

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 473 588

51 Int. Cl.: A47L 9/00

'00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 01.07.2005 E 05783922 (7)

(97) Fecha y número de publicación de la concesión europea: 07.05.2014 EP 1778064

(54) Título: Aspirador con elementos constitutivos de polipropileno expandido

(30) Prioridad:

29.07.2004 FR 0408376

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **07.07.2014**

73 Titular/es:

SEB S.A. (100.0%) LES 4 M, CHEMIN DU PETIT BOIS 69130 ECULLY, FR

(72) Inventor/es:

MEYRIGNAC, ROBERT y PYSZCZEK, FRANÇOIS

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Aspirador con elementos constitutivos de polipropileno expandido

15

25

35

La invención se refiere al ámbito electrodoméstico de los aspiradores y, más en particular, a la estructura de un aspirador.

Históricamente, los aparatos electrodomésticos, entre ellos los aspiradores, han ido integrando provechosamente los diversos materiales plásticos que pasaban a estar disponibles, a la par del desarrollo de la tecnología de elaboración de los polímeros y de sus prestaciones diferenciadas, escogiéndose específicamente cada una de ellas para una función particular: resistencia a la temperatura, rigidez o flexibilidad, amortiguación acústica, estética, etc. A día de hoy, en el cuerpo de un aspirador encontramos más de media docena de materiales plásticos diferentes: ABS, poliamida, polietileno, polipropileno, PVC, elastómeros, etc.

Así, varios elementos son fabricados por separado y fijados para conformar el cuerpo del aparato así como la tapa para el alojamiento de la bolsa de recogida de polvo, los soportes de los elementos filtrantes, etc.

Los materiales plásticos utilizados en los aspiradores son lo más delgados posible en orden a limitar el peso del aparato y reducir los esfuerzos necesarios para la manipulación del aspirador durante su utilización, manipulación esta que es una importante causa de cansancio, por ejemplo cuando hay que subir plantas o cuando hay que limpiar escaleras.

Por lo tanto, un primer problema que se afronta en la fabricación de un aspirador está en la reducción del peso del aparato, problema este que constituye una preocupación permanente para los fabricantes de aspiradores.

La disminución de peso perseguida se traduce en el adelgazamiento de la carcasa y del cuerpo a expensas de la solidez del aparato. De hecho, el peso de material plástico empleado para la fabricación de un aspirador alcanza rápidamente un límite fijado por la solidez del conjunto.

Por lo tanto, un segundo problema está en mantener la solidez de la carcasa y del cuerpo al propio tiempo que se disminuye en gran manera el peso de material plástico empleado y el del aspirador.

La disminución del espesor de la carcasa en los actuales aspiradores también afecta negativamente al ruido del aparato. La consecuencia de la reducción de material es que el ruido del motor no queda suficientemente confinado y el aspirador es ruidoso, lo cual en muchos casos lleva a rodear el motor con una espuma.

La contaminación acústica es combatida hoy día en todas sus formas, tanto en el dominio de los ruidos generales como en el de los ruidos domésticos producidos por las propias personas, y en particular los ruidos originados por las tareas domésticas.

Por lo tanto, un tercer problema está en disminuir el ruido del aspirador al propio tiempo que se mantiene la solidez de la carcasa y del cuerpo del aparato, a la vez que se aligera el peso del conjunto.

Pasar el aspirador en el hogar generalmente es una tarea que no se considera especialmente agradable y, de hecho, el aparato se utiliza sin miramientos, por lo que suele ocurrir que el aparato impacta con muebles, paredes u objetos diversos ubicados en la vivienda. En estas ocasiones, habida cuenta de la rigidez del bastidor del aspirador, la parte impactada suele sufrir daños.

Por lo tanto, un cuarto problema que se plantea a los fabricantes de aspiradores está en aliar buenas características mecánicas del bastidor con una absorción posible de los impactos para limitar los efectos derivados de las manipulaciones imprudentes. Una solución a este problema puede venir dada en particular por unas fajas de goma que rodeen, a modo de cinturón, el cuerpo del aparato. Semejante solución genera un sobrecoste nada desdeñable.

- 40 Por otro lado, en la actual situación del reciclado de los residuos de toda índole, y en particular de los aparatos electrodomésticos al final de su vida útil, todos los fabricantes que, preocupados por el medio ambiente, orientan sus iniciativas hacia un desarrollo sostenible buscan soluciones para limitar el peso de los materiales que han de reciclarse y utilizan en la medida de lo posible materiales que pueden ser recuperados con facilidad. Es sabido, en efecto, que el impacto de un aspirador sobre el medio ambiente proviene, en gran medida, de su constitución.
- Por lo tanto, un quinto problema que se plantea está en fabricar un aspirador cuyos materiales puedan ser reciclados fácilmente y, de ser posible, íntegramente.

Por lo tanto, la invención tiene como objetivo solucionar estas dificultades principales, es decir, se encamina a realizar un aspirador de escaso peso, de elevada solidez, con un nivel de ruido inferior al que se conoce para este tipo de aparato, que puede absorber impactos y que dispone de una elevada reciclabilidad al final de su vida útil.

De acuerdo con la invención, el aspirador, al incluir piezas de material plástico, se caracteriza porque al menos un elemento de entre los elementos constitutivos del cuerpo del aparato está fabricado con polipropileno expandido.

ES 2 473 588 T3

Por cuerpo del aparato hay que entender la parte exterior visible del aparato, la cual puede tomar denominaciones diversas: caja, carcasa, bastidor.

Ventajosamente, al menos una pieza insertada fijada a dicho cuerpo del aparato está fabricada con polipropileno expandido.

El polipropileno expandido (PPE) se conforma a partir de perlas que se moldean en objetos por medio de prensa en presencia de vapor. Utilizado principalmente como material de absorción de los impactos, en particular recientemente en la automoción (amortiguador de impactos), el PPE cuenta con múltiples cualidades: resistencia a la temperatura hasta 110 °C, excelente estabilidad, ligereza, resistencia a los impactos, aptitud para ser reciclado, etc. que lo hacen atrayente. No obstante, por su débil comportamiento mecánico no pasa de ser por ahora un material complementario en la realización de subconjuntos.

La presente invención se atreve así a presentar partes constitutivas del cuerpo del aspirador, que precisan de una cierta rigidez, solidez y comportamiento mecánico, realizadas en PPE, el cual en un principio no está previsto para este uso.

Otro propósito de la presente invención es priorizar el polipropileno en la elección del material plástico. Es otro objetivo de la invención utilizar, en más del 90 %, un sólo tipo de material plástico, el polipropileno, en todo el cuerpo del aspirador. El polipropileno puede ser empleado entonces en dos formas: el polipropileno clásico (PP), que cuenta con las propiedades clásicas de los materiales plásticos, y el polipropileno expandido (PPE).

Otras características y ventajas de la invención se desprenderán de la descripción subsiguiente con referencia al adjunto dibujo, el cual se da tan sólo a título de ejemplo no limitativo.

20 La figura 1 es una vista de costado, en sección longitudinal simplificada, de un aspirador.

Tal como muestra esta figura 1, un aspirador se constituye convencionalmente a partir de un motor 4 que genera la fuerza de aspiración y la circulación del aire desde el extremo de un tubo (no representado), que queda conectado en una abertura practicada en el cuerpo del aspirador, hasta la descarga hacia la parte posterior del aparato. En este proceso de eliminación del polvo, el flujo de aire atraviesa el alojamiento 10 contenedor de la bolsa filtrante de recogida del polvo.

El cuerpo del aspirador se compone de dos piezas principales fabricadas por separado y luego ensambladas entre sí:

- Un cuerpo inferior 1 que dispone de un alojamiento para el motor 4, de los elementos de insonorización en forma de tabiques internos 8 y de diferentes espacios acondicionados para el paso del hilo eléctrico, el posicionamiento de los filtros del motor y de los órganos de maniobra 9 tales como ruedas y ruletas. El cuerpo inferior 1 dispone asimismo de una pieza insertada 7 para la conexión del tubo de empalme de la tobera de aspiración.
- Un cuerpo superior 2 en el que quedan ajustados unos órganos de mando 5, la tapa 3 de cierre del alojamiento de la bolsa de polvo y, eventualmente, un alojamiento con su tapa destinado a recibir los diferentes accesorios de aspiración tales como cepillo pequeño, boquilla de aspiración, etc.

En ocasiones, dispuesto sobre la carcasa, preferentemente sobre el cuerpo inferior 1 del aparato, se halla un asidero 6, plegable o fijo, o un vaciado en funciones de asidero.

De acuerdo con la invención, el material constitutivo del aspirador, es decir, por tanto al menos el cuerpo inferior 1, y preferentemente también el cuerpo superior 2, es de polipropileno expandido (PPE).

40 Al igual que cualquier material que contiene una gran cantidad de aire, el PPE dispone de una capacidad extremadamente elevada de aislamiento térmico y acústico, lo cual hace de él un material especialmente bien adaptado para absorber el elevado ruido de este tipo de aparato electrodoméstico.

La capacidad de amortiguación del ruido del motor por la utilización del PPE en todos los elementos del aspirador en los que ello es posible puede conllevar, según las configuraciones, una disminución de esta molestia con relación a un aspirador fabricado con los habituales plásticos de ABS o de polipropileno no expandido.

No obstante, el débil comportamiento mecánico del PPE ha requerido aumentar considerablemente los espesores de las paredes para presentar una suficiente solidez. Sin embargo, y sorprendentemente, aun si el volumen de material necesario conlleva entonces un aspirador más voluminoso de lo normal, la masa de material plástico puede verse reducida en gran manera, y el peso del aspirador final puede quedar dividido por dos.

La menor cantidad de material es también ventajosa desde un punto de vista económico, ya que el aspirador es menos costoso en su fabricación.

La gran flexibilidad del PPE permite una absorción mejorada de los impactos con relación a los demás plásticos

3

30

35

45

25

ES 2 473 588 T3

utilizados tradicionalmente para fabricar los aspiradores. Esta gran flexibilidad lleva asociada, según el grado de expansión, una memoria elástica del material, lo cual presenta asimismo notables ventajas en cuanto al ensamble de las diferentes piezas complementarias ajustadas sobre el cuerpo del aparato. En efecto, cabe así la posibilidad de articular por ejemplo las diferentes tapas sin bisagras y de enclavarlas sin más que deformar el material. Esta curiosa peculiaridad también permite fijar piezas insertadas, por encaje, sin dificultad.

En efecto, basta con "obligar" el material a deformarse para enclavar o fijar una pieza insertada, recuperando el material su forma tras la deformación para mantener el ensamble.

Las diferentes partes quedan así ensambladas de manera muy estanca, lo cual presenta una notable ventaja frente a la transmisión del ruido, para la eficacia de aspiración del motor y la eficiencia de los diversos órganos filtrantes. La gran flexibilidad del PPE permite enclavar numerosas piezas, piezas insertadas o cables eléctricos en el material absorbente sin posibilidad de movimiento, más concretamente con el paso del tiempo, en particular por efecto de las vibraciones del motor.

10

15

25

35

45

Esta gran estanqueidad del material por sí mismo permite evitar, o por lo menos limitar en gran manera, el empleo de juntas, en particular en el canal de aspiración, lo cual es económico en lo que respecta a cantidad de material y a tiempo de ensamble del aspirador.

El aspirador incluye así ventajosamente al menos un ensamble entre una pieza realizada en polipropileno expandido y otra pieza, realizada mediante deformación de la pieza de polipropileno expandido. Esta deformación puede permitir, además del comportamiento mecánico de las piezas, realizar una junta de estanqueidad.

Debido a la gran posibilidad de deformación del material, las diferentes piezas insertadas pueden ser introducidas de manera forzada en el cuerpo inferior 1 o en el cuerpo superior 2 en el proceso de ensamble. Por lo tanto, las piezas insertas son más simples en su fabricación, sin que se necesiten contrapartes en el cuerpo del aparato para la fijación.

Mediante la concepción de ingeniosos y eficaces encajes y siempre en virtud de la flexibilidad del material y de su capacidad para recuperar su forma, se pretende una eliminación de todos los tornillos de fijación de los diversos componentes (placa electrónica, ruedas, etc.) y de las piezas entre ellas, todo ello con el fin de facilitar el desarme al final de su vida útil.

El material PPE, debido todavía a la gran cantidad de aire incluida en el material, presenta una elevada aptitud para absorber las vibraciones, vibraciones que muchas veces generan ruidos añadidos al del motor, por ejemplo en los órganos de maniobra.

30 De acuerdo con la invención, se prevé realizar el máximo posible de piezas en PPE y, allí donde no puede ser utilizado este material, emplear polipropileno estándar, en orden a facilitar el reciclado del aspirador al final de su vida útil. Este reciclado, una vez quitado el motor, es más sencillo si se utiliza el mismo polímero para las diferentes piezas constitutivas.

En efecto, es concebible realizar botones, pilotos, ruedas y ruletas en un material distinto al PPE, en particular por motivos funcionales, por ejemplo un piloto luminoso debe ser fabricado con un plástico transparente. En este caso posible se preferirá el polipropileno estándar a los demás polímeros para que sea compatible con el cuerpo del aparato. Así es posible, una vez quitado el motor, una operación de fusión o de trituración del conjunto del aspirador, para recuperar el polímero y reutilizarlo.

El uso de un único material plástico constituye una importante contribución en la reducción de las existencias de materias primas y aumenta considerablemente el porcentaje efectivo de valorización de los aparatos al final de su vida útil. El desarme de los aparatos consistirá principalmente en separar las partes metálicas (esencialmente el motor y el cable eléctrico) del material plástico único.

Otra ventaja del material PPE es su tacto suave, un aspirador constituido con este producto es de manipulación más agradable, lo cual puede presentar una ventaja comercial añadida sumada a las funcionalidades técnicas principales anteriormente descritas.

Son posibles varias variantes para el aspirador según la invención, en particular se puede prever emplazar un dispositivo de arrollamiento automático del cable eléctrico de conexión del motor en el interior del cuerpo inferior 1 o un dispositivo manual en su periferia, por ejemplo en forma de partes salientes, y realizar un aspirador con funcionalidades variadas sin salir del ámbito de la invención.

Cabe contemplar asimismo diferentes formas de los cuerpos inferior o superior y de las piezas constitutivas de PPE sin salir del ámbito de la invención. Se puede colocar, sin salir del ámbito de la invención, un número variable de piezas insertadas, de tapas, de asideros o de elementos agregados.

Con carácter preferente, el cuerpo inferior 1 del aspirador, el cuerpo superior 2, la tapa 3 y el oportuno asidero de transporte 6 se fabrican en PPE. Los pilotos, órganos de mando 5 y órganos de maniobra 9 se pueden elaborar en

ES 2 473 588 T3

polipropileno no expandido, pero también se contempla fabricar diferentes piezas sobrepuestas, tales como los órganos de maniobra, ruedas o ruletas, en PPE, sin salir del ámbito de la invención.

Algunos modelos de aspiradores se pueden concebir con la integridad de las piezas de material plástico en polipropileno, expandido o clásico.

5 Por supuesto, la invención no queda limitada a las formas de realización descritas y representadas a título de ejemplo, sino que también comprende todos los equivalentes técnicos así como sus combinaciones.

El polipropileno expandido se utilizará con grados de expansión definidos por la cantidad de material (polipropileno) por litro. Se utilizarán de manera privilegiada contenidos comprendidos entre 40 g y 80 g de material por litro.

A título de ejemplo, la realización de un aspirador que incluye un cuerpo inferior, un cuerpo superior y una tapa de PPE (a 60 g de material por litro) permite pasar de un peso de 6,7 kg, si el material utilizado para realizar estas piezas es mayoritariamente ABS, a 3,5 kg con una realización de esas piezas en PPE, aunque las paredes sean aproximadamente cuatro veces más espesas con la utilización de PPE.

Por otro lado, en funcionamiento, el aparato presenta una buena rigidez con una sustentación muy buena de los elementos sobrepuestos sobre las piezas de PPE.

15 Se pasa además de un porcentaje de reciclabilidad del aparato del 70 % a más del 90 %.

Por otro lado, el gran espesor de las paredes puede permitir realizar el alojamiento de los pequeños accesorios de limpieza en ese espesor, mediante un troquelado apropiado.

Por lo tanto, son múltiples las ventajas de tal aspirador fabricado con piezas de polipropileno expandido:

- El peso global del aspirador se puede disminuir en gran manera, sin pérdida de las características necesarias de solidez, al ser muy pequeña la densidad del polipropileno expandido.
- El ruido del aparato en funcionamiento es bajo, al absorber el aire contenido el ruido del motor en gran parte.
- El material es elástico, así el aspirador puede absorber fácilmente los impactos, lo cual limita los riesgos para los muebles y las paredes.
- La cantidad de material es reducida.
 - Se pueden fabricar diferentes piezas de material plástico para diferentes utilizaciones en el aspirador con el mismo polímero polipropileno, preferentemente en su forma expandida, lo cual facilita el reciclado del aspirador al final de su vida útil.
 - Las vibraciones son absorbidas por el material, lo cual contribuye a la comodidad de utilización.
 - El coste de fabricación de un aspirador de este tipo es más bajo que el de un aspirador tradicional, en particular por el hecho de que el ensamble está facilitado, por el hecho de que los elementos se pueden diseñar con más simplicidad y de que se pueden eliminar algunas piezas, tales como juntas.
 - Finalmente, el material en sí mismo presenta un tacto más agradable que el de los plásticos empleados para fabricar los aspiradores conocidos y utilizados hasta la fecha.

35

30

20

REIVINDICACIONES

- 1. Aspirador que incluye piezas de material plástico, caracterizado porque al menos un elemento de la parte exterior visible del cuerpo del aparato está constituido a partir de polipropileno expandido.
- 2. Aspirador según la reivindicación 1, caracterizado porque al menos una pieza insertada fijada a dicho cuerpo del aparato está fabricada con polipropileno expandido.
 - 3. Aspirador según una de las anteriores reivindicaciones, en el que el cuerpo del aspirador incluye un cuerpo inferior (1) y un cuerpo superior (2) y en el que al menos el cuerpo inferior (1) está fabricado en polipropileno expandido.
- 4. Aspirador según la reivindicación 3, en el que el cuerpo inferior (1) del aspirador, el cuerpo superior (2), la tapa (3) y el asidero de transporte (6) están fabricados en polipropileno expandido.
 - 5. Aspirador según la reivindicación 1, en el que los pilotos, los órganos de mando (5) y los órganos de maniobra (9) son de polipropileno.
 - 6. Aspirador según una de las anteriores reivindicaciones, caracterizado porque incluye al menos un ensamble entre una pieza realizada en polipropileno expandido y otra pieza, realizada por deformación de la pieza de polipropileno expandido.

15

7. Aspirador según una de las anteriores reivindicaciones, caracterizado porque el polipropileno expandido está dosificado entre 40 g y 80 g de material por litro.

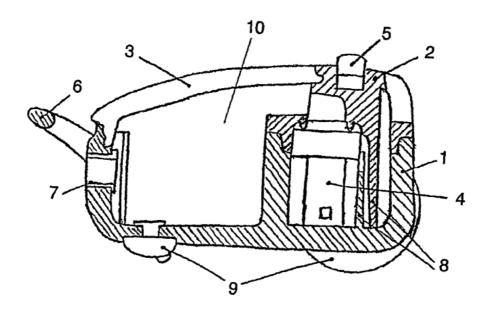


FIGURA 1