de los problemas de los sistemas en polvo, líquidos y en espuma arriba descritos. Así tenemos la invención US5759943, que se refiere a composiciones de carbón

activado granulares que se pueden administrar tanto en seco como disperso en una solución acuosa sobre una superficie para reducir la actividad biológica de compuestos orgánicos nocivos. Cuando hay humedad, estos gránulos se dispersan muy rápidamente con un área de gran dispersión en relación al diámetro original del gránulo. Los gránulos tienen altas cargas de carbón activo, es decir, desde entre 60 a 95 % en peso y contienen entre un 5 y un 40% en peso de un sistema tensioactivo que facilita las funciones de dispersión y de rehumectación.

Sin embargo, cuando nos centramos en descontaminaciones digestivas, en concreto para disminuir la absorción en una IMA, se requiere una formulación que sea estable a altas dosis y en volúmenes pequeños para que no se requiera reconstitución extemporánea y para evitar al máximo posible la broncoaspiración.

Así, la ventaja principal de la formulación de la presente invención es que el carbón activado a pesar de estar presente en una elevada concentración (entre 15-25 g/100 ml formulación) y en un volumen pequeño, tiene una muy baja tendencia a la sedimentación, lo que permite que pueda tener un plazo de validez adecuado para su producción y comercialización a nivel industrial, sin los inconvenientes de las reconstituciones extemporáneas, justo antes de su uso.

20

5

10

15

Esta baja tendencia a sedimentar se debe fundamentalmente a las siguientes características técnicas:

25

- a que el tamaño de partícula de dicho carbón activado es muy pequeño, (inferior a 60 micras) y especialmente con una distribución de tamaños de rango muy estrecho, ocasionando por tanto que el material a dispersar sea muy homogéneo.
- a que se obtiene la formulación gracias a una dispersión del carbón mediante técnicas de dispersión en línea, consiguiendo una muy escasa incorporación de aire y la incorporación del sólido en el medio líquido mediante altas velocidades de cizalladura.

30

El hecho de poder preparar una suspensión estable de manera altamente facilitada proporciona además las siguientes ventajas:

ausencia de dispersantes enérgicos de origen químico y

- sustitución de viscosizantes industriales como goma xantana, derivados químicos de celulosas, etc. por simple preparación de un jarabe a partir de azúcar de calidad farmacopea europea y de glicerina de origen vegetal de la misma calidad.
- Además, al entrar el agua en pequeña proporción, tiene las ventajas frente a otras preparaciones de ser mucho menos proclive a la congelación, por lo que se puede asegurar un efecto anticongelante con la simple adición de una pequeña proporción de anticongelante.

10

15

20

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

Para el entendimiento de la presente invención, se entiende por "carbón activado" o "carbón activo" al carbón vegetal caracterizado por tener una gran área superficial por unidad de volumen. Este es el resultado de una cantidad enorme de poros finos dentro de la estructura. El carbón vegetal activado se deriva de madera, coco, celulosa, turba y carbones de rango bituminoso o inferior mediante calentamiento, en general a aproximadamente 900°C, durante un breve período de tiempo en aire, dióxido de carbono o vapor para hacerlo más poroso y eficiente. Las propiedades de absorción / adsorción aumentadas del carbón vegetal activado resultan de la enorme área superficial interior.

El objetivo fundamental de la presente invención es obtener un preparado farmacéutico en forma de suspensión de carbón activado con las siguientes características:

- riqueza entre 15-25 g/100 ml de la formulación de carbón activado con un tamaño de partícula inferior a 60 micras.
 - el carbón activado debe cumplir la correspondiente monografía de carbón activado en la Farmacopea Europea vigente [European Pharmacopoeia 7.0].
 - el líquido dispersante será agua purificada, sin alcoholes u otros disolventes,
- 30 deberá tener el máximo de buen sabor, por lo que se adiciona azúcar y glicerina,
 - la dispersión del carbón activado debe ser muy elevada para asegurar una buena homogeneización y retardar al máximo la sedimentación del mismo y para permitir la administración por varios tipos de sondas en pacientes entubados, incluso con sistemas de administración gota a gota. Para valorar la dispersión total del carbón activado se han

realizado varios ensayos de dispersión de tamaño de partículas mediante difracción de rayo laser. En esos ensayos se observa que la dispersión del tamaño de partícula es similar en el carbón activado materias primas, que en el producto formulado. Ello prueba que no ha habido agregaciones de partículas ni formación de grumos, y que la dispersión es completa.

El carbón activado utilizado tiene un tamaño de partícula inferior a 60 micras, lo que hace que su dispersión no sea fácil al englobar mucho aire. Dicho aire queda incorporado en el preparado y es difícil de eliminar, a causa de la moderada viscosidad final de la suspensión.

10

5

La permanencia del aire ocasiona errores en la determinación de la viscosidad y densidad relativa final, problemas de salpicaduras en la dosificación en envases, mayor probabilidad de oxidación de los componentes del formulado, inoculación de más carga bacteriana aportada por el aire incorporado, etc.

15

Por la misma razón de su tamaño de partícula tan fino, deberá incorporarse al medio líquido con mucho cuidado para evitar la emanación del polvo al interior de la sala y ensuciado de otra maquinaria presente, conductos de ventilación, filtros, etc., por eso se ha aplicado un método de dispersión en línea, y no la clásica adición de sólido a líquido y posterior agitación.

20

25

En lo concerniente a las propiedades del producto final, cabe comentar que la suspensión que se obtiene es muy homogénea y sin grumos. Para valorar la dispersión total del carbón activado se han realizado varias ensayos de dispersión de tamaño de partículas mediante difracción de rayo laser. En esos ensayos se observa que la dispersión del tamaño de partícula es similar en el carbón activado materias prima que en el producto formulado. Ello prueba que no ha habido agregaciones de partículas ni formación de grumos, y que la dispersión es completa.

30

Para valorar la eficacia suspensoria de la preparación se han realizado numerosos test de sedimentación a 1, 3 y 7 días que han consistido en verter 100 ml de la suspensión en una probeta calibrada y evaluar la sedimentación del producto mediante la lectura del número de mililitros de líquido sobrenadante que vaya apareciendo en la parte superior de la

suspensión. Pues bien, en todos los intervalos de tiempo estudiados, el valor ha sido siempre 0 ml.

Resto de componentes de la composición pueden ser:

5

10

15

Sacarosa: confiere además una moderada viscosidad al preparado, lo que confiere una mejor palatabilidad, menor presencia de sedimentación de las partículas de ingrediente activo y mayor seguridad en la toma, al disminuirse el riesgo de bronco aspiración. Es además un edulcorante de origen natural y con gran poder endulzante, aumentando la palatabilidad del preparado. Como el sabor de una suspensión de carbón no es agradable, el hecho de endulzar facilita la administración del preparado. Se podrían utilizar otros endulzantes, pero además de no ser naturales, en sacarosa se ha comprobado que no interfiere con la capacidad de adsorción del carbón: este hecho es clave pues por su alta concentración en la fórmula, podría disminuir la capacidad de adsorción en el momento de emplearse como fármaco. Por tanto es un ingrediente con una acción dual, lo que simplifica la formulación y elimina cualquier interferencia en la eficacia adsorptiva del preparado. Otros componentes que han sido ensayados con resultados irregulares o negativos son polioles como el sorbitol. Alternativas a la sacarosa son: sorbitol, maltitol, metilcelulosa, carboximetilcelulosa, entre otros.

20

Glicerol: por sus propiedades humectantes facilita la dispersión del carbón en el agua, facilitando el contacto del agua con el carbón. Además, es un ingrediente muy seguro por ser común en alimentación y farmacia. Es además de sabor dulce, reforzando la palatabilidad del preparado. Alternativas al glicerol son: polietilenglicol 400, diferentes tensioactivos lineales no iónicos (alcoholes grasos láuricos, palmíticos, etc.).

25

 Propilenglicol: posee propiedades humectantes y anticongelantes. Tiene un uso muy extenso en farmacia y cosmética. Alternativas al propilenglicol son: polietilenglicol 400, diferentes tensioactivos lineales no iónicos (alcoholes grasos láuricos, palmíticos, etc.).

30

El problema técnico fundamental que soluciona el objeto de la presente invención es la obtención de una composición oral estable con alta concentración de carbón activado. Para el objeto de la presente invención se ha conseguido una suspensión estable con hasta 25 g/100 ml formulación de principio activo, lo que posibilita tener que administrar menor

volumen de suspensión. Esto supone una mayor ventaja para el paciente y disminuye las

posibilidades de vómito durante la administración o tras la misma.

En la actualidad, en el estado de la técnica, existe la dificultad de obtener suspensiones muy

concentradas de carbón activado porque es muy difícil lograr que las partículas sedimenten

poco y, lo que es más importante, que una vez sedimentadas se puedan resuspender

fácilmente mediante un proceso de agitación del envase. De ahí, que conseguir

suspensiones de carbón de hasta 25 % p/v es un hecho destacado y por lo tanto se

considera un aspecto esencial de la presente invención.

10

15

5

La gran ventaja para el paciente es que al ser suspensiones concentradas, es posible

administrar la misma dosis de carbón en menor volumen de medicamento. Este hecho tiene

gran trascendencia ya que por lo general la utilidad de estas suspensiones en el ámbito

clínico es en intoxicaciones por ingestión de tóxicos por sobredosis de medicamentos. Pues

bien, en estos casos es imprescindible administrar una dosis grande de 25-50 g de carbón

activado en caso de una persona adulta. Por eso, cuanto mayor sea la concentración de

carbón de la composición, menos volumen de medicamento deberá administrarse al

paciente lo que tiene las siguientes ventajas clínicas:

20 mayor cumplimiento terapéutico: la administración de un medicamento a grandes

volúmenes es siempre desagradable para el paciente, porque el sabor no puede ser

optimizado para no convertirlo en apetecible.

menor riesgo de vómito: la administración de grandes volúmenes puede llevar consigo la

aparición de vómito, lo que puede ocasionar riesgo de broncoaspiración.

25

Una composición preferida de la presente invención es:

Carbón activado: 15-25 % p/v

Sacarosa: 60 % p/v

- Glicerina: 5 % p/v

- Propilenglicol: 10% p/v 30

- Agua purificada: csp 100 ml

Siendo el volumen total de la composición 100 ml.

9

Para el objeto de la presente invención los valores individuales de los porcentajes de los distintos componentes de la composición son tales que el total de la composición nunca supere el 100%.

Otro aspecto importante de la presente invención es el procedimiento de obtención de la composición objeto de la misma, que consigue una dispersión del carbón activado mediante técnicas de dispersión en línea, lo que facilita una muy escasa incorporación de aire, consiguiendo la incorporación del sólido en el medio líquido mediante altas velocidades de cizalladura.

10

De este modo las etapas fundamentales del procedimiento de la presente invención, comprenden:

- a) adición de agua purificada en un reactor con agitador de hélice,
- b) adición con dispersión en línea y solubilización del viscosizante en el agua purificada a temperatura ambiente.
- c) incorporación del agente estabilizante a la etapa b) y mezclado,
- d) incorporación a la etapa c) del agente humectante, y mezclado
- e) incorporación y dispersión del carbón activado en la mezcla obtenida en la etapa d), mediante dispersor en línea a temperatura ambiente con recirculación continua.

20

25

30

15

Un hecho característico del presente proceso es la incorporación del carbón activado mediante agitador en línea. Los mezcladores en línea realizan las funciones de disolución y dispersión de sólidos en líquidos; y de emulsión, dilución y mezcla de líquidos, que también son propias de los agitadores.

Mezclar en línea supone numerosas ventajas, respecto al sistema "clásico" de mezcla por agitación: sin grumos, sin aire, de gran finura y de gran estabilidad. Así como procesos óptimos: flexibilidad de lotes, depósitos sin adherencias de sólidos, disolución total de sólidos higroscópicos y diluciones en continuo.

El método de recirculación proporciona un mayor grado de homogeneización y reducción del tamaño de partícula. El producto es dirigido desde el fondo del recipiente, procesado a

través del cabezal de alto cizallamiento rotor/estator y devuelto al recipiente por la parte superior.

El cabezal está compuesto por 3 hélices de diferente geometría, separadas entre sí por discos perforados de distintos diámetros, lo que provoca que el líquido presente turbulencias y laminaciones sucesivas.

Los ingredientes son introducidos en el interior del mezclador o en la tubería de entrada de la máquina justo antes del cabezal de trabajo rotor/estator. Esto asegurará que los productos sean mezclados inmediatamente al entrar en contacto. Este método es ideal para combinaciones continuas líquido/líquido y para productos donde la aireación deba evitarse como por ejemplo detergentes y productos viscosos o que engloben mucho aire (como carbón activado).

La rotación a alta velocidad de las cuchillas del rotor dentro del cabezal de trabajo con ajuste de precisión ejerce una potente succión, dirigiendo el líquido y los materiales sólidos a la unidad del rotor/estator.

La fuerza centrífuga dirige entonces los materiales hacia la periferia del cabezal de trabajo 20 donde se someten a una acción de desaglomeración en la holgura con ajuste de precisión entre los extremos de las cuchillas del rotor y la pared interna del estator.

A esto le sigue el intenso cizallamiento hidráulico, forzando los materiales a gran velocidad a través de las perforaciones del estator, a la salida de la máquina y por las tuberías. Al mismo tiempo, entran continuamente materiales nuevos al cabezal de trabajo, manteniendo el ciclo de mezclado y bombeo.

EJEMPLOS DE REALIZACION PREFERIDA

5

10

25

Los siguientes ejemplos específicos que se proporcionan a continuación sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica.

EJEMPLO 1

5

10

20

25

30

En el presente ejemplo se prepara la composición en un volumen total de 100 mL.: carbón

activado al 20% p/v, sacarosa al 60 % p/v, propilenglicol al 10% p/v, glicerol al 5 % p/v y

agua purificada hasta 100 mL.

El procedimiento que se lleva a cabo para obtener dicha composición es el siguiente:

a) cargar agua purificada en un reactor de fabricación de acero inoxidable provisto de

agitador de hélice,

b) añadir y disolver un 60% p/v de sacarosa mediante dispersor en línea, sin calentar en

ningún momento. De este modo se asegura una muy rápida y completa disolución sin

necesidad de calentar,

c) añadir y disolver un 10% p/v de propilenglicol en la mezcla obtenida de la etapa b),

15 d) añadir y disolver un 5% p/v de glicerol en la mezcla obtenida en la etapa c),

e) finalmente añadir y disolver un 20% p/v de carbón activado en la mezcla obtenida en la

etapa d), mediante dispersor en línea a temperatura ambiente con recirculación continua

hasta completa dispersión. La dispersión va recirculando a través de un sistema de

cuchillas en giro continuo que permiten un desmenuzado total y una desagregación en

partículas muy eficiente.

Un aspecto importante de la presente invención es una composición farmacéutica estable

que comprende carbón activado y excipientes farmacéuticamente aceptables en forma de

suspensión oral que contiene entre 15-25 g/100 ml de carbón activado con un tamaño de

partícula inferior a 60 micras.

De acuerdo con otro aspecto, la composición farmacéutica comprende los siguientes

componentes:

a) Carbón activado: entre 15-25 % p/v

b) viscosizante: 20-60 % p/v

c) estabilizante: 2-10% p/v

d) humectante: 2-5 % p/v

e) Agua purificada: csp 100 ml

12

De acuerdo con otro aspecto, el agente viscosizante se selecciona del grupo formado por sacarosa, maltitol, metilcelulosa y carboximetilcelulosa.

De acuerdo con otro aspecto, el agente humectante se selecciona del grupo formado por glicerol, polietilenglicol 400, tensioactivos lineales no iónicos como alcoholes grasos láuricos o palmíticos.

De acuerdo con otro aspecto, el agente estabilizante se selecciona del grupo formado por propilenglicol, polietilenglicol, tensioactivos lineales no iónicos como alcoholes grasos láuricos o palmíticos.

De acuerdo con otro aspecto, la composición de forma preferida comprende los siguientes componentes:

a) Carbón activado: 20 % p/v

b) sacarosa 60 % p/v

c) propilenglicol: 10% p/v

d) glicerol: 5 % p/v

e) Agua purificada: csp 100 ml

20

25

30

10

15

Otro aspecto importante de la presente invención es un procedimiento para la preparación de la composición farmacéutica objeto de la presente invención que comprende las siguientes etapas:

- a) adición de agua purificada en un reactor con agitador de hélice,
 - b) adición con dispersión en línea y solubilización del viscosizante en el agua purificada a temperatura ambiente,
 - c) incorporación del agente estabilizante a la etapa b) y mezclado,
 - d) incorporación a la etapa c) del agente humectante,
- e) incorporación y dispersión del carbón activado en la mezcla obtenida en la etapa d),
 mediante dispersor en línea a temperatura ambiente con recirculación continua.

Otro aspecto importante de la presente invención es el uso de dicha composición farmacéutica para la fabricación de un medicamento para el tratamiento de intoxicaciones por vía oral.

Otro aspecto importante de la presente invención es el uso de dicha composición para la fabricación de un medicamento para el tratamiento de una intoxicación por medicamentos aguda.

Otro aspecto importante de la presente invención es el uso de dicha composición para la fabricación de un medicamento en forma de jarabe en suspensión acuosa de administración oral.

REIVINDICACIONES

- 1.- Composición farmacéutica estable que comprende carbón activado y excipientes farmacéuticamente aceptables en forma de suspensión oral **caracterizado porque** contiene entre 15-25 g/100 ml de carbón activado con un tamaño de partícula inferior a 60 micras.
- 2.- Composición farmacéutica estable según la reivindicación 1 caracterizada porque comprende los siguientes componentes:

10

5

a) Carbón activado: entre 15-25 % p/v

b) viscosizante: 20-60 % p/vc) estabilizante: 2-10% p/vd) humectante: 2-5 % p/v

e) Agua purificada: csp 100 ml

3.- Composición farmacéutica estable según la reivindicación 2 caracterizada porque el agente viscosizante se selecciona del grupo formado por sacarosa, maltitol, metilcelulosa y carboximetilcelulosa.

20

- 4.- Composición farmacéutica estable según la reivindicación 2 caracterizada porque el agente estabilizante se selecciona del grupo formado por propilenglicol, polietilenglicol, tensioactivos lineales no iónicos como alcoholes grasos láuricos o palmíticos.
- 5.- Composición farmacéutica estable según la reivindicación 2 caracterizada porque el agente humectante se selecciona del grupo formado por glicerol, polietilenglicol 400, tensioactivos lineales no iónicos como alcoholes grasos láuricos o palmíticos
- 6.- Composición farmacéutica estable según la reivindicación 1 caracterizada porque comprende los siguientes componentes:

a) Carbón activado: 20 % p/v

b) sacarosa 60 % p/vc) propilenglicol: 10% p/v

- d) glicerol: 5 % p/v
- e) Agua purificada: csp 100 ml
- 7.- Procedimiento para la preparación de una composición farmacéutica según cualquiera de las reivindicaciones 1-6 caracterizado porque comprende las siguientes etapas:
 - a) adición de agua purificada en un reactor con agitador de hélice,
 - b) adición con dispersión en línea y solubilización del viscosizante en el agua purificada a temperatura ambiente,
- 10 c) incorporación del agente estabilizante a la etapa b) y mezclado,
 - d) incorporación a la etapa c) del agente humectante,
 - e) incorporación y disolución del carbón activado en la mezcla obtenida en la etapa d), mediante dispersor en línea a temperatura ambiente con recirculación continua.
- 15 8.- Uso de la composición farmacéutica según cualquiera de las reivindicaciones 1-6 para la fabricación de un medicamento para el tratamiento de intoxicaciones por vía oral.
 - 9.- Uso de la composición farmacéutica según la reivindicación 8 para la fabricación de un medicamento para el tratamiento de intoxicación por medicamentos aguda.

20

5

10.- Uso de la composición farmacéutica según cualquiera de las reivindicaciones 1-6 para la fabricación de un medicamento en forma de jarabe en suspensión acuosa de administración oral.

(21) N.º solicitud: 201231933

22 Fecha de presentación de la solicitud: 12.12.2012

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

Categoría	66	Documentos citados	Reivindicaciones afectadas
X	FR 2904238 A1 (SERB) 01.02.200 página 5, líneas 17-35; página 6, lí	1-6,8-10	
А	CN 1943595 A (BAOTAININGTAN (resumen) [en línea] [recuperado e DW 200765; nº acceso 2007-6913;	1-10	
A	US 2011021641 A1 (BEHREND OI párrafos [0001],[0013]-[0015],[0028		1-10
X: d Y: d r	egoría de los documentos citados le particular relevancia e particular relevancia combinado con ot nisma categoría efleja el estado de la técnica	O: referido a divulgación no escrita ro/s de la P: publicado entre la fecha de prioridad y la de p de la solicitud E: documento anterior, pero publicado después o de presentación de la solicitud	
	presente informe ha sido realizado para todas las reivindicaciones	para las reivindicaciones nº:	
Fecha	de realización del informe 30.09.2013	Examinador N. Vera Gutiérrez	Página 1/4

INFORME DEL ESTADO DE LA TÉCNICA

Nº de solicitud: 201231933

CLASIFICACIÓN OBJETO DE LA SOLICITUD
A61K33/44 (2006.01) A61K9/10 (2006.01) B01F5/00 (2006.01) B01F3/12 (2006.01)
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
A61K, B01F
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
INVENES, EPODOC, WPI

OPINIÓN ESCRITA

Nº de solicitud: 201231933

Fecha de Realización de la Opinión Escrita: 30.09.2013

Declaración

Novedad (Art. 6.1 LP 11/1986) Reivindicaciones 7 SI

Reivindicaciones 1-6, 8-10

Actividad inventiva (Art. 8.1 LP11/1986) Reivindicaciones 7 SI

Reivindicaciones 1-6, 8-10 NO

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

Nº de solicitud: 201231933

1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	FR 2904238 A1 (SERB)	01.02.2008

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La invención se refiere a una composición farmacéutica estable que comprende carbón activado y excipientes farmacéuticamente aceptables en forma de suspensión oral caracterizada por que contiene entre 15-25g/100mL de carbón activado con un tamaño de partícula inferior a 60 micrómetros. Se refiere asimismo al procedimiento para la preparación de dicha composición y a su uso para la fabricación de un medicamento para el tratamiento de intoxicaciones por vía oral.

El documento D01 divulga una composición farmacéutica en forma de suspensión acuosa que comprende, por 100 mL de suspensión: carbón activado (20g), sacarosa (66g), glicerol (5g), propilenglicol (10g) y agua (página 7, líneas 18-24). El carbón activado presenta un tamaño de partícula entre 8 y 15 micrómetros (página 5, línea 25). La composición se utiliza para el tratamiento de intoxicaciones por medicamentos u otro tipo de sustancias nocivas (página 6, líneas 14-26).

Se considera que la invención tal como se define en las reivindicaciones 1-6, 8-10 de la solicitud no es nueva (Artículo 6.1 L.P.).

No se han encontrado en el estado de la técnica documentos que divulguen un procedimiento de preparación que comprenda las etapas definidas en la reivindicación 7 de la solicitud para composiciones farmacéuticas estables en forma de suspensión oral de carbón activado. Así, se considera que esta reivindicación es nueva e implica actividad inventiva (Artículos 6.1 y 8.1 L.P.).