

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 477 581

51 Int. Cl.:

A61B 17/56 (2006.01) **A61F 2/08** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 27.08.2010 E 10812664 (0)
 (97) Fecha y número de publicación de la concesión europea: 16.04.2014 EP 2470090

(54) Título: Aparato para la redistribución de fuerzas en uniones articulares

(30) Prioridad:

27.08.2009 US 237518 P 21.12.2009 US 288692 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.07.2014

(73) Titular/es:

COTERA, INC. (100.0%) 199 Jefferson Drive Menlo Park, CA 94025, US

(72) Inventor/es:

SHENOY, VIVEK; DEEM, MARK y GIFFORD, HANSON

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Aparato para la redistribución de fuerzas en uniones articulares

Campo de la invención

La presente invención está relacionada generalmente con el campo de la ortopedia. En particular, la presente invención se dirige a una técnica intervencionista y a un implante para redistribuir las fuerzas dentro de uniones articulares para proporcionar un efecto terapéutico.

Antecedentes

5

10

30

35

40

50

55

El cuerpo humano contiene muchas uniones que permiten la articulación de grados variables entre huesos. Las que permiten una articulación libre se denominan diartrosis. Unos ejemplos son la cadera, la rodilla, el codo y el hombro. Una variedad de tejidos conjuntivos se asocia con las uniones diartrosis, que incluyen los cartílagos intra-articulares que proporcionan almohadillado y superficies deslizantes lisas, los ligamentos que proporcionan las conexiones flexibles entre huesos y los tendones que se deslizan sobre las uniones y conectan los músculos para proporcionar movimiento. Cuando los tejidos conjuntivos se deterioran, se puede tener como resultado dolor de la unión y pérdida de función

Un ejemplo de tejido conjuntivo deteriorado es la osteoartritis de la rodilla u OA de rodilla. La OA de rodilla es una de las causas más comunes de discapacidad en los Estados Unidos. La OA se conoce a veces a como artritis degenerativa, o desgaste y rotura. La articulación de rodilla está formada por la articulación del fémur, la rótula y la tibia (véase la FIG. 3). Como otras uniones que se articulan libremente, la articulación de rodilla está encerrada por una cápsula fibrosa de unión, forrada por una membrana sinovial. La superficie inferior de la rótula se articula con la superficie femoral formando la unión rótulo-femoral. El extremo distal del fémur tiene dos superficies articulares curvas llamadas los cóndilos medial y lateral. Estas superficies articulan con los cóndilos tibiales medial y lateral, formando la unión tibio-femoral, que flexiona y extiende la rodilla. Dos discos fibro-cartilaginosos (es decir, meniscos) se encuentran entre los cóndilos tibial y femoral para compensar la incongruidad de los huesos que articulan. Debido a que el extremo distal del fémur tiene una forma curvada y asimétrica, la articulación de rodilla no sólo se flexiona y se extiende como una bisagra, sino que también se desliza y rota durante la flexión, que tiene como resultado un movimiento compleio para la unión.

La OA de rodilla se caracteriza por la rotura del cartílago articular dentro de la unión. Con el tiempo, el cartílago puede desgastarse enteramente, teniendo como resultado el contacto de hueso con hueso. Dado que los huesos, a diferencia del cartílago, tienen muchas neuronas, el contacto directo de huesos puede ser muy doloroso para el enfermo de OA. Además del dolor y la hinchazón, el enfermo de OA puede experimentar una pérdida progresiva de movilidad en la articulación de rodilla. Esto se debe a la pérdida del espacio de unión, en el que el cartílago articular se ha desgastado completamente. La OA afecta usualmente al lado de la rodilla más cercano a la otra rodilla (llamado el compartimiento medial) más a menudo que a la parte exterior (el compartimiento lateral). Una postura patizamba también coloca más presión de lo normal en el compartimento medial. La presión añadida conduce a más dolor y a una degeneración más rápida en el lugar que se aplasta el cartílago.

A menudo se recomiendan diversas medicaciones para reducir la hinchazón y el dolor de la OA. Otros tratamientos, tales como pérdida de peso, aparatos, órtesis, inyecciones de esteroides y fisioterapia también pueden ayudar a aliviar el dolor y restaurar la función. Sin embargo, dado que el cartílago articular es avascular, o carece de un suministro de sangre, la reparación y el crecimiento de un cartílago adulto es mínimo. Si el dolor o la inmovilidad llegan a ser demasiado graves y otras terapias no alivian los síntomas, llegan a ser necesarias las intervenciones quirúrgicas. A veces, puede ser apropiado el tratamiento quirúrgico de OA. Las cirugías pueden ir desde procedimientos artroscópicos para limpiar la unión quitando fragmentos sueltos de cartílago y suavizando los lugares ásperos en el cartílago a la sustitución total de rodilla por una rodilla artificial.

Otro tratamiento quirúrgico para la OA de rodilla es la osteotomía tibial proximal, un procedimiento destinado a realinear los ángulos en la parte inferior de la pierna para ayudar a cambiar la presión del lado medial al lateral de la rodilla. La meta es reducir el dolor y retrasar una degeneración adicional del compartimento medial.

En la osteotomía tibial proximal, se corta la parte superior (proximal) de la tibia y se cambia el ángulo de la unión. Esto convierte la extremidad de ser patizamba a recta o ligeramente genu valgo. Al corregir la deformidad de unión, la presión se quita del cartílago. Sin embargo, una osteotomía tibial proximal sólo es temporal antes de que se haga necesaria una sustitución total de rodilla. Los beneficios de la operación usualmente duran de cinco a siete años si ha tenido éxito. La ventaja a este planteamiento es que las personas muy activas todavía tienen su propia articulación de rodilla, y una vez que el hueso se cura no hay restricciones de actividades.

Otro desorden del tejido conjuntivo que se produce en la rodilla es una excesiva fuerza rotular de compresión (PCF, patellar compressive force). En pacientes que sufren artritis rotulo-femoral, unas excesivas fuerzas de compresión en la rótula ocasionan dolor y llevan a una degeneración de cartílago entre la rótula y el fémur.

Los tratamientos actuales para aliviar la excesiva PCF en tales pacientes implica una osteotomía sumamente invasiva para recolocar el punto de conexión del tendón rotular en la tibia. Un procedimiento de este tipo es el procedimiento de Maquet, que desplaza la tuberosidad tibial anteriormente mediante el corte de una porción del hueso y su recolocación con un injerto de hueso insertado por debajo. Mover el punto de conexión del tendón rotular anteriormente disminuye la PCF global al cambiar el brazo de palanca y el ángulo efectivo de la fuerza. Sin embargo, el procedimiento es sumamente invasivo, al implicar una alta morbidez quirúrgica y una significativa rehabilitación, que puede ser un reto para algunos pacientes. La falta de cumplimiento con la rehabilitación también puede disminuir los resultados positivos aún en procedimientos inicialmente exitosos.

- Además de la osteotomía de Maquet, hay otros procedimientos de tubérculo tibial como la osteotomía de Fulkerson y la osteotomía de Elmslie-Trillat que también desplazan el tendón rotular para reducir las fuerzas de compresión en la rótula. Las osteotomías también redistribuyen la carga en la rótula al transferir la carga a otras regiones de la rótula. Estos procedimientos alternativos implican similarmente una morbidez quirúrgica relativamente alta y requieren una significativa rehabilitación.
- Otro ejemplo de tejido conjuntivo deteriorado que lleva a dolor en la unión y pérdida de función de la unión es la displasia de cadera. La articulación de cadera es la unión más profunda y más grande en el cuerpo, y se forma entre la cabeza del fémur y el acetábulo de la pelvis (véase la FIG. 27). El propósito primario de la articulación de cadera es soportar el peso del cuerpo tanto en postura estática (por ejemplo, al estar de pie) como dinámica (por ejemplo, al correr y al andar).
- El documento WO2009/018365 describe un implante rotular que tiene una porción superior para residir debajo de un 20 tendón rotular y para elevar y/o inclinar frontalmente el tendón rotular, una porción inferior asentada en las proximidades de la tibia, así como en las inmediaciones de la rótula dentro de la cápsula de una articulación de rodilla
- La displasia de cadera es una deformación congénita o adquirida o una desalineación de la articulación de cadera. El estado puede ser de apenas perceptible a gravemente malformado o dislocado. La displasia de cadera a temprana edad a menudo puede ser tratada utilizando un arnés de Pavlik o una almohada de Frejka o una tablilla. En niños de más edad, los músculos iliopsoas o abductores de cadera tienen que tratarse quirúrgicamente porque se adaptan a la posición de la unión dislocada. La displasia de cadera a menudo se cita como causante de osteoartritis (OA) de la cadera a una edad relativamente joven. Las superficies dislocadas de apoyo de carga llevan a un desgaste mayor e inusual. El subsiguiente tratamiento con artroplastia total de cadera (sustitución de cadera) es complicado por la necesidad de cirugía de revisión debido a cambios esqueléticos a medida que el cuerpo envejece.
 - El tratamiento actual para el dolor relacionado con la displasia es la osteotomía de cuello femoral o la osteotomía peri-acetabular. Para los casos más avanzados, la única opción quirúrgica es una sustitución total de cadera. En cualquier caso, el tratamiento implica una cirugía extensa con largos protocolos de rehabilitación. De este modo existe la necesidad de un planteamiento de tratamiento menos invasivo pero eficaz.
 - El deterioro de los tejidos conjuntivos que llevan a dolor y pérdida de función de la unión no se limita a los humanos. Por ejemplo, la alta frecuencia de la displasia de cadera canina ha hecho de la cadera canina un foco de atención entre los ortopedistas veterinarios. La displasia de cadera canina usualmente empieza a manifestarse por una actividad disminuida con grados variables de dolor de la unión. A menudo estos signos se observan primero entre las edades de cuatro meses y un año.
 - En una articulación de cadera canina normal, la cabeza del fémur encaja congruentemente en el acetábulo (véanse las FIGS. 61A-B). En una unión displástica, la cabeza femoral se adapta muy mal al acetábulo. Hay una evidencia de más espacio entre los huesos. El desplazamiento de la cabeza femoral es la seña de identidad de la enfermedad. Al igual que con las situaciones de desalineación de articulación humana, para tratar la displasia de cadera se han ideado varios procedimientos quirúrgicos ostectomía de cabeza femoral, osteotomía intertrocantérica (ITO, intertrochanteric osteotomy), triple osteotomía pélvica (TPO, triple pelvic osteotomy) y sustitución total de cadera. De este modo también existe la necesidad de soluciones menos invasivas para situaciones de enfermedad y desalineación de articulaciones para aplicaciones caninas y otras veterinarias.
- Dada la ineficacia a largo plazo de los tratamientos no quirúrgicos actuales y el significativo traumatismo de los tratamientos quirúrgicos actuales, las alternativas con significativamente menor morbidez quirúrgica y menores requisitos de rehabilitación podrían ser beneficiosas para los pacientes que muestran síntomas tempranos así como avanzados de trastornos relacionados con tejido conjuntivo deteriorado de uniones articulares, tal como displasia de cadera y osteoartritis lateral de rodilla y rotulo-femoral.

Compendio de la descripción

5

35

40

45

Se utilizan unos implantes colocados selectivamente para abordar las patologías de las uniones que surgen de una distribución inapropiada de fuerzas. Al utilizar implantes con un tamaño y colocación apropiados como se describe en la presente memoria, se consigue el desplazamiento de los tejidos de destino conjuntivos y musculares que

rodean la unión para realinear los vectores de fuerza y/o alterar los brazos de palanca que cargan la unión para lograr efectos terapéuticos sin cortar hueso y con un corte mínimo de los tejidos conjuntivos.

La invención se define en la reivindicación 1. Unas realizaciones de la presente invención pueden aplicarse a virtualmente cualquier unión articular, incluso pero no limitado a la rodilla y la cadera. Además de los implantes y las prótesis relacionadas y el aparato descrito, unos ejemplos de métodos para tratar trastornos de uniones y métodos para instalar implantes y prótesis para tratamientos menos invasivos de uniones.

En un ejemplo de realización de la invención, se describe un aparato para tratar una unión articular para efectuar una distribución de fuerza en la unión. El ejemplo de aparato es para tratar uniones articulares que incluyen por lo menos un primer y un segundo hueso con unas superficies articulares que se miran, en donde los huesos se colocan uno respecto al otro mediante tejidos conjuntivos y músculos asociados. Estos tejidos comprenden unos tejidos de destino para la terapia con el aparato. Este ejemplo de aparato puede comprender un miembro de apoyo con una superficie de apoyo dispuesta en el miembro de apoyo. El miembro de apoyo se configura y dimensiona para la colocación en una ubicación terapéutica próxima a por lo menos dicho tejido de destino y tiene un grosor suficiente para desplazar el tejido de destino desde su recorrido natural a un recorrido terapéutico cuando se coloca en la ubicación terapéutica. La superficie de apoyo dispuesta en el miembro de apoyo se configura para acoplarse sin traumatismo al tejido de destino y para permitir el movimiento del tejido de destino a lo largo del mismo. Más adelante en esta memoria se describen con más detalle unas estructuras, configuraciones, dimensiones y modalidades de fijación específicas.

En otro ejemplo, se describe un método para tratar una unión articular para efectuar una distribución de fuerza en la unión. El ejemplo de método es adecuado para tratar uniones articulares que incluyen por lo menos un primer y un segundo hueso con una superficies articulares que se miran, en donde los huesos se colocan uno respecto al otro mediante tejidos conectivos y músculos asociados. El ejemplo de método comprende seleccionar por lo menos uno de los tejidos conectivos y músculos asociados como tejido de destino para el tratamiento, desplazar el tejido de destino sin cortar los huesos o el tejido de destino, y redistribuir la carga en la unión para lograr un efecto terapéutico mediante el desplazamiento. Más adelante en esta memoria se describen con detalle unas metodologías alternativas y más específicas.

Breve descripción de los dibujos

5

10

15

30

40

Con el propósito de ilustrar la invención, los dibujos muestran unos aspectos de uno o más ejemplos de realizaciones de la invención. Sin embargo, debe entenderse que la presente invención no se limita a las disposiciones e instrumentos precisos mostrados en los dibujos, en donde:

La FIG. 1 es una vista lateral parcialmente cortada, de una rodilla, que ilustra tejidos conjuntivos y músculos asociados con la rodilla y unos ejemplos esquemáticos de implantes según unas realizaciones de la presente invención.

La FIG. 2 es una vista posterior parcialmente cortada de la rodilla derecha, que ilustra tejidos conjuntivos y músculos asociados con la rodilla y unos ejemplos esquemáticos de implantes según unas realizaciones adicionales de la presente invención.

La FIG. 3 es una vista frontal o anterior de los huesos de la articulación de la rodilla derecha.

La FIG. 4 es un diagrama esquemático que ilustra el ciclo de andar humano, el momento de la articulación de rodilla y los ángulos de flexión en el ciclo de andar, e incluye un diagrama secuencial que ilustra la posición del tejido conjuntivo durante el ciclo de andar con respecto a un ejemplo de realización de la presente invención.

La FIG. 5 es un diagrama corporal libre que ilustra las fuerzas que actúan sobre una articulación de rodilla normal durante una parte del ciclo de andar.

La FIG. 6 es un diagrama corporal libre que ilustra las fuerzas que actúan sobre una articulación de rodilla con una carga medial excesiva.

La FIG. 7 es un diagrama corporal libre que ilustra las fuerzas que actúan sobre una articulación de rodilla con un implante según un ejemplo según la descripción.

Las FIGS. 8 y 8A son una vista en perspectiva y una vista en sección transversal, respectivamente, de una prótesis sumisa blanda según un ejemplo según la descripción.

La FIG. 9 es una vista anterior esquemática del extremo distal de un fémur con una prótesis implantada según un 50 ejemplo según la descripción.

La FIG. 10 es una vista anterior esquemática del extremo distal de un fémur con una prótesis implantada según un ejemplo alternativo.

- Las FIGS. 11, 12, 13, 13A y 13B son unas vistas en planta de prótesis según unos ejemplos de realizaciones alternativas de la presente invención.
- La FIG. 14 es una vista en sección transversal por la línea 14-14 de la FIG. 11 que muestra una porción de apoyo/desplazamiento de una prótesis.
- 5 La FIG. 15 es una vista anterior de una articulación de rodilla derecha con una prótesis según un ejemplo de realización de la invención implantada sobre la misma.
 - Las FIGS. 16, 17, 17A, 18 y 19 son unas vistas laterales esquemáticas y una vista detallada de unas realizaciones alternativas adicionales de la presente invención que incorporan unos miembros ajustables de apoyo.
- La FIG. 20 es una vista anterior de una rodilla humana que ilustra la colocación de otro ejemplo para abordar la distribución de fuerza lateral en la rodilla.
 - La FIG. 21 es una vista de una articulación de rodilla con una prótesis de amplitud de unión según otro ejemplo de realización de la presente invención.
 - La FIG. 22 es un diagrama corporal libre de una articulación de rodilla humana mientras sube escaleras.
- La FIG. 23A es un diagrama corporal libre de una rodilla humana que muestra la fuerza rotular resultante de compresión en una rodilla normal.
 - La FIG. 23B es un diagrama corporal libre de una rodilla humana que muestra la fuerza resultante modificada de compresión con un ejemplo de realización de la presente invención.
 - La FIG. 24 es una sección sagital de una rodilla humana con un ejemplo según la descripción implantada en la misma para reducir la fuerza rotular de compresión.
- 20 La FIG. 25 es una vista anterior de una rodilla humana que ilustra el ejemplo de la FIG. 24 como se dispone bajo los tejidos conjuntivos.
 - La FIG. 26 es una vista anterior de una rodilla humana que ilustra la colocación de un ejemplo adicional según la descripción para abordar la distribución de fuerzas laterales y la fuerza de compresión rotular como se dispone bajo los tejidos conjuntivos.
- La FIG. 27 es una vista frontal de un lado correcto de una cadera, que muestra la conexión de la cadera con el fémur, y con los ligamentos quitados para mostrar el detalle.
 - La FIG. 28 es una vista posterior de la cadera de la FIG. 27, con los ligamentos en su sitio.
 - La FIG. 29 es una vista posterior de una cadera que muestra los músculos glúteos, y específicamente el glúteo mayor y el glúteo medio.
- 30 La FIG. 30 es una vista posterior de la cadera de la FIG. 29, que muestra los músculos inferiores de la articulación derecha de cadera.
 - La FIG. 31 es un diagrama que representa las fuerzas ejercidas en una articulación de cadera.
 - Las FIGS. 32A, 32B y 32C son unos diagramas que muestran el efecto del ángulo femoral en las fuerzas ejercidas en una articulación de cadera.
- Las FIGS. 33A y 33B son unos diagramas que representan una sección transversal de una articulación de cadera con una prótesis instalada en la misma según un ejemplo según la descripción.
 - Las FIGS. 34A y 34B son unos diagramas de fuerza que muestran el efecto de la prótesis de las FIGS. 33A B en la fuerza de abductor de cadera según un ejemplo según la descripción.
 - La FIG. 35 muestra una prótesis que se ancla al fémur y a la pelvis según un ejemplo según la descripción.
- 40 La FIG. 36 muestra una prótesis que incluye dos pestañas para un lado de fémur de la prótesis según un ejemplo según la descripción.
 - La FIG. 37 muestra un ejemplo según la descripción similar a la prótesis de la FIG. 36, pero que no tiene estructuras de anclaje.
- La FIG. 38 muestra una vista anterior de un ejemplo de una prótesis instalada en una articulación de cadera según 45 otro ejemplo según la descripción.

- La FIG. 39 es una representación de la prótesis de la FIG. 38, con los ligamentos y los músculos abductores quitados.
- La FIG. 40 muestra una prótesis con forma de hueso de perro que se extiende transversa a un cuello femoral según un ejemplo adicional según la descripción.
- 5 La FIG. 41 muestra una prótesis con forma de riñón que se extiende transversa a un cuello femoral según un ejemplo según la descripción.
 - La FIG. 42 muestra una prótesis montada en una escuadra con forma de U que se extiende alrededor de un cuello femoral según un ejemplo según la descripción.
- La FIG. 43 muestra una prótesis montada como un capuchón en el trocánter mayor según otro ejemplo según la 10 descripción.
 - La FIG. 44 muestra una prótesis que incluye un surco o canal para recibir los músculos abductores de cadera según un ejemplo según la descripción.
 - La FIG. 45 muestra una prótesis que incluye unos rodillos externos para permitir a los músculos abductores de cadera rodar sobre la prótesis cuando el fémur se mueve según un ejemplo según la descripción.
- Las FIGS, 46, 47, 48 y 49 muestran otro ejemplo de una prótesis que incluye dos patas conectadas por una bisagra.
 - La FIG. 50 muestra una prótesis que tiene dos elementos abisagrados, cada uno tiene una primera y una segunda pata, con forma de luna creciente, conectadas por una bisagra, los dos elementos abisagrados se anidan juntos según un ejemplo adicional según la descripción.
 - La FIG. 51 muestra la prótesis de la FIG. 50 instalada en un trocánter mayor.
- 20 La FIG. 52 muestra una correa que se extiende alrededor del cuello femoral y los músculos abductores de cadera según un ejemplo según la descripción.
 - Las FIGS. 53, 54, 55 y 56 muestran unos ejemplos de los mecanismos de cincha que pueden utilizarse para la correa de la FIG. 52 según un ejemplo según la descripción.
- La FIG. 57 muestra una conexión alternativa de una prótesis en la que la prótesis se conecta a los músculos abductores de cadera a través de una banda.
 - La FIG. 58 es una vista anterior de una cadera humana con un implante alternativo montado según un ejemplo alternativo según la descripción.
 - La FIG. 59 es una vista lateral del ejemplo mostrado en la FIG. 58.
 - La FIG. 60 es una vista lateral del implante mostrado en las FIGS. 58 y 59.
- 30 Las FIGS. 61A y 61B es una vista lateral y una anterior, respectivamente, de la cadera y un miembro trasero derecho canino.
 - La FIG. 62 es un diagrama que ilustra la fuerza vertical ejercida en la cadera canina cuando se anda normal.
 - La FIG. 63 es un diagrama que ilustra la orientación relativa del fémur y la pelvis en la fase de postura en el ciclo de andar en un miembro trasero canino.
- La FIG. 64 es un diagrama corporal libre que ilustra las fuerzas y los momentos estáticos aplicados en la articulación de cadera trasera canina en una postura a tres patas.
 - La FIG. 65 es una vista anterior de una cadera canina que incluye un implante según un ejemplo según la descripción.
- La FIG. 66 es un diagrama corporal libre que ilustra la modificación de la biomecánica de la articulación de cadera canina que incluye un implante según un ejemplo según la descripción.
 - La FIG. 67 es un diagrama de flujo simplificado que muestra un régimen de tratamiento según un ejemplo de realización de la presente invención.

Descripción detallada

Las condiciones de unión que son el resultado o exacerban una distribución desequilibrada de fuerzas por la unión pueden ser abordadas en unas realizaciones de la presente invención por técnicas intervencionistas que implican una redistribución de las fuerzas ejercidas en la unión sin la necesidad de cirugías sumamente invasivas que

requieren un traumatismo significativo a la unión y a los tejidos conjuntivos y músculos asociados. En algunas realizaciones de la invención, se pueden aplicar selectivamente mayores fuerzas a un lado de una unión al forzar a tejidos conjuntivos y/o músculos selectos (tejidos de destino) alrededor de un recorrido más largo o más angulado, aumentando de este modo la magnitud, alterando la dirección efectiva, y/o cambiando el brazo de palanca de las fuerzas ejercidas por tales músculos o tejidos en la unión. Esto puede lograrse, por ejemplo, mediante implantes apropiadamente conformados que pueden colocarse bajo tejidos de destino seleccionados de manera relativamente no invasiva comparada con las técnicas quirúrgicas actuales para abordar tales situaciones.

5

10

15

30

35

40

45

50

En un ejemplo más específico, la aplicación particular a la articulación de rodilla, se propone que al colocar uno o más implantes bajo tejidos de destino seleccionados, puede alterarse la palanca con la que las fuerzas de músculo actúan sobre la unión para afectar positivamente a la carga de la unión. Con respecto a la osteoartritis de la rodilla, tales tejidos de destino pueden incluir los músculos, los tendones o los ligamentos del lado lateral de la unión que contrarrestan las fuerzas mediales y alivian el excesivo contacto superficial de unión del lado medial. Como se ilustra esquemáticamente en las FIGS. 1 y 2, tal prótesis podría colocarse debajo de tejidos de destino, que incluyen pero no se limitan al tendón del bíceps femoral (implantes 10A y 10B), la banda iliotibial o el músculo tensor de la facia lata (implante 10C), tendón cuádriceps-rotular lateral (implante no se muestra), el gastrocnemio lateral (implante no se muestra), poplíteo o el ligamento colateral externo (implante 10E) para desplazar lateralmente el músculo/tendón/ligamento pertinente. Los médicos pueden identificar fácilmente otros tejidos de destino basándose en una estructura anatómica particular del paciente e indicaciones a abordar.

En otros ejemplos aplicables a la cadera, una prótesis se dispone superficial a la cápsula de la cadera pero bajo por lo menos una porción del complejo de músculo abductor de cadera para alterar el vector de fuerza proporcionado por los abductores de cadera. Como se ilustra por ejemplo en las FIGS. 33A-B, tal prótesis (implante 220) puede colocarse o disponerse bajo cualquiera de los músculos abductores, o una combinación de varios de ellos, para lograr el vector resultante deseado de fuerza. Cualquiera de los músculos implicados en la abducción de cadera puede ser el destino, incluido el glúteo medio GMed, el glúteo menor GMen, el psoas, el piriforme PIR, el tensor de la facia lata, el cuadrado lumbar y el recto femoral. En unos ejemplos la prótesis se colocaría en el tejido entre los músculos del glúteo y los ligamentos L, pero la prótesis puede colocarse en otras ubicaciones.

Ventajosamente, los implantes según las realizaciones de la invención pueden colocarse fuera de la cápsula de unión para minimizar la interferencia con la función de la unión y el riesgo de infección y otros problemas asociados con la colocación de cuerpos extraños dentro de la cápsula de unión. Además de aliviar el dolor y potencialmente alterar la progresión de la degeneración articular, colocar la prótesis bajo los tejidos laterales de destino también podría reducir la laxitud lateral de la unión. Las bolsas asociadas con los tejidos de destino son candidatos probables como ubicaciones para tales implantes y pueden desplazarse o retirarse y reemplazarse por los implantes. Sin embargo no se necesita una colocación precisa en la ubicación de la bolsa y dependiendo de la situación clínica los implantes según realizaciones de la presente invención también pueden colocarse en lugares desplazados de la bolsa asociada.

Antes de abordar más detalles de ejemplos de realizaciones de la presente invención, es útil tener un entendimiento básico de la biomecánica de unión, en un primer ejemplo, la rodilla. Como se ilustra en la FIG. 3, la articulación de rodilla implica cuatro huesos, el fémur por encima, el peroné y la tibia debajo y la rótula ubicada centralmente por delante. La orientación de genu varo y genu valgo de la extremidad más baja (definida como mirando a la tibia desde la rodilla hacia el tobillo) comúnmente se denomina, respectivamente, como piernas arqueadas (genu varo) y patizambo (genu valgo).

Dado que el ciclo de andar tiene un efecto crítico en la carga de unión, ahora se explicará el ciclo de andar normal de un humano haciendo referencia a la FIG. 4. El ciclo de andar empieza cuando un pie contacta con el suelo (A) y termina cuando ese pie contacta con el suelo otra vez (G). De este modo, cada ciclo empieza en el contacto inicial con una fase de postura y continúa por una fase de balanceo hasta que el ciclo termina con el siguiente contacto inicial del miembro. (Cabe señalar que la descripción del ciclo de andar se hace con referencia al movimiento de la pierna sombreada en negro en la FIG. 4).

La fase de postura dura aproximadamente el 60 por ciento, y la fase de balanceo aproximadamente el 40 por ciento, de un solo ciclo de andar. Cada ciclo de andar incluye dos períodos cuando ambos pies están en el suelo. El primer período de doble apoyo de miembro empieza con un contacto inicial, y dura del primer 10 al 12 por ciento del ciclo. El segundo período de doble apoyo de miembro se produce en el último 10 al 12 por ciento de la fase de postura. Cuando el miembro en postura se prepara para dejar el suelo, el miembro opuesto contacta con el suelo y acepta el peso del cuerpo. Los dos períodos de doble apoyo de miembro dura del 20 al 24 por ciento de la duración total del ciclo de andar.

Cuando el peso es soportado igualmente en ambos pies en reposo o en la fase de andar de doble postura (A-B y D-E en la Fig. 4), la fuerza que pasa a través de la rodilla es sólo una fracción del peso corporal y no hay momento de flexión alrededor de ninguna de las rodillas. Sin embargo, la rodilla se somete a la máxima tensión cuando el peso corporal pasa a una sola pierna (B-D).

Las fuerzas resultantes para una rodilla sana en la postura de una sola pierna se muestran en el diagrama corporal libre de la FIG. 5, en donde x representa el brazo de palanca medial (varo); "y" representa el brazo de palanca lateral por el que funcionan las estructuras laterales de la rodilla, P representa el peso soportado por la rodilla, y R representa la fuerza resultante de reacción en la unión. Como resultado, la pierna tiene una orientación normal, ligeramente valgo, con la vertical y la línea de plomada desde el centro de gravedad cae medial al centro de la rodilla

La disposición de fuerzas ejerce un momento de flexión en la rodilla que actúa a través de una palanca medial que tendería a abrir la rodilla hacia varo, dicho de otro modo abrir el lado lateral de la unión. Al estar de pie en una pierna en reposo con la rodilla completamente extendida, los músculos laterales, tendones, ligamentos y la cápsula están apretados. Estas estructuras resisten el momento de flexión varo, apalancado medialmente. En la situación dinámica al andar, múltiples músculos que cruzan la unión en el centro o al lado lateral del centro se combinan para proporcionar una resistencia lateral a la apertura del lado lateral de la unión debido a la palanca medial. Estos incluyen tejidos de destino, tales como el tendón cuádriceps-rotular, el gastrocnemio lateral, poplíteo, bíceps y tracto iliotibial (véanse las FIGS. 1 y 2). La suma de las fuerzas ejercidas por el tejido de destino puede representarse como L en la FIG. 5, que funciona a través del brazo de palanca y. Esta combinación determina la magnitud y la dirección del vector resultante R de la carga de la unión tibial femoral. En una rodilla sana, esta resultante se centra aproximadamente entre los cóndilos lateral y medial.

Con un ángulo creciente varo de rodilla, el brazo de palanca medial aumenta, lo que exige una mayor reacción lateral L para evitar que la unión llegue a estar excesivamente cargada en el lado medial. Si las fuerzas que instan la rodilla a un estado varo llegan a un nivel de umbral, como se ilustra esquemáticamente en la FIG. 6, se supera la capacidad de los tejidos conjuntivos asociados para compensar en su estado natural de modo que la carga R en la unión es soportada en el compartimento medial, lo que lleva a un desgaste excesivo, y finalmente a un dolor de la unión potencialmente significativo. Esta situación es una condición que ocasiona la osteoartritis de la rodilla.

La situación ilustrada en la FIG. 6 puede ser abordada según unas realizaciones de la invención mediante la alteración de la posición de los tejidos de destino que actúan sobre la unión con el fin de ajustar uno o más de la magnitud de fuerza, ángulo y/o brazo de palanca. De este modo, como se ha mencionado antes, en unos ejemplos de realizaciones, se coloca uno o más implantes bajo el tejido de destino seleccionado para alterar beneficiosamente la distribución de fuerzas mediante el aumento del momento lateral (a izquierdas en la figura).

La FIG. 7 ilustra un implante genérico 10 colocado a lo largo de la unión para ayudar a redistribuir las fuerzas que actúan sobre la unión para proporcionar un efecto terapéutico. Como se muestra en esta memoria, el implante 10 crea un espacio adyacente a la unión que fuerza a los tejidos de destino (no se muestra) que discurre a lo largo del mismo para asumir un recorrido más largo sobre la superficie de implante. Ese recorrido más largo puede tener varios efectos beneficiosos, incluido aumentar el brazo de palanca lateral y', mover la línea de acción para el tejido de destino a un ángulo más efectivo y/o tensar el tejido de destino para aumentar la amplitud del vector de fuerza L'.

Como resultado, se aumenta el momento lateral efectivo para contrarrestar eficazmente el momento medial creado por el peso soportado P. Esto mueve lateralmente la carga R en la unión fuera del compartimento medial y atrás a una ubicación central más normal. El implante 10 puede adoptar muchas formas como se menciona con detalle más adelante.

La cantidad de desplazamiento del tejido de destino no debe ser grande con el fin de tener potencialmente un efecto substancial en el creciente par de torsión lateral para ayudar en la descarga del compartimento medial. Por ejemplo, una persona media tiene un brazo de palanca lateral normal (y) de aproximadamente 50 mm. De este modo, un desplazamiento lateral que aumenta el brazo de palanca (y') sólo aproximadamente 10-15 mm puede aumentar el par de torsión lateral aproximadamente el 20% -30%. Dependiendo de la geometría de la unión de un paciente particular, pueden ser posibles desplazamientos laterales de entre aproximadamente 5 mm y aproximadamente 30 mm, con desplazamientos en el intervalo de aproximadamente 10 mm a aproximadamente 30 mm, o más específicamente de aproximadamente 10-20 mm, más típico.

Ejemplo

5

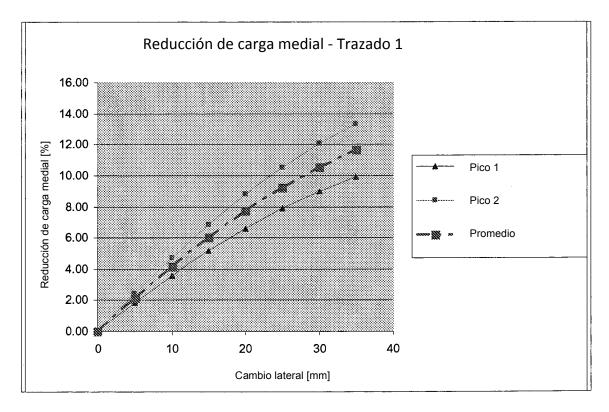
10

15

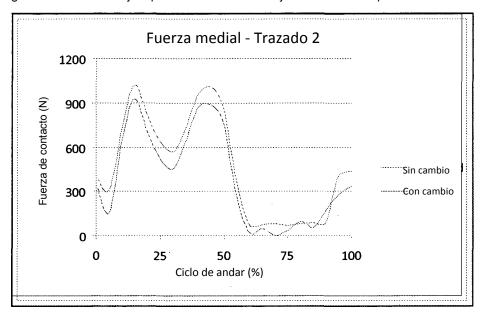
20

40

4.5


50

55


60

Para evaluar el cambio en la carga en el compartimento medial de la rodilla debido al desplazamiento lateral del tejido de destino, se realizaron unas simulaciones utilizando un modelo computacional de la rodilla para determinar un porcentaje aproximado de reducción en la fuerza de contacto medial. (Para obtener detalles del modelo computacional, véase el documento *Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait*, pág. 945-952, Journal of Biomechanics 2010, de Lin, Y. C. Walter, J.P., Pandy, M. G. y Fregly, B.J., que se incorpora en esta memoria por referencia). Se calcularon las fuerzas de contacto medial en los dos puntos del ciclo de andar con fuerzas de contacto medial máximas (aproximadamente 15% y 50% del ciclo de andar en los picos 1 y 2, respectivamente) como una función del desplazamiento lateral de los músculos laterales de rodilla. Los músculos laterales se desplazaron de 0 a 35 mm en incrementos de 5 mm como se ha descrito con respecto a unas realizaciones de la invención. En esta simulación, los orígenes de los tres músculos laterales de rodilla (tensor de facia lata, bíceps femoral porción larga, y bíceps femoral porción corta) se desplazaron lateralmente desde el fémur mientras no había cambio en los lugares de inserción de los músculos. Los resultados de estas simulaciones, presentados gráficamente en el Trazado 1 más adelante, mostraron que la carga medial promedio podría reducirse

hasta aproximadamente un 12% en un desplazamiento de aproximadamente 35 mm según unas realizaciones de la invención.

También se realizaron simulaciones para la fuerza de contacto medial absoluta como una función del porcentaje de fase de postura con el origen de los músculos laterales desplazado 30 mm. En esta simulación, los orígenes de los tres músculos laterales de rodilla (tensor de la facia lata, bíceps femoral porción larga y bíceps femoral porción corta) se desplazaron lateralmente desde el fémur mientras no había cambio en los lugares de inserción de los músculos. Los resultados de esta simulación, representados gráficamente más adelante en el Trazado 2, muestran que las realizaciones de la invención simulada generalmente reducen la fuerza de contacto medial en el recorrido de movimiento. En las condiciones simuladas, en unos puntos del ciclo de andar fueron factibles unas reducciones de fuerza en el intervalo de 100 N. El Trazado 2 también representa las fuerzas de contacto medial sin el implante. La línea sin cambio generalmente superior representa la simulación ejecutada sin el implante y la línea de cambio generalmente más baja representa la simulación ejecutada con el implante.

5

10

15

20

2.5

30

35

40

Los implantes pueden configurarse y pueden asegurarse de diversas maneras como se describe más adelante con detalle. En general, tales implantes pueden ser prótesis sumisas rígidas, semirrígidas o blandas aseguradas al hueso adyacente o a los tejidos circundantes. Los implantes también pueden ser mantenidos en el sitio por los tejidos circundantes sin utilizar un elemento de fijación. Las prótesis sumisas blandas podrían llenarse de agua, salino, silicona, hidrogel, etc., suficiente para mover el tejido lateralmente como se ha descrito antes. Tal prótesis sumisa blanda podría colocarse en un estado deshinchado y luego hincharse hasta el grosor apropiado. Como alternativa, los implantes pueden llenarse de otros materiales fluidos, incluidas cuentas u otras partículas hechas de metal, polímero o material de espuma, opcionalmente en un medio líquido, que se adapta a las superficies adyacentes de hueso o de tejido. Los materiales tixotrópicos, tal como los hidrogeles derivados del ácido hialurónico, cambian sus propiedades mecánicas cuando se les aplica tensión en cizalla. Un implante lleno de tales materiales podría hacerse para cambiar la cantidad de desplazamiento lateral que se proporciona sobre la base de la tensión en cizalla que se ve desde los tejidos de destino superpuestos en varios puntos en el ciclo de andar. Los implantes pueden revestirse con materiales para reducir el rozamiento, tal como revestimientos hidrófilos o revestimientos de politetrafluoroetileno (PTFE). Adicionalmente o como alternativa, la prótesis puede ser ajustable para permitir que las dimensiones, tal como el grosor de la prótesis, sean ajustadas durante la cirugía o en cualquier momento después de la cirugía. Las prótesis rígidas o substancialmente rígidas podrían hacerse de materiales conocidos de implante compatibles con hueso, tal como el titanio o el acero inoxidable. Ya sea rígida o sumisa la superficie de la prótesis debe diseñarse para minimizar los efectos negativos del movimiento de los tejidos conjuntivos a través de la misma. Tal prótesis podría implantarse artroscópicamente o utilizando un planteamiento quirúrgico de abertura o miniabertura.

En la FIG. 8 se ilustra un ejemplo de un implante sumiso blando. En este ejemplo, el implante 20 incluye un miembro de cuerpo 22 hecho completa o parcialmente de un material sumiso blando como se ha descrito antes. El miembro de cuerpo 22 tiene una superficie superior de apoyo (mira lateralmente) 21 configurada para acoplarse de manera deslizante al tejido de destino que va a ser desplazado. La superficie de apoyo 21 forma de este modo una porción de desplazamiento del implante. La superficie de apoyo se hace preferiblemente o se reviste con un material lúbrico, tal como PTFE, o un material hidrófilo para reducir el rozamiento con el tejido de destino. El miembro de cuerpo 22 se forma además para mejorar su capacidad de permanecer en la posición deseada con respecto al tejido de destino. En este sentido, el miembro de cuerpo 22 tiene una forma generalmente de reloj de arena con una sección central 24 más estrecha y más delgada y unas secciones extremas 26 más anchas y más gruesas para seguir los contornos de los tejidos de destino. Preferiblemente, el miembro de cuerpo 22 se forma de tal manera que la

superficie superior de apoyo 21 forma una depresión o canal longitudinales que guían y retienen el tejido de destino en la superficie de apoyo a medida que desliza con relación al mismo. Por consiguiente, el miembro de cuerpo 22 puede tener un grosor más grande a lo largo de su zona media, o las orillas laterales pueden ser curvadas o dobladas hacia arriba para evitar que el tejido de destino se deslice fuera de las orillas del miembro de cuerpo 22. El miembro de cuerpo 22 se forma preferiblemente para deslizar bajo el tejido de destino y ser auto-retenido en su posición debido a la compresión entre los tejidos adyacentes y el rozamiento con estos, sin necesidad de unos sujetadores aparte. Opcionalmente, el lado inferior (opuesto a la superficie superior de apoyo) puede tener unas características que aumentan el rozamiento, tales como bultos, escamas, o salientes que se acoplan con el tejido subyacente para aumentar la retención, formando de este modo una porción de fijación. Como opción adicional, con el fin de asegurar el implante en la ubicación deseada, pueden proporcionarse unos medios de conexión, tales como unos agujeros 28 para unos sujetadores tales como suturas o correas, en uno o en ambos extremos del miembro de cuerpo 22, o una correa o banda flexibles 29 configuradas para envolver alrededor del tejido de destino pueden acoplarse o formarse integralmente con el extremo superior o el inferior del miembro de cuerpo 22. En un ejemplo, un implante configurado generalmente de la manera del implante 20 puede adecuarse bien para la inserción bajo el tracto iliotibial.

5

10

15

20

25

30

35

50

55

60

En otro ejemplo, como se muestra en la FIG. 9, la prótesis 30 proporciona un desplazamiento lateral mediante la inserción de un implante pasivo que ocupa espacio bajo el tejido de destino como se ha descrito antes. La prótesis 30 comprende un miembro de cuerpo 32 que define una porción de desplazamiento 33 y una porción de fijación 34. La porción de desplazamiento 33 es la porción responsable de desplazar los tejidos de destino según sea necesario para lograr la redistribución de fuerza. La superficie medial de la porción de desplazamiento 33 se conforma preferiblemente para adaptarse a la forma externa del cóndilo femoral lateral y puede tener una forma de gancho o de cuchara en su extremo distal para envolver parcialmente alrededor de la faceta distal del cóndilo femoral lateral. La porción de desplazamiento 33 es preferiblemente redondeada y lisa en su lado lateral para proporcionar una superficie lisa sobre la que pueden deslizar los tejidos blandos desplazados. La porción de fijación 34 se conforma de modo que esté más plana bajo los músculos y tendones más arriba del fémur, lejos de la complejidad de las zonas adyacentes a los cóndilos femorales, en los que se pueden producir muchos cruces y conexiones de tejidos diferentes. Este segmento más craneal del fémur permitiría un acceso más fácil al hueso subyacente y potencialmente una mejor fijación. La fijación podría lograrse mediante medios conocidos para implantes asegurados a hueso, tal como tornillos 36 de hueso, chinchetas, anclajes o adhesivos, por nombrar unas posibilidades. El implante podría hacerse de algún material adecuado, va sean materiales duros o blandos. En este caso, silicona de diversos grados y durómetros, titanio, acero inoxidable o carbono pirolítico son unos ejemplos de materiales que serían unas elecciones apropiadas.

En el ejemplo, dependiendo de condiciones específicas de paciente, puede ser deseable asegurar directamente la prótesis al fémur en la región de cóndilo. La prótesis 40, mostrada en la FIG. 10, ilustra un ejemplo de tal prótesis. En este ejemplo, las porciones de fijación y de desplazamiento se colocan juntas dentro del miembro de cuerpo 42 más cerca de los cóndilos del fémur. La configuración del miembro de cuerpo con respecto a su función de desplazamiento sería esencialmente igual a como se ha descrito antes. La fijación también sería substancialmente como se ha descrito antes, por ejemplo se ilustran unos tornillos 44, excepto porque se adaptan para permitir colocar juntas funciones de fijación y de desplazamiento.

En varios ejemplos alternativos, la porción de desplazamiento y la porción de fijación de la prótesis según la invención pueden tener una construcción mono-cuerpo, o pueden formarse de dos o más piezas que dependen de la función deseada. Por ejemplo, la porción de fijación puede ser de acero inoxidable o titanio con textura para aumentar el crecimiento entrante óseo y una sólida fijación de tornillo, mientras la porción de apoyo/desplazamiento podría hacerse de un material diferente, por ejemplo, carbono pirolítico para aumentar la capacidad de los tejidos superpuestos para deslizarse a través del implante, o PTFE, silicona u otro polímero de bajo rozamiento con características adecuadas de desgaste para proporcionar una superficie de apoyo más lisa. En unas alternativas adicionales, la porción de desplazamiento podría comprender un sustrato de un material con una capa superpuesta que forma el material de apoyo. El sustrato podría conectarse o estar contiguo a la porción de fijación.

Las porciones de fijación y de desplazamiento pueden estar alineadas entre sí, o pueden estar desplazadas entre sí, o una combinación de ambos con múltiples porciones de desplazamiento. En las FIGS 11-13B se ilustran unos ejemplos de realizaciones alternativas en este sentido. Por ejemplo, la prótesis 50 de la FIG. 11 incluye un miembro de base 52 que se configura para colocar la porción de desplazamiento 53 anteriormente con respecto a la porción de fijación 54. El miembro de base 52 tiene de este modo una sección generalmente recta configurada para montarse en el fémur y una sección curva que se extiende anteriormente desde la sección recta cuando se implanta. La porción de desplazamiento 53 se conecta a la sección curva y se extiende inferiormente para colocarse debajo de los tejidos de destino adyacentes el cóndilo femoral lateral. En esta realización, la porción de desplazamiento 53 puede tener la superficie lateral y la medial, o una de ellas, de la misma, una superficie de apoyo 56 de un material diferente con menor rozamiento que el resto de la porción de apoyo 53. Como alternativa, el miembro de base 52, la porción de desplazamiento 53 y/o la superficie de apoyo 56 pueden ser del mismo material, y pueden tener una construcción mono-cuerpo. En la porción de fijación se proporcionan unos agujeros de fijación 58 para recibir unos tornillos para la conexión al hueso.

La prótesis 60 proporciona otro ejemplo de realización, mostrada en la FIG. 12, que incluye un miembro de base 62 que tiene una sección de amplitud 61 entre la porción de desplazamiento 63 y la porción de fijación 64. Una vez más, los agujeros de fijación 68 se proporcionan como unos medios alternativos de fijación, y puede proporcionarse una superficie de apoyo 66 aparte. Como alternativa, el miembro de base 62 y la porción de desplazamiento 63 pueden ser del mismo material, y pueden tener una construcción mono-cuerpo. En esta realización, la sección de amplitud 61 se extiende generalmente vertical entre la porción de fijación 64 y la porción de desplazamiento 63 y está desplazada posteriormente con respecto a la porción de fijación 64 y a la porción de desplazamiento 63 para evitar características anatómicas críticas adyacentes a la unión. Dependiendo de condiciones específicas de paciente y de la anatomía de unión, la sección de amplitud puede diseñarse para permitir una fijación segura en un lugar adecuado mientras todavía se coloca la porción de desplazamiento bajo el tejido de destino al tiempo que se minimiza el traumatismo en los tejidos importantes que intervienen.

5

10

15

20

25

30

35

40

45

50

55

60

En todavía otro ejemplo de realización, como se muestra en la FIG. 13 pueden proporcionarse múltiples porciones de desplazamiento. Por ejemplo, la prótesis 70 incluye un miembro de base 72 que define la porción de desplazamiento anterior 73A y la porción de desplazamiento posterior 73B. Estas se unen mediante la sección de amplitud 71 a la zona de fijación 74 en la que se encuentran los agujeros de fijación 78. En esta realización, cada una de las porciones de desplazamiento 73A y 73B incluye una superficie de apoyo 76. De nuevo, la superficie de apoyo puede ser integral, o conectarse a los miembros de base. Además, en esta o en cualquier otra realización de esta memoria, las porciones de desplazamiento 73A, 73B pueden acoplarse de manera movible con la sección de amplitud 71 o la zona de fijación 74 por medio de un acoplamiento rotatorio o deslizante 75, por ejemplo como se muestra en la Fig. 13A, de ese modo es movible con el movimiento de la unión. Como alternativa, la sección de amplitud 71 o las uniones entre ella y las porciones de desplazamiento pueden incluir unas porciones flexibles 77 para desviarse en respuesta al movimiento de la unión, como se muestra en Fig. 13B. En una alternativa adicional, la porción flexible 77 puede ser maleable para permitir al cirujano deformar y/o recolocar las porciones de desplazamiento 73A, 73B para obtener una configuración deseada antes o después de sujetar la prótesis en su sitio. Como incluso otra alternativa, los acoplamientos entre las porciones de desplazamiento y la sección de amplitud 71, o entre la sección de amplitud y el miembro de base 72, pueden ser ajustables de manera movible para permitir al cirujano colocar los componentes en diversas ubicaciones relativas entre sí y fijarlos en cualquiera de tales ubicaciones.

Como se ilustra antes, la porción de desplazamiento de la prótesis según unas realizaciones de la presente invención puede tener cualquier número de formas diferentes según se desee para cooperar con tejidos específicos de destino según sea necesario para la patología de un paciente dado. En unos ejemplos adicionales, pueden proporcionarse unas geometrías más complejas con el fin de variar el desplazamiento de tejido de destino en coordinación con el ciclo de andar del paciente y con las condiciones de carga creadas en todo el ciclo. Por ejemplo, la superficie de apoyo puede configurarse para proporcionar un desplazamiento relativamente pequeño de tejido y una realineación de fuerzas cuando la rodilla se flexiona en el ciclo de andar, pero para desviar más los tejidos de destino cuando la rodilla se extiende completamente durante el ciclo de andar, proporcionando la corrección necesaria apropiada para esa patología. Esta característica puede lograrse mediante la optimización de la geometría estática de implante, mediante permitir cambios dinámicos en la posición o la geometría de implante que dependen de la posición o la carga de la unión, o como anteriormente se ha mencionado, por la selección de ciertos materiales de implante. Por ejemplo el esqueleto exterior de un implante podría ser de un material con resiliencia, tal como silicio, lleno de un fluido tixotrópico. Durante el ciclo de andar, la tensión por cizalla ejercida en el implante hace que caiga la viscosidad del relleno tixotrópico, permitiendo al fluido fluir a los lados del implante, y ocasionando menos desplazamiento. Cuando la rodilla se extiende completamente en la fase de postura del ciclo de andar, el esqueleto con resiliencia del implante insta al fluido tixotrópico atrás a su posición original, tras lo cual la viscosidad aumenta otra vez para proporcionar un mayor desplazamiento.

En la FIG. 4 se muestra un ejemplo que muestra la geometría más compleja mencionada antes, a la que se hizo referencia anteriormente en la explicación del ciclo de andar. En la parte inferior de la FIG. 4 se muestra una sección transversal transversa a través de la porción de desplazamiento 83 de una prótesis, que puede tener una configuración general tal como, por ejemplo, la configuración de la prótesis 60 en la FIG. 12. És decir, la porción de desplazamiento 83 en la FIG. 4 se ve desde un aspecto craneal hacia el aspecto caudal. La superficie de apoyo 86 proporciona una superficie en rampa con el menor grosor dorsalmente, aumentando en la dirección ventral. La superficie de apoyo se configura de este modo de tal manera que durante el ciclo de andar el de tejidos de destino T desplazados se deslizan ventral y dorsalmente a lo largo de la misma. Como se muestra en el primer gráfico de la FIG. 4, el momento de abducción que actúa medialmente en la rodilla se producen durante la fase de postura cuando la pierna está cargada. Durante esta fase, el ángulo de unión está generalmente en el intervalo de aproximadamente 0° a aproximadamente 20°, con las mayores fuerzas aplicadas cuando la rodilla está recta o casi recta. De este modo, para proporcionar el efecto máximo, la superficie de apoyo 86 se configura de modo que el tejido de destino (T) esté en una zona de desplazamiento máximo cuando el ángulo de unión está en el intervalo de aproximadamente 0°-10°, un menor desplazamiento en una zona en la que el tejido de destino (T) reside en ángulos de unión en el intervalo de aproximadamente 10°- 20° y un desplazamiento mínimo cuando el ángulo de unión excede aproximadamente los 20°.

La geometría mostrada para la porción de desplazamiento 83 en la FIG. 4 es ideal para el ciclo de andar cuando se anda en una superficie plana. En realidad, el andar se realiza en suelo desigual y subiendo y bajando escaleras, lo que puede ocasionar la carga substancial en la rodilla con ángulos de unión superiores a aproximadamente 20°, tales ángulos usualmente son inferiores a aproximadamente 60°, pero en la mayoría de los casos no en ángulos superiores a aproximadamente 90°. De este modo puede ser necesario diseñar geometrías específicas para la porción de apoyo con necesidades particulares de paciente en mente.

5

10

15

20

2.5

30

35

40

45

50

55

60

En la FIG. 14 se muestra otra geometría compleja. En este ejemplo, la porción de desplazamiento 53 de la prótesis 50 (FIG. 11) está provista de una superficie de apoyo 56 que tiene unos surcos 57, u otras variaciones de la geometría de superficie de apoyo para encajar en la pista anatómica y el movimiento del tejido de destino a medida que la unión se mueve en el ciclo de andar, optimizando de este modo la distribución de fuerza creada por la prótesis en cada posición de unión.

La FIG. 15 ilustra un ejemplo de implantación de una prótesis según la presente invención, en este caso el implante 60 mostrado antes en la FIG. 12. En este ejemplo, el implante 60 se utiliza para desplazar el ligamento colateral externo (de peroné). Un implante similar y su colocación se representan como implante 10E en la FIG. 2. En otros casos, el implante puede configurarse para desplazar otros músculos o tendones, tales como el tendón del bíceps femoral (como es colocado por el implante 10B en el la FIG. 2) o la banda iliotibial. Haciendo referencia de nuevo a la FIG. 15, la porción de fijación 64 del implante 60 se conecta al fémur de modo que el miembro de base 62, incluida la porción de desplazamiento 63, se extienda caudalmente más allá del extremo del fémur hasta por lo menos parcialmente a través del espacio de unión. Con la sección de amplitud 61 colocada posteriormente, el dispositivo se conforma para trotar alrededor del punto o puntos de conexión de los tejidos circundantes (incluso potencialmente los tejidos de destino) y permitir a la porción de fijación 64 situarse encima de la zona de conexión en el fémur. Más específicamente, la sección de amplitud 61 elude los lugares de conexión del músculo plantar y la cabeza lateral del músculo gastrocnemio. El músculo plantar y la cabeza lateral del músculo gastrocnemio se conectan a la parte posterior del fémur lateral. Al tener una sección de amplitud desplazada posteriormente 61, el implante evita estos lugares de conexión y permite a la superficie de apoyo 66 (véase la FIG. 12) desplazar lateralmente el ligamento colateral. Una vez más, la porción de desplazamiento 63 puede conformarse de modo que la pista de tejido de destino (T) se desplace en una posición de tal manera que las fuerzas de contracción del tejido de destino (T) sean predominantemente en la dirección normal a la superficie de apoyo de la unión, de tal manera que se cree una torsión y un brazo de palanca mínimos o no se creen en absoluto. Esto ayudará a reducir o impedir fuerzas no deseadas sobre el dispositivo o el movimiento de este, que podría tener como resultado que con el tiempo se afloje la fijación del dispositivo.

En otros ejemplos de realizaciones de la invención, mostrados en las FIGS. 16-19, las prótesis según la invención son ajustables para aumentar o disminuir la cantidad de desplazamiento ejercido en los tejidos de destino ya sea durante la implantación o en la poscirugía a través de un simple acceso percutáneo. Por ejemplo, la prótesis 100, mostrada en la FIG. 16, incluye un miembro de base 102 con un miembro de apoyo movible 110 montado dentro de la porción de desplazamiento 103. La porción de fijación 104 se extiende superiormente desde la porción de desplazamiento para la fijación al fémur substancialmente como se ha descrito anteriormente. El miembro de apoyo 110 tiene una superficie exterior de apoyo 106 también substancialmente como se ha descrito anteriormente. El miembro de apoyo 110 puede asegurarse al miembro de base 102 mediante unos medios de ajuste, tales como el tornillo 112 y unos postes de alineación 114. Los expertos en la técnica pueden aplicar otros medios adecuados de ajuste, tales como postes de trinquete, postes deslizantes con unos medios de trabado independientes u otros medios para proporcionar el ajuste. El orificio de acceso 116 a través de la superficie de apoyo 106 permite el acceso de una herramienta para hacer rotar el tornillo 112 para ajustar al miembro de apoyo adentro (medialmente) o afuera (lateralmente) con respecto al miembro de base, ajustando de este modo la magnitud de desplazamiento del tejido de destino. Los expertos en la técnica también apreciarán que cualquiera de las características de adaptabilidad descritas en esta memoria puede incorporarse con cualquiera de las geometrías descritas antes.

La prótesis 120 en la FIG. 17 ilustra otro ejemplo de realización, que incluye un miembro de base 122 con unos miembros de apoyo 130, 131 conectados de manera ajustable en la porción de desplazamiento 123. Si bien este ejemplo de realización incluye dos miembros ajustables de apoyo, los expertos en la técnica apreciarán que pueden proporcionarse más partes de la porción de desplazamiento para albergar la adaptabilidad deseada para la geometría deseada. En esta realización, se utilizan de nuevo unos tornillos 132 como medios de ajuste. Sin embargo, de nuevo se apreciará que pueden proporcionarse otros medios de ajuste.

Dada la forma curva de la superficie de apoyo 126 y los puntos de ajuste separados, la prótesis 120 incluye una unión de expansión 134 entre los dos miembros de apoyo 130, 131 para albergar la separación de los miembros de apoyo en vista de la característica de adaptabilidad. Si bien los dos o más miembros de apoyo podrían simplemente separarse para dejar una pequeña holgura entre ellos cuando se ajustan hacia fuera desde su posición de desplazamiento mínimo, puede ser deseable proporcionar una superficie de apoyo relativamente contigua y relativamente lisa 126 a medida que aumenta el ajuste y el desplazamiento. Como se muestra en la FIG. 17A, unos dedos entrelazados 137 de la unión de expansión 134 ayudan a impedir la formación de grandes holguras que podrían pellizcar o agarrar el tejido de destino a medida que se mueve por la superficie de apoyo. Como alternativa, las superficies de apoyo de los miembros de apoyo 130, 131 podrían cubrirse con una sola membrana de material

adecuadamente elástico de bajo rozamiento que se extiende a través de la holgura entre los miembros que podrían expandirse o contraerse por resiliencia con ajustes en la posición de los miembros de apoyo.

En un ejemplo de realización adicional, la prótesis 120' en la FIG. 18 es substancialmente igual que la prótesis 120 descrita antes excepto por la configuración de la unión de expansión 134. En este ejemplo de realización, en lugar de dedos entrelazados, la unión de expansión 134 utiliza unos miembros de apoyo 130, 131 con unos extremos estrechados superpuestos 138, 139, respectivamente, que se deslizan entre sí para formar una superficie lisa de apoyo 126 libre de holguras que proporciona una zona superpuesta lisa de expansión.

5

10

15

20

25

30

35

40

45

En una realización alternativa adicional, la prótesis 140 proporciona un mecanismo de ajuste al que se accede desde el aspecto anterior y/o posterior (A/P) de la rodilla, como se muestra en la FIG. 19. En esta realización, el miembro de base 142 tiene dos postes de alineación 154 que se extienden desde la porción de desplazamiento 143. El miembro de apoyo 150 recibe los postes de alineación. Uno o más miembros deslizantes de cuña 152 se disponen entre el miembro de apoyo 150 y el miembro de base 142 entre los postes 154 y son movibles posterior y anteriormente con respecto al miembro de base 142 y al miembro de apoyo 150. Al accionar los tornillos 151 u otros dispositivos de ajuste se mueven las cuñas adentro y afuera debajo de la superficie de apoyo, que desliza la superficie de apoyo más o menos lateralmente con respecto al miembro de la base, ajustando de ese modo el desplazamiento de los tejidos de destino.

En varias realizaciones ajustables descritas antes, Los propios tornillos de ajuste pueden ser radiopacos y/o ser discernibles de otro modo del resto del implante bajo rayos X con el fin de permitir un ajuste percutáneo posquirúrgico del dispositivo. Como alternativa, dentro del dispositivo pueden construirse unas características de destino para ubicar los puntos de ajuste sin que los propios tornillos o medios de ajuste sean radiopacos, tal como unos anillos radiopacos o marcadores construidos en la superficie cercana del propio dispositivo.

Todavía en unas realizaciones alternativas adicionales, los miembros de apoyo de las realizaciones descritas en esta memoria pueden ser movibles por medio de una vejiga inflable dispuesta entre el miembro de apoyo y el miembro de base. La vejiga puede llenarse con un líquido o un gas con la presión adecuada para permitir el ajuste de la posición del miembro de apoyo y el desplazamiento asociado del tejido de destino. La vejiga tendrá un orificio de inflado para la introducción de un fluido de inflado por medio de un dispositivo de inflado, que puede ser similar a los dispositivos de inflado utilizados para el inflado de los globos de angioplastia.

Los dispositivos descritos antes describen generalmente la colocación de un dispositivo en el lado femoral de la unión rotula-femoral. Los dispositivos también pueden colocarse en el lado tibial para desplazar lateralmente los tejidos de destino mediante la fijación en la tibia o el peroné. En la FIG. 20 se muestran unos ejemplos de implantes fijados tibialmente.

Haciendo referencia a la FIG. 20, el implante 154 se inserta debajo de la banda iliotibial (IT) justo superior al tubérculo del Gerdy, para mover lateral y/o anteriormente la banda iliotibial. El implante 154 incluye una porción de desplazamiento 155, una sección de amplitud 156 y una porción de fijación 157 como se ha descrito anteriormente. En la parte de fijación pueden colocarse unos tornillos 159 de hueso a través de unos agujeros, para asegurar el implante a la tibia. Como alternativa, pueden emplearse otros medios de fijación, como se ha descrito en esta memoria. El implante 154 puede colocarse como se muestra para reequilibrar la carga dinámica en la articulación de rodilla en una dirección lateral y/o anterior. Puede reducir los síntomas y la progresión de la osteoartritis medial en la rodilla. También puede mejorar la fortaleza y la estabilidad de la rodilla, al dar mayor palanca a los músculos que actúan sobre la banda iliotibial. Se entenderá que el implante 154 también puede configurarse para desplazar los músculos, los tendones o los tejidos aparte de la banda iliotibial, incluso el bíceps femoral porción corta, el bíceps femoral o el ligamento colateral externo, entre otros.

Una ventaja adicional del implante 154, colocado como se muestra, puede ser reducir la aparición y/o la gravedad del síndrome de banda iliotibial. El síndrome de banda iliotibial, o síndrome de fricción de banda iliotibial, se produce típicamente porque la banda iliotibial roza contra el epicóndilo femoral lateral, el fémur u otros tejidos en el lado lateral. De este modo los dispositivos descritos en esta memoria pueden utilizarse para el tratamiento de situaciones que implican rozamiento o presión excesivos entre tejidos en la rodilla u otras uniones, solos o combinados con tratamiento de osteoartritis. Al mover la banda iliotibial lateral y/o anteriormente, puede aliviarse la presión de la banda iliotibial contra estos tejidos.

Para la colocación del implante 154, podría hacerse la disección quirúrgica de la banda iliotibial desde la orilla posterolateral o la orilla anteromedial de la banda iliotibial. Sin embargo, puede ser preferible hacer esta disección de la orilla anterolateral, entre el tubérculo de Gerdy y la tuberosidad tibial. La porción de fijación 157 podría conectarse entonces a la tibia debajo del músculo que discurre entre estas dos tuberosidades.

Se entenderá que si bien muchas realizaciones descritas en esta memoria se describen como aseguradas a sólo uno de los dos huesos asociados con una unión, unas realizaciones también pueden asegurarse a ambos huesos. Por ejemplo, en el caso de la rodilla, tanto al fémur como a la tibia o al fémur y al peroné. En otro ejemplo de realización, mostrado en la FIG. 21, la prótesis 160 se amplía a toda la unión y se fija al fémur y a la tibia o al peroné, dependiendo de la geometría. La prótesis 160 está provista de una bisagra deslizante 174 u otra unión

articulada adecuada para permitir la libertad de movimiento de la unión. Más específicamente, en este ejemplo de realización, el miembro de base 162 incluye unas porciones de fijación superior e inferior 164 con una porción de desplazamiento 163 dispuesta en medio y que incluye una bisagra deslizante 174. El desplazamiento de los tejidos de destino se proporciona una vez más mediante la superficie de apoyo 166 a través de la que va el tejido de destino. La superficie de apoyo puede hacerse ajustable proporcionando un miembro de apoyo independiente y un mecanismo de ajuste como se ha descrito antes. El desplazamiento también puede controlarse mediante unos medios adicionales o alternativos de desplazamiento como se muestra en la FIG. 21. En esta realización, uno o más miembros de expansión 172 se despliegan bajo el miembro de base 162. El miembro de expansión 172 puede comprender un dispositivo inflable, tal como un globo, o un ajuste mecánico, tal como un mecanismo de tornillo. Los miembros expansibles 172 pueden colocarse para ejercer fuerza sólo en el fémur o sólo en la tibia o el peroné, o colocarse más centralmente a lo largo de la unión para ejercer una fuerza en el fémur y en la tibia. Los miembros deslizantes que constituyen la porción de desplazamiento 163, o las regiones en las que estos miembros se unen a la porción de fijación superior e inferior 164, pueden ser flexibles de modo que la porción de desplazamiento de apoyo 163 sea desviable lateralmente con la expansión de los miembros de expansión 172, aumentando de ese modo el desplazamiento de los tejidos de destino.

5

10

15

20

2.5

35

40

45

50

55

En otras realizaciones de la invención, pueden abordarse los trastornos de unión relacionados con las fuerzas en otros planos, tal como el plano lateral. Antes se ha descrito la biomecánica de la rodilla en el plano coronal o frontal, con una variedad de realizaciones generalmente en una dirección medial/lateral para abordar las cargas desequilibradas en la interfaz de las superficies articulares femoral y tibial. Mirando a la rodilla en el plano lateral, hay un conjunto diferente de componentes de fuerza que actúan anterior y posteriormente, que tienen como resultado la carga entre la rótula y el fémur.

Haciendo referencia al diagrama corporal libre en la FIG. 22, los dos momentos principales que actúan alrededor de la articulación de rodilla se deben a la fuerza W de reacción al suelo y la fuerza F_P del tendón rotular. El momento de flexión en la parte inferior de la pierna es el producto de la fuerza de reacción al suelo (W) y la distancia perpendicular de la fuerza desde el centro de movimiento de la articulación de rodilla, (a). El momento contrarrestador de extensión es el producto de la fuerza del músculo cuádriceps que actúa a través del tendón rotular y su brazo de palanca, (b). Por tanto, para un individuo dado, la magnitud de la fuerza F_P de tendón rotular, puede calcularse como F_P = Wa/B.

La acción del músculo cuádriceps y el tendón rotular en la rótula durante la flexión/extensión tiene como resultado una fuerza de compresión rotular (PCF), como se muestra en la FIG. 23A. La PCF resultante (R) depende de la magnitud de P y de su ángulo efectivo de acción (β).

Haciendo referencia a la FIG. 23B, la fuerza resultante R' se disminuye al colocar el implante 200 bajo el tendón rotular, desplazándolo anteriormente de ese modo para aumentar el brazo de palanca b (FIG. 22), reduciendo de ese modo la fuerza F_P de tendón rotular, y aumentando el ángulo efectivo de acción β ', reduciendo de ese modo la componente horizontal de la fuerza rotular de tendón correspondiente al PCF. De este modo se reduce la PCF resultante (R'), disminuyendo la fuerza con la que la rótula se presiona contra el fémur.

Unas ventajas anticipadas de esta realización de la presente invención incluyen una reducción en la velocidad de degeneración de cartílago y/o de dolor en esta zona. Un implante tal como el implante 200 puede configurarse para redistribuir el punto de carga más alto entre la rótula y el fémur superiormente, caudalmente, lateralmente o medialmente para reducir la tensión en una zona específica de esa interfaz. También debe aumentar el brazo de palanca de los músculos que actúan sobre el tendón rotular, proporcionando de ese modo mayor fortaleza y estabilidad efectivas a la rodilla, y a bajando la carga total en la articulación de rodilla.

En las FIGS. 24 y 25 se ilustra un Ejemplo, que muestra el implante 210 colocado en la tibia para desplazar el tendón rotular sin cortar el tubérculo tibial o cortar alguno de los tejidos conjuntivos como se ha descrito antes. Al igual que con otro ejemplo descrito en esta memoria, el implante 210 comprende un miembro de soporte 212 y un miembro de apoyo 214, que en este caso se forman integralmente pero pueden ser unos componentes separados como se describe en otra parte en esta memoria. El miembro de apoyo y el de soporte se dividen funcionalmente en la porción de desplazamiento 216, que se acopla y desplaza el tendón rotular, la sección de amplitud 218 y la porción de fijación 220. La porción de fijación 220 incluye unos medios para asegurar el implante como se ha descrito en esta memoria. En este ejemplo, se proporcionan unos agujeros para tornillos 222 de hueso con el fin de fijar el implante contra la tibia.

Como se ilustra en la FIG. 25, el implante 210 puede insertarse desde el lado lateral del tendón rotular. También podría insertarse desde el lado medial. El implante 210 se configura de tal manera que la porción de fijación 220 se encuentra en una zona que no tiene inserciones de tendón ni otros puntos de conexión de tejido conjuntivo. La configuración también puede permitir que la porción de desplazamiento 216 descanse contra la tibia justo craneal al tubérculo tibial y justo caudal a la cápsula de rodilla. Tal colocación transferirá la carga, directamente a la tibia debajo del implante, minimizando de ese modo las tensiones en el resto del implante y en la propia la tibia.

La superficie interior de la porción de fijación 220 que descansa contra la tibia, al igual que con otros ejemplos descritos en esta memoria, puede diseñarse y fabricarse con los materiales y texturas apropiados para favorecer el

crecimiento entrante óseo en el implante, para proporcionar más soporte e impedir el movimiento del implante con respecto a la superficie de hueso en la que se asegura; en este caso la tibia. La sección de amplitud 218 debe diseñarse para experimentar unas tensiones relativamente bajas, y por lo tanto puede ser bastante delgada, para evitar crear un bulto irritante o antiestético. Pueden seleccionarse geometrías de sección transversal redondeada, acanalada, con forma de caja, curva u otras para aumentar la rigidez a la flexión o la rigidez a la torsión según sea necesario para la sección de amplitud 218. De nuevo, la sección de amplitud 218 no debe interferir con ninguno de los puntos de inserción de músculo en la zona del tubérculo tibial.

5

10

15

20

25

40

45

50

La porción de desplazamiento 216 se configura y dimensiona para evitar la cápsula de rodilla y para evitar interferir con la rótula, incluso cuando la pierna se extiende, también debe diseñarse para minimizar una tensión adicional en el propio tendón rotular. Por lo tanto la superficie de apoyo de la porción de desplazamiento 216, contra la que descansan los tendones rotulares, puede tener una forma curvada en rampa, como se ve mejor en la FIG. 24. Esta superficie de apoyo puede ser dura y lisa, hecha de materiales tales como carbono pirolítico, acero o titanio, o revestido o cubierto con un material lúbrico, tal como PTFE. Como alternativa podría diseñarse para favorecer la adhesión y el crecimiento entrante del tendón rotular sobre esta superficie, de modo que el implante actúa aún más como una extensión del tubérculo tibial. Por ejemplo la superficie puede ser porosa, rugosa o configurada con aberturas en la que pueda crecer hueso o tejido cicatricial para aumentar la adhesión.

La precisa colocación del tendón rotular lograda con el implante 210 dependerá de la situación clínica particular. Como apreciarán los expertos en la técnica, tales implantes pueden diseñarse para mover el tendón rotular anterior, medial o anterior-medialmente. Esto puede lograrse haciendo un lado (lateral o medial) de la superficie de desplazamiento más alto que el otro y/o formando una pista con resaltes en uno o en ambos lados de la superficie de apoyo para instar al tendón rotular en una dirección lateral o medial.

Los implantes tales como el implante 210 pueden insertarse en un procedimiento relativamente rápido con baja morbidez. En un lado del tubérculo tibial podría hacerse una incisión relativamente corta. Desde esta incisión podría utilizarse una sonda para abrir un túnel bajo el tendón rotular y exponer la superficie de la tibia por debajo. El implante podría insertarse entonces en este túnel, instalarse contra la tibia, conectarse a la tibia con los tornillos apropiados u otros elementos de fijación según sea apropiado, y entonces podría cerrarse la incisión. Dado que no hay o hay poco corte de hueso, músculo o tendón, la morbidez debería ser mínima, y la recuperación y rehabilitación después de este procedimiento debe ser rápido e implicar mucho menos dolor cuando se compara con las opciones quirúrgicas existentes.

En otras ubicaciones anatómicas también podría aplicarse un implante similar al implante 210. Por ejemplo, en el aspecto anterolateral de la tibia está el tubérculo de Gerdy, el lugar de inserción de la banda iliotibial. En esta ubicación puede colocarse un implante tal como el implante 154 descrito antes. Adicionalmente, en algunos pacientes puede ser preferible desplazar tanto el tendón rotular como la banda iliotibial. Esto podría hacerse con dos implantes separados, tal como los implantes 154 y 210 como se ha descrito antes, o podría proporcionarse un solo implante.

Un ejemplo de un implante único para desplazar tanto el tendón rotular como la banda iliotibial se muestra en la FIG. 26. En este ejemplo, el implante 230 incluye de nuevo una porción de desplazamiento 232 dividida en dos partes, una porción de desplazamiento 232A de banda iliotibial y una porción de desplazamiento 232B de tendón rotular. La sección de amplitud 234, formada como se ha descrito antes, junta la porción de desplazamiento 232 con la porción de fijación 236. De nuevo, los expertos en la técnica pueden emplear una variedad de medios de fijación como se ha descrito en esta memoria, con tornillos 238 de hueso que se ilustran en el ejemplo. Un solo implante, tal como el implante 230, puede proporcionar mayor fortaleza y estabilidad en comparación con el uso de dos implantes separados, tales como los implantes 154 y 210.

En general, los materiales, configuraciones y métodos alternativos relacionados con los implantes 210 y 230 pueden ser como se ha descrito en otra parte en esta memoria para otros ejemplos de realizaciones.

Como se ha mencionado antes, unos ejemplos adicionales tienen aplicación en el tratamiento de trastornos de la cadera. La FIG. 27 ilustra la anatomía básica de una articulación de cadera H. Como se muestra, la articulación de cadera H es la unión entre el fémur F y la cavidad cóncava de la pelvis P, llamada el "acetábulo" A. El fémur F se extiende hacia arriba desde una rodilla de un cuerpo, e incluye un trocánter mayor G en una orilla superior exterior en la unión del tronco S del fémur y el cuello femoral N. Un trocánter menor se ubica opuesto al trocánter mayor G, y una cabeza femoral FH se ubica en el extremo distal del cuello femoral N. El acetábulo A con forma cóncava se forma en la unión de tres huesos pélvicos: el llión I, el pubis PU y el isquion IS. Una manta de ligamentos L (quitada en la FIG. 27 para mostrar detalles; mostrada en la FIG. 28) cubre la articulación de cadera H, formando una cápsula y ayudando a mantener la cabeza femoral FH en el acetábulo A.

Sobre los ligamentos L se extiende una serie de músculos y se conectan entre el fémur F y la pelvis P. Entre estos músculos se incluye el glúteo mayor GMay (FIG. 29), el glúteo medio GMed, y el glúteo menor GMen (FIG. 30). El glúteo mayor GMay es el de más arriba de estos tres músculos. Es el más grande de los músculos glúteos y uno de los músculos más fuertes del cuerpo humano. Su acción es extender y rotar hacia fuera la cadera, y extiende el tronco.

El glúteo medio GMed es un músculo ancho, grueso e irradiante, situado en la superficie exterior de la Pelvis P. El glúteo medio GMed comienza, o se origina, en la superficie exterior del Ilión I. Las fibras del músculo convergen en un tendón aplastado fuerte que se inserta en la superficie lateral del trocánter mayor G.

El glúteo menor GMen se sitúa inmediatamente debajo del glúteo medio GMed. Tiene forma de abanico, surgiendo desde la superficie exterior del ilión I. Las fibras del extremo de músculo en un tendón que se inserta en una impresión en la frontera anterior del trocánter mayor G, y proporciona una expansión a la cápsula de la articulación de cadera H.

El glúteo medio GMed es el músculo primario responsable de la abducción de cadera y el glúteo menor GMen le ayuda. Con éstos actúa sinérgicamente el psoas, el piriforme PIR (FIG. 30), el tensor de la fascia lata (TFL), el cuadrado lumbar y el recto femoral. La principal función de los músculos abductores de cadera es proporcionar estabilidad de plano frontal a la cadera en la fase de apoyo de un solo miembro del ciclo de andar. Esto se logra cuando los músculos abductores de cadera producen un par de torsión de plano frontal que iguala al par de torsión de plano frontal producido por el peso corporal.

10

25

40

45

50

Debido a la diferencia en los brazos de palanca de la fuerza de abductor de cadera y la fuerza del peso corporal, los músculos abductores de cadera deben producir una fuerza dos veces el peso corporal, que tiene como resultado una carga de compresión en la unión de tres a cuatro veces el peso corporal cuando se camina normal. Por ejemplo, la FIG. 31 es un diagrama que representa las fuerzas ejercidas en una articulación de cadera H. S es el centro de gravedad, K es el peso corporal, h' es el brazo de palanca del peso corporal K, M es la fuerza ejercida por los músculos abductores, h es el brazo de palanca de la fuerza M de músculo abductor, y R es la fuerza de compresión resultante transmitida a través de la articulación de cadera (R es la fuerza resultante de K y M). Como puede verse, la h' es significativamente más larga que h, lo que requiere que la fuerza M de abductor de cadera es substancialmente más que la fuerza K de peso corporal para la estabilidad en la articulación de cadera H.

El vector de fuerza de compresión R transmitido a través de la articulación de cadera H se ve afectado por el ángulo de cuello femoral dado que él afecta al ángulo y al brazo de palanca de la fuerza de músculo abductor. El ángulo entre el eje longitudinal del cuello femoral FN y el tronco S se llama el ángulo de centro-cuello-diáfisis o ángulo CCD (caput-collum-diaphyseal). Tal ángulo mide normalmente aproximadamente 150° en un recién nacido y 125-126° en adultos ("coxa norma"; FIG. 32A). Un ángulo irregularmente pequeño se conoce como "coxa vara" (FIG. 32B) y un ángulo anómalamente grade se conoce como "coxa valga" (FIG. 32C).

En coxa valga (FIG. 32C), el brazo de palanca h' de los músculos abductores de cadera es más corto que la cadera normal, lo que tiene como resultado la necesidad de una fuerza M mucho mayor de músculo abductor de cadera. Adicionalmente, la línea de acción de la fuerza M de músculo abductor está más cerca de la vertical, que requiere una fuerza más alta para compensar el brazo de palanca h del cuerpo. La fuerza de compresión resultante R por lo tanto es más grande y está más cerca de la orilla del acetábulo A, disminuyendo de ese modo la superficie, de apoyo de peso, del acetábulo. Esta carga anormal del acetábulo lleva a cambios degenerativos a lo largo el borde del acetábulo A, lo que tiene como resultado dolor y pérdida final del cartílago articular.

En el caso de un acetábulo poco profundo, la fuerza resultante actúa más cerca de la orilla del acetábulo A de manera similar a una deformidad coxa valga, lo que tiene como resultado una degeneración similar de la superficie articular a lo largo del borde del acetábulo. Radiográficamente, un acetábulo anormal se identifica midiendo el ángulo de Wiberg de centro-orilla, la proporción de profundidad acetabular, la proporción de extrusión de cabeza femoral, el ángulo de Lequense centro-orilla anterior, etc.

En coxa vara (FIG. 32B), la línea de acción de los músculos abductores de cadera es más pronunciada, que lleva a una fuerza resultante R más medial, aumentando de ese modo la posibilidad de dislocación de cadera.

Haciendo referencia ahora a las FIGS. 33A-B, se ilustra esquemáticamente un ejemplo aplicable a la corrección de displasia de cadera. En el ejemplo ilustrado, el implante 220 se instala entre el glúteo menor GMen y el recto femoral RF. Sin embargo, el implante 220 puede instalarse en cualquier ubicación que se desee entre la cápsula de cadera y por lo menos una porción de los músculos abductores de cadera para lograr el vector de fuerza M resultante que se desee. En algunos ejemplos, el implante 220 se colocaría en el tejido entre los músculos de glúteo y los ligamentos L. El implante 220 se instala en una ubicación deseada, y puede implantarse artroscópicamente o utilizando un planteamiento de abertura o mini-abertura, utilizando cirugía, un catéter de globo u otro procedimiento adecuado. Como se ha descrito con respecto a otros ejemplos, el implante 220 incluye generalmente una porción de soporte que se configura para ser asegurada por al tejido circundante y una porción de apoyo configurada para acoplarse sin traumatismo y desplazar los tejidos de destino. En esta memoria se describe una variedad de alternativas para porciones de soporte y de apoyo.

El implante 220 podría formarse de varios materiales. En algunos ejemplos, el implante 220 se construye de un material con suficiente rigidez como para desplazar el tejido de destino con una superficie exterior lisa para minimizar el rozamiento, lo que permite al tejido de destino deslizarse a lo largo del implante sin lesionarse cuando se mueve la unión. Pueden utilizarse metales tales como acero inoxidable o titanio, o polímeros biocompatibles. Como alternativa, el implante 220 puede construirse parcial o enteramente de un material blando y sumiso y puede

ser, por ejemplo, una membrana exterior sumisa llena de un fluido tal como agua, salino, silicona, hidrogeles, gases, etcétera. El implante 220 puede insertarse en un estado vacío y puede llenarse in situ después de la colocación, o la prótesis podría ser un elemento sellado pre-llenado con gel, fluido, cuentas poliméricas o metálicas, u otro fluido o con materiales flexibles o fluidos.

- El implante 220 también puede ser un cuerpo sólido, por ejemplo, polimérico o metálico, de forma atraumática adecuada. Un implante de forma fija 220 puede incluir como alternativa una bolsa con una entrada a través de la cual puede inyectarse un material curable tal como cemento de hueso y se le deja endurecer. El material curable también pueden ser hidrogeles polimerizables que se curan por exposición a radiación (p. ej. luz UV, luz visible, calor, rayos X, etc.). El material puede curarse por exposición directa o transdermal.
- La superficie del implante 220 podría ser con textura o lisa. Un implante sólido o sumiso 220 puede incluir una almohadilla exterior o una cubierta o revestimiento exterior lúbrico para facilitar el movimiento deslizante de los músculos y tendones a lo largo o sobre la prótesis. Tal almohadilla, revestimiento o cubierta pueden cubrir una porción o todo el exterior del implante 220. La almohadilla o los revestimientos pueden, por ejemplo, alinearse para soportar o alinear un músculo o ligamento. El implante también puede tener unas extensiones que cubren las regiones anterior y/o posterior de la cápsula de cadera, reforzando de ese modo la cápsula.

20

25

30

35

40

45

- El implante podría tener una forma o característica adaptadas para guiar los músculos y los tendones y retener su posición en el implante. Por ejemplo, en la superficie exterior de la prótesis podría proporcionarse un surco o depresión a través de los cuales se extenderían los músculos y tendones. Estos músculos y/o tendones se alinean con el surco cuando se instala el implante. Como alternativa, el implante podría incluir un anillo o aro con una discontinuidad para permitir la colocación del anillo o aro alrededor de los músculos/tendones.
- Las FIGS. 34A y 34B muestran los efectos del implante 220 en la fuerza M de abductor de cadera según un ejemplo. Como puede verse en la FIG. 34A, los músculos abductores de cadera HA, antes de la instalación del implante 220, se extienden en una primera dirección. Puede verse una concentración de fuerzas M hacia la orilla lateral del acetábulo A. Después de la instalación del implante 220, como se muestra en la FIG. 34B, los músculos abductores de cadera HA se desplazan hacia fuera lejos de la unión, aumentando el ángulo y la longitud del brazo de palanca h de la fuerza ejercida por los músculos abductores con respecto al eje central de la unión. Como resultado, la fuerza resultante R a través de la cabeza femoral para contrarrestar la fuerza de peso corporal se mueve más centralmente a la unión y lejos de la orilla lateral del acetábulo A. Como tal, el vector de fuerza resultante R puede alinearse más apropiadamente para presionar la cabeza femoral FH hasta un contacto pleno con el acetábulo A, o de otro modo para proporcionar una disposición más deseable de fuerzas para la cadera.
 - Al igual que con otros ejemplos, las prótesis para el tratamiento de trastornos de cadera incluyen unos anclajes adecuados para fijar los implantes en su sitio, y/o pueden estabilizarse mediante las estructuras circundantes de músculo y/o de ligamento. En un ejemplo, la prótesis se extiende desde la pelvis P al fémur F, y puede anclarse en uno o ambos de estos lados, o puede no anclarse en absoluto. En la porción de soporte puede incorporarse forma, materiales o textura superficial para facilitar y mantener la colocación por el tejido circundante. Para un implante pueden proporcionarse unas pestañas u otras características para ayudar a anclar o colocar el implante de una manera deseada con respecto a la pelvis P y/o al fémur F. Ya sea el lado de fémur o el lado de pelvis de un implante pueden incluir una o más de tales pestañas para conectar y/o disponer el implante de una manera deseada. El implante puede tener una forma estándar, o puede hacerse a medida para una aplicación particular, ya sea mediante un proceso de planificación como se describe más adelante o durante la operación.
 - Como un ejemplo, la FIG. 35 muestra una prótesis 224 que se ancla al fémur F y a la pelvis P. La prótesis 224 incluye un cuerpo principal 223 que forma un miembro de apoyo y un miembro de soporte que incluye unas pestañas de fijación. Una primera pestaña 225 tiene una abertura 226 para anclar la prótesis 224 al trocánter mayor y una segunda pestaña 227, en el extremo opuesto, tiene una abertura 228 para anclar a la pelvis. El cuerpo 223 puede tener diversas formas, incluida prisma rectangular, esfera, forma de huevo, cilindro, cónica, trapezoidal u otras, según sea apropiado para lograr la realineación deseada de fuerzas en la unión. La prótesis 224 puede utilizarse para cambiar el vector de fuerza M para los músculos abductores de cadera de una articulación de cadera como se ha descrito antes.
- Puede utilizarse un anclaje de sutura, chincheta de hueso, tornillo de hueso u otra estructura adecuada de conexión para conectar el lado de trocánter de la prótesis 224 utilizando la abertura 226. De una manera similar, la abertura 228 puede utilizarse para anclar la prótesis en la pelvis. El dispositivo de anclaje puede colocarse percutáneamente después de haber colocado el implante.
 - Como se ha descrito antes, pueden instalarse unos ejemplos de prótesis y pueden llenarse de un fluido in situ. Con este fin, puede proporcionarse un orificio de acceso 229 para llenar la prótesis 224 ya sea durante la cirugía o puede instalarse de modo que sea accesible después de la cirugía.
 - Como otro ejemplo, como se muestra en la FIG. 36, una prótesis 230 incluye un cuerpo que tiene una forma de fúrcula, con un tallo principal 240 y dos patas 232, 234 para un lado de fémur de la prótesis que forma por lo menos parte de un miembro de apoyo. Cada una de las patas 232, 234 incluye una pestaña 233, 235 que se extienden

desde las mismas, cada una con una abertura de anclaje 236, 238. Las pestañas de fijación forman por lo menos una parte de un miembro de soporte. El tallo principal 240 se proporciona para el lado de pelvis de la prótesis, e incluye una abertura de anclaje 242.

- Las dos pestañas 233, 235 pueden anclarse, por ejemplo, en lados opuestos del trocánter mayor G. Como otras alternativas, un lado de fémur de una prótesis puede fijarse o anclarse de otro modo al cuello femoral F, o en una ubicación en el fémur F debajo del trocánter mayor G. El tallo principal 240 puede fijarse al ilión I, el isquion IS, u otra ubicación adecuada en la pelvis P, ya sea en el aspecto trasero o anterior. Como una alternativa a la disposición de la FIG. 36, pueden proporcionarse dos pestañas en el lado de pelvis de la prótesis 230. Estas dos pestañas pueden anclarse, por ejemplo, una en el lado trasero y una en el anterior de la pelvis.
- La FIG. 37 muestra otro ejemplo de una prótesis 244. Al igual que la prótesis 230, la prótesis 244 incluye dos patas 246, 248 en el lado de fémur de la prótesis, y un tallo principal 250 que se alinea con un lado de pelvis de la articulación de cadera cuando la prótesis está instalada.
- Sin embargo, a diferencia de la prótesis 230, la prótesis 244 no incluye estructuras, tales como pestañas y/o agujeros de anclaje, para el anclaje de la prótesis al fémur. Como se ha descrito antes, tal prótesis 244 puede fijarse en su sitio mediante las estructuras circundantes de músculo, que se estratifican apretadamente alrededor de la cápsula de cadera. Similarmente, el tallo principal 250 no incluye una pestaña y/o un anclaje para la conexión a la pelvis.
- Si se desea, como una alternativa, una prótesis puede anclarse sólo en un lado de fémur o un lado de pelvis y/o puede incluir unas patas a ambos lados que pueden anclarse o sostenerse en su sitio mediante una estructura de músculo. Como un ejemplo, puede proporcionarse un solo anclaje, tal como una pestaña y/o una abertura, ya sea en uno o en ambas patas 246 o 248, y/o en el tallo principal 250 puede proporcionarse un anclaje. Puede utilizarse cualquier combinación de anclajes o soporte estabilizado por músculo. En tal ejemplo el miembro de apoyo y el de soporte pueden ser integrados.
- Según otro ejemplo, una prótesis puede tener un grosor variable para proporcionar un desplazamiento variable de los músculos abductores y/o los tejidos de cadera. Como un ejemplo, como se muestra en la FIG. 37, la prótesis 244 incluye tres zonas que tienen diferentes grosores, X, Y y Z.

- El grosor X corresponde con la pata 246, el grosor Y corresponde con la pata 248, y el grosor Z corresponde con el tallo principal 250. El grosor variable también puede utilizarse a lo largo de una pata o del tallo, o a través de la pata o el tallo. Estas zonas de grosor variable X, Y y Z pueden utilizarse para instalar ventajosamente la prótesis 244 en la articulación de cadera H, y/o para proporcionar una desviación deseada de fuerza. La prótesis 244 puede preconformarse para tener el grosor variable antes de la implantación, o cada porción de la prótesis puede ampliarse por separado hasta el grosor deseado in situ mediante, por ejemplo, llenado de un volumen deseado del medio de inflado para lograr el grosor deseado.
- La FIG. 38 muestra una vista anterior de un ejemplo de una prótesis 260 instalada en una articulación de cadera H 35 según un ejemplo. La FIG. 39 es una representación de la prótesis 260 en su sitio, con los ligamentos L y los músculos abductores retirados para mostrar detalle. En el ejemplo mostrado en la FIG. 38, la prótesis 260 incluye una pestaña pélvica 262 y una pestaña femoral 264, que forman por lo menos parte de un miembro de soporte y que se extienden desde una sección principal central, redondeada y bulbosa 265 que forma un miembro de apoyo. La configuración bulbosa de la sección principal 265 ayuda en un desplazamiento deseado de los músculos abductores. 40 La pestaña pélvica 262 y la pestaña femoral 264 pueden ser de un material delgado y sumamente flexible para minimizar los impactos en la articulación de unión. La pestaña pélvica 262 se ancla a la pelvis, por ejemplo a través de una espiga 266, tornillo de hueso, sutura u otro anclaje adecuado fijado al ilión 1. Puede proporcionarse una apertura en la pestaña para la función de anclaie. La pestaña femoral 264 se ancla mediante un anclaie adecuado. por ejemplo una espiga 268, al trocánter mayor G, al cuello femoral o a otra ubicación adecuada. La sección 45 principal 265 en el ejemplo mostrado en la FIG. 38 se monta centrada, y se dispone de modo que, cuando se instala la prótesis 260, la sección principal 265 se coloca entre los ligamentos capsulares L y la estructura muscular del glúteo menor GMen y el glúteo medio GMed. Sin embargo, la principal sección 265 puede colocarse más cerca de la conexión de pelvis o de la conexión femoral, y pueden disponerse en otras ubicaciones para alterar deseablemente el vector de fuerza M.
- Según los ejemplos ilustrados en las FIGS. 40-42, un implante puede conectarse sólo al cuello femoral N, mediante un miembro de soporte y/o puede extenderse transverso al cuello femoral. De esta manera, la prótesis puede proporcionar un miembro de apoyo para el desplazamiento de una cantidad más grande de músculo y/o tejido alrededor del contorno del cuello femoral N y/o puede mantenerse más fácilmente en su sitio debido a la conexión directa alrededor de por lo menos una porción del cuello femoral N. Tal prótesis puede tener forma de hueso de perro o de riñón para anidarse alrededor de los ligamentos L de cápsula o del cuello femoral N en un lado. Típicamente, una forma de hueso de perro incluye una sección central estrechada, usualmente alargada, y un diámetro bulboso, o redondeado, más grande formado en cada extremo. Una forma de riñón, por otro lado, tiene más forma de alubia, con dos extremos exteriores que se extienden en una dirección de modo que en un lado de la forma se forma un surco o hendidura. Para cualquiera de las formas en el otro lado puede proporcionarse un surco u

otra forma a través de la cual pueden deslizarse los tendones y los músculos sin resbalar fuera de la prótesis. También pueden utilizarse estructuras deformables, como almohadas, llenas de gel, espuma o cuentas para adaptarse o envolver parcialmente alrededor de los ligamentos L de cápsula o del cuello femoral N.

- Como un ejemplo, como se muestra en la FIG. 40, la prótesis 270, con forma de hueso, se extiende transversa y se anida alrededor de un cuello femoral N y/o de los ligamentos L. La prótesis, con forma de hueso de perro, 270 en la FIG. 40 incluye una sección central estrecha 271 entre dos extremos exteriores, bulbosos, redondeados 273. La sección estrecha tiene longitud suficiente de modo que los dos extremos se aniden en lados opuestos de los ligamentos L o del cuello femoral N. En el ejemplo mostrado en la FIG. 40, la prótesis se conecta mediante dos anclajes, tales como espigas o tornillos 272, 274, a través de la sección central 271 en el cuello femoral N. Sin embargo, como se ha descrito en el ejemplo anterior, puede instalarse una prótesis sin sujetadores, o la prótesis puede anclarse de otra manera o en otra ubicación. Una parte superior de la prótesis 270 puede acanalar los músculos a través de la silla superior formada entre los dos extremos 273 y a lo largo de la sección central 271 de la prótesis 270 con forma de hueso de perro.
- La FIG. 41 muestra otro ejemplo de una prótesis 280 que se extiende transversa a un cuello femoral. La prótesis 280 tiene forma de riñón, e incluye una sección central más estrecha 283 y dos extremos exteriores redondeados 284. Entre los extremos se forma una hendidura 285. En un ejemplo, la prótesis se conforma de modo que la hendidura coincide con la curvatura del cuello femoral y/o los ligamentos L en los que se conecta la prótesis, y de este modo la prótesis se anida por lo menos parcialmente alrededor del cuello femoral N cuando está instalada. En el ejemplo mostrado en los dibujos, se utiliza una espiga o tornillo 282 opcional para anclar la prótesis 280 al cuello femoral N, pero pueden utilizarse otros anclajes, o ningún anclaje en absoluto.
 - Como otra alternativa, una prótesis puede anclarse al cuello femoral utilizando una escuadra o banda con forma de U o con forma de C u otra estructura que se extienda alrededor del cuello femoral. Como un ejemplo, la FIG. 42 muestra una prótesis 290 montada en una escuadra con forma de U 292 que se extiende alrededor de un cuello femoral N y/o unos ligamentos L. La escuadra con forma de U 292 se curva para encajar estrechamente alrededor del cuello femoral N e incluye un perno 293 que se extiende a través de unas aberturas (no se muestran) en los extremos de la escuadra y a lo largo de un lado opuesto del cuello femoral. El perno 293 puede utilizarse para trabar la escuadra con forma de U 292 en su sitio. La prótesis 290 en la FIG. 42 tiene forma bulbosa, pero la escuadra con forma de U 292 pueden utilizarse como alternativa con otras formas de prótesis, tal como la prótesis, con forma de hueso de perro, 270, o la prótesis, con forma de riñón, 280.

- Según unos ejemplos adicionales, una prótesis puede montarse como un capuchón en el trocánter mayor G para desplazar los músculos abductores de cadera. Como un ejemplo, la FIG. 43 muestra una prótesis 296 montada como un capuchón en el trocánter mayor G. La prótesis 296 incluye una extensión horizontal 298 y una extensión vertical 2100 que forman una L que se extiende al revés contra el trocánter mayor G. En el ejemplo mostrado en la FIG. 43, la prótesis 296 se ancla mediante unas espigas 2102, 2104, pero puede anclarse o conectarse de otra manera, incluso un escuadra con forma de U o de C o una banda u otra estructura que se extiende alrededor del cuello femoral, como se ha descrito antes. Como puede verse en la FIG. 43, la prótesis 296 se redondeada en un lado exterior, y se proyecta lateralmente desde la cadera para desplazar substancialmente los músculos abductores HA de cadera. En este ejemplo, los miembros de apoyo y de soporte se combinan de una manera similar al implante 40 como se ha descrito antes.
- Para ayudar a los músculos abductores de cadera HA y/o a los tendones u otro tejido que deslizan sobre la prótesis 296 u otra prótesis de capuchón, la superficie exterior del capuchón puede ser lúbrica. Como alternativa, puede proporcionarse una guía u otra estructura para mantener los tendones y los músculos en su sitio, y para proporcionar una característica deslizante. Como un ejemplo, como se muestra en la FIG. 44, una prótesis 2110, que puede conformarse como la prótesis 296, incluye un surco o canal 2112 para recibir de manera deslizante y guiar a los músculos abductores de cadera HA cuando la prótesis 2110 se mueve con el fémur. Podrían utilizarse otras estructuras, tales como anillos, aros, túneles u otras características para guiar y colocar los músculos abductores de cadera HA y/o los ligamentos y los tendones.
- Como otro ejemplo, una prótesis, tal como la prótesis 2120 mostrada en la FIG. 45 puede incluir uno o más rodillos externos 2122 para permitir a los músculos abductores de cadera HA rodar sobre la prótesis 2120 cuando el fémur F se mueve. La prótesis 2120 incluye una serie de tres rodillos 2122 montados rotatoriamente en la superficie lateral y/o superior de la prótesis 2120 para alinearse con los músculos abductores de cadera HA y su dirección primaria de movimiento.
- Según otro ejemplo, puede configurarse una prótesis para expandirse in situ de modo que la prótesis pueda insertarse en un cuerpo en un estado contraído a través de una cannula o procedimiento de mini-abertura, expandirse in situ, e instalarse en el estado expandido. Como un ejemplo, un dispositivo puede incluir una o más bisagras o puede ser flexible de modo que pueda contraerse a un pequeño espacio, y expandirse cuando se instala. Para expandir la prótesis puede utilizarse un resorte u otro dispositivo, o el dispositivo puede expandirse mecánicamente o de otra manera. En las FIGS. 46-49 se muestra un ejemplo, en el que una prótesis 2130 incluye dos patas 2132, 2134 conectadas por una bisagra 2136. Las dos patas 2132, 2134 forman un capuchón que puede instalarse como un miembro de soporte, por ejemplo, en el trocánter mayor G o en el cuello femoral N.

El dispositivo de entrega 2138 puede proporcionarse para capturar la bisagra 2136 y mantener las patas 2132, 2134 juntas durante la inserción, y abre las patas durante la instalación. El dispositivo de entrega 2138 incluye un tronco tubular 2135 configurado para recibir la bisagra 2136 y las patas 2132, 2134 dentro del tronco durante la entrega. Las paredes del dispositivo de entrega 2138 capturan las patas 2132, 2134 y mantienen las patas cerradas durante la inserción. La prótesis 2130 se mantiene en el tronco por medio de rozamiento con la pared interior del mismo, o, opcionalmente, un tronco interior (no se muestra) puede colocarse de manera deslizante en el tronco 2135 que tiene un mecanismo distal de acoplamiento adaptado para agarrar de manera liberable la bisagra 2136.

Una vez que la prótesis 2130 se inserta mediante el dispositivo de entrega 2138, la retracción del dispositivo de entrega puede hacer que la prótesis se expanda, o la prótesis puede expandirse mecánicamente o de otra manera. Como un ejemplo, un tronco interior (no se muestra) puede acoplarse de manera liberable a la prótesis 2130, cuyo accionamiento hace que las patas 2132, 2134 se abran y la prótesis se libere del dispositivo de entrega. Las patas 2132, 2134 pueden separarse durante la instalación para encajar alrededor, por ejemplo, del cuello femoral N (FIG. 47) y/o los ligamentos L, o el trocánter mayor G. En un ejemplo de instalación, por ejemplo, la prótesis 2130 puede expandirse alrededor del cuello femoral N (FIG. 48) y puede moverse encima y luego instalarse en el trocánter mayor G.

El uso de la prótesis 2130 proporciona una cirugía mínimamente invasiva, debido a la capacidad de instalar la prótesis mientras está cerrado. De este modo, puede utilizarse una pequeña incisión y/o la prótesis puede instalarse a través de una cánula. El dispositivo, una vez instalado, puede anclarse en su sitio a través de espigas u otros sujetadores adecuados, o puede ser mantenido en su sitio por la estructura de músculo o tejido alrededor del fémur F.

La prótesis 2130 puede configurarse para expandirse hacia fuera para formar un capuchón para encajar sobre el trocánter mayor G como se muestra en la FIG. 48 o para encajar de una manera adecuada alrededor de una porción del cuello femoral N como se muestra en la FIG. 49. Como otro ejemplo, la prótesis puede incluir dos o más elementos, tal como elementos abisagrados o de pliegue, que se conectan juntos para formar un implante contiguo. Como un ejemplo, podrían introducirse dos o más elementos abisagrados o plegados en un espacio y luego trabarse juntos para formar un implante contiguo. Trabar múltiples elementos juntos puede lograrse por la alineación de unas características, los elementos pueden encajar juntos por salto elástico, o los elementos pueden conectarse mediante sujetadores, prensado ondulado o de otra manera adecuada. Como una alternativa, múltiples elementos podrían anidarse juntos cuando se ponen en su sitio y pueden conectarse adyacentes entre sí a través de unos sujetadores adecuados tales como tornillos de hueso, chinchetas, espigas u otros sujetadores. En un ejemplo, cada elemento o pieza se expande in situ.

En la FIG. 50 se muestra un ejemplo de tal prótesis 2140, en la que un primer elemento abisagrado 2142 tiene forma de mariposa, con unas patas, primera y segunda, triangulares, con forma de medialuna o con forma de fúrcula 2144, 2146 conectadas por una bisagra 2148. Las dos patas con forma de medialuna 2144, 2146 se disponen de modo que la porción cóncava de cada una de las patas mira hacia fuera y directamente opuestas entre sí. Un segundo elemento abisagrado 2150 también incluye dos patas similares con forma de medialuna 2152, 2154 conectadas por una bisagra 2156. Los dos elementos abisagrados 2142, 2150 pueden conectarse entre sí antes de la implantación, o pueden introducirse por separado y conectarse in situ. Los dos elementos abisagrados 2142, 2150 pueden instalarse, por ejemplo, instalando primero el primer elemento abisagrado 2142, y luego instalando el elemento abisagrado 2150 encima y anidado alrededor del primer elemento abisagrado 2142. En cada caso, los elementos abisagrados se pliegan antes y durante la instalación, y se expanden in situ. Los elementos abisagrados 2142, 2150 pueden anclarse de una manera adecuada, por ejemplo en unas ubicaciones de anclaje 2160 a una posición a través de la prótesis 2140. Una de esas posiciones de anclaje puede estar en la superposición de las dos bisagras 2148, 2156. Como se muestra en la FIG. 51, la prótesis 2140 puede montarse, por ejemplo, en el trocánter mayor G o en otra ubicación adecuada.

Según otro ejemplo, un cinturón, correa u otro mecanismo de tensión puede extenderse alrededor y apretarse sobre el cuello femoral N y los músculos abductores de cadera HA y/o los ligamentos/tendones de cápsula de cadera. La banda o la correa u otra estructura pueden apretarse para aumentar la tensión, aumentando de ese modo la fuerza que tira del fémur F. Este planteamiento podría utilizarse, por ejemplo, cuando la mayor tensión produce una fuerza resultante adecuada para la patología particular del paciente. Por ejemplo, para pacientes con una carga excesiva en el lado medial de la unión, puede utilizarse el cinturón para aumentar la tensión en el lado lateral de la unión, lo que produce un mayor componente de fuerza lateral y reduce las cargas en el lado medial de la unión. En tal ejemplo, el cinturón o la correa se extenderían alrededor del cuello femoral y los músculos abductores de cadera y/o ligamentos/tendones de cápsula en el lado lateral de la unión, pero se extenderían bajo los músculos abductores/tendones de cadera en el lado medial de la unión. Para pacientes con una carga excesiva en el lado lateral de la unión, la disposición del cinturón o de la correa puede invertirse.

Al igual que con ejemplos anteriores, el cinturón o la correa podrían tener una superficie interior lúbrica para permitir un movimiento deslizante de los músculos con respecto al cinturón o la correa. El cinturón o la correa pueden extenderse opcionalmente sólo parte del camino alrededor del cuello femoral y pueden ser un anillo o aro parciales rígidos. El cinturón o la correa pueden fijarse opcionalmente al cuello femoral mediante uno o más anclajes, tal como

una espiga o tornillo. El cinturón o la correa pueden ser flexibles, o pueden ser un anillo u aro rígidos, compuestos de tejido, metal o un polímero. Una estructura rígida puede ser circular, oval, de pista u otra forma adecuada, y puede tener una discontinuidad para permitir la inserción alrededor de los músculos y del cuello femoral N. El cinturón o la correa pueden ser elásticos para actuar como un resorte, o pueden no ser extensibles.

- Un ejemplo de tal cinturón o correa se muestra en la FIG. 52, en la que una correa 2170 se extiende alrededor del cuello femoral N y los músculos abductores de cadera AH. El cinturón o la correa pueden adoptar muchas formas, y pueden disponerse según se necesite para un efecto deseado de fuerza. En tales ejemplos, el miembro de apoyo se forma para actuar hacia dentro y el miembro de soporte está opuesto y rodea el hueso u otro tejido en la ubicación de fijación.
- Si se desea, el cinturón o la correa, tal como el cinturón o correa 2170, pueden incluir un mecanismo de ajuste para permitir el cinchado del cinturón o la correa para aumentar la tensión en los músculos y/o ligamentos. En las FIGS 53-56 se muestran unos ejemplos de mecanismos de cincha que pueden utilizarse. En la FIG. 53, se proporciona una abrazadera de sentido único que permite a un médico instalar la correa de tensión y tirar de un extremo libre 2182 para cinchar la correa 2180 alrededor del cuello femoral N y los músculos abductores de cadera AH. El dispositivo de la FIG. 53 incluye una correa de captura 2183 y una garra 2184. La correa 2180 incluye varias aberturas 2186 a lo largo de su longitud. Un instalador tira del extremo libre 2182 de la correa, tirando para que las aberturas no sean capturadas por la garra 2184. La correa de captura 2183 mantiene la alineación del extremo libre 2182 cuando se tira de ella. Cuando la correa 2180 está apretada, el instalador tira del extremo libre 2182 y alinea la garra 2184 con una abertura deseada 2186 en la correa. La correa de captura 2183 y la garra 2184 retienen el extremo libre 2182 en su posición.

Otro ejemplo de abrazadera de un solo sentido 2190 se muestra en la FIG. 54, en la que la garra 2192 se acopla a los dientes 2194 en una correa 2196. Los dientes 2194 incluyen un lado delantero inclinado y un lado trasero romo. La garra 2192 se acopla en el lado trasero romo para impedir la retracción de los dientes 2194. Los lados delanteros inclinados permiten la alineación de los dientes en una dirección al pasar la garra 2192 cuando un médico tira del extremo libre de la correa 2196.

Otro ejemplo de un mecanismo para cinchar se muestra en la FIG. 55, en la que un dispositivo 2200 se configura como una abrazadera de manguera e incluye un tornillo 2202 que se acopla en unas aberturas 2204 en una correa 2206.La rotación del tornillo 2202 hace que la correa se apriete o afloje dependiendo del sentido de rotación.

La FIG. 56 muestra un ejemplo de otro dispositivo 2210 que puede utilizarse como un mecanismo para cinchar. El dispositivo 2210 incluye dos miembros rígidos con forma de C 2212, 2214 conectados en una orilla por una bisagra 2216 y en otra orilla por un tornillo 2218. El dispositivo 2210 puede apretarse o aflojarse por la rotación del tornillo 2218.

25

35

40

45

50

55

La FIG. 57 muestra una prótesis 2300, similar a la prótesis 220, en la que la prótesis se conecta a los músculos abductores de cadera HA a través de una banda 2302. La banda 2302 ancla la prótesis 2300 en su sitio. La banda 2302 puede atarse o pueden agarrarse en su sitio. En un ejemplo, la banda utiliza un mecanismo para cinchar, tal como cualquiera de los mecanismos para cinchar descritos antes, para cinchar la banda 2302 en su sitio alrededor de los músculos abductores de cadera AH. Como alternativa, una prótesis, tal como la prótesis 2300, puede instalarse en la posición, y una banda o cinturón pueden extenderse alrededor de los músculos o ligamentos capsulares para mantener la posición de la prótesis sin que el cinturón se conecte a la prótesis. De esta manera, la banda o cinturón ayudan a capturar la prótesis en su sitio.

En otro ejemplo de la presente invención, ilustrado por ejemplo en las FIGS. 58-60, un implante 3100 para el tratamiento de trastornos de cadera se conforma para trotar alrededor de los puntos de inserción de los tejidos conjuntivos (incluso los tejidos de destino) alrededor de la unión. Dependiendo de condiciones específicas de paciente y de anatomía de unión, el implante puede diseñarse para permitir una fijación segura en un lugar adecuado mientras todavía se coloca la porción de desplazamiento y de apoyo bajo el tejido de destino al tiempo que se minimiza el traumatismo en los tejidos importantes que intervienen. Por ejemplo, como se muestra en las FIGS. 58 y 60, el implante 3100 pueden incluir tres secciones - sección anterior 3110, sección superior 3120 y sección posterior 3130. Las secciones 3110 y 3130 son unos miembros de soporte que proporcionan las secciones de fijación y pueden incluir unos medios, tales como agujeros 3114, 3134 de tornillo, para albergar unos tornillos 3112 de hueso (como se muestra en la FIG. 58) para asegurarse al hueso. La sección 3120 comprende un miembro de apoyo 3122 con una superficie de apoyo 3124 como se ha descrito antes en esta memoria.

El implante 3100 puede tener una construcción unitaria o puede incluir dos o más unidades de trabado mutuo ensambladas juntas. Las diferentes secciones podrían hacerse para materiales idénticos o materiales diferentes, por ejemplo la sección de apoyo 3120 puede fabricarse de carbono pirolítico y las secciones de fijación de titanio u otro material similar compatible con el hueso.

Con el fin de abordar la anatomía específica, la sección anterior 3110 puede conformarse para conectarse al fémur eludiendo los lugares de conexión de músculos, tales como para el glúteo menor (GM), el piriforme (P) y obturador interno y el gemelo superior y el inferior (O). Otros lugares a evitar incluyen el vasto lateral medialmente, y el vasto

intermedio y medio superiormente. La sección posterior 3130 puede conformarse para conectarse al fémur entre los lugares de conexión del cuadrado femoral y los músculos de iliopsoas. En el plano sagital, las secciones 3110 y 3130 también pueden conformarse según sea necesario para evitar los músculos (tejido no de destino) que atraviesan de medial a lateral.

En un ejemplo adicional, en lugar de instalar un dispositivo, puede inyectarse un fluido en el espacio deseado dentro o adyacente a los músculos abductores de cadera que se endurece hasta ser sólido, permitiendo al fluido endurecerse hasta quedar sólido, el sólido entonces proporciona la función de la prótesis. Como ejemplos, la prótesis puede inyectarse como un polímero licuado o material de espuma en el espacio entre los músculos de glúteo y el cuello femoral y se le deja endurecerse. El material podría tener propiedades adhesivas para pegarse a los ligamentos capsulares alrededor del cuello femoral. Podría insertarse un globo u otro miembro expansible o dispositivo de retracción para crear el espacio entre el cuello femoral y los músculos de glúteo en los que se inyecta el material.

Los principios y las enseñanzas pueden aplicarse en el contexto veterinario a las uniones articulares de animales. Una aplicación veterinaria es la cadera canina. La disposición general de los huesos asociados con una cadera canina, con referencia al miembro trasero, se ilustra en las FIGS. 61A y 61B. Como se indica en la FIG. 62, los estudios de placas de fuerzas han mostrado que la fuerza vertical máxima que ejerce la pata trasera en el suelo durante la fase de postura de un ciclo de andar varía entre el 24% y el 41% del peso corporal total. Los perros colocan más carga en las patas delanteras, entre el 53% y el 65% de su peso corporal.

15

20

25

30

35

40

55

Durante la fase de apoyo en una pata (*midstance*) del ciclo de andar, la orientación del fémur con referencia a la pelvis se muestra en la FIG. 63.

De interés particular en la displasia de cadera canina son las fuerzas que actúan sobre el plano frontal (abducción/aducción) durante la postura a tres patas (es decir con un miembro pélvico levantado) del ciclo de andar. En la FIG. 64 se muestra un modelo biomecánico de dos dimensiones de la cadera canina, en la que I representa el ilión; S, el sacro; H, la cabeza femoral; F_0 , la fuerza debido a la gravedad; M_0 , el momento inducido por la musculatura axial; F_a , fuerza de músculo abductor; F_h , fuerza de reacción de cadera; θ_a , el ángulo de aplicación de F_a ; θ_h , el ángulo de aplicación de F_h .

En un modelo de postura a tres patas, las fuerzas externas que actúan sobre la estructura canina deben ser equilibradas por las fuerzas internas para lograr el equilibrio. Las fuerzas externas incluyen la fuerza F_0 ejercida por las fuerzas de la gravedad del tronco y la cabeza, y el momento (par de torsión) M_0 ejercido por las fuerzas de giro de la musculatura axial. La articulación de cadera canina está sometida a cargas mayores que el peso corporal debido a fuerzas adicionales de músculo abductor y al par de torsión pélvico. La fuerza de cadera F_h y la fuerza de abductor F_a se ven afectadas directamente por el ángulo de cuello femoral y el ángulo de abducción/aducción del miembro pélvico de apoyo de peso. Un ángulo grande de cuello femoral disminuye la distancia entre la cabeza femoral y el trocánter mayor, requiriendo de este modo mayores fuerzas de músculo abductor para vencer el brazo de palanca acortado. Esta mayor fuerza de músculo tiene como resultado una mayor fuerza de cadera. Adicionalmente, cuanto mayor es el ángulo de músculo abductor θ_a , mayor es el ángulo θ_h de fuerza de cadera. El mayor θ_h tiene como resultado una mayor carga del borde del acetábulo que tiene como resultado la degeneración del cartílago acetabular que lleva a la osteoartritis de cadera. Una disminución del ángulo de cuello femoral aumentará la distancia de brazo de palanca y de ese modo disminuye la fuerza de músculo abductor F_a y la fuerza resultante F_h de cadera.

La excesiva carga del borde del acetábulo también puede ocurrir cuando el alcance acetabular de la cabeza femoral es insuficiente y la fuerza resultante de cadera F_h actúa más cerca del borde del acetábulo. Esto se produce cuando el acetábulo está insuficientemente ventrovertido (*ventroverted*).

Las intervenciones quirúrgicas para abordar la displasia de cadera implican osteotomía intertrocantérica (ITO, intertrochanteric osteotomy) por la que el ángulo femoral de cuello se disminuye para reducir la fuerza de cadera o triple osteotomía pélvica (TPO, triple pelvic osteotomy) por la que se aumenta la ventroversión acetabular. Un estudio que analiza las fuerzas de cadera después de TPO concluyó que aumentar la ventroversión de 0 grados a 20 grados proporcionó el mayor beneficio, mientras que aumentar la ventroversión de 30 grados a 40 grados proporción un beneficio limitado. El estudio también concluyó que los resultados clínicos beneficiosos de la TPO pueden ser el resultado de la reducción de la magnitud de las fuerzas que actúan sobre la articulación de cadera que actúan en sintonía con el mayor alcance de la cabeza femoral.

En un ejemplo de la invención, el implante 4100 se coloca en el fémur bajo el complejo de músculo abductor de cadera (por ejemplo glúteo medio, glúteo profundo, etc.) como se muestra en la FIG. 65. De esta manera, los vectores de fuerza pueden alterarse de manera similar a los cambios biomecánicos asociados con una osteotomía pero sin la necesidad para esa cirugía invasiva. Un implante tal como el implante 4100 sería apropiado para perros con ángulos grandes de cuello femoral así como insuficiente ventroversión acetabular.

Si bien el implante 4100 puede colocarse alrededor de la zona del trocánter mayor, los expertos en la técnica apreciarán que el implante también puede colocarse en otras regiones (por ejemplo cuello femoral) para lograr el

desplazamiento apropiado de los músculos abductores. Como se muestra en la FIG. 66, el desplazamiento de los músculos abductores altera la línea de acción de los músculos abductores. Este desplazamiento aumenta el brazo de palanca de los músculos abductores reduciendo de ese modo la fuerza de músculo abductor necesaria para lograr el equilibrio mecánico durante el ciclo de andar, reduciendo de ese modo la fuerza resultante de cadera. Adicionalmente, el cambio en el ángulo de músculo abductor θ_a tiene como resultado la alteración del ángulo θ_h de fuerza resultante de cadera, dirigido más medialmente. Este cambio en la dirección de la fuerza resultante de cadera reduciría la carga en el borde del acetábulo así como que mejora potencialmente la estabilidad de la unión.

5

10

25

30

35

50

Al igual que con otros ejemplos descritos en esta memoria, el implante 4100 se diseñaría para no interferir con los puntos de inserción de músculo en la zona del trocánter mayor. Como también se describe en otra parte junto con unos ejemplos de la presente descripción, el implante 4100 puede conectarse al hueso subyacente utilizando anclajes, tornillos, alambres u otros medios de fijación. La prótesis puede incluir múltiples componentes, por ejemplo, la prótesis puede incluir un componente anterior que se conecta a la región anterior del fémur, un componente posterior que se conecta a la región posterior del fémur, y un tercer componente que se conecta a los otros dos componentes y efectúa el desplazamiento de los músculos abductores.

El implante 4100 también podría implantarse de manera artroscópica o utilizando un planteamiento de mini-abertura o de abertura. El grosor del implante puede ajustarse durante la cirugía o en cualquier momento después de la cirugía. Esto podría lograrse por medios mecánicos. La superficie de apoyo del implante podría ser con textura o lisa. La superficie en contacto con hueso puede ser con textura o porosa para mejorar el crecimiento hacia dentro de hueso mientras que la superficie en contacto con el tejido blando puede ser lisa para permitir un movimiento fácil de tejido.

En la FIG. 67 se ilustra un ejemplo de régimen de tratamiento según un ejemplo. A modo de ilustración, este ejemplo se describe en el contexto de tratamiento de cadera, pero como apreciarán los expertos en la técnica, el proceso es igualmente aplicable a otras ubicaciones como se enseña en esta memoria. Empezando en 1000, se hace un plan para la instalación de una prótesis, tal como la prótesis 220. En 1002, la prótesis se instala, por ejemplo mediante cirugía como se ha descrito antes.

La planificación 1000 puede implicar cualquier número de regímenes diferentes. Una parte de un plan 1000 puede implicar a un médico particular que evalúa una articulación de cadera según procedimientos muy conocidos, y selecciona e instala un detalle protésico sobre la base de una evaluación. Puede seleccionarse una prótesis, por ejemplo, de entre las muchas realizaciones descritas en esta memoria, o puede seleccionarse una combinación de prótesis.

Como otro ejemplo de un plan 1000, puede generarse un modelo informático de una articulación de cadera H, que permite a un médico determinar, a través de un modelo visual de la articulación de cadera, en el que debe instalarse una prótesis y/o determinar qué tipo de prótesis debe instalarse. En un ejemplo, se utilizan unas imágenes preoperatorias (rayos X, IRM, etc.) para determinar las dimensiones del implante y la ubicación óptima del implante. En el análisis puede utilizarse información tal como el ángulo de centro-orilla de Wiberg, la proporción de profundidad acetabular, la proporción de extrusión de cabeza femoral, el ángulo de centro-orilla anterior de Lequense, el ángulo de CCD, etc. El implante puede seleccionarse de un conjunto de tamaños estándares o un implante que se conforma durante la cirugía o un implante a medida que se ha fabricado para cumplir las necesidades de un paciente específico.

- 40 Como otro ejemplo de planificación 1000, una prótesis dada puede ser la prótesis predefinida para estructuras o síntomas anómalos particulares de una cadera, o puede preferirse para anomalías particulares. Por ejemplo, el implante 220 como se ha descrito antes puede ser apropiado para pacientes con un acetábulo poco profundo A, o con coxa valga. Otras prótesis descritas en esta memoria pueden ser más apropiadas para otras anomalías de cadera. Para tratar las patologías de rodilla, hombro, tobillo y codo puede utilizarse una planificación similar.
- 45 Unos ejemplos alternativos adicionales se describen en los siguientes párrafos.

En un ejemplo, un aparato para tratar una unión articular en donde la unión incluye por lo menos un primer y un segundo hueso con unas superficies articulares que se miran y los huesos son objeto de fuerzas ejercidas por los tejidos de destino alrededor de la unión, comprende una porción de soporte adaptada para ser asegurada al tejido o al hueso, y una porción de apoyo soportada por la porción de soporte. La porción de apoyo se configura y dimensiona para la colocación próxima al tejido de destino. La porción de apoyo tiene por lo menos una superficie de apoyo configurada para desplazar el tejido de destino con respecto a la unión una distancia suficiente como para redirigir una fuerza ejercida por el tejido de destino en la unión para lograr un efecto terapéutico. Este tipo de ejemplo de aparato puede incluir una o más de las características siguientes:

Por lo menos una superficie de apoyo adaptada para acoplarse sin traumatismo al tejido de destino.

La porción de soporte subyace a la porción de apoyo y comprende una superficie de soporte opuesta a la superficie de apoyo adaptada para contactar con el tejido subyacente.

Unos medios de conexión para asegurar la porción de apoyo al tejido subyacente.

Construido de un material sumiso blando o que lo incluye.

Construido de un material rígido o que lo incluye.

La superficie de soporte está adaptada para contactar con por lo menos uno del primer y el segundo hueso.

5 Unos medios de conexión para asegurar la porción de soporte al hueso.

Unos medios para asegurar el implante al tejido blando, que pueden configurarse para asegurar el implante al tejido de destino.

La porción de soporte comprende un miembro de soporte y la porción de apoyo comprende un miembro de apoyo.

- El miembro de apoyo es un miembro aparte del miembro de soporte.
- 10 El miembro de soporte y el miembro de apoyo forman una sola estructura integral.
 - El miembro de apoyo es ajustable con respecto al miembro de soporte para controlar el desplazamiento de la superficie de apoyo desde la superficie de soporte.

Un mecanismo de ajuste que coopera entre el miembro de apoyo y el miembro de soporte.

- El mecanismo de ajuste comprende un ajuste de tornillo.
- El mecanismo de ajuste se configura para ser ajustado después de que la superficie de soporte se asegure al tejido o al hueso.
 - El mecanismo de aiuste comprende un aiuste de cuña.
 - El miembro de apoyo es de un material diferente al miembro de soporte.
 - El miembro de apoyo es de un material sumiso blando.
- 20 El miembro de apovo se hace de un material que comprende silicona, titanio, acero inoxidable o carbono pirolítico.
 - El miembro de apoyo se configura para proporcionar cantidades variables de desplazamiento del tejido de destino en respuesta al ángulo de flexión de la unión.
 - El miembro de apoyo tiene forma de rampa.
- La forma de rampa se configura y dimensiona para permitir al tejido de destino moverse por la rampa a diversos grados de desplazamiento a medida que la unión se mueve por ángulos diferentes de flexión.
 - El miembro de apoyo define unas depresiones para recibir y guiar al tejido de destino.
 - El implante se configura para desplazar el tejido de destino en una primera dirección generalmente ortogonal a la superficie de apoyo y en una segunda dirección generalmente paralela a la superficie de apoyo.
 - La superficie de apoyo es de un material de poco rozamiento.
- 30 El miembro de soporte tiene una porción de fijación y una porción de desplazamiento, el miembro de apoyo se dispone en la porción de desplazamiento.

La porción de fijación incluye unos medios para facilitar la fijación al hueso.

- La porción de desplazamiento se configura y dimensiona para ser recibida alrededor de una porción del trocánter mayor o del cuello femoral, y la porción de fijación incluye una primera parte configurada y dimensionada para extenderse anteriormente desde la porción de apoyo entre las conexiones para el piriforme y el glúteo menor, y para extenderse posteriormente entre las conexiones para el cuadrado femoral y el iliopsoas.
 - La porción de fijación se configura y dimensiona para ser recibida alrededor de una porción del cuello femoral, y la porción de desplazamiento se configura para extenderse alrededor de por lo menos una porción de un músculo abductor de cadera para desplazar el músculo hacia el cuello femoral.
- 40 El miembro de soporte comprende además una sección de amplitud entre la porción de fijación y la porción de desplazamiento.

La sección de amplitud se configura y dimensiona para evitar características anatómicas selectas ubicadas entre una ubicación de fijación y una ubicación de desplazamiento de tejido de destino.

La porción de fijación se configura y dimensiona para asegurarse contra el fémur cranealmente con respecto a la cabeza lateral del gastrocnemio, la porción de expansión se configura y dimensiona para extenderse posteriormente alrededor de la cabeza lateral del gastrocnemio, y la porción de apoyo se configura y dimensiona para extenderse caudalmente con respecto al cóndilo lateral y subyacer a por lo menos uno del ligamento colateral externo y el tendón de bíceps femoral.

La porción de fijación se configura y dimensiona para asegurarse contra la tibia adyacente al tubérculo del Gerdy y el tejido blando a desplazar es la banda iliotibial, la porción de desplazamiento se configura y dimensiona para extenderse cranealmente desde la tibia a una posición próxima a la banda iliotibial, y a la sección de amplitud se configura y dimensiona para extenderse lateralmente desde la porción de fijación a la porción de desplazamiento.

- La porción de fijación se configura y dimensiona para asegurarse contra la tuberosidad tibial, la sección de amplitud se configura y dimensiona para extenderse cranealmente desde la porción de fijación, y la porción de desplazamiento se configura y dimensiona para extenderse medialmente desde la sección de amplitud y sobre una porción central de los cóndilos tibiales próximos el tendón rotular.
- En otro ejemplo de la presente descripción, un aparato para tratar una unión articular para realizar una distribución de fuerzas en la unión, la unión incluye por lo menos un primer y un segundo hueso con unas superficies articulares que se miran, los huesos se colocan uno respecto a otro mediante los tejidos conectivos y músculos asociados, los tejidos comprenden tejidos de destino para la terapia, comprende un miembro de apoyo configurado y dimensionado para la colocación en una ubicación terapéutica subyacente a por lo menos un tejido de destino, el miembro de apoyo tiene un grosor suficiente para desplazar el tejido de destino desde su recorrido natural a un recorrido terapéutico cuando se coloca en la ubicación terapéutica, y una superficie de apoyo dispuesta en el miembro de apoyo, la superficie de apoyo se configura para acoplarse sin traumatismo al tejido de destino y para permitir el movimiento del tejido de destino a lo largo el mismo. Este tipo de ejemplo de aparato puede incluir una o más de las características siguientes:
- Las dimensiones del miembro de apoyo son suficientes para desplazar tejidos de destino por una cantidad y en una dirección que reduce la carga en por lo menos una porción de las superficies articulares.

Unos medios de fijación para asegurar al miembro de apoyo en la ubicación terapéutica mediante la conexión al tejido circundante.

Un miembro de soporte que soporta al miembro de apoyo.

El miembro de apoyo es un miembro aparte del miembro de soporte.

30 El miembro de apoyo es ajustable con respecto al miembro de soporte para controlar selectivamente el desplazamiento del tejido de destino.

Un mecanismo de ajuste que coopera entre el miembro de apoyo y el miembro de soporte.

El miembro de apoyo es de un material sumiso blando.

El miembro de apoyo se configura para proporcionar cantidades variables de desplazamiento del tejido de destino en respuesta al ángulo de flexión de la unión.

El miembro de apoyo tiene forma de rampa.

5

50

El miembro de soporte tiene una porción de fijación y una porción de desplazamiento, el miembro de apoyo se dispone en la porción de desplazamiento.

El miembro de soporte comprende además una sección de amplitud entre la porción de fijación y la porción de desplazamiento.

La sección de amplitud se configura y dimensiona para evitar características anatómicas selectas ubicadas entre una ubicación de fijación y una ubicación de desplazamiento de tejido de destino.

Una superficie de soporte dispuesta en el miembro de soporte opuesta al miembro de apoyo, la superficie de soporte se configura y dimensiona para soportar al miembro de apoyo contra el tejido que subyace al tejido de destino.

La superficie de soporte se adapta para contactar con otro tejido de destino.

La superficie de soporte se adapta para contactar con por lo menos uno del primer y el segundo hueso para soportarlo sobre el mismo.

En un ejemplo adicional, el aparato para tratar trastornos de las uniones articulares, la unión que se somete a fuerzas ejercidas por tejidos blandos dispuesta próxima a la unión, comprende una prótesis implantable en acoplamiento con los tejidos blandos para desplazar los tejidos blandos suficientemente para alterar la ubicación, el

ángulo o la magnitud de las fuerzas ejercidas por los tejidos blandos para lograr un efecto terapéutico en la unión. Este tipo de ejemplo de aparato puede incluir una o más de las características siguientes:

La unión articular es una articulación de cadera y la prótesis se configura y dimensiona para contrarrestar las fuerzas que actúan para crear una unión displástica, en donde la articulación de cadera es una articulación de cadera humana o una articulación de cadera canina.

La unión articular es una articulación de rodilla y la prótesis se configura y dimensiona para contrarrestar las fuerzas que actúan para crear una unión osteoartrítica y/o para contrarrestar las fuerzas que actúan para crear una excesiva fuerza rotular de compresión.

La prótesis comprende unos medios de anclaje para anclar la prótesis en una posición fija con respecto a por lo menos una porción de la unión.

La prótesis desplaza los tejidos blandos en una primera dirección lejos del tejido de base y en una segunda dirección lateralmente con respecto al tejido de base.

La unión está rodeada por una cápsula, y en donde los medios de anclaje se configuran para sujetar al tejido blando o al hueso fuera de la cápsula.

15 La prótesis es de un material duro.

5

La prótesis comprende una capa exterior blanda que define una cámara y en donde la cámara se llena de un fluido o gel.

La prótesis comprende un conector para llenar la cámara con el fluido o gel después de que se implanta la prótesis.

La prótesis se bifurca para tener una forma de fúrcula, de Y o de V.

20 La prótesis se configura para montarse sobre el trocánter mayor o el cuello femoral.

La prótesis se configura para montarse sobre el cóndilo lateral femoral.

La prótesis se configura para montarse en por lo menos uno del fémur, la pelvis, el peroné, la tibia, el radio, el cúbito, la escápula, el calcáneo, el húmero, las vértebras espinales, el tarso, metatarsiano, el carpiano, metatarsiano o el talón

25 La prótesis se configura para montarse en la tibia adyacente al tubérculo de Gerdy y el tejido blando a desplazar es la banda iliotibial.

La prótesis se configura para montarse en la tuberosidad tibial y el tejido blando a desplazar es el tendón rotular.

En incluso otro ejemplo, un método para tratar una unión articular para efectuar una distribución de fuerzas en la unión, la unión incluye por lo menos un primer y un segundo hueso con unas superficies articulares que se miran, los huesos se colocan uno respecto al otro mediante los tejidos conectivos y los músculos asociados, comprende seleccionar por lo menos uno de los tejidos conectivos y los músculos asociados como tejido de destino para el tratamiento, desplazar el tejido de destino sin cortar los huesos o el tejido de destino, y redistribuir la carga en la unión para lograr un efecto terapéutico mediante el desplazamiento. Este ejemplo de método también puede incluir una o más de las siguientes características o etapas:

- 35 El desplazamiento es en una dirección lejos de la unión.
 - El desplazamiento comprende colocar un implante bajo el tejido de destino.

El implante comprende un miembro biocompatible que tiene un grosor que corresponde al desplazamiento de un tejido seleccionado.

La colocación comprende insertar el implante bajo el tejido de destino en una ubicación terapéuticamente efectiva, y 40 asegurar el implante en la ubicación terapéuticamente efectiva sin restricción substancial de movimiento del tejido de destino.

La unión es una rodilla y el tejido de destino se ubica y se desplaza lateralmente con respecto a la rodilla.

- El asegurar comprende conectar el implante al tejido de destino.
- El asegurar comprende conectar el implante al tejido blando subyacente al tejido de destino.
- El asegurar comprende conectar la prótesis a un hueso subyacente el tejido de destino.

El asegurar comprende conectar la prótesis a un tejido de soporte mediante sutura, tornillo, grapa, adhesivo o banda.

El tejido de soporte es por lo menos uno del tejido de destino, un tejido blando subyacente al tejido de destino, el hueso subyacente el tejido de destino.

- La fuerza natural ejercida por el tejido de destino actúa en la unión a través de un brazo de palanca efectivo, y el desplazamiento del tejido de destino mueve el tejido de destino a una posición en donde se aumenta el brazo de palanca efectivo.
 - El brazo de palanca efectivo se aumenta de aproximadamente 10 mm a aproximadamente 30 mm.
- El aumento del brazo de palanca efectivo es suficiente para aumentar el par de torsión de aproximadamente el 20% a aproximadamente el 30%.
 - El tejido de destino es un tracto iliotibial.
 - El tejido de destino es un tendón cuádriceps lateral-rotular.
 - El tejido de destino es un músculo bíceps femoral.
 - El tejido de destino es un tendón de bíceps femoral.
- 15 El tejido de destino es un músculo poplíteo.

45

- El tejido de destino es un músculo gastrocnemio lateral.
- El tejido de destino es uno o más músculos abductores.

La unión es la cadera y el tejido de destino es por lo menos un músculo abductor, que puede incluir uno o más del glúteo menor, el glúteo medio y/o el glúteo mayor.

20 La unión es la rodilla y el tejido de destino se desplaza anteriormente, el tejido de destino es uno del tendón rotular y la banda iliotibial o los dos.

Alterar el desplazamiento de tejido de destino en respuesta al ángulo de flexión de la unión.

En un ejemplo adicional, un método para tratar una unión articular, la unión incluye por lo menos un primer y un segundo hueso con unas superficies articulares que se miran, los huesos se someten a una fuerza ejercida por tejidos de destino alrededor de la unión, comprende implantar una prótesis para desplazar el tejido de destino con respecto a la unión, en donde una fuerza ejercida por el tejido de destino es redirigida de una manera que redistribuye una carga en por lo menos una de las superficies articulares sin cortar el primer ni el segundo hueso. Este ejemplo de método también puede incluir una o más de las siguientes características o etapas:

El tejido de destino se desplaza lateral, anterior o posteriormente con respecto a la unión.

La prótesis se implanta en el mismo lado de la unión que el tejido de destino.

Ajustar la magnitud de desplazamiento del tejido de destino después de implantar la prótesis.

La unión es una rodilla, y la prótesis se implanta en un primer lado de la rodilla para reducir la carga en la superficie articular de un segundo lado de la rodilla. El primer lado puede ser el lado lateral y el segundo lado puede ser el lado medial.

La unión es una rodilla, y la prótesis se implanta en la tibia para reducir la carga en el fémur.

La unión es la cadera, y la prótesis se implanta en un primer lado de la cadera para mover una fuerza resultante en la unión lejos del primer lado. El primer lado puede ser el lado lateral. La cadera puede ser una cadera humana o canina.

La fuerza ejercida por el tejido de destino actúa a través de un brazo de palanca antes de desplazar el tejido de destino y el tejido de destino se desplaza para aumentar substancialmente el brazo de palanca.

La fuerza ejercida por el tejido de destino abre la unión en un lado frente al tejido de destino.

En incluso otro ejemplo, un método para tratar una unión articular, la unión incluye por lo menos un primer y un segundo hueso con unas superficies articulares que se miran, los huesos se someten a fuerzas ejercidas por los tejidos de destino alrededor de la unión, comprende crear una abertura quirúrgica para acceder al tejido de destino, desplazar el tejido de destino con respecto a la unión a una configuración desplazada para redirigir una fuerza ejercida en la unión por el tejido de destino sin cortar el primer o el segundo hueso; y cerrar la abertura quirúrgica

con el tejido de destino restante en la configuración desplazada. El desplazamiento puede comprender colocar una prótesis bajo el tejido de destino.

En un ejemplo adicional, un método para tratar una articulación de cadera que tiene unos músculos abductores de cadera que actúan sobre la misma, comprende instalar una prótesis acoplada con por lo menos una porción de los músculos abductores de cadera o el tejido conjuntivo conectado a los mismos para alterar un vector de fuerza aplicado por los músculos abductores de cadera a la articulación de cadera. Este ejemplo de método también puede incluir una o más de las siguientes características o etapas:

La prótesis se instala sin cortar el hueso asociado con la articulación de cadera.

La articulación de cadera tiene una cápsula de cadera y la prótesis se instala superficial a la cápsula de cadera.

- 10 La prótesis desplaza los músculos abductores de cadera para alterar el vector de fuerza.
 - El desplazamiento de los músculos abductores de cadera es lateral.

5

- El desplazamiento de los músculos abductores de cadera es anterior o posterior.
- La prótesis altera el ángulo del vector de fuerza con respecto a la articulación de cadera.
- La instalación comprende instalar la prótesis entre los músculos de glúteo y los ligamentos capsulares que rodean la articulación de cadera.

La instalación comprende insertar la prótesis en un estado vacío y llenar la prótesis con un fluido.

La instalación comprende insertar una bolsa que tiene una entrada, y llenar la bolsa con un material curable y dejar que el material curable se endurezca.

La prótesis incluye una característica para guiar a por lo menos uno de los músculos y tendones, y en donde la instalación comprende alinear el uno de los músculos y tendones con la característica.

Anclar la prótesis a la pelvis y/o al fémur del paciente.

Anclar la prótesis a un cuello femoral del paciente.

La instalación comprende instalar la prótesis transversa al cuello femoral.

La instalación comprende anidar la prótesis alrededor del cuello femoral del paciente.

La instalación comprende insertar la prótesis en un estado contraído y expandir la prótesis in situ hasta un estado expandido.

La instalación comprende insertar la prótesis en un estado contraído, instalar la prótesis en el estado contraído y expandir la prótesis in situ a un estado expandido.

La instalación comprende ensamblar dos o más piezas para formar la prótesis, cada pieza se expande in situ.

30 La instalación comprende inyectar un fluido en la articulación de cadera y dejar que el fluido se endurezca en la prótesis.

La instalación comprende conectar la prótesis al tejido blando próximo a la articulación de cadera.

La prótesis se conecta a por lo menos una porción de los músculos abductores de cadera o al tejido conjuntivo conectado a los mismos.

La instalación comprende extender un cinturón o una correa alrededor de por lo menos una porción de los músculos abductores de cadera y apretar el cinturón o la correa alrededor de por lo menos una porción de los músculos abductores de cadera para alterar el vector de fuerza aplicado por los músculos abductores de cadera.

El cinturón o la correa arrastran la por lo menos una porción de los músculos abductores de cadera hacia el cuello femoral.

40 El tratamiento de una articulación de cadera comprende tratar una articulación de cadera de un humano o de un animal no humano.

Planificación asistida por ordenador para preparar la forma y la ubicación de la prótesis.

Preparar durante la cirugía la forma de la prótesis.

En incluso un ejemplo adicional, un método para tratar una articulación de cadera que tiene músculos abductores de cadera que actúan sobre la misma, comprende instalar una prótesis en acoplamiento con un trocánter mayor de la articulación de cadera para alterar un vector de fuerza aplicado por los músculos abductores de cadera a la articulación de cadera. Este ejemplo de método también puede incluir una o más de las siguientes características o etapas:

La prótesis se monta en el trocánter mayor del paciente para formar un capuchón sobre el trocánter mayor.

La instalación comprende insertar la prótesis en un estado contraído y expandir la prótesis in situ hasta un estado expandido.

La instalación comprende ensamblar dos o más piezas para formar la prótesis, en donde cada pieza puede tener un par de patas movibles, las patas se pueden aplastar para la introducción y son expansibles para la instalación.

La instalación comprende colocar la prótesis en un dispositivo de entrega en forma aplastada, y liberar la prótesis del dispositivo de entrega en forma expandida.

La instalación comprende articular un par de patas abisagradas de la prótesis desde una configuración aplastada a una configuración expandida.

- En otro ejemplo, un método para tratar una articulación de rodilla que tiene tejidos conjuntivos que incluye una banda iliotibial, un bíceps femoral, un ligamento colateral externo y un tendón rotular que actúa sobre el mismo, comprende instalar una prótesis en acoplamiento con por lo menos una porción de uno de los tejidos conjuntivos para alterar un vector de fuerza aplicado por los tejidos conjuntivos a la articulación de rodilla. Este ejemplo de método también puede incluir una o más de las siguientes características o etapas:
- 20 La prótesis se instala sin cortar el hueso asociado con la articulación de rodilla.

La articulación de rodilla tiene una cápsula de unión y la prótesis se instala superficial a la cápsula de unión.

La prótesis desplaza el por lo menos uno de los tejidos conjuntivos para alterar el vector de fuerza.

El desplazamiento de los tejidos conjuntivos es lateral y/o anterior.

La prótesis altera el ángulo del vector de fuerza con respecto a la articulación de rodilla.

- El tejido conjuntivo es la banda iliotibial y la prótesis desplaza la banda iliotibial en la dirección lateral.
 - El tejido conjuntivo es el bíceps femoral y la prótesis desplaza el bíceps femoral en la dirección lateral.
 - El tejido conjuntivo es el ligamento colateral externo y la prótesis desplaza el ligamento colateral externo en la dirección lateral.
 - El tejido conjuntivo es el tendón rotular y la prótesis desplaza el tendón rotular en la dirección anterior.
- 30 En un ejemplo adicional, un método para tratar inflamación o dolor debido al frotamiento o a la presión del tejido blando contra otro tejido, comprende implantar una prótesis próxima al tejido blando en donde la prótesis desplaza el tejido blando suficientemente para reducir la inflamación o el dolor. Este ejemplo de método también puede incluir una o más de las siguientes características o etapas:

La prótesis desplaza el tejido blando de una manera que reduce la presión del tejido blando contra el otro tejido.

35 El tejido blando es la banda iliotibial.

5

El otro tejido es el epicóndilo femoral lateral.

La prótesis se implanta entre la tibia y la banda iliotibial para desplazar la banda iliotibial lateral o anteriormente.

Asegurar la prótesis a la tibia.

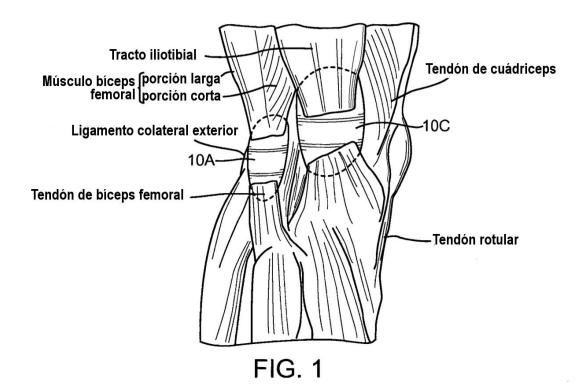
La prótesis se asegura a la tibia adyacente al tubérculo de Gerdy.

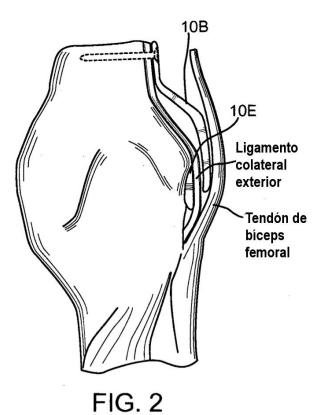
- Si bien la invención se ha ilustrado mediante unos ejemplos en varios contextos para tratar a un humano y la osteoartritis y displasia animal asociadas con desequilibrios de fuerzas en una unión, se entenderá que la invención también puede tener aplicación en el tratamiento de defectos focales causados por traumatismos u otras razones. En particular, el dolor asociado con defectos focales en el cóndilo medial en la rodilla puede reducirse aplicando los dispositivos y los métodos de la invención para reducir la carga en el cóndilo medial.
- 45 Otras aplicaciones de dispositivos y métodos de la invención incluyen el uso conjunto con tratamiento de reparación de menisco para reducir la carga en el cóndilo medial. La superficie de apoyo contorneada para la banda iliotibial

también podría aliviar el dolor asociado con el síndrome de rozamiento de banda iliotibial. Otra aplicación incluye el uso conjunto con dispositivos de sustitución total de cadera para alterar las fuerzas mecánicas en la nueva unión, aumentando de ese modo la estabilidad de la unión sustituida y reduciendo el riesgo de desgaste de implante. La invención puede adaptarse además para desplazar los tejidos que actúan sobre otras diversas uniones para reducir o alterar de otro modo las cargas en las mismas, incluido el codo, el hombro, la muñeca, los dedos, la espina dorsal, el tobillo, las articulaciones entre falanges, la mandíbula u otras uniones. Por ejemplo, los implantes de la invención pueden configurarse para la conexión al acetábulo, las vértebras de la espina dorsal, la escápula, el húmero, el radio, el cúbito, los carpianos, los metacarpianos, el tarso, los metatarsianos, el talón u otros huesos del pie, entre otros huesos.

5

Antes se han descrito unos ejemplos de realizaciones y se ilustran en los dibujos acompañantes. Los expertos en la técnica comprenderán que pueden hacerse diversos cambios, omisiones y adiciones a los que se describen específicamente en esta memoria descriptiva sin salir del alcance de la presente invención como se define en las reivindicaciones adjuntas.


REIVINDICACIONES


1. Un aparato (30, 50, 60, 70, 70A, 70B, 100, 120, 120", 140, 160) para tratar una unión articular para efectuar una distribución de fuerzas en la unión, dicha unión incluye por lo menos unos huesos primero y segundo con unas superficies articulares que se miran, los huesos se colocan uno respecto al otro mediante unos tejidos conectivos y músculos asociados, dichos tejidos comprenden unos tejidos de destino para la terapia, el aparato comprende:

un miembro de apoyo (110, 130, 131, 150) configurado y dimensionado para la colocación en una ubicación terapéutica próxima a por lo menos dicho tejido de destino para desplazar el tejido de destino de su recorrido natural, en una dirección lejos de la unión, a un recorrido terapéutico cuando se coloca en dicha ubicación terapéutica;

una superficie de apoyo (56, 66, 76, 106, 126, 166) dispuesta en el miembro de apoyo (110, 130, 131, 150), la superficie de apoyo (56, 66, 76, 106, 126, 166) se configura para acoplarse sin traumatismo al tejido de destino y para permitir el movimiento del tejido de destino; y

- un miembro de soporte soporta el miembro de apoyo (110, 130, 131, 150), dicho miembro de soporte tiene una porción de fijación (54, 64, 74, 104, 164) y una porción de desplazamiento (33, 53, 63, 73, 73A, 73B, 103, 123, 143, 163), dicho miembro de apoyo (110, 130, 131, 150) se dispone en la porción de desplazamiento (33, 53, 63, 73, 73A, 73B, 103, 123, 143, 163);
 - el miembro de soporte comprende además una sección de amplitud (61, 71) entre la porción de fijación (34, 54, 64, 74, 104, 164) y la porción de desplazamiento (33, 53, 63, 73, 73A, 73B, 103, 123, 143, 163); caracterizada por que:
- la porción de fijación (34, 54, 64, 74, 104, 164) se configura y dimensiona para asegurarse contra el fémur cranealmente con respecto al cóndilo femoral; en donde
 - la sección de amplitud (61, 71) se extiende verticalmente entre la porción de fijación (54, 64, 74, 104, 164) y la porción de desplazamiento (33, 53, 63, 73, 73A, 73B, 103, 123, 143, 163); y
 - la porción de desplazamiento (33, 53, 63, 73, 73A, 73B, 103, 123, 143, 163) se configura y dimensiona para desplazar lateralmente el tejido de destino.
- 2. El aparato de la reivindicación 1, en donde la sección de amplitud (61, 71) se configura y dimensiona para evitar características anatómicas selectas ubicadas entre una ubicación de fijación y una ubicación de desplazamiento de tejido de destino.
 - 3. El aparato de la reivindicación 1, en donde el tejido de destino comprende la banda iliotibial y la sección de amplitud (61, 71) se configura para colocar la porción de desplazamiento bajo la banda iliotibial.
- 4. El aparato de cualquiera de las reivindicaciones 1-3, en donde la sección de amplitud (61, 71) se configura y dimensiona para colocar la porción de desplazamiento lateralmente con respecto al cóndilo femoral.
 - 5. El aparato de cualquiera de las reivindicaciones anteriores, en donde el miembro de apoyo (110, 130, 131, 150) se configura y dimensiona para desplazar el tejido de destino de aproximadamente 10 mm a aproximadamente 30 mm.
- 35 6. El aparato de cualquier reivindicación precedente, en donde la porción de desplazamiento (63) se configura y dimensiona para desplazar anteriormente el teiido de destino.
 - 7. El aparato de cualquier reivindicación precedente, en donde el tejido de destino es un tendón y la sección de amplitud (61, 71) coloca la porción de desplazamiento (63) lateralmente al cóndilo femoral con el miembro de apoyo (110, 130, 131, 150) bajo el tendón.
- 40 8. El aparato de la reivindicación 7, en donde: el desplazamiento del tendón afecta a la acción del cuádriceps.
 - 9. El aparato de la reivindicación 1, en donde dicho aparato comprende una prótesis implantable con acoplamiento con dicho por lo menos un tejido de destino para desplazar dicho tejido de destino para alterar suficientemente la ubicación, el ángulo o la magnitud de las fuerzas ejercidas por el tejido para lograr un efecto terapéutico en la unión.
- 45 10. El aparato de la reivindicación 9, en donde la superficie de apoyo se configura para acoplarse sin traumatismo con el tejido blando que va a ser desplazado y para permitir el movimiento del mismo.

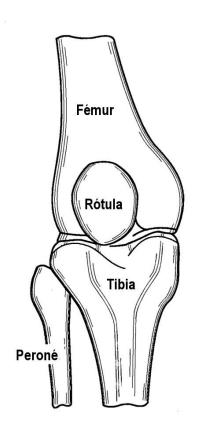
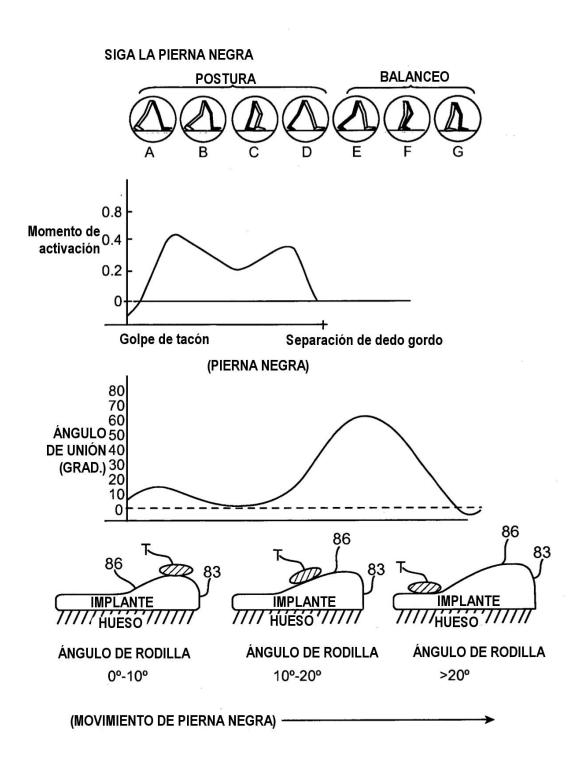
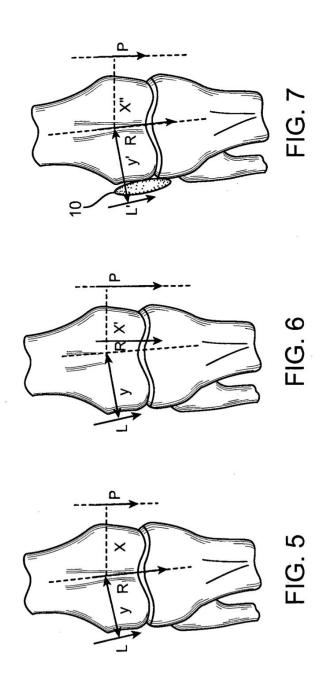
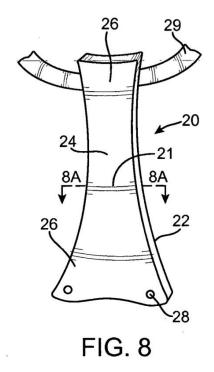
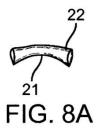
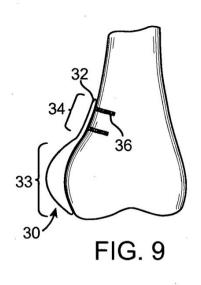
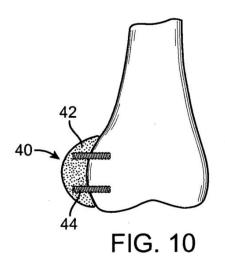
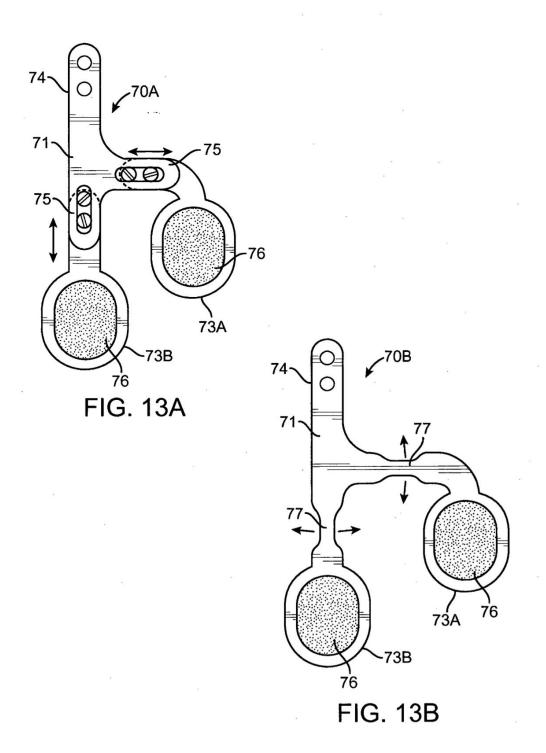


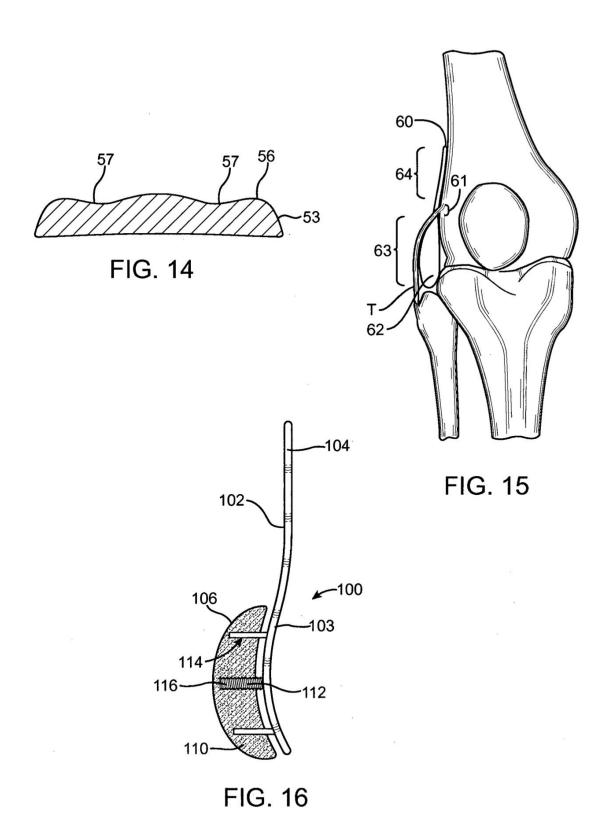
FIG. 3

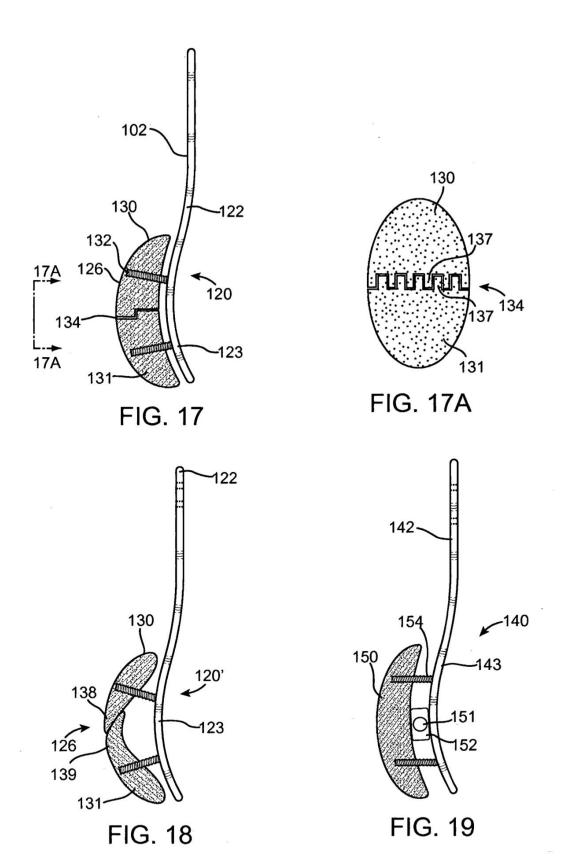






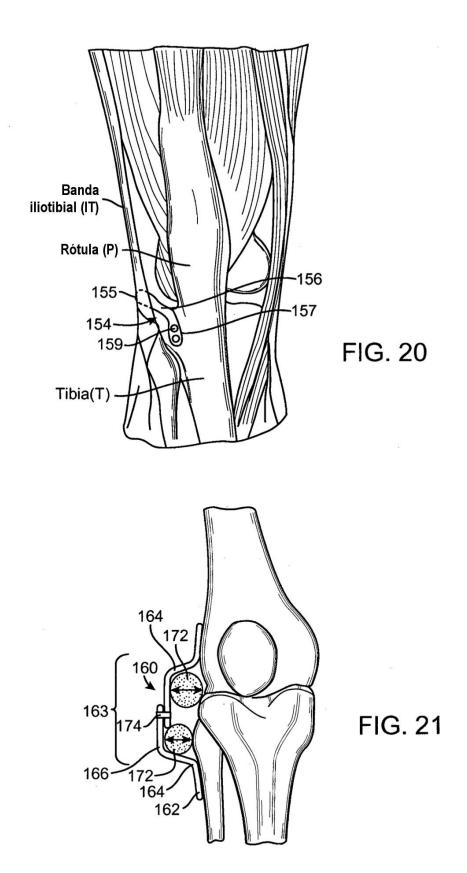

FIG. 4

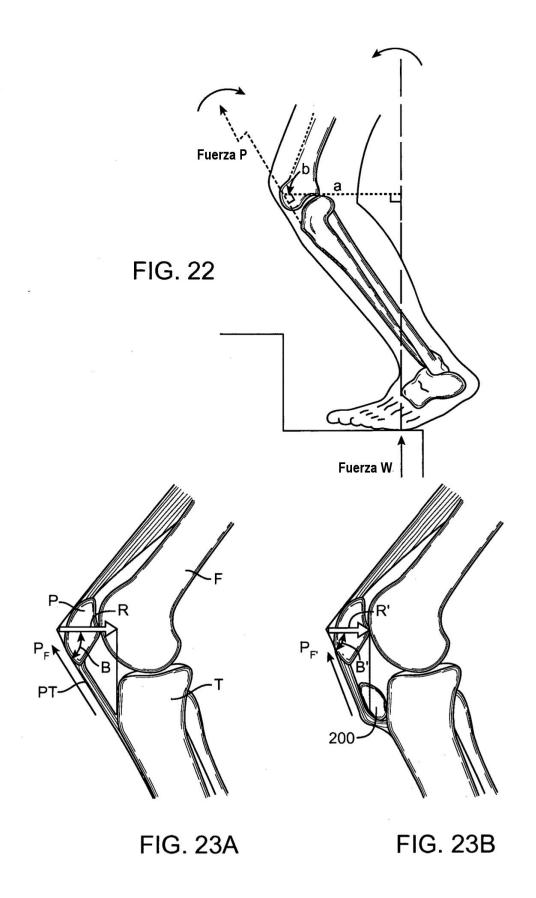


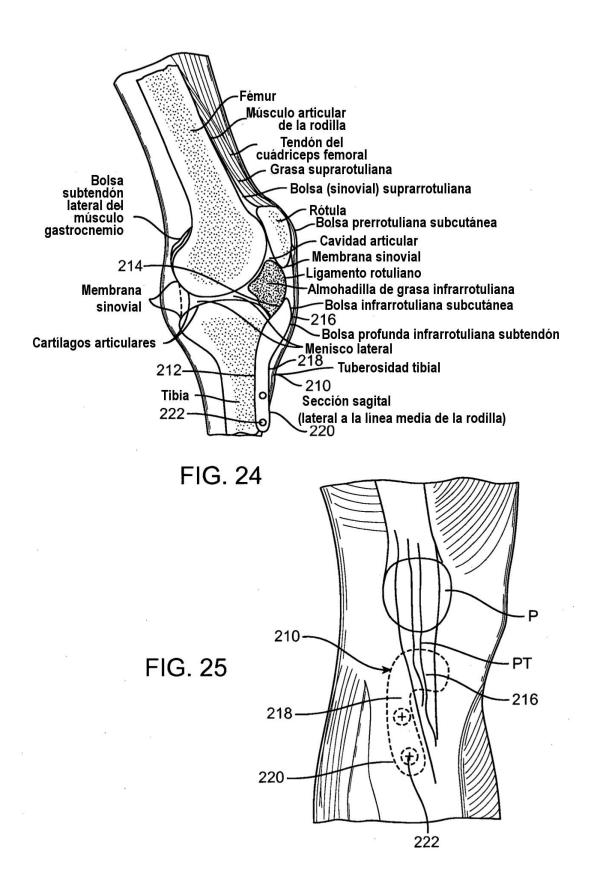







2-1-2





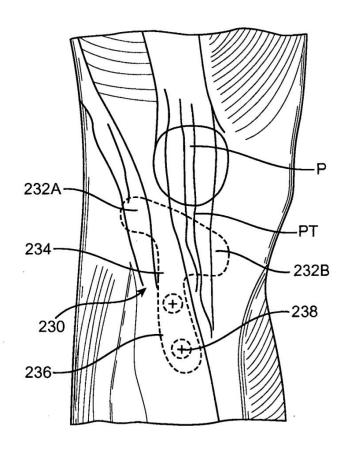
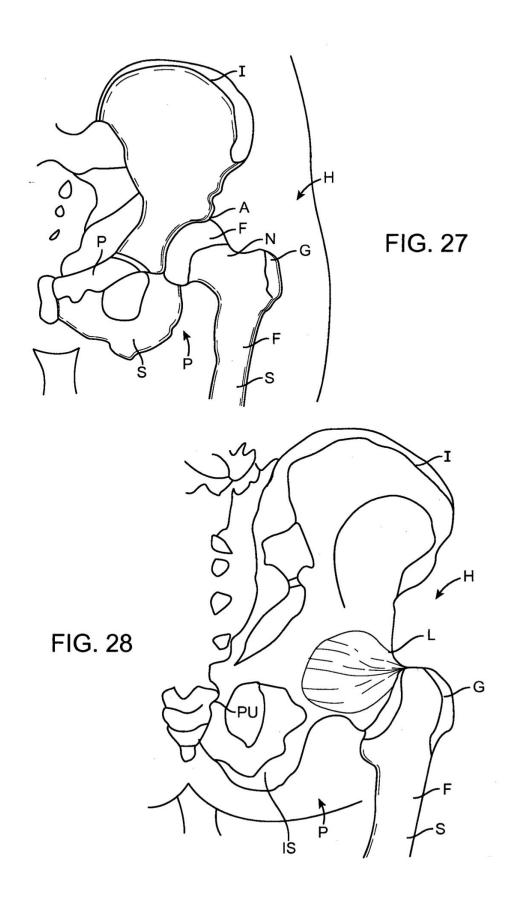



FIG. 26

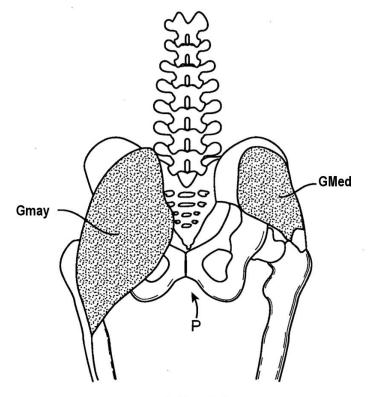


FIG. 29

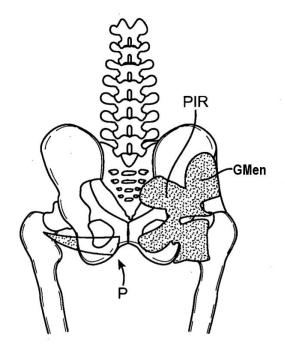


FIG. 30

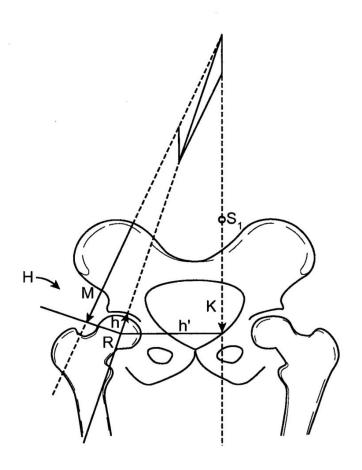


FIG. 31

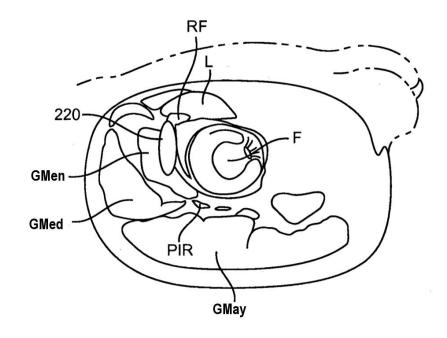
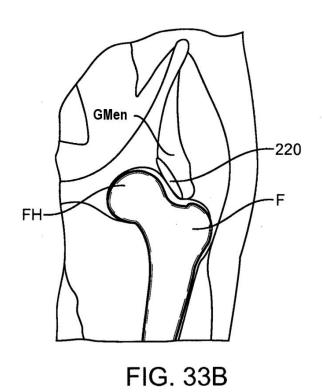



FIG. 33A

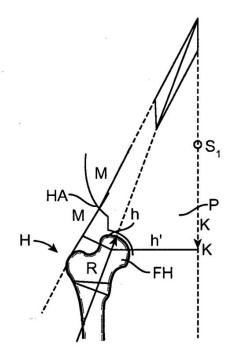


FIG. 34A

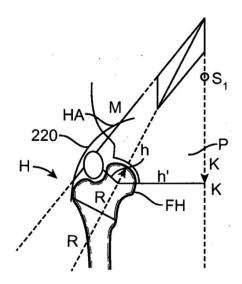
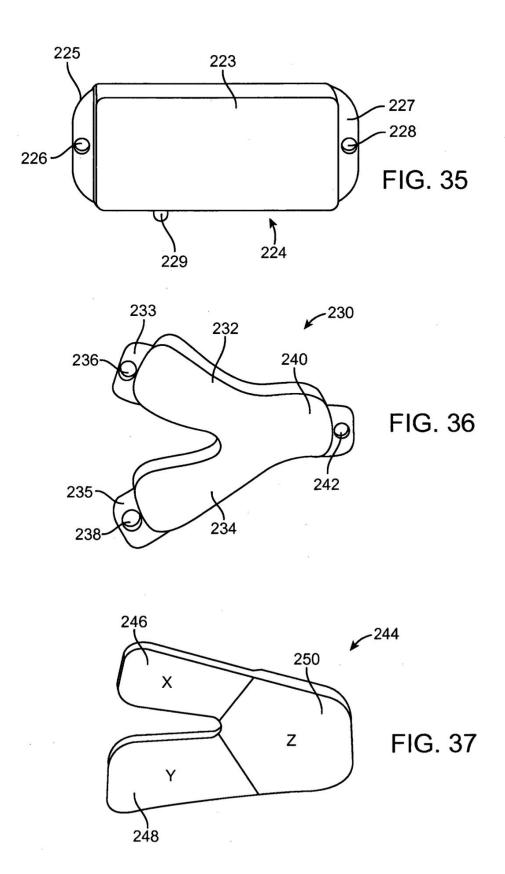



FIG. 34B

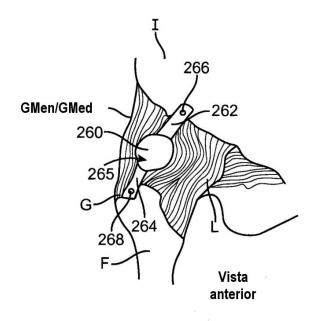


FIG. 38

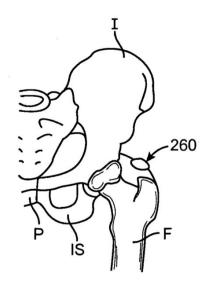


FIG. 39

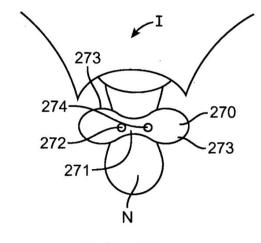
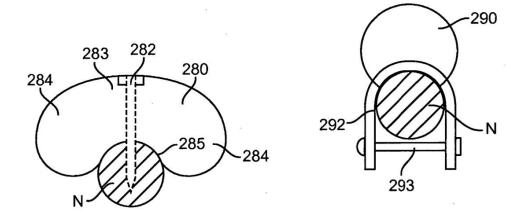
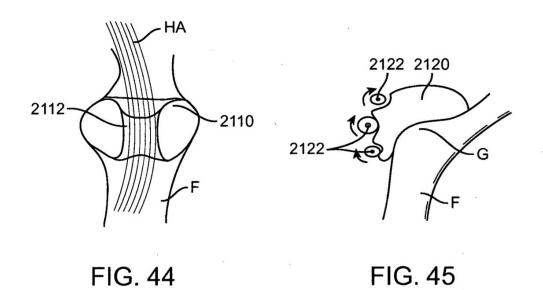
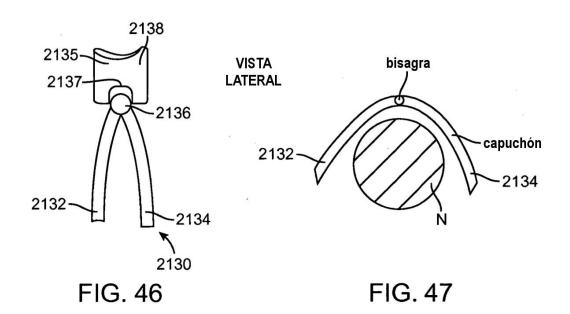
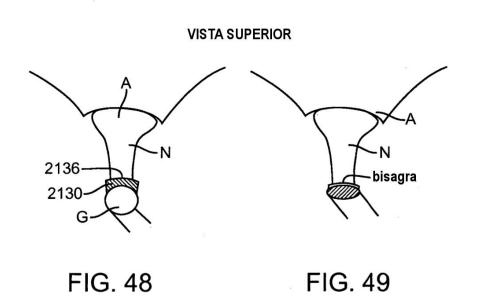


FIG. 40


FIG. 41


FIG. 42

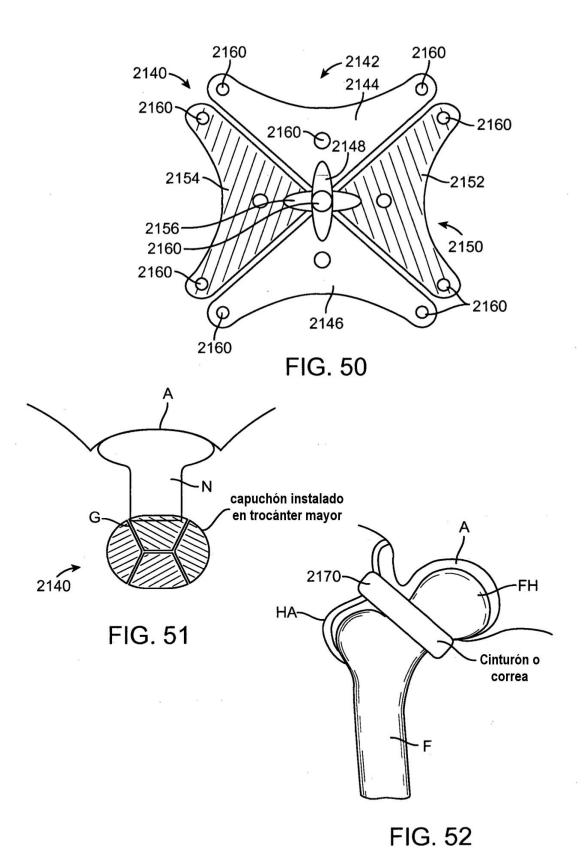


FIG. 43

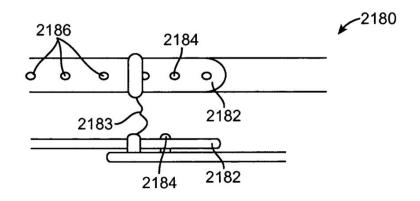


FIG. 53

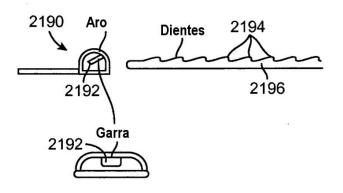


FIG. 54

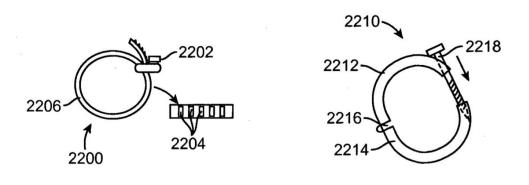
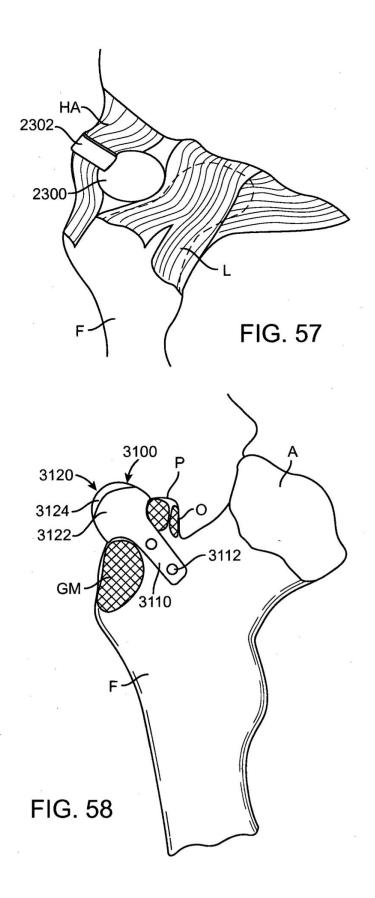
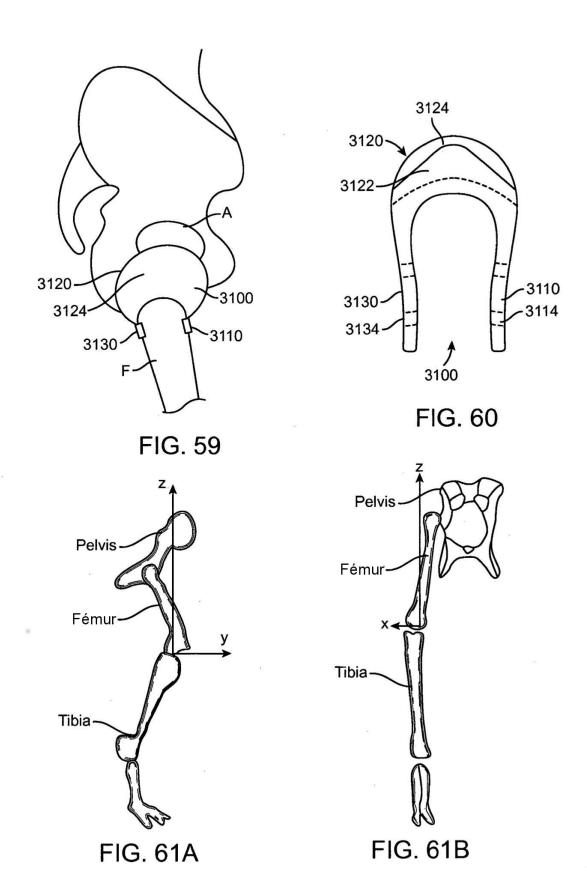




FIG. 55

FIG. 56

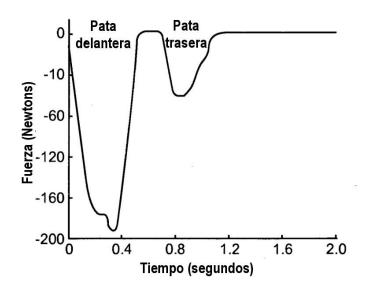


FIG. 62

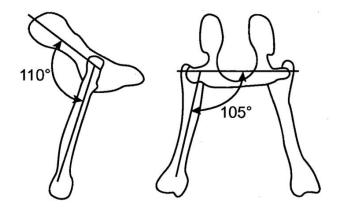


FIG. 63

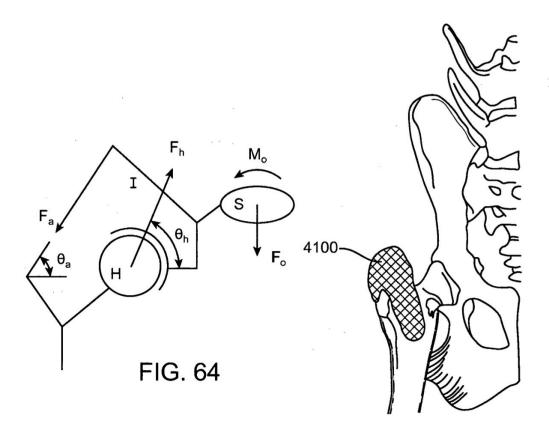
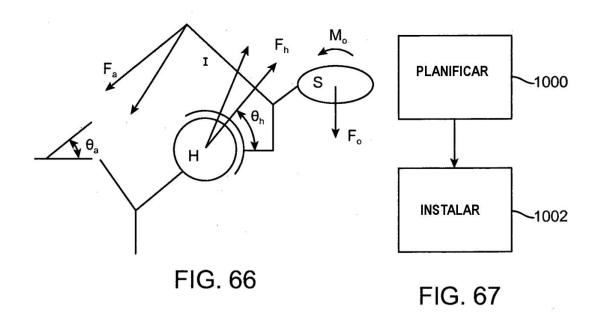



FIG. 65

