

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 475 966

51 Int. Cl.:

A61F 2/28 (2006.01) A61F 2/30 (2006.01) A61L 27/42 (2006.01) A61L 27/46 (2006.01) A61L 27/56 (2006.01) A61F 2/44 (2006.01) A61L 27/12 (2006.01) A61F 2/08 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 08.08.2008 E 08782696 (2)
 (97) Fecha y número de publicación de la concesión europea: 26.03.2014 EP 2192876
- (54) Título: Soportes de tipo óseo de dos capas
- (30) Prioridad:

09.08.2007 US 955014 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.07.2014

(73) Titular/es:

THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM (100.0%) 201 WEST 7TH STREET AUSTIN, TX 78701, US

(72) Inventor/es:

OH, DANIEL SUNHO y ONG, ANSON

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Soportes de tipo óseo de dos capas.

1. Campo de la invención

5

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se refiere en general a los campos de soportes biomédicos, y a procedimientos de tratamiento de una enfermedad o trastornos en un sujeto que implican la implantación de los soportes expuestos en la presente memoria.

2. Descripción de la técnica relacionada

Se ha notificado a lo largo de la última década una considerable investigación en la utilización de biomateriales poliméricos y cerámicos para producir soportes. Sin embargo, el material y la técnica de fabricación ideales para lograr una regeneración de tejido óseo óptima aún no se ha identificado. Aunque los materiales y las técnicas actuales han presentado un éxito variable, cada material y/o técnica muestra limitaciones que deben abordarse. Además, hay una falta global de éxito en la aplicación de estas tecnologías en la práctica clínica, especialmente para la reconstrucción y restauración de defectos óseos grandes.

Idealmente, los soportes para la regeneración de tejido óseo deben 1) mostrar biocompatibilidad sin provocar una respuesta inflamatoria o reacción tóxica/de cuerpo extraño, 2) presentar propiedades mecánicas estrechamente coincidentes en comparación con el hueso nativo y 3) presentar un mecanismo para permitir la difusión y/o el transporte de iones, nutrientes y desechos. Son igualmente deseables una unión fuerte con el hueso nativo, hueso activo y crecimiento interno vascular, y biodegradación de los soportes (dependiendo de las aplicaciones). Aunque la utilización de soportes de polímeros biodegradables ha mostrado algo de éxito en cuanto a crecimiento interno tisular beneficioso, hay controversias con respecto a su utilización para regeneraciones óseas. Las limitaciones en la utilización de soportes poliméricos han incluido la presencia de superficies hidrófobas que no son conductoras para la regeneración de tejido óseo y la disminución del pH localizado durante la degradación polimérica. La restauración de la función ósea también depende de las propiedades mecánicas estrechamente coincidentes del soporte con el hueso nativo. Esta similitud mecánica es importante ya que el hueso presenta como función principal soportar la carga con una transferencia de carga adecuada necesaria para regular, adaptar y remodelar el hueso durante el proceso de cicatrización normal. Adicionalmente, la arquitectura de los soportes (tamaño de poro, porosidad, interconectividad y permeabilidad) necesaria para lograr un transporte de iones/difusión de nutrientes y desechos favorable se percibe generalmente como crítica para obtener una proliferación y diferenciación celulares sostenidas dentro de los soportes, afectando de ese modo a la función y restauración del tejido regenerado. Aunque se han utilizado fosfatos de calcio en el pasado para la fabricación de soportes, los diferentes procesos o procedimientos utilizados han dado como resultado soportes de fosfato de calcio con diferentes arquitecturas. Como tal, la selección de un procedimiento de fabricación es importante para establecer la arquitectura del soporte necesaria para lograr una regeneración de tejido óseo satisfactoria.

Se expone un ejemplo de arquitectura de soporte en Kawamura *et al.*, solicitud de publicación US n.º 2006/0292350. Una limitación de esta invención es que no contiene canales de poros de interconexión funcionales para la migración celular, el transporte de iones o el intercambio de desechos. Esta es una limitación de un soporte comentado por Takata *et al.*, patente US n.º 4.629.464. La patente US n.º 4.629.464 no da a conocer canales de poros de interconexión y estructura de poros abiertos así como estructuras de sostenes huecos. La estructura de poros en el documento US 4.629.464 es una estructura de poros cerrados. Globalmente, la estructura del soporte es un bloque sólido que contiene burbujas de aire dispersadas aleatoriamente de diferentes tamaños. Otro ejemplo de arquitectura de soporte y su fabricación se expone por Li *et al.*, publicación U.S. n.º 2002/0037799. Esta invención está limitada al menos en parte por la provisión de poros de interconexión sólo para la migración celular: no se proporcionan otros medios de migración. Los soportes descritos por estas referencias y otras no están limitados en el grado de transporte de iones y nutrientes a tejidos circundantes. Existe una necesidad de la fabricación de soportes que faciliten mejor tal transporte para mejorar la regeneración de tejido óseo.

Sumario de la invención

La presente invención se define en la reivindicación 1 y se refiere en general a nuevos sistemas y estrategias para la reparación de tejido y hueso. En particular, la invención se refiere en general a soportes porosos que pueden aplicarse en el tratamiento de enfermedades y la prevención de infección en un sujeto, y a procedimientos de preparación y utilización de estos soportes. El término "soporte" se utiliza en la presente memoria en su sentido más amplio y no pretende limitarse a ninguna conformación, tamaño, configuración o aplicación particular. El soporte puede ser de cualquier tamaño. Por ejemplo, puede ser de al menos un cm de longitud. Se refiere a cualquier dispositivo o material para implantación que ayude en o aumente la cicatrización o formación de tejido. Por ejemplo, pueden aplicarse soportes en un sitio de defecto óseo, por ejemplo, uno que resulta de una lesión, un defecto ocasionado durante el transcurso de cirugía, infección, tumor maligno o malformación del desarrollo. Los soportes de la presente invención pueden utilizarse en una variedad de procedimientos quirúrgicos tales como la reparación de fracturas sencillas, fracturas compuestas, fracturas conminutas y falta de unión de huesos. También pueden

utilizarse para unir tejidos no óseos a hueso, tales como tendón, cartílago y sinovio. Se abordan detalles adicionales referentes a aplicaciones terapéuticas en la memoria descriptiva a continuación.

En formas de realización particulares el soporte de la presente invención es una estructura porosa de densidad única o densidad múltiple que, tras su implantación en un sujeto, promueve la infiltración celular y/o de nutrientes desde tejidos adyacentes. Los microporos y microcanales pueden soportar el crecimiento interno de células y/o la formación o remodelación de hueso.

5

20

25

30

35

40

45

50

55

60

Formas de realización particulares de la presente invención se refieren a soportes que presentan una cubierta cortical externa y un núcleo trabecular interno. La estructura de tales soportes se asemeja a la estructura de un hueso largo. Una estructura de este tipo permite que la cubierta cortical externa soporte la carga, como en el hueso nativo.

Otras formas de realización de la presente invención se refieren a soportes biomédicos que incluyen un cuerpo que presenta un eje largo, en los que el soporte presenta una estructura de poros abiertos de microporos que están interconectados y microcanales secundarios que son generalmente perpendiculares al eje largo del cuerpo.

Un "microporo" tal como se utiliza en la presente memoria se refiere a un conducto o abertura pequeña, que presenta un diámetro promedio de aproximadamente 1 μ m a aproximadamente 3 mm. Por ejemplo, el microporo puede presentar un diámetro promedio de aproximadamente 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 230, 240, 250, 260, 270, 280, 290, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2900 ó 3000 μ m o más, o cualquier intervalo derivable en los mismos. Los microporos pueden estar conectados o no con otros microporos.

En las formas de realización de los presentes soportes que presentan microcanales y/o microporos interconectados, la totalidad o sólo una parte de los presentes soportes puede presentar los microcanales y/o microporos. Los microcanales pueden estar conectados o no con microporos.

Los microporos pueden ser de conformación uniforme, o pueden estar conformados de manera distinta. Los microporos pueden ser de tamaño uniforme, o pueden ser de una variedad de tamaños. Pueden ser generalmente de conformación redonda, ovalada, cilíndrica o irregular. Un microporo puede estar interconectado con uno o más microporos o uno o más microcanales distintos. En algunas formas de realización el soporte incluye poros latentes que se convierten en poros reales tras implantarse el soporte en un sujeto.

Un "microcanal" tal como se utiliza en la presente memoria se refiere a un conducto que presenta un diámetro promedio de aproximadamente 1 µm a aproximadamente 3 mm, en el que la longitud del conducto es al menos dos veces tan larga como el diámetro promedio del conducto. Por ejemplo, el microcanal puede presentar un diámetro promedio de aproximadamente 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 230, 240, 250, 260, 270, 280, 290, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2900 ó 3000 µm o más, o cualquier intervalo derivable en los mismos. El microcanal puede presentar cualquier longitud promedio. La longitud de los microcanales puede depender del tamaño y la conformación del soporte.

Un microcanal puede estar interconectado con uno o más microcanales o con uno o más microporos distintos. En formas de realización de la presente invención que presentan una cubierta cortical externa y un núcleo trabecular interno, la cubierta cortical externa y/o el núcleo trabecular interno pueden presentar uno o más microcanales o microporos. Los microcanales y/o microporos de la capa cortical externa pueden estar conectados con microcanales y/o microporos del núcleo trabecular interno. Una estructura interconectada de microporos y/o microcanales permite el transporte de nutrientes, iones y/o células desde el tejido adyacente tras su implantación en un sujeto o sobre una superficie de un sujeto. En algunas formas de realización, sólo la cubierta cortical externa presenta microporos y/o microcanales. En otras formas de realización, sólo el núcleo trabecular interno presenta microporos y/o microcanales. En formas de realización particulares, tanto el núcleo trabecular como la cubierta cortical externa presentan microporos y/o microcanales.

En determinadas formas de realización, el soporte es de conformación cilíndrica e incluye una cubierta cortical externa y capa trabecular interna para asemejarse a la estructura nativa de una parte de un hueso largo. Algunas formas de realización de tales soportes presentan microcanales secundarios interconectados en una orientación radial dentro de sostenes de los soportes con el fin de proporcionar nutrientes e iones al interior de la estructura para facilitar el desarrollo de un soporte que soporta el peso. El "sostén" es el armazón principal de la estructura del soporte. El sostén puede comprender microcanales.

Formas de realización particulares de la presente invención se refieren a soportes biomédicos que incluyen (a) un componente de núcleo que presenta microporos interconectados; y (b) una capa cortical en contacto con al menos

una parte de una superficie del componente de núcleo, en los que la capa cortical comprende microporos y/o microcanales. En formas de realización de la presente invención, los microporos del componente de núcleo están interconectados, lo que permite el transporte de nutrientes e iones cuando se implanta en un sujeto. En formas de realización adicionales, los microporos de la capa cortical están interconectados. En formas de realización todavía adicionales, los microporos del componente de núcleo están interconectados con los microporos de la capa cortical.

5

10

15

20

25

50

55

60

65

En formas de realización particulares de la presente invención, los microporos de la capa cortical presentan un diámetro promedio que es inferior al diámetro promedio de los microporos del componente de núcleo. Por ejemplo, en algunas formas de realización, el componente de núcleo está compuesto por dos poblaciones de microporos, presentando la primera población de microporos un diámetro promedio de aproximadamente 50 µm a aproximadamente 1000 µm, y presentando la segunda población de microporos un diámetro promedio de aproximadamente 10 µm a aproximadamente 300 µm. En más formas de realización particulares, el primer tipo de microporos presenta un diámetro promedio de aproximadamente 150 µm a aproximadamente 750 µm, y el segundo tipo de microporos presenta un diámetro promedio de aproximadamente 50 µm a aproximadamente 120 µm. En formas de realización particulares, el diámetro promedio de los microporos de la capa cortical es de aproximadamente 1 µm a aproximadamente 300 µm. En formas de realización más particulares, el diámetro promedio de los microporos de la capa cortical es de aproximadamente 10 µm a aproximadamente 150 µm.

El material compuesto de soporte puede ser de cualquier densidad. Por ejemplo, la densidad puede ser de aproximadamente 5, 4,5, 4,0, 3,5, 3,0, 2,5, 2,0, 1,9, 1,8, 1,7, 1,6, 1,5, 1,4, 1,3, 1,2, 1,1, 1,0, 0,9, 0,8, 0,7, 0,6, 0,5, 0,4, 0,3, 0,2 ó 0,1 g/cm³, o cualquier intervalo de densidades derivable en los mismos. En formas de realización particulares, la densidad es de entre aproximadamente 0,05 g/cm³ y aproximadamente 1,60 g/cm³. En formas de realización más particulares, el material compuesto poroso presenta una densidad de entre aproximadamente 0,07 g/cm³ y 1,1 g/cm³. La densidad puede ser inferior a aproximadamente 1 g/cm³, inferior a aproximadamente g/cm³, inferior a aproximadamente 0,8 g/cm³, inferior a aproximadamente 0,7 g/cm³, inferior a aproximadamente 0,6 g/cm³, inferior a aproximadamente 0,2 g/cm³ o inferior a aproximadamente 0,1 g/cm³.

En formas de realización de los presentes soportes que incluyen un componente poroso, el componente poroso es de cualquier porosidad. Por ejemplo, la porosidad puede ser de al menos aproximadamente el 30%, al menos aproximadamente el 45%, al menos aproximadamente el 55%, al menos aproximadamente el 60%, al menos aproximadamente el 60%, al menos aproximadamente el 65%, al menos aproximadamente el 70%, al menos aproximadamente el 75%, al menos aproximadamente el 80%, al menos aproximadamente el 90%, al menos aproximadamente el 60%, al menos aproximadamente

El soporte puede ser de cualquier conformación y configuración. Por ejemplo, en formas de realización particulares, el soporte es cilíndrico, asemejándose por tanto a un hueso largo. En otras formas de realización, el soporte es redondo, cuadrado o de una conformación irregular o está compuesto por gránulos de un tamaño más pequeño que el defecto óseo para el que se utilizarán para tratar. Se define generalmente que los gránulos presentan un diámetro promedio de menos de 1 cm. El soporte puede fabricarse en cualquier configuración que sea adecuada para su implantación en un sujeto. Se comentan procedimientos de fabricación de soportes en mayor detalle a continuación.

En algunas formas de realización, se define adicionalmente que la capa cortical comprende microcanales. Por ejemplo, en soportes con una conformación cilíndrica con un eje largo, los microcanales secundarios presentan un eje que es generalmente perpendicular al eje largo del soporte. Puede haber cualquier número de microcanales en la estructura cortical. En algunas formas de realización, los microcanales secundarios presentan un diámetro promedio que es mayor que el diámetro promedio de los microporos en la capa cortical. En formas de realización particulares, los microcanales secundarios presentan un diámetro promedio de aproximadamente 10 µm a aproximadamente 500 µm. En formas de realización más particulares, los microcanales secundarios presentan un diámetro promedio de aproximadamente 500 µm a aproximadamente 120 µm.

El componente de núcleo puede incluir una única población de microporos de conformación y tamaño uniformes, o puede incluir más de una población de microporos. En algunas formas de realización, la primera población de microporos presenta un diámetro promedio de aproximadamente 150 μ m a aproximadamente 750 μ m, y la segunda población de microporos presenta un diámetro promedio de aproximadamente 50 μ m a aproximadamente 120 μ m, en la que el diámetro promedio de los microporos de la capa cortical es de aproximadamente 10 μ m a aproximadamente 150 μ m.

El soporte puede estar compuesto por cualquier material, siempre que el material, cuando se forme para dar un soporte tal como se expone en la presente memoria, no induzca ninguna reacción adversa o toxicidad significativa en el sujeto. El soporte puede estar compuesto por un único tipo de material, o más de un material. En soportes que incluyen más de un componente, tales como un soporte que incluye un núcleo trabecular interno y una capa cortical

externa, los componentes del soporte puede estar compuestos por materiales similares o materiales diferentes. El soporte puede estar compuesto por más de un material, o un material compuesto por materiales.

En formas de realización particulares, el soporte incluye calcio y fósforo. Por ejemplo, el fosfato de calcio puede ser fosfato de tricalcio, hidroxiapatita, fosfato de calcio amorfo, fosfato de monocalcio, fosfato de dicalcio, fosfato de octacalcio, fosfato de tetracalcio, fluoroapatita, apatita carbonatada, un análogo de los mismos, o una mezcla de los mismos. El soporte puede estar compuesto por una composición que incluye calcio y fosfato (un fosfato de calcio). Un "fosfato de calcio" tal como se utiliza en la presente memoria se define generalmente como cualquier molécula que incluya uno o más átomos de calcio, uno o más átomos de fósforo y uno o más átomos de oxígeno.

5

10

15

20

35

40

45

50

55

60

65

El soporte puede incluir uno o más componentes adicionales. Los ejemplos incluyen agentes terapéuticos, tales como moléculas pequeñas, polipéptidos, proteínas, ADN, ARN, anticuerpos, fragmentos de anticuerpos, iones de metales (tales como zinc o plata), y así sucesivamente. En formas de realización particulares el agente terapéutico es un factor angiogénico o un factor de crecimiento osteogénico.

En algunas formas de realización, el soporte puede incluir además partículas. Las partículas en el material compuesto pueden presentar una variedad de conformaciones incluyendo esferoidal, de placa, de fibra, cúbica, de lámina, de varilla, elipsoidal, de cuerda, alargada, polihédrica, y mezclas de las mismas. Las partículas en el material compuesto pueden ser de cualquier tamaño. Por ejemplo, pueden presentar un tamaño promedio de aproximadamente 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 ó 1000 micrómetros de diámetro, o cualquier intervalo de diámetro derivable en los mismos. En formas de realización particulares, el tamaño de partícula promedio es de aproximadamente 20 a aproximadamente 800 micrómetros de diámetro. Pueden estar presentes partículas de tamaños variables dentro del mismo soporte.

La presente invención también se refiere en general a procedimientos de tratamiento de una enfermedad ósea o lesión ósea en un sujeto, que comprende implantar en el hueso de un sujeto un soporte tal como se describe en la presente memoria, en el que se trata la enfermedad ósea o lesión ósea. El sujeto puede ser cualquier sujeto, pero en formas de realización particulares es un mamífero. Por ejemplo, el mamífero puede ser un ser humano, un primate, un perro, una oveja, un caballo, una cabra, un gato, un caballo, una vaca, una rata o un ratón. En formas de realización particulares, el mamífero es un ser humano.

En formas de realización particulares, el sujeto presenta una fractura ósea o un defecto óseo. La fractura ósea o el defecto óseo pueden ser de cualquier causa. Por ejemplo, la fractura ósea o el defecto óseo pueden ser una fractura o un defecto de un hueso largo, un hueso que soporta peso o un hueso que no soporta peso, tal como la tibia, el fémur, el radio, el cúbito, una vértebra, la cadera, el maxilar, la mandíbula, el hueso cigomático o huesos craneofaciales. La enfermedad ósea puede ser cualquier enfermedad ósea, tal como displasia fibrosa, osteoporosis, osteomalacia, artritis, osteomielitis, necrosis avascular, enfermedad de Paget, cáncer de huesos o una lesión traumática. El defecto óseo puede ser un defecto relacionado con proceso patológico, con un traumatismo o con una extirpación quirúrgica de una lesión ósea. En algunas formas de realización, el procedimiento incluye además tratar al sujeto con una o más formas secundarias de terapia para el tratamiento de una enfermedad ósea o fractura ósea.

El soporte puede fabricarse para conformarse a una conformación de un defecto tisular u óseo, o puede modificarse por el cirujano en el momento de la implantación para que sea de un tamaño o una conformación particulares. En algunas formas de realización, el soporte está en forma de gránulos que pueden empaquetarse en un defecto óseo por el cirujano.

En algunas formas de realización de los presentes soportes, se crean canales en los lados de los soportes para crear aberturas en las que pueden colocarse perlas que incluyen uno o más agentes terapéuticos. Las perlas pueden estar recubiertas con uno o más agentes terapéuticos, o los agentes terapéuticos pueden incorporarse en la estructura de la perla. La perla puede ser o no reabsorbible. En formas de realización particulares, las perlas están compuestas por un polímero, tal como cualquiera de los polímeros expuestos en la presente memoria, o son cerámicos. Los canales, que pueden ser mayores que los microcanales descritos en la presente memoria, pueden crearse utilizando cualquier procedimiento conocido por los expertos habituales en la materia. En formas de realización particulares, los canales se crean agujereando en el lado del soporte.

Los soportes de la invención pueden presentarse en los kits formales que incluyen uno o más soportes tal como se expuso anteriormente en un envase sellado. En algunas formas de realización, el kit incluye instrucciones en papel o formato electrónico que proporcionan información referente a la aplicación terapéutica y la colocación del soporte en un sujeto.

También se dan a conocer a continuación procedimientos de preparación de un soporte óseo según la invención. Por ejemplo, en algunas formas de realización el procedimiento incluye (a) poner en contacto una esponja de polímero poroso con una composición que incluye un material adecuado para la formación del soporte tal como cualquiera de los ejemplos expuestos anteriormente y en otra parte en esta memoria descriptiva, en el que al menos una parte de la esponja se recubre con la composición; y (b) secar la esponja recubierta con la composición, en el que se forma un soporte óseo. Los ejemplos de materiales contemplados incluyen los expuestos anteriormente.

Tal como se utiliza en la presente memoria, una "esponja" se refiere a una estructura porosa. La esponja puede estar compuesta por cualquier polímero. Los ejemplos incluyen poliuretano, polipropileno, poliestireno, un polímero acrílico, un policarbonato, un poliéster, compuestos acrílicos, poliacrilatos, polimetacrilatos, fluorocarbonos, hidrogeles, poliacetales, poliamidas, poli(éter, cetonas) (PEK), poliimidas (nailones), poliolefinas, poliestireno, polisulfonas, látex, silicona, o una mezcla de los mismos. En formas de realización particulares, la esponja está compuesta por poliuretano.

- En formas de realización particulares, el procedimiento comprende además poner en contacto la esponja con de aproximadamente el 5% a aproximadamente el 20% de hidróxido de sodio antes de poner en contacto la esponja con la composición. En formas de realización más particulares, el procedimiento comprende poner en contacto la esponja con de aproximadamente el 10% a aproximadamente el 15% de hidróxido de sodio antes de poner en contacto la esponja con la composición.
- La esponja puede ser de cualquier porosidad. En formas de realización particulares, la esponja presenta aproximadamente 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 ó 100 poros por pulgada (ppp), o cualquier intervalo de ppp derivable en los mismos. Los poros pueden ser de cualquier tamaño o configuración, incluyendo los tamaños y las configuraciones expuestos anteriormente para microporos. En formas de realización particulares, la esponja presenta una porosidad promedio de aproximadamente 40 ppp a aproximadamente 100 ppp, o de aproximadamente 40 ppp a aproximadamente 80 ppp. En algunas formas de realización, se define adicionalmente que la esponja presenta microcanales secundarios. Los microcanales secundarios pueden ser de cualquier tamaño o configuración, ejemplos de los cuales se expusieron anteriormente.
- En algunas formas de realización, el soporte que se forma incluye un núcleo interno y una capa cortical externa. En algunas formas de realización, el componente de núcleo presenta una estructura de poros abiertos de microporos que están interconectados. La capa cortical está en contacto con al menos una parte del componente de núcleo. En algunas formas de realización, la capa cortical incluye microporos. En algunas formas de realización, se utiliza una primera esponja para fabricar el componente de núcleo y se utiliza una segunda esponja para fabricar la capa cortical, y en el que la primera esponja y la segunda esponja están cada una recubiertas con la composición. Las esponjas primera y segunda pueden estar compuestas por materiales similares o materiales distintos. Se han expuesto anteriormente ejemplos de tales materiales.
 - En algunas formas de realización, el procedimiento implica: (a) poner en contacto una esponja de polímero núcleo con una composición que incluye una composición que incluye cualquiera de los materiales adecuados para el material de soporte expuesto anteriormente, en el que al menos una parte de la esponja se recubre con la composición; y (b) secar la esponja recubierta con la composición, en el que se forma un soporte óseo, puede repetirse una vez, o más de una vez. En formas de realización particulares, la composición incluye un fosfato de calcio.
- 40 En formas de realización particulares, el procedimiento implica además sinterizar la primera esponja y la segunda esponja tras secar. En algunas formas de realización, la primera esponja presenta un diámetro de poro promedio de aproximadamente 150 μm a aproximadamente 800 μm tras sinterizar, y la segunda esponja presenta un diámetro de microporo promedio de aproximadamente 50 μm a aproximadamente 250 μm tras sinterizar.

35

55

- La esponja puede colocarse en un molde tras poner en contacto de la esponja con la composición. En formas de realización adicionales, la esponja se coloca en un molde antes de poner en contacto la esponja con la composición. El molde permite la conformación de la esponja para dar una configuración deseada particular para la aplicación terapéutica. Por ejemplo, la esponja puede configurarse para asemejarse a una parte de un hueso, tal como un hueso largo. Se exponen ejemplos de configuraciones adicionales en las siguientes secciones de la memoria descriptiva.
 - La composición que se pone en contacto con la esponja puede incluir cualquier número de componentes adicionales. Por ejemplo, en algunas formas de realización, la composición incluye zinc o plata. La composición puede incluir además un aglutinante. Se exponen ejemplos de aglutinantes en otra parte en la memoria descriptiva.
 - Puede recubrirse parte o toda la superficie de la esponja con la composición. En formas de realización particulares, toda la superficie de la esponja se recubre con la composición. La esponja puede recubrirse con o sumergirse en la composición. La composición en exceso puede drenarse o retirarse de la esponja por otros medios.
- En algunas formas de realización, se utiliza una primera esponja para formar un núcleo interno del soporte, y se utiliza una segunda esponja para formar una capa cortical del soporte. La esponja puede ser de cualquier tamaño, conformación o configuración, tal como se comentó anteriormente en la sección del sumario que se refiere a soportes de la presente invención. Adicionalmente, pueden crearse canales, tal como agujereando o perforando la capa cortical o el núcleo interno trabecular del soporte con un elemento de perforación, o incorporando material en el soporte que proporciona la formación de poros.

En una realización adicional de la invención se integra una sustancia biológicamente activa en el soporte y/o en un recubrimiento aplicado al soporte, o recubriendo el aspecto interno de los microporos del soporte. Por tanto, se permite un suministro controlado de la sustancia biológicamente activa. La cantidad de la sustancia biológicamente activa puede definirse fácilmente controlando el procedimiento de recubrimiento, por ejemplo. Integrando una sustancia biológicamente activa en una región o capa de recubrimiento sumergida, o en la composición, puede lograrse una liberación retardada controlada de la sustancia biológicamente activa. La sustancia biológicamente activa también puede encapsularse en microesferas biodegradables soportes poliméricos e incorporarse en canales del soporte utilizando cualquier procedimiento conocido por los expertos habituales en la materia, o incorporarse en una partícula.

10

5

Se contempla específicamente que cualquier limitación comentada con respecto a una realización de la invención puede aplicarse a cualquier otra realización de la invención. Además, cualquier composición de la invención puede utilizarse en cualquier procedimiento de la invención, y cualquier procedimiento de la invención puede utilizarse para producir o para utilizar cualquier composición de la invención.

15

La utilización del término "o" en las reivindicaciones se utiliza para querer decir "y/o" a menos que se indique explícitamente que se refiere a las alternativas sólo o que las alternativas son mutuamente excluventes, aunque la descripción soporta una definición que se refiere a sólo alternativas e "y/o."

20

A lo largo de toda esta solicitud, el término "aproximadamente" se utiliza para indicar que un valor incluye la desviación estándar del error para el dispositivo y/o el procedimiento que está empleándose para determinar el valor.

25

Tal como se utiliza en la presente memoria en la memoria descriptiva, "un" o "una" pueden significar uno o más, a menos que se indique claramente lo contrario. Tal como se utiliza en la presente memoria en la(s) reivindicación/reivindicaciones, cuando se utilizan conjuntamente con la expresión "que comprende," las palabras "un" o "una" pueden significar uno o más de uno. Tal como se utiliza en la presente memoria "otro" puede significar al menos un segundo o más.

30

Otros objetivos, características y ventajas de la presente invención resultarán evidentes a partir de la siguiente descripción detallada. Sin embargo, debe entenderse que la descripción detallada y los ejemplos específicos, aunque indican formas de realización preferidas de la invención, se proporcionan a modo de ilustración sólo, puesto que diversos cambios y modificaciones dentro del alcance de la invención resultarán evidentes para los expertos en la materia a partir de esta descripción detallada.

35 Breve descripción de las figuras

40

Las siguientes figuras forman parte de la presente memoria descriptiva y se incluyen para demostrar adicionalmente determinados aspectos de la presente invención. La invención puede entenderse mejor mediante la referencia a uno o más de estos dibujos en combinación con la descripción detallada de formas de realización específicas presentada en la presente memoria.

Figuras 1A a C. Que ilustran esquemáticamente un ejemplo de un soporte de fosfato de calcio tridimensional de tipo óseo multiestructural y de dos capas para el aumento de huesos. La figura 1A muestra la sección transversal longitudinal de un soporte de dos capas con la cubierta (1) cortical externa porosa y la estructura (2) de núcleo trabecular interno porosa. La figura 1B muestra la sección transversal de un soporte de dos capas con la cubierta (1) cortical externa porosa y la estructura (2) de núcleo trabecular interno porosa. La figura 1C muestra la sección transversal de un sostén (3) recubierto con fosfato de calcio denso con la presencia de un microcanal (4) secundario triangular dentro del sostén.

45

50 Figura 2. Que muestra esquemáticamente un ejemplo de la preparación de plantillas de dos capas, con la esponja de núcleo trabecular interno ajustada perfectamente en la esponja de cubierta cortical externa.

Figura 3. Un perfil de sinterización de 8 etapas a modo de ejemplo de una esponja de poliuretano recubierta con fosfato de calcio tras el primer procedimiento de recubrimiento con fosfato de calcio.

55

Figura 4. Un perfil de sinterización de 5 etapas a modo de ejemplo para el segundo procedimiento de sinterización de soporte de fosfato de calcio recubierto.

Figura 5. Diagrama de flujo que muestra un procedimiento para producir un sol de hidroxiapatita dopada con plata.

60

Figura 6. Un perfil de sinterización de 3 etapas a modo de ejemplo de un soporte tras recubrir el soporte con o sin sol de fosfato de calcio dopado con plata o zinc.

65

Figura 7. Micrografías electrónicas de barrido representativas que muestran a) la superficie no tratada de la plantilla de la esponja, y b) la superficie de la esponja de poliuretano tras un tratamiento de 20 minutos en NaOH al 10%. Se

observan microgrietas en la superficie de la esponja tratada y estas grietas permiten la nucleación de recubrimientos de fosfato de calcio y garantizan la uniformidad del recubrimiento sobre la superficie de la esponja.

Figura 8. Curva de TG/DTA de una plantilla de esponja de poliuretano.

5

15

- Figura 9. Micrografía electrónica de barrido representativa que muestra una superficie de soporte densa y lisa tras sinterizar (5.000 aumentos). Se observan también los límites de los granos de fosfato de calcio sobre la superficie del soporte.
- Figuras 10A a C. Micrografías electrónicas de barrido (MEB) representativas de un soporte de la presente invención tras la 2ª sinterización que muestran a) la sección transversal de los microcanales secundarios de interconexión dentro del sostén, b) gran aumento (1.500 aumentos) del sostén que muestra el microcanal secundario triangular, oscilando la longitud de cada lado entre 30 μm y 120 μm, y c) un poro primario que presenta un diámetro que oscila entre 150 μm y 750 μm (150 aumentos).
 - Figuras 11A a B. Micrografías electrónicas de barrido (MEB) representativas que muestran la superficie y el grosor de un sostén tras a) el recubrimiento y la sinterización de 1ª vez, y b) el recubrimiento y la sinterización de 2ª vez.
- Figura 12. Sección transversal representativa de un soporte de fosfato de calcio infiltrado con tejido óseo y crecimiento interno vascular después de 12 semanas tras la cirugía, 200X (S = soporte, V = vaso). Esta sección histológica se observa bajo un microscopio de contraste de fases.
 - Figura 13. Un procedimiento no limitativo de la presente invención.
- Figuras 14A-D. Microscopía electrónica de barrido de diferentes secciones transversales de un soporte de la presente invención que muestran (figura 14A) cubierta cortical externa con microcanal; (figura 14B) capa interna del sostén; (figura 14C) superficie rugosa del sostén; y (figura 14D) sección transversal del sostén hueco.
- Figuras 15A a XX. Descripción pictórica de un procedimiento de preparación de un soporte de la presente invención. 30 Los comentarios referentes a determinadas figuras son los siguientes: Figura 15A. Pueden utilizarse esponias de poliuretano (PU) para producir soportes de CaP porosos interconectados. Figura 15C a G. Para cambiar las características de superficie de la esponja de PU desde hidrófobas hasta hidrófilas y aumentar la humectabilidad, puede tratarse con ultrasonidos una esponia de PU preparada en disolución de NaOH al 10% durante 20-30 minutos antes de su utilización. Le siguió limpieza con agua corriente durante 15-20 minutos. Durante la limpieza, la esponja 35 puede exprimirse y expandirse 3-4 veces para enjuagar el NaOH residual dentro de la esponja de PU. Puede seguir limpieza con ultrasonidos con agua destilada durante 15-20. Tras eliminar el agua con, por ejemplo, papel absorbente, la esponja puede colocarse en un horno a 60-80°C hasta que se seque completamente (por ejemplo, 80°C durante 5 horas). Figura 15H. Tras secar completamente la esponja de núcleo (parte de hueso esponjoso), puede introducirse dentro de una esponja porosa de cubierta exterior (parte de hueso cortical) o cubierta sólida 40 dependiendo de lo que se desea en la aplicación y estructura finales. Figura 15J a K. Para preparar una suspensión espesa de colada en barbotina, se añade preferiblemente un aglutinante a la dispersión. Los aglutinantes pueden ser carboximetilcelulosa (CMC), poli(alcohol vinílico), almidón, silicato de sodio, polivinilbutiral, emulsión de metacrilato, poliacrilato soluble en agua, poli(ácido acrílico), polietilenglicol, etc. Un aglutinante particularmente preferible, en determinadas formas de realización, es carboximetilcelulosa y silicato de sodio. La cantidad de 45 carboximetilcelulosa añadida es preferiblemente del 5-10% en masa y de disolución de silicato de sodio añadida es preferiblemente del 2-5% en masa basándose en el 100% en masa de polvo de fosfato de calcio. Tras añadir carboximetilcelulosa en agua destilada, se realiza una agitación adicional hasta disolver completamente, entonces se añade disolución de silicato de sodio y se agita. Figura 15L. Para mantener la homogeneidad y evitar la sedimentación rápida del polvo de fosfato de calcio, puede añadirse poliacrilato de amonio (por ejemplo, el 5-10% en masa basándose en el 100% en masa de polvo para dispersante). Figura 15M. Para evitar grietas debidas al secado 50 rápido durante el procedimiento de secado, puede añadirse N,N-dimetilformamida (por ejemplo, el 10-15% en masa basándose en el 100% en masa de polvo para agente de secado). Figura 15N. Para preparar la suspensión espesa de fosfato de calcio, se esparce lentamente polvo de fosfato de calcio en la disolución. Figura 15O. Tras añadir el polvo de fosfato de calcio, se realiza agitación adicional y también se calienta la suspensión espesa a 40-50°C para 55 la evaporación del agua durante la agitación hasta que la razón de polvo/líquido es de 0,3-0,4. Figura 15P. La suspensión espesa de fosfato de calcio puede verterse en un molde de colada de escayola para colar la cubierta exterior sólida. Tras verterse la suspensión espesa, se hace girar el molde de colada de escayola para obtener una cubierta exterior sólida gruesa de manera homogénea. Esto puede repetirse varias veces hasta que se logra el grosor de la cubierta exterior deseado. Figura 15Q. Tras colarse completamente la cubierta del cuerpo no sinterizado 60 exterior sólida, puede secarse a 30°C y por encima del 80% de humedad en una cámara. El cuerpo no sinterizado puede separarse entonces del molde de colada de escayola y secarse a 25°C, en condiciones de aire con una humedad del 30%, durante 6-24 horas dependiendo del tamaño del cuerpo no sinterizado. Entonces se coloca en un horno para la sinterización. Figura 15R. Primera etapa: calor hasta 600°C. Figura 15T a U. Para preparar la pasta de fosfato de calcio del 1er recubrimiento, se añade preferiblemente un aglutinante a la dispersión. Tales aglutinantes se describen en la presente memoria. Tras añadir poli(alcohol vinílico) en agua destilada, se realiza agitación adicional 65 hasta que se disuelve todo completamente; entonces se añade disolución de silicato de sodio con agitación

continuada. Figura 15V a W. La cantidad añadida de carboximetilcelulosa tal como se muestra en esta figura es preferiblemente del 3-5% en masa. Tras añadir carboximetilcelulosa a la disolución, se realiza agitación adicional hasta que se disuelve todo completamente, entonces se añade poli(acrilato de amonio) (el 3-5% en masa basándose en el 100% en masa de polvo de fosfato de calcio) con agitación. Figura 15X. Para evitar grietas debido a un secado rápido durante el procedimiento de secado, puede añadirse N,N-dimetilformamida (por ejemplo, cantidad del 5-10% en masa basándose en el 100% en masa de polvo para agente de secado). Figura 15Y. Puede prepararse la suspensión espesa de fosfato de calcio esparciendo lentamente polvo de fosfato de calcio en la disolución. Figura 15AA. Tras añadir el fosfato de calcio, se realiza agitación adicional del polvo y se calienta la suspensión espesa a 40-50°C para la evaporación del agua durante la agitación hasta que la razón de polvo/líquido es de 1,0-1,25. Si se detiene la barra agitadora durante la agitación, agitar con una barra de teflón hasta que se consigue la razón de polvo/líquido deseada. Figura 15BB. Se sumerge la esponja de PU de dos capas pretratada en la pasta de fosfato de calcio, luego se exprime y se expande 5-7 veces utilizando una barra de teflón. Se retira la pasta en exceso con aire para evitar que los poros primarios se llenen con pasta. Puede examinarse el recubrimiento homogéneo utilizando un estereomicroscopio. Figura 15CC a DD. Tras examinar el recubrimiento homogéneo, se seca el soporte preformado a 30°C, el 50-70% de humedad. Entonces se seca el soporte preformado de una o dos capas recubierto con fosfato de calcio presecado a 25°C, en condiciones de aire con una humedad del 30%, durante 6-24 horas dependiendo del tamaño preformado. Tras secar completamente, se coloca el soporte preformado en un horno para la 1ª sinterización. Figura 15FF a KK. Véanse los comentarios de la figura 15T a Y. Figura 15MM. Tras añadir el polvo de fosfato de calcio, se realiza una agitación adicional y se calienta la suspensión a 40-50°C para la evaporación del agua durante la agitación hasta que la razón de polvo/líquido es de 0,3-0,4. Figura 15NN. Se sumerge el soporte de una o dos de 1ª sinterización en la suspensión espesa de fosfato de calcio y se saca tras 5 segundos. Se retira la suspensión espesa en exceso utilizando aire para evitar que se llenen los poros primarios con la suspensión espesa. Figura 1500. Se centrifuga el soporte de una o dos capas recubierto por 2ª vez para eliminar la 2ª suspensión espesa en exceso y obtener un recubrimiento homogéneo durante 10-20 segundos a 1000-2000 rpm; dependiendo del tamaño del soporte y la viscosidad de la suspensión espesa. Figura 15PP a QQ. Tras centrifugar, se seca el soporte a 25°C, en condiciones de aire con una humedad del 30%, durante 6-24 horas dependiendo del tamaño preformado. Tras secar completamente el soporte recubierto por 2ª vez, se coloca en un horno para la 2ª sinterización. Figura 15RR. Puede sintetizarse fosfato de calcio antibacteriano dopado con plata o zinc utilizando el procedimiento de sol-gel. Figura 15SS. Se prepara el sol de fosfato de calcio dopado con plata o zinc sintetizando el precursor de calcio (Ca), plata (Ag) y el precursor de fósforo (P). Figura 15TT. Se sintetiza entonces el sol de fosfato de calcio dopado con plata o zinc haciendo reaccionar los precursores de calcio y fósforo durante un periodo de 1 a 2 horas y con agitación vigorosa. Se realiza la reacción bajo una atmósfera de argón. Figura 15UU. Entonces se filtra el sol de fosfato de calcio dopado con plata o zinc sintetizado a través de un filtro de jeringa de 0,20 µm a 0,45 µm, seguido por envejecimiento a temperaturas que oscilan entre 40°C y 80°C y durante un periodo que oscila entre 12 y 204 horas. Figura 15VV. Entonces se sumergen los soportes de fosfato de calcio porosos fabricados en el sol de fosfato de calcio envejecido dopado con o sin plata o zinc. Tras sumergir durante de 5 a 10 segundos, se retira entonces el soporte del sol y se sopla aire para desatascar los poros. Figura 15WW. Se centrifugan los soportes para retirar el sol en exceso. Figura 15XX. Entonces se cuece el soporte recubierto con sol de fosfato de calcio y se seca en un horno a temperaturas que oscilan entre 50°C y 100°C y durante un periodo que oscila entre 3 y 8 horas. Tras secarse completamente, entonces se tratan térmicamente los soportes recubiertos con sol de fosfato de calcio a temperaturas que oscilan entre 600°C y 700°C utilizando un horno de mufla en aire durante un periodo que oscila entre 1 hora y 5 horas.

Figura 16. Soporte hecho a la medida curvado para ajustarse a la conformación, estructura anatómica y tamaño de una tibia de conejo.

Figuras 17A a B. Gránulos de la presente invención. Figura 17B - imágenes de los gránulos tras su colocación en el defecto óseo.

50 Descripción de formas de realización ilustrativas

La presente invención se basa en el desarrollo de soportes para la reparación de huesos y tejidos que permiten un fácil transporte de nutrientes e iones desde el entorno circundante al interior del soporte, promoviendo de ese modo la restauración de la función y estructura del tejido.

A. Componentes del soporte

10

15

20

25

30

35

40

45

55

60

65

Los soportes de la presente invención pueden estar compuestos por una variedad de componentes. Los componentes pueden obtenerse de fuentes naturales, fuentes comerciales o pueden sintetizarse químicamente. En formas de realización particulares, el soporte incluye un fosfato de calcio. Con respecto a fuentes naturales, se encuentran fosfatos de calcio en hueso, dientes y conchas de una gran variedad de animales. Existe en una variedad de formas conocidas en la técnica, y los ejemplos no limitativos incluyen hidroxiapatita (hidroxiapatita, Ca.sub.10(PO.sub.4).sub.6(OH).sub.2, Ca/P=1,67), fosfato de tricalcio (TCP, Ca.sub.3(PO.sub.4).sub.2, Ca/P=1,5) y brushita (CaHPO.sub.4.2H.sub.20, Ca/P=1. La hidroxiapatita presenta características similares a la matriz mineralizada del hueso natural, y es biocompatible. Los ejemplos no limitativos de compuestos de compuestos de rompuestos de calcio tetrahidratado, nitrato de calcio y cloruro de calcio. Los ejemplos no limitativos de compuestos de

fósforo incluyen trietilfosfato, fosfato de sodio y fosfato de amonio dibásico. A un experto habitual en la materia le resultarán familiares la amplia variedad de fosfatos de calcio conocidos en la técnica, y las fuentes de tales compuestos.

- Hay varios procedimientos notificados para la síntesis de hidroxiapatita. Los procedimientos incluyen precipitación coloidal acuosa, sol-gel, procedimientos mecanoquímicos y de estado sólido. Puede encontrarse información referente a complejos de fosfato de calcio estabilizados en la publicación de solicitud de patente US n.º 20080075675. Puede encontrarse información adicional referente a la síntesis de hidroxiapatita en la publicación de solicitud de patente US 20080095820 y la patente US 6.171.610.
 - Este procedimiento incluye hacer reaccionar calcio y un fosfato iónico no ácido, tal como fosfato de trisodio, en presencia de iones hidroxilo. Las patentes US n.º 5.258.044, 5.306.305, 5.543.019, 5.650.176, 5.676.976, 5.683.461, 5.783.217, 5.843.289, 6.027.742, 6.033.582, 6.117.456, 6.132.463 y 6.214.368 dan a conocer procedimientos de síntesis de partículas de fosfato de calcio y una variedad de usos biomédicos.
- Los soportes de la presente invención pueden incluir cualquier componente conocido por los expertos habituales en la materia que sea adecuado para su inclusión en un soporte biomédico. Otros ejemplos no limitativos de tales componentes incluyen poli(metacrilato de metilo) (PMMA), compuestos de sulfato de calcio, compuestos de aluminato de calcio, compuestos de silicato de aluminio, materiales biocerámicos o polímeros. Los ejemplos del material biocerámico incluyen óxido a base de fosfato de calcio, tal como apatita, BIOGLASS.TM., óxido de vidrio, titania, zirconia y alúmina. Otros materiales adecuados incluyen alginato, quitosano, coral, agarosa, fibrina, colágeno, hueso, silicona, cartílago, aragonita, dahlita, calcita, carbonato de calcio amorfo, vaterita, weddelita, whewelita, estruvita, urato, ferrihidrita, francolita, monohidrocalcita, magnetita, goetita, dentina, carbonato de calcio, sulfato de calcio, fosfosilicato de calcio, fosfato de sodio, aluminato de calcio, fosfato de tricalcio a, fosfato de dicalcio a, fosfato de tricalcio sustituido con magnesio, carbonato de hidroxiapatita, y combinaciones y derivados de los mismos. Los ejemplos de compuestos de silicio incluyen tetraetilortosilicato, 3-mercaptopropiltrimetoxisilano y 5,6-epoxihexiltrietoxisilano.

15

- Los soportes de la presente invención pueden incluir opcionalmente cualquier número de aditivos adicionales. En algunas formas de realización, se añaden aditivos a una parte del soporte. Por ejemplo, un soporte puede incluir aditivos en la cubierta cortical pero no en el núcleo trabecular interno, o viceversa. En algunas formas de realización, hay aditivos en tanto la cubierta cortical como el núcleo trabecular. Los ejemplos no limitativos de aditivos incluyen medios de radiocontraste para ayudar en la visualización del soporte con equipo de obtención de imágenes. Los ejemplos de materiales de radiocontraste incluyen sulfato de bario, tungsteno, tantalio o titanio. Pueden añadirse aditivos que incluyen materiales osteoinductores para promover el crecimiento óseo en el material de aumento óseo endurecido. Los materiales osteoinductores adecuados pueden incluir proteínas de la superfamilia de factor de crecimiento transformante (TGF) beta, proteínas morfogénicas óseas, tales como BMP2 o BMP7.
- 40 En formas de realización preferidas de la presente invención los soportes expuestos en la presente memoria son biocompatibles. El término "biocompatible" pretende describir cualquier material que tras su implantación no provoca una respuesta periudicial sustancial *in vivo*.
- En formas de realización particulares de la presente invención, el soporte es biodegradable, bioerosionable o reabsorbible, a menos que se desee una matriz permanente. Los términos "biodegradable", "bioerosionable" y "reabsorbible" se utilizan en la presente memoria de manera intercambiable. Cuando se utilizan para caracterizar materiales, se refieren a materiales que se degradan en las condiciones fisiológicas para formar un producto que puede metabolizarse o excretarse sin daño al sujeto. En determinadas formas de realización, el producto se metaboliza o se excreta sin daño permanente al sujeto. Los materiales biodegradables pueden ser degradables hidrolíticamente, pueden requerir acción enzimática y/o celular para degradarse completamente, o ambos. Otros mecanismos de degradación, por ejemplo, degradación térmica debida al calor corporal también se prevén. Los materiales biodegradables también incluyen materiales que se descomponen dentro de las células. La degradación puede producirse mediante hidrólisis, procesos enzimáticos, fagocitosis u otros procesos.
- Pueden utilizarse polímeros o bien naturales o bien sintéticos para formar la matriz del soporte. Las patentes US n. os 6.171.610, 6.309.635 y 6.348.069 dan a conocer una variedad de matrices para su utilización en ingeniería de telidos.
- En algunas formas de realización que incluyen una corteza externa y un núcleo interno, sólo la corteza externa es biodegradable. En formas de realización adicionales, sólo el núcleo interno es biodegradable. Los ejemplos no limitativos de polímeros sintéticos adecuados para su inclusión en los soportes de la presente invención incluyen fibrina, colágeno, glucosaminoglucanos (GAG), tales como quitina, quitosano y ácido hialurónico, polisacáridos, tales como almidón, carragenanos, alginato, heparina, glucógeno y celulosa, polilactida (PLA), polilactida-co-glicolida (PLGA), poli(ácido glicólico) (PGA), poliuretanos, policaprolactona, poli(metacrilato de metilo) (PMMA), poliaminoácidos, tales como poli-L-lisina, polietilenimina, polianhídridos, polipropileno-fumarato, policarbonatos, poliamidas, polianhídridos, poliortoésteres, poliacetales, policianoacrilatos y poliuretanos degradables.

Los polímeros no erosionables útiles incluyen, sin limitación, poliacrilatos, polímeros de etileno-acetato de vinilo y otros acetatos de celulosa sustituidos con acilo y derivados de los mismos, poliuretanos no erosionables, poliestirenos, poli(cloruro de vinilo), poli(fluoruro de vinilo), poli(vinilimidazol), poliolefinas clorosulfonadas, poli(óxido de etileno), poli(alcohol vinílico), TEFLON.TM., nailon, acero inoxidable, cobalto-cromo, titanio y aleaciones de titanio, y partículas cerámicas bioinertes (por ejemplo, partículas de alúmina y zirconia), polietileno, poli(acetato de vinilo), poli(metacrilato de metilo), silicona, poli(óxido de etileno), polietilenglicol, poliuretanos y biopolímeros naturales (por ejemplo, partículas de celulosa, quitina, queratina, seda y partículas de colágeno), y polímeros y copolímeros fluorados (por ejemplo, poli(fluoruro de vinilideno)).

10

En algunas formas de realización, el soporte se recubre con compuestos para facilitar la unión de células al soporte. Los ejemplos de tales compuestos incluyen componentes de la membrana basal, agar, agarosa, gelatina, goma arábiga, colágenos tipos I, II, III, IV y V, fibronectina, laminina, glucosaminoglucanos, poli(alcohol vinílico), y mezclas de los mismos.

15

20

25

30

En algunas formas de realización, se incorporan células de mamífero en los soportes. Puede encontrarse información referente a la incorporación de células de mamífero en la solicitud de patente US 20080085292. Por ejemplo, pueden sembrarse o cultivarse células de mamífero con los soportes de la presente invención antes de su implantación en un sujeto. Los ejemplos de tales células incluyen, pero no se limitan a, células de médula ósea, células de músculo liso, células estromales, células madre, células madre mesenquimatosas, células madre derivadas del sinovio, células madre embrionarias, células de sangre de cordón umbilical, células de gelatina de Wharton umbilicales, células de vasos sanguíneos, condrocitos, osteoblastos, osteoclastos, células precursoras derivadas de tejido adiposo, células progenitoras derivadas de médula ósea, células de riñón, células intestinales, islotes, células beta, células progenitoras del conducto pancreático, células de Sertoli, células progenitoras de sangre periférica, fibroblastos, células del glomo, queratinocitos, células del núcleo pulposo, células del anillo fibroso, fibrocondrocitos, células madre aisladas de tejido adulto, células ovales, células madre neuronales, células gliales, macrófagos y células transformadas genéticamente o una combinación de las células anteriores. Las células pueden sembrarse sobre los soportes durante un corto periodo de tiempo justo antes de su implantación (tal como una hora, seis horas, 24 horas), o cultivarse durante periodos de tiempo más largos (tal como 2 días, 3 días, 5 días, 1 semana, 2 semanas) para promover la proliferación y unión celulares dentro del soporte antes de su implantación.

B. Fabricación de soportes

1. Formación de poros y microcanales

35

40

La formación de poros y microcanales en los soportes expuestos en la presente memoria puede lograrse utilizando cualquier procedimiento conocido por los expertos habituales en la materia. En algunas formas de realización, tal como se comenta en la sección de ejemplos más adelante, se crean microporos y microcanales en un soporte utilizando una plantilla, tal como una esponja. Entonces se aplica una composición, tal como un fosfato de calcio, a la plantilla. Por ejemplo, en algunas formas de realización el procedimiento incluye (a) poner en contacto una esponja de polímero poroso con una composición que incluye un material adecuado para la formación del soporte, en el que al menos una parte de la esponja se recubre con la composición; y (b) secar la esponja recubierta con la composición, en el que se forma un soporte óseo. En algunas formas de realización, la esponja se consume del soporte.

45

50

Otros procedimientos de creación de microporos o microcanales que pueden aplicarse en el contexto de la presente invención incluyen, pero no se limitan a, procedimientos de lixiviación, procesamiento por formación de espuma con gas, procesamiento con dióxido de carbono supercrítico, sinterización, transformación de fases, liofilización, reticulación, moldeo, fusión de porógenos, polimerización, soplado en estado fundido y fusión de sales (revisado en Murphy et al., 2002; Karageorgiou et al., 2005). La porosidad puede ser una característica de la composición durante la fabricación o antes de la implantación, o la porosidad puede estar disponible sólo tras la implantación. Puede encontrarse información adicional referente a la formación de poros en un soporte en la publicación de solicitud de patente US n.º 20080069852. En algunas formas de realización, se perforan microcanales y/o canales más grandes en el soporte tras el moldeo.

55

60

65

La presente invención también contempla aplicaciones utilizando porógenos para crear poros latentes en un material compuesto. Estos poros latentes pueden surgir de la inclusión de porógenos en el material compuesto. El porógeno puede ser cualquier compuesto químico que reservará un espacio dentro del material compuesto mientras que el material compuesto está moldeándose y difundirá, se disolverá y/o se degradará antes o después de su implantación dejando un poro en el material compuesto. Los porógenos pueden ser de cualquier conformación o tamaño, tales como esferoidales, cúbicos, rectangulares, alargados, tubulares, fibrosos, conformación de disco, conformación de placa o poligonales. En determinadas formas de realización, el porógeno es granular. El porógeno puede ser un gas, líquido o sólido. Los gases a modo de ejemplo que pueden actuar como porógenos incluyen dióxido de carbono, nitrógeno, argón o aire. Los líquidos a modo de ejemplo incluyen agua, disolventes orgánicos o fluidos biológicos (tales como sangre, linfa, plasma). Los ejemplos de posibles porógenos sólidos incluyen

compuestos solubles en agua tales como hidratos de carbono (por ejemplo, sorbitol, dextrano, poli(dextrosa), almidón), sales, alcoholes de azúcar, polímeros naturales, polímeros sintéticos y moléculas pequeñas.

Puede encontrarse información adicional referente a la incorporación de poros en un material en la publicación de solicitud de patente US n.º 20080103227.

2. Conformación

5

10

15

20

25

30

35

45

50

55

60

65

Los soportes expuestos en la presente memoria pueden formarse para dar una conformación deseada utilizando cualquier procedimiento conocido por los expertos habituales en la materia. Por ejemplo, el soporte puede moldearse para dar una conformación deseada o fracturarse para dar gránulos. Los gránulos conservan los microporos y/o microcanales esenciales. El soporte puede configurarse por el cirujano antes de su implantación o en el momento de su implantación para dar una conformación deseada, tal como un soporte hecho a la medida curvado para ajustarse a la conformación, estructura anatómica y tamaño de una tibia tal como se muestra en la figura 16. En algunas formas de realización, se fractura un soporte de la presente invención para dar gránulos que a su vez pueden empaquetarse en un defecto óseo por el cirujano. Los gránulos pueden ser de un tamaño uniforme, o tamaños variables.

3. Formación de la corteza y los recubrimientos

Determinadas formas de realización de los presentes soportes incluyen un recubrimiento o corteza externa. La formación de un recubrimiento o corteza externa sobre un componente de núcleo puede realizarse utilizando cualquier procedimiento conocido por los expertos habituales en la materia. Tal como se comenta en los ejemplos a continuación, puede aplicarse una plantilla (tal como una esponja) en la formación de una corteza externa sobre un soporte. La publicación de solicitud de patente US n.º 20080097618 proporciona información referente a la deposición de recubrimientos de fosfato de calcio sobre superficies. En algunas formas de realización, la formación de un recubrimiento implica bañar o sumergir un soporte en una composición o un procedimiento de deposición por pulverización de plasma. Puede encontrarse información concerniente a técnicas de inmersión en las patentes US n.ºs 6.143.948, 6.136.369 y 6.344.061.

C. Aplicaciones terapéuticas

Por consiguiente, los procedimientos y soportes de la presente invención también pueden utilizarse para tratar, o prevenir, una enfermedad ósea, trastorno óseo o lesión ósea (por ejemplo, una fractura ósea). "Tratamiento" y "tratar" tal como se utilizan en la presente memoria se refieren a la administración o aplicación de un agente terapéutico a un sujeto o la realización de un procedimiento o modalidad sobre un sujeto para el fin de obtener un beneficio terapéutico de una enfermedad o estado relacionado con la salud.

El término "beneficio terapéutico" o "terapéuticamente eficaz" tal como se utiliza a lo largo de toda esta solicitud se refiere a cualquier cosa que promueva o potencie el bienestar del sujeto con respecto al tratamiento médico de un estado. Esto incluye, pero no se limita a, una reducción en la frecuencia o gravedad de los signos o síntomas de una enfermedad.

"Prevención" y "prevenir" se utilizan según su significado habitual y sencillo queriendo decir "actuar antes" o un acto de este tipo. En el contexto de una enfermedad particular o estado relacionado con la salud, esos términos se refieren a la administración o aplicación de un agente, fármaco o remedio a un sujeto o a la realización de un procedimiento o modalidad sobre un sujeto para el fin de bloquear la aparición de una enfermedad o estado relacionado con la salud. Por ejemplo, puede utilizarse un soporte de la presente invención para prevenir una enfermedad ósea en un sujeto. Los soportes de la presente invención pueden utilizarse, en determinadas formas de realización, como implante para lograr un beneficio terapéutico. En formas de realización particulares, los implantes se utilizan para el aumento óseo, tal como en defectos grandes. En determinadas formas de realización, los soportes de la presente invención están conformados para duplicar el hueso perdido por un sujeto, tal como un sujeto que ha perdido materia ósea debido a, por ejemplo, un accidente, una guerra, un disparo o cirugía. Los soportes conformados con esta materia pueden implantarse, por ejemplo, en el sujeto de manera que el cuerpo puede regenerar los tejidos óseos para reemplazar la materia perdida.

Pueden añadirse agentes terapéuticos a los soportes o incorporarse en los soportes de la presente invención utilizando cualquier procedimiento conocido por los expertos habituales en la materia. Un "agente terapéutico" tal como se utiliza en la presente memoria se refiere a cualquier agente que puede aplicarse en el diagnóstico, el tratamiento o la prevención de una enfermedad o estado relacionado con la salud en un sujeto. Los agentes terapéuticos incluyen biomoléculas. El término "biomoléculas", tal como se utiliza en la presente memoria, se refiere a la clase de moléculas (por ejemplo, proteínas, aminoácidos, péptidos, polinucleótidos, nucleótidos, hidratos de carbono, azúcares, lípidos, glicoproteínas, nucleoproteínas, lipoproteínas, esteroides, etc.) que se encuentran comúnmente en células o tejidos, ya se produzcan las propias moléculas de manera natural o se creen artificialmente (por ejemplo, mediante procedimientos sintéticos o recombinantes). Por ejemplo, las biomoléculas incluyen, pero no se limitan a, enzimas, receptores, neurotransmisores, hormonas, citocinas, modificadores de la

respuesta celular tales como factores de crecimiento y factores quimiotácticos, anticuerpos, vacunas, haptenos, toxinas, interferones, ribozimas, agentes antisentido, plásmidos, ADN y ARN.

Por tanto, el agente terapéutico puede ser cualquier agente conocido por los expertos habituales en la materia. Pueden recubrirse uno o más agentes terapéuticos sobre la superficie del soporte, incorporarse en la matriz, incorporarse en microesferas que se suspenden y se distribuyen en la matriz, o el soporte puede sumergirse en una composición que comprende uno o más agentes antes de su implantación en un sujeto.

5

10

15

20

25

35

40

45

50

55

60

65

Los ejemplos de clases de agentes terapéuticos incluyen agentes osteogénicos, osteoinductores y osteoconductores, sustancias anticancerígenas, antibióticos, agentes antiinflamatorios, inmunosupresores, agentes (incluyendo agentes anti-VIH), inhibidores enzimáticos, neurotoxinas, opioides, antihistamínicos, lubricantes, tranquilizantes, anticonvulsivos, relajantes musculares, agentes antiparkinsonianos, antiespasmódicos, antibióticos, agentes antivirales, agentes antifúngicos, moduladores de las interacciones célulamatriz extracelular incluyendo inhibidores del crecimiento celular y moléculas anti-adhesión, agentes vasodilatadores, inhibidores de la síntesis de ADN, ARN o proteínas, antihipertensores, analgésicos, antipiréticos, agentes antiinflamatorios esteroideos y no esteroideos, factores antiangiogénicos, factores angiogénicos, factores antisecretores, agentes anticoagulantes y/o antitrombóticos, anestésicos locales, prostaglandinas, agentes de direccionamiento, factores quimiotácticos, receptores, neurotransmisores, proteínas, modificadores de la respuesta celular, células, péptidos, polinucleótidos, virus, vacunas, aminoácido, péptido, proteína, glicoproteína, lipoproteína, anticuerpo, compuesto esteroideo, antibiótico, antimicótico, citocina, vitamina, hidrato de carbono, lípido, matriz extracelular, componente de la matriz extracelular, agente quimioterápico, agente citotóxico, factor de crecimiento, agente anti-rechazo, analgésico, agente antiinflamatorio, vector viral, cofactor de la síntesis de proteínas, hormona, tejido endocrino, sintetizador, enzima, agente de soporte de polímero-célula con células parenquimatosas, fármaco angiogénico, estructura reticular de colágeno, agente antigénico, agente de citoesqueleto, células madre mesenquimatosas, digestor de hueso, agente antitumoral, atrayente celular, fibronectina, agente de unión celular a hormona de crecimiento, inmunosupresor, ácido nucleico, agente tensioactivo, hidroxiapatita, y potenciador de la penetración, agentes antiinflamatorios, factores de crecimiento, factores angiogénicos, antibióticos, analgésicos, factores quimiotácticos, proteína morfogénica ósea y citocinas.

30 En formas de realización particulares el agente terapéutico es un agente que promueve la cicatrización de heridas o previene la infección. Los ejemplos no limitativos de tales agentes incluyen antibióticos, fármacos antiinflamatorios o analgésicos.

Los ejemplos no limitativos de agentes terapéuticos incluyen proteínas no colagenosas tales como osteopontina, osteonectina, sialoproteínas óseas, fibronectina, laminina, fibrinógeno, vitronectina, trombospondina, proteoglicanos, decorina, proteoglicanos, beta-glicano, biglicano, agrecano, veriscano, tenascina, hialuronano de la proteína gla de la matriz, células; aminoácidos; péptidos; elementos inorgánicos; compuestos inorgánicos; compuestos organometálicos; cofactores para la síntesis de proteínas; cofactores para enzimas; vitaminas; hormonas; componentes solubles e insolubles del sistema inmunitario; receptores solubles e insolubles incluyendo formas truncadas; ligandos solubles, insolubles y unidos a la superficie celular incluyendo formas truncadas; quimiocinas, interleucinas; antígenos; compuestos bioactivos que experimentan endocitosis; tejido o fragmentos de tejido; tejido endocrino; enzimas tales como colagenasa, peptidasas, oxidasas, etc.; soportes celulares poliméricos con células parenquimatosas; fármacos angiogénicos, portadores poliméricos que contienen agentes bioactivos; agentes bioactivos encapsulados; agentes bioactivos en forma de liberación temporal; estructuras reticulares de colágeno, agentes antigénicos; agentes del citoesqueleto; fragmentos de cartílago; células vivas tales como condrocitos, osteoblastos, osteoclastos, fibroclastos, células de médula ósea, células madre mesenquimatosas, etc.; trasplantes de tejido; bioadhesivos; proteínas morfogénicas óseas (BMP), factores de crecimiento transformantes (TGF-beta), factor de crecimiento similar a la insulina, factor de crecimiento derivado de las plaquetas (PDGF); factores de crecimiento de fibroblastos (FGF), factores de crecimiento endoteliales vasculares (VEGF), factor de crecimiento epidérmico (EGF), proteínas de unión a factor de crecimiento, por ejemplo, factores de crecimiento similares a la insulina; agentes angiogénicos; promotores óseos; citocinas; interleucinas; material genético; genes que codifican para una acción de promoción ósea; células que contienen genes que codifican para una acción de promoción ósea; células alteradas genéticamente por la mano del hombre; células de xenoinjerto o autoinjerto expandidas externamente; hormonas de crecimiento tales como somatotropina; digestores de hueso; agentes antitumorales; fibronectina; atrayentes celulares y agentes de unión; inmunosupresores; inhibidores y estimuladores de la resorción ósea; factores mitógenos; factores bioactivos que inhiben y estimulan moléculas de segundos mensajeros; moléculas de adhesión celular, por ejemplo, moléculas de adhesión célula-matriz y célula-célula; mensajeros secundarios; anticuerpos monoclonales específicos frente a determinantes de la superficie celular sobre células madre mesenquimatosas; partes de anticuerpos monoclonales específicos frente a determinantes de la superficie celular sobre células madre mesenquimatosas; partes de anticuerpos monoclonales específicos frente a determinantes de la superficie celular sobre células madre mesenquimatosas; factores de coagulación; polinucleótidos; y combinaciones de los mismos.

La cantidad de agente terapéutico incluida en el soporte puede variar ampliamente y dependerá de factores tales como el agente que está suministrándose, el sitio de administración, el estado fisiológico del paciente, etc. Los niveles óptimos se determinarán en un caso específico basándose en la utilización prevista del implante.

En algunas formas de realización, se incorpora un ácido nucleico terapéutico en el soporte. Puede encontrarse información referente a la incorporación de un ácido nucleico terapéutico en los soportes en la publicación de solicitud de patente US n.º 20080095820. Por tanto, los soportes expuestos en la presente memoria pueden aplicarse como vehículos de suministro génico.

Los soportes de la presente invención pueden utilizarse en muchas aplicaciones. Los ejemplos no limitativos de tales aplicaciones incluyen la reparación de defectos o degeneración de hueso, cartílago, tendones y ligamentos. Los soportes expuestos en la presente memoria pueden presentar aplicación terapéutica en otros órganos del cuerpo también.

Los soportes de la presente invención pueden presentar cualquier conformación deseada, y la selección de tal conformación dependerá en gran medida de la aplicación del soporte. Los ejemplos no limitativos de tales conformaciones incluyen cilíndrica, de bloque, de bocado, de cuña y de lámina.

En formas de realización particulares el soporte presentará una conformación cilíndrica para su aplicación en la reparación de defectos óseos de huesos largos. En algunas formas de realización, el soporte está configurado para la reparación de una fractura sencilla, fractura compuesta o falta de unión; como dispositivo de fijación externo o dispositivo de fijación interno; para la reconstrucción de articulaciones, artrodesis, artroplastia o astroplastia de copa de la cadera; para el reemplazo de la cabeza humeral o femoral; para el reemplazo de la superficie de la cabeza femoral o el reemplazo total de la articulación; para la reparación de la columna vertebral, fusión espinal o fijación vertebral interna; para cirugía tumoral; para un déficit de llenado; para discectomía; para laminectomía; para la extirpación de tumores espinales; para una operación torácica o cervical anterior; para las reparaciones de una lesión espinal; para el tratamiento de escoliosis, lordosis o cifosis; para la fijación intermaxilar de una fractura; para mentoplastia; para el reemplazo de la articulación temporomandibular; para el aumento y la reconstrucción del borde alveolar; como osteoimplante de incrustación; para la colocación y revisión de un implante; para la elevación de los senos; para un procedimiento cosmético; y para la reparación o el reemplazo de los huesos etmoides, frontal, nasal, occipital, parietal, temporal, mandibular, maxilar, cigomático, vértebras cervicales, vértebras torácicas, vértebras lumbares, sacro, costilla, esternón, clavícula, escápula, húmero, radio, cúbito, huesos carpianos, huesos metacarpianos, falanges, ilíaco, isquión, pubis, fémur, tibia, peroné, rótula, calcáneo, huesos tarsianos o metatarsianos.

Algunos aspectos de la presente invención se refieren a procedimientos de tratamiento de un sujeto que implican implantar un soporte de la presente invención en el sujeto. En formas de realización particulares el sujeto es un vertebrado, tal como un mamífero, reptil, pez, ave, etc. En formas de realización particulares el mamífero es un ser humano. El sujeto puede padecer una fractura ósea o un defecto óseo. El sujeto puede presentar un defecto óseo debido a un traumatismo, una anomalía congénita, una anomalía genética, una fractura, un defecto iatrogénico, un cáncer de huesos, una metástasis ósea, una enfermedad inflamatoria, una enfermedad autoinmunitaria, una enfermedad metabólica o una enfermedad ósea degenerativa.

Otros ejemplos de enfermedades o trastornos óseos incluyen defectos iatrogénicos, cáncer de huesos, metástasis óseas, enfermedades inflamatorias (tales como artritis reumatoide), enfermedades autoinmunitarias, enfermedades metabólicas, y enfermedad ósea degenerativa tal como osteoartritis y osteoporosis. El soporte puede fabricarse para la reparación de una fractura sencilla, fractura compuesta o falta de unión; como dispositivo de fijación externo o dispositivo de fijación interno; para la reconstrucción de articulaciones, artrodesis, artroplastia o astroplastia de copa de la cadera; para la reparación o el reemplazo de la cabeza o el eje humeral o femoral; para el reemplazo de la superficie de la cabeza femoral o el reemplazo total de la articulación; para la reparación de la columna vertebral, fusión espinal o fijación vertebral interna; para discectomía; para laminectomía; para la extirpación de tumores espinales; para las reparaciones de una lesión espinal; para el tratamiento de escoliosis, lordosis o cifosis; para la reparación o el reemplazo de los huesos etmoides, frontal, nasal, occipital, parietal, temporal, mandibular, maxilar, cigomático, vértebras cervicales, vértebras torácicas, vértebras lumbares, sacro, costilla, esternón, clavícula, escápula, húmero, radio, cúbito, huesos carpianos, huesos metacarpianos, falanges, ilíaco, isquión, pubis, fémur, tibia, peroné, rótula, calcáneo, huesos tarsianos o metatarsianos.

55 D. Kits

5

10

15

20

25

30

35

40

45

50

60

65

El soporte de la presente invención puede proporcionarse en forma de un kit. El soporte puede envasarse de manera estéril. En algunas formas de realización el kit incluye más de un soporte de la presente invención. El kit puede incluir instrucciones para implantar el soporte incluido en el kit. Puede incluir además uno o más agentes terapéuticos que pueden administrarse simultánea o consecutivamente con la implantación del soporte. Los agentes terapéuticos incluyen cualquiera de tales agentes conocidos por los expertos habituales en la materia, tales como cualquiera de los agentes comentados anteriormente. En algunas formas de realización, el kit incluye hardware para la colocación del soporte en el sujeto, o un dispositivo para conformar adicionalmente el soporte para dar una configuración deseada. En algunas formas de realización, el kit incluye un dispositivo para envasar gránulos en un defecto óseo.

E. Terapia de combinación

Algunas formas de realización de los procedimientos de tratamiento utilizando los soportes de la presente invención contemplan administrar una o más formas secundarias de terapia al sujeto. Por ejemplo, un procedimiento de tratamiento de una fractura ósea que implica la implantación de uno de los soportes de la presente invención tal como se expone en la presente memoria puede implicar la administración de una o más formas secundarias de terapia (por ejemplo, administración de un agente antimicrobiano o administración de un agente antimiflamatorio).

La forma secundaria de terapia puede ser cualquier tipo de terapia secundaria para el tratamiento o la prevención de una enfermedad o un trastorno. En formas de realización particulares, la forma secundaria de terapia implica la administración de una o más terapias farmacológicas adicionales utilizando procedimientos de administración convencionales. La terapia puede implicar la administración de cualquier agente farmacológico, ejemplos de los cuales se han expuesto en otra parte en esta memoria descriptiva. Por ejemplo, la administración puede ser administración oral o administración intravenosa. Otro ejemplo de terapia secundaria es terapia quirúrgica.

La administración de las composiciones de la presente invención a un paciente seguirá protocolos generales para la administración de una terapia con agentes terapéuticos, teniendo en cuenta la toxicidad, si existe alguna, de estos agentes. Se espera que el tratamiento pueda repetirse según sea necesario.

20 F. Ejemplos

25

30

50

55

60

5

Los siguientes ejemplos se incluyen para demostrar formas de realización preferidas de la invención. Los expertos en la materia deben apreciar que las técnicas dadas a conocer en los ejemplos que siguen representan técnicas descubiertas por el inventor que funcionan bien en la práctica de la invención, y por tanto puede considerarse que constituyen modos preferidos para su práctica. Sin embargo, los expertos en la materia deben apreciar, en vista de la presente descripción, que pueden hacerse muchos cambios en las formas de realización específicas que se dan a conocer y obtener todavía un resultado parecido o similar sin apartarse del espíritu y alcance de la invención.

Ejemplo 1

Procedimiento para la fabricación del soporte de fosfato de calcio poroso

1.1 Preparación de la plantilla de esponja polímérica

Selección del material de la plantilla: Se utiliza una plantilla de esponja de poliuretano (PU) para producir soportes de fosfato de calcio porosos interconectados uniformes. Se utiliza esta esponja para proporcionar la estructura primaria para la formación de los sostenes del soporte así como la formación de microcanales secundarios dentro de los sostenes del soporte. La plantilla de esponja de poliuretano elegida puede oscilar entre 45 poros por pulgada (ppp) y 80 ppp (17,7-31,5 poros por cm) para el núcleo trabecular interno, dependiendo del tamaño de poro deseado final.
 Los tamaños de poro en el núcleo trabecular interno pueden oscilar entre 150 μm y 800 μm tras la sinterización para permitir la migración de células óseas, la vascularización de vasos sanguíneos y el suministro de nutrientes. Adicionalmente, puede elegirse la plantilla de esponja de poliuretano de 80 ppp a 100 ppp (31,5-39,4 poros por cm) o material cerámico de fosfato de calcio sólido (con canales y/o poros producidos mediante colada en barbotina) para la cubierta cortical externa, dependiendo del tamaño de poro deseado final. Los poros y/o canal u orificios para la cubierta cortical externa pueden estar en el intervalo de aproximadamente 50 μm a aproximadamente 250 μm tras la sinterización, dependiendo del lugar de aplicación deseado.

Preparación de la esponja de plantilla: La esponja de poliuretano se utiliza como plantilla y se corta en primer lugar a la dimensión y conformación deseadas. Entonces se trata el poliuretano cortado con ultrasonidos en disolución de hidróxido de sodio (NaOH) a del 10% al 15% durante de 20 a 30 minutos, seguido por limpieza en agua corriente durante de 30 a 60 minutos. Entonces se aclara el poliuretano tratado con agua destilada. Durante la limpieza con agua y el aclarado con agua destilada, se exprime el poliuretano y entonces se deja que se expanda durante de 5 a 10 veces con el fin de eliminar el NaOH residual dentro de la plantilla de esponja de poliuretano. Entonces se limpia de nuevo la plantilla de esponja de poliuretano con ultrasonidos en agua destilada durante de 20 a 30 minutos. Esto va seguido por la acción de exprimir la esponja de plantilla con papel absorbente con el fin de eliminar el agua en exceso. Entonces se coloca la esponja de plantilla en un horno a de 60°C a 80°C hasta secar completamente. La plantilla de esponja completamente secada para el núcleo trabecular interno se ajusta entonces perfectamente en la plantilla de esponja externa para la cubierta cortical o cubierta externa sólida (con canales y/u orificios dependiendo de la estructura y la aplicación finales deseadas). En este punto, tal como se muestra en la figura 2, la plantilla de esponja es ahora una pieza (cubierta cortical externa y núcleo trabecular interno) y está lista para el recubrimiento con fosfato de calcio.

1.2 Preparación de suspensión espesa de fosfato de calcio de recubrimiento de 1ª vez

65 Con el fin de producir un soporte poroso interconector tridimensional bien conformado, se añade un aglutinante preferido a la dispersión. Los aglutinantes utilizados pueden ser carboximetilcelulosa, poli(alcohol vinílico), almidón,

silicato de sodio, polivinilbutiral, emulsión de metacrilato, poliacrilato soluble en agua, poli(ácido acrílico, polietilenglicol, etc. Con el fin de evitar la aglomeración de la suspensión espesa y el agrietamiento del soporte durante el secado, se añade un dispersante y agente de secado a la dispersión. Los aglutinantes preferidos son poli(alcohol vinílico), carboximetilcelulosa y silicato de sodio. En esta invención, se utilizarán poli(acrilato de amonio) y N,N-dimetilformamida como dispersante y agente de secado, respectivamente. La cantidad preferida de poli(alcohol vinílico), carboximetilcelulosa, silicato de sodio y emulsión de metacrilato añadida es del 2% al 4% en masa, del 2% al 4% en masa, del 1% al 2% en masa y el 1% - 2% en masa, respectivamente (basándose en el 100% en masa de polvo de fosfato de calcio).

10 El poli(alcohol vinílico) se añade a agua destilada, se calienta y se agita hasta que el poli(alcohol vinílico) se disuelve completamente. La disolución debe ser transparente tras la disolución completa del poli(alcohol vinílico). A medida que la disolución se enfría hasta temperatura ambiente, se añade carboximetilcelulosa. Tras la disolución completa de la carboximetilcelulosa, se añaden disolución de silicato de sodio y emulsión de metacrilato a la mezcla y se agitan. Se añaden adicionalmente del 5% al 7% en masa de dispersante de poli(acrilato de amonio) y del 3% al 5% 15 en masa de agente de secado N,N-dimetilformamida a la mezcla y se agitan de manera continua. Entonces se añaden lentamente los polvos de fosfato de calcio dispersados en la disolución, seguido por agitación. En esta invención, polvo de fosfato de calcio es genérico y se refiere a todas las diferentes fases del grupo de fosfato de calcio, incluyendo hidroxiapatita, fosfato de tricalcio, fosfato de calcio amorfo, fosfato de monocalcio, fosfato de dicalcio, fosfato de octacalcio, fosfato de tetracalcio, fluoroapatita, apatita carbonatada y las diferentes mezclas de las diferentes fases. Utilizando calentamiento lento de manera continua, la disolución se agita lentamiente con el fin 20 de evaporar el contenido en agua y hasta que se obtiene una razón de polvo/líquido de 1,20 a 1,50. Entonces se deja que la suspensión espesa se enfríe hasta la temperatura ambiente antes de utilizarse para recubrir.

1.3 Recubrimiento, secado y sinterización de fosfato de calcio de primera vez

25

30

35

40

45

50

55

60

Se sumerge entonces la plantilla de esponja de una pieza tratada que contiene la cubierta cortical externa y el núcleo trabecular interno (de la sección 1.1) en la suspensión espesa de fosfato de calcio hasta que la suspensión espesa de fosfato de calcio se absorbe completamente en el soporte de plantilla de esponja. Entonces se hace rodar el poliuretano sobre una placa de vidrio con una varilla y se permite que se expanda durante de 5 a 10 veces con el fin de eliminar la suspensión espesa en exceso. Tras eliminar la suspensión espesa en exceso, algunos de los poros pueden obstruirse con la suspensión espesa debido a la alta viscosidad de la suspensión espesa. Con el fin de garantizar interconectividad, uniformidad y poros abiertos, los soportes se soplan ligeramente con aire. En este procedimiento, se prefiere que la plantilla se recubra homogéneamente en el interior y el exterior de la plantilla de esponja. Si no se logra este recubrimiento homogéneo, el soporte de plantilla de esponja recubierto con fosfato de calcio se colapsará tras la sinterización o se fracturará durante la manipulación. Adicionalmente, se prefiere el recubrimiento homogéneo para la producción satisfactoria de los microcanales secundarios dentro de los sostenes principales del soporte.

Basándose en el análisis térmico de la plantilla de esponja de poliuretano y los polvos de tamaño nanométrico, los soportes de plantilla de esponja recubiertos con fosfato de calcio se secan a de 25°C a 35°C y en un entorno con una humedad del 60% - 80%. El tiempo de secado oscilará entre 12 y 72 horas, dependiendo del tamaño de los soportes de plantilla de esponja. Tras secar, el soporte de plantilla de esponja recubierto con fosfato de calcio normalmente se contrae de aproximadamente un 8% a un 10%. Tras secarse completamente las esponjas, se colocan entonces las esponjas recubiertas sobre una placa de alúmina, colocada en un horno de alta temperatura y se sinterizan durante de 2 a 5 horas a de 1200°C a 1250°C utilizando un perfil de sinterización de 8 etapas mostrado en la figura 3. La sinterización contraerá adicionalmente los soportes de plantilla de esponja recubiertos con fosfato de calcio en un 22% - 25%.

1.4 Preparación de suspensión de fosfato de calcio de recubrimiento de segunda vez

El recubrimiento de segunda vez se realiza para rellenar los defectos de recubrimiento del recubrimiento de primera vez realizado en la sección 1.3. Este recubrimiento de segunda vez mejorará la resistencia a la compresión del soporte y garantizará un sostén más redondeado para potenciar la unión celular. Con el fin de preparar la suspensión de fosfato de calcio de recubrimiento de segunda vez, se utilizan diferentes cantidades de los mismos aglutinantes y agentes químicos utilizados en la preparación de la suspensión espesa de fosfato de calcio de recubrimiento de primera vez (sección 1.2). Sin embargo, las concentraciones de los aglutinantes y agentes químicos utilizados son diferentes de la preparación de la suspensión espesa de fosfato de calcio de recubrimiento de primera vez (sección 1.2). La cantidad preferida de poli(alcohol vinílico), carboximetilcelulosa, silicato de sodio y emulsión de metacrilato utilizada en la preparación de la suspensión de fosfato de calcio de recubrimiento de segunda vez es de aproximadamente el 3% a aproximadamente el 7% en masa, de aproximadamente el 3% a aproximadamente el 2% en masa y de aproximadamente el 1% a aproximadamente el 2% en masa de polvo de fosfato de calcio).

65 El poli(alcohol vinílico) se añade a agua destilada, se calienta y se agita hasta que el poli(alcohol vinílico) se disuelve completamente. La disolución debe ser transparente tras la disolución completa del poli(alcohol vinílico). A medida

que la disolución se enfría hasta temperatura ambiente, se añade carboximetilcelulosa. Tras la disolución completa de la carboximetilcelulosa, se añaden disolución de silicato de sodio y emulsión de metacrilato a la mezcla y se agitan. Se añaden adicionalmente del 7% al 10% en masa de dispersante de poli(acrilato de amonio) y del 5% al 7% en masa de agente de secado *N,N*-dimetilformamida a la mezcla y se agitan de manera continua. Entonces se dispersan lentamente los polvos de fosfato de calcio en la disolución, seguido por agitación. Utilizando calentamiento lento de manera continua, se agita lentamente la disolución con el fin de evaporar el contenido en agua y hasta que se obtiene una razón de polvo/líquido de 0,4 a 0,5. Entonces se deja que la suspensión espesa se enfríe hasta la temperatura ambiente antes de utilizarse para recubrir.

10 1.5 Segundo recubrimiento, secado y sinterización

15

20

25

30

35

40

45

50

55

60

65

Se sumergen soportes tras el primer recubrimiento y sinterización (sección 1.3) en la suspensión de fosfato de calcio de recubrimiento de segunda vez (sección 1.4) durante de 10 a 20 segundos. Tras la inmersión, se retiran los soportes de la suspensión. La mayoría de los poros del soporte se obstruirán por la suspensión de fosfato de calcio. Con el fin de garantizar la interconectividad, uniformidad y poros abiertos, los soportes se soplan ligeramente con aire. Entonces se secan los soportes de plantilla de esponja recubiertos con fosfato de calcio a de 25°C a 35°C y en un entorno con una humedad del 60% al 70%. El tiempo de secado oscilará entre 12 y 48 horas, dependiendo del tamaño de los soportes de plantilla de esponja. Tras secarse completamente las esponjas, se colocan entonces las esponjas recubiertas sobre una placa de alúmina, colocada en un horno de alta temperatura y se sinterizan durante de 2 a 3 horas a de 1200°C a 1250°C utilizando un perfil de sinterización de 5 etapas mostrado en la figura 4.

1.6 Preparación de suspensión de fosfato de calcio para cubierta externa sólida con canales y/u orificios

Para soportes que van a utilizarse en aplicaciones de soporte de carga, pueden fabricarse cubiertas externas sólidas con canales que presentan diámetros que oscilan entre aproximadamente 100 µm y aproximadamente 200 µm y/u orificios que presentan un diámetro que oscila entre aproximadamente 200 µm y aproximadamente 500 µm mediante un procedimiento de colada en barbotina y liofilización. Con el fin de producir una suspensión de colada en barbotina, se utilizan los mismos aglutinantes y los mismos agentes químicos que en la sección 1.2 así como la sección 1.4. La cantidad preferida de poli(alcohol vinílico), carboximetilcelulosa, silicato de sodio y emulsión de metacrilato utilizada en la preparación de suspensión de fosfato de calcio de recubrimiento de segunda vez es del 3% al 7% en masa, del 3% al 7% en masa, del 0,5% al 1% en masa y del 0,5% al 1% en masa, respectivamente (basándose en el 100% en masa de polvo de fosfato de calcio).

El poli(alcohol vinílico) se añade a agua destilada, se calienta y se agita hasta que el poli(alcohol vinílico) se disuelve completamente. La disolución debe ser transparente tras la disolución completa del poli(alcohol vinílico). A medida que la disolución se enfría hasta temperatura ambiente, se añade carboximetilcelulosa. Tras la disolución completa de la carboximetilcelulosa, se añaden disolución de silicato de sodio y emulsión de metacrilato a la mezcla y se agitan. Se añaden adicionalmente de aproximadamente el 7% a aproximadamente el 10% en masa de dispersante de poli(acrilato de amonio) y de aproximadamente el 5% a aproximadamente el 7% en masa de agente de secado N,N-dimetilformamida a la mezcla y se agitan de manera continua. Entonces se dispersan lentamente los polvos de fosfato de calcio en la disolución, seguido por agitación. Calentar lentamente de manera continua y agitar la disolución para evaporar el contenido en agua hasta que se obtiene una razón de polvo/líquido de aproximadamente 0,4 a aproximadamente 0,5. Entonces se deja que la suspensión espesa se enfríe hasta la temperatura ambiente antes de utilizarse para la colada en barbotina.

1.7 Colada en barbotina, liofilización y sinterización para obtener una cubierta externa sólida

Se vierte la suspensión de fosfato de calcio de colada en barbotina preparada en un molde de yeso diseñado con una malla de esponja de poliuretano que presenta de aproximadamente 10 ppp a aproximadamente 20 ppp. Entonces se hace rodar el molde que contiene la esponja de poliuretano a de 10 a 20 rpm hasta que todo el agua se absorbe completamente por el molde de yeso y se logra un grosor deseado. Entonces se seca el molde de yeso utilizando un liofilizador durante un periodo que oscila entre 24 y 72 horas. Tras secar, se separa la cubierta externa sólida del molde de yeso y se perforan orificios con un diámetro que oscila entre 200 µm y 500 µm a través de la cubierta externa. Entonces se coloca la cubierta externa bien preparada en el horno de alta temperatura y se sinteriza utilizando un perfil de sinterización de 8 etapas mostrado en la figura 3. Tras la sinterización, se consume la malla de esponja de poliuretano de aproximadamente 10 ppp a aproximadamente 20 ppp, dando como resultado la formación de canales dentro de la cubierta.

1.8 Preparación de sol de fosfato de calcio antibacteriano

Pueden sintetizarse materiales cerámicos de fosfatos de calcio variables tales como soles de hidroxiapatita (Ca/P=1,67), fosfato de tricalcio (Ca/P=1,50), fosfato de meta-calcio (Ca/P=0,50), polifosfato de calcio (Ca/P=0,50), fosfato de dicalcio deshidratado (Ca/P=1,00), fosfato de monocalcio anhidro (Ca/P=0,50) utilizando la cantidad correcta de precursores de calcio y fósforo y con condiciones de envejecimiento controladas. Adicionalmente, puede sintetizarse sol de fosfato de calcio antibacteriano utilizando dopaje con plata o zinc en el precursor de fósforo. Para preparar el precursor de calcio, se hace fluir una cantidad correcta de nitrato de calcio tetrahidratado

[Ca(NO₃)₂•4H2O (Aldrich 99%, EE.UU.)] en una cantidad suficiente de alcohol metílico y se deshidrata a temperaturas que oscilan entre 150°C y 200°C. Tras la evaporación del disolvente, se somete a reflujo el precursor de calcio en una cantidad suficiente de alcohol metílico. Con el fin de preparar el precursor de fósforo, se hace fluir una cantidad correcta de fosfito de trietilo [(C₂H₅O)₃P (Fluka 97%, Japón)] en una cantidad suficiente de alcohol metílico. Se pre-hidroliza también este precursor de fósforo hecho fluir durante 5 horas en presencia de un catalizador (ácido acético [CH₃COOH] que contenía del 0,5% en moles al 1,5% en moles de nitrato de plata [Ag(NO₃)] o del 0,5% en moles al 1,5% en moles de nitrato de zinc hidratado [Zn(NO₃)₂• xH₂O] y agua destilada [H₂O]). Entonces se sintetiza el sol de fosfato de calcio dopado con plata o zinc haciendo reaccionar los precursores de calcio y fósforo durante un periodo de 1 a 2 horas y con agitación vigorosa. Se realiza la reacción bajo una atmósfera de argón. Entonces se filtra el sol de fosfato de calcio dopado con plata o zinc a través de un filtro de jeringa de 0,20 μm a 0,45 μm, seguido por envejecimiento a temperaturas que oscilan entre 40°C y 80°C y durante un periodo que oscila entre 12 y 204 horas. Tras el envejecimiento, la viscosidad del sol de fosfato de calcio será de entre aproximadamente 8,0 cps y aproximadamente 160 cps, dependiendo de la temperatura de envejecimiento, el tiempo de envejecimiento, los procedimientos de sellado de los vasos de precipitados/viales que contenían el precursor durante el envejecimiento, y de si el envejecimiento se realiza en circulación de aire o sin condición de circulación. Esto significa que la viscosidad del sol de fosfato de calcio dicará el grosor, la porosidad y la densidad de la capa de recubrimiento.

1.9 Recubrimiento, secado y sinterización de sol de fosfato de calcio

Se sumergen los soportes de fosfato de calcio porosos fabricados de la sección 1.5 y 1.7 en el sol de fosfato de calcio envejecido dopado con o sin plata o zinc. Tras sumergir durante de 5 a 10 segundos, se retiran los soportes del sol y se centrifugan para eliminar el sol en exceso. Entonces se cuece el soporte recubierto con sol de fosfato de calcio y se seca en un horno a temperaturas que oscilan entre 50°C y 100°C y durante un periodo que oscila entre 3 y 8 horas. Tras secar completamente, se tratan entonces térmicamente los soportes recubiertos con sol de fosfato de calcio a temperaturas que oscilan entre 600°C y 700°C utilizando un horno de mufla en aire durante un periodo que oscila entre 1 hora y 5 horas tal como se muestra en la figura 6.

Ejemplo 2

5

10

15

20

25

30

35

40

45

50

55

Ejemplos de soportes de hidroxiapatita fabricados

Utilizando el procedimiento descrito en el ejemplo 1, un ejemplo de cómo se utiliza esta tecnología para fabricar soportes de hidroxiapatita recubiertos con hidroxiapatita dopada con plata es tal como sigue:

2.1 Preparación de plantilla de esponja polimérica para fabricación de soporte poroso de dos capas:

Se escoge una plantilla de esponja de poliuretano de 60 ppp (poro por pulgada) para la fabricación del núcleo trabecular y se escoge la plantilla de esponja de poliuretano de 100 ppp para la fabricación de la cubierta cortical externa. Se corta la plantilla de esponja de poliuretano para el núcleo trabecular para obtener la conformación de un cilindro sólido con una longitud de 36 mm y un diámetro de 28 mm. Se corta la plantilla de esponja de poliuretano para la cubierta cortical externa para que se parezca a un tubo cilíndrico y presenta el núcleo hueco en el medio. Las dimensiones para la plantilla de esponja de poliuretano para la cubierta cortical externa son de 36 mm de longitud, con un diámetro externo de 30 mm y un diámetro interno de 28 mm, presentando por tanto un grosor de pared de 2 mm. Se tratan estas esponjas de poliuretano con ultrasonidos en disolución de hidróxido de sodio (NaOH) al 10% durante 20 minutos, seguido por limpieza en agua corriente durante 40 minutos y luego aclarado con agua destilada. Durante la limpieza, se exprimen las esponjas y luego se deja que se expandan 10 veces para eliminar el NaOH residual dentro de las plantillas de esponja de poliuretano. Estas esponjas se limpian entonces de nuevo con ultrasonidos en aqua destilada durante 30 minutos. Entonces se exprimen las esponjas con papel absorbente para eliminar el agua en exceso. Esto va seguido por secado a 80°C en un horno durante 5 horas hasta que se logra el secado completo. Tras secar completamente, la plantilla de esponja de poliuretano para el núcleo trabecular se ajusta entonces perfectamente en la plantilla de esponja de poliuretano de tipo tubo para la cubierta cortical externa o la cubierta externa sólida de tipo tubo (con canales y/u orificios dependiendo de la estructura y la aplicación finales deseadas). En este punto, tal como se muestra en la figura 2, la plantilla de esponja es ahora una pieza (cubierta cortical externa y núcleo trabecular interno).

$\underline{\text{2.2 Preparación de suspensión espesa mixta de polvo de hidroxiapatita y fosfato de tricalcio <math>\beta$ de recubrimiento de $\underline{\text{primera vez}}$

Como ejemplo de esta invención, se utilizan polvo de hidroxiapatita de tamaño nanométrico y polvo de fosfato de tricalcio β de tamaño nanométrico para la fabricación de soportes debido a su capacidad para sinterizar. Se añade un 3% (en masa) de poli(alcohol vinílico) (peso molecular de 89.000 a 98.000) a 20 ml de agua destilada, se calienta sobre la placa caliente hasta 60°C y se agita hasta que el poli(alcohol vinílico) se disuelve completamente. La disolución debe ser transparente tras la disolución completa del poli(alcohol vinílico). Cuando la disolución se enfría hasta temperatura ambiente, se añade un 3% (en masa) de carboximetilcelulosa (peso molecular de 10.000; viscosidad de 53.000 cps a 25°C). Tras la disolución completa de la carboximetilcelulosa, se añaden a la mezcla un

1% (en masa) de disolución de silicato de sodio y un 1% (en masa) de emulsión de metacrilato y se agita. Adicionalmente, se añaden a la mezcla un 7% (en masa) de dispersante de poli(acrilato de amonio) y un 5% (en masa) de agente de secado *N,N*-dimetilformamida y se agita de manera continua. El porcentaje de estos aglutinantes y agentes de secado se basa en el 100% en masa de polvo de fosfato de calcio. Entonces se dispersan lentamente en la disolución tres gramos de polvo de hidroxiapatita y 3 gramos de polvos de fosfato de tricalcio β, seguido por agitación. Utilizando de manera continua calor lento, se agita lentamente la disolución con el fin de evaporar el contenido en agua y hasta que se obtiene una razón de polvo/líquido de 1,50. Entonces se enfría la suspensión espesa hasta temperatura ambiente antes de utilizarse para recubrir las esponjas de poliuretano.

10 2.3 Recubrimiento, secado y sinterización de fosfato de calcio de primera vez

Se sumerge la plantilla de esponja de una pieza tratada que contiene la cubierta cortical externa y el núcleo trabecular interno (de la sección 2.1) en la suspensión espesa de recubrimiento de primera vez (de la sección 2.2) hasta que la suspensión espesa de fosfato de calcio se absorbe completamente en el soporte de plantilla de esponja. Mientras está en la suspensión espesa, la plantilla de esponja de poliuretano sumergida se comprime manualmente con la ayuda de un agitador y se permite que se expanda 8 veces. Entonces se retira la plantilla de esponja de la suspensión espesa y se elimina la suspensión espesa en exceso mediante la esponja en la placa de vidrio con una varilla. Tras retirar la suspensión espesa en exceso, pueden obstruirse algunos de los poros en la plantilla de esponja con la suspensión espesa debido a la alta viscosidad de la suspensión espesa. Con el fin de garantizar interconectividad, uniformidad y poros abiertos, los soportes se soplan ligeramente con aire. Basándose en el termoanálisis de las plantillas de esponja de poliuretano y los polvos de tamaño nanométrico, se secan entonces los soportes de plantilla de esponja recubiertos con suspensión espesa de fosfato de calcio a 27ºC (en humedad al 80% en un entorno todavía de aire) durante 60 horas. Tras secar, los soportes de plantilla de esponja recubiertos de fosfato de calcio se contraen en un 8%. Tras secar completamente, se colocan los soportes de plantilla de esponja sobre una placa de alúmina y se sinterizan en un horno. Los soportes de plantilla de esponja recubiertos con fosfato de calcio secos se sinterizan utilizando un perfil de sinterización de 8 etapas mostrado en la figura 3. Tras la sinterización, los soportes de plantilla de esponja recubiertos con fosfato de calcio se contraen en un 22%. Además de la figura 3, los detalles del perfil de sinterización de 8 etapas, con velocidad de calentamiento y temperatura final, son los siguientes:

30

35

45

50

55

25

15

20

Etapa 1: calentar 2°C/minuto hasta 230°C.

Etapa 2: calentar 1°C/minuto hasta 280°C.

Etapa 3: calentar 0.5°C/minuto hasta 400°C.

Etapa 4: calentar 3°C/minuto hasta 600°C.

Etapa 5: mantener a 600°C durante 1 hora.

Etapa 6: calentar 5°C/minuto hasta 1230°C.

Etapa 7: mantener a 1230°C durante 3 horas.

Etapa 8: enfriar 5°C/minuto hasta temperatura ambiente.

40 2.4 Preparación de suspensión de fosfato de calcio de recubrimiento de segunda vez

Para la suspensión de fosfato de calcio de recubrimiento de segunda vez, se utilizan cantidades diferentes pero los mismos aglutinantes y agentes químicos (en la sección 2,2). Se añade un 3% (en masa) de poli(alcohol vinílico) (peso molecular de 89.000 a 98.000) a 20 ml de agua destilada, se calienta sobre la placa caliente hasta 60°C y se agita hasta que el poli(alcohol vinílico) se disuelve completamente. La disolución debe ser transparente tras la disolución completa del poli(alcohol vinílico). Al enfriarse la disolución hasta temperatura ambiente, se añade un 5% (en masa) de carboximetilcelulosa (peso molecular de 10.000; viscosidad de 53.000 cps a 25°C). Tras la disolución completa de la carboximetilcelulosa, se añaden a la mezcla un 1% (en masa) de disolución de silicato de sodio y un 1% (en masa) de emulsión de metacrilato y se agita. Adicionalmente, se añaden a la mezcla un 10% (en masa) de dispersante de poli(acrilato de amonio) y un 7% (en masa) de agente de secado *N,N*-dimetilformamida y se agita de manera continua. El porcentaje de estos aglutinantes y agentes de secado se basa en el 100% en masa de polvo de fosfato de calcio. Entonces se dispersan lentamente en la disolución 1,5 gramos de polvo de hidroxiapatita y 1,5 gramos de polvos de fosfato de tricalcio β, seguido por agitación. Utilizando de manera continua calor lento, se agita lentamente la disolución con el fin de evaporar el contenido en agua y hasta que se obtiene una razón de polvo/líquido de 0,50. Entonces se enfría la suspensión espesa hasta temperatura ambiente antes de utilizarse para recubrir.

2.5 Segundo recubrimiento, secado y sinterización

Se sumergen los soportes del recubrimiento y sinterización de primera vez (de la sección 2.3) en la suspensión espesa de recubrimiento de segunda vez (de la sección 2.4) durante 20 segundos. Entonces se retira el soporte de la suspensión espesa. La mayoría de los poros del soporte pueden obstruirse con la suspensión espesa debido a la alta viscosidad de la suspensión espesa. Con el fin de garantizar la interconectividad, uniformidad y poros abiertos, los soportes se soplan ligeramente con aire. Entonces se secan los soportes recubiertos con fosfato de calcio a 30°C (en humedad al 70% en un entorno todavía de aire) durante 24 horas. Tras secar completamente, se colocan los soportes recubiertos con fosfato de calcio sobre una placa de alúmina y se sinterizan en un horno. Los soportes

recubiertos con fosfato de calcio secos se sinterizan utilizando el perfil de sinterización de 5 etapas mostrado en la figura 4. Además de la figura 4, los detalles del perfil de sinterización de 5 etapas, con velocidad de calentamiento y temperatura final son los siguientes:

Etapa 1: calentar 3°C/minuto hasta 600°C.

5

10

15

20

25

30

35

40

50

55

60

65

Etapa 2: mantener a 600°C durante 1 hora.

Etapa 3: calentar 5°C/minuto hasta 1230°C.

Etapa 4: mantener a 1230°C durante 3 horas.

Etapa 5: enfriar 5°C/minuto hasta temperatura ambiente.

2.6 Preparación de suspensión de fosfato de calcio para cubierta externa sólida con canales y/u orificios

Con el fin de preparar una suspensión de colada en barbotina, se utilizan los mismos aglutinantes y los mismos agentes químicos (en secciones 2.2 y 2.4). Se añade un 3% (en masa) de poli(alcohol vinílico) (peso molecular de 89.000 a 98.000) a 20 ml de agua destilada, se calienta sobre la placa caliente hasta 60°C y se agita hasta que el poli(alcohol vinílico) se disuelve completamente. La disolución debe ser transparente tras la disolución completa del poli(alcohol vinílico). Cuando la disolución se enfría hasta temperatura ambiente, se añade un 5% (en masa) de carboximetilcelulosa (peso molecular de 10.000; viscosidad de 53.000 cps a 25°C). Tras la disolución completa de la carboximetilcelulosa, se añaden a la mezcla un 0,5% (en masa) de disolución de silicato de sodio y un 0,5% (en masa) de emulsión de metacrilato y se agita. Se añaden a la mezcla un 10% (en masa) de dispersante de poli(acrilato de amonio) y un 7% (en masa) de agente de secado *N,N*-dimetilformamida y se agita de manera continua. El porcentaje de estos aglutinantes y agentes de secado se basa en el 100% en masa de polvo de fosfato de calcio. Entonces se dispersan lentamente en la disolución 1,5 gramos de polvo de hidroxiapatita y 1,5 gramos de polvos de fosfato de tricalcio β, por agitación. Utilizando de manera continua calor lento, se agita lentamente la disolución con el fin de evaporar el contenido en agua y hasta que se obtiene una razón de polvo/líquido de 0,50. Entonces se enfría la suspensión espesa hasta temperatura ambiente antes de utilizarse para la colada en barbotina.

2.7 Colada en barbotina, liofilización y sinterización para obtener una cubierta externa sólida

Se vierte la suspensión de fosfato de calcio colada en barbotina preparada en un molde de yeso de 33 mm de longitud por 27 mm de diámetro que contiene una malla de esponja de poliuretano de 10 ppp. Se hace rodar el molde a 12 rpm hasta que todo el agua se absorbe completamente por el molde yeso y se logra un grosor deseado de 2 mm grosor. Entonces se seca el molde de yeso utilizando un liofilizador durante 48 horas. Tras secar, se separa la cubierta externa sólida del molde de yeso y se perforan orificios que presentan un diámetro de 300 µm. Con el fin de fabricar un soporte de dos capas, se ajusta entonces perfectamente la 1ª plantilla de esponja de núcleo trabecular recubierta con fosfato de calcio (sección 2.3) en la cubierta externa sólida seca y se seca a 27°C (en humedad al 80% y en un entorno todavía de aire)durante 60 horas. Tras secar completamente, se colocan los soportes de dos capas sobre una placa de alúmina y se sinterizan en un horno. Se sinterizan los soportes recubiertos con fosfato de calcio secos utilizando el perfil de sinterización de 8 etapas mostrado en la figura 3 (sección 2.3). Tras la sinterización, se recubren entonces los recubrimientos de dos capas utilizando la preparación de suspensión de fosfato de calcio de recubrimiento de 2ª vez (sección 2.4) y se sinterizan utilizando el procedimiento de 2º recubrimiento, secado y sinterización (sección 2.5).

45 2.8 Preparación de sol de fosfato de calcio antibacteriano

En esta invención, se prepara disolución de hidroxiapatita dopada con plata haciendo fluir 0,03 moles de nitrato de calcio tetrahidrato [Ca(NO₃)₂•4H₂O (Aldrich 99%, EE.UU)] en 0,3 moles de alcohol metílico y se deshidrata a 150°C. Tras la evaporación del disolvente, se somete a reflujo el precursor de calcio en 0,3 moles de de alcohol metílico durante 1 hora. Se hacen fluir 0,018 moles de fosfito de trietilo [(C₂H₅O)₃P (Fluka 97%, Japón)] en 0,15 moles de alcohol metílico y se pre-hidroliza durante 5 horas en presencia de un catalizador (0,045 moles de ácido acético [CH₃COOH] con 0,0003 moles de nitrato de plata [Ag(NO₃)] y 0,09 moles de agua destilada [H₂O]). Entonces se sintetiza el sol de hidroxiapatita dopada con plata haciendo reaccionar los precursores de calcio y fósforo durante 1 hora con agitación vigorosa. Todo el trabajo se realiza bajo una atmósfera de argón. Entonces se filtra el sol de hidroxiapatita dopada con plata sintetizado a través de un filtro de jeringa de 0,45 µm y se envejece a 40°C durante 120 horas. Tras el envejecimiento, la viscosidad del sol de hidroxiapatita dopada con plata es de 36 cps. El diagrama de flujo de la preparación de sol de hidroxiapatita dopada con plata se muestra en la figura 5.

2.9 Recubrimiento, secado y sinterización de sol de fosfato de calcio

Se sumerge el soporte de fosfato de calcio poroso fabricado en el sol de hidroxiapatita dopada con plata envejecido durante 5 segundos. Entonces se retira el soporte del sol y se centrifuga durante 10 segundos a 1000 rpm para eliminar el sol en exceso. Inmediatamente se cuece el soporte recubierto con sol de hidroxiapatita dopada con plata y se seca durante 5 horas a 70°C, seguido por un tratamiento con calor a 650°C durante 3 horas utilizando el siguiente perfil de calentamiento de 3 etapas (figura 6):

Etapa 1: calentar 3°C/minuto hasta 650°C.

Etapa 2: mantener a 650°C durante 3 horas.

Etapa 3: enfriar 3°C/minuto hasta temperatura ambiente.

5 Ejemplo 3

10

15

25

30

35

40

45

50

55

60

65

Ejemplos de propiedades de soportes de hidroxiapatita

Los materiales comentados a continuación se prepararon mediante los procedimientos del ejemplo 1 y el ejemplo 2.

3.1 Plantilla de esponja polimérica

Tras 20 minutos de tratamiento de la plantilla de esponja polimérica con hidróxido de sodio al 10%, cambia la superficie de la esponja de lisa a rugosa y se hace más hidrófila. Tal como se muestra en la figura 7, la conformación de la esponja cortada originalmente permanece intacta, junto con su propiedad elástica.

3.2 Soporte recubierto con fosfato de calcio, secado y sinterizado de primera vez

Tras sumergir la plantilla de esponja de poliuretano tratada en una suspensión espesa de recubrimiento de primera vez seguido por secado a 27°C en un entorno de humedad al 80% durante 60 horas, la plantilla de esponja recubierta con fosfato de calcio de dos capas parece endurecida. La superficie recubierta también parece densa y lisa, observándose sólo algunas grietas. Adicionalmente, el soporte se contrae en un 8%.

Tras sinterizar la esponja recubierta utilizando un perfil de sinterización de 8 etapas mostrado en la figura 3, los soportes resultantes parecen fuertes, con recubrimiento uniforme y bien interconectados. El soporte sinterizado muestra una porosidad del 87% medida utilizando un procedimiento de cromatografía de gases. La resistencia a la compresión del soporte sinterizado está en el intervalo de la resistencia a la compresión del hueso esponjoso humano (2 - 180 MPa). Tal como se muestra en la figura 8, la curva TG/DTA de la esponja de poliuretano indica que el consumo de la esponja de poliuretano se produce desde 230°C. El consumo violento de la esponja se produce a una temperatura de desde 280°C hasta 400°C, permaneciendo los sostenes del soporte triangular interconectados tras el consumo de la esponja. La longitud de los microcanales secundarios triangulares dentro del sostén es de 40 µm en cada lado. A lo largo este intervalo de temperatura, los polvos en la suspensión espesa llegan a semifundirse, permitiendo de ese modo el flujo viscoso de los polvos y dando como resultado la formación de un cuello entre los polvos.

A temperaturas de entre 400°C y 600°C y de entre 600°C y 1230°C, la capa recubierta con fosfato de calcio interconecta los poros y engrosa las superficies recubiertas, respectivamente. La densificación de la capa recubierta se produce cuando se sinteriza el soporte a 1230°C durante 3 horas. Tras la sinterización, los soportes de fosfato de calcio parecen contraerse en un 22%. La superficie del soporte sinterizado es densa y lisa, mostrando límites de grano claros tal como se observa utilizando microscopía electrónica de barrido (figura 9). La sección transversal del soporte muestra la presencia de microcanales secundarios de conformación triangular dentro de los sostenes triangulares (figura 10). La función de estos microcanales secundarios es permitir el transporte y la difusión de

triangulares (figura 10). La función de estos microcanales secundarios es permitir el transporte y la difusión de nutrientes y desechos cuando se implanta el soporte en el hueso humano. Estas características permiten que los tejidos óseos regenerados se mantengan vivos y funcionales a lo largo del tiempo.

3.3 Soporte recubierto con fosfato de calcio, secado y sinterizado de segunda vez

Tras sumergir el recubrimiento y la sinterización de primera vez en la suspensión espesa de recubrimiento de segunda vez, seguido por secado a 30°C en un entorno de humedad del 70% durante 24 horas, la superficie recubierta parece densa y lisa, pero es ligeramente más gruesa que la superficie recubierta de primera vez (figura 11). La sinterización del soporte utilizando un perfil de sinterización de 5 etapas (tal como se muestra en la figura 4) se produce tras secar, permaneciendo intactos la conformación y el tamaño del soporte tras la contracción. No se produce contracción adicional durante el procedimiento de recubrimiento de segunda vez. Adicionalmente, no hay ningún cambio en el tamaño de los microcanales secundarios. El tamaño de grano final de la superficie del soporte sinterizado permanece igual que las observaciones realizadas en el soporte recubierto y sinterizado de primera vez.

El sostén de conformación triangular observado durante el procedimiento de recubrimiento y sinterización de primera vez se vuelve redondeado tras el procedimiento de recubrimiento y sinterización de segunda vez (figura 11). Esta conformación redondeada de sostén hace más fácil impulsar a las células óseas u osteoblastos a unirse sobre la superficie del soporte cuando se compara con el sostén de conformación triangular. Adicionalmente, en esta invención, la uniformidad e interconectividad completas en los poros permiten la migración de las células óseas/osteoblastos hacia el centro del soporte. La capacidad para permitir que las células migren por todo el soporte también significa que no se impiden las comunicaciones entre las células óseas/osteoblastos en los soportes. Además de la uniformidad e interconectividad completas en los poros, los microcanales secundarios continuos dentro de los sostenes también permiten el transporte de sangre, nutrientes y desechos entre el soporte implantado y el hueso natural, así como dentro de los soportes. Estas estructuras funcionales (interconectividad y poros

uniformes, así como microcanales secundarios) también permiten la conexión de los soportes con el hueso natural mediante las células óseas/osteoblastos y el crecimiento vascular (figura 12).

3.4 Recubrimiento, secado y sinterización de sol de hidroxiapatita dopada con plata antibacteriano

El recubrimiento de sol de hidroxiapatita dopada con plata antibacteriano se realiza tras el procedimiento de recubrimiento y sinterización de segunda vez. No se produce ningún cambio en la conformación, estructura y resistencia mecánica tras el procedimiento de recubrimiento, el secado a 70°C durante 5 horas en un entorno todavía de aire y el tratamiento con calor a 650°C durante 3 horas utilizando un perfil de tratamiento con calor de 3 etapas (tal como se muestra en la figura 6). Cuando se recubre el sol de hidroxiapatita dopada con plata sobre una superficie de implante metálico bidimensional, se observa adhesión bacteriana baja o mínima cuando se compara con los recubrimientos de hidroxiapatita no dopados con plata o no recubiertos: por tanto, el recubrimiento de sol de hidroxiapatita dopado con plata sobre los soportes tridimensionales de la presente invención proporcionarán de manera similar una fuerte propiedad antibacteriana. El recubrimiento de sol de hidroxiapatita dopado con plata sobre los soportes presentará la misma propiedad antibacteriana.

Todos los procedimientos dados a conocer y reivindicados en la presente memoria pueden realizarse y ejecutarse sin experimentación excesiva a la luz de la presente descripción. Aunque los procedimientos se han descrito en lo que se refiere a las formas de realización preferidas, resultará evidente para los expertos en la materia que pueden aplicarse variaciones a los procedimientos descritos en la presente memoria. Más específicamente, resultará evidente que pueden sustituirse determinados agentes que están relacionados tanto química como fisiológicamente por los agentes descritos en la presente memoria mientras que se obtendrían resultados iguales o similares. Se considera que todos los sustitutos y modificaciones similares evidentes para los expertos en la materia están dentro del alcance de la invención tal como se define por las reivindicaciones adjuntas.

Bibliografía

5

10

15

20

25

60

En este documento se hace referencia específicamente a la siguiente bibliografía, en la medida en que proporciona detalles procedimentales a modo de ejemplo u otros complementarios a los expuestos en la presente memoria.

```
30
      Patente US 4.629.464
      Patente US 5.258.044
      Patente US 5.306.305
      Patente US 5.543.019
      Patente US 5.650.176
35
      Patente US 5.676.976
      Patente US 5.683.461
      Patente US 5.783.217
      Patente US 5.843.289
40
      Patente US 6.027.742
      Patente US 6.033.582
      Patente US 6.117.456
      Patente US 6.132.463
      Patente US 6.136.369
45
      Patente US 6.143.948
      Patente US 6.171.610
      Patente US 6.171.610
      Patente US 6.214.368
      Patente US 6.309.635
      Patente US 6.344.061
50
      Patente US 6.348.069
      Publicación US 2002/0037799
```

Publicación US 2008/0069852 55 Publicación US 20080069852

> Publicación US 20080075675 Publicación US 20080085292

Publicación US 2006/0292350

Publicación US 20080095820 Publicación US 20080095820

Publicación US 20080097618

Publicación US 20080103227

Karageorgiou *et al.*, Biomaterials 26:5474-5491, 2005 Murphy *et al.*, Tissue Engineering 8(1):43-52, 2002.

REIVINDICACIONES

- 1. Soporte biomédico, que comprende:
- a) un componente (2) de núcleo que comprende:
 una estructura de poros abiertos de microporos que están interconectados; y
 - b) una capa (1) cortical en contacto con al menos una parte de una superficie del componente de núcleo,

en el que la capa (1) cortical es porosa y comprende unos microporos que presentan un diámetro promedio que es inferior al diámetro promedio de los microporos del componente (2) de núcleo, caracterizado porque el componente de núcleo comprende sostenes huecos que comprenden unos microcanales secundarios que están interconectados.

- 15 2. Soporte según la reivindicación 1, en el que los microporos de la capa cortical presentan un diámetro promedio comprendido entre 1 μ m y 300 μ m.
 - 3. Soporte según la reivindicación 1 ó 2, en el que el componente de núcleo presenta una porosidad promedio comprendida entre el 65% y el 90%.
 - 4. Soporte según cualquiera de las reivindicaciones 1 a 3, en el que el soporte está compuesto por fosfato de tricalcio, hidroxiapatita, fosfato de calcio amorfo, fosfato de monocalcio, fosfato de dicalcio, fosfato de octacalcio, fosfato de tetracalcio, fluoroapatita, apatita carbonatada, o una mezcla de los mismos.
- 5. Soporte según cualquiera de las reivindicaciones 1 a 4, en el que el componente de núcleo comprende además zinc o plata.
 - 6. Soporte según cualquiera de las reivindicaciones 1 a 5, adaptado para tratar un defecto de tejido en un sujeto, en el que el soporte está configurado para ser implantado en un defecto de tejido en el sujeto.
 - 7. Soporte biomédico según la reivindicación 6, en el que el defecto de tejido es un defecto óseo, un defecto de cartílago, un defecto de tendones o un defecto de ligamentos.

20

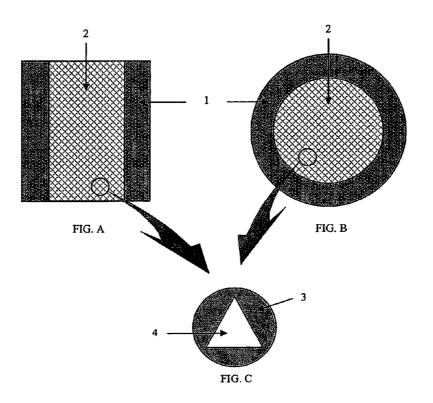


FIG. 1

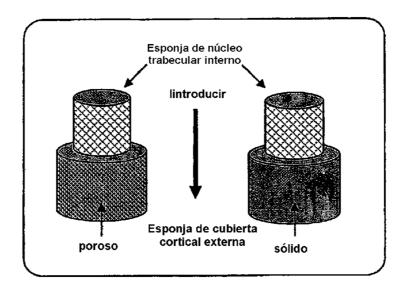


FIG. 2

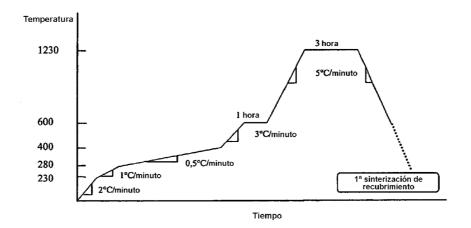


FIG. 3

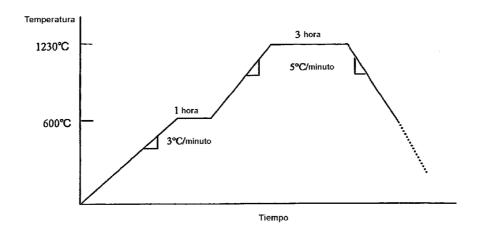


FIG. 4

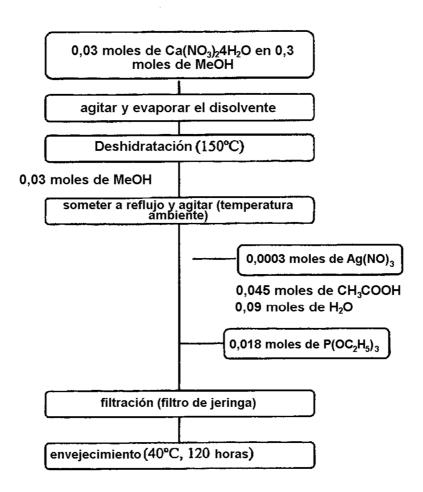
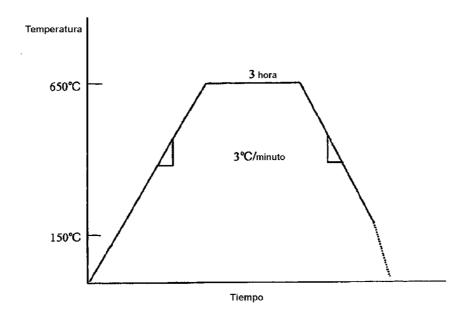
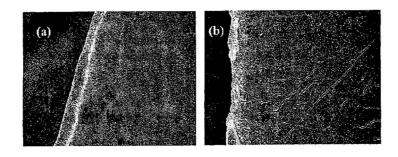
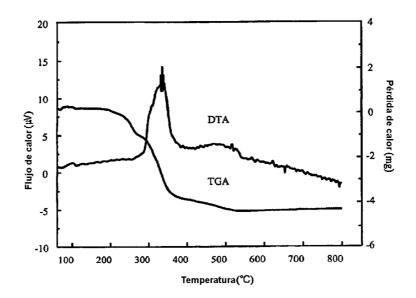


FIG. 5

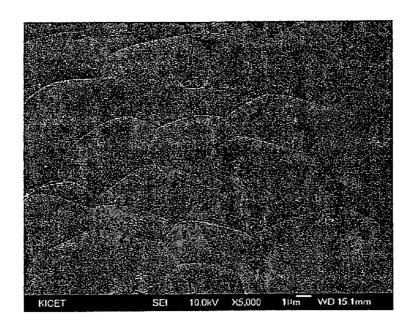

FIG. 6

FIG. 7

FIG. 8

FIG. 9

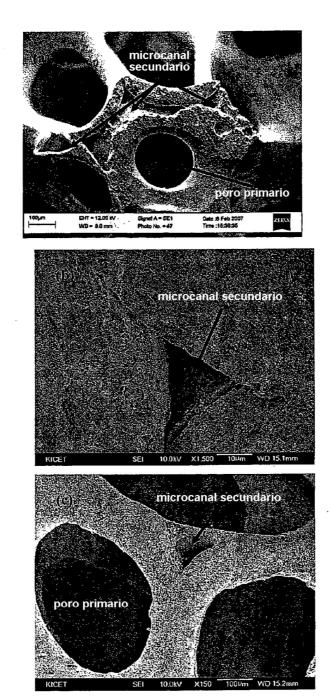


FIG. 10

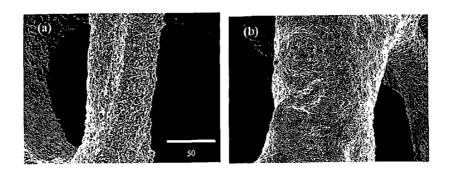


FIG. 11

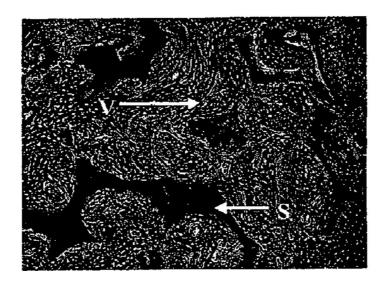
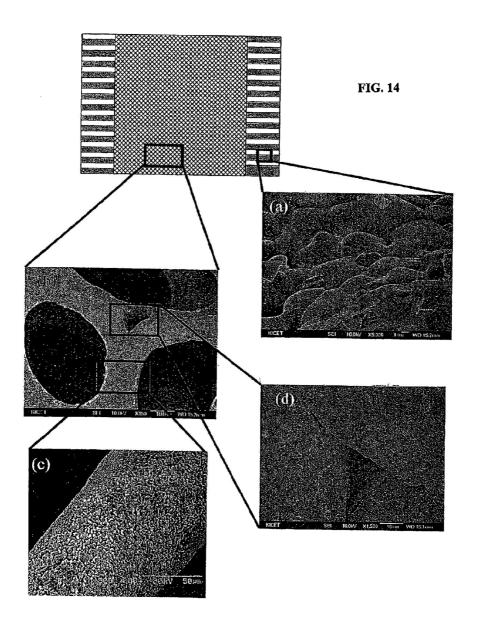
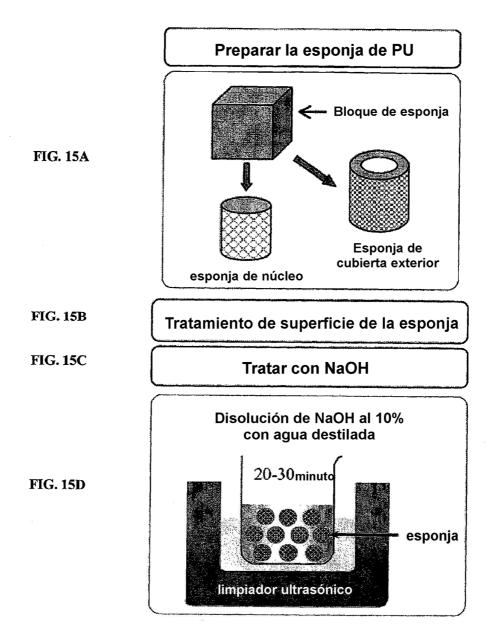
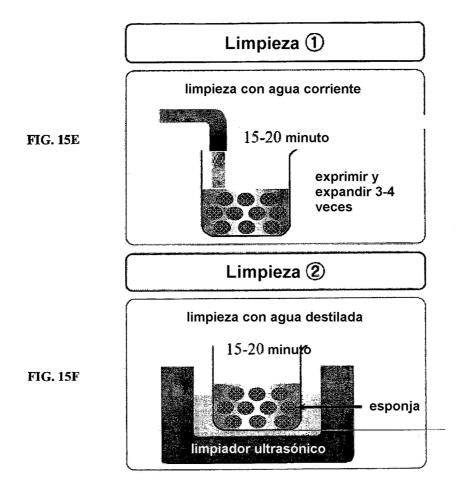
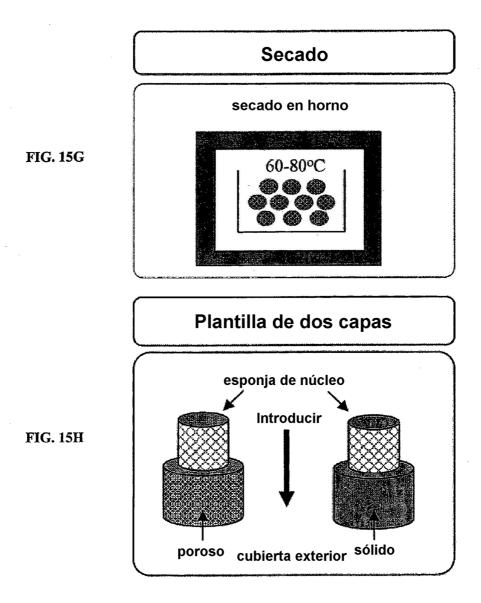
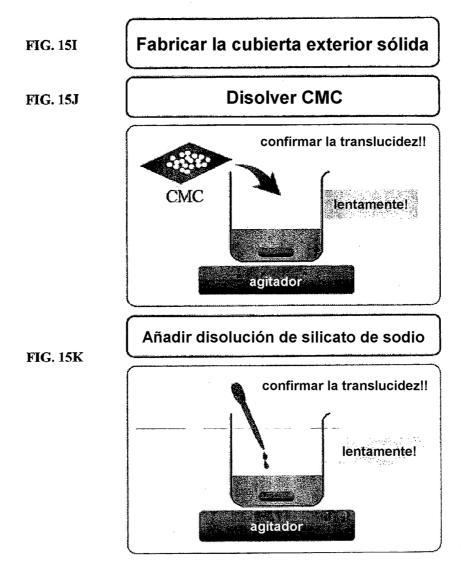
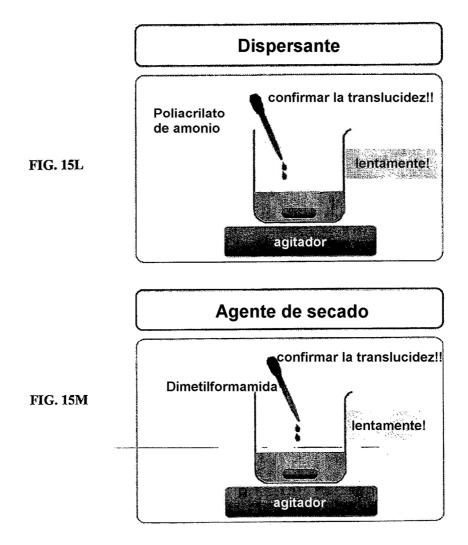


FIG. 12

Procedimiento


FIG. 13



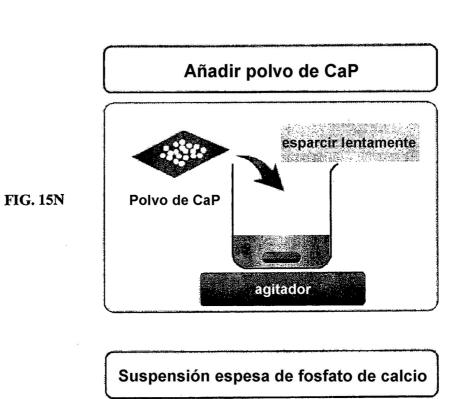
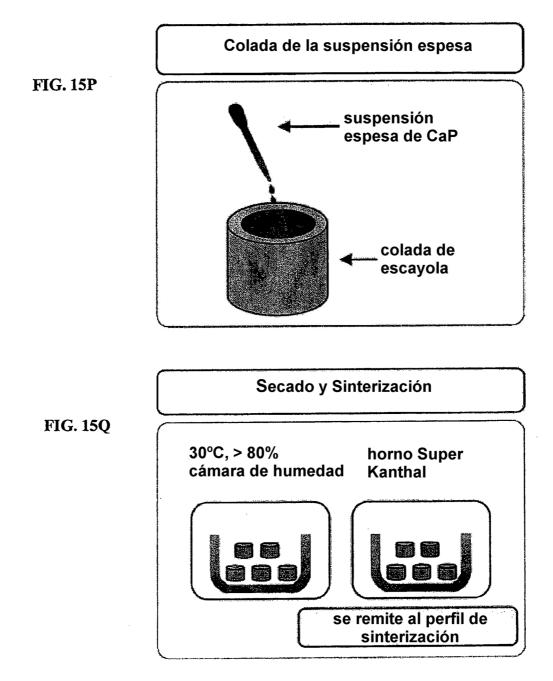
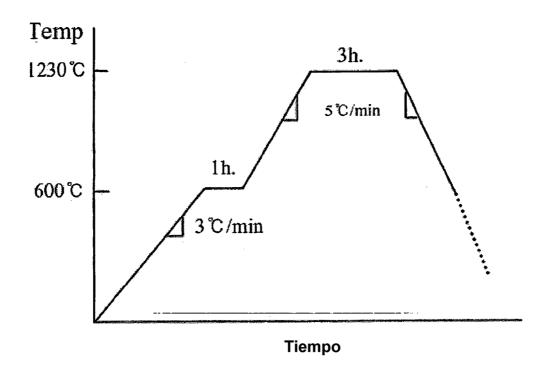
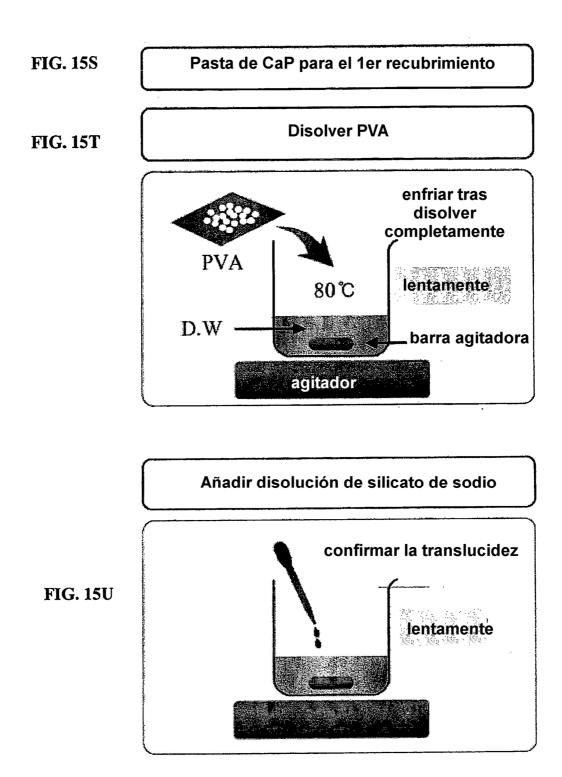
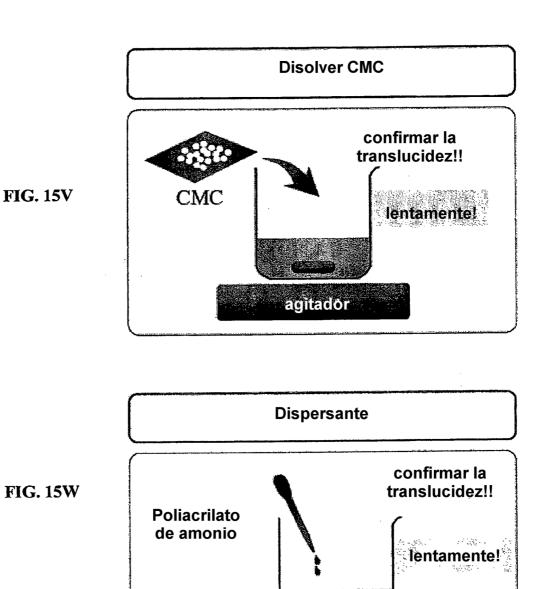
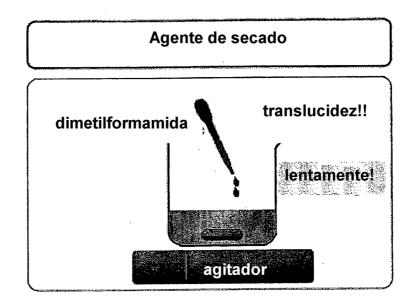
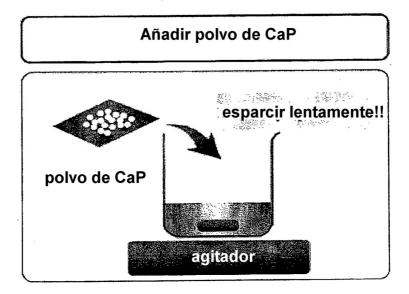



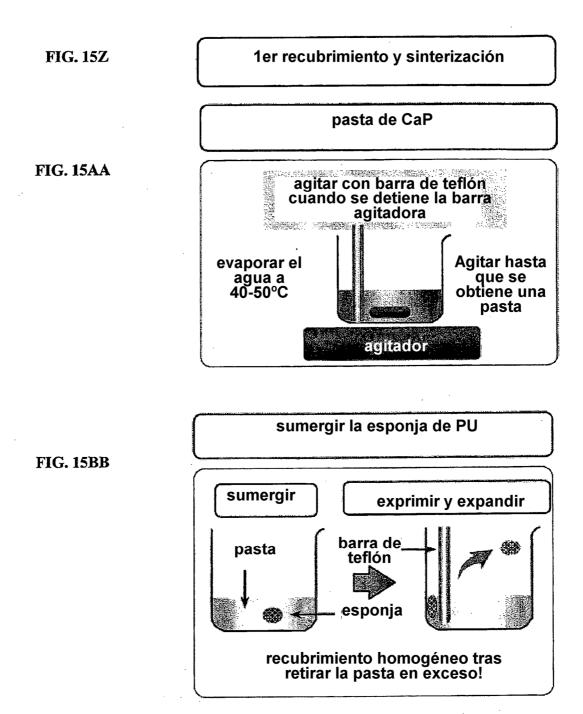
FIG. 150

Perfil de sinterización


FIG. 15R


FIG. 15V


agitador

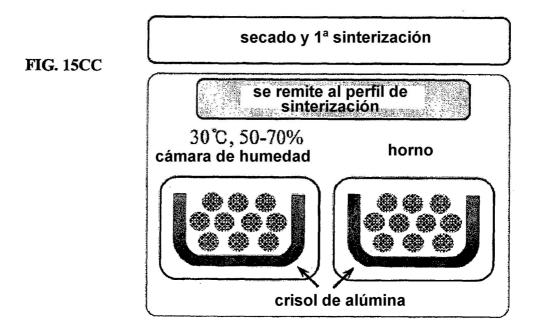
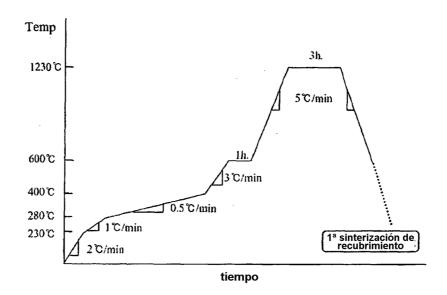


FIG. 15X


FIG. 15Y

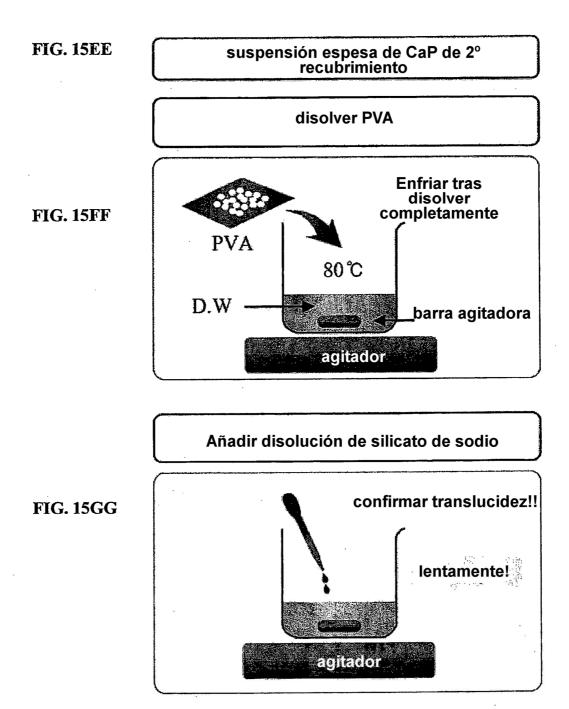
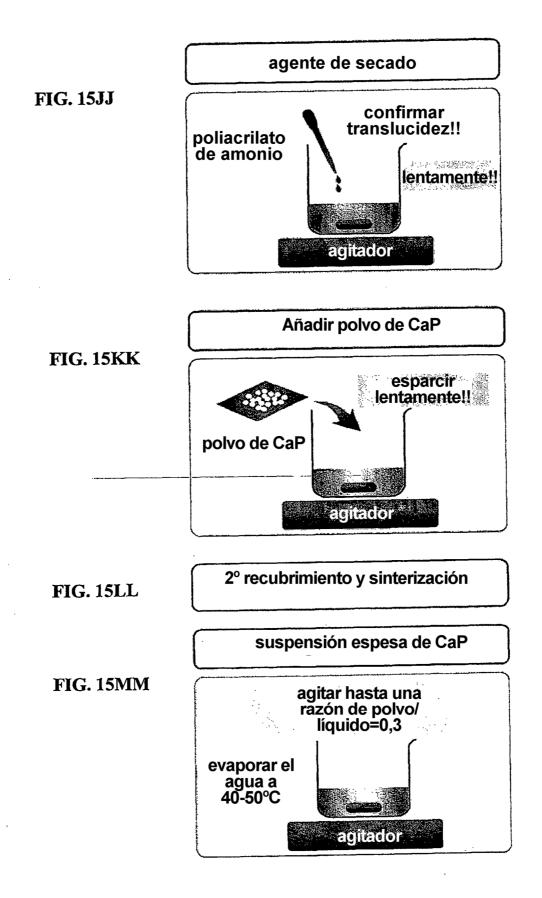
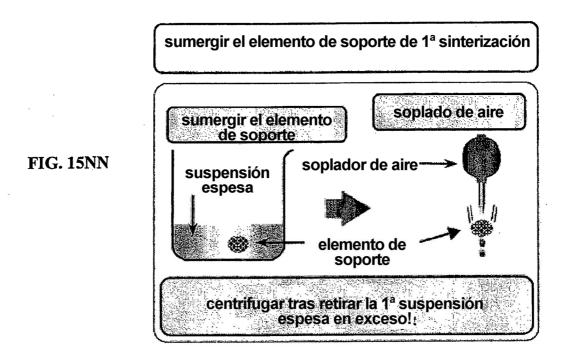


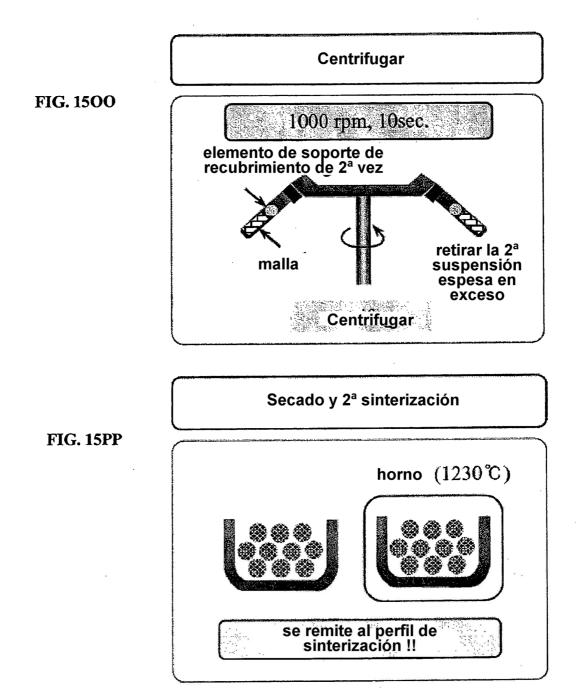
FIG. 15DD

perfil de 1ª sinterización

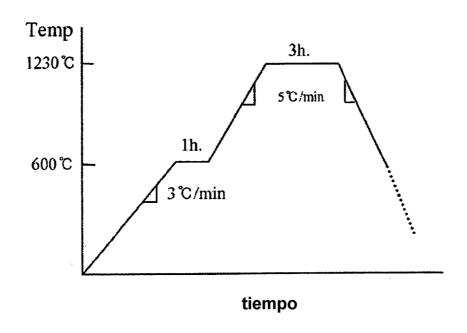
confirmar translucidez!! CMC Jentamente!! agitador Dispersante

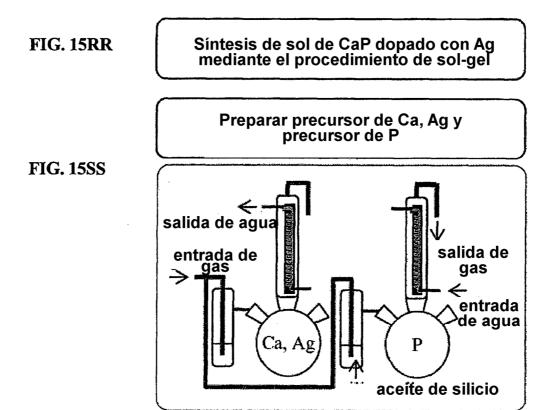

FIG. 15II

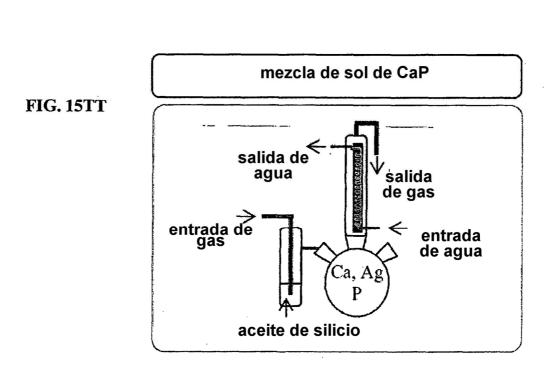

poliacrilato de amonio


confirmar translucidez!!

lentamente!!


agitador



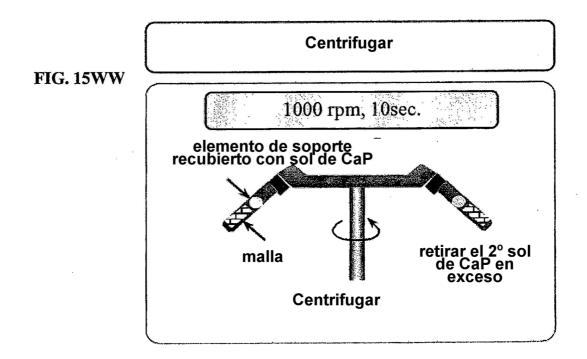


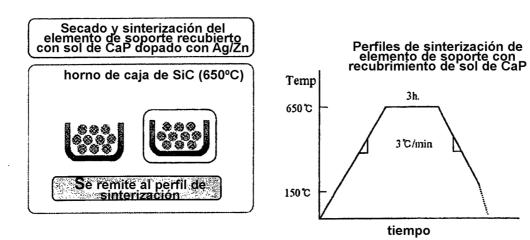
2º perfil de sinterización

FIG. 15QQ



FIG. 15UU

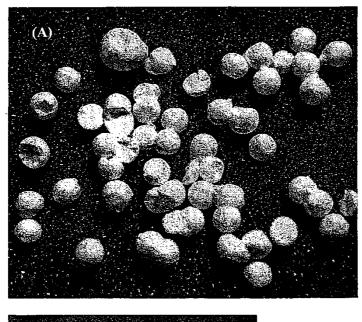

recubrimiento con sol de CaP


sumergir el elemento de soporte

soplador de aire

elemento de soporte

centrifugar tras retirar el 1er sol de CaP en exceso



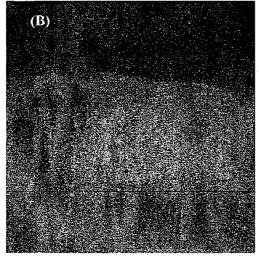


FIG. 15XX

FIG. 16

FIGS. 17A-B