

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 478 844

51 Int. Cl.:

C12P 5/02 (2006.01) C12P 7/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 22.12.2009 E 09799636 (7)
 (97) Fecha y número de publicación de la concesión europea: 04.06.2014 EP 2516656
- (54) Título: Procedimiento para la producción de isoprenol a partir de mevalonato, empleando una difosfomevalonato descarboxilasa
- Fecha de publicación y mención en BOPI de la traducción de la patente: 23.07.2014

(73) Titular/es:

GLOBAL BIOENERGIES (50.0%) 5 Rue Henri Desbruères 91030 Evry Cedex, FR y SCIENTIST OF FORTUNE S.A. (50.0%)

(72) Inventor/es:

MARLIERE, PHILIPPE; ANISSIMOVA, MARIA; CHAYOT, ROMAIN y DELCOURT, MARC

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Procedimiento para la producción de isoprenol a partir de mevalonato, empleando una difosfomevalonato descarboxilasa.

5

20

35

- La presente invención se refiere a un método para la producción de isoprenol utilizando mevalonato como sustrato y convirtiéndolo enzimáticamente en isoprenol mediante una etapa de descarboxilación. La presente invención también se refiere al uso de una enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33) para la producción de isoprenol a partir de mevalonato.
- Además de ello, la presente invención se refiere a un método para la producción de isopreno, comprendiendo el método para la producción de isoprenol utilizando mevalonato como sustrato y convirtiéndolo enzimáticamente en isoprenol mediante una etapa de descarboxilación y que comprende, además, la etapa de convertir el isoprenol producido en isopreno. La presente invención también se refiere a un método para la producción de alcohol isoamílico que comprende el método para la producción de isoprenol utilizando mevalonato como sustrato y convirtiéndolo enzimáticamente en isoprenol mediante una etapa de descarboxilación en isoprenol y que comprende, además, la etapa de convertir el isoprenol producido en alcohol isoamílico.

Isoprenol responde a la fórmula $C_5H_{10}O$. Se puede utilizar para producir prenol, que se utiliza en perfumes o como un bloque de construcción en la industria farmacéutica. Es producido por la condensación química de isobuteno y formaldehído, que conduce a isoprenol que se isomeriza adicionalmente para formar prenol.

- La ruta que se utiliza actualmente para producir isoprenol implica la vía del mevalonato: se produce mevalonato y, a continuación, se difosforila, después se descarboxila-deshidrata en pirofosfato de isoprenilo, y finalmente se desfosforila dos veces para dar isoprenol (solicitud de patente de EE.UU. 20080092829).
- El documento de NABETA, K. ET AL.: "Metabolism of *RS*-Mevalonic Acid-6,6,6-²H₃by *in Vitro* Callus Culture of *Perilla* sp." (AGRICULTURAL AND BIOLOGICAL CHEMISTRY, vol. 49, nº 10, 1985, páginas 3039-3040) describe un procedimiento para la preparación de isoprenol, que comprende la conversión de mevalonato en isoprenol, empleando un cultivo del tejido del callo derivado de *Perilla* sp.
- 30 Isoprenol se puede convertir en isopreno que es un compuesto clave para la industria del neumático, y también tiene muchas aplicaciones en los adhesivos. Se produce químicamente utilizando varias rutas:
 - Destilación extractiva del petróleo (corte C5)
 - Deshidrogenación de iso-amileno
 - Doble deshidrogenación de isopentano
 - Reacción de isobuteno y formaldehido
 - Reacción de acetona y acetileno
 - Dimerización de propileno

El documento WO 2009/076676 informa de una vía metabólica para formar isopreno. La vía se basa en la desfosforilación-deshidratación de productos intermedios aguas abajo en la vía del mevalonato, es decir, pirofosfato de isoprenilo o pirofosfato de prenilo. Este proceso tiene el inconveniente de requerir recorrer toda la vía del mevalonato: doble fosforilación de mevalonato, seguida de una descarboxilación-deshidratación en pirofosfato de isoprenilo, adicionalmente isomerizado para formar pirofosfato de prenilo y, finalmente, doble desfosforilación/deshidratación para dar isopreno.

- Alcohol isoamílico es un producto químico muy importante, comúnmente utilizado como disolventes para grasas, aceites, resinas y alcaloides. Existe una demanda de alcohol isoamílico en la industria de la perfumería, por ejemplo en la fabricación de salicilato de isoamilo utilizado en jabón y fragancias cosméticas. También se utiliza en la fabricación de ácido fosfórico. Además de ello, se utiliza en la síntesis de piretroides. Los procesos comerciales para la producción de alcohol isoamílico incluyen el fraccionamiento de aceites de fusel, la cloración de alcanos con subsiguiente hidrólisis para producir una mezcla de isómeros y un oxo-proceso a baja presión o la hidroformilación de n-butenos, seguida de hidrogenación del iso-valeraldehído resultante.
 - Existe una necesidad de proporcionar métodos no contaminantes, económicos y sencillos para producir los compuestos mencionados anteriormente. Esta necesidad se satisface mediante la materia objeto tal como se expone en las reivindicaciones.

55

60

65

Por lo tanto, en un primer aspecto, la presente invención se refiere a un método para producir isoprenol a partir de mevalonato. En particular, la presente invención se refiere a un método para producir isoprenol a partir de mevalonato, que se caracteriza por una conversión de mevalonato con una enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33). Por lo tanto, el método comprende la descarboxilación catalizada enzimáticamente de mevalonato. El término "descarboxilación", cuando se utiliza en el contexto de la presente invención, se refiere a una descarboxilación deshidratante.

El término "mevalonato" comprende ácido mevalónico, así como el anión de ácido mevalónico, que es la forma predominante en medios biológicos. Ácido mevalónico es un precursor en la vía biosintética, conocida como la vía del mevalonato, que produce terpenos y esteroides. Mevalonato es el precursor principal de pirofosfato de isoprenilo,

que es a su vez la base para todos los terpenoides. La fórmula estructural de ácido mevalónico se muestra en la Figura 1.

En el contexto de la presente invención, el término isoprenol comprende compuestos que responden a la fórmula $C_5H_{10}O$. El nombre IUPAC de isoprenol es 3-metilbut-3-en-1-ol. Sinónimos de isoprenol son, por ejemplo, 2-metil-1-buten-4-ol, 3-buten-1-ol-3-metílo, alcohol 3-isopentenílico, 3-metil-3-buten-1-ol, isobutenilcarbinol, alcohol isopropeniletílico y metalil carbinol.

- La expresión "enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33)" en el contexto de la presente invención se refiere a una enzima que es capaz de descarboxilar mevalonato, en particular de acuerdo con el esquema de reacción dado en la Figura 2. La reacción catalizada es una deshidratación y descarboxilación simultáneas. Esta actividad enzimática se puede medir como se describe en los Ejemplos 1 ó 7 adjuntos.
- La enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33) es una enzima que se clasifica como una difosfomevalonato descarboxilasa o es una enzima que se deriva de una enzima de este tipo y que tiene la capacidad de descarboxilar mevalonato a fin de producir isoprenol. Difosfomevalonato descarboxilasa está clasificada con el número EC 4.1.1.33. Una difosfomevalonato descarboxilasa es capaz de catalizar la descarboxilación de mevalonato difosfato. En esta reacción, ATP y 5-difosfomevalonato se convierten en ADP, fosfato, pirofosfato de isoprenilo y CO₂. La reacción catalizada por una difosfomevalonato descarboxilasa se muestra en la Figura 2. La actividad de una difosfomevalonato descarboxilasa se puede medir de acuerdo con métodos conocidos en la técnica, p. ej., en Reardon et al. (Biochemistry 26 (1987), 4717-4722). Preferiblemente, la actividad se mide como se describe en el Ejemplo 1 ó 7 en el que se utiliza difosfomevalonato en lugar de mevalonato.
 - Se ha informado que, al menos en algunos casos, la reacción es dependiente de cationes divalentes (véase, p. ej., Krepkiy et al., Protein Science 13 (2004), 1875-1881; Michihara et al, Biol. Pharm. Bull. 25 (2002), 302-306).
- Difosfomevalonato descarboxilasa es una enzima que, en su función natural, es parte de la vía del mevalonato para la síntesis de isoprenoides en bacterias y de la vía de biosíntesis de esterol en eucariotas. Se ha identificado y aislado a partir de diversos organismos tales como animales, hongos, levaduras y bacterias. También se expresa en determinadas plantas.
- La estructura tridimensional de varias difosfomevalonato descarboxilasas ya ha sido determinada (véase, p. ej., 30 Byres et al. (J. Mol. Biol. 371 (2007), 540-553); Bonanno et al. (Proc. Natl Acad. Sci. USA 98 (2001), 12896-12901); Voynova et al., Archives of Biochemistry and Biophysics 480 (2008), 58-67)) y está disponible un considerable conocimiento acerca de su sitio activo, residuos aminoácidos cruciales para la reacción catalítica y la reacción enzimática real (véase, p. ej., Byres et al. (J. Mol. Biol. 371 (2007), 540-553); Bonanno et al. (Proc. Natl Acad. Sci. USA 98 (2001), 12896-12901)). En la mayoría de los casos la enzima está compuesta de aproximadamente 300 a 400 aminoácidos y utiliza ATP como co-sustrato, el cual se convierte durante la reacción de descarboxilación en ADP
 - y fosfato inorgánico.

 Difosfomevalonato descarboxilasas se han descrito para diversos organismos y también secuencias de aminoácidos y nucleótidos que las codifican están disponibles para numerosas fuentes.
- En principio, en el contexto de la presente invención se puede utilizar cualquier difosfomevalonato descarboxilasa, en particular de organismos procariotas o eucariotas. Difosfomevalonato descarboxilasas eucariotas se describen, por ejemplo, para animales, tales como Rattus norvegicus, Gallus gallus, Homo sapiens, Mus musculus, Sus scrofa, D. melanogaster, C. elegans y Trypanosoma brucei, para plantas tales como Arabidopsis thaliana, Ginko biloba, Oryza sativa, Pisum sativum, para levaduras tales como Saccharomyces cerevisiae y Candida albicans. También se han descrito numerosas difosfomevalonato descarboxilasas, p. ej., para Helicobacter, Staphylococcus aureus,
- 45 Streptococcus pneumoniae, Enterococcus faecium, Listeria monocytgenes, Leuconostoc citreum, Lactobacillus reuteri, por nombrar sólo algunos. La Tabla 1 proporciona una lista de secuencias de difosfomevalonato descarboxilasas de diferentes organismos que indican los números de acceso de los que se pueden recuperar de las respectivas bases de datos.

Tabla 1

Organismo	Número de Acceso Genbank
Bombyx mori	A5A7A2
Cepa YJM7 de Saccharomyces cerevisiae	A6ZSB7
Solanum lycopersicum	A8WBX7
Hevea brasilensis	A9ZN03
Nicotiana langsdotfii x Nicotiana sanderae	B3F8H5
Saccharomyces cerevisiae (cepa RM11-1a)	B3LPK0
Phaeodactylum tricomutum CCAP 1055	B7S422
Candida dubliniensis	B9W6G7
Picchia pastoris	C4QX63
Ashbya gossypi	Q751D8
Bos taurus	Q0P570
Danio rerio	Q5U403
Dictyostelium doscoideum	Q54YQ9
Homo sapiens	P53602
Mus musculus	Q89JFS
Rattus norvegicus	Q62967
Schizosaccharomyces pombe	O13963
Saccharomyces cerevisiae	P32377
Arnebia euchroma	Q09RL4
Aspergillus oryzae	Q2UGF4
Mus musculus	Q3UYC1
Gingko biloba	Q5UCT8
Rattus norvegicus	Q642E5
Oryza sativa subsp. japonica	Q6ETS8
Arabidopsis thaliana	Q8LB37
Encephalitozoon cuniculi	Q8SRR7
Hevea brasilensis	Q944G0

Ejemplos de difosfomevalonato descarboxilasas de diferentes organismos se dan en SEQ ID NO: 1 a 19. En una forma de realización preferida de la presente invención, la difosfomevalonato descarboxilasa es una enzima que comprende una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 1 a 19 o una secuencia que es al menos n% idéntica a cualquiera de SEQ ID NO: 1 a 19 y que tiene la actividad de una difosfomevalonato descarboxilasa, siendo n un número entero entre 10 y 100, preferiblemente 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 ó 99.

Preferiblemente, el grado de identidad se determina comparando la secuencia respectiva con la secuencia de aminoácidos de una cualquiera de las SEQ ID NOs. arriba mencionados. Cuando las secuencias que se comparan no tienen la misma longitud, el grado de identidad se refiere preferiblemente al porcentaje de residuos aminoácidos en la secuencia más corta que son idénticos a los residuos aminoácidos en la secuencia más larga o al porcentaje de residuos aminoácidos en la secuencia más larga que son idénticos a los residuos aminoácidos en la secuencia más corta. El grado de identidad de la secuencia puede determinarse de acuerdo con métodos bien conocidos en la técnica utilizando preferiblemente algoritmos informáticos adecuados tal como CLUSTAL.

Cuando se utiliza el método de análisis Clustal para determinar si una secuencia particular es, por ejemplo, 80% idéntica a una secuencia de referencia, se pueden utilizar ajustes por defecto o los ajustes son preferiblemente como sigue: Matriz: blosum 30; Abrir penalización para el hueco: 10,0; Extender penalización para el hueco: 0,05; Retrasar divergente: 40; Distancia de separación del hueco: 8 para las comparaciones de secuencias de aminoácidos. Para las comparaciones de secuencias de nucleótidos, Extender penalización para el hueco se ajusta preferiblemente a 5,0.

Preferiblemente, el grado de identidad se calcula en la longitud completa de la secuencia.

Además de ello, si el término "homología" se utiliza en el contexto de la presente invención, el término significa preferiblemente "identidad de la secuencia".

En una forma de realización preferida, la difosfomevalonato descarboxilasa empleada en el método de acuerdo con la invención es una difosfomevalonato descarboxilasa de Picrophilus torridus o un organismo que está evolutivamente estrechamente relacionado con Picrophilus torridus. En una forma de realización preferida adicional, la difosfomevalonato descarboxilasa se origina a partir de un organismo del género Picrophilus, Thermoplasma o Ferroplasma, más preferiblemente de la especie Picrophilus torridus, Picrophilus oshimae, Thermoplasma volcanicum, Thermoplasma acidophilum, Ferroplasma acidarmanus o Ferroplasma cupricumulans.

En una forma de realización particularmente preferida, la difosfomevalonato descarboxilasa empleada en el método de acuerdo con la invención es una difosfomevalonato descarboxilasa que comprende la secuencia de aminoácidos como se representa en SEQ ID NO: 6, 16, 17, 18 ó 19, o que comprende una secuencia de aminoácidos que es al menos n% idéntica a cualquiera de las SEQ ID NO: 6, 16, 17, 18 ó 19 y que tiene la actividad de una difosfomevalonato descarboxilasa, siendo n un número entero entre 10 y 100, preferiblemente 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 o 99. La enzima que muestra la secuencia de aminoácidos tal como se muestra en la SEQ ID NOs: 6 y 16 procede de Picrophilus torridus. Tal como se muestra en los Ejemplos, esta enzima es particularmente eficaz en la catálisis de la descarboxilación del mevalonato a isoprenol. Difosfomevalonato descarboxilasas preferidas, a emplear en el método de acuerdo con la presente invención, son difosfomevalonato descarboxilasas que proceden de organismos que están filogenéticamente estrechamente relacionados con Picrophilus torridus tales como otras bacterias del género Picrophilus tal como Picrophilus oshimae, bacterias del género Ferroplasma, p. ei., Ferroplasma acidarmanus (SEQ ID NO: 19), o del género Thermoplasma tal como Thermoplasma acidophilum (SEQ ID NO: 18) y Thermoplasma volcanium (SEQ ID NO: 17). La difosfomevalonato descarboxilasa de Thermoplasma acidophilum (número AC Q9HIN1) muestra una homología del 38% con la SEQ ID NO: 6 y la de Thermoplasma volcanium (número AC Q97BY2) muestra una homología de aproximadamente 42% con la SEQ ID NO: 6.

En otra forma de realización particularmente preferida, la difosfomevalonato descarboxilasa empleada en el método de acuerdo con la invención es una difosfomevalonato descarboxilasa que es codificada por una secuencia de nucleótidos como se muestra en SEQ ID NO: 20 ó 21, o por una secuencia de nucleótidos que es al menos n% idéntica a cualquiera de las SEQ ID NO: 20 ó 21 y que codifica una enzima que tiene la actividad de una difosfomevalonato descarboxilasa, siendo n un número entero entre 10 y 100, preferiblemente 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75. 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 ó 99. La SEQ ID NO: 20 es la secuencia de nucleótidos nativa que codifica la MDP descarboxilasa procedente de P. torridus que incluye una etiqueta His en el extremo N-terminal. La SEQ ID NO: 21 es una secuencia optimizado en el codón que codifica la MDP descarboxilasa procedente de P. torridus que incluyendo una etiqueta His en el extremo N-terminal.

La difosfomevalonato descarboxilasa empleada en el procedimiento de acuerdo con la invención puede ser una difosfomevalonato descarboxilasa de origen natural, o puede ser una difosfomevalonato descarboxilasa que se deriva de una difosfomevalonato descarboxilasa de origen natural (p. ej., mediante la introducción de mutaciones u otras alteraciones que, p. ej., alteran o mejoran la actividad enzimática, la estabilidad, etc.

La expresión "difosfomevalonato descarboxilasa" o "una proteína/enzima que tiene la actividad de una difosfomevalonato descarboxilasa "en el contexto de la presente solicitud también abarca enzimas que se derivan de una difosfomevalonato descarboxilasa, que son capaces de catalizar la descarboxilación de mevalonato, pero que sólo tienen una baja afinidad por su sustrato natural, mevalonato difosfato, o que ya no aceptan su sustrato natural, mevalonato difosfato. Una modificación de este tipo del sustrato preferido de una difosfomevalonato descarboxilasa, permite mejorar la conversión de mevalonato en isoprenol y reducir la producción del sub-producto que posiblemente aparece, pirofosfato de isoprenilo. Métodos para modificar y/o mejorar las actividades enzimáticas deseadas de proteínas son bien conocidos por la persona experta en la técnica, e incluyen, p. ej., mutagénesis al azar o mutagénesis dirigida al sitio y la subsiguiente selección de enzimas que tienen las propiedades o los enfoques de la denominada "evolución dirigida" deseados, barajado de ADN o evolución in vivo

Por ejemplo, para la ingeniería genética en células procarióticas, una molécula de ácido nucleico que codifica una difosfomevalonato descarboxilasa se puede introducir en plásmidos que permiten la mutagénesis o modificación de la secuencia por recombinación de secuencias de ADN. Los métodos estándares (véase Sambrook y Russell (2001), Molecular Cloning: A Laboratory Manual, CSH Press, Cold Spring Harbor, NY, EE.UU.) permiten realizar intercambios de bases o añadir secuencias naturales o sintéticas. Fragmentos de ADN se pueden conectar entre sí mediante la aplicación de adaptadores y enlazadores a los fragmentos. Además de ello, se pueden utilizar medidas de ingeniería que proporcionan sitios de restricción adecuados o que eliminan el ADN o sitios de restricción excedentes. En aquellos casos, en los que son posibles inserciones, deleciones o sustituciones, se puede utilizar la mutagénesis *in vitro*, una "reparación de cebadores", restricción o ligamiento. En general, como métodos de análisis se lleva a cabo un análisis de la secuencia, análisis de restricción y otros métodos de bioquímica y biología molecular. Las variantes de difosfomevalonato descarboxilasa se ensayan después en cuanto a su actividad enzimática y, en particular, a su capacidad para preferir mevalonato como sustrato en lugar de mevalonato difosfato.

Métodos de este tipo para identificar variantes con propiedades enzimáticas mejoradas en cuanto a la producción de isoprenol también pueden llevarse a cabo en presencia de un cofactor que permite una complementación estérica y/o electrónica en el sitio catalítico de la enzima debido al hecho de que el sustrato mevalonato es más corto que el sustrato natural mevalonato difosfato de difosfomevalonato descarboxilasa. Ejemplos de un cofactor de este tipo serían fosfono-fosfato o fosfonamido-fosfato (véase la Figura 7) u ortofosfato.

La versión modificada de la difosfomevalonato descarboxilasa que acepta o prefiere mevalonato como sustrato, pero que tiene una baja afinidad por su producto natural mevalonato difosfato como un sustrato o que no acepta su producto natural mevalonato difosfato, como un sustrato puede derivarse de una difosfomevalonato descarboxilasa de origen natural, o de una difosfomevalonato descarboxilasa ya modificada, optimizada o sintetizada sintéticamente.

65

60

5

10

15

20

25

30

35

40

45

Sorprendentemente, se ha encontrado que difosfomevalonato descarboxilasa no sólo es capaz de catalizar la descarboxilación de mevalonato difosfato, sino también puede aceptar mevalonato como sustrato y puede descarboxilarlo, a pesar de la ausencia del grupo difosfato. Esto es particularmente sorprendente, ya que Jabalquinto y Cardemil (Biochim. Biophys. Acta 996 (1989), 257-259), quienes investigaron los requisitos de unión del sustrato difosfomevalonato descarboxilasa vinculantes, señalaron la importancia del resto difosfórico de mevalonato difosfato en la unión de este sustrato al sitio catalítico de la enzima (véase la página 259). En este contexto, es importante señalar las diferencias sustanciales entre mevalonato y difosfomevalonato. Mevalonato sólo tiene un peso molecular de aproximadamente 148 Da, mientras que difosfomevalonato tiene un peso molecular de 308 Da y los grupos fosfato portan tres cargas adicionales.

10

15

La difosfomevalonato descarboxilasa empleada en el procedimiento de acuerdo con la presente invención puede ser una versión natural de la proteína o una proteína sintética, así como una proteína que ha sido sintetizada o producida químicamente en un sistema biológico o por procesos recombinantes. La difosfomevalonato descarboxilasa, también puede estar modificada químicamente, por ejemplo con el fin de mejorar su estabilidad, resistencia, p. ej. a la temperatura, para facilitar su purificación o su inmovilización sobre un soporte. La difosfomevalonato descarboxilasa se puede utilizar en forma aislada, forma purificada, en forma inmovilizada, como un extracto crudo o parcialmente purificado obtenido a partir de células que sintetizan la enzima, tal como una enzima químicamente sintetizada, como una enzima producida de forma recombinante, en forma de un organismo/microorganismos productores de las mismas. etc.

20

25

35

40

El método de acuerdo con la presente invención se puede llevar a cabo in vitro o in vivo. Una reacción in vitro se entiende que es una reacción en la que no se emplean células, es decir, una reacción acelular.

Para llevar a cabo el procedimiento in vitro los sustratos para la reacción y la enzima se incuban en condiciones (tampón, temperatura, co-sustratos, cofactores, etc.) que permiten que la enzima sea activa y se produzca la conversión enzimática. Se deja que la reacción prosiga durante un tiempo suficiente para producir isoprenol. La producción de isoprenol se puede medir por métodos conocidos en la técnica tales como cromatografía, p. ej., cromatografía en capa fina o cromatografía líquida o gaseosa, posiblemente vinculadas a la detección de espectrometría de masas.

La enzima puede estar en cualquier forma adecuada que permita que se lleve a cabo la reacción enzimática. Puede estar purificada o parcialmente purificada o en forma de extractos celulares crudos o extractos parcialmente purificados. También es posible que la enzima esté inmovilizada sobre un soporte adecuado.

Si se requiere, se añaden también un co-sustrato, un co-factor o iones. Se describe, por ejemplo, que algunas enzimas difosfomevalonato descarboxilasa utilizan ATP como un co-sustrato que se convierte en ADP y fosfato inorgánico durante la reacción de descarboxilación. Por lo tanto, en una realización preferida, el ATP se añade a la reacción cuando se lleva a cabo el método de acuerdo con la invención. Sin embargo, en lugar de ATP se puede añadir a la mezcla de reacción cualquier otro rNTP (ribonucleósido trifosfato) o dNTP (desoxirribonucleósido trifosfato) adecuado o cualquier mezcla de éstos. También es posible la adición de pirofosfato u otro polifosfato o una molécula que contiene un grupo fosfoanhídrido (POP). Además de ello, se puede añadir cualquier mezcla de cualquiera de los compuestos antes mencionados. Además de ello, se describe para algunas enzimas difosfomevalonato descarboxilasa que requieren cationes divalentes. Por lo tanto, en una realización preferida, y si es necesario, se añade una cantidad adecuada de un catión divalente adecuado a la reacción cuando se lleva a cabo el método de acuerdo con la invención. El catión divalente es preferiblemente Mg²+, Mn²+ o Co²+, pero es posible utilizar también otros cationes divalentes tales como Ca²+. Por supuesto, la naturaleza del catión divalente depende de la necesidad de la enzima difosfomevalonato descarboxilasa en cuestión.

Dado que el sustrato mevalonato es, en general, más corto que el sustrato natural utilizado por la enzima, mevalonato difosfato utilizado por difosfomevalonato descarboxilasa, puede ser ventajoso añadir a la mezcla de reacción un cofactor que permita una complementación estérica y/o electrónica en el sitio catalítico de la enzima. Ejemplos de un cofactor de este tipo de difosfomevalonato descarboxilasa, serían fosfono-fosfato o fosfonamido-fosfato (véase la Figura 7) u ortofosfato.

50

55

Para llevar a cabo el procedimiento in vivo se hace uso de un organismo/microorganismo(s) adecuado que sea/sean capaces de proporcionar el sustrato mevalonato, y una difosfomevalonato descarboxilasa. Hay dos vías alternativas que conducen a pirofosfato de isoprenilo. Una de ellas es la vía del mevalonato, observada en eucariotas y algunos procariotas, especialmente en el filo firmicutes. Así, todos estos organismos producen mevalonato. La mayoría de las bacterias, incluyendo E. coli, utilizan la otra vía (vía DXP) y, por lo tanto, no están produciendo mevalonato. Sin embargo, este último puede ser modificado genéticamente para producir mevalonato. Por ejemplo, la implementación de la vía del mevalonato en E. coli ya ha sido realizada con éxito (Maury et al., FEBS Lett. 582 (2008), 4032). La sobre-expresión de sólo la parte de aguas arriba (tiolasa, HMG-CoA sintasa, HMG-CoA reductasa) en organismos que tienen o que no tienen la vía del mevalonato permite la producción de altos niveles de mevalonato.

60

65

En una realización preferida, el organismo empleado en el método de acuerdo con la invención es un organismo, preferiblemente un microorganismo, que ha sido modificado genéticamente para que contenga una molécula de ácido nucleico extraño que codifica una difosfomevalonato descarboxilasa. El término "extraña" en este contexto significa que la molécula de ácido nucleico no se produce de forma natural en dicho organismo/microorganismo. Esto

significa que no se produce en la misma estructura o en el mismo lugar en el organismo/microorganismo. En una forma de realización preferida, la molécula de ácido nucleico extraño es una molécula recombinante que comprende un promotor y una secuencia codificadora que codifica la difosfomevalonato descarboxilasa, en que el promotor que impulsa la expresión de la secuencia codificadora de conducción es heterólogo con respecto a la secuencia codificadora. Heterólogo en este contexto significa que el promotor no es el promotor que impulsa de forma natural la expresión de dicha secuencia codificadora, sino que es un promotor que impulsa de forma natural la expresión de una secuencia codificadora diferente, es decir, que se deriva de otro gen, o es un promotor sintético o un promotor quimérico. Preferiblemente, el promotor es un promotor heterólogo para el organismo/microorganismo, es decir, un promotor que no se produce de forma natural en el respectivo organismo/microorganismo. Incluso más preferiblemente, el promotor es un promotor inducible. Promotores para impulsar la expresión en diferentes tipos de organismos, en particular en microorganismos, son bien conocidos por la persona experta en la técnica.

5

10

15

35

40

45

50

55

En otra forma de realización preferida, la molécula de ácido nucleico es extraña para el organismo/microorganismo, debido a que la difosfomevalonato descarboxilasa codificada no es endógena al organismo/microorganismo, es decir, no es expresada de forma natural por el organismo/microorganismo cuando no es genéticamente modificado. En otras palabras, la difosfomevalonato descarboxilasa codificada es heteróloga con respecto al organismo/microorganismo. La molécula de ácido nucleico extraña puede estar presente en el organismo/microorganismo en forma extracromosómica, p. ej., como un plásmido, o puede estar integrada de manera estable en el cromosoma. Se prefiere una integración estable.

En una forma de realización preferida adicional, el organismo/microorganismo se caracteriza por que la expresión/actividad de una difosfomevalonato descarboxilasa es mayor en el organismo/microorganismo genéticamente modificado con la molécula de ácido nucleico extraño en comparación con el correspondiente organismo/microorganismo no genéticamente modificado. Una expresión/actividad "elevada" significa que la expresión/actividad de la difosfomevalonato descarboxilasa en el microorganismo genéticamente modificado es al menos 10%, preferiblemente al menos 20%, más preferiblemente al menos 30% o 50%, incluso más preferiblemente al menos 70% o 80% y de manera particularmente preferida al menos 90% o 100% mayor que en el correspondiente organismo/microorganismo no genéticamente modificado. En formas de realización incluso más preferidas, el aumento en la expresión/actividad puede ser al menos 150%, al menos 200% o al menos 500%.

La expresión expresión/actividad "elevada" también abarca la situación en la que el correspondiente organismo/microorganismo no genéticamente modificado no expresa una difosfomevalonato descarboxilasa, de manera que la correspondiente expresión/actividad en el organismo/microorganismo no genéticamente modificado es cero

Métodos para medir el nivel de expresión de una proteína dada en una célula son bien conocidos por la persona experta en la técnica. En una forma de realización, la medición del nivel de expresión se realiza mediante midiendo la cantidad de la proteína correspondiente. Métodos correspondientes son bien conocidos por la persona experta en la técnica e incluyen transferencia Western, ELISA, etc. En otra forma de realización, la medición del nivel de expresión se realiza midiendo la cantidad del ARN correspondiente. Métodos correspondientes son bien conocidos por la persona experta en la técnica e incluyen, por ejemplo, transferencia Northern.

Métodos para medir la actividad enzimática de la difosfomevalonato descarboxilasa son conocidos en la técnica y ya han sido descritos anteriormente.

El término "organismo", tal como se utiliza en el contexto de la presente invención, se refiere, en general, a cualquier posible tipo de organismo, en particular organismos eucariotas, organismos bacterianos y arqueas. El término incluye animales, plantas, hongos, bacterias y arqueas. El término también incluye células aisladas o agregados de células de estos organismos tal como el tejido o callos.

En una forma de realización preferida, el organismo es un microorganismo. El término "microorganismo" en el contexto de la presente invención se refiere a células procariotas, en particular bacterias, así como a hongos tales como levaduras, y también a algas y arqueobacterias. En una forma de realización preferida, el microorganismo es una bacteria. En principio, se puede utilizar cualquier bacteria. Bacterias preferidas a emplear en el procedimiento de acuerdo con la invención son todas las cepas de producción clásicas para las que se han desarrollado herramientas de ingeniería. En una forma de realización particularmente preferida, la bacteria pertenece al género Escherichia o Bacillus, e incluso más preferida a la especie Escherichia coli o a la especie Bacillus subtilis.

En otra forma de realización preferida, el microorganismo es un hongo. Hongos preferidos a emplear en el procedimiento de acuerdo con la invención son todas las cepas de producción clásicas para las que se han desarrollado las herramientas de ingeniería. Más preferiblemente, el hongo es una levadura, preferiblemente del género Saccharomyces, Schizosaccharomyces, Pichia o Kluyveromyces, e incluso más preferiblemente de la especie Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris o de la especie Kluyveromyces lactis. Otros hongos preferidos son los del género Trichoderma o Aspergillus, más preferiblemente de la especie Trichoderma reesei o Aspergillus niger.

Todavía en otra forma de realización preferida, el microorganismo es un microorganismo fotosintéticamente activo tal como bacterias que son capaces de llevar a cabo la fotosíntesis o micro-algas.

En una forma de realización particularmente preferida, el microorganismo es un alga, más preferiblemente un alga que pertenece a la diatomeas.

65 Cuando el procedimiento de acuerdo con la invención se lleva a cabo in vivo o utilizando un

organismo/microorganismo que proporciona la actividad de difosfomevalonato descarboxilasa, el organismo, preferiblemente microorganismo, se cultiva bajo condiciones de cultivo adecuadas que permitan la aparición de la reacción enzimática. Las condiciones de cultivo específicas dependen del organismo/microorganismo específico empleado, pero son bien conocidas por la persona experta en la técnica. Las condiciones de cultivo se eligen generalmente de manera que permiten la expresión de los genes que codifican las enzimas para la reacción respectiva. Diversos métodos son conocidos por la persona experta en la técnica a fin de mejorar y perfeccionar la expresión de determinados genes en determinadas etapas del cultivo, tales como la inducción de la expresión génica por inductores químicos o por un cambio de temperatura.

- En otra forma de realización preferida, el organismo empleado en el método de acuerdo con la invención es una planta. En principio, se puede utilizar cualquier planta posible, es decir, una planta monocotiledónea o una planta dicotiledónea. Es preferible utilizar una planta que se pueda cultivar en a escala agrícola significativa y que permita producir grandes cantidades de biomasa. Ejemplos son hierbas tales como Lolium, cereales tales como centeno, trigo, cebada, avena, mijo, maíz, otras plantas que almacenan almidón tales como patata o plantas que almacenan azúcar tales como la caña de azúcar o remolacha azucarera. También es concebible el uso de tabaco o de plantas de hortalizas tales como tomate, pimiento, pepino, berenjena, etc. Otra posibilidad es el uso de plantas oleaginosas tal como semillas de colza, aceitunas, etc. También es concebible el uso de árboles, en particular árboles de rápido crecimiento tal como el eucalipto, el álamo o el árbol del caucho (Hevea brasiliensis).
- También se describe el uso de un organismo, preferiblemente un microorganismo, que expresa una enzima que es capaz de catalizar la descarboxilación de mevalonato, preferiblemente una enzima con la actividad de una difosfomevalonato descarboxilasa, para la producción de isoprenol por la descarboxilación de mevalonato. Es decir, también se describe el uso de un organismo/microorganismo tal como se describe en el contexto del método para la producción de isoprenol.
- 25
 Además de ello, también se describe una composición que comprende (i) mevalonato; y (ii) una enzima que es capaz de catalizar la descarboxilación de mevalonato.
 - Para las formas de realización preferidas de la enzima se aplica lo mismo a lo ya expuesto anteriormente.
- De manera particularmente preferida, la composición comprende también un co-sustrato (tal como ATP), un co-factor y/o cationes divalentes (tales como Mn²⁺, Mg²⁺, Co²⁺ o Ca²⁺).

Además de ello, la presente invención también se refiere al uso de una difosfomevalonato descarboxilasa para la producción de isoprenol.

Para las formas de realización preferidas de la enzima se aplica lo mismo a lo ya expuesto anteriormente en relación con el método de acuerdo con la invención.

También se describe el uso de mevalonato para la producción de isoprenol, en particular, por la conversión enzimática de la mevalonato en isoprenol mediante una etapa de descarboxilación. Preferiblemente, la conversión enzimática se logra mediante una enzima como se describe anteriormente, más preferiblemente con una enzima que tiene la actividad enzimática de una difosfomevalonato descarboxilasa, y lo más preferiblemente la conversión se logra mediante el uso de un organismo tal como se describe en el contexto del método.

Además, la presente invención también se refiere a un método para la producción de isopreno a partir de mevalonato, que comprende el método para producir isoprenol de acuerdo con la invención según se describe arriba y que comprende, además, la etapa de convertir el isoprenol producido en isopreno. La conversión de isoprenol en isopreno puede lograrse por medios y métodos conocidos por la persona experta en la técnica. En particular, la reacción respectiva es una reacción de deshidratación.

Además de ello, la presente invención también se refiere a un método para producir alcohol isoamílico a partir de mevalonato que comprende el método para producir isoprenol de acuerdo con la invención tal como se describe arriba y que comprende, además, la etapa de convertir el isoprenol producido en alcohol isoamílico. La conversión de isoprenol en alcohol isoamílico se puede lograr por medios y métodos conocidos por la persona experta en la técnica. En particular, la reacción respectiva es una reacción de hidrogenación.

55 **Figura 1:** muestra la estructura química de mevalonato

35

40

- **Figura 2:** muestra la reacción de difosfomevalonato descarboxilasa en el sustrato fisiológico y en el precursor mevalonato
- 60 **Figura 3:** muestra un ejemplo de rastreo de un banco de enzimas para la actividad de la mevalonato descarboxilasa tras la producción de fosfato inorgánico. La reacción de control se llevó a cabo con extracto de BL21 (DE3) de *E. coli* transformada con pET 22b que carece del gen MDP descarboxilasa.
- 65 Figura 4: (a) muestra los resultados de la optimización de la expresión de MDP descarboxilasa de P. torridus

en *E. coli.* El análisis de SDS-PAGE de muestras de proteínas obtenidas a partir de la expresión de la secuencia de ADN de MDP descarboxilasa de *P. torridus* (pistas 1 a 3) y del gen optimizado (pistas 4 a 6).

(b) muestra la actividad de la descarboxilación de mevalonato de lisado bruto de E. coli, obtenida a partir de la expresión de la secuencia de ADN de MDP descarboxilasa de *P. torridus* y del gen optimizado. La reacción de control se llevó a cabo con el extracto de BL21 (DE3) de *E. coli* transformado con pET 22b que carecen del gen MDP descarboxilasa. La actividad enzimática se detectó a través de la medición de la producción de fosfato inorgánico.

10 **Figura 5:** muestra la comparación de la actividad de la descarboxilación de mevalonato entre MDP descarboxilasas del filo Picrophilus/Thermoplasma. La actividad enzimática se detectó mediante la

medición de la producción de fosfato inorgánico.

Figura 6: muestra la formación de producto en función de la concentración de mevalonato. La formación de

producto fue seguido por el ensayo de permanganato.

Figura 7: muestra la estructura de fosfono-fosfato y fosfonamido-fosfato.

Los siguientes Ejemplos sirven para ilustrar la invención.

Ejemplo 1: Rastreo de un banco de MDP descarboxilasa para la actividad de descarboxilación de mevalonato

Se construyó un banco de 63 genes que codifican enzimas de la familia de la MDP descarboxilasa y se ensayó en cuanto a la actividad de mevalonato como sustrato.

Clonación, cultivos bacterianos y expresión de proteínas

Los genes que codifican mevalonato difosfato (MDP) descarboxilasa EC 4.1.1.33 se clonaron en el vector pET 25b (Novagen) en el caso de genes eucariotas y en pET 22b (Novagen) en el caso de genes procariotas. Se insertó un tramo de 6 codones de histidina después del codón de iniciación de metionina para proporcionar una etiqueta de afinidad para la purificación. Células competentes de BL21 (DE3) de *E. coli* (Novagen) se transformaron con estos vectores de acuerdo con el proceso de choque de calor. Las células transformadas se hicieron crecer con agitación (160 rpm) a 30°C en medio de caldo terrific (TB) que contenía sorbitol 0,5 M, betaína 5 mM, 100 µg/ml de ampicilina hasta alcanzar una DO a 600 nm comprendida entre 0,8 y 1. A continuación se añadió isopropil-B-D-tiogalactopiranósido (IPTG) a una concentración final de 1 mM y la expresión de proteínas se continuó a 20°C durante una noche (aproximadamente 16 h). Las células se recogieron por centrifugación a 4°C, 10.000 rpm durante 20 min y los sedimentos se congelaron a -80°C.

Lisis celular

5

15

20

25

30

35

40

45

65

Los sedimentos a partir de 12 ml de células de cultivo se descongelaron en hielo y se resuspendieron en 1 ml de Tris/HCl 50 mM pH 7,4, que contenía KCl 20 mM, DTT 0,5 mM, MgCl₂ 5 mM. Se añadió un microlitro de lysonase (Novagen). Las células se incubaron durante 10 minutos a temperatura ambiente y luego se devolvieron al hielo durante 20 minutos. La lisis celular se completó mediante tratamiento por ultrasonidos durante 15 segundos. Los extractos bacterianos se clarificaron luego mediante centrifugación a 4°C, 10.000 rpm durante 20 min.

Reacciones enzimáticas

La reacción enzimática deseada (conversión de mevalonato en isoprenol) se ensayó como sigue.

50 El medio de reacción contenía mevalonato 100 mM, ATP 40 mM, MgCl₂ 10 mM, KCl 20 mM, DTT 0,5 mM y preparación enzimática que varía entre 0,01 y 0,05 mg/ml de proteína. Se utilizó citrato de sodio 50 mM en el intervalo de pH de 4 a 6 y Tris-HCl 50 mM para pH 7 y 7,5. Se llevaron a cabo en paralelo ensayos de control libres de enzimas. Después de 72 h de incubación, el fosfato inorgánico se cuantificó por colorimetría de acuerdo con el método de molibdato de amonio (Gawronski JD, Benson DR, Anal. Biochem. 327 (2004) 114-118). Una muestra de 50 μl (que no contiene más de 0,5 μmol de fosfato) se mezcló con 150 μl de reactivo molibdato de amonio que contiene 50% v / v de acetona, H₂SO₄ 1,25 N, (NH₄)₅Mo₇O₂₄ 2,5 mM y luego con 10 μl de ácido cítrico 1 M. La mezcla se incubó durante 2 minutos a temperatura ambiente. La absorbancia de fosfomolibdato de amonio formado se midió a 355 nm y la cantidad de fosfato inorgánico se estimó utilizando una curva de calibración obtenida con fosfato de potasio.

60 Los resultados se muestran en la Figura 3.

Durante el rastreo inicial, sólo los ensayos que utilizan la cepa recombinante que expresa la construcción genética inferida de la secuencia de MDP descarboxilasa de *Picrophilus torridus* dieron lugar a un aumento reproducible en la producción de fosfato sobre el nivel de fondo.

Ejemplo 2: Optimización de la expresión de MDP descarboxilasa de P. torridus en E. coli (no de acuerdo con

la invención)

10

15

45

50

60

El nivel inicial de expresión de la enzima en BL21 de E. coli era bajo, como se juzga a partir de la débil banda visible en geles de SDS-PAGE. El Índice de Optimización de Codones (CAI – siglas en inglés) de la secuencia nativa para la expresión en *E. coli* medidos con el programa "Optimizer", disponible en http://genomes.urv.es/OPTIMIZER/, basado en el método de Sharp y Li (Nucl . Acids Res. 15 (1987), 1281 -1295) dio un valor tan bajo como 0,23. Se generó una secuencia de gen que codifica una proteína idéntica, pero que contienen codones mejor adaptados para la expresión en *E. coli*. Contaba con un CAI de 0,77.

La secuencia nativa y la secuencia optimizada se muestran en SEQ ID NO: 20 (secuencia nativa de MDP descarboxilasa de *P. torridus* (AAT43941) que incluye la etiqueta His) y SEQ ID NO: 21 (secuencia optimizada de MDP descarboxilasa de *P. torridus* (AAT43941) que incluye la etiqueta His). La secuencia optimizada se sintetizó por concatenación de oligonucleótidos y se clonó en un vector de expresión pET25b. Después de la transformación de la cepa BL21 (DE3) de *E. coli* y de la inducción, las proteínas se produjeron y analizaron en un gel tal como se describe de acuerdo con el protocolo descrito en el Ejemplo 1. El mismo protocolo se llevó a cabo con la secuencia nativa para comparación.

Se compararon los niveles de expresión utilizando la secuencia de nucleótidos nativa o la secuencia optimizada para la expresión en *E. coli.* Los resultados en la Figura 4a demuestran que la proteína (flecha) correspondiente al gen optimizado era claramente visible en el gel en el lisado de células no-purificado (pista 4), lo que indica un aumento muy notable en la expresión.

La expresión de la proteína se mejoró de manera que el lisado bruto obtenido con la secuencia optimizada contenía una actividad enzimática más alta con mevalonato como sustrato tal como se muestra en la Figura 4b.

Ejemplo 3: Caracterización de la Reacción utilizando la MDP descarboxilasa de P torridus optimizada

25 La enzima recombinante se purificó como sigue:

Purificación y concentración de proteínas

Los sedimentos procedentes de 150 ml de células de cultivo se descongelaron en hielo y se resuspendieron en 5 ml de Na₂HPO₄ pH 8 que contenía NaCl 300 mM, MgCl₂ 5 mM y DTT 1 mM. Se añadieron veinte microlitros de lysonase (Novagen). Las células se incubaron durante 10 minutos a temperatura ambiente y luego se devolvieron a hielo durante 20 minutos. La lisis celular se completó mediante tratamiento por ultrasonidos durante 3 x 15 segundos. Los extractos bacterianos se clarificaron luego mediante centrifugación a 4°C, 10.000 rpm durante 20 min. Los lisados bacterianos clarificados se cargaron en una columna de Ni-IDA PROTINO-1000 (Macherey-Nagel), permitiendo la adsorción de proteínas etiquetadas con 6-His. Las columnas se lavaron y las enzimas de interés se eluyeron con 4 ml de Na₂HPO₄ 50 mM pH 8 que contenía NaCl 300 mM, MgCl₂ 5 mM, DTT 1 mM, imidazol 250 mM. Los productos eluidos se concentraron y se desalaron en una unidad de filtro Amicon Ultra-4 de 10 kDa (Millipore) y se resuspendieron en 250 µl de Tris-HCl 50 M pH 7,4 que contenía DTT 0,5 mM y MgCl₂ 5 mM. Las concentraciones de proteína se cuantificaron de acuerdo con el método de Bradford.

La pureza de las proteínas, así purificadas, se estimó como de aproximadamente 90%.

La actividad de la enzima se confirmó y se analizó adicionalmente utilizando un sustrato gama: se demostró que la tasa de conversión aumentaba con la concentración de mevalonato (Figura 6).

Ejemplo 4: Optimización de las condiciones de reacción mediante el uso de un co-factor

Se llevó a cabo la misma reacción que la descrita en el Ejemplo 1 utilizando preparaciones purificadas de MDP descarboxilasa de *P. torridus* optimizadas. En una de las muestras, el fosfono-fosfato o fosfonamido-fosfato (Figura 7) se añade como cofactor a una concentración de 100 mM.

La conversión de mevalonato se observa utilizando el ensayo colorimétrico descrito en el Ejemplo 1. Se ha encontrado que cuando está presente un cofactor, la cantidad de ATP consumida en el tiempo es notablemente mayor.

Ejemplo 5: Rastreo de un banco de homólogos de MDP descarboxilasa del filo de P. torridus

La secuencia de enzimas MDP descarboxilasa inferidas de los genomas de *Thermoplasma volcanium* (número de acceso Q97BY2) y *Thermoplasma acidophilum* (número de acceso Q9HIN 1) se generó como en el Ejemplo 1. Las proteínas se purificaron como se describe en el Ejemplo 3 y se sometieron a ensayo utilizando el ensayo descrito en el Ejemplo 1. Se observó un aumento significativo en la producción de fosfato a partir de estos viales, lo que indica que estas enzimas también eran activas hacia mevalonato. Los resultados se muestran en la Figura 5.

Ejemplo 6: Método para sintetizar isoprenol a partir de glucosa

K12 de *E. coli* se transformó con un plásmido de expresión que porta los genes de tiolasa, HMG-CoA sintasa y HMG-CoA reductasa a partir de *Saccharomyces cerevisiae* con el fin de sobreproducir mevalonato.

65 La cepa se transforma adicionalmente con un segundo plásmido de expresión compatible portador del gen

optimizado que codifica la versión etiquetada con His de MDP descarboxilasa procedente de *Picrophilus torridus*. Las bacterias recombinantes resultantes se incuban entonces en un fermentador en un medio de nutrientes minerales que contiene glucosa, en presencia de oxígeno y bajo agitación moderada. Se mide una producción significativa de isoprenol utilizando la TLC (siglas inglesas de cromatografía en capa fina) o análisis de GC/MS como sigue:

Análisis por TLC

Para el análisis de TLC de una parte alícuota de medio de reacción se esparce sobre una placa recubierto de sílice y se cromatografía utilizando como eluyente acetato de etilo/heptano 1/1 v/v Como patrones internos se utilizan mevalonato, isoprenol, ATP, ADP. Después del secado, las placas se pulverizan con reactivo de KMnO₄ alcalino. Se encuentra que el R_f para isoprenol es 0,57.

Análisis GC / MS

15

5

Se centrifuga una parte alícuota de 10 µl de medio de reacción y el sobrenadante se transfiere a un vial limpio para la detección de isoprenol por GC/MS. Una muestra de 1 µL se separa por GC utilizando una columna DB-5 y la presencia de isoprenol se controla mediante espectrometría de masas.

20 Ejemplo 7: Medición de la actividad mevalonato descarboxilasa y producción de 3-metil-buten-1-ol (isoprenol) (no de acuerdo con la invención)

El mevalonato se prepara a partir de mevanolactona (Sigma) mediante hidrólisis con NaOH de acuerdo con Campos et al. (Biochem. J. 2001, 353, 59-67).

El ensayo completo para la descarboxilación de mevalonato contiene tampón de reacción, mevalonato 100 mM, ATP 40 mM, MgCl₂ 10 Mm, KCl 20 mM, DTT 0,5 mM y preparación enzimática a una concentración que oscila entre 0,01 y 0,05 mg/ml de proteína. Citrato de sodio 50 mM se utiliza en el intervalo de pH de 4 a 6, y Tris-HCl 50 mM para pH 7 y 7,5. Las reacciones de control se llevan a cabo en ausencia de enzima, sustrato o cofactor.

El progreso de la producción isoprenol es seguido por el análisis de partes alícuotas tomadas a intervalos de tiempo sucesivos a partir de una mezcla de reacción incubada a 37°C mediante cromatografía en capa fina (TLC), cromatografía de gases/espectrometría de masas (GC/MS) y la determinación del producto mediante ensayo del permanganato. En paralelo, la liberación de fosfato inorgánico se cuantifica por el método de molibdato de amonio.

Ensayo de permanganato

35

40

30

La formación de productos que contienen dobles enlaces es seguida de oxidación con disolución de permanganato de potasio alcalino, dando como resultado un aumento de la absorbancia a 420 nm.

A una parte alícuota de la mezcla de reacción diluida con H₂O a 120 µl, se añaden 80 µl de reactivo de permanganato que contiene KMnO₄ 5 mM y NaOH 50 mM. La mezcla se mantiene a temperatura ambiente durante 20 min y se mide la absorbancia a 420 nm. La curva de calibración se prepara utilizando isoprenol comercial.

Cuantificación de fosfato inorgánico

La concentración de fosfato inorgánico se mide por colorimetría espectroscópica de acuerdo con el método de molibdato de amonio (Gawronski JD, Benson DR, Anal. Biochem. 327 (2004) 114-118). Un parte alícuota de 50 µl procedente del ensayo de reacción (que no contiene más de 0,5 µmol de fosfato) se mezcla con 150 µl de reactivo de molibdato de amonio, que contiene 50% en volumen de acetona, H₂SO₄ 1,25 N, (NH₄)₆Mo₇O₂₄ 2,5 mM y luego con 10 µl de ácido cítrico 1 M. La mezcla se incuba a continuación durante 2 minutos a temperatura ambiente. La absorbancia de fosfomolibdato de amonio formado se midió a 355 nm y la cantidad de fosfato inorgánico se estimó utilizando una curva de calibración obtenida con fosfato de potasio.

LISTADO DE SECUENCIAS

	<11	10>	Mar	liere, l	Philip	ре											
5	<12	20>	Mét	odo pa	ara la	prod	ucció	n de i	sopre	nol u	tilizar	ndo m	evalo	nato	como	un s	ustrato
	<13	30>	R10	62 PC	CT S3												
40	<16	60>	21														
10	<17	70>	Pate	entln v	ersió	n 3.5											
		<210 <210 <210 <210	1> 2>	1 400 PRT Homo	sapi	iens											
		<40	0>	1													
		Met 1	Ala	Ser	Glu	Lys 5	Pro	Leu	Ala	Ala	Val 10	Thr	Cys	Thr	Ala	Pro 15	Val
		Asn	Ile	Ala	Val 20	Ile	Lys	Tyr	Trp	Gly 25	Lys	Arg	Asp	Glu	Glu 30	Leu	Val
		Leu	Pro	Ile 35	Asn	Ser	Ser	Leu	Ser 40	Val	Thr	Leu	His	Gln 45	Asp	Gln	Leu
		Lys	Thr 50	Thr	Thr	Thr	Ala	Val 55	Ile	Ser	Lys	Asp	Phe 60	Thr	Glu	Asp	Arg
		Ile 65	Trp	Leu	Asn	Gly	Arg 70	Glu	Glu	Asp	Val	Gly 75	Gln	Pro	Arg	Leu	Gln 80
		Ala	Cys	Leu	Arg	Glu 85	Ile	Arg	Cys	Leu	Ala 90	Arg	Lys	Arg	Arg	Asn 95	Ser
		Arg	Asp	Gly	Asp 100	Pro	Leu	Pro	Ser	Ser 105	Leu	Ser	Cys	Lys	Val 110	His	Val
		Ala	Ser	Val 115	Asn	Asn	Phe	Pro	Thr 120	Ala	Ala	Gly	Leu	Ala 125	Ser	Ser	Ala
		Ala	Gly 130	Tyr	Ala	Cys	Leu	Ala 135	Tyr	Thr	Leu	Ala	Arg 140	Val	Tyr	Gly	Val
		Glu 145	Ser	Asp	Leu	Ser	Glu 150	Val	Ala	Arg	Arg	Gly 155	Ser	Gly	Ser	Ala	Cys 160
		Arg	Ser	Leu	Tyr	Gly 165	Gly	Phe	Val	Glu	Trp 170	Gln	Met	Gly	Glu	Gln 175	Ala

Asp	GIĄ	Lys	180	Ser	IIe	Ala	Arg	185	Val	Ala	Pro	Glu	190	His	Trp
Pro	Glu	Leu 195	Arg	Val	Leu	Ile	Leu 200	Val	Val	Ser	Ala	Glu 205	Lys	Lys	Leu
Thr	Gly 210	Ser	Thr	Val	Gly	Met 215	Arg	Ala	Ser	Val	Glu 220	Thr	Ser	Pro	Leu
Leu 225	Arg	Phe	Arg	Ala	Glu 230	Ser	Val	Val	Pro	Ala 235	Arg	Met	Ala	Glu	Met 240
Ala	Arg	Cys	Ile	Arg 245	Glu	Arg	Asp	Phe	Pro 250	Ser	Phe	Ala	Gln	Leu 255	Thr
Met	Lys	Asp	Ser 260	Asn	Gln	Phe	His	Ala 265	Thr	Cys	Leu	Asp	Thr 270	Phe	Pro
Pro	Ile	Ser 275	Tyr	Leu	Asn	Ala	Ile 280	Ser	Trp	Arg	Ile	Ile 285	His	Leu	Val
His	Arg 290	Phe	Asn	Ala	His	His 295	Gly	Asp	Thr	Lys	Val 300	Ala	Tyr	Thr	Phe
Asp 305	Ala	Gly	Pro	Asn	Ala 310	Val	Ile	Phe	Thr	Leu 315	Asp	Asp	Thr	Val	Ala 320
Glu	Phe	Val	Ala	Ala 325	Val	Trp	His	Gly	Phe 330	Pro	Pro	Gly	Ser	Asn 335	Gly
Asp	Thr	Phe	Leu 340	Lys	Gly	Leu	Gln	Val 345	Arg	Pro	Ala	Pro	Leu 350	Ser	Ala
Glu	Leu	Gln 355	Ala	Ala	Leu	Ala	Met 360	Glu	Pro	Thr	Pro	Gly 365	Gly	Val	Lys
Tyr	Ile 370	Ile	Val	Thr	Gln	Val 375	Gly	Pro	Gly	Pro	Gln 380	Ile	Leu	Asp	Asp
Pro 385	Cys	Ala	His	Leu	Leu 390	Gly	Pro	Asp	Gly	Leu 395	Pro	Lys	Pro	Ala	Ala 400
<210 <211 <212 <213	L> 3 2> E	2 396 PRT Sacci	naron	nyces	s cei	revis	siae								
<400)> 2	,													

Met 1	Thr	Val	Tyr	Thr 5	Ala	Ser	Val	Thr	Ala 10	Pro	Val	Asn	Ile	Ala 15	Thr
Leu	Lys	Tyr	Trp 20	Gly	Lys	Arg	Asp	Thr 25	Lys	Leu	Asn	Leu	Pro 30	Thr	Asn
Ser	Ser	Ile 35	Ser	Val	Thr	Leu	Ser 40	Gln	Asp	Asp	Leu	Arg 45	Thr	Leu	Thr
Ser	Ala 50	Ala	Thr	Ala	Pro	Glu 55	Phe	Glu	Arg	Asp	Thr 60	Leu	Trp	Leu	Asn
Gly 65	Glu	Pro	His	Ser	11e 70	Asp	Asn	Glu	Arg	Thr 75	Gln	Asn	Cys	Leu	Arg 80
Asp	Leu	Arg	Gln	Leu 85	Arg	Lys	Glu	Met	Glu 90	Ser	Lys	Asp	Ala	Ser 95	Leu
Pro	Thr	Leu	Ser 100	Gln	Trp	Lys	Leu	His 105	Ile	Val	Ser	Glu	Asn 110	Asn	Phe
Pro	Thr	Ala 115	Ala	Gly	Leu	Ala	Ser 120	Ser	Ala	Ala	Gly	Phe 125	Ala	Ala	Leu
Val	Ser 130	Ala	Ile	Ala	Lys	Leu 135	Tyr	Gln	Leu	Pro	Gln 140	Ser	Thr	Ser	Glu
Ile 145	Ser	Arg	Ile	Ala	Arg 150	Lys	Gly	Ser	Gly	Ser 155	Ala	Суз	Arg	Ser	Leu 160
Phe	Gly	Gly	Tyr	Val 165	Ala	Trp	Glu	Met	Gly 170	Lys	Ala	Glu	Asp	Gly 175	His
Asp	Ser	Met	Ala 180	Val	Gln	Ile	Ala	Asp 185	Ser	Ser	Asp	Trp	Pro 190	Gln	Met
Lys	Ala	Cys 195	Val	Leu	Val	Val	Ser 200	Asp	Ile	Lys	Lys	Asp 205	Val	Ser	Ser
Thr	Gln 210	Gly	Met	Gln	Leu	Thr 215	Val	Ala	Thr	Ser	G1u 220	Leu	Phe	Lys	Glu
Arg 225	Ile	Glu	His	Val	Val 230	Pro	Lys	Arg	Phe	G1u 235	Val	Met	Arg	Lys	Ala 240
Ile	Val	Glu	Lys	Asp 245	Phe	Ala	Thr	Phe	Ala 250	Lys	Glu	Thr	Met	Met 255	Asp

Ser As	n Ser	Phe 260	His	Ala	Thr	Cys	Leu 265	Asp	Ser	Phe	Pro	Pro 270	Ile	Phe
Tyr Me	275	-	Thr	Ser	Lys	Arg 280	Ile	Ile	Ser	Trp	Cys 285	His	Thr	Ile
Asn Gla		Tyr	Gly	Glu	Thr 295	Ile	Val	Ala	Tyr	Thr 300	Phe	Asp	Ala	Gly
Pro Ass 305	n Ala	Val	Leu	Tyr 310	Tyr	Leu	Ala	Glu	Asn 315	Glu	Ser	Lys	Leu	Phe 320
Ala Ph	e Ile	Tyr	Lys 325	Leu	Phe	Gly	Ser	Val 330	Pro	Gly	Trp	Asp	Lys 335	Lys
Phe Th	r Thr	Glu 340	Gln	Leu	Glu	Ala	Phe 345	Asn	His	Gln	Phe	Glu 350	Ser	Ser
Asn Ph	Thr 355		Arg	Glu	Leu	Asp 360	Leu	Glu	Leu	Gln	Lys 365	Asp	Val	Ala
Arg Va		Leu	Thr	Gln	Val 375	Gly	Ser	Gly	Pro	Gln 380	Glu	Thr	Asn	Glu
Ser Le	ı Ile	Asp	Ala	Lys 390	Thr	Gly	Leu	Pro	Lys 395	Glu				
<210> <211> <212> <213>	3 404 PRT Aspe	rgil:	lus 1	nige	r									
<400>	3													
Met Ala	a Ala	Ser	Ala 5	Asp	Ser	Gln	Val	Phe 10	Arg	Ala	Thr	Thr	Thr 15	Ala
Pro Va	L Asn	Ile 20	Ala	Val	Ile	Lys	Tyr 25	Trp	Gly	Lys	Arg	Asp 30	Ala	Val
Leu As	n Leu 35	Pro	Thr	Asn	Ser	Ser 40	Leu	Ser	Val	Thr	Leu 45	Ser	Gln	Arg
Ser Le	ı Arg	Thr	Leu	Thr	Thr 55	Ala	Ser	Cys	Ala	Pro 60	Phe	Tyr	Pro	Ala
Lys As ₁	Glu	Leu	Thr	Leu 70	Asn	Gly	Lys	Pro	Gln 75	Asp	Ile	Gln	Ser	Ser 80

туз	ALG		Deu	85	Cys	Dea	nia	Der	90	my	nia	1113	nig	95	014
Leu	Glu	Asp	Ala 100	Asn	Pro	Ser	Leu	Pro 105	Lys	Leu	Ser	Ser	Phe 110	Pro	Leu
Arg	Ile	Val 115	Ser	Glu	Asn	Asn	Phe 120	Pro	Thr	Ala	Ala	Gly 125	Leu	Ala	Ser
Ser	Ala 130	Ala	Gly	Phe	Ala	Ala 135	Leu	Val	Arg	Ala	Val 140	Ala	Asp	Leu	Tyr
Gln 145	Leu	Pro	Gln	Ser	Pro 150	Arg	Asp	Leu	Ser	Arg 155	Ile	Ala	Arg	Gln	Gly 160
Ser	Gly	Ser	Ala	Cys 165	Arg	Ser	Leu	Met	Gly 170	Gly	Tyr	Val	Ala	Trp 175	Arg
Ala	Gly	Ser	Leu 180	Glu	Asp	Gly	Ser	Asp 185	Ser	Leu	Ala	Glu	Glu 190	Val	Ala
		195			Pro		200					205			
	210				Val	215					220				
225					Phe 230					235					240
-				245	Glu				250					255	
			260		Met		-	265					270		
		275			Pro		280					285			
	290				His	295					300				
305					Asp 310					315					320
GIU	ьys	Asp	Inr	GLu	Leu	val	Ala	GTA	Thr	val	гуs	ALA	тте	Leu	GLY

				323					330					333	
Glu	Lys	Thr	Glu 340	Gly	Trp	Glu	Gly	Pro 345	Phe	Tyr	Thr	Pro	Leu 350	Lys	Asp
Val	Thr	Thr 355	Pro	Gly	Val	Ser	Leu 360	Asp	Glu	Ile	Asp	Pro 365	Arg	Thr	Val
Glu	Ser 370	Leu	Lys	Asp	Gly	Val 375	Ser	Arg	Val	Ile	Leu 380	Thr	Gly	Val	Gly
Glu 385	Gly	Pro	Ile	Ser	Val 390	Asp	Gln	His	Leu	Val 395	Ser	Glu	Lys	Gly	Asp 400
Ile	Leu	Ser	Ala												
<210 <210 <210 <210	1> 3 2> 1	4 325 PRT Lacto	obac:	illus	s pla	atarı	ım								
<40	0> 4	4													
Met 1	Lys	Thr	Val	Thr 5	Ala	Lys	Ala	His	Thr 10	Asn	Ile	Ala	Leu	Val 15	Lys
Tyr	Trp	Gly	Lys 20	Lys	Asp	Ala	Ala	Leu 25	Met	Leu	Pro	Gln	Asn 30	Gly	Ser
Ile	Ser	Leu 35	Thr	Leu	Asp	His	Phe 40	Tyr	Thr	Gln	Thr	Ser 45	Val	Thr	Phe
Asp	Glu 50	His	Leu	Asp	Thr	Asp 55	Gln	Ile	Туг	Phe	Asn 60	His	Gln	His	Leu
Pro 65	Thr	Gly	Lys	Ser	Ala 70	Arg	Ile	Ser	Gln	Phe 75	Leu	Asp	Leu	Ile	Arg 80
Gln	Arg	Ser	Gly	Gln 85	Thr	Asn	Tyr	Ala	Thr 90	Val	Lys	Thr	Glu	Asn 95	His
Val	Pro	Thr	Ser 100	Ala	Gly	Leu	Ala	Ser 105	Ser	Ala	Ser	Gly	Phe 110	Ala	Ala
Leu	Ala	Gly 115	Ala	Ala	Ser	Arg	Ala 120	Ala	Gly	Leu	Gln	Leu 125	Asp	Ala	Ala

Asp Leu Ser Arg Leu Ala Arg Arg Gly Ser Gly Ser Ala Thr Arg Ser

	130					135					140				
Ile 145	Phe	Gly	Gly	Phe	Val 150	Glu	Trp	His	Ala	Gly 155	His	Asp	Asp	Gln	Ser 160
Ser	Tyr	Ala	Glu	Val 165	Leu	Gln	Asp	Pro	Val 170	Asp	Trp	Asp	Ile	Gln 175	Met
Ile	Ala	Val	Val 180	Leu	Lys	Ala	Thr	Lys 185	Lys	Thr	Ile	Ser	Ser 190	Thr	Asp
Gly	Met	Ala 195	Arg	Val	Val	Ala	Thr 200	Ser	Pro	Tyr	Tyr	Pro 205	Ala	Trp	Ile
Thr	Thr 210	Ala	Glu	Thr	Asp	Leu 215	Lys	Arg	Met	Arg	Gln 220	Ala	Ile	Ala	Asp
Arg 225	Asp	Leu	Thr	Thr	Val 230	Gly	Gln	Ile	Ala	Glu 235	Thr	Asn	Ala	Met	Arg 240
Met	His	Ala	Leu	Asn 245	Leu	Ser	Ala	Glu	Pro 250	Ala	Phe	Asn	Tyr	Phe 255	Thr
Ala	Asp	Thr	Leu 260	Thr	Ala	Ile	Gln	Ala 265	Val	Asn	Asp	Leu	A rg 270	Ser	His
Gly	Ile	Asn 275	Суз	Tyr	Tyr	Thr	Leu 280	Asp	Ala	Gly	Pro	Asn 285	Val	Lys	Ile
Ile	Cys 290	Ala	Gly	Gln	Asp	Thr 295	Asp	Thr	Ile	Met	Thr 300	Gly	Leu	Gln	Gln
His 305	Phe	Asp	Ala	Asp	Gln 310	Leu	Ile	Val	Ala	Lys 315	Pro	Gly	Pro	Gly	Ile 320
Thr	Ile	Thr	Glu	Lys 325											
<210 <210 <210 <210	L> : 2> :	5 314 PRT Stre	ptoc	occu	s py:	rogei	nes								
<40	0> !	5													
Met 1	Asp	Pro	Asn	Val 5	Ile	Thr	Val	Thr	Ser 10	Tyr	Ala	Asn	Ile	Ala 15	Ile
Ile	Lys	Tyr	Trp	Gly	Lys	Glu	Asn	Gln	Ala	Lys	Met	Ile	Pro	Ser	Thr

			20					25					30		
Ser	Ser	Ile 35	Ser	Leu	Thr	Leu	Glu 40	Asn	Met	Phe	Thr	Thr 45	Thr	Ser	Val
Ser	Phe 50	Leu	Pro	Asp	Thr	Ala 55	Thr	Ser	Asp	Gln	Phe 60	Tyr	Ile	Asn	Gly
Ile 65	Leu	Gln	Asn	Asp	Glu 70	Glu	His	Thr	Lys	Ile 75	Ser	Ala	Ile	Ile	Asp 80
Gln	Phe	Arg	Gln	Pro 85	Gly	Gln	Ala	Phe	Val 90	Lys	Met	Glu	Thr	Gln 95	Asn
Asn	Met	Pro	Thr 100	Ala	Ala	Gly	Leu	Ser 105	Ser	Ser	Ser	Ser	Gly 110	Leu	Ser
Ala	Leu	Val 115	Lys	Ala	Cys	Asp	Gln 120	Leu	Phe	Asp	Thr	Gln 125	Leu	Asp	Gln
Lys	Ala 130	Leu	Ala	Gln	Lys	Ala 135	Lys	Phe	Ala	Ser	Gly 140	Ser	Ser	Ser	Arg
Ser 145	Phe	Phe	Gly	Pro	Val 150	Ala	Ala	Trp	Asp	Lys 155	Asp	Ser	Gly	Ala	11e 160
Tyr	Lys	Val	Glu	Thr 165	Asp	Leu	Lys	Met	Ala 170	Met	Ile	Met	Leu	Val 175	Leu
Asn	Ala	Ala	Lys 180	Lys	Pro	Ile	Ser	Ser 185	Arg	Glu	Gly	Met	Lys 190	Leu	Cys
Arg	Asp	Thr 195	Ser	Thr	Thr	Phe	Asp 200	Gln	Trp	Val	Glu	Gln 205	Ser	Ala	Ile
Asp	Tyr 210	Gln	His	Met	Leu	Thr 215	Tyr	Leu	Lys	Thr	Asn 220	Asn	Phe	Glu	Lys
Val 225	Gly	Gln	Leu	Thr	Glu 230	Ala	Asn	Ala	Leu	Ala 235	Met	His	Ala	Thr	Thr 240
Lys	Thr	Ala	Asn	Pro 245	Pro	Phe	Ser	Tyr	Leu 250	Thr	Lys	Glu	Ser	Tyr 255	Gln
Ala	Met	Glu	Ala 260	Val	Lys	Glu	Leu	Arg 265	Gln	Glu	Gly		Ala 270	Cys	Tyr

Phe Thr Met Asp Ala Gly Pro Asn Val Lys Val Leu Cys Leu Glu Lys 280

Asp Leu Ala Gln Leu Ala Glu Arg Leu Gly Lys Asn Tyr Arg Ile Ile

Val Ser Lys Thr Lys Asp Leu Pro Asp Val 310

<210> 6

<211> 324
<212> PRT
<213> Picrophilus torridus DSM 9790

<400> 6

Met Glu Asn Tyr Asn Val Lys Thr Arg Ala Phe Pro Thr Ile Gly Ile

Ile Leu Leu Gly Gly Ile Ser Asp Lys Lys Asn Arg Ile Pro Leu His 25

Thr Thr Ala Gly Ile Ala Tyr Thr Gly Ile Asn Asn Asp Val Tyr Thr 40

Glu Thr Lys Leu Tyr Val Ser Lys Asp Glu Lys Cys Tyr Ile Asp Gly

Lys Glu Ile Asp Leu Asn Ser Asp Arg Ser Pro Ser Lys Val Ile Asp

Lys Phe Lys His Glu Ile Leu Met Arg Val Asn Leu Asp Asp Glu Asn 85 90

Asn Leu Ser Ile Asp Ser Arg Asn Phe Asn Ile Leu Ser Gly Ser Ser 100 105

Asp Ser Gly Ala Ala Ala Leu Gly Glu Cys Ile Glu Ser Ile Phe Glu

Tyr Asn Ile Asn Ile Phe Thr Phe Glu Asn Asp Leu Gln Arg Ile Ser

Glu Ser Val Gly Arg Ser Leu Tyr Gly Gly Leu Thr Val Asn Tyr Ala

Asn Gly Arg Glu Ser Leu Thr Glu Pro Leu Leu Glu Pro Glu Ala Phe 165

Asn Asn Phe Thr Ile Ile Gly Ala His Phe Asn Ile Asp Arg Lys Pro Ser Asn Glu Ile His Glu Asn Ile Ile Lys His Glu Asn Tyr Arg Glu 200 Arg Ile Lys Ser Ala Glu Arg Lys Ala Lys Lys Leu Glu Glu Leu Ser Arg Asn Ala Asn Ile Lys Gly Ile Phe Glu Leu Ala Glu Ser Asp Thr 230 Val Glu Tyr His Lys Met Leu His Asp Val Gly Val Asp Ile Ile Asn 245 Asp Arg Met Glu Asn Leu Ile Glu Arg Val Lys Glu Met Lys Asn Asn 265 260 Phe Trp Asn Ser Tyr Ile Val Thr Gly Gly Pro Asn Val Phe Val Ile 280 Thr Glu Lys Lys Asp Val Asp Lys Ala Met Glu Gly Leu Asn Asp Leu 295 Cys Asp Asp Ile Arg Leu Leu Lys Val Ala Gly Lys Pro Gln Val Ile 310 315 Ser Lys Asn Phe <210> 7 <211> 319 <212> PRT <213> Lactobacillus delbrueckii subsp. bulgaricus <400> 7 Met Ser Lys Thr Ala Arg Ala His Thr Asn Ile Ala Leu Ile Lys Tyr Trp Gly Lys Lys Asp Ala Lys Leu Arg Leu Pro Leu Met Ser Ser Leu Ser Met Thr Leu Asp Ala Phe Tyr Ser Asp Thr Lys Ile Ser Asp Ser 40 Glu Gln Met Ser Phe Lys Leu Asn Gly Gln Ala Val Ser Gly Pro Ala

Ala 65	Asp	Arg	Val	Phe	Ala 70	Tyr	Leu	Arg	Ala	Met 75	Gln	Asp	Arg	Phe	Gly 80
Val	Lys	Gly	Asn	Leu 85	Ala	Val	Glu	Ser	Val 90	Asn	Gln	Val	Pro	Thr 95	Ala
Ala	Gly	Leu	Ala 100	Ser	Ser	Ser	Ser	Ala 105	Phe	Ala	Ala	Met	Ala 110	Ala	Ala
Phe	Ala	Asp 115	His	Tyr	Gln	Leu	Gly 120	Val	Asp	Arg	Gln	Glu 125	Leu	Ser	Arg
Met	Ala 130	Arg	Met	Gly	Ser	Gly 135	Ser	Ala	Ser	Arg	Ser 140	Val	Phe	Gly	Gly
Phe 145	Ser	Val	Trp	Gln	Lys 150	Gly	Asp	Ser	Asp	Gln 155	Thr	Ser	Tyr	Ala	Tyr 160
Pro	Leu	Asp	Glu	Glu 165	Pro	Asp	Met	Asp	Leu 170	Arg	Leu	Leu	Ala	Val 175	Glu
Ile	Asn	Asp	Gln 180	Glu	Lys	Lys	Ile	Ser 185	Ser	Thr	Lys	Gly	Met 190	Glu	Met
Ser	Lys	Ser 195	Ser	Pro	Phe	Tyr	Gln 200	Val	Trp	Leu	Asp	Arg 205	Asn	Asp	Ser
Glu	Ile 210	Lys	Glu	Met	Glu	Glu 215	Ala	Ile	Lys	Gln	Ala 220	Asp	Phe	Ser	Lys
Leu 225	Gly	Ser	Leu	Ala	Glu 230	Leu	Asn	Ala	Ser	Glu 235	Met	His	Thr	Leu	Thr 240
Phe	Thr	Ala	Val	Pro 245	Gly	Phe	Thr	Tyr	Phe 250	Glu	Pro	Asn	Thr	Ile 255	Lys
Ala	Ile	Lys	Leu 260	Val	Gln	Asp	Leu	Arg 265	Gln	Gln	Gly	Leu	Glu 270	Cys	Tyr
туг	Thr	Ile 275	Asp	Ala	Gly	Pro	Asn 280	Val	Lys	Val	Leu	Cys 285	Gln	Gly	Lys
Asn	Ser 290	Lys	Asp	Ile	Ile	Asn 295	Cys	Phe	Glu	Ser	Ser 300	Phe	Asp	Arg	Val
Lys 305	Ile	Ile	Glu	Ala	Gly 310	Phe	Gly	Pro	Gly	Val 315	Thr	Leu	Leu	Asp	

<210 <211		3 324													
<212		PRT													
<213		_	quadi	ratur	n wal	Lsby	L DSI	4 16	790						
<400)> {	3													
Met 1	Lys	Ala	Thr	Ala 5	Arg	Ala	His	Pro	Ile 10	Gln	Gly	Leu	Ile	Lys 15	Tyr
_				•											
His	Glv	Met	Ara	Aen	Ser	Asn	T.ve	Arg	Tur	Pro	Tur	Hie	Aen	Sor	Tla
	OL,	1100	20	пор	561	пор	Lys	25	-7-		-3-		30	Der	110
Ser	Val	Cys	Thr	Ala	Pro	Ser	Ala	Thr	Thr	Thr	Thr	Val	Glu	Phe	Gln
		35					40					45			
Ser		Ala	Ser	Gly	Asp		Tyr	Ile	Ile	Asp		Glu	Arg	Val	Asp
	50					55					60				
Gly 65	Arg	Ala	Ala	Glu	Arg 70	Ile	Asp	Ala	Val	Val 75	Glu	His	Val	Arg	Glu 80
65					70					13					80
•	mЪ	G1	-1-	•	•	D		•	• • • •	••- 1		mh			D 1
Arg	Thr	GIĀ	тте	Arg 85	Asp	Pro	vai	Arg	90	vai	ser	Thr	Asn	ser 95	Pne
Pro	Ser	Asn	Ile	Glv	Phe	Glv	Ser	Ser	Ser	Ser	Glv	Phe	Ala	Ala	Ala
			100	1		1		105			1		110		
Ala	Met	Ala	Leu	Val	Thr	Ala	Ala	Gly	Glu	Glu	Leu	Thr	His	Pro	Glu
		115					120					125			
Ile		Thr	Ile	Ala	Arg		Gly	Ser	Ser	Ser		Ala	Arg	Ala	Val
	130					135					140				
				_		_		_			_	_		_	_
Thr 145	Gly	Ala	Phe	Ser	Gln 150	Leu	Tyr	Ser	Gly	Met 155	Asn	Asp	Thr	Asp	Cys 160
					-50										
Hie	Δla	Glu	Ara	Tla	Glu	Thr	Aen	Leu	Agn	Δla	Thr	Va 1	Ara	Thr	Va l
	nia	Gru	nrg	165	GIU		лор	Leu	170	ALG		Val	ALG	175	Val
Ala	Ala	His	Val	Pro	Ala	Tyr	Lys	Glu	Thr	Glu	Glu	Ala	His	Arg	Glu
			180			-	-	185					190	-	
Ala	Ala		Ser	His	Met	Phe		Ala	Arg	Leu	Ala		Val	His	His
		195					200					205			
Gln	Ile 210	Asp	Ala	Met	Arg		Ala	Leu	Tyr	Asn		Asp	Phe	Asp	Arg
	210					215					220				

225	Pne	GIU	Leu	Ата	230	His	Asp	Ser	Leu	235	Leu	Thr	Ala	Ala	240
Met	Thr	Gly	Pro	Ala 245	Gly	Trp	Val	Tyr	Trp 250	Gln	Pro	Gln	Thr	11e 255	Ala
Val	Phe	Asn	Thr 260	Val	Arg	Glu	Leu	Arg 265	Glu	Arg	Glu	Ser	Ile 270	Pro	Val
Tyr	Phe	Ser 275	Thr	Asp	Thr	Gly	Ala 280	Ser	Val	Tyr	Val	Asn 285	Thr	Thr	Ala
Ala	His 290	Val	Asp	Thr	Val	Glu 295	Ser	Ala	Ile	Ser	Asp 300	Ile	Gly	Ile	Asp
Thr 305	Asp	Ile	Trp	Thr	Val 310	Gly	Gly	Pro	Ala	Thr 315	Val	Leu	Ser	Ala	Ser 320
Asp	Ser	Leu	Phe												
<210		9													
<211		322													
<212	2> E	PRT													
<212 <213	_		obaci	illus	s sal	Liva	rius	subs	sp. s	saliv	vari	ıs (:	cepa	U	CC118)
	3> 1		obaci	illus	s sal	Livaı	rius	subs	sp. s	saliv	vari	1 s (:	cepa	U	C(118)
<213	3> 1	Lacto			s sal								•		
<213 <400 Met 1	3> 1)> 5 Ser	Asn	His	Ala 5		Ala	Arg	Ala	His 10	Thr	Asn	Ile	Ala	Leu 15	Ile
<213 <400 Met 1 Lys	3> 1 0> 9 Ser Tyr	Asn Trp	His Gly 20	Ala 5 Lys	Ala	Ala Asp	Arg Thr	Ala Glu 25	His 10 Leu	Thr	Asn Leu	Ile Pro	Ala Met 30	Leu 15 Asn	Ile Asn
<213 <400 Met 1 Lys Ser	3> I 0> 9 Ser Tyr Leu	Asn Trp Ser 35	His Gly 20 Leu	Ala 5 Lys Thr	Ala Lys	Ala Asp	Arg Thr His 40	Ala Glu 25 Phe	His 10 Leu	Thr Ile Thr	Asn Leu Asp	Ile Pro Thr 45	Ala Met 30 Ser	Leu 15 Asn Val	Ile Asn Thr
<213 <400 Met 1 Lys Ser	Ser Tyr Leu Asp	Asn Trp Ser 35	His Gly 20 Leu Ser	Ala 5 Lys Thr	Ala Lys Leu	Ala Asp Asp Lys 55	Arg Thr His 40	Ala Glu 25 Phe Thr	His 10 Leu Tyr	Thr Ile Thr	Asn Leu Asp Leu 60	Ile Pro Thr 45	Ala Met 30 Ser	Leu 15 Asn Val	Ile Asn Thr
<213 <400 Met 1 Lys Ser Phe Ile 65	3> I 3> I 3> Ser Tyr Leu Asp 50	Asn Trp Ser 35 Ser	His Gly 20 Leu Ser	Ala 5 Lys Thr Tyr	Ala Lys Leu Thr	Ala Asp Asp Lys 55	Arg Thr His 40 Asp	Ala Glu 25 Phe Thr	His 10 Leu Tyr Phe	Thr Ile Thr Ile Asn 75	Asn Leu Asp Leu 60	Ile Pro Thr 45 Asn	Ala Met 30 Ser Gly	Leu 15 Asn Val Lys	Ile Asn Thr Glu Lys 80

Ala	Ala	Ala 115	Ser	Lys	Ala	Ser	Gly 120	Met	Asn	Leu	Ser	Arg 125	Arg	Asp	Leu
Ser	Arg 130	Leu	Ala	Arg	Arg	Gly 135	Ser	Gly	Ser	Ala	Thr 140	Arg	Ser	Ile	Tyr
Gly 145	Gly	Phe	Val	Glu	Trp 150	Gln	Ala	Gly	Asp	Asn 155	Asp	Leu	Asn	Ser	Tyr 160
Ala	Val	Pro	Phe	Ile 165	Glu	Asn	Val	Ser	Trp 170	Asp	Ile	Lys	Met	Ile 175	Ala
Val	Val	Ile	Asn 180	Ser	Lys	Pro	Lys	Lys 185	Ile	Thr	Ser	Arg	Ala 190	Gly	Met
Gln	Thr	Val 195	Val	Asn	Thr	Ser	Pro 200	Tyr	Tyr	Asn	Ser	Trp 205	Ile	Lys	Glu
Ala	Asn 210	Arg	Ser	Ile	Pro	Leu 215	Met	Lys	Glu	Ala	11e 220	Ser	Lys	Gln	Asp
Phe 225	Thr	Thr	Met	Gly	Glu 230	Leu	Ala	Glu	Glu	Asn 235	Ala	Met	Lys	Met	His 240
Ala	Leu	Asn	Leu	Ser 245	Ala	His	Pro	His	Phe 250	Ser	Tyr	Phe	Ser	Pro 255	Glu
Ser	Ile	Gln	Val 260	Met	Asn	Leu	Val	Glu 265	Glu	Leu	Arg	Ser	Met 270	Gly	Ile
Glu	Cys	Tyr 275	Tyr	Thr	Met	Asp	Ala 280	Gly	Pro	Asn	Val	Lys 285	Ile	Ile	Cys
Leu	Gly 290	Lys	Asp	Thr	Ala	Ser 295	Ile	Thr	Ser	Phe	Leu 300	Gln	Lys	Asn	Leu
Pro 305	Asn	Thr	Glu	Val	Leu 310	Val	Ser	Ser	Ala	Gly 315	Pro	Gly	Val	Gln	Tyr 320
Leu	Asp														
<210		10													
<212		314 PRT													
<213		_	cocci	1S 06	eni	(·ce	pa	BAA-	-331	/ PS	SU-1)	•			
<400)> :	10													

Met 1	Ala	Lys	Val	Arg 5	Ala	Tyr	Thr	Asn	Ile 10	Ala	Leu	Ile	Lys	Tyr 15	Trp
Gly	Lys	Ser	Asp 20	Leu	Asn	Trp	Asn	Leu 25	Pro	Thr	Ser	Ser	Ser 30	Ile	Gly
Leu	Thr	Leu 35	Asp	Arg	Phe	Tyr	Thr 40	Asp	Thr	Ser	Val	Glu 45	Ile	Asp	Gln
Phe	Ser 50	Lys	Lys	Asp	Phe	Phe 55	Gln	Leu	Asn	Gly	Gln 60	Gln	Ile	Glu	Gly
Pro 65	Lys	Ile	Ser	Lys	Ile 70	Ile	Asn	Phe	Ile	Arg 75	Asn	Ser	Cys	Gly	Asn 80
Lys	Asn	Phe	Val	Lys 85	Val	Ile	Ser	Glu	Asn 90	His	Val	Pro	Thr	Ser 95	Ala
Gly	Leu	Ala	Ser 100	Ser	Ala	Ser	Ala	Phe 105	Ala	Ala	Leu	Thr	Lys 110	Ala	Ala
Asn	Gln	Ala 115	Phe	Gly	Leu	Glu	Leu 120	Asp	Asn	Arg	Glu	Leu 125	Ser	Lys	Ile
Ala	Arg 130	Ile	Gly	Ser	Gly	Ser 135	Ala	Ser	Arg	Ser	Ile 140	Phe	Gly	Gly	Phe
Ser 145	Ile	Trp	His	Lys	Gly 150	Gln	Asn	Lys	Asp	Asp 155	Ser	Phe	Ala	Glu	Ser 160
Ile	Leu	Asp	Pro	Val 165	Asp	Phe	Asp	Ile	Arg 170	Val	Ile	Asp	Ile	Leu 175	Ala
Asp	Lys	Arg	Val 180	Lys	Lys	Ile	Ser	Ser 185	Ser	Gln	Gly	Met	Gln 190	Leu	Ala
Gln	Thr	Ser 195	Pro	Asn	Tyr	Asp	Ser 200	Trp	Leu	Lys	Lys	Asn 205	Asp	Arg	Gln
Ile	Asp 210	Glu	Met	Leu	Lys	Ala 215	Ile	Ser	Asp	His	Asp 220	Leu	Glu	Lys	Ile
Gly 225	Leu	Ile	Ala	Glu	Thr 230	Asn	Ser	Ala	Ser	Met 235	His	Glu	Leu	Asn	Arg 240
Thr	Ala	Lys	Val	Pro 245	Phe	Asp	Tyr	Phe	Thr 250	Glu	Asn	Thr	Arg	Glu 255	Ile

Ile Ala Glu Val Asp Gln Leu Tyr Lys Lys Gly Ile Leu Ala Phe Ala 265

Thr Val Asp Ala Gly Pro Asn Val Lys Val Ile Thr Asn Ser Glu Tyr 280

Gln Glu Lys Ile Ile Asn Val Leu Lys Glu Tyr Gly Glu Ile Leu Val

Gln Lys Pro Gly Arg Gly Val Ala Asn Val

<210> 11 <211> 327 <212> PRT <213> Pediococcus pentosaceus ATCC 25745

<400> 11

Met Asn Glu Lys His Gly Phe Ala Arg Ala His Thr Asn Ile Ala Leu

Leu Lys Tyr Trp Gly Lys Ile Asn Ser Asp Leu Ile Leu Pro Ala Asn

Asp Ser Ile Ser Leu Thr Leu Asp Lys Phe Tyr Thr Asp Thr Glu Val

Thr Phe Ser Asp Glu Tyr Thr Ser Asn Leu Phe Tyr Leu Asn His Gln

Leu Ile Asp Val Lys Lys Met Gln Arg Ile Asn Arg Val Leu Glu Ala

Val Lys Ser Glu Phe Gly Tyr Gln Gly Phe Ala Lys Ile Glu Ser Glu

Asn His Val Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ser Gly Met 100

Ala Ala Leu Ala Gly Ala Ala Val Ser Ala Leu Gly Ser His Thr Asp 115

Leu Thr Asn Leu Ser Arg Leu Ala Arg Leu Gly Ser Gly Ser Ala Ser 130 135

Arg Ser Val Phe Gly Gly Ile Val His Trp His Arg Gly Tyr Asp His 150 155

Gln Ser Ser Phe	Ala Glu Gln	Ile Val Ser Glu	Asp Gln Ile Asp Leu
	165	170	175
Asn Met Val Thr	Ile Val Ile	Asp Arg Arg Gln	Lys Lys Val Lys Ser
180		185	190
Thr Leu Gly Met	Gln His Thr	Ala Ser Thr Ser	Pro Phe Tyr Pro Ala
195		200	205
Trp Val Glu Ala	Thr Asn Gln	Ala Ile Pro Glu	Met Ile Ser Ala Val
210	215		220
Gln Asn Asn Asp	Phe Thr Lys	Ile Gly Glu Leu	Ala Glu His Ser Ala
225	230	235	240
Ala Met Met His	Ala Thr Thr	Leu Ser Ser Lys	Pro Ala Phe Thr Tyr
	245	250	255
Phe Ala Pro Glu	Thr Ile Gln	Ala Ile Lys Leu	Val Glu Gln Leu Arg
260		265	270
Glu Ser Gly Ile	Glu Cys Tyr	Tyr Thr Ile Asp	Ala Gly Pro Asn Val
275		280	285
Lys Val Leu Cys	Gln Ser Lys	Asn Ile Thr Arg	Val Lys Arg Phe Phe
290	295		300
Ala Ser Tyr Phe	Asp Gln Asp	Gln Leu Val Val	Ala Lys Pro Gly Ser
305	310	315	
Gly Ile Lys Phe	Thr Lys Asn 325		
<210> 12 <211> 315 <212> PRT <213> Streptoce	occus gordoni	Li	
<400> 12			
Met Asp Arg Lys	Pro Val Ser	Val Lys Ser Tyr	Ala Asn Ile Ala Ile
1	5	10	15
Val Lys Tyr Trp	Gly Lys Lys	Asp Ala Glu Lys	Met Ile Pro Ser Thr
20		25	30
Ser Ser Ile Ser	Leu Thr Leu	Glu Asn Met Tyr	Thr Glu Thr Gln Leu
35		40	45

Ser	Pro 50	Leu	Pro	Asp	Thr	Ala 55	Thr	Gly	Asp	Glu	Phe 60	Tyr	Ile	Asp	Gly
Gln 65	Leu	Gln	Ser	Pro	Ala 70	Glu	His	Ala	Lys	Ile 75	Ser	Lys	Ile	Ile	Asp 80
Arg	Phe	Arg	Ser	Pro 85	Glu	Asp	Gly	Phe	Val 90	Arg	Val	Asp	Thr	Ser 95	Asn
Asn	Met	Pro	Thr 100	Ala	Ala	Gly	Leu	Ser 105	Ser	Ser	Ser	Ser	Gly 110	Leu	Ser
Ala	Leu	Val 115	Lys	Ala	Cys	Asn	Ala 120	Tyr	Phe	Gln	Thr	Gly 125	Tyr	Gln	Thr
Glu	Glu 130	Leu	Ala	Gln	Leu	Ala 135	Lys	Phe	Ala	Ser	Gly 140	Ser	Ser	Ala	Arg
Ser 145	Phe	Phe	Gly	Pro	Leu 150	Ala	Ala	Trp	Asp	Lys 155	Asp	Ser	Gly	Ala	Ile 160
Tyr	Pro	Val	Lys	Thr 165	Asp	Leu	Lys	Leu	Ala 170	Met	Ile	Met	Leu	Val 175	Leu
His	Asp	Glu	Lys 180	Lys	Pro	Ile	Ser	Ser 185	Arg	Asp	Gly	Met	Glu 190	Leu	Cys
Ala	Lys	Thr 195	Ser	Thr	Ile	Phe	Pro 200	Asp	Trp	Ile	Ala	Gln 205	Ser	Ala	Leu
Asp	Tyr 210	Gln	Ala	Met	Leu	Gly 215	Tyr	Leu	Gln	Asp	Asn 220	Asp	Phe	Ala	Lys
Val 225	Gly	Gln	Leu	Thr	Glu 230	Glu	Asn	Ala	Leu	Arg 235	Met	His	Ala	Thr	Thr 240
Glu	Lys	Ala	Tyr	Pro 245	Pro	Phe	Ser	Tyr.	Leu 250	Thr	Glu	Glu	Ser	Tyr 255	Gln
Ala	Met	Asp	Ala 260	Val	Arg	Lys	Leu	Arg 265	Glu	Gln	Gly	Glu	Arg 270	Суз	Tyr
Phe	Thr	Met 275	Asp	Ala	Gly	Pro	Asn 280	Val	Lys	Val	Leu	Cys 285	Leu	Glu	Glu
Asp	Leu	Asp	His	Leu	Ala	Ala	Ile	Phe	Glu	Lys	Asp	Tyr	Arg	Leu	Ile

Val 305	Ser	Lys	Thr	Lys	Asp 310	Leu	Ser	Asp	Glu	Ser 315					
<210 <211 <212 <213	L> 3 2> I	13 328 PRT Diche	eloba	acter	r noc	iosus	s VCS	S1703	3 A						
<400	0> 1	L3													
Met 1	His	Ser	Ala	Thr 5	Ala	Phe	Ala	Pro	Ala 10	Asn	Ile	Ala	Leu	Ala 15	Lys
Tyr	Trp	Gly	Lys 20	Arg	Asp	Ala	Gln	Leu 25	Asn	Leu	Pro	Thr	Asn 30	Gly	Ser
Leu	Ser	Ile 35	Ser	Leu	Ala	His	Leu 40	Gly	Thr	Thr	Thr	Thr 45	Ile	Ser	Ala
Gly	Glu 50	Arg	Asp	Gln	Leu	Tyr 55	Cys	Asp	His	Arg	Leu 60	Leu	Pro	Pro	Asp
Thr 65	Ala	Phe	Val	Gln	Lys 70	Val	Trp	His	Phe	Ile 75	Asp	Phe	Cys	Gln	Pro 80
Lys	Arg	Pro	Pro	Leu 85	Val	Ile	His	Thr	Gln 90	Asn	Asn	Ile	Pro	Thr 95	Ala
Ala	Gly	Leu	Ala 100	Ser	Ser	Ala	Ser	Gly 105	Phe	Ala	Ala	Leu	Thr 110	Leu	Ala
Leu	Asn	Asp 115	Phe	Phe	Gln	Trp	Ser 120	Leu	Ser	Arg	Glu	Gln 125	Leu	Ser	Gln
	Ala 130	_	Arg	_		Gly 135		Ala	Cys	-	Ser 140		Trp	Gln	Gly
Phe 145	Val	Tyr	Trp	Gln	Lys 150	Gly	Glu	Lys	Ala	Asp 155	Gly	Ser	Asp	Cys	Tyr 160
Ala	Arg	Pro	Ile	Ala 165	Ser	Asp	Trp	Gln	Asp 170	Leu	Arg	Leu	Gly	Ile 175	Ile
Thr	Ile	Asp	Ala 180	Ala	Ala	Lys	Lys	Ile 185	Ser	Ser	Arg	Gln	A la 190	Met	Asn
His	Thr	Ala	Ala	Ser	Ser	Pro	Leu	Phe	Ser	Ser	Trp	Thr	Gln	Ala	Ala

Glu	Ala 210	Asp	Leu	Lys	Val	Ile 215	Tyr	Gln	Ala	Val	Leu 220	Asp	Arg	Asp	Phe
Leu 225	Thr	Leu	Ala	Gln	Thr 230	Ala	Glu	Ala	Asn	Ala 235	Leu	Met	Met	His	Ala 240
Ser	Leu	Leu	Ala	Ala 245	Arg	Pro	Ala	Ile	Phe 250	Tyr	Trp	Gln	Pro	Gln 255	Thr
Leu	Ala	Met	Leu 260	Gln	Cys	Ile	Trp	Gln 265	Ala	Arg	Ala	Glu	Gly 270	Leu	Ala
Val	Tyr	Ala 275	Thr	Leu	Asp	Ala	Gly 280	Ala	Asn	Val	Lys	Leu 285	Leu	Tyr	Arg
Ala	Gln 290	Asp	Glu	Ala	Glu	Ile 295	Ala	Ser	Met	Phe	Pro 300	Gln	Ala	Gln	Leu
Ile 305	Asn	Pro	Phe	Gln	Thr 310	Val	Thr	Ser	Ser	Ala 315	Arg	His	Thr	Gly	Glu 320
Asp	Ala	Gln	Lys	Pro 325	Ser	Leu	Lys								
<210 <211 <211 <211	1> 3 2> 1	14 317 PRT Strep	ptoc	occus	s pne	eumoi	niae	CDC	0288-	-04					
<40	0> :	L4													
Met 1	Asp	Arg	Glu	Pro 5	Val	Thr	Val	Arg	Ser 10	Tyr	Ala	Asn	Ile	Ala 15	Ile
Ile	Lys	Tyr	Trp 20	Gly	Lys	Lys	Lys	Glu 25	Lys	Glu	Met	Val	Pro 30	Ala	Thr
Ser	Ser	Ile 35	Ser	Leu	Thr	Leu	Glu 40	Asn	Met	Tyr	Thr	Glu 45	Thr	Thr	Leu
Ser	Pro 50	Leu	Pro	Ala	Asn	Val 55	Thr	Ala	Asp	Glu	Phe 60	Tyr	Ile	Asn	Gly
Gln 65	Leu	Gln	Asn	Glu	Val 70	Glu	His	Ala	Lys	Met 75	Ser	Lys	Ile	Ile	Asp 80
Arg	Tyr	Arg	Pro	Ala	Gly	Glu	Gly	Phe	Val	Arg	Ile	Asp	Thr	Gln	Asn

				85					90					95	
Asn	Met	Pro	Thr 100	Ala	Ala	Gly	Leu	Ser 105	Ser	Ser	Ser	Ser	Gly 110	Leu	Ser
Ala	Leu	Val 115	Lys	Ala	Cys	Asn	Ala 120	Tyr	Phe	Lys	Leu	Gly 125	Leu	Asp	Arg
Ser	Gln 130	Leu	Ala	Gln	Gl u	Ala 135	Lys	Phe	Ala	Ser	Gly 140	Ser	Ser	Ser	Arg
Ser 145	Phe	Tyr	Gly	Pro	Leu 150	Gly	Ala	Trp	Asp	Lys 155	Asp	Ser	Gly	Glu	Ile 160
Tyr	Pro	Val	Glu	Thr 165	Asp	Leu	Lys	Leu	Ala 170	Met	Ile	Met	Leu	Val 175	Leu
Glu	Asp	Lys	Lys 180	Lys	Pro	Ile	Ser	Ser 185	Arg	Asp	Gly	Met	Lys 190	Leu	Cys
Val	Glu	Thr 195	Ser	Thr	Thr	Phe	Asp 200	Asp	Trp	Val	Arg	Gln 205	Ser	Glu	Lys
Asp	Tyr 210	Gln	Asp	Met	Leu	11e 215	Tyr	Leu	Lys	Glu	Asn 220	Asp	Phe	Ala	Lys
Ile 225	Gly	Glu	Leu	Thr	Glu 230	Lys	Asn	Ala	Leu	Ala 235	Met	His	Ala	Thr	Thr 240
Lys	Thr	Ala	Ser	Pro 245	Ala	Phe	Ser	Tyr	Leu 250	Thr	Asp	Ala	Ser	Tyr 255	Glu
Ala	Met	Ala	Phe 260	Val	Arg	Gln	Leu	Arg 265	Glu	Lys	Gly	Glu	Ala 270	Cys	Tyr
Phe	Thr	Met 275	Asp	Ala	Gly	Pro	Asn 280	Val	Lys	Val	Phe	Cys 285	Gln	Glu	Lys
Asp	Leu 290	Glu	His	Leu	Ser	Glu 295	Ile	Phe	Gly	Gln	Arg 300	Tyr	Arg	Leu	Ile
Val 305	Ser	Lys	Thr	Lys	Asp 310	Leu	Ser	Gln	Asp	Asp 315	Суз	Cys			
<210 <211 <212 <213	L> : 2> 1	15 314 PRT Strep	ptoc	occus	s pyc	ogene	e s S	erotiţ	00 1	16 (2	ATCC	BAA-	-946	/ MO	GAS10394)

<400>	15
-------	----

- Met Asp Pro Asn Val Ile Thr Val Thr Ser Tyr Ala Asn Ile Ala Ile 1 5 10 15
- Ile Lys Tyr Trp Gly Lys Glu Asn Gln Ala Lys Met Ile Pro Ser Thr 20 25 30
- Ser Ser Ile Ser Leu Thr Leu Glu Asn Met Phe Thr Thr Thr Ser Val 35 40 45
- Ser Phe Leu Pro Asp Thr Ala Thr Ser Asp Gln Phe Tyr Ile Asn Gly 50 55 60
- Val Leu Gln Asn Asp Glu Glu His Thr Lys Ile Ser Ala Ile Ile Asp 65 70 75 80
- Gln Phe Arg Gln Pro Gly Gln Ala Phe Val Lys Met Glu Thr Gln Asn 85 90 95
- Asn Met Pro Thr Ala Ala Gly Leu Ser Ser Ser Ser Ser Gly Leu Ser 100 105 110
- Ala Leu Val Lys Ala Cys Asp Gln Leu Phe Asn Thr Gln Leu Asp Gln 115 120 125
- Lys Ala Leu Ala Gln Lys Ala Lys Phe Ala Ser Gly Ser Ser Ser Arg 130 135 140
- Ser Phe Phe Gly Pro Val Ala Ala Trp Asp Lys Asp Ser Gly Ala Ile 145 150 155 160
- Tyr Lys Val Glu Thr Asp Leu Lys Met Ala Met Ile Met Leu Val Leu 165 170 175
- Asn Ala Ala Lys Lys Pro Ile Ser Ser Arg Glu Gly Met Lys Leu Cys 180 185 190
- Arg Asp Thr Ser Thr Thr Phe Asp Glu Trp Val Glu Gln Ser Ala Ile 195 200 205
- Asp Tyr Gln His Met Leu Thr Tyr Leu Lys Thr Asn Asn Phe Glu Lys 210 220
- Val Gly Gln Leu Thr Glu Ala Asn Ala Leu Ala Met His Ala Thr Thr 225 230 235 240

Lys Thr Ala Asn Pro Pro Phe Ser Tyr Leu Thr Lys Glu Ser Tyr Gln

Ala Met Glu Ala Val Lys Glu Leu Arg Gln Glu Gly Phe Ala Cys Tyr

Phe Thr Met Asp Ala Gly Pro Asn Val Lys Val Leu Cys Leu Glu Lys

Asp Leu Ala Gln Leu Ala Glu Arg Leu Gly Lys Asn Tyr Arg Ile Ile 295

Val Ser Lys Thr Lys Asp Leu Pro Asp Val 310

<210> 16 <211> 330 <212> PRT <213> Picrophilus torridus DSM 9790

<400> 16

Met His His His His His Glu Asn Tyr Asn Val Lys Thr Arg Ala 10

Phe Pro Thr Ile Gly Ile Ile Leu Leu Gly Gly Ile Ser Asp Lys Lys

Asn Arg Ile Pro Leu His Thr Thr Ala Gly Ile Ala Tyr Thr Gly Ile

Asn Asn Asp Val Tyr Thr Glu Thr Lys Leu Tyr Val Ser Lys Asp Glu

Lys Cys Tyr Ile Asp Gly Lys Glu Ile Asp Leu Asn Ser Asp Arg Ser 70

Pro Ser Lys Val Ile Asp Lys Phe Lys His Glu Ile Leu Met Arg Val

Asn Leu Asp Asp Glu Asn Asn Leu Ser Ile Asp Ser Arg Asn Phe Asn 100 105

Ile Leu Ser Gly Ser Ser Asp Ser Gly Ala Ala Leu Gly Glu Cys 120

Ile Glu Ser Ile Phe Glu Tyr Asn Ile Asn Ile Phe Thr Phe Glu Asn 135

Asp Leu Gln Arg Ile Ser Glu Ser Val Gly Arg Ser Leu Tyr Gly Gly 145 150 155 160

Leu	Thr	Val	Asn	Tyr 165	Ala	Asn	Gly	Arg	Glu 170	Ser	Leu	Thr	Glu	Pro 175	Leu
Leu	Glu	Pro	Glu 180	Ala	Phe	Asn	Asn	Phe 185	Thr	Ile	Ile	Gly	Ala 190	His	Phe
Asn	Ile	Asp 195	Arg	Lys	Pro	Ser	Asn 200	Glu	Ile	His	Glu	Asn 205	Ile	Ile	Lys
His	Glu 210	Asn	Tyr	Arg	Glu	Arg 215	Ile	Lys	Ser	Ala	Glu 220	Arg	Lys	Ala	Lys
Lys 225	Leu	Glu	Glu	Leu	Ser 230	Arg	Asn	Ala	Asn	Ile 235	Lys	Gly	Ile	Phe	Glu 240
Leu	Ala	Glu	Ser	Asp 245	Thr	Val	Glu	Tyr	His 250	Lys	Met	Leu	His	Asp 255	Val
Gly	Val	Asp	Ile 260	Ile	Asn	Asp	Arg	Met 265	Glu	Asn	Leu	Ile	Glu 270	Arg	Val
Lys	Glu	Met 275	Lys	Asn	Asn	Phe	Trp 280	Asn	Ser	Tyr	Ile	Val 285	Thr	Gly	Gly
Pro	Asn 290	Val	Phe	Val	Ile	Thr 295	Glu	Lys	Lys	Asp	Val 300	Asp	Lys	Ala	Met
G1u 305	Gly	Leu	Asn	Asp	Leu 310	Cys	Asp	Asp	Ile	A rg 315	Leu	Leu	Lys	Val	A la 320
Gly	Lys	Pro	Gln	Val 325	Ile	Ser	Lys	Asn	Phe 330						
<21 <21 <21 <21	1> 3 2> 1	17 327 PRT Therr	nopla	asma	vol	cani	ım								
<40	0> :	17													
Met 1	Leu	His	His	His 5	His	His	His	Ser	Asn 10	Ser	Ser	Ile	Thr	Ser 15	Val
Ala	Tyr	Pro	Thr 20	Ile	Gly	Val	Val	Leu 25	Leu	Gly	Gly	Ile	Ala 30	Asn	Glu

Lys	Thr	Arg 35	Thr	Pro	Leu	His	Thr 40	Ser	Ala	Gly	Ile	Ala 45	Tyr	Thr	Asp
Ser	Cys 50	Gly	Ser	Ile	Arg	Thr 55	Glu	Ser	Thr	Ile	Tyr 60	Gly	Asp	Ser	Glu
Met 65	His	Ile	Tyr	Phe	Asn 70	Gly	Thr	Glu	Ser	Lys 75	Asp	Glu	Asn	Arg	Ser 80
Val	Lys	Ser	Val	Leu 85	Glu	Arg	Tyr	Arg	Asn 90	Glu	Leu	Gln	Ser	Phe 95	Phe
Gly	Lys	Lys	Asp 100	Val	Ser	Tyr	Ser	Ser 105	Leu	Asn	Tyr	Gly	Ile 110	Leu	Ser
Gly	Ser	Ser 115	Asp	Ala	Gly	Ala	Ala 120	Ser	Ile	Gly	Ala	Ile 125	Leu	Ser	Phe
Ile	Asp 130	Lys	Lys	Asn	Asp	Ile 135	His	Asp	Ile	Glu	Asn 140	Asp	Ile	Arg	Met
Ile 145	Ser	Glu	Ser	Ala	Gly 150	Arg	Ser	Leu	His	Gly 155	Gly	Leu	Thr	Ile	Thr 160
Trp	Ser	Asp	Gly	Tyr 165	Ser	Ala	Tyr	Thr	Glu 170	Arg	Val	Leu	Gly	Pro 175	Glu
His	Phe	Asn	Asn 180	Tyr	Ala	Ile	Val	Gly 185	Phe	Ser	Phe	Asp	Tyr 190	Pro	Arg
Asn	Pro	Ser 195	Asp	Thr	Ile	His	Gln 200	Asn	Ile	Ile	Lys	Ser 205	Lys	Arg	Tyr
Lys	Gln 210	Arg	Thr	Ile	Asp	Ala 215	Asp	Glu	His	Ala	His 220	Glu	Ile	Lys	Glu
Met 225	Ala	Arg	Thr	Asp	Asp 230	Ile	Glu	Gly	Ile	Phe 235	Glu	Lys	Ala	Glu	Glu 240
Asp	Thr	Glu	Glu	Tyr 245	His	Ser	Ile	Leu	Arg 250	Glu	Val	Gly	Val	Leu 255	Val
Ile	Arg	Glu	Asn 260	Met	Gln	Lys	Leu	Ile 265	Glu	Phe	Ile	Lys	Ile 270	Leu	Arg
Lys	Glu	Phe 275	Trp	Asn	Ser	Tyr	Ile 280	Val	Thr	Gly	Gly	Ser 285	Asn	Val	Tyr

Val Ile Val Arg Arg Asp Asp Leu Glu Arg Leu Ile His Ile Lys Asn 295

Thr Phe Gly Ser Lys Pro Lys Ile Leu Asn Val Ala Gly Pro Ala Trp

Ile Lys Lys Val Glu Ser Asp 325

<210> 18

<211> 325 <212> PRT <213> Thermoplasma acidophilum

<400> 18

Met Leu His His His His His Thr Tyr Arg Ser Ile Gly Ser Thr

Ala Tyr Pro Thr Ile Gly Val Val Leu Leu Gly Gly Ile Ala Asn Pro

Val Thr Arg Thr Pro Leu His Thr Ser Ala Gly Ile Ala Tyr Ser Asp

Ser Cys Gly Ser Ile Arg Ser Glu Thr Arg Ile Tyr Ala Asp Glu Ala

Thr His Ile Tyr Phe Asn Gly Thr Glu Ser Thr Asp Asp Asn Arg Ser

Val Arg Arg Val Leu Asp Arg Tyr Ser Ser Val Phe Glu Glu Ala Phe

Gly Thr Lys Thr Val Ser Tyr Ser Ser Gln Asn Phe Gly Ile Leu Ser 100 105

Gly Ser Ser Asp Ala Gly Ala Ala Ser Ile Gly Ala Ala Ile Leu Gly

Leu Lys Pro Asp Leu Asp Pro His Asp Val Glu Asn Asp Leu Arg Ala 130 135

Val Ser Glu Ser Ala Gly Arg Ser Leu Phe Gly Gly Leu Thr Ile Thr

Trp Ser Asp Gly Phe His Ala Tyr Thr Glu Lys Ile Leu Asp Pro Glu 170

Ala Phe Ser Gly Tyr Ser Ile Val Ala Phe Ala Phe Asp Tyr Gln Arg 180 Asn Pro Ser Asp Val Ile His Gln Asn Ile Val Arg Ser Asp Leu Tyr 200 Pro Ala Arg Lys Lys His Ala Asp Glu His Ala His Met Ile Lys Glu 215 Tyr Ala Lys Thr Asn Asp Ile Lys Gly Ile Phe Asp Leu Ala Gln Glu Asp Thr Glu Glu Tyr His Ser Ile Leu Arg Gly Val Gly Val Asn Val Ile Arg Glu Asn Met Gln Lys Leu Ile Ser Tyr Leu Lys Leu Ile Arg Lys Asp Tyr Trp Asn Ala Tyr Ile Val Thr Gly Gly Ser Asn Val Tyr Val Ala Val Glu Ser Glu Asn Ala Asp Arg Leu Phe Ser Ile Glu Asn 295 Thr Phe Gly Ser Lys Lys Met Leu Arg Ile Val Gly Gly Ala Trp His Arg Arg Pro Glu <210> 19 <211> 329 <212> PRT <213> Ferroplasma acidarmanus ferl <400> 19 Met His His His His His Met Glu Lys Tyr Tyr Val Glu Val Lys 5 Ala Tyr Pro Thr Ile Gly Ile Leu Leu Gly Gly Val Ser Asp Asn Lys Lys Arg Leu Pro Arg His Thr Thr Ala Gly Ile Ala Tyr Thr Gly 40

Leu Asp Asp Asp Ile Tyr Val Lys Thr Asp Leu Tyr Leu Ser Asn Gln

60

55

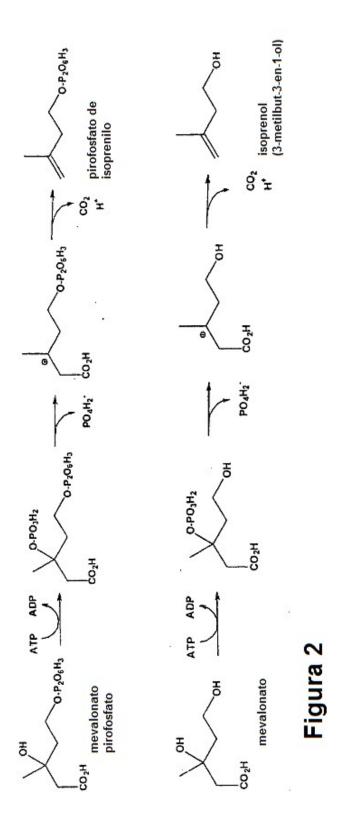
65 65	Ser	GIY	116	116	70	GIY	цуз	Giu	Val	75	110	nsp	Ser	PIO	80
Ser	Pro	Phe	Val	Val 85	Ile	Asp	Lys	Tyr	Arg 90	His	Glu	Ile	Leu	Met 95	Arg
His	Pro	Glu	Tyr 100	Ser	Glu	Val	Ser	Phe 105	Val	Ser	Glu	Asn	Lys 110	Asn	Val
Ile	Ser	Gly 115	Ser	Ser	Asp	Ala	Gly 120	Ala	Ala	Ala	Ile	Gly 125	Glu	Cys	Ile
	130					135					Asn 140				
145					150					155	Met				160
				165					170		Thr			175	
			180					185			Ala		190		
	_	195					200				Asn	205			
	210					215					220 Gly				
225					230					235	Leu				240
Val	Ser	Ile	Ile	245 Thr	Asp	Glu	Met	Gln	250 Arg	Leu	Ile	Glu	Lys	255 Val	Glu
Glu	Leu	Lys	260 Ala	Glu	Phe	Trp	Asn	265 Ala	Tyr	Ile	Val	Thr	270 Gly	Gly	Thr
Asn		275 Phe	Val	Ala	Val		280	Lys	Asn	Met	Glu	285 Lys	Met	Lys	Asn
Ala	290 Ala	Met	Glu	Phe	Lys	295 Cys	Thr	Pro	Val	Tyr	300 Leu	Lys	Val	Ala	Glv
305					310	_				315		•			320

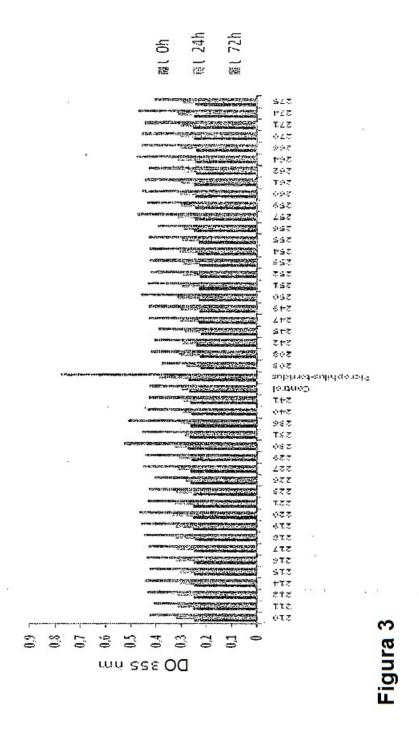
Lys Pro Asp Val Ile Ser Lys Asn Phe \$325\$

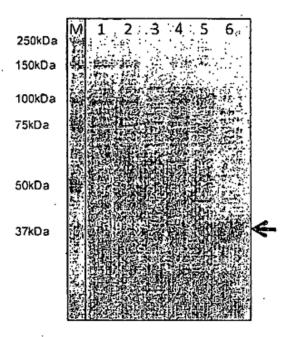
<210> 20 <211> 993 <212> ADN <213> P. torridus (AAT43941) (incluida la etiqueta His)								
<400> 20 atgcatcatc accatcacca tgaaaattac aatgttaaga caagggcgtt cccaacaata	60							
ggcataatac tgcttggtgg gatctcggat aaaaagaaca ggataccgct gcatacaacg	120							
gcaggcatag catatactgg tataaacaat gatgtttaca ctgagacaaa gctttatgta	180							
tcaaaagatg aaaaatgcta tattgatgga aaggaaattg atttaaattc agatagatca	240							
ccatcgaagg ttattgataa attcaagcat gaaatactta tgagagtaaa tcttgatgat	300							
gaaaataacc tttcaattga ttcaaggaac tttaatatat taagtggcag ctcagattct	360							
ggggccgctg cactgggaga gtgcatagaa tcaatttttg aatacaatat aaatatattt	420							
acatttgaaa acgatcttca gaggatatca gaaagtgttg gaagaagcct ttacggtggt	480							
ttaacagtaa actatgccaa tggcagggaa tcattaacag agccattact tgagcctgag	540							
gcatttaata actttacaat aattggtgca cattttaaca ttgatagaaa accatcaaat	600							
gagattcatg aaaatatcat aaaacatgaa aattacaggg aaagaataaa aagtgctgag	660							
agaaaggcga aaaaacttga ggagctatca aggaatgcaa acataaaggg tatctttgaa	720							
cttgcagaat ccgatacagt ggaataccat aaaatgctcc atgatgttgg cgttgacata	780							
ataaatgata gaatggagaa cctcattgaa agggtaaaag aaatgaaaaa taacttctgg	840							
aattcataca tagttaccgg cggcccgaac gtttttgtaa taacagagaa aaaggacgtt	900							
gataaggcaa tggaaggatt aaatgatctg tgcgatgata taagattatt aaaagttgca	960							
ggaaagccac aggtcatttc aaaaaacttt taa	993							
<210> 21 <211> 996 <212> ADN <213> Secuencia optimizada en el codón de P. torridus (AAT43941)								
<400> 21 atgcatcatc atcatcacca cgagaactat aatgttaaaa cccgtgcatt tccgaccatt	60							
ggtattattc tgctgggtgg cattagcgac aaaaaaaacc gtattccgct gcataccacc	120							
gcaggtattg catataccgg catcaataac gatgtgtaca ccgaaaccaa actgtatgtg	180							
agcaaagacg aaaaatgcta tatcgatggc aaagaaatcg atctgaatag cgatcgtagc	240							
ccgagcaaag tgatcgataa attcaaacat gaaatcctga tgcgtgtgaa tctggatgat	300							

gaaaacaacc	tgagcattga	tagccgcaat	tttaacattc	tgagcggtag	cagcgatagc	360
ggtgcagcag	cactgggtga	atgcattgaa	agcatcttcg	agtacaacat	caacatcttc	420
acctttgaaa	atgatctgca	gcgtattagc	gaaagcgttg	gtcgtagcct	gtatggtggt	480
ctgaccgtta	attatgcaaa	tggtcgtgaa	agcctgaccg	aaccgctgct	ggaaccggaa	540
gcatttaaca	actttaccat	catcggtgcc	cattttaaca	ttgatcgcaa	accgagcaac	600
gaaatccacg	aaaacatcat	caaacatgag	aactatcgcg	aacgtattaa	aagcgcagag	660
cgcaaagcaa	aaaaactgga	agaactgagc	cgtaatgcca	acattaaagg	catttttgaa	720
ctggcagaaa	gcgataccgt	ggaatatcat	aaaatgctgc	atgatgtggg	cgttgatatt	780
atcaatgacc	gcatggaaaa	tctgattgaa	cgcgtgaaag	agatgaaaaa	caacttctgg	840
aacagctata	ttgttaccgg	tggtccgaat	gtttttgtga	tcaccgagaa	aaaagatgtg	900
gataaagcca	tggaaggtct	gaatgatctg	tgtgatgata	ttcgtctgct	gaaagttgca	960
ggtaaaccgc	aggttatcag	caaaaacttc	taatga			996

REIVINDICACIONES


- 1. Un método para la producción de isoprenol, caracterizado por que comprende la etapa de convertir mevalonato con una enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33) en isoprenol.
- 2. El método de la reivindicación 1, en el que la enzima que tiene la actividad de una difosfomevalonato descarboxilasa comprende una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias de aminoácidos mostradas en SEQ ID NOs: 1 a 16, o es una enzima que comprende una secuencia de aminoácidos que es al menos 15% idéntica a una secuencia de aminoácidos seleccionada del grupo que consiste en las secuencias de aminoácidos mostradas en SEQ ID NOs: 1 a 16, y que muestra la actividad enzimática de una difosfomevalonato descarboxilasa.
- El método de la reivindicación 2, en el que la enzima que tiene la actividad de una difosfomevalonato descarboxilasa comprende la secuencia de aminoácidos de SEQ ID NO: 6, 16, 17, 18 ó 19, o es una enzima que comprende una secuencia de aminoácidos que es al menos 30% idéntica a la secuencia de aminoácidos de SEQ ID NO: 6, 16, 17, 18 ó 19, y que muestra la actividad enzimática de una difosfomevalonato descarboxilasa.
 - 4. El método de una cualquiera de las reivindicaciones 1 a 3, que se lleva a cabo in vitro.
- 5. El método de una cualquiera de las reivindicaciones 1 a 4, en el que se añade un co-sustrato.
 - 6. El método de la reivindicación 5, en el que el co-sustrato es ATP, un rNTP, un dNTP, un polifosfato o pirofosfato, o una mezcla de cualquiera de estos compuestos.
- 7. El método de una cualquiera de las reivindicaciones 1 a 3, que se caracteriza por que la conversión enzimática se realiza por un organismo que expresa una enzima, que es capaz de catalizar la descarboxilación de mevalonato en isoprenol, y en el que dicha enzima es una enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33).
- 30 8. Uso de una enzima que tiene la actividad de una difosfomevalonato descarboxilasa (EC 4.1.1.33) para producir isoprenol a partir de mevalonato, mediante la descarboxilación de mevalonato.
 - 9. Un método para producir isopreno a partir de mevalonato, que comprende el método de una cualquiera de las reivindicaciones 1 a 7 y que comprende, además, la etapa de convertir el isoprenol producido en isopreno.
 - 10. Un método para producir alcohol isoamílico a partir de mevalonato, que comprende el método de una cualquiera de las reivindicaciones 1 a 7 y que comprende, además, la etapa de convertir el isoprenol producido en alcohol isoamílico.


35


5

10

Figura 1

Figura 4a

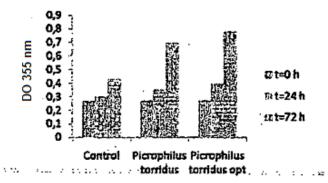


Figura 4b

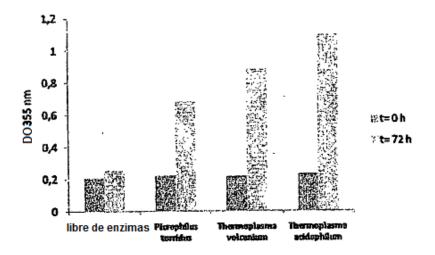


Figura 5

Figura 6

Figura 7