

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 472 944

(51) Int. CI.:

B02C 15/00 (2006.01) B02C 15/08 (2006.01) B02C 23/08 (2006.01) B02C 23/26 (2006.01) B02C 15/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 16.12.2010 E 10807699 (3) (97) Fecha y número de publicación de la concesión europea: 07.05.2014 EP 2637790
- (54) Título: Procedimiento para triturar un material para molienda y molino triturador de rodillos
- (45) Fecha de publicación y mención en BOPI de la traducción de la patente: 03.07.2014

(73) Titular/es:

LOESCHE GMBH (100.0%) Hansaallee 243 40549 Düsseldorf, DE

(72) Inventor/es:

BÄTZ, ANDRÉ; **KEYSSNER, MICHAEL;** LANGEL, JÖRG y TRIEBS, MICHAEL

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Procedimiento para triturar un material para molienda y molino triturador de rodillos

5

10

15

20

25

30

40

45

50

55

60

La invención se refiere a un procedimiento para triturar un material para molienda según la reivindicación 1 y a un molino triturador de rodillos según la reivindicación 7.

La invención está prevista especialmente para la trituración finísima de materiales relativamente duros y secos, por ejemplo clínker de cemento y escoria granulada de horno alto, pero también de materiales crudos de cemento y minerales, así como para molinos trituradores de rodillos relativamente grandes.

Los molinos trituradores de rodillos verticales conocidos que también se denominan trituradoras de rodillos, del tipo LOESCHE para moler clínker de cemento y escoria granulada de horno alto que pueden alcanzar unas tasas de producción superiores a 300 t/h, presentan dos o tres rodillos molturadores impulsados por fuerza y rodillos alisadores asignados para desairear el lecho de molienda. Los rodillos molturadores y los rodillos alisadores ruedan sobre una pista de molienda de un plato de molienda rotatorio o sobre un lecho de molienda formado sobre este, pudiendo presentar el plato de molienda un diámetro de más de 4 m hasta cerca de 7 m. La disposición de rodillos alisadores o rodillos de compactación previa, denominados también rodillos de servicio, delante de cada rodillo molturador sirve para evitar vibraciones en un molino triturador de rodillos vertical accionado por aire y para garantizar el caudal garantizado (documentos EP0406644B1, DE4202784C2).

Es sabido que las vibraciones de molinos pueden limitar el caudal y la finura del material, a no ser que existan otras limitaciones de rendimiento exteriores, como por ejemplo filtros, sopladores o accionamientos demasiado pequeños de la instalación de molienda. Especialmente en el caso de productos muy finos y secos, a causa de las vibraciones del molino puede introducirse sólo una fuerza de molienda insuficiente en el lecho de molienda, incluso si el molino permitiría unos caudales muy superiores en cuanto a la estabilidad de los componentes y la concepción del accionamiento hidráulico y del accionamiento del molino.

Obviamente, es causa de las vibraciones de molinos una combinación de las características del lecho de molienda como la finura, la humedad, la densidad aparente a granel, la distribución de tamaños de grano, la forma de los granos, los coeficientes de rozamiento interno y la dureza, unidas a la geometría de las piezas de molienda como la altura del borde de acumulación, el diámetro de los rodillos y el ancho de los rodillos, así como a los ajustes del molino, especialmente el flujo de masa, la circulación interior, la presión superficial (fuerza de molienda) y la velocidad de molienda (número de revoluciones del plato de molienda).

La interrelación causal de las magnitudes de influencia es una causa esencial de las dificultades a la hora de prever y combatir las vibraciones del molino que se producen principalmente en el límite de capacidad del molino, de modo que se ven limitadas las posibilidades de ajustes de molino para reducir las vibraciones.

Especialmente en la molienda de materiales secos para molienda se conoce el procedimiento de introducir introducción agua por toberas para optimizar el lecho de molienda y lograr una reducción de las vibraciones del molino. Para ello, a través de lanzas horizontales provistas de toberas y dispuestas respectivamente delante de los rodillos molturadores se proyecta agua al lecho de molienda (documento DE19806895A1). El agua repercute positivamente en el rozamiento interno en el lecho de molienda durante la entrada debajo de los rodillos molturadores, lo que permite evitar eficazmente las vibraciones del molino e incrementar el caudal del molino. Sin embargo, el uso de agua requiere la evaporación dentro del molino para mantener reducida la humedad residual en el material acabado. Las ventajas de la introducción de agua por toberas en cuanto a la reducción de vibraciones quedan anuladas por el fuerte aumento de la potencia térmica nominal para el secado. En los molinos de cemento, el uso de la introducción de agua por toberas conduce además a un empeoramiento de las características del producto, especialmente de su estabilidad. Además, en muchas regiones del mundo, no hay disponibilidad de agua en las cantidades necesarias o incluso está prohibido por ley el uso de agua.

Es sabido que las vibraciones del molino y la molienda excesiva del material para molienda cargado están interrelacionadas directamente. En trituradoras de rodillos, el material para molienda cargado generalmente de forma central ha de acumularse contra la fuerza centrífuga que actúa en el borde del plato de molienda, para ser recogido por los distintos rodillos molturadores y ser triturado en una zona de trituración entre los rodillos molturadores y una pista de molienda del plato de molienda. En las trituradoras de rodillos del tipo LOESCHE, la acumulación del material para molienda sobre una pista de molienda plana, horizontal se consigue mediante un borde de acumulación que puede ajustarse de forma variable con una altura y forma predefinibles. Sin borde de acumulación en la circunferencia del plato de molienda, el material para molienda abandonaría el plato de molienda sin obstáculo y no se podría formar un lecho de molienda suficientemente grueso entre los rodillos molturadores y el plato de molienda o la pista de molienda. Sin embargo, la acumulación de material para

molienda necesario para el caudal del molino impide al mismo tiempo que el material para molienda triturado pueda abandonar el plato de molienda. Por lo tanto, el material molido acabado vuelve a situarse debajo de un rodillo molturador y se produce una molienda excesiva que conduce a un mayor consumo de energía específico del molino triturador de rodillos. Debido a que, por su altura y forma, el borde de acumulación necesario en platos de molienda o pistas de molienda horizontales, planos, conduce a un lecho de molienda más alto y a un tiempo de permanencia más largo del material para molienda sobre el plato de molienda, se producen moliendas excesivas. El lecho de molienda más alto produce por su mayor elasticidad un efecto de resorte que repercute negativamente en la eficiencia de la molienda y que en grandes molinos aumenta incluso la tendencia a vibraciones como consecuencia del material molido más fino sobre el plato de molienda.

10

5

La invención tiene el objetivo de proporcionar un procedimiento para triturar material para molienda en un molino triturador de rodillos y un molino triturador de rodillos o una trituradora de rodillos, que permitan evitar en gran medida la molienda excesiva del material para molienda y las vibraciones del molino y al mismo tiempo reducir el consumo de energía específico.

15

Según la invención, el objetivo se consigue en cuanto al procedimiento mediante las características de la reivindicación 1 y, en cuanto al dispositivo, mediante las características de la reivindicación 7. Algunas formas de realización convenientes y ventajosas se describen en las reivindicaciones subordinadas y en la descripción de las figuras.

20

Una idea básica de la invención consiste en retirar después de cada rodillo molturador a ser posible la totalidad del material para molienda que ha sido triturado formando un material fino, y evitar de esta manera una molienda excesiva. Si después de cada rodillo molturador el material fino se retira del lecho de molienda y del plato de molienda o de la pista de molienda y se suministra a una corriente de aire de transporte ascendente, el lecho de molienda se modifica de forma selectiva en cuanto a la distribución de tamaños de granos. Resulta un lecho de molienda con granos más gruesos y se puede impedir o reducir considerablemente una molienda excesiva y, por consiguiente, se consigue un considerable incremento del caudal del molino triturador de rodillos.

30

35

25

En el procedimiento según la invención para triturar un material para molienda en un molino triturador de rodillos, en el que el material para molienda que ha de ser triturado se carga a un plato de molienda rotatorio, provisto de un borde de acumulación y se tritura en una zona de trituración entre el rodillo molturador y el plato de molienda o la pista de molienda, con la ayuda de rodillos molturadores estacionarios que impulsados por una fuerza ruedan sobre un lecho de molienda formado por el material para molienda cargado, según la invención, después de cada rodillo molturador se dirige desde arriba un chorro de aire procedente de una tobera de material fino, con un impulso definible, hacia una zona de concentración de material fino. La zona de concentración de material fino queda formada directamente después de la zona de trituración de cada rodillo molturador y está en gran medida libre de material para molienda cargado que ha de ser triturado. Este se suministra a pistas en forma de espiral a los rodillos molturadores, como consecuencia del giro del plato de molienda, pero durante ello queda desviado por los lados frontales de los rodillos molturadores, en cuya "sombra" puede formarse de esta manera inicialmente una zona de material fino con una zona de concentración de material fino.

40

45

La zona de concentración de material fino y la zona de material fino que tiene una superficie más grande se forman cerca de un borde de acumulación directamente después de salir de un rodillo molturador y, por tanto, directamente a continuación de la zona de trituración de cada rodillo molturador. Si con la ayuda de al menos un chorro de aire procedente de una tobera de material fino, el material fino se expulsa por soplado al menos de la zona de concentración de material fino, es decir, si es soplado hacia arriba, llega a una corriente de aire de transporte ascendente que se suministra a través de una corona de álabes dispuesta entre el plato de molienda y la carcasa de molino para el transporte neumático del material fino y su suministro a un proceso de clasificación del molino.

50

Lo esencial es la orientación del chorro de aire o de la tobera de material fino hacia la zona de concentración de material fino formada, directamente después de la zona de trituración de cada rodillo molturador y en la zona del borde de acumulación, de tal forma que el material fino queda expulsado y soplado hacia arriba antes de que se produzca una mezcla con el material para molienda recién suministrado y se produzca una molienda excesiva por el rodillo molturador siguiente. Sustancialmente, la expulsión por soplado del material fino se realiza desde un triángulo relativamente pequeño, directamente detrás de la zona de trituración de cada rodillo molturador, visto desde arriba, y de forma limitada por el borde de acumulación.

55

60

La aplicación de aire en el material para molienda triturado después de cada rodillo molturador con la ayuda de un dispositivo den forma de tobera se dio a conocer por el documento DE3311433A1. Allí, sin embargo, a material para molienda triturado se dispara aire desde un orificio de tobera de una traílla hueca, dispuesta a poca distancia

por encima y transversalmente con respecto a la pista de molienda para separar del material grueso el material para molienda triturado y fraccionado por la traílla y las partículas de material fino para que estos puedan ser arrastrados por la corriente de aire de transporte desde la corona de álabes. El procedimiento conocido está enfocado a una clasificación del material para molienda triturado por todo el ancho de la pista de molienda después de cada rodillo molturador, cayendo la totalidad de la fracción gruesa de vuelta a la mesa de molienda teniendo que volver a ser triturado. El disparo de aire con fuerza contra una capa del material para molienda triturado se realiza además desde abajo después del levantamiento de la capa de material para molienda por la traílla. Mediante el disparo de aire desde abajo y una primera clasificación del material para molienda por todo el ancho de la mesa de molienda para separar de la mesa de molienda el material fino suficientemente triturado se pretende lograr un bajo consumo de energía para el proceso de molienda y una reducida caída de presión del aire de transporte.

5

10

15

20

25

40

45

50

55

60

Al contrario de este disparo de aire conocido, en el procedimiento según la invención, una tobera de material fino se dirige desde arriba hacia una zona de concentración de material fino que está sustancialmente libre de material para molienda recién cargado que ha de ser triturado.

Mediante experimentos en un molino triturador de rodillos de laboratorio se detectó que usando toberas de material fino según la invención se consigue reducir considerablemente el trabajo específico necesario. En experimentos comparativos se detectó una reducción del trabajo específico necesario del 20%, aproximadamente, con una presión previa de toberas de 1 bar. Básicamente, los experimentos demostraron que con la ayuda de las toberas de material fino y chorros de aire orientados de forma definida, especialmente desde arriba, se puede expulsar por soplado material fino evitando o reduciendo considerablemente la molienda excesiva y las vibraciones del molino.

La expulsión por soplado local según la invención del material fino de una zona de concentración de material fino directamente después de cada rodillo molturador garantiza por tanto una reducción de las vibraciones del molino y reduce al mismo tiempo en un 20%, aproximadamente, el trabajo específico necesario en el plato de molienda, sin tener que intervenir de otra manera en la construcción y la técnica de procesos del molino.

Resulta ventajoso que con la ayuda de las toberas de material fino según la invención se desacoplan en el proceso la altura del borde de acumulación en la circunferencia del plato de molienda y el consumo de energía específico. Ahora es posible emplear bordes de acumulación más altos para incrementar el caudal sin desventajas para el consumo de energía en el plato de molienda.

Otra ventaja consiste en que el material para molienda que se vuelve más grueso por la separación del material fino se puede triturar sin vibraciones crecientes y con una mayor presión de trabajo, de modo que aumenta el progreso de trituración. De esta manera, se reduce la circulación y baja la presión diferencial, de modo que el caudal del molino triturador de rodillos también puede incrementarse de esta manera.

De manera ventajosa, los chorros de aire procedentes de las toberas de material fino se ajustan en cuanto al flujo de masa y la velocidad, en función de los requisitos concretos. Por la posibilidad de ajuste es posible modificar localmente de forma selectiva el lecho de molienda e influir positivamente en el proceso de molienda en su conjunto.

La posibilidad de ajustar las toberas de material fino, es decir, los chorros de aire que salen, se puede realizar en cuanto a un ángulo de inclinación y un ángulo de soplado, de modo que se consigue optimizar el soplado de material fino y por tanto el lecho de molienda. El ángulo de inclinación y el ángulo de soplado están definidos por la zona de concentración de material fino y la zona de salida de las toberas de material fino y se describen con más detalle en relación con la descripción de las figuras. De manera conveniente, los chorros de aire procedentes de las toberas de material fino pueden ajustarse con respecto al flujo de masa y la velocidad, pudiendo presentar la velocidad un valor comprendido en el intervalo entre 10 m/s y la velocidad del sonido del gas empleado, para cuyo fin se usan toberas conformadas de manera especial (toberas de Laval).

Según la invención, también es posible suministrar a las toberas de material fino no sólo aire comprimido a través de un conducto de aire comprimido situado fuera del molino triturador de rodillos, sino también dirigir otros gases o vapor, a través de las toberas de material fino, hacia las zonas de concentración de material fino de los distintos rodillos molturadores y expulsar soplando o soplar hacia arriba el material fino.

Con una realización correspondiente de las toberas de material fino, los chorros de aire, de gas o de vapor pueden suministrarse a una temperatura que presenta un valor comprendido en el intervalo entre -50°C y 800°C. Los gases a bajas temperaturas pueden emplearse por ejemplo para fragilizar artificialmente materiales que son dúctiles a temperatura ambiente, y los gases a temperaturas más elevadas pueden ser adecuados para condicionar

localmente material molido de forma selectiva para los procesos siguientes.

Un molino triturador de rodillos está realizado de manera conocida de por sí como molino triturador de rodillos por corriente de aire o trituradora de rodillos y presenta un plato de molienda rotatorio con una pista de molienda prácticamente horizontal y un borde de acumulación en el borde del plato de molienda y está provisto de toberas de material fino. Según la invención, las toberas de material fino están dispuestas de tal forma que respectivamente un chorro de aire se dirige desde arriba hacia una zona de concentración de material fino directamente después de cada rodillo molturador y en una zona de borde de acumulación adyacente, soplando hacia arriba el material fino acumulado en esta, conduciéndola a la corriente de de aire ascendente.

10

5

Mediante las toberas de material fino orientadas según la invención hacia una zona definida, relativamente pequeña, directamente después de un rodillo molturador y en una zona de borde de acumulación, el material fino queda soplado hacia arriba antes de que material para molienda nuevo, desviado del lado frontal de los rodillos, pueda mezclarse con el material fino o depositarse sobre dicho material fino.

15

Conviene realizar las toberas de material fino dispuestas después de cada rodillo molturador de tal forma que se pueda ajustar su ángulo, a fin de que el material fino que sale por el intersticio entre un rodillo molturador y el plato de molienda quede arremolinado y soplado hacia arriba por el chorro de aire ajustable respectivamente. De esta forma, la totalidad del material fino o al menos grandes partes del material fino producidos pueden ser suministradas entonces al aire de transporte que sale de una corona de álabes a una velocidad relativamente alta y ser transportadas de forma neumática hacia arriba, a un clasificador.

20

Resulta ventajoso que las toberas de material fino están orientadas respectivamente hacia la zona de concentración de material fino en la que se acumula la mayor parte del material fino originado durante la molienda o acumulado por el borde de acumulación. De esta manera, se consigue de una manera extraordinariamente eficiente una evacuación del material fino y al mismo tiempo una optimización del lecho de molienda para evitar vibraciones del molino.

25

30

Mediante experimentos se comprobó que conviene disponer las toberas de material fino con al menos un orificio de tobera para un chorro de aire saliente a una distancia definida con respecto a la zona de trituración de cada rodillo molturador. La distancia puede presentar un valor comprendido en el intervalo de 200 a 1.200 mm y depende sustancialmente de la forma de las toberas de material fino.

35

Si las toberas de material fino presentan una zona de salida con al menos un orificio de tobera para el chorro de aire saliente y una zona de alimentación que se extienda partiendo de la carcasa del molino radialmente por la pista de molienda y a una distancia por encima del lecho de molienda o de una zona de material fino y/o de la zona de concentración de material fino, la zona de salida puede dirigirse con el orificio de tobera hacia abajo y hacia fuera en dirección a la zona del borde de acumulación y hacia la zona de concentración de material fino.

40

En experimentos de laboratorio con un molino de laboratorio se encontró que se puede suministrar aire con una presión previa en el conducto anular de tobera fuera de la carcasa del molino de aproximadamente 0,5 bares a aproximadamente 1,5 bar, especialmente de aproximadamente 1 bar. En grandes instalaciones, los flujos volumétricos son más grandes y las presiones son más bajas.

45

Las toberas de material fino pueden presentar en principio cualquier forma y estar realizadas por ejemplo como toberas de chorro redondo o como toberas planas. Además, pueden estar realizadas con uno o múltiples chorros y también es posible usar varias toberas con un ajuste de ángulo igual o distinto.

50

Un suministro de aire alternativo a las distintas toberas de material fino presenta un conducto para el chorro de aire previsto para las toberas de material fino, que se extienda radialmente al centro del molino triturador de rodillos. En el centro del molino triturador de rodillos, convenientemente dentro de un cono de sémola, puede disponerse un dispositivo de distribución que distribuye corrientes homogéneas de aire o de gas o corrientes de otro medio, a través de conductos, por ejemplo conductos de derivación, a las distintas toberas de material fino.

55

Por la disposición central del dispositivo de distribución es posible tender los conductos de manera ventajosa con vistas a la circulación hacia las toberas de material fino, de forma rotacionalmente simétrica.

60

Resulta especialmente ventajoso que un molino triturador de rodillos con las toberas de material fino según la invención puede emplearse para materiales difíciles de moler o que han de molerse de forma muy fina, en los que por la finura deseada ha de usarse un borde de acumulación alto. Preferentemente, un molino triturador de rodillos según la invención se usa para moler clínker de cemento, escoria granulada de horno alta así como para

materiales crudos de cemento muy duros y para minerales.

5

15

20

35

40

45

50

Además de las ventajas que ya se han descrito, mediante la orientación según la invención de las toberas de material fino se consigue que se arremoline y se expulse soplando únicamente material fino. Las partículas gruesas o fracciones más gruesas no son alcanzadas por las toberas de material fino, ya que las toberas de material fino están orientadas hacia una zona definida arremolinando el material fino existente en alta concentración.

Mediante la orientación según la invención de las toberas de material fino se produce un transporte del material fino hacia fuera a la corriente de aire ascendente desde la corona de álabes, de manera que queda garantizado un transporte eficaz hacia el clasificador.

Otra ventaja consiste en que las toberas de material fino no se ven sometidas en principio a ningún desgaste, ya que no existe ningún contacto directo con el material para molienda en el plato de molienda.

Una ventaja esencial consiste en el desacoplamiento entre la altura del borde de acumulación y el consumo de energía en la técnica de proceso, por lo que el borde de acumulación puede realizarse más alto sin consecuencias desventajosas para las vibraciones y el consumo de energía, en el interés de un máximo caudal. Por lo tanto, existe la posibilidad de emplear molinos más pequeños para los mismos caudales del molino, por lo que se consigue a su vez un menor gasto de inversión y un coste de explotación más bajo.

A continuación, la invención se describe con más detalle con la ayuda de un dibujo. Muestran en una representación muy esquemática

la figura 1, una vista en planta desde arriba de un plato de molienda de un molino triturador de rodillos según la invención:

la figura 2, una vista según la línea II-II en la figura 1;

la figura 3, una representación aumentada del detalle III en la figura 1 y

la figura 4, una vista según la flecha IV en la figura 3 y

30 la figura 5, una sección vertical a través de un molino triturador de rodillos según la invención con un suministro de aire alternativo.

En la figura 1 está representado un plato de molienda 2 de un molino triturador de rodillos según la invención, que rota alrededor de un eje longitudinal 17 según la flecha A. El plato de molienda 2 está provisto en su circunferencia de un borde de acumulación 3, cuya altura H y forma se indican a título de ejemplo en las figuras 2 y 4.

Sobre el plato de molienda 2 con el borde de acumulación 3 circunferencial y rotatorio junto al mismo ruedan en este ejemplo cuatro rodillos molturadores 4 aplicados a presión de forma hidráulica, estando representados en la figura 1 sólo dos rodillos molturadores 4 de los mismos. Por el giro del plato de molienda 2 se suministra a los rodillos molturadores 4 en pistas en espiral el material para molienda 5 cargado centralmente que ha de ser triturado y entra en un intersticio entre los rodillos molturadores 4 y el plato de molienda 2 o la pista de molienda 16 siendo triturado en una zona de trituración 7 (véase la figura 4).

Por el borde de acumulación 3, el material para molienda 5 suministrado y triturado se acumula y se mantiene sobre el plato de molienda 2. El material fino 15 suficientemente triturado está presente directamente después de la zona de trituración 7 (figura 4) en una zona de material fino 14 que está representada de forma sombreada en la figura 1 y que tiene la forma de un triángulo puntiagudo, cuya línea de base 23 está formada por la delimitación de la zona de trituración 7 y cuya ala exterior 24 delimita la zona de material fino 14 (véase la figura 3). El ala interior 25 del triángulo está formada por una prolongación de un lado frontal 18 del rodillo molturador 4. La zona de material fino 14 está representada con un sombreado simple también en la representación aumentada de la figura 3. La figura 3 representa además una segunda zona triangular más pequeña dentro de la zona de material fino 14, y esta zona más pequeña es una zona de concentración de material fino 12 que está representada con un sombreado doble.

A la zona de concentración de material fino 12 en la que se acumula el material fino recién triturado está dirigida respectivamente una tobera de material fino 10 con una zona de salida 20 y con un orificio de tobera 22 para un chorro de aire 11 (véanse también las figuras 2 a 4). Especialmente las figuras 2 y 4 muestran que la tobera de material fino 10 con la zona de salida 20 y el orificio de tobera 22 está dirigida desde arriba a la zona de concentración de material fino 12, por lo que, antes de que se pueda depositar material fino nuevo sobre el mismo, el material fino 15 puede ser expulsado por soplado y transportado reumáticamente hacia arriba a un clasificador (no representado), en una corriente de aire de transporte 9 (figura 2) suministrada por una corona de álabes 8.

El material fino 15 en la zona de concentración de material fino 12 así como en la zona de material fino 14 está prácticamente libre de material fino nuevo, ya que como se puede ver especialmente en la figura 1, este es desviado por el lado frontal 18 del rodillo molturador 4 asignado y recogido sólo por el siguiente rodillo molturador 4.

5

El sentido de giro de los rodillos molturadores 4 que ruedan sobre el plato de molienda 2 o el lecho de molienda 6 se indica por la flecha B. La flecha A muestra el sentido de giro del plato de molienda 2.

15

10

La figura 1 representa la realización de las toberas de material fino 10 que se extienden pasando por una carcasa de molino 19 y desde la carcasa de molino 19, con una zona de alimentación 21 aproximadamente en sentido radial hacia dentro y a una distancia con respecto al lecho de molienda 6 y que están provistas de una zona de salida 20 acodada, orientada hacia abajo en dirección al lecho de molienda 6 (véanse también las figuras 2 y 4). El suministro del aire o del gas puede realizarse también desde el centro del molino hacia fuera a las toberas de material fino.

. •

En los ejemplos de realización, el orificio de tobera 22 de la tobera de material fino 10 está realizado de forma circular. Según la figura 2, la zona de salida 20 está realizada con un ángulo de inclinación α que puede medir entre 15° y 110°. En la figura 2, el ángulo de inclinación α mide aproximadamente 45°, por lo que los chorros de aire 11 están dirigidos a una zona angular entre la pista de molienda 16 y la zona de borde de acumulación 13.

20

La figura 4 muestra la expulsión por soplado y el soplado hacia arriba del material fino 15 y la distancia o la separación L entre el extremo de la zona de trituración 7 del rodillo molturador 4 y el orificio de tobera 22 de la tobera de material fino 10 asignada. El material fino 15 procedente de la zona de concentración de material fino 12 es soplado hacia arriba y llega a la corriente de aire de transporte 9 (figura 2) que sale de la corona de álabes 5 entre el plato de molienda 2 y la carcasa de molino 19 y es desviada hacia dentro por un reborde armado 25 en la carcasa de molino 19. Esto facilita el transporte neumático del material fino 15 soplado hacia arriba en dirección a un clasificador 31 (véase la figura 5).

25

La figura 3 muestra en una representación aumentada de un rodillo molturador 4 las proporciones dimensionales de la zona de concentración de material fino 12 a la que está dirigida respectivamente la tobera de material fino 10 de ángulo ajustable con el orificio de tobera 22 en la zona de salida 20, en relación con la zona de material fino 9.

30

La figura 4 muestra la altura H del borde de acumulación 3 en la circunferencia del plato de molienda 2, la realización de un lecho de molienda 6 sobre el plato de molienda 2 y la zona de recogida así como la zona de trituración 7 entre el rodillo molturador 4 y el plato de molienda 2.

35

En la figura 1 con las dos toberas de material fino 10 representadas aquí, respectivamente después de un rodillo molturador 4, se puede ver el ángulo de soplado β con el que la zona de salida 20 está acodada respecto a la zona de alimentación 21 prácticamente radial. El ángulo de soplado β está encerrado por el eje longitudinal de la zona de salida 20 y una radial R del plato de molienda 2 que pasa por el orificio de tobera 22.

40

La figura 5 muestra un molino triturador de rodillos que está realizado como molino triturador de rodillos por corriente de aire y que presenta un suministro de aire alternativo. En el molino triturador de rodillos está integrado un clasificador 31, y una mezcla de material fino y aire 33 se hace salir a través de una salida de material fino, mientras que las partículas gruesas del material (no representadas) vuelven a llegar al plato de molienda 2 a través de un cono de sémola 29 y vuelven a ser sometidas al proceso de molienda.

45

50

La totalidad de la corriente de aire 30 prevista para las toberas de material fino 10 se suministra, a través de un conducto de alimentación 26 que puede estar orientado por ejemplo en sentido radial hacia el centro del molino, a un dispositivo de distribución 27 y, a través de conductos de derivación 28 que de manera ventajosa parten uniformemente del dispositivo de distribución 27, a las distintas toberas de material fino 10.

55

La figura 5 ilustra que el dispositivo de distribución 27, por ejemplo, una cuba de distribución, está dispuesto en el centro del cono de sémola 29 y que los conductos de derivación 28 están orientados hacia abajo y provistos en su extremo de la zona de salida 20 y el orificio de tobera 22 de las toberas de material fino 10. El suministro central de la corriente de aire 30 total para las toberas de material fino 10 permite un tendido de los conductos en forma rotacionalmente simétrica que resulta ventajoso para la circulación. Los conductos de derivación 28 pueden atravesar en la parte inferior la pared del cono de sémola 29 y estar fijados a este.

60

Cabe señalar que los elementos del suministro de aire en la figura 5 no están representados a escala, sino que para poder verse mejor están representados más grandes que los demás componentes del molino triturador de

rodillos por corriente de aire.

REIVINDICACIONES

1.- Procedimiento para triturar un material para molienda en un molino triturador de rodillos, en el que un material para molienda (5) que ha de ser triturado se carga a un plato de molienda (2) rotatorio y se tritura en una zona de trituración (7) mediante rodillos molturadores (4) estacionarios que, impulsados por fuerza, ruedan sobre un lecho de molienda (6) formado por el material para molienda (5) cargado, y después de cada rodillo molturador (4), el material para molienda (5) triturado se somete a aire procedente de un dispositivo en forma de tobera y el material fino se expulsa por soplado y se suministra a una corriente de aire de transporte (9) procedente de una corona de álabes (8), que asciende entre el plato de molienda (2) y la carcasa de molino (19) transportándolo a un proceso de clasificación, usándose como dispositivo en forma de tobera una tobera de material fino (10), caracterizado porque sobre el plato de molienda (2) provisto de un borde de acumulación (3) queda formada por acumulación en una zona de borde de acumulación (13), directamente después de la zona de trituración (7) de cada rodillo molturador (4), una zona de concentración de material fino (12) sustancialmente exenta de material para molienda (5) cargado que ha de ser triturado, porque un chorro de aire (11) o chorro de gas o chorro de vapor procedente de la tobera de material fino (10) se dirige desde arriba con un impulso definido a la zona de concentración de material fino (12) y el material fino (15) es soplado hacia arriba a la corriente de aire de transporte (9) ascendente, siendo orientadas las toberas de material fino (10), respectivamente con una zona de salida (20) para el chorro de aire (11), con un ángulo de inclinación α comprendido en el intervalo entre 15° y 110°, a la zona de concentración de material fino (12) y la zona de borde de acumulación (13) delimitadora.

10

15

20

30

35

40

45

50

55

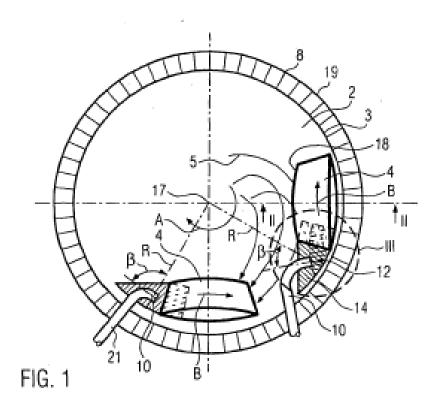
60

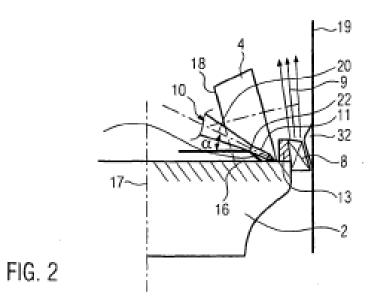
2.- Procedimiento según la reivindicación 1, **caracterizado porque** el material fino (15) soplado hacia arriba y suministrado a la corriente de aire de transporte (9), con la ayuda de los chorros de aire (11) procedentes de las toberas de material fino (10), se sustrae a una molienda excesiva.

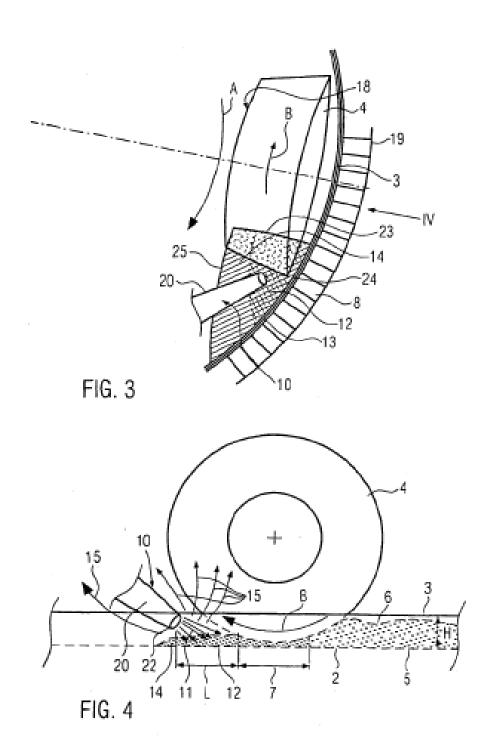
- **3.-** Procedimiento según la reivindicación 1 ó 2, **caracterizado porque** los chorros de aire (11) de las toberas de material fino (10) se ajustan en cuanto al flujo de masa y la velocidad.
 - **4.-** Procedimiento según la reivindicación 3, **caracterizado porque** el la velocidad de los chorros de aire (11) o chorros de gas que salen de las toberas de material fino (10) se ajustan a un valor en la zona entre 10 m/s y la velocidad del sonido del gas empleado.
 - **5.-** Procedimiento según una de las reivindicaciones anteriores, **caracterizado porque** las toberas de material fino (10) se ajustan al menos con su zona de salida (20) con respecto al plato de molienda (2) y/o con respecto a una radial R del plato de molienda (2).
 - **6.-** Procedimiento según la reivindicación 5, **caracterizado porque** las toberas de material fino (10) se dirigen con su zona de salida (20) con respecto a la radial R con un ángulo de soplado β que presenta un valor comprendido en el intervalo entre 10° y 110°, a la zona de concentración de material fino (12) y la zona de borde de acumulación (13).
 - 7.- Molino triturador de rodillos con una carcasa de molino (19) y un plato de molienda (2) rotatorio con una pista de molienda (16) prácticamente horizontal y con rodillos molturadores (4) estacionarios que pueden aplicarse a presión de forma hidráulica y que durante el funcionamiento ruedan sobre un lecho de molienda (6) formado en la pista de molienda (16) por un material para molienda (5) cargado que ha de ser triturado, triturando el material para molienda (5) en una zona de trituración (7) entre el rodillo molturador (4) y la pista de molienda (16), con una corona de álabes (8) entre el plato de molienda (2) y la carcasa de molino (19) para suministrar una corriente de aire de transporte (9) ascendente para el transporte neumático de material fino (15) a un clasificador y con dispositivos en forma de toberas para la aplicación de aire o gas o vapor en el lecho de molienda (6), dispuestos después de cada rodillo molturador (4), estando dispuestos como dispositivos en forma de toberas toberas de material fino (10), especialmente para realizar el procedimiento según una de las reivindicaciones 1 a 6, caracterizado porque el plato de molienda (2) está provisto de un borde de acumulación (3) y las toberas de material fino (10) están orientadas hacia una zona de concentración de material fino (12) en una zona de borde de acumulación (13) directamente después de cada rodillo molturador (4), de forma que respectivamente un chorro de aire (11) desde arriba sopla el material fino (15) acumulado hacia arriba a la corriente de aire de transporte (9), y porque la altura del borde de acumulación (3) en la circunferencia del plato de molienda (2) puede ajustarse de manera variable en función de la expulsión por soplado del material fino (15) de las zonas de concentración de material fino (12) después de los rodillos molturadores (4).
 - 8.- Molino triturador de rodillos según la reivindicación 7, caracterizado porque las toberas de material fino (10) presentan una zona de salida (20) con al menos un orificio de tobera (22) para un chorro de aire (11) así como una zona de alimentación (21), porque la zona de alimentación (21) discurre partiendo de la carcasa de molino (19)

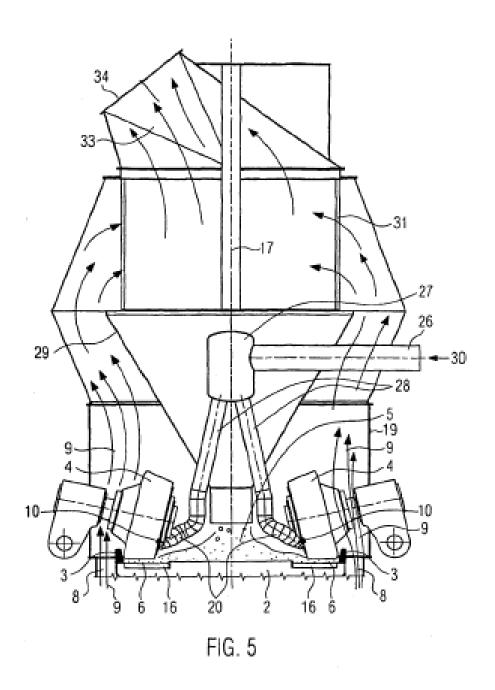
radialmente al menos en parte a través de la pista de molienda (16) estando dispuesta a una distancia por encima del lecho de molienda (6) con una zona de material fino (14) y la zona de concentración de material fino (12) y, **porque** la zona de salida (20) está orientada con el orificio de tobera (22) hacia abajo y hacia fuera en dirección al borde de acumulación (3) o la zona de borde de acumulación (13) y hacia la zona de concentración de material fino (12).

- **9.-** Molino triturador de rodillos según la reivindicación 7 u 8, **caracterizado porque** fuera de la carcasa de molino (10) está dispuesto un conducto anular de tobera desde el que se puede suministrar aire u otro medio, por ejemplo gas o vapor, a las toberas de material fino (10), a través de la zona de alimentación (21) de estas.
- **10.-** Molino triturador de rodillos según la reivindicación 7, **caracterizado porque** las toberas de material fino (10) presentan una zona de salida (20) con al menos un orificio de tobera (22) para el chorro de aire (11), **porque** la zona de salida (20) está realizada respectivamente en el extremo de conductos de derivación (28) que parten de un dispositivo de distribución (27), y **porque** el dispositivo de distribución (27) está dispuesto centralmente por encima del plato de molienda (2) y está conectado a un conducto de alimentación (26) para la totalidad de la corriente de aire (30) que ha de ser distribuida entre las toberas de material fino (10). (Figura 5)
- **11.-** Molino triturador de rodillos según la reivindicación 10, **caracterizado porque** el dispositivo de distribución (27) está realizado como cuba de distribución y dispuesta dentro de un cono de sémola (29).
- **12.-** Molino triturador de rodillos según la reivindicación 10 u 11, **caracterizado porque** los conductos de derivación (28), pero al menos la zona de salida (20) de las toberas de material fino (10) están realizados de forma ajustable y dirigidos hacia abajo y hacia fuera en dirección al borde de acumulación (3) o a la zona de borde de acumulación (13) y a la zona de concentración de material fino (12).
- **13.-** Molino triturador de rodillos según una de las reivindicaciones 10 a 12, **caracterizado porque** los conductos de derivación (28), pero al menos la zona de salida (20) de las toberas de material fino (10), presentan una realización rotacionalmente simétrica favorable para la circulación.
- 30 **14.-** Molino triturador de rodillos según una de las reivindicaciones 8 a 13, **caracterizado porque** las toberas de material fino (10) están dispuestas con un ángulo de inclinación α y/o con un ángulo de soplado β definibles después de cada rodillo molturador (4), estando encerrados el ángulo de inclinación α respectivamente por el eje longitudinal de la zona de salida (20) y la pista de molienda (16) y el ángulo de soplado β por el eje longitudinal de la zona de salida (20) y una radial R del plato de molienda (2), que pasa por el orificio de tobera (22).


5


10


15


20

25

