

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 481 823

(51) Int. CI.:

C07D 403/04 (2006.01) A61P 25/18 (2006.01) C07D 403/10 (2006.01) A61P 25/28 (2006.01) C07D 405/10 (2006.01) A61P 29/00 (2006.01) A61K 31/4184 (2006.01) A61P 31/04 (2006.01) (2006.01)

A61K 31/5377 (2006.01) A61P 35/00 A61K 31/454 A61K 31/4709 (2006.01) C07D 401/04 (2006.01) C07D 403/14 (2006.01)

A61P 1/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 10.03.2011 E 11707182 (9) (97) Fecha y número de publicación de la concesión europea: 23.04.2014 EP 2545047
- (54) Título: Inhibidores heterocíclicos de glutaminil ciclasa (QC, EC 2.3.2.5)
- (30) Prioridad:

10.03.2010 US 312339 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 31.07.2014

(73) Titular/es:

PROBIODRUG AG (100.0%) Weinbergweg 22 06120 Halle/Saale, DE

(72) Inventor/es:

HEISER, ULRICH; **GAERTNER, ULF-TORSTEN y DEMUTH, HANS-ULRICH**

(74) Agente/Representante:

ARIAS SANZ, Juan

DESCRIPCIÓN

Inhibidores heterocíclicos de glutaminil ciclasa (QC, EC 2.3.2.5)

Campo de la invención

La invención se refiere a derivados heterocíclicos novedosos como inhibidores de la glutaminil ciclasa (QC, EC 2.3.2.5). La QC cataliza la ciclación intramolecular de residuos de glutamina del extremo N a ácido piroglutámico (5-oxo-prolilo, pGlu*) con liberación de amoniaco y la ciclación intramolecular de residuos de glutamato del extremo N a ácido piroglutámico con liberación de agua.

Antecedentes de la invención

La glutaminil ciclasa (QC, EC 2.3.2.5) cataliza la ciclación intramolecular de residuos de glutamina del extremo N a 10 ácido piroglutámico (pGlu*) liberando amoniaco. Se aisló por primera vez una QC por Messer a partir de látex de la planta tropical Carica papaya en 1963 (Messer, M. 1963 Nature 4874, 1299). 24 años después, se descubrió una actividad enzimática correspondiente en la pituitaria de animales (Busby, W. H. J. y col. 1987 J Biol Chem 262, 8532-8536; Fischer, W. H. y Spiess, J. 1987 Proc Natl Acad Sci U S A 84, 3628-3632). Para la QC de mamíferos, la conversión de GIn a pGlu por medio de QC se pudo demostrar para los precursores de TRH y GnRH (Busby, W. H. J. y col. 1987 J Biol Chem 262, 8532-8536; Fischer, W. H. y Spiess, J. 1987 Proc Natl Acad Sci U S A 84, 3628-15 3632). Además, experimentos de localización iniciales de QC revelaron una ubicación conjunta con sus productos supuestos de catálisis en pituitaria bovina, mejorando adicionalmente la función sugerida en la síntesis de hormonas peptídicas (Bockers, T. M. y col. 1995 J Neuroendocrinol 7, 445-453). Por el contario, la función fisiológica de la QC de plantas es menos clara. En el caso de la enzima de C. papaya, se sugirió un papel en la defensa de la planta frente a microorganismos patógenos (El Moussaoui, A. y col. 2001 Cell Mol Life Sci 58, 556-570). Se identificaron 20 posibles QC de otras plantas recientemente mediante comparaciones de secuencias (Dahl, S. W. y col. 2000 Protein Expr Purif 20, 27-36). La función fisiológica de estas enzimas, no obstante, es todavía ambigua.

Las QC conocidas de plantas y animales muestran una estricta especificidad por L-glutamina en la posición del extremo N de los sustratos y se encontró que su comportamiento cinético obedece a la ecuación de Michaelis-Menten (Pohl, T. y col. 1991 Proc Natl Acad Sci U S A 88, 10059-10063; Consalvo, A. P. y col. 1988 Anal Biochem 175, 131-138; Gololobov, M. Y. y col. 1996 Biol Chem Hoppe Seyler 377, 395-398). Sin embargo, una comparación de las estructuras primarias de las QC de *C. papaya* y de las de QC muy conservada de mamíferos, no reveló ninguna homología de secuencia (Dahl, S. W. y col. 2000 Protein Expr Purif 20, 27-36). Mientras que parece que las QC de plantas pertenecen a una nueva familia de enzimas (Dahl, S. W. y col. 2000 Protein Expr Purif 20, 27-36), se encontró que las QC de mamífero tenían una marcada homología de secuencia con aminopeptidasas bacterianas (Bateman, R. C. y col. 2001 Biochemistry 40, 11246-11250), lo que conduce a la conclusión de que las QC de plantas y de animales tienen diferentes orígenes evolutivos.

Recientemente, se ha demostrado que la QC humana recombinante, así como la actividad de QC de extractos cerebrales, catalizan tanto el glutaminilo del extremo N como la ciclación de glutamato. Lo más sorprendente es el hallazgo de que la conversión de Glu₁ catalizada por ciclasa está favorecida a un pH de aproximadamente 6,0 mientras que la conversión de Gln₁ a derivados de pGlu tiene lugar a un pH óptimo de aproximadamente de 8,0. Puesto que la formación de péptidos relacionados con pGlu-Aβ puede ser suprimida por inhibición de QC humana recombinante y la actividad de QC de extractos de pituitaria porcina, la enzima QC es una diana en el desarrollo de fármacos para el tratamiento de la enfermedad de Alzheimer.

40 En los documentos WO 2004/098625, WO 2004/098591, WO 2005/039548, WO 2005/075436, WO 2008/055945, WO 2008/055947, WO 2008/055950 y WO 2008/065141 se describen inhibidores de QC.

El documento EP 02 011 349.4 divulga polinucleótidos que codifican glutaminil ciclasa de insectos, así como polipéptidos codificados por los mismos y su uso en procedimientos de selección de agentes que reducen la actividad de la glutaminil ciclasa. Dichos agentes son útiles como plaquicidas.

45 **Definiciones**

25

30

35

50

Los términos "k_i" o "K_i" y "K_D" son constantes de unión que describen la unión de un inhibidor a, y la subsiguiente liberación de, una enzima. Otra medida es el valor de "Cl₅₀", que refleja la concentración de inhibidor que, a una concentración de sustrato dada, da como resultado una actividad enzimática del 50 %.

La expresión "inhibidor de DP IV" o "inhibidor de dipeptidil peptidasa IV" es conocida, en general, por el experto en la técnica y se refiere a inhibidores de enzimas que inhiben la actividad catalítica de DP IV o enzimas del tipo DP IV.

La "actividad de DP IV" se define como la actividad catalítica de dipeptidil peptidasa IV (DP IV) y enzimas del tipo DP IV. Estas enzimas son post-prolina (en una menor medida post-alanina, post-serina o post-glicina) que escinden serina proteasas que se encuentran en diversos tejidos del organismo de un mamífero, incluidos el riñón, el hígado y los intestinos, en los que retiran dipéptidos del extremo N de péptidos biológicamente activos con una especificidad

elevada cuando la prolina o la alanina forman los residuos que son adyacentes al aminoácido del extremo N en su secuencia.

La expresión "inhibidor de PEP" o "inhibidor de prolil endopeptidasa" es conocida en general por el experto en la técnica y significa inhibidores de enzimas que inhiben la actividad catalítica de prolil endopeptidasa (PEP, prolil oligopeptidasa, POP).

La "actividad de PEP" se define como la actividad catalítica de una endoproteasa que es capaz de hidrolizar enlaces de post-prolina en péptidos o proteínas en las que la prolina es un aminoácido en la posición 3 o superior contando desde el extremo N de un péptido o sustrato proteico.

El término "QC", tal como se usa en el presente documento comprende glutaminil ciclasa (QC) y enzimas del tipo QC. La QC y las enzimas del tipo QC tienen una actividad enzimática idéntica o similar, que se define adicionalmente como actividad de QC. A este respecto, las enzimas del tipo QC pueden diferir de la QC fundamentalmente en su estructura molecular. Ejemplos de enzimas del tipo QC son las proteínas del tipo glutaminil-péptido ciclotransferasa (QPCTL) de seres humanos (GenBank NM_017659), ratón (GenBank BC058181), *Macaca fascicularis* (GenBank AB168255), *Macaca mulatta* (GenBank XM_001110995), *Canis familiaris* (GenBank XM_541552), *Rattus norvegicus* (GenBank XM_001066591), *Mus musculus* (GenBank BC058181) y *Bos taurus* (GenBank BT026254).

La expresión "actividad de QC", tal como se usa en el presente documento, se define como la ciclación intramolecular de residuos de glutamina de los extremos N a ácido piroglutámico (pGlu*) o de L-homoglutamina o L-β-homoglutamina del extremo N a un derivado de piro-homoglutamina cíclico con liberación de amoniaco. Véanse los esquemas 1 y 2 siguientes.

Esquema 1: Ciclación de glutamina por QC

5

20

Esquema 2: Ciclación de L-homoglutamina por QC

El término "EC", tal como se usa en el presente documento, comprende la actividad de QC y enzimas del tipo QC como glutamato ciclasa (EC), que se define más adelante como actividad de EC.

La expresión "actividad de EC", tal como se usa en el presente documento, se define como ciclación intramolecular de residuos de glutamato de los extremos N a ácido piroglutámico (pGlu*) mediante la QC. Véase el esquema 3 siguiente.

Esquema 3: Ciclación del extremo N de glutamil péptidos no cargados por QC (EC)

La expresión "inhibidor de QC" o "inhibidor de glutaminil ciclasa" es conocida en general por el experto en la técnica y significa inhibidores de enzimas, que inhiben la actividad catalítica de glutaminil ciclasa (QC) o su actividad de glutamil ciclasa (EC).

Potencia de inhibición de QC

5

20

25

30

35

40

A la luz de la correlación con la inhibición de QC, en realizaciones preferibles, el procedimiento objeto y el uso médico usan un agente con una Cl₅₀ para la inhibición de QC de 10 μM o inferior, más preferiblemente de 1 μM o inferior, incluso más preferiblemente de 0,1 μM o inferior o 0,01 μM o inferior o, del modo más preferible, de 0,001 μM o inferior. De hecho, se contemplan inhibidores con valores de K_i en el intervalo micromolar inferior, preferiblemente el nanomolar e incluso más preferiblemente el picomolar. Por tanto, aunque los agentes activos se describen en el presente documento, por conveniencia, como "inhibidores de QC", se entenderá que no se pretende que dicha nomenclatura limite el objeto de la invención a un mecanismo de acción particular.

Peso molecular de inhibidores de QC

En general, los inhibidores de QC del procedimiento o el uso médico objeto serán moléculas pequeñas, por ejemplo con pesos moleculares de 500 g/mol o inferiores, 400 g/mol o inferiores, preferiblemente de 350 g/mol o inferiores e incluso más preferiblemente de 300 g/mol o inferiores e incluso de 250 g/mol o inferiores.

El término "sujeto", tal como se usa en el presente documento, se refiere a un animal, preferiblemente a un mamífero, del modo más preferible a un ser humano, que ha sido el objeto de tratamiento, observación o experimento.

La expresión "cantidad terapéuticamente eficaz", tal como se usa en el presente documento, significa la cantidad de compuesto activo o agente farmacéutico que provoca la respuesta biológica o médica en un sistema tisular, animal o ser humano que se busca por parte de un investigador, veterinario, médico u otro facultativo, que incluye el alivio de los síntomas de la enfermedad o trastorno que se está tratando.

Tal como se usa en el presente documento, la expresión "farmacéuticamente aceptable" abarca tanto el uso en seres humanos como el uso veterinario: Por ejemplo, la expresión "farmacéuticamente aceptable" abarca un compuesto veterinariamente aceptable o un compuesto aceptable en medicina humana y cuidado de la salud.

A lo largo de la memoria descriptiva y las reivindicaciones, la expresión "alquilo", a menos que esté limitada específicamente, denota un grupo alquilo C_{1-12} , de forma adecuada un grupo alquilo C_{1-6} , por ejemplo un grupo alquilo C_{1-4} . Los grupos alquilo pueden ser de cadena lineal o ramificados. Grupos alquilo adecuados incluyen, por ejemplo, metilo, etilo, propilo (por ejemplo, n-propilo e isopropilo), butilo (por ejemplo n-butilo, iso-butilo, sec-butilo y terc-butilo), pentilo (por ejemplo n-pentilo), hexilo (por ejemplo n-hexilo), heptilo (por ejemplo n-heptilo) y octilo (por ejemplo n-octilo). La raíz "alc" o "alq", por ejemplo en los términos "alcoxi", "haloalquilo" y "tioalquilo" debería interpretarse de acuerdo con la definición de "alquilo". Ejemplos de grupos alcoxi incluyen metoxi, etoxi, propoxi (por ejemplo, n-propoxi), butoxi (por ejemplo, n-butoxi), pentoxi (por ejemplo, n-pentoxi), hexoxi (por ejemplo, n-hexoxi), heptoxi (por ejemplo, n-heptoxi) y octoxi (por ejemplo, n-octoxi). Ejemplos de grupos tioalquilo incluyen metiltio-. Ejemplos de grupos haloalquilo incluyen fluoroalquilo, por ejemplo CF_3 .

La expresión "alquenilo", a menos que se limite específicamente, denota un grupo alquenilo $C_{2\cdot 12}$, de forma adecuada un grupo alquenilo $C_{2\cdot 6}$, por ejemplo un grupo alquenilo $C_{2\cdot 4}$, que contiene al menos un doble enlace en cualquier ubicación deseada y que no contiene ningún triple enlace. Los grupos alquenilo pueden ser de cadena lineal o ramificada. Ejemplos de grupos alquenilo que incluyen un doble enlace incluyen propenilo y butenilo.

Ejemplos de grupos alquenilo que incluyen dos dobles enlaces incluyen pentadienilo, por ejemplo (1E, 3E)-pentadienilo.

La expresión "alquinilo", a menos que se limite específicamente, denota un grupo alquinilo C_{2-12} , de forma adecuada un grupo alquinilo C_{2-6} , por ejemplo un grupo alquinilo C_{2-4} , que contiene al menos un triple enlace en cualquier ubicación deseada y puede o no puede contener también uno o más enlaces dobles. Los grupos alquinilo pueden ser de cadena lineal o ramificada. Ejemplos de grupos alquinilo incluyen propinilo y butinilo.

La expresión "alquileno" denota una cadena de fórmula $-(CH_2)_n$ - en la que n es un número entero, por ejemplo 2-5, a menos que se indique lo contrario.

La expresión "cicloalquilo", a menos que se limite específicamente, denota un grupo cicloalquilo C₃₋₁₀ (es decir, de 3 a 10 átomos de carbono de anillo), de forma más adecuada un grupo cicloalquilo C₃₋₈, por ejemplo un grupo cicloalquilo C₃₋₆. Ejemplos de grupos cicloalquilo incluyen ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclohexilo y ciclooctilo. El número más adecuado de átomos de carbono de anillo es de tres a seis.

La expresión "heterociclilo", a menos que se limite específicamente, se refiere a un grupo carbociclilo en el que uno o más (por ejemplo 1, 2 o 3) átomos de anillo están reemplazados por heteroátomos seleccionados de N, S y O. Un ejemplo específico de un grupo heterociclilo es un grupo cicloalquilo (por ejemplo ciclopentilo o más particularmente ciclohexilo) en el que uno o más (por ejemplo, 1, 2 o 3, particularmente 1 o 2, especialmente 1) átomos de anillo están reemplazados por heteroátomos seleccionados de N, S o O. Ejemplos de grupos heterociclilo que contienen un heteroátomo incluyen pirrolidina, tetrahidrofurano y piperidina, y ejemplos de grupos heterociclilo que contienen dos átomos incluyen morfolina, piperazina, dioxolano y dioxano. Otro ejemplo específico de un grupo heterociclilo es un grupo cicloalquenilo (por ejemplo, un grupo ciclohexenilo) en el que uno o más (por ejemplo 1, 2 o 3, particularmente 1 o 2, especialmente 1) átomos de anillo están reemplazados por heteroátomos seleccionados de N, S y O. Un ejemplo de dicho grupo es dihidropiranilo (por ejemplo 3,4-dihidro-2*H*-piran-2-ilo-).

La expresión "arilo", a menos que esté limitada específicamente, denota un grupo arilo C_{6-12} , de forma adecuada un grupo arilo C_{6-10} , de forma más adecuada un grupo arilo C_{6-8} . Los grupos arilo contendrán al menos un anillo aromático (por ejemplo, uno, dos o tres anillos). Un ejemplo de un grupo arilo típico con un anillo aromático es fenilo. Un ejemplo de un grupo arilo típico con dos anillos aromáticos es naftilo.

La expresión "heteroarilo", a menos que esté limitada específicamente, denota un resto arilo, en el que uno o más (por ejemplo 1, 2, 3 o 4, de forma adecuada 1, 2 o 3) átomos de anillo están reemplazados por heteroátomos seleccionados de N, S y O, o si no, un anillo aromático de 5 miembros que contiene uno o más (por ejemplo, 1, 2, 3 o 4, de forma adecuada 1, 2 o 3) átomos de anillo seleccionados de N, S y O. Ejemplos de grupos heteroarilo monocíclicos que tienen un heteroátomo incluyen: anillos de cinco miembros (por ejemplo pirrol, furano, tiofeno); y anillos de seis miembros (por ejemplo piridina, tal como piridin-2-ilo, piridin-3-ilo y piridin-4-ilo). Ejemplos de grupos heteroarilo monocíclicos que tienen dos heteroátomos incluyen: anillos de cinco miembros (por ejemplo pirazol, oxazol, isoxazol, isoxazol, isotiazol, imidazol, tales como imidazol-1-ilo, imidazol-2-ilo, imidazol-4-ilo); anillos de seis miembros (por ejemplo piridazina, pirimidina, pirazina). Ejemplos de grupos heteroarilo monocíclicos que tienen tres heteroátomos incluyen: 1,2,3-triazol y 1,2,4-triazol. Ejemplos de grupos heteroarilo monocíclicos que tienen cuatro heteroátomos incluyen tetrazol. Ejemplos de grupos heteroarilo bicíclicos incluyen: indol (por ejemplo indol-6-ilo), benzofurano, benztiofeno, quinolina, isoquinolina, indazol, benztiazol, purinazolina y purina.

La expresión "-alquilarilo", a menos que se limite específicamente, denota un resto arilo que está conectado mediante un resto alquileno, por ejemplo un resto alquileno C₁₋₄.

La expresión "-alquilheteroarilo", a menos que se limite específicamente, denota un resto heteroarilo que está conectado mediante un resto alquileno, por ejemplo un resto alquileno C_{1-4} .

- El término "halógeno" o "halo" comprende flúor (F), cloro (Cl) y bromo (Br).
- El término "amino" se refiere al grupo -NH2.

5

15

20

25

30

35

40

- 45 El término "fenilo sustituido con fenilo" se refiere a bifenilo.
 - El término " denota un enlace sencillo en el que la estereoquímica no está definida.

Cuando bencimidazolilo se muestra como bencimidazol-5-ilo, que se representa como:

el experto en la técnica apreciará que benzimidazol-6-ilo, que se representa como:

$$R^{14}$$
 R^{15}

es una estructura equivalente. Tal como se emplea en el presente documento, las dos formas de bencimidazolilo están abarcadas por el término "bencimidazol-5-ilo".

Estereoisómeros:

5

10

15

20

25

30

35

Todos los posibles estereoisómeros de los compuestos reivindicados están incluidos en la presente invención.

Cuando los compuestos de acuerdo con la presente invención tienen al menos un centro quiral, pueden existir, en consecuencia, como enantiómeros. Cuando los compuestos poseen dos o más centros quirales, pueden existir adicionalmente como diastereómeros. Debe entenderse que todos estos isómeros y mezclas de los mismos están incluidos dentro del alcance de la presente invención.

Preparación y aislamiento de estereoisómeros:

Cuando los procedimientos de preparación de los compuestos de acuerdo con la invención dan lugar a una mezcla de estereoisómeros, estos isómeros pueden separarse por medio de técnicas convencionales tales como cromatografía preparativa. Los compuestos pueden prepararse en forma racémica, o pueden prepararse enantiómeros individuales bien por síntesis enantioméricamente específica o por resolución. Los compuestos pueden resolverse, por ejemplo, en sus componentes enantiómeros por técnicas convencionales, tales como la formación de pares de diastereómeros por medio de formación de sal con un ácido ópticamente activo tal como ácido (-)-di-p-toluoil-d-tartárico y/o ácido (+)-di-p-toluoil-l-tartárico, seguida de cristalización fraccionada y regeneración de la base libre. Los compuestos también pueden resolverse por medio de formación de ésteres o amidas diastereoméricas, seguido de separación cromatográfica y eliminación del auxiliar quiral. De forma alternativa, los compuestos pueden resolverse usando una columna de HPLC quiral.

Sales farmacéuticamente aceptables:

En vista de la estrecha relación entre los compuestos libres y los compuestos en forma de sus sales o solvatos, cuando se hace referencia a un compuesto en el presente contexto, se hace referencia también a una sal, solvato o polimorfo correspondiente, siempre que sea posible o apropiado en tales circunstancias.

Las sales y solvatos de los compuestos de fórmula (I) y los derivados fisiológicamente funcionales de los mismos que son adecuados para su uso en medicina son aquellos en los que el contraión o disolvente asociado es farmacéuticamente aceptable. No obstante, las sales y solvatos que tienen contraiones o disolventes asociados que no sean farmacéuticamente aceptables están dentro del ámbito de la presente invención, por ejemplo para su uso como intermedios en la preparación de otros compuestos y de sus sales y solvatos farmacéuticamente aceptables.

Sales adecuadas según la invención incluyen las formadas con ácidos o bases orgánicos o inorgánicos. Sales de adición de ácidos farmacéuticamente aceptables incluyen las formadas a partir de ácido clorhídrico, bromhídrico, sulfúrico, nítrico, cítrico, tartárico, fosfórico, láctico, pirúvico, acético, trifluoroacético, trifluoroacético, trifluoroacético, trifluoroacético, sulfámico, sulfámico, succínico, oxálico, fumárico, maleico, málico, mandélico, glutámico, aspártico, oxaloacético, metanosulfónico, etanosulfónico, arilsulfónico (por ejemplo p-toluenosulfónico, bencenosulfónico, naftalenosulfónico, naftalenosulfónico, cinámico, cinámico sustituido (por ejemplo,

cinámico sustituido con fenilo, metilo, metoxi o halo, incluidos los ácidos 4-metil- y 4-metoxicinámico), ascórbico, oleico, naftoico, hidroxinaftoico (por ejemplo 1- o 3-hidroxi-2-naftoico), naftalenoacrílico (por ejemplo naftaleno-2-acrílico), benzoico, 4-metoxibenzoico, 2- o 4-hidroxibenzoico, 4-clorobenzoico, 4-fenilbenzoico, bencenoacrílico (por ejemplo 1,4-bencenodiacrílico), ácidos isetiónicos, perclórico, propiónico, glicólico, hidroxietanosulfónico, pamoico, ciclohexanosulfámico, salicílico, sacarínico y trifluoroacético. Sales de bases farmacéuticamente aceptables incluyen sales de amonio, sales de metales alcalinos tales como las de sodio y potasio, sales de metales alcalinotérreos tales como las de calcio y magnesio y sales con bases orgánicas tales como diciclohexilamina y *N*-metil-D-glucamina.

Se pretende que todas las formas de sales de adición de ácidos farmacéuticamente aceptables de los compuestos de la presente invención estén abarcadas dentro del ámbito de la presente invención.

10 Formas cristalinas polimorfas:

Además, algunas de las formas cristalinas de los compuestos pueden existir como polimorfos y como tales se pretende que estén incluidas en la presente invención. Además, algunos de los compuestos pueden formar solvatos con agua (es decir, hidratos) o con disolventes orgánicos comunes, y se pretende que dichos solvatos también estén abarcados dentro del ámbito de la presente invención. Los compuestos, incluidas sus sales, también pueden obtenerse en forma de sus hidratos, o incluyen otros disolventes usados para su cristalización.

Profármacos:

5

15

20

30

35

40

La presente invención incluye además dentro de su ámbito profármacos de los compuestos de la presente invención. En general, dichos profármacos serán derivados funcionales de los compuestos que son fácilmente convertibles *in vivo* en el compuesto terapéuticamente activo deseado. Así, en estos casos, los procedimientos de tratamiento de la presente invención, el término "administrar" incluirá el tratamiento de los diversos trastornos descritos con versiones de profármacos de uno o más de los compuestos reivindicados, pero que se convierten en el compuesto especificado anteriormente *in vivo* después de la administración al sujeto. Los procedimientos convencionales para la selección y preparación de derivados profármacos adecuados se describen, por ejemplo, en "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.

25 Grupos protectores:

Durante cualquiera de los procedimientos de preparación de los compuestos de la presente invención puede ser necesario y/o deseable proteger grupos sensibles o reactivos en cualquiera de las moléculas implicadas. Esto puede lograrse por medio de grupos protectores convencionales, tales como los descritos en Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; y T.W. Greene y P.G.M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991, que se incorporan en su totalidad en el presente documento por referencia. Los grupos protectores se pueden retirar en una etapa posterior conveniente usando procedimientos conocidos de la técnica.

Tal como se usa en el presente documento, se pretende que el término "composición" englobe un producto que comprende los compuestos reivindicados en las cantidades terapéuticamente eficaces, así como cualquier producto que se obtenga como resultado, directa o indirectamente, de combinaciones de los compuestos reivindicados.

Vehículos y aditivos para formulaciones galénicas:

Así, para preparaciones líquidas de uso oral, tales como, por ejemplo, suspensiones, elixires y soluciones, vehículos y aditivos adecuados pueden incluir, de forma ventajosa, agua, glicoles, aceites, alcoholes, aromatizantes, conservantes, colorantes y similares; para preparaciones sólidas de uso oral tales como, por ejemplo, polvos, cápsulas, cápsulas de gel y comprimidos, vehículos y aditivos adecuados incluyen almidones, azúcares, diluyentes, agentes de granulación, lubricantes, aglutinantes, disgregantes y similares.

Vehículos que pueden añadirse a la mezcla incluyen excipientes farmacéuticos necesarios e inertes que incluyen, pero sin limitación, aglutinantes, agentes de suspensión, lubricantes, aromatizantes, edulcorantes, conservantes, recubrimientos, disgregantes, pigmentos y colorantes adecuados.

Polímeros adecuados como vehículos para fármacos que pueden dirigirse a una diana pueden incluir polivinilpirrolidona, copolímero de pirano, polihidroxipropilmetacrilamidafenol, polihidroxietilaspartamida-fenol o polietilenoxidopolilisina sustituida con un residuo de palmitoílo. Además, los compuestos de la presente invención pueden acoplarse a una clase de polímeros biodegradables útiles para lograr la liberación controlada de un fármaco, por ejemplo, ácido poliláctico, poliépsilon caprolactona, ácido polihidroxibutírico, poliortoésteres, poliacetales, polidihidropiranos, policianoacrilatos, y copolímeros de bloque de hidrogeles reticulados o anfipáticos.

Aglutinantes adecuados incluyen, sin limitación, almidón, gelatina, azúcares naturales tales como glucosa o betalactosa, edulcorantes de maíz, gomas naturales y sintéticas tales como goma arábiga, tragacanto u oleato de sodio, estearato de sodio, estearato de magnesio, benzoato de sodio, acetato de sodio, cloruro de sodio y similares.

Disgregantes incluyen, sin limitación, almidón, metilcelulosa, agar, bentonita, goma xantana y similares.

Sumario de la invención

5

10

15

20

25

30

40

De acuerdo con la invención, se proporcionan compuestos de fórmula (I):

o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo, incluidos todos los tautómeros y estereoisómeros del mismo, en la que:

 R^1 representa hidrógeno, halógeno, -alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , -arilo, -alquil C_{1-6} -arilo, -cicloalquilo, -alquil C_{1-6} -neteroarilo, -heteroarilo, -heteroarilo, -heteroarilo, -alquil C_{1-6} -heteroarilo, -cicloalquilo sustituido con fenilo, -cicloalquilo sustituido con fenilo, -fenilo sustituido con fenilo, heteroarilo sustituido con fenilo, heteroarilo sustituido con fenilo, fenilo sustituido con heteroarilo, fenilo sustituido con -O-cicloalquilo o fenilo sustituido con -cicloalquilo heteroarilo;

y donde cualquiera de los grupos arilo, cicloalquilo, heterociclilo, heteroarilo, fenilo o fenoxi anteriormente citados puede estar opcionalmente sustituido con uno o más grupos seleccionados de alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , haloalquilo C_{1-6} , -tioalquilo C_{1-6} , -SO-alquilo C_{1-4} , -SO₂-alquilo C_{1-4} , alcoxi C_{1-6-7} , -O-cicloalquilo C_{3-8} , cicloalquilo C_{3-8} , -SO₂-cicloalquilo C_{3-8} , -SO-cicloalquilo C_{3-6} , alqueniloxi C_{3-6-} , alquiniloxi C_{3-6-} , -C(O)-alquilo C_{1-6} , alcoxi C_{1-6} -alquilo C_{1-6} -, nitro, halógeno, ciano, hidroxilo, -C(O)OH, -NH₂, -NH-alquilo C_{1-4} , -N(alquil C_{1-4})(alquilo C_{1-4}), -C(O)NH(alquilo C_{1-4}) y -C(O)NH(cicloalquilo C_{3-10});

 R^2 representa -alquilo C_{1-6} , halógeno, haloalquilo C_{1-6} , -arilo, -alquil C_{1-6} -arilo, -cicloalquilo, -alquil C_{1-6} -cicloalquilo, -heteroarilo, -alquil C_{1-6} -heteroarilo, -h

y donde cualquiera de los grupos arilo, heteroarilo o heterociclilo anteriormente citados puede estar opcionalmente sustituido con uno o más grupos seleccionados de alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , haloalquilo C_{1-6} , -tioalquilo C_{1-6} , -SO-alquilo C_{1-4} , -SO₂-alquilo C_{1-4} , alcoxi C_{1-6} -, -O-cicloalquilo C_{3-8} , cicloalquilo C_{3-8} , -SO-cicloalquilo C_{3-6} , alqueniloxi C_{3-6} -, alquiniloxi C_{3-6} -, -C(O)alquilo C_{1-6} , -C(O)O-alquilo C_{1-6} , alcoxi C_{1-6} -alquilo C_{1-6} , nitro, halógeno, ciano, hidroxilo, -C(O)OH, -NH₂, -NH-alquilo C_{1-4} , -N(alquil C_{1-4}) (alquilo C_{1-4}), -C(O)N(alquil C_{1-4}), -C(O)NH(alquilo C_{1-4}) y -C(O)NH(cicloalquilo C_{3-10});

R³ representa alquilo C₁₋₆ o haloalquilo C₁₋₆;

n representa 0; y

 R^a representa alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , haloalquilo C_{1-6} , -tioalquilo C_{1-6} , -SO-alquilo C_{1-4} , -SO₂-alquilo C_{1-4} , alcoxi C_{1-6-7} , -O-cicloalquilo C_{3-8} , cicloalquilo C_{3-8} , -SO₂-cicloalquilo C_{3-8} , -SO-cicloalquilo C_{3-6} , alqueniloxi C_{3-6-7} , alquiniloxi C_{3-6-7} , -C(O)alquilo C_{1-6} , -C(O)O-alquilo C_{1-6} , alcoxi C_{1-6} -alquilo C_{1-6-7} , nitro, halógeno, ciano, hidroxilo, -C(O)OH, -NH₂, -NH-alquilo C_{1-4} , -N(alquil C_{1-4})(alquilo C_{1-4}), -C(O)NH(alquilo C_{1-4}) y -C(O)NH(cicloalquilo C_{3-10}).

Descripción detallada de la invención

Cuando el cicloalquilo y el heterociclilo están sustituidos, están de forma típica sustituidos con 1 o 2 sustituyentes (por ejemplo, 1 sustituyente). De forma típica el sustituyente es alquilo C₁₋₆ (es decir, metilo) o halógeno (es decir, cloro o flúor). De forma más típica, los grupos cicloalquilo y heterociclilo no están sustituidos.

Cuando el arilo y el heteroarilo están sustituidos, están de forma típica sustituidos con 1, 2 o 3 (por ejemplo 1 o 2) sustituyentes. Los sustituyentes para arilo y heteroarilo se seleccionan de alquilo C_{1-6} (por ejemplo, metilo), alquenilo C_{2-6} (por ejemplo, butin-3-ilo), haloalquilo C_{1-6} (por ejemplo, fluorometilo, trifluorometilo), -tioalquilo C_{1-6} (por ejemplo, -S-metilo), -SO-alquilo C_{1-4} (por ejemplo, -SO-metilo), -SO₂-alquilo C_{1-6} (por ejemplo, alcoxi C_{1-6} (por ejemplo, metoxi, etoxi), -O-cicloalquilo C_{3-8} (por ejemplo, -O-ciclopentilo), cicloalquilo C_{3-8} (por ejemplo, ciclopropilo, ciclohexilo), -SO₂-cicloalquilo C_{3-8} (por ejemplo -SO₂-ciclohexilo), -SO-

cicloalquilo C_{3-6} (por ejemplo -SO-ciclopropilo), alquenil C_{3-6} -oxi- (por ejemplo, -O-buten-2-ilo), alquinil C_{3-6} -oxi- (por ejemplo, -O-buten-2-ilo), -C(O)alquilo C_{1-6} (por ejemplo, -C(O)etilo), -C(O)O-alquilo C_{1-6} (por ejemplo, -C(O)O-metilo), alcoxi C_{1-6} -alquilo C_{1-6} - (por ejemplo, metoxi-etilo-), nitro, halógeno (por ejemplo, flúor, cloro, bromo), ciano, hidroxilo, -C(O)OH, -NH2, -NH-alquilo C_{1-4} (por ejemplo, -NH-metilo), -N(alquil C_{1-4})(alquilo C_{1-4}) (por ejemplo, N(metilo)2), -C(O)N(alquil C_{1-4})(alquilo C_{1-4}) (por ejemplo, -C(O)N(metilo)2), -C(O)NH2 y -C(O)NH(alquilo C_{1-4}) (por ejemplo, -C(O)NH-metilo), -CONH(cicloalquilo C_{3} - C_{10}) (por ejemplo, -C(O)-ciclopropilo. De forma más típica, los sustituyentes se seleccionarán de alquilo C_{1-6} (por ejemplo, metilo), haloalquilo C_{1-6} (por ejemplo, OMe), halógeno e hidroxilo.

Cuando R^1 o R^2 representa -alquil C_{1-6} -cicloalquilo, -alquil C_{1-6} -arilo, -alquil C_{1-6} -heteroarilo o -alquil C_{1-6} -heterociclilo, ejemplos en los que alquilo es ramificado incluyen:

10

15

20

25

30

35

40

45

50

Cuando R^1 o R^2 representa arilo o -alquil $C_{1.6}$ -arilo, dicho arilo representa de forma adecuada fenilo opcionalmente sustituido. Ejemplos de grupos fenilo sustituidos para R^1 o R^2 incluyen 2-bromofenilo, 2-bromo-4-fluorofenilo-, 2-bromo-5-fluorofenilo-, 2-fluoro-5-bromofenilo, 2-clorofenilo-, 2-fluorofenilo-, 3-bromofenilo-, 3-bromofenilo-, 3-bromofenilo-, 3-bromofenilo-, 3-bromofenilo-, 3-bromofenilo-, 3-bromofenilo-, 3-diclorofenilo-, 4-clorofenilo-, 4-fluorofenilo-, 4-bromo-2-fluorofenilo, 2-cloro-3,6-difluorofenilo-, 2,3-diclorofenilo-, 2,3-difluorofenilo-, 2,3-difluorofenilo-, 2,3-difluorofenilo-, 2,4-difluorofenilo-, 2,4-difluorofenilo-, 2,4-difluorofenilo-, 2,4-difluorofenilo-, 3,4-difluorofenilo-, 3,4-difluorofenilo-, 3,4-difluorofenilo-, 3,4-difluorofenilo-, 3,4-difluorofenilo-, 3-metilfenilo-, 3-metilfenilo-, 4-isopropilfenilo-, 4-tero-butilfenilo-, 2,4,6-trimetilfenilo-, 2-isopropil-6-metilfenilo-, 2-(trifluorometil)fenilo-, 4-dimetoxifenilo-, 2,4-dimetoxifenilo-, 2,4-dimetoxifenilo-, 2,6-dimetoxifenilo-, 3-metoxifenilo-, 4-metoxifenilo-, 4-etoxifenilo-, 4-propoxifenilo-, 2-metoxifenilo-, 4-pentoxifenilo-, 4-pentoxifen

Cuando R^1 o R^2 representa arilo o -alquil $C_{1.6}$ -arilo, dicho arilo representa de forma adecuada naftilo opcionalmente sustituido. Ejemplos incluyen naftilo no sustituido (por ejemplo naftalen-1-ilo, naftalen-2-ilo, naftalen-3-ilo) así como naftilo sustituido (por ejemplo, 4-metil-naftalen-2-ilo-, 5-metil-naftalen-3-ilo-, 7-metil-naftalen-3-ilo- y 4-fluoro-naftalen-2-il-).

Cuando R^1 o R^2 representa cicloalquilo o -alquil C_{1-6} -cicloalquilo, dicho cicloalquilo representa de forma adecuada cicloalquilo opcionalmente sustituido. Ejemplos de cicloalquilo incluyen ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo y ciclohexilo. Ejemplos de carbociclilo sustituido incluyen 2-metil-ciclohexilo-, 3-metil-ciclohexilo-, 4-metil-ciclohexilo- y 4,4-difluorociclohexilo.

Cuando R¹ o R² representa heteroarilo opcionalmente sustituido, ejemplos incluyen anillos monocíclicos (por ejemplo, anillos de 5 o 6 miembros) y anillos bicíclicos (por ejemplo, anillos de 9 o 10 miembros) que pueden estar opcionalmente sustituidos. Ejemplos de anillos de 5 miembros incluyen pirrolilo (por ejemplo, pirrol-2-ilo) e imidazolilo (por ejemplo, 1H-imidazol-2-ilo o 1H-imidazol-4-ilo), pirazolilo (por ejemplo, 1H-pirazol-3-ilo), furanilo (por ejemplo, furan-2-ilo), tiazolilo (por ejemplo, tiazol-2-ilo), tiofenilo (por ejemplo, tiofen-2-ilo, tiofen-3-ilo). Ejemplos de anillos de 6 miembros incluyen piridinilo (por ejemplo, piridin-2-ilo y piridin-4-ilo). Sustituyentes específicos que se pueden citar son uno o más, por ejemplo, 1, 2 o 3 grupos seleccionados de halógeno, hidroxilo, alquilo (por ejemplo, metilo) y alcoxi- (por ejemplo, metoxi-). Ejemplos de anillos de 5 miembros sustituidos incluyen 4,5-dimetil-furan-2ilo-, 5-hidroximetil-furan-2-ilo-, 5-metilfuran-2-ilo- y 6-metil-piridin-2-ilo-. Un ejemplo de anillo de 6 miembros sustituido es 1-oxi-piridin-4-ilo-. Ejemplos de anillos de 9 miembros incluyen 1H-indolilo (por ejemplo, 1H-indol-3-ilo, 1 H-indol-5-ilo), benzotiofenilo (por ejemplo, benzo[b]tiofen-3-ilo, en particular 2-benzo[b]tiofen-3-ilo), benzo[1,2,5]oxadiazolilo (por ejemplo, benzo[1,2,5]-oxadiazol-5-ilo), benzo[1,2,5]-tiadiazolilo (por ejemplo, benzo[1,2,5]-tiadiazol-5-ilo, benzo[1,2,5]tiadiazol-6-ilo). Ejemplos de anillos de 10 miembros incluyen quinolinilo (por ejemplo, quinolin-3-ilo, quinolin-4-ilo, quinolin-8-ilo). Sustituyentes específicos que se pueden citar son uno o más, por ejemplo, 1, 2 o 3 grupos seleccionados de halógeno, hidroxilo, alquilo (por ejemplo, metilo) y alcoxi- (por ejemplo, metoxi-). Ejemplos de anillos de 9 miembros sustituidos incluyen 1-metil-1H-indol-3-ilo, 2-metil-1H-indol-3-ilo, 6-metil-1H-indol-3-ilo.

Ejemplos de anillos de 10 miembros sustituidos incluyen 2-cloro-quinolin-3-ilo, 8-hidroxi-quinolin-2-ilo, oxo-cromenilo (por ejemplo, 4-oxo-4H-cromen-3-ilo) y 6-metil-4-oxo-4H-cromen-3-ilo.

Cuando R¹ o R² representa heterociclilo (que puede estar opcionalmente sustituido), ejemplos incluyen tetrahidrofuranilo, morfolinilo, piperidinilo, 3,4-dihidro-2H-piranilo, tetrahidropiranilo, pirrolidinilo, metiltetrahidrofuranilo- (por ejemplo, 5-metiltetrahidrofuran-2-ilo-).

5

10

15

30

Cuando R¹ representa fenilo sustituido con fenilo, fenilo sustituido con un grupo heteroarilo (tal como un heteroarilo monocíclico) o fenilo sustituido con heterociclilo (tal como un heterociclilo monocíclico), en el que cualquiera de los grupos fenilo, heteroarilo y heterociclilo citados antes puede estar opcionalmente sustituido, de forma típica el anillo fenilo conectado al átomo de nitrógeno no está sustituido y el anillo fenilo terminal o el heteroarilo monocíclico y anillo heterociclilo está opcionalmente sustituido con uno, dos o tres sustituyentes (por ejemplo, uno o dos, por ejemplo, uno). De forma típica, el grupo fenilo, heteroarilo monocíclico o heterociclilo monocíclico no está sustituido. De forma típica, el grupo fenilo, heteroarilo monocíclico o heterociclilo monocíclico terminal sustituye al anillo arilo (es decir, fenilo) en la posición 4.

Cuando R¹ representa fenilo sustituido con fenilo en el que los grupos fenilo antes citados pueden estar opcionalmente sustituidos, ejemplos incluyen -bifenil-4-ilo.

Cuando R¹ representa fenilo sustituido con un grupo heteroarilo monocíclico, en el que cualquiera de los grupos fenilo y heteroarilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen (4-tiofen-2-il)-bencilo- y (4-(oxazol-5-il)f-enilo-.

Cuando R¹ representa fenilo sustituido con un grupo heterociclilo monocíclico, en el que cualquiera de los grupos fenilo y heterociclilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-morfolinofenilo-, 4- (piperidin-1-il)fenilo-, 4-(1-metilpiperidin-4-il)fenilo- y 4-(tetrahidro-2H-piran-4-il)fenilo-.

Cuando R¹ representa fenilo sustituido con feniloxi en el que cualquiera de los grupos fenilo y feniloxi antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-benciloxi-fenilo-, 4-(3-metilbenciloxi)fenilo- y 4-(4-metilbenciloxi)fenilo-.

Cuando R¹ representa -cicloalquilo sustituido con fenilo en el que cualquiera de los grupos cicloalquilo y fenilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-fenilciclohexilo-.

Cuando R¹ representa -cicloalquilo sustituido con fenoxi en el que cualquiera de los grupos cicloalquilo y fenoxi antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-fenoxiciclohexilo-.

Cuando R¹ representa -fenilo sustituido con fenoxi en el que cualquiera de los grupos fenilo y fenoxi antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-fenoxifenilo-.

Cuando R¹ representa -heterociclilo sustituido con fenilo en el que cualquiera de los grupos fenilo y heterociclilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen 1-fenilpiperidin-4-ilo-.

Cuando R¹ representa fenilo sustituido con -O-cicloalquilo en el que cualquiera de los grupos fenilo y cicloalquilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-ciclohexiloxifenilo-.

Cuando R¹ representa -fenilo sustituido con cicloalquilo en el que cualquiera de los grupos fenilo y cicloalquilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen 4-ciclohexilfenilo- o 4,4-difluorociclohexilfenilo-.

Cuando R¹ representa fenilo sustituido con -cicloalquil-heterociclilo en el que cualquiera de los grupos fenilo, cicloalquilo y heterociclilo antes citados puede estar opcionalmente sustituido, ejemplos incluyen (4-morfolinociclohexil)fenilo-.

De forma adecuada, R¹ representa -alquilo C₁-6, -arilo, -cicloalquilo, -heteroarilo, -heterociclilo, -cicloalquilo sustituido con fenilo, -cicloalquilo sustituido con fenoxi, -fenilo sustituido con cicloalquilo, -fenilo sustituido con fenilo, heterociclilo sustituido con fenilo, heteroarilo sustituido con fenilo, fenilo sustituido con heterociclilo, fenilo sustituido con heterociclilo, fenilo sustituido con heterociclilo. De forma más adecuada, R¹ representa -alquilo C₁-6, -arilo, -cicloalquilo, -heteroarilo, -cicloalquilo sustituido con fenilo, heterociclilo sustituido con fenilo, sustituido con fenilo, fenilo sustituido con heterociclilo, fenilo sustituido con -O-cicloalquilo o fenilo sustituido con cicloalquil-heterociclilo. Aun de forma más adecuada, R¹ representa -alquilo C₁-6, -arilo, -cicloalquilo, -heteroarilo, -fenilo sustituido con fenilo, fenilo sustituido con heterociclilo o fenilo sustituido con -O-cicloalquilo.

En una realización, R¹ representa -alquilo C₁₋₆ (por ejemplo, isopropilo), -arilo (por ejemplo, fenilo), -cicloalquilo (por ejemplo, ciclohexilo), -heteroarilo (por ejemplo, quinolinilo), -cicloalquilo sustituido con fenilo (por ejemplo, -ciclohexil-fenilo), -cicloalquilo sustituido con fenoxi (por ejemplo, -ciclohexil-O-fenilo), -fenilo sustituido con cicloalquilo (por ejemplo, -fenil-ciclohexilo), -fenilo sustituido con fenilo (por ejemplo, -fenil-fenilo), heterociclilo sustituido con fenilo (por ejemplo, -fenil-morfolinilo, -fenil-piperidinilo o fenil-tetrahidropiranilo), fenilo sustituido con -O-cicloalquilo (por ejemplo, -fenil-O-ciclohexilo) o fenilo sustituido con -

cicloalquil-heterociclilo (por ejemplo, -fenil-ciclohexil-morfolinilo); donde dicho grupo fenilo está opcionalmente sustituido con uno o más grupos halógeno (por ejemplo, flúor, bromo o cloro; donde dicho grupo heterociclilo está opcionalmente sustituido con uno o más grupos alquilo C_{1-6} (por ejemplo, metilo); y donde dicho grupo cicloalquilo está opcionalmente sustituido con uno o más grupos halógeno (por ejemplo, flúor).

- En otra realización, R¹ representa -alquilo C₁₋₆ (por ejemplo, isopropilo), -arilo (por ejemplo, fenilo), -cicloalquilo (por ejemplo, ciclohexilo), -heteroarilo (por ejemplo, quinolinilo), -fenilo sustituido con fenilo (por ejemplo, -fenil-fenilo), fenilo sustituido con heterociclilo (por ejemplo, -fenil-morfolinilo o -fenil-piperidinilo) o fenilo sustituido con -Ocicloalquilo (por ejemplo, -fenil-O-ciclohexilo); donde dicho grupo fenilo está opcionalmente sustituido con uno o más grupos halógeno (por ejemplo, flúor, bromo o cloro).
- En otra realización adicional, R¹ representa -arilo (por ejemplo, fenilo) opcionalmente sustituido con uno o más grupos halógeno (por ejemplo, flúor, bromo o cloro). Aun en otra realización adicional, R¹ representa fenilo sustituido con uno o más grupos flúor (por ejemplo, 2,3-difluorofenilo).

De forma adecuada, R^2 representa -alquilo C_{1-6} , haloalquilo C_{1-6} , -arilo, -cicloalquilo, -heteroarilo o -heterociclilo. De forma más adecuada, R^2 representa --alquilo C_{1-6} , haloalquilo C_{1-6} o -arilo. Aun de forma más adecuada, R^2 representa -alquilo C_{1-6} o -arilo.

En una realización, R^2 representa -alquilo C_{1-6} (por ejemplo, metilo, etilo, propilo o isopropilo), haloalquilo C_{1-6} (por ejemplo, trifluorometilo) o -arilo (por ejemplo, fenilo); donde dicho grupo fenilo está opcionalmente sustituido con uno o más grupos halógeno (por ejemplo, flúor). En otra realización, R^2 representa -alquilo C_{1-6} (por ejemplo, metilo, etilo, propilo o isopropilo) o -arilo (por ejemplo, fenilo) opcionalmente sustituido con uno o más grupos halógeno (por ejemplo, flúor). Aun en otra realización R^2 representa metilo o fenilo opcionalmente sustituido con uno o más grupos flúor. Aun en otra realización adicional R^2 representa metilo.

De forma adecuada, R³ representa alquilo C₁₋₆.

En una realización, R^3 representa -alquilo C_{1-6} (por ejemplo, metilo o etilo). En otra realización, R^3 representa alquilo C_{1-6} (por ejemplo, metilo).

25 De forma adecuada, R³ representa haloalquilo C₁₋₆.

En una realización, R³ representa haloalquilo C₁₋₆ (por ejemplo, 2,2,2-trifluoroetilo o 2,2,3,3-tetrafluoropropilo).

De forma adecuada, n representa 0.

En una realización, el compuesto de fórmula (I) es un compuesto de acuerdo con uno cualquiera de los ejemplos 1 a 32 o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo, incluyendo todos los tautómeros y estereoisómeros. En una realización alternativa, el compuesto de fórmula (I) es un compuesto de acuerdo con uno cualquiera de los ejemplos 1 a 35 o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo, incluyendo todos los tautómeros y estereoisómeros.

En otra realización, el compuesto de fórmula (I) es 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo.

35 Procesos

15

20

30

De acuerdo con otro aspecto de la invención, se proporciona un procedimiento de preparación de un compuesto de fórmula (I) que comprende:

(a) preparar un compuesto de fórmula (I) a partir de un compuesto de fórmula (II)

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

en la que R^a, n, R¹ y R² son como se definen antes para los compuestos de fórmula (I). El proceso (a) comprende, de forma típica, reacción en diazometano en un disolvente adecuado, tal como metanol. Un ejemplo no limitante de la metodología del proceso (a) se describe en el Procedimiento 1 en el presente documento.

(b) desproteger un compuesto de fórmula (I) que está protegido.

Los compuestos de fórmula (I) y los compuestos intermedios también pueden prepararse usando técnicas análogas a las conocidas por un experto en la técnica, o descritas en el presente documento. En particular, los compuestos de fórmula (II) se divulgan en el documento WO 2008/055945 o se pueden preparar de una forma análoga a los procedimientos descritos en el documento WO 2008/055945.

Los nuevos intermedios se reivindican como un aspecto de la presente invención.

Usos terapéuticos

5

10

15

Sustratos fisiológicos de QC (EC) en mamíferos son, por ejemplo, péptidos beta-amiloides (3-40), (3-42), (11-40 y (11-42), ABri, ADan, gastrina, neurotensina, FPP, CCL 2, CCL 7, CCL 8, CCL 16, CCL 18, fractalcina, orexina A, [Gln³]-glucagón (3-29), [Gln⁵]-sustancia P (5-11) y el péptido QYNAD. Para más detalles véase la Tabla 1. Los compuestos y/o combinaciones de acuerdo con la presente invención y composiciones farmacéuticas que comprenden al menos un inhibidor de QC (EC) son útiles para el tratamiento de afecciones que pueden tratarse por modulación de la actividad de QC.

Tabla 1: Secuencias de aminoácidos de péptidos activos fisiológicos con un residuo de glutamina en el extremo N, que tienen tendencia a ciclarse a pGlu final

Péptido	Secuencia de aminoácidos	Función
Abeta(1-42)	Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-	Desempeña una función en
	Gly-Tyr-Glu-Val-His-His-Gln-Lys-	neurodegeneración, por ejemplo, en enfermedad de Alzheimer, demencia
	Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-	familiar británica, demencia familiar danesa, síndrome de Down
	Gly-Ser-Asn-Lys-Gly-Ala-lle-Ile-Gly-	
	Leu-Met-Val-Gly-Gly-Val-Val-Ile-Ala	
Abeta(1-40)	Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-	Desempeña una función en
	Gly-Tyr-Glu-Val-His-His-Gln-Lys-	neurodegeneración, por ejemplo, en enfermedad de Alzheimer, demencia
	Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-	familiar británica, demencia familiar danesa, síndrome de Down
	Gly-Ser-Asn-Lys-Gly-Ala-lle-lle-Gly-	,
	Leu-Met-Val-Gly-Gly-Val-Val	
Abeta(3-42)	Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-	Desempeña una función en
	Glu-Val-His-His-Gln-Lys-Leu-Val-	neurodegeneración, por ejemplo, en enfermedad de Alzheimer, demencia
	Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-	familiar británica, demencia familiar danesa, síndrome de Down
	Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-	
	Val-Gly-Gly-Val-Val-Ile-Ala	
Abeta(3-40)	Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-	Desempeña una función en
	Glu-Val-His-His-Gln-Lys-Leu-Val-	neurodegeneración, por ejemplo, en enfermedad de Alzheimer, demencia
	Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-	familiar británica, demencia familiar danesa, síndrome de Down
	Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-	
	Val-Gly-Gly-Val-Val	

(continuación)

Péptido	Secuencia de aminoácidos	Función
Abeta(11-42)	Glu-Val-His-His-Gln-Lys-Leu-Val- Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser- Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met- Val-Gly-Gly-Val-Val-Ile-Ala	Desempeña una función en neurodegeneración, por ejemplo, en enfermedad de Alzheimer, demencia familiar británica, demencia familiar danesa, síndrome de Down
Abeta(11-40)	Glu-Val-His-His-Gln-Lys-Leu-Val- Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser- Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met- Val-Gly-Gly-Val-Val	Desempeña una función en neurodegeneración, por ejemplo, en enfermedad de Alzheimer, demencia familiar británica, demencia familiar danesa, síndrome de Down
ABri	EASNCFA IRHFENKFAV ETLIC	La forma piroglutamatada desempeña una función en demencia familiar británica
ADan	EASNCFA IRHFENKFAV ETLIC FNLFLNSQEKHY	La forma piroglutamatada desempeña una función en demencia familiar danesa
Gastrina 17 Swiss-Prot: P01350	QGPWL EEEEEAYGWM DF (amida)	La gastrina estimula la mucosa del estómago para producir y secretar ácido clorhídrico y el páncreas para secretar sus enzimas digestivas. También estimulan la contracción de músculo liso y aumenta la circulación sanguínea y la secreción de agua en el estómago e intestino.
Neurotensina Swiss-Prot: P30990	QLYENKPRRP YIL	La neurotensina desempeña una función endocrina o paracrina en la regulación del metabolismo de las grasas. Produce contracción de músculo liso.
FPP	QEP amida	Un tripéptido relacionado con la hormona liberadora de tirotrofina (TRH) se encuentra en plasma seminal. Pruebas recientes obtenidas in vitro e in vivo mostraron que FPP desempeña una función importante en regular la fertilidad del esperma.
TRH Swiss-Prot: P20396	QHP amida	TRH funciona como regulador de la biosíntesis de TSH en la glándula pituitaria anterior y como neurotransmisor/neuromodulador en los sistemas nerviosos central y periférico.
GnRH Swiss-Prot: P01148	QHWSYGL RP (G) amida	Estimula la secreción de gonadotropinas; estimula la secreción tanto de hormonas luteinizantes como estimulantes del folículo.

(continuación)

Péptido	Secuencia de aminoácidos	Función
CCL16 (citocina inducible pequeña A16) Swiss-Prot: O15467 CCL8 (citocina inducible pequeña A8) Swiss-Prot: P80075	QPKVPEW VNTPSTCCLK YYEKVLPRRL VVGYRKALNC HLPAIIFVTK RNREVCTNPN DDWVQEYIKD PNLPLLPTRN LSTVKIITAK NGQPQLLNSQ QPDSVSI PITCCFNVIN RKIPIQRLES YTRITNIQCP	Muestra actividad quimiotáctica para linfocitos y monocitos, pero no neutrófilos. También muestra potente actividad mielosupresora, suprime la proliferación de células progenitoras mieloides. SCYA16 recombinante muestra actividad quimiotáctica para monocitos y monocitos THP-1, pero no para linfocitos y neutrófilos en reposo. Induce un flujo de calcio en células THP-1 que se desensibilizaron por la anterior expresión a RANTES. Factor quimiotáctico que atrae monocitos, linfocitos, basófilos y eosinófilos. Puede desempeñar una función en neoplasia y respuestas inflamatorias del huésped. Esta
CCL2 (MCP-1, citocina inducible pequeña A2) Swiss-Prot: P13500	KEAVIFKTKR GKEVCADPKE RWVRDSMKHL DQIFQNLKP QPDAINA PVTCCYNFTN RKISVQRLAS YRRITSSKCP KEAVIFKTIV AKEICADPKQ KWVQDSMDHL DKQTQTPKT	respuestas inflamatorias del huésped. Esta proteína puede unirse a heparina. Factor quimiotáctico que atrae monocitos y basófilos, pero no neutrófilos o eosinófilos. Aumenta la actividad antitumoral de monocitos. Participa en la patogénesis de enfermedades caracterizadas por infiltrados monocíticos, como psoriasis, artritis reumatoide o aterosclerosis. Puede participar en el reclutamiento de monocitos en la pared arterial durante el proceso de enfermedad de aterosclerosis. Se une a CCR2 y CCR4.
CCL18 (citocina inducible pequeña A18) Swiss-Prot: P55774	QVGTNKELC CLVYTSWQIP QKFIVDYSET SPQCPKPGVI LLTKRGRQIC ADPNKKWVQK YISDLKLNA	Factor quimiotáctico que atrae linfocitos, pero no monocitos o granulocitos. Puede participar en la migración de linfocitos B a folículos de linfocitos B en ganglios linfáticos. Atrae linfocitos T sin tratamiento previo hacia células dendríticas y macrófagos activados en ganglios linfáticos, tiene actividad quimiotáctica para linfocitos T sin tratamiento previo, linfocitos T CD4+ y CD8+ y así puede desempeñar una función tanto en respuestas humorales como de inmunidad mediada por células.

(continuación)

Péptido	Secuencia de aminoácidos	Función
Fractalcina (neurotactina)	QHHGVT KCNITCSKMT	La forma soluble es quimiotáctica para
Swiss-Prot: P78423	SKIPVALLIH YQQNQASCGK	linfocitos T y monocitos, pero no para neutrófilos. La forma unida a la membrana
	RAIILETRQH RLFCADPKEQ	promueve la adhesión de aquellos leucocitos
	WVKDAMQHLD RQAAALTRNG	a células endoteliales. Puede desempeñar una función en regular los procesos de
	GTFEKQIGEV KPRTTPAAGG	adhesión y migración de leucocitos en el
	MDESVVLEPE ATGESSSLEP	endotelio y se une a CX3CR1.
	TPSSQEAQRA LGTSPELPTG	
	VTGSSGTRLP PTPKAQDGGP	
	VGTELFRVPP VSTAATWQSS	
	APHQPGPSLW AEAKTSEAPS	
	TQDPSTQAST ASSPAPEENA	
	PSEGQRVWGQ GQSPRPENSL	
	EREEMGPVPA HTDAFQDWGP	
	GSMAHVSVVP VSSEGTPSRE	
	PVASGSWTPK AEEPIHATMD	
	PQRLGVLITP VPDAQAATRR	
	QAVGLLAFLG LLFCLGVAMF	
	TYQSLQGCPR KMAGEMAEGL	
	RYIPRSCGSN SYVLVPV	
CCL7 (citocina inducible	QPVGINT STTCCYRFIN	Factor quimiotáctico que atrae monocitos y
pequeña A7)	KKIPKQRLES YRRTTSSHCP	eosinófilos, pero no neutrófilos. Aumenta la actividad antitumoral de monocitos. También
Swiss-Prot: P80098	REAVIFKTKL DKEICADPTQ	induce la liberación de gelatinasa B. Esta
	KWVQDFMKHL DKKTQTPKL	proteína puede unirse a heparina. Se une a CCR1, CCR2 y CCR3.
Orexina A (hipocretina-1)	QPLPDCCRQK TCSCRLYELL	Neuropéptido que desempeña una función
Swiss-Prot O43612	HGAGNHAAGI LTL	significativa en la regulación del consumo de
3WISS-P10t 043012	THO NOTHING BY	alimentos y sueño-vigilia, posiblemente coordinando las complejas respuestas
		conductuales y fisiológicas de estas funciones homeostáticas complementarias.
		También desempeña una función más
		amplia en la regulación homeostática del metabolismo de la energía, función
		autónoma, equilibrio hormonal y la
		regulación de líquidos corporales. La orexina A se une a tanto OX1R como OX2R con una
		alta afinidad.

(continuación)

Péptido	Secuencia de aminoácidos	Función
Sustancia P	RPK PQQFFGLM	Pertenece a las taquicininas. Las taquicininas son péptidos activos que excitan neuronas, provocan respuestas conductuales, son potentes vasodilatadores y secretagogos, y contraen (directamente o indirectamente) muchos músculos lisos.
QYNAD	Gln-Tyr-Asn-Ala-Asp	Actúa sobre los canales de sodio dependientes de voltaje.

El glutamato se encuentra en las posiciones 3, 11 y 22 del péptido β-amiloide. Entre ellas, la mutación de ácido glutámico (E) a glutamina (Q) en la posición 22 (correspondiente a la proteína precursora de amiloide APP 693, Swissprot P05067) se ha descrito como la llamada mutación de amiloidosis cerebroarterial tipo holandesa.

5

10

15

20

25

30

35

40

Se ha descrito que los péptidos β -amiloides con un residuo de ácido piroglutámico en la posición 3, 11 y/o 22 son más citotóxicos e hidrófobos que los péptidos β -amiloides 1-40(42/43) (Saido T.C. 2000 Medical Hypotheses 54(3): 427-429).

Las múltiples variaciones del extremo N, por ejemplo, Abeta (3-40), Abeta (3-42), Abeta (11-40) y Abeta (11-42) pueden generarse por la enzima β-secretasa, enzima escisora de proteína precursora de amiloide del sitio β (BACE) en diferentes sitios (Huse J.T. y col. 2002 J. Biol. Chem. 277 (18): 16278-16284), y/o por procesamiento de aminopeptidasa o dipeptidilaminopeptidasa de los péptidos de longitud completa Abeta (1-40) y Abeta (1-42). En todos los casos, la ciclación del residuo de ácido glutámico que luego se produce en el extremo N está catalizada por QC.

Células transductoras transepiteliales, particularmente la célula gastrina (G), coordinan la secreción de ácidos gástricos con la llegada de comida al estómago. Un trabajo reciente mostró que se generan múltiples productos activos del precursor de gastrina y que hay múltiples puntos de control en la biosíntesis de gastrina. Los precursores biosintéticos y productos intermedios (progastrina y Gly-gastrinas) son supuestos factores de crecimiento; sus productos, las gastrinas amidadas, regulan la proliferación de células epiteliales, la diferenciación de células parietales productoras de ácido y células del tipo enterocromafines que secretan histamina (ECL), y la expresión de genes asociados a la síntesis de histaminas y almacenamiento en células ECL, así como la secreción de ácido agudamente estimulante. La gastrina también estimula la producción de miembros de la familia del factor de crecimiento epidérmico (EGF), que a su vez inhiben la función de células parietales, pero estimulan el crecimiento de células epiteliales de la superficie. Las concentraciones de gastrina en plasma son elevadas en sujetos con *Helicobacter pylori*, que se sabe que tienen un riesgo elevado de enfermedad por úlcera duodenal y cáncer gástrico (Dockray, G.J. 1999 J Physiol 15 315-324).

Se sabe que la hormona peptídica gastrina, liberada de células G antrales, estimula la síntesis y liberación de histamina de células ECL en la mucosa oxíntica mediante receptores de CCK-2. La histamina movilizada induce la secreción de ácido uniéndose a los receptores de H(2) localizados sobre células parietales. Estudios recientes sugieren que la gastrina, tanto en sus formas completamente amidadas como menos procesadas (progastrina y gastrina extendida a glicina), también es un factor de crecimiento para el tubo gastrointestinal. Se ha establecido que el principal efecto trófico de la gastrina amidada es para la mucosa oxíntica del estómago, en la que produce una elevada proliferación de citoblastos gástricos y células ECL, produciendo elevada masa de células parietales y ECL. Por otra parte, la principal diana trófica de la gastrina menos procesada (por ejemplo, gastrina extendida a glicina) parece ser la mucosa colónica (Koh, T.J. y Chen, D. 2000 Regul Pept 9337-44).

La neurotensina (NT) es un neuropéptido que participa en la patofisiología de la esquizofrenia que modula específicamente los sistemas neurotransmisores que previamente han demostrado estar regulados erróneamente en este trastorno. Estudios clínicos en los que se han medido las concentraciones de NT en líquido cefalorraquídeo (CSF) revelaron un subconjunto de pacientes esquizofrénicos con concentraciones de NT en CSF disminuidas que son restauradas por tratamiento con fármacos antipsicóticos eficaces. También existen pruebas considerables concordantes con la participación de sistemas de NT en el mecanismo de acción de fármacos antipsicóticos. Los efectos conductuales y bioquímicos de NT centralmente administrada se parecen sorprendentemente a los de fármacos antipsicóticos sistémicamente administrados, y los fármacos antipsicóticos aumentan la neurotransmisión de NT. Esta concatenación de hallazgos condujo a la hipótesis de las funciones de NT como antipsicótico endógeno. Además, fármacos antipsicóticos típicos y atípicos alteran diferencialmente la neurotransmisión de NT en regiones terminales de dopamina nigroestriatal y mesolímbica, y estos efectos son predictivos de la sensibilidad y eficacia de efectos secundarios, respectivamente (Binder, E. B. y col. 2001 Biol Psychiatry 50 856-872).

El péptido promotor de la fertilización (FPP), un tripéptido relacionado con la hormona liberadora de tirotrofina (TRH), se encuentra en plasma seminal. Pruebas evidentes obtenidas *in vitro* e *in vivo* mostraron que FPP desempeña una función importante en la regulación de la fertilidad del esperma. De forma específica, FPP estimula inicialmente espermatozoides

no fecundativos (incapacitados) a "encenderse" y volverse fértiles más rápidamente, pero entonces se detiene la capacitación de manera que los espermatozoides no experimenten pérdida espontánea de acrosomas y, por tanto, no pierdan potencial fecundativo. Estas respuestas son imitadas, y de hecho aumentadas, por la adenosina, que se sabe que regula la ruta de transducción de señales de la adenilil ciclasa (AC)/AMPc. Se ha mostrado que tanto FPP como la adenosina estimulan la producción de AMPc en células incapacitadas, pero la inhiben en células capacitadas, con receptores de FPP que interaccionan de alguna manera con receptores de adenosina y proteínas G para lograr la regulación de AC. Estos acontecimientos afectan el estado de fosforilación de tirosina de diversas proteínas, siendo algunas importantes en el "encendido" inicial, participando otros posiblemente en la propia reacción de acrosomas. La calcitonina y la angiotensina II, también encontradas en plasma seminal, tienen efectos similares *in vitro* sobre espermatozoides incapacitados y pueden aumentar respuestas a FPP. Estas moléculas tienen efectos similares *in vivo*, afectando la fertilidad estimulando y luego manteniendo el potencial fecundativo. Tanto las reducciones en la disponibilidad de FPP, adenosina, calcitonina y angiotensina II como los defectos en sus receptores contribuyen a la infertilidad masculina (Fraser, L.R. y Adeoya-Osiguwa, S. A. 2001 Vitam Horm 63, 1-28).

CCL2, CCL7, CCL8, CCL16, CCL18 y fractalcina desempeñan una función importante en afecciones patofisiológicas, tales como supresión de la proliferación de células progenitoras mieloides, neoplasia, respuestas inflamatorias del huésped, cáncer, psoriasis, artritis reumatoide, aterosclerosis, vasculitis, respuestas humorales e inmunitarias mediadas por células, procesos de adhesión y migración de leucocitos en el endotelio, enfermedad inflamatoria del intestino, reestenosis, fibrosis pulmonar, hipertensión pulmonar, fibrosis hepática, cirrosis hepática, nefroesclerosis, remodelación ventricular, insuficiencia cardíaca, arteriopatía después de trasplantes de órganos y fracaso de injertos venosos.

10

35

40

45

55

60

Una serie de estudios han subrayado, en particular, la función crucial de MCP-1 para el desarrollo de aterosclerosis (Gu, L. y col., (1998) *Mol.Cell* 2, 275-281; Gosling, J., y col., (1999) *J Clin. Invest* 103, 773-778); artritis reumatoide (Gong, J. H. y col., (1997) *J Exp.Med* 186, 131- 137; Ogata, H. y col., (1997) *J Pathol.* 182, 106-1 14); pancreatitis (Bhatia, M. y col., (2005) *Am. J Physiol Gastrointest. Liver Physiol* 288, G1259-G1265); enfermedad de Alzheimer (Yamamoto, M. y col., (2005) *Am. J Pathol.* 166, 1475-1485); fibrosis pulmonar (Inoshima, I. y col., (2004) *Am. J Physiol Lung Cell Mol.Physiol* 286, L1038-L1044); fibrosis renal (Wada, T. y col., (2004) *J Am.Soc.Nephrol.* 15, 940-948) y rechazo de transplante (Saiura, A. y col., (2004) *Arterioscler. Thromb. Vasc. Biol.* 24, 1886-1890). Además, la MCP-1 también puede desempeñar una función en gestosis (Katabuchi, H. y col., (2003) *Med Electron Microsc.* 36, 253-262), como un factor paracrino en el desarrollo tumoral (Ohta, M. y col., (2003) *Int. J Oncol.* 22, 773-778; Li, S. y col., (2005) *J Exp. Med* 202, 617-624), dolor neuropático (White, F. A. y col., (2005) *Proc. Natl. Acad. Sci. U.S.A*) y SIDA (Park, I. W., Wang, J. F. y Groopman, J. E. (2001) *Blood* 97, 352-358; Coll, B. y col., (2006) *Cytokine* 34, 51-55).

Los niveles de MCP-1 están aumentados en LCR de pacientes con AD (enfermedad de Alzheimer) y pacientes que muestran deterioro cognitivo leve (MCI) (Galimberti, D. y col., (2006) *Arch. Neurol.* 63, 538-543). Además, el MCP-1 muestra un nivel aumentado en el suero de pacientes con DCL y AD temprana (Clerici, F. y col., (2006) *Neurobiol. Aging* 27, 1763-1768).

Recientemente se estudiaron varias vacunas basadas en péptidos de linfocitos T citotóxicos contra hepatitis B, virus de la inmunodeficiencia humana y melanoma en ensayos clínicos. Un candidato interesante a vacuna para el melanoma solo o en combinación con otros antígenos de tumor es el decapéptido ELA. Este péptido es un análogo del péptido inmunodominante de antígeno de Melan-A/MART-1, con un ácido glutámico del extremo N. Se ha informado que el grupo amino y el grupo gamma-carboxílico de ácidos glutámicos, además del grupo amino y el grupo gamma-carboxamida de glutaminas, se condensan fácilmente para formar derivados piroglutámicos. Para vencer este problema de estabilidad se han desarrollado varios péptidos de interés farmacéutico con un ácido piroglutámico en lugar de glutamina o ácido glutámico del extremo N, sin pérdida de propiedades farmacológicas. Desafortunadamente, en comparación con ELA, el derivado de ácido piroglutámico (PirELA) y también el derivado rematado con acetilo del extremo N (AcELA) fracasaron en provocar la actividad de linfocitos citotóxicos T (CTL). A pesar de las aparentes modificaciones menores introducidas en PirELA y AcELA, estos dos derivados probablemente tienen menor afinidad que ELA por el complejo de histocompatibilidad mayor de clase I específico. Por consiguiente, con el fin de conservar la actividad completa de ELA, debe evitarse la formación de PirELA (Beck A. y col. 2001, J Pept Res 57(6):528-38.).

La orexina A es un neuropéptido que desempeña una función significativa en la regulación del consumo de alimentos y sueño-vigilia, posiblemente coordinando las complejas respuestas conductuales y fisiológicas de estas funciones homeostáticas complementarias. También desempeña una función en la regulación homeostática del metabolismo de la energía, función autónoma, equilibrio hormonal y la regulación de líquidos corporales.

Recientemente se identificaron elevados niveles del pentapéptido QYNAD en el líquido cefalorraquídeo (CSF) de pacientes que padecen esclerosis múltiple o síndrome de Guillain-Barré en comparación con individuos sanos (Brinkmeier H. y col. 2000, Nature Medicine 6, 808-811). Hay una gran controversia en la bibliografía sobre el mecanismo de acción del pentapéptido Gln-Tyr-Asn-Ala-Asp (QYNAD), especialmente su eficacia para interaccionar con, y bloquear canales de sodio produciendo la promoción de disfunción axónica, que participa en enfermedades autoinmunitarias inflamatorias del sistema nervioso central. Pero recientemente podría demostrarse no que QYNAD, sino su forma piroglutamada ciclada, pEYNAD, es la forma activa, que bloquea los canales de sodio produciendo la promoción de disfunción axónica. Los canales de sodio se expresan a alta densidad en axones mielinados y desempeñan una función obligatoria en realizar potenciales de acción a lo largo de axones dentro del cerebro y la médula espinal de mamífero. Por

tanto, se especula que participan en varios aspectos de la patofisiología de enfermedades autoinmunitarias inflamatorias, especialmente esclerosis múltiple, el síndrome de Guillain-Barré y polirradiculoneuropatía desmielinizante inflamatoria crónica.

Además, QYNAD es un sustrato de la enzima glutaminil ciclasa (QC, EC 2.3.2.5), que también está presente en el cerebro de mamíferos, especialmente en cerebro humano. La glutaminil ciclasa cataliza eficazmente la formación de pEYNAD a partir de su precursor QYNAD.

Por consiguiente, la presente invención proporciona el uso de los compuestos de fórmula (I) para la preparación de un medicamento para la prevención o alivio o tratamiento de una enfermedad seleccionada del grupo que consiste en deterioro cognitivo leve, enfermedad de Alzheimer, demencia familiar británica, demencia familiar danesa, síndrome de Down, enfermedad de Huntington, enfermedad de Kennedy, enfermedad ulcerosa, cáncer duodenal con o sin infecciones por *Helicobacter pylori*, cáncer colorrectal, síndrome de Zollinger-Ellison, cáncer gástrico con o sin infecciones por *Helicobacter pylori*, afecciones psicóticas patógenas, esquizofrenia, infertilidad, neoplasia, respuestas inflamatorias del huésped, cáncer, metástasis malignas, melanoma, psoriasis, artritis reumatoide, aterosclerosis, alteración de respuestas inmunitarias humorales y mediadas por células, procesos de adhesión y migración de leucocitos en el endotelio, alteración del consumo de alimentos, alteración del sueño-vigilia, alteración de la regulación homeostática del metabolismo de la energía, alteración de la función autónoma, alteración del equilibrio hormonal o alteración de la regulación de líquidos corporales, esclerosis múltiple, el síndrome de Guillain-Barre y polirradiculoneuropatía desmielinizante inflamatoria crónica.

Además, por administración de un compuesto de acuerdo con la presente invención a un mamífero puede ser posible estimular la proliferación de células progenitoras mieloides.

Además, la administración de un inhibidor de QC de acuerdo con la presente invención puede conducir a supresión de fertilidad masculina.

En una realización preferida, la presente invención proporciona el uso de inhibidores de actividad de QC (EC) en combinación con otros agentes, especialmente para el tratamiento de enfermedades neuronales, arterosclerosis y esclerosis múltiple.

La presente invención también proporciona un procedimiento de tratamiento de las enfermedades anteriormente mencionadas que comprende la administración de una cantidad terapéuticamente activa de al menos un compuesto de fórmula (I) a un mamífero, preferiblemente un ser humano.

Lo más preferiblemente, dicho procedimiento y usos correspondientes son para el tratamiento de una enfermedad seleccionada del grupo que consiste en deterioro cognitivo leve, enfermedad de Alzheimer, demencia familiar británica, demencia familiar danesa, neurodegeneración en síndrome de Down, enfermedad de Parkinson y enfermedad de Huntington, que comprende la administración de una cantidad terapéuticamente activa de al menos un compuesto de fórmula (I) a un mamífero, preferiblemente un ser humano.

Incluso preferiblemente, la presente invención proporciona un procedimiento de tratamiento y usos correspondientes para el tratamiento de artritis reumatoide, aterosclerosis, pancreatitis y reestenosis.

Combinaciones farmacéuticas

10

15

20

25

30

35

40

45

50

En una realización preferible, la presente invención proporciona una composición, preferiblemente una composición farmacéutica, que comprende al menos un inhibidor de QC opcionalmente en combinación con al menos otro agente seleccionado del grupo que consiste en agentes nootrópicos, neuroprotectores, fármacos antiparkinsonianos, inhibidores del depósito de proteínas amiloides, inhibidores de la síntesis de amiloide beta, antidepresivos, fármacos ansiolíticos, fármacos antipsicóticos y fármacos contra la esclerosis múltiple.

Lo más preferiblemente, dicho inhibidor de QC es un compuesto de fórmula (I) de la presente invención.

Más específicamente, el agente mencionado anteriormente se selecciona del grupo que consiste en anticuerpos beta-amiloides, inhibidores de cisteína proteasa, inhibidores de PEP, LiCI, inhibidores de acetilcolinesterasa (AChE), potenciadores de PIMT, inhibidores de beta-secretasas, inhibidores de gamma-secretasas, inhibidores de aminopeptidasas, preferiblemente inhibidores de dipeptidil peptidasas, del modo más preferible inhibidores de DP IV; inhibidores de endopeptidasa neutra, inhibidores de fosfodiesterasa-4 (PDE-4), inhibidores de TNF-alfa, antagonistas del receptor muscarínico M1, antagonistas del receptor de NMDA, inhibidores del receptor sigma 1, antagonistas de histamina H3, inmunomoduladores, inmunodepresores, antagonistas de MCP-1 o un agente seleccionado del grupo que consiste en Antegren (natalizumab), Neurelan (fampridina-SR), campath (alemtuzumab), IR 208, NBI 5788/MSP 771 (tiplimotida), paclitaxel, Anergix.MS (AG284), SH636, Differin (CD 271, adapaleno), BAY 361677 (interleucina-4), inhibidores de metaloproteinasa de matriz (por ejemplo BB 76163), interferón-tau (trofoblastina) y SAIK-MS.

Además, el otro agente puede ser, por ejemplo, un ansiolítico o antidepresivo seleccionado del grupo que consiste en

- (a) benzodiazepinas, por ejemplo, alprazolam, clordiazepóxido, clobazam, clonazepam, clorazepato, diazepam, fludiazepam, loflazepato, lorazepam, metaqualona, oxazepam, prazepam, tranxeno,
- (b) inhibidores selectivos de la recaptación de serotonina (SSRI), por ejemplo, citalopram, fluoxetina, fluoxamina, escitalopram, sertralina, paroxetina,
- 5 (c) antidepresivos tricíclicos, por ejemplo, amitriptilina, clomipramina, desipramina, doxepina, imipramina
 - (d) inhibidores de monoamina oxidasa (MAO),
 - (e) azapironas, por ejemplo, buspirona, tandopirona,
 - (f) inhibidores de la recaptación de serotonina-norepinefrina (SNRI), por ejemplo, venlafaxina, duloxetina,
 - (q) mirtazapina.
- 10 (h) inhibidores de la recaptación de norepinefrina (NRI), por ejemplo, reboxetina,
 - (i) bupropiona,
 - (j) nefazodona,
 - (k) beta-bloqueantes,
 - (I) ligandos de NPY-receptor: agonistas o antagonistas de NPY.
- 15 En otra realización, el otro agente puede ser, por ejemplo, un fármaco contra la esclerosis múltiple seleccionado del grupo que consiste en
 - a) inhibidores de dihidroorotato deshidrogenasa, por ejemplo, SC-12267, teriflunomida, MNA-715, HMR-1279 (sin. de HMR-1715, MNA-279),
 - b) supresor autoinmunitario, por ejemplo, laquinimod,
- 20 c) paclitaxel,

25

- d) anticuerpos, por ejemplo, AGT-1, anticuerpo monoclonal anti-factor estimulante de colonias de granulocitos-macrófagos (GM-CSF), moduladores de receptores Nogo, ABT-874, alemtuzumab (CAMPATH), anticuerpo anti-OX40, CNTO-1275, DN-1921, natalizumab (sin. de AN-100226, Antegren, VLA-4 Mab), daclizumab (sin. de Zenepax, Ro-34-7375, SMART anti-Tac), J-695, priliximab (sin. de Centara, CEN-000029, cM-T412), MRA, Dantes, anticuerpo anti-IL-12,
- e) preparaciones de ácido nucleico peptídico (PNA), por ejemplo, reticulosa,
- f) interferón alfa, por ejemplo, alfaferona, interferón alfa humano (sin. de Omniferon, Alfa Leucoferon),
- g) interferón beta, por ejemplo, Frone, Avonex similar a interferón beta-1a, Betron (Rebif), análogos de interferón beta, proteína de fusión de interferón beta-transferrina, Betaseron similar a interferón beta-1b recombinante,
- 30 h) interferón tau,
 - i) péptidos, por ejemplo, AT-008, AnergiX.MS, inmunocina (alfa-inmunocina-NNSO3), péptidos cíclicos como ZD-7349.
 - j) enzimas terapéuticas, por ejemplo, CD8 soluble (CD8s),
- k) plásmido que codifica autoantígeno específico para esclerosis múltiple y plásmido que codifica citocina, por ejemplo, BHT-3009,
 - I) inhibidor de TNF-alfa, por ejemplo, BLX-1002, talidomida, SH-636,
 - m) antagonistas de TNF, por ejemplo, solimastat, lenercept (sin. de RO-45-2081, Tenefuse), onercept (sTNFR1), CC-1069.
 - n) TNF alfa, por ejemplo, etanercept (sin. de Enbrel, TNR-001)
- o) antagonistas de CD28, por ejemplo, abatacept,
 - p) inhibidores de tirosina cinasas Lck,
 - q) inhibidores de catepsina K,

- r) análogos de la proteína transportadora de la membrana dirigida a neuronas taurina y el inhibidor de calpaína derivado de plantas leupeptina, por ejemplo, Neurodur,
- s) antagonista del receptor-1 de quimiocinas (CCR1), por ejemplo, BX-471,
- t) antagonistas de CCR2,
- 5 u) antagonistas de receptores de AMPA, por ejemplo, ER-167288-01 y ER-099487, E-2007, talampanel,
 - v) bloqueantes de los canales de potasio, por ejemplo, fampridina,
 - w) antagonistas de molécula pequeña de tosil-prolina-fenilalanina de la interacción de VLA-4/VCAM, por ejemplo, TBC-3342,
 - x) inhibidores de molécula de adhesión celular, por ejemplo, TBC-772,
- 10 y) oligonucleótidos antisentido, por ejemplo, EN-101,
 - z) antagonistas de la cadena ligera de la inmunoglobulina libre (lgLC) que se unen a receptores de mastocitos, por ejemplo, F-991,
 - aa) antígenos inductores de la apoptosis, por ejemplo, Apogen MS,
- bb) agonista de receptores adrenérgicos alfa-2, por ejemplo, tizanidina (sin. de Zanaflex, Ternelin, Sirdalvo, Sirdalud, Mionidine),
 - cc) copolímero de L-tirosina, L-lisina, ácido L-glutámico y L-alanina, por ejemplo, acetato de glatiramer (sin. de Copaxone, COP-1, copolímero-1),
 - dd) moduladores de la topoisomerasa II, por ejemplo, clorhidrato de mitoxantrona,
 - ee) inhibidor de adenosina desaminasa, por ejemplo, cladribina (sin. de Leustatin, Milinax, RWJ-26251),
- 20 ff) interleucina-10, por ejemplo, ilodecacina (sin. de Tenovil, Sch-52000, CSIF),
 - gg) antagonistas de interleucina-12, por ejemplo, lisofilina (sin. de CT-1501R, LSF, lisofilina),
 - hh) etanaminio, por ejemplo, SRI-62-834 (sin. de CRC-8605, NSC-614383),
 - ii) inmunomoduladores, por ejemplo, SAIK-MS, PNU-156804, péptido de alfa-fetoproteína (AFP), IPDS,
 - ij) agonistas de receptores retinoides, por ejemplo, adapaleno (sin. de Differin, CD-271),
- 25 kk) TGF-beta, por ejemplo, GDF-1 (factor de crecimiento y diferenciación 1),
 - II) TGF-beta-2, por ejemplo, BetaKine,
 - mm) inhibidores de MMP, por ejemplo, glicomed,
 - nn) inhibidores de la fosfodiesterasa 4 (PDE4), por ejemplo, RPR-122818,
- oo) inhibidores de purina nucleósido fosforilasa, por ejemplo, 9-(3-piridilmetil)-9-desazaguanina, peldesina (sin. de BCX-34, TO-200).
 - pp) antagonistas de integrina alfa-4/beta-1, por ejemplo, ISIS-104278,
 - qq) integrina alfa-4 antisentido (CD49d), por ejemplo, ISIS-17044, ISIS-27104,
 - rr) agentes inductores de citocinas, por ejemplo, nucleósidos, ICN-17261,
 - ss) inhibidores de citocinas,
- 35 tt) vacunas de proteínas de choque térmico, por ejemplo, HSPPC-96,
 - uu) factores de crecimiento de neuregulina, por ejemplo, GGF-2 (sin. de neuregulina, factor de crecimiento de la glía 2),
 - w) inhibidores de catepsina S,
 - ww) análogos de bropirimina, por ejemplo, PNU-56169, PNU-63693,

xx) inhibidores de la proteína-1 quimioatrayente de monocitos, por ejemplo, bencimidazoles como inhibidores de MCP-1, LKS-1456, PD-064036, PD-064126, PD-084486, PD-172084, PD-172386.

Además, la presente invención proporciona composiciones farmacéuticas, por ejemplo, para administración parenteral, entérica o por vía oral, que comprenden al menos un inhibidor de QC, opcionalmente en combinación con al menos uno de los otros agentes anteriormente mencionados.

5

30

35

55

Estas combinaciones proporcionan un efecto particularmente beneficioso. Por tanto, se muestra que tales combinaciones son eficaces y útiles para el tratamiento de las enfermedades anteriormente mencionadas. Por consiguiente, la invención proporciona un procedimiento para el tratamiento de estas afecciones.

El procedimiento comprende tanto la administración conjunta de al menos un inhibidor de QC y al menos uno de los otros agentes o la administración secuencial de los mismos.

La administración conjunta incluye administración de una formulación, que comprende al menos un inhibidor de QC y al menos uno de los otros agentes o la administración esencialmente simultánea de formulaciones separadas de cada agente.

Los anticuerpos beta-amiloides y composiciones que los contienen se describen, por ejemplo, en los documentos WO 2006/137354, WO 2006/118959, WO 2006/103116, WO 2006/095041, WO 2006/081171, WO 2006/06233, 15 WO 2006/066171, WO 2006/066089, WO 2006/066049, WO 2006/055178, WO 2006/046644, WO 2006/039470, WO 2006/036291, WO 2006/026408, WO 2006/016644, WO 2006/014638, WO 2006/014478, WO 2006/008661, WO 2005/123775, WO 2005/120571, WO 2005/105998, WO 2005/081872, WO 2005/080435, WO 2005/028511, WO 2005/025616, WO 2005/025516, WO 2005/023858, WO 2005/018424, WO 2005/011599, WO 2005/000193, WO 2004/108895, WO 2004/098631, WO 2004/080419, WO 2004/071408, WO 2004/069182, WO 2004/067561, WO 2004/044204, WO 2004/032868, WO 2004/031400, WO 2004/029630, WO 2004/029629, WO 2004/024770, 20 WO 2004/024090, WO 2003/104437, WO 2003/089460, WO 2003/086310, WO 2003/077858, WO 2003/074081, WO 2003/070760, WO 2003/063760, WO 2003/055514, WO 2003/051374, WO 2003/048204, WO 2003/045128, WO 2003/040183, WO 2003/039467, WO 2003/016466, WO 2003/015691, WO 2003/014162, WO 2003/012141, WO 2002/088307, WO 2002/088306, WO 2002/074240, WO 2002/046237, WO 2002/046222, WO 2002/041842, 25 WO 2001/062801, WO 2001/012598, WO 2000/077178, WO 2000/072880, WO 2000/063250, WO 1999/060024, WO 1999/027944, WO 1998/044955, WO 1996/025435, WO 1994/017197, WO 1990/014840, WO 1990/012871, WO 1990/012870, WO 1989/006242.

Los anticuerpos beta-amiloides pueden seleccionarse de, por ejemplo, anticuerpos policionales, monoclonales, quiméricos o humanizados. Además, dichos anticuerpos pueden ser útiles para desarrollar terapias inmunitarias activas y pasivas, es decir vacunas y anticuerpos monoclonales. Ejemplos adecuados de anticuerpos beta-amiloides son ACU-5A5, huC091 (Acumen/Merck); PF-4360365, RI-1014, RI-1219, RI-409, RN-1219 (Rinat Neuroscience Corp (Pfizer Inc)); los productos terapéuticos de nanocuerpos de Ablynx/Boehringer Ingelheim; anticuerpos monoclonales humanizados específicos de beta-amiloides de Intellect Neurosciences/IBL; m266, m266.2 (Eli Lilly y Co.); AAB-02 (Elan); bapineuzumab (Elan); BAN-2401 (Bioarctic Neuroscience AB); ABP-102 (Abiogen Pharma SpA); BA-27, BC-05 (Takeda); R-1450 (Roche); ESBA-212 (ESBATech AG); AZD- 3102 (AstraZeneca) y anticuerpos beta-amiloides de Mindset BioPharmaceuticals Inc.

Son especialmente preferibles anticuerpos que reconocen el extremo N del péptido $A\beta$. Un anticuerpo adecuado que reconoce el extremo N de $A\beta$ es, por ejemplo, Acl-24 (AC Immune SA).

- 40 Un anticuerpo monoclonal contra péptido beta-amiloide se divulga en el documento WO 2007/068412. Anticuerpos quiméricos y humanizados respectivos se divulgan en el documento WO 2008/011348. Un procedimiento para la producción de una composición de vacuna para el tratamiento de una enfermedad asociada a amiloides se divulga en el documento WO 2007/068411.
- Inhibidores de cisteína proteasa adecuados son inhibidores de catepsina B. En los documentos WO 2006/060473, WO 2006/042103, WO 2006/039807, WO 2006/021413, WO 2006/021409, WO 2005/097103, WO 2005/007199, WO 2004/084830, WO 2004/078908, WO 2004/026851, WO 2002/094881, WO 2002/027418, WO 2002/021509, WO 1998/046559 y WO 1996/021655, por ejemplo, se divulgan inhibidores de catepsina B y composiciones que contienen dichos inhibidores.
- Ejemplos de potenciadores PIMT son 10-aminoalifatil-dibenz[b,f]oxepinas descritas en los documentos WO 98/15647 y WO 03/057204, respectivamente. También son útiles de acuerdo con la presente invención moduladores de la actividad de PIMT descritos en el documento WO 2004/039773.
 - Inhibidores de beta-secretasa y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 03/059346, WO 2006/099352, WO 2006/078576, WO 2006/060109, WO 2006/057983, WO 2006/057945, WO 2006/055434, WO 2006/044497, WO 2006/034296, WO 2006/034277, WO 2006/029850, WO 2006/026204, WO 2006/014944, WO 2006/014762, WO 2006/002004, US 7.109.217, WO 2005/113484, WO 2005/103043, WO 2005/103020, W02005/065195, WO 2005/051914, WO 2005/044830, WO 2005/032471, WO

2005/018545, WO 2005/004803, WO 2005/004802, WO 2004/062625, WO 2004/043916, WO 2004/013098, WO 03/099202, WO 03/043987, WO 03/039454, US 6,562,783, WO 02/098849 y WO 02/096897.

Ejemplos adecuados de inhibidores de beta-secretasa para los fines de la presente invención son WY-25105 (Wyeth); Posifeno, (+)-fenserina (TorreyPines / NIH); LSN-2434074, LY-2070275, LY- 2070273, LY-2070102 (Eli Lilly & Co.); PNU-159775A, PNU-178025A, PNU-17820A, PNU-33312, PNU-38773, PNU-90530 (Elan / Pfizer); KMI-370, KMI-358, kmi-008 (Kyoto University); OM-99-2, OM-003 (Athenagen Inc.); AZ-12304146 (AstraZeneca / Astex); GW-840736X (GlaxoSmithKline pic), DNP-004089 (De Novo Pharmaceuticals Ltd.) y CT-21166 (CoMentis Inc.).

Inhibidores de gamma-secretasa y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 2005/008250, WO 2006/004880, US 7.122.675, US 7,030,239, US 6.992.081, US 6.982.264, WO 2005/028440. WO 2004/101562, US 6.756.511, US 6.683.091, WO 03/066592, 10 WO 2005/097768. WO 03/014075, WO 03/013527, WO 02/36555, WO 01/53255, US 7.109.217, US 7.101.895, US 7.049.296, US 7.034.182, US 6.984.626, WO 2005/040126, WO 2005/030731, WO 2005/014553, US 6.890.956, EP 1334085, EP 1263774, WO 2004/101538, WO 2004/00958, WO 2004/089911, WO 2004/073630, WO 2004/069826, WO 2004/031137, WO 2004/039370. WO 2004/031139, US 6.713.276, US 6.686.449, WO 03/091278, US 6.649.196, US 6.448.229, WO 01/77144 y WO 01/66564. 15

Inhibidores de gamma-secretasa adecuados para los fines de la presente invención son GSI-953, WAY-GSI-A, WAY-GSI-B (Wyeth); MK-0752, MRK-560, L-852505, L-685-458, L-852631, L-852646 (Merck & Co. Inc.); LY-450139, LY-411575, AN-37124 (Eli Lilly & Co.); BMS-299897, BMS-433796 (Bristol-Myers Squibb Co.); E-2012 (Eisai Co. Ltd.); EHT-0206, EHT-206 (ExonHit Therapeutics SA); y NGX-555 (TorreyPines Therapeutics Inc.).

- 20 Inhibidores de DP IV y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos US 6.011.155; US 6.107.317; US 6.110.949; US 6.124.305; US 6.172.081; WO 99/61431, DE19834591, WO 99/67278, WO 99/67279, WO 97/40832 WO 95/15309, WO 98/19998, WO 00/07617, WO 99/38501, WO 99/46272 WO 99/38501, WO 01/68603, WO 01/40180 WO 01/81337, WO 01/81304, WO 01/55105, WO 02/02560, WO 01/34594, WO 02/38541, WO 02/083128, WO 03/072556, WO 03/002593, WO 03/000250, WO 03/000180, WO 03/000181, EP1258476, WO 03/002553, WO 03/002531, WO 03/002530, 25 WO 03/004496, WO 03/004498, WO 03/024942, WO 03/024965, WO 03/033524, WO 03/035057, WO 03/035067, WO 03/037327, WO 03/040174, WO 03/045977, WO 03/055881, WO 03/057144, WO 03/057666, WO 03/068748, WO 03/068757, WO 03/082817, WO 03/101449, WO 03/101958, WO 03/104229, WO 03/74500, WO 2004/007446, WO 2004/007468, WO 2004/018467, WO 2004/018468, WO 2004/018469, WO 2004/026822, WO 2004/032836, WO 2004/033455, WO 2004/037169, WO 2004/041795, WO 2004/043940, WO 2004/048352, WO 2004/050022, WO 2004/058266, WO 2004/069162, WO 2004/071454, WO 2004/076433, 30 WO 2004/076434, WO 2004/087053, WO 2004/089362, WO 2004/099185, WO 2004/103276, WO 2004/103993, WO 2004/108730, WO 2004/110436, WO 2004/111041, WO 2004/112701, WO 2005/000846, WO 2005/000848, WO 2005/011581, WO 2005/016911, WO 2005/023762, WO 2005/025554, WO 2005/026148, WO 2005/030751, WO 2005/033106, WO 2005/037828, WO 2005/040095, WO 2005/044195, WO 2005/047297, WO 2005/051950, WO 2005/056003, WO 2005/056013, WO 2005/058849, WO 2005/075426, WO 2005/082348, WO 2005/085246, WO 2005/087235, WO 2005/095339, WO 2005/095343, WO 2005/095381, WO 2005/108382, WO 2005/113510, WO 2005/116014, WO 2005/116029, WO 2005/118555, WO 2005/120494, WO 2005/121089, WO 2005/121131, 35 WO 2005/123685, WO 2006/995613; WO 2006/009886; WO 2006/013104; WO 2006/017292; WO 2006/019965; 40 WO 2006/020017; WO 2006/023750; WO 2006/039325; WO 2006/041976; WO 2006/047248; WO 2006/058064; WO 2006/058628; WO 2006/066747; WO 2006/066770 y WO 2006/068978.
- Inhibidores de DP IV adecuados para los fines de la presente invención son, por ejemplo, sitagliptina, des-fluoro-sitagliptina (Merck & Co. Inc.); vildagliptina, DPP-728, SDZ-272-070 (Novartis); ABT- 279, ABT-341 (Abbott Laboratories); denagliptina, TA-6666 (GlaxoSmithKline pic); SYR-322 (Takeda San Diego Inc.); talabostato (Point Therapeutics Inc.); Ro-0730699, R-1499, R-1438 (Roche Holding AG); FE-999011 (Ferring Pharmaceuticals); TS-021 (Taisho Pharmaceutical Co. Ltd.); GRC-8200 (Glenmark Pharmaceuticals Ltd.); ALS-2-0426 (Alantos Pharmaceuticals Holding Inc.); ARI-2243 (Arisaph Pharmaceuticals Inc.); SSR-162369 (Sanofi-Synthelabo); MP-513 (Mitsubishi Pharma Corp.); DP-893, CP-867534-01 (Pfizer Inc.); TSL-225, TMC-2A (Tanabe Seiyaku Co. Ltd.); PHX-1149 (Phenomenix Corp.); saxagliptina (Bristol-Myers Squibb Co.); PSN-9301 ((OSI) Prosidion), S-40755 (Servier);
 KRP-104 (ActivX Biosciences Inc.); sulfostina (Zaidan Hojin); KR-62436 (Korea Research Institute of Chemical Technology (Instituto de investigación coreano de tecnología quimica)); P32/98 (Probiodrug AG); BI-A, BI-B (Boehringer Ingelheim Corp.); SK-0403 (Sanwa Kagaku Kenkyusho Co. Ltd.) y NNC-72-2138 (Novo Nordisk A/S).

Otros inhibidores de DP IV preferibles son

5

- (i) compuestos similares a dipéptidos, divulgados en el documento WO 99/61431, por ejemplo N-valil prolilo, O-55 benzoil hidroxilamina, alanil pirrolidina, isoleucil tiazolidina como L-alo-isoleucil tiazolidina, L-treoisoleucil pirrolidina y sales de la misma, especialmente las sales fumáricas y L-alo-isoleucil pirrolidina y sales de la misma;
 - (ii) estructuras peptídicas, divulgadas en el documento WO 03/002593, por ejemplo tripéptidos;
 - (iii) peptidilcetonas, divulgadas en el documento WO 03/033524;

(vi) aminocetonas sustituidas, divulgadas en el documento WO 03/040174;

35

50

- (v) inhibidores de DP IV tópicamente activos divulgados en el documento WO 01/14318;
- (vi) profármacos de inhibidores de DP IV, divulgados en los documentos WO 99/67278 y WO 99/67279; y
- (v) inhibidores de DP IV basados en glutaminilo, divulgados en los documentos WO 03/072556 y WO 2004/099134.
- Inhibidores de la síntesis de beta amiloides adecuados para los fines de la presente invención son, por ejemplo, bisnorcimserina (Axonyx Inc.); (R)-flurbiprofeno (MCP-7869; Flurizan) (Myriad Genetics); nitroflurbiprofeno (NicOx); BGC-20-0406 (Sankyo Co. Ltd.) y BGC-20-0466 (BTG pic).
- Inhibidores del depósito de proteínas amiloides adecuados para los fines de la presente invención son, por ejemplo, SP-233 (Samaritan Pharmaceuticals); AZD-103 (Ellipsis Neurotherapeutics Inc.); AAB-001 (bapineuzumab), AAB-002, ACC-001 (Elan Corp pic); colostrinina (ReGen Therapeutics pic); tramiprosato (Neurochem); AdPEDI-(beta-amiloide1-6)11) (Vaxin Inc.); MPI-127585, MPI-423948 (Mayo Foundation); SP-08 (Georgetown University); ACU-5A5 (Acumen / Merck); transtiretina (State University of Nueva York)); PTI-777, DP-74, DP 68, Exebryl (ProteoTech Inc.); m266 (Eli Lilly & Co.); EGb-761 (Dr. Willmar Schwabe GmbH); SPI-014 (Satori Pharmaceuticals Inc.); ALS-633, ALS-499 (Advanced Life Sciences Inc.); AGT-160 (ArmaGen Technologies Inc.); TAK-070 (Takeda Pharmaceutical Co. Ltd.); CHF-5022, CHF-5074, CHF-5096 y CHF-5105 (Chiesi Farmaceutici SpA.).
- Inhibidores de PDE-4 adecuados para los fines de la presente invención son, por ejemplo, doxofilina (Instituto Biologico Chemioterapica ABC SpA.); idudilast gotas oculares, tipelukast, ibudilast (Kyorin Pharmaceutical Co. Ltd.); teofilina (Elan Corp.); cilomilast (GlaxoSmithKline pic); Atopik (Barrier Therapeutics Inc.); tofimilast, CI-1044, PD-189659, CP-220629, inhibidor de PDE 4d BHN (Pfizer Inc.); arofilina, LAS-37779 (Almirall Prodesfarma SA.); roflumilast, hidroxipumafentrina (Altana AG), tetomilast (Otska Pharmaceutical Co. Ltd.); tipelukast, ibudilast (Kyorin Pharmaceutical), CC-10004 (Celgene Corp.); HT-0712, IPL-4088 (Inflazyme Pharmaceuticals Ltd.); MEM-1414, MEM-1917 (Memory Pharmaceuticals Corp.); oglemilast, GRC-4039 (Glenmark Pharmaceuticals Ltd.); AWD-12-281, ELB-353, ELB-526 (Elbion AG); EHT-0202 (ExonHit Therapeutics SA.); ND-1251 (Neuro3d SA.); 4AZA-PDE4 (4 AZA Bioscience NV.); AVE-8112 (Sanofi-Aventis); CR-3465 (Rottapharm SpA.); GP-0203, NCS-613 (Centre National de Ia Recherche Scientifique (Centro Nacional de Investigación Científica)); KF-19514 (Kyowa Hakko Kogyo Co. Ltd.); ONO-6126 (Ono Pharmaceutical Co. Ltd.); OS-0217 (Dainippon Pharmaceutical Co. Ltd.); IBFB-130011, IBFB-150007, IBFB-130020, IBFB-140301 (IBFB Pharma GmbH); IC-485 (ICOS Corp.); RBx-14016 y RBx-11082 (Ranbaxy Laboratories Ltd.). Un inhibidor de PDE-4 preferible es rolipram.
- Inhibidores de MAO y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 2006/091988, WO 2005/007614, WO 2004/089351, WO 01/26656, WO 01/12176, WO 99/57120, WO 99/57119, WO 99/13878, WO 98/40102, WO 98/01157, WO 96/20946, WO 94/07890 y WO 92/21333.
 - Inhibidores de MAO adecuados para los fines de la presente invención son, por ejemplo, linezolida (Pharmacia Corp.); RWJ-416457 (RW Johnson Pharmaceutical Research Institute); budipina (Altana AG); GPX-325 (BioResearch Ireland); isocarboxazida; fenelzina; tranilcipromina; indantadol (Chiesi Farmaceutici SpA.); moclobemida (Roche Holding AG); SL-25.1131 (Sanofi-Synthelabo); CX-1370 (Burroughs Wellcome Co.); CX-157 (Krenitsky Pharmaceuticals Inc.); desoxipeganina (HF Arzneimittelforschung GmbH & Co. KG); bifemelano (Mitsubishi-Tokyo Pharmaceuticals Inc.); RS-1636 (Sankyo Co. Ltd.); esuprona (BASF AG); rasagilina (Teva Pharmaceutical Industries Ltd.); ladostigil (Hebrew University of Jerusalem); safinamida (Pfizer) y NW-1048 (Newron Pharmaceuticals SpA.).
- Antagonistas de histamina H3 adecuados para los fines de la presente invención son, por ejemplo, ABT-239, ABT-834 (Abbott Laboratories); 3874-H1 (Aventis Pharma); UCL-2173 (Berlin Free University), UCL-1470 (BioProjet, Societe Civile de Recherche); DWP-302 (Daewoong Pharmaceutical Co Ltd); GSK-189254A, GSK-207040A (GlaxoSmithKline Inc.); cipralisant, GT-2203 (Gliatech Inc.); ciproxifan (INSERM), 1S,2S-2-(2-aminoetil)-1-(1H-imidazol-4-il)ciclopropano (Hokkaido University); JNJ-17216498, JNJ-5207852 (Johnson & Johnson); NNC-0038-0000-1049 (Novo Nordisk A/S) y Sch-79687 (Schering-Plough).
 - Inhibidores de PEP y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos JP 01042465, JP 03031298, JP 04208299, WO 00/71144, US 5.847.155; JP 09040693, JP 10077300, JP 05331072, JP 05015314, WO 95/15310, WO 93/00361, EP 0556482, JP 06234693, JP 01068396, EP 0709373, US 5.965.556, US 5.756.763, US 6.121.311, JP 63264454, JP 64000069, JP 63162672, EP 0268190, EP 0277588, EP 0275482, US 4.977.180, US 5.091.406, US 4.983.624, US 5.112.847, US 5.100.904, US 5.254.550, US 5.262.431, US 5.340.832, US 4.956.380, EP 0303434, JP 03056486, JP 01143897, JP 1226880, EP 0280956, US 4.857.537, EP 0461677, EP 0345428, JP 02275858, US 5,506,256, JP 06192298, EP 0618193, JP 03255080, EP 0468469, US 5.118.811, JP 05025125, WO 9313065, JP 05201970, WO 9412474, EP 0670309, EP 0451547, JP 06339390, US 5.073.549, US 4.999.349, EP 0268281, US 4.743.616, EP 0232849, EP 0224272, JP 62114978, JP 62114957, US 4.757.083, US 4.810.721, US 5.198.458, US 4.826.870, EP 0201742, EP 0201741, US 4.873.342, EP 0172458, JP 61037764, EP 0201743, US 4.772.587, EP 0372484, US 5.028.604, WO 91/18877, JP 04009367, JP 04235162,
- 55 US 4.757.083, US 4.810.721, US 5.198.458, US 4.826.870, EP 0201742, EP 0201741, US 4.873.342, EP 0172458, JP 61037764, EP 0201743, US 4.772.587, EP 0372484, US 5.028.604, WO 91/18877, JP 04009367, JP 04235162, US 5.407.950, WO 95/01352, JP 01250370, JP 02207070, US 5.221.752, EP 0468339, JP 04211648, WO 99/46272, WO 2006/058720 y PCT/EP2006/061428.

Inhibidores de prolil endopeptidasa adecuados para los fines de la presente invención son, por ejemplo Fmoc-Ala-Pyrr-CN, Z-Phe-Pro-Benzotiazol (Probiodrug), Z-321 (Zeria Pharmaceutical Co Ltd.); ONO-1603 (Ono Pharmaceutical Co Ltd.); JTP-4819 (Japan Tobacco Inc.) y S-17092 (Servier).

Otros compuestos adecuados que pueden usarse de acuerdo con la presente invención en combinación con inhibidores de QC son NPY, un mimético de NPY o un agonista o antagonista de NPY o un ligando de los receptores de NPY.

Son preferibles de acuerdo con la presente invención los antagonistas de los receptores de NPY.

5

40

45

estos documentos de patente.

Ligandos o antagonistas adecuados de los receptores de NPY son compuestos derivados de 3a,4,5,9b-tetrahidro-1h-benz[e]indol-2-il-amina como se divulga en el documento WO 00/68197.

- 10 Antagonistas del receptor de NPY que pueden mencionarse incluyen los divulgados en las solicitudes de patente europea EP 0 614 911, EP 0 747 357, EP 0 747 356 y EP0 747 378; las solicitudes de patente internacional WO 94/17035, WO 97/19911, WO 97/19913, WO 96/12489, WO 97/19914, WO 96/22305, WO 96/40660, WO 96/12490, WO 97/09308, WO 97/20820, WO 97/20821, WO 97/20822, WO 97/20823, WO 97/19682, WO 97/25041, WO 97/34843, WO 97/46250, WO 98/03492, WO 98/03493, WO 98/03494 y WO 98/07420; WO 00/30674, las patentes de Estados Unidos N.º 5.552.411, 5.663.192 y 5.567.714; 6.114.336, la solicitud de 15 patente japonesa JP 09157253; las solicitudes de patente internacional WO 94/00486, WO 93/12139, WO 95/00161 y WO 99/15498; la patente de Estados Unidos N.º 5,328,899; la solicitud de patente alemana DE 3939797; las solicitudes de patente europea EP 355794 y EP 355793; y las solicitudes de patente japonesa JP 06116284 y JP 07267988. Antagonistas de NPY preferibles incluyen los compuestos que se divulgan específicamente en estos documentos de patente. Los compuestos más preferibles incluyen antagonistas de NPY basados en aminoácidos y 20 no basados en péptidos. Los antagonistas de NPY basados en aminoácidos y no basados en péptidos que pueden mencionarse incluyen los divulgados en las solicitudes de patente europea EP 0 614 911, EP 0 747 357, EP 0 747 356 y EP 0 747 378; las solicitudes de patente internacional WO 94/17035, WO 97/1991 1, WO 97/19913, WO 96/12489, WO 97/19914, WO 96/22305, WO 96/40660, WO 96/12490, WO 97/09308, WO 97/20820, WO 97/20821 , WO 97/20822, WO 97/20823, WO 97/19682, WO 97/25041 , WO 97/34843, WO 97/46250, 25 WO 98/03492, WO 98/03493, WO 98/03494 y WO 98/07420; WO 00/99/15498, las patentes de Estados Unidos N.º 5.552.411, 5.663.192 v 5.567.714; v la solicitud de patente japonesa JP 09157253. Antagonistas de NPY basados
- Compuestos particularmente preferibles incluyen antagonistas de NPY basados en aminoácidos. Compuestos basados en aminoácidos que pueden mencionarse incluyen los divulgados en las solicitudes de patente internacional WO 94/17035, WO 97/19911, WO 97/19913, WO 97/19914 o, preferiblemente, WO 99/15498. Antagonistas de NPY preferibles incluyen los que se divulgan específicamente en estos documentos de patente, por ejemplo BIBP3226 y, especialmente, amida de (R)-N2-(difenilacetil)-(R)-N-[1-(4-hidroxi-fenil)etil]arginina (ejemplo 4 de la solicitud de patente internacional WO 99/15498).

Agonistras del receptor M1 y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 2004/087158, WO 91/10664.

en aminoácidos y no basados en péptidos preferibles incluyen los compuestos que se divulgan específicamente en

Antagonistas del receptor M1 adecuados para los fines de la presente invención son, por ejemplo, CDD-0102 (Cognitive Pharmaceuticals); Cevimelina (Evoxac) (Snow Brand Milk Products Co. Ltd.); NGX-267 (TorreyPines Therapeutics); sabcomelina (GlaxoSmithKline); alvamelina (H Lundbeck A/S); LY-593093 (Eli Lilly & Co.); VRTX-3 (Vertex Pharmaceuticals Inc.); WAY-132983 (Wyeth) y CI-1017/ (PD-151832) (Pfizer Inc.).

Inhibidores de acetilcolinesterasa y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 2006/071274, WO 2006/070394, WO 2006/040688, WO 2005/092009, WO 2005/079789, WO 2005/039580, WO 2005/027975, WO 2004/084884, WO 2004/037234, WO 2004/032929, WO 03/101458, WO 03/091220, WO 03/082820, WO 03/020289, WO 02/32412, WO 01/85145, WO 01/78728, WO 01/66096, WO 00/02549, WO 01/00215, WO 00/15205, WO 00/23057, WO 00/33840, WO 00/30446, WO 00/23057, WO 00/15205, WO 00/09483, WO 00/07600, WO 00/02549, WO 99/47131, WO 99/07359, WO 98/30243, WO 97/38993, WO 97/13754, WO 94/29255, WO 94/20476, WO 94/19356, WO 93/03034 y WO 92/19238.

- Inhibidores de acetilcolinesterasa adecuados para los fines de la presente invención son por ejemplo donepezil (Eisai Co. Ltd.); rivastigmina (Novartis AG); (-)-fenserina (TorreyPines Therapeutics); ladostigilo (Hebrew University of Jerusalem); huperzina A (Mayo Foundation); galantamina (Johnson & Johnson); Memoquina (Universita di Bologna); SP-004 (Samaritan Pharmaceuticals Inc.); BGC-20-1259 (Sankyo Co. Ltd.); fisostigmina (Forest Laboratories Inc.); NP-0361 (Neuropharma SA); ZT-1 (Debiopharm); tacrina (Warner-Lambert Co.); metrifonato (Bayer Corp.) y INM-176 (Whanin).
- 55 Antagonistas del receptor de NMDA y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 2006/094674, WO 2006/058236, WO 2006/058059, WO 2006/010965, WO 2005/000216, WO 2005/102390, WO 2005/079779, WO 2005/079756, WO 2005/072705, WO 2005/070429, WO 2005/055996, WO 2005/035522, WO 2005/009421, WO 2005/000216, WO 2004/092189, WO 2004/039371, WO 2004/028522,

WO 2004/009062, WO 03/010159, WO 02/072542, WO 02/34718, WO 01/98262, WO 01/94321, WO 01/92204, WO 01/81295, WO 01/32640, WO 01/10833, WO 01/10831, WO 00/56711, WO 00/29023. WO 00/00197. WO 99/48891, WO 99/01416, WO 99/07413, WO 99/53922, WO 99/45963, WO 99/01416, WO 98/50075, WO 98/10757, WO 97/23216, WO 98/50044. WO 98/05337. WO 97/32873. WO 97/23215. WO 97/23214. WO 96/14318. WO 96/08485, WO 95/31986, WO 95/26352, WO 95/26350, WO 95/26349, WO 95/26342. WO 95/12594, WO 95/02602, WO 95/02601, WO 94/20109, WO 94/13641, WO 94/09016 y WO 93/25534.

Antagonistas del receptor de NMDA adecuados para los fines de la presente invención son, por ejemplo, Memantina (Merz & Co. GmbH); topiramato (Johnson & Johnson); AVP-923 (Neurodex) (Center for Neurologic Study); EN-3231 (Endo Pharmaceuticals Holdings Inc.); neramexano (MRZ- 2/579) (Merz y Forest); CNS-5161 (CeNeS Pharmaceuticals Inc.); dexanabinol (HU-21 1; Sinabidol; PA-50211) (Pharmos); EpiCept NP-1 (Dalhousie University); indantadol (V-3381; CNP-3381) (Vernalis); perzinfotel (EAA-090, WAY-126090, EAA-129) (Wyeth); RGH-896 (Gedeon Richter Ltd.); traxoprodilo (CP-101606), besonprodilo (PD-196860, CI-1041) (Pfizer Inc.); CGX-1007 (Cognetix Inc.); delucemina (NPS-1506) (NPS Pharmaceuticals Inc.); EVT-101 (Roche Holding AG); acamprosato (Synchroneuron LLC); CR-3991, CR-2249, CR-3394 (Rottapharm SpA.); AV-101 (4-CI-cinurenina (4-CI-KYN)), ácido 7-cloro-cinurénico (7-CI-KYNA) (VistaGen); NPS-1407 (NPS Pharmaceuticals Inc.); YT-1006 (Yaupon Therapeutics Inc.); ED-1812 (Sosei R&D Ltd.); himantano (clorhidrato de N-2-(adamantil)-hexametilen-imina) (RAMS); Lancicemina (AR-R-15896) (AstraZeneca); EVT-102, Ro-25-6981 y Ro-63-1908 (Hoffmann-La Roche AG/Evotec).

Además, la presente invención se refiere a politerapias útiles para el tratamiento de aterosclerosis, reestenosis o artritis, administrando un inhibidor de QC en combinación con otro agente terapéutico seleccionado del grupo que consiste en inhibidores de la enzima convertidora de angiotensina (ECA); bloqueadores del receptor de angiotensina II; diuréticos; bloqueadores de canales de calcio (CCB); bloqueadores beta; inhibidores de la agregación de plaquetas; moduladores de la absorción de colesterol; inhibidores de HMG-Co-A reductasa; compuestos que aumentan el nivel de lipoproteína de alta densidad (HDL); inhibidores de renina; inhibidores de IL-6; corticosteroides antiinflamatorios; agentes antiproliferativos; donantes de óxido nítrico; inhibidores de la síntesis de matriz extracelular; inhibidores del factor de crecimiento o de la transducción de la señal de citocina; antagonistas de MCP-1 e inhibidores de tirosina cinasa que proporciona efectos terapéuticos beneficiosos o sinérgicos sobre cada componente de monoterapia individual.

Se entiende que bloqueadores del receptor II de angiotensina son los agentes activos que se unen al subtipo del receptor de AT1 del receptor de angiotensina II pero no tienen como consecuencia la activación del receptor. Como consecuencia del bloqueo del receptor AT1, estos antagonistas pueden usarse, por ejemplo, como agentes antihipertensores.

Bloqueadores del receptor II de angiotensina adecuados que pueden usarse en la combinación de la presente invención incluyen antagonistas del receptor de AT₁ que tienen características estructuras diferentes, siendo preferibles aquellos con estructuras no peptídicas. Por ejemplo, puede hacerse mención de los compuestos que se seleccionan del grupo que consiste en valsartán (EP 443983), losartán (EP 253310), candesartán (EP 459136), eprosartán (EP 403159), irbesartán (EP 454511), olmesartán (EP 503785), tasosartán (EP 539086), telmisartán (EP 522314), el compuesto con la designación E-4177 de la fórmula

5

10

15

20

25

30

35

el compuesto con la designación SC-52458 de la fórmula siguiente

y el compuesto con la designación el compuesto ZD-8731 de la fórmula

15

25

30

35

o, en cada caso, una sal farmacéuticamente aceptable de los mismos.

Antagonistas del receptor AT₁ preferibles son los agentes que se han aprobado y están disponibles en el mercado, siendo el más preferible valsartán, o una sal farmacéuticamente aceptable del mismo.

La interrupción de la degradación enzimática de angiotensina a angiotensina II con inhibidores de la ECA es una variante exitosa para la regulación de presión sanguínea y, por lo tanto, también pone a disposición un procedimiento terapéutico para el tratamiento de la hipertensión.

Un inhibidor de la ECA adecuado para usar en la combinación de la presente invención es, por ejemplo, un compuesto seleccionado del grupo que consiste en alacepril, benazepril, benazeprilato; captopril, cilazapril, delapril, enaprilato, fosinopril, imidapril, lisinopril, moveltopril, perindopril, quinapril, ramipril, espirapril, temocapril y trandolapril, o en cada caso, una sal farmacéuticamente aceptable de los mismos.

linhibidores de la ECA preferibles son los agentes que se han comercializado, del modo más preferible benazepril y enalapril.

Un diurético es, por ejemplo, un derivado de tiazida seleccionado del grupo que consiste en clorotiazida, hidroclorotiazida, metilclotiazida y clorotalidon. El diurético más preferible es hidroclorotiazida. Un diurético comprende además un diurético ahorrador de potasio tal como amilorida o triameterina, o una sal farmacéuticamente aceptable de los mismos.

La clase de los BCC (bloqueadores de canales de calcio) comprende esencialmente dihidropiridinas (DHP) y no-DHP, tales como BCC de tipo diltiazem y de tipo verapamilo.

Un BCC útil en dicha combinación es preferiblemente un DHP representativo seleccionado del grupo que consiste en amlodipina, felodipina, riosidina, isradipina, lacidipina, nicardipina, niguldipina, niguldipina, niludipina, nimodipina, nisoldipina, nitrendipina y nivaldipina, y es preferiblemente un no-DHP representativo seleccionado del grupo que consiste en flunarizina, prenilamina, diltiazem, fendilina, gallopamilo, mibefradilo, anipamilo, tiapamilo y verapamilo, y en cada caso, una sal farmacéuticamente aceptable de los mismos. Todos estos BCC se usan terapéuticamente, por ejemplo, como fármacos antihipertensivos, contra la angina de pecho y antiarrítmicos.

BCC preferibles comprenden amlodipina, diltiazem, isradipina, nicardipina, nifedipina, nimodipina, nisoldipina, nitrendipina y verapamilo o, por ejemplo dependiente del BCC específico, una sal farmacéuticamente aceptable de los mismos. Especialmente preferible como DHP es amlodipina o una sal farmacéuticamente aceptable de la misma, especialmente el besilato. Un producto especialmente representativo de no-DHP es verapamilo o una sal farmacéuticamente aceptable, especialmente el clorhidrato, del mismo.

Bloqueadores beta adecuados para su uso en la presente invención incluyen agentes bloqueadores beta-adrenérgicos (bloqueadores beta), que compiten con epinefrina por receptores beta-adrenérgicos e interfieren con la acción de epinefrina. Preferiblemente, los bloqueadores beta presentan selectividad por el receptor betaadrenérgico en comparación con los receptores alfa-adrenérgicos, y por lo tanto, no tienen un efecto alfa bloqueador significativo.

Bloqueadores beta adecuados incluyen compuestos seleccionados de acebutolol, atenolol, betaxolol, bisoprolol, carteolol, carvedilol, esmolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol y timolol. Cuando el bloqueador beta es un ácido o una base o es capaz de otro modo de formar sales o profármacos farmacéuticamente aceptables, se considera que estas formas están abarcadas por el presente documento, y se entiende que los compuestos pueden administrarse en forma libre o en forma de una sal farmacéuticamente aceptable o un profármaco, tal como un éster fisiológicamente hidrolizable y aceptable. Por ejemplo, metoprolol se administra de forma adecuada como su sal tartrato, propranolol se administra de forma adecuada como la sal clorhidrato y así sucesivamente.

Inhibidores de agregación de plaquetas incluyen PLAVIX® (bisulfato de clopidogrel), PLETAL® (cilostazol) y aspirina.

Moduladores de la absorción de colesterol incluyen ZETIA® (ezetimiba) y KT6-971 (Kotobuki Pharmaceutical Co. Japan).

Inhibidores de HMG-Co-A reductasa (también denominados inhibidores de beta-hidroxi-beta-metilglutaril-co-enzima-A reductasa o estatinas) se entiende que son los agentes activos que pueden usarse para reducir niveles de lípidos que incluyen colesterol en sangre.

La clase de inhibidores de HMG-Co-A reductasa comprende compuestos que tienen características estructurales diferentes. Por ejemplo, puede hacerse mención de los compuestos que se seleccionan del grupo que consiste en atorvastatina, cerivastatina, fluvastatina, lovastatina, pitavastatina, pravastatina, rosuvastatina y simvastatina, o en cada caso, una sal farmacéuticamente aceptable de los mismos.

20 Inhibidores de HMG-Co-A reductasa preferibles son los agentes que se han comercializado, siendo los más preferibles atorvastatina, pitavastatina o simvastatina, o una sal farmacéuticamente aceptable de los mismos.

Compuestos que aumentan el HDL incluyen, pero no están limitados a, inhibidores de proteína de transferencia de éster de colesterol (CETP). Ejemplos de inhibidores de CETP incluyen JTT7O5 divulgado en el ejemplo 26 de la patente de Estados Unidos N.º 6.426.365, expedida el 30 de junio de 2002, y sales farmacéuticamente aceptables del mismo.

La inhibición de la inflamación mediada por interleucina 6 puede lograrse indirectamente mediante la regulación de la síntesis endógena de colesterol y la depleción de isoprenoides o mediante la inhibición directa de la ruta de transducción de señal usando inhibidor/anticuerpo de interleucina-6, inhibidor/anticuerpo del recetor de interleucina-6, oligonucleótico antisentido de interleucina-6 (ASON), inhibidor/anticuerpo de proteína gp130, inhibidores/anticuerpos de tirosina cinasa, inhibidores/anticuerpos de serina/treonina cinasa, inhibidores/anticuerpos de proteína activada por mitógeno (MAP) cinasa, inhibidores/anticuerpos de fosfatidilinositol 3-cinasa (PI3K), inhibidores/anticuerpos del factor nuclear kappaB (NF-κB), inhibidores/anticuerpos de IκB cinasa (IKK), inhibidores/anticuerpos de proteína-1 activadora (AP-1), inhibidores/anticuerpos de factores de transcripción STAT, IL-6 alterada, péptidos parciales de IL-6 o del receptor de IL-6 o proteína SOCS (supresores de la señalización de citocinas), activadores/ligandos de PPAR gamma y/o PPAR beta/delta o un fragmento funcional de los mismos.

Un corticoesteroide antiinflamatorio adecuado es dexametasona.

Agentes antiproliferativos adecuados son cladribina, rapamicina, vincristina y taxol.

Un inhibidor adecuado de síntesis de matriz extracelular es halofuginona.

Un inhibidor del factor de crecimiento o de la transducción de la señal de citocinas adecuado es, por ejemplo, R115777.

Un inhibidor de tirosina cinasa adecuado es tirfostina.

15

25

30

35

50

Inhibidores de renina adecuados se describen, por ejemplo, en el documento WO 2006/116435. Un inhibidor de renina preferible es aliskiren, preferible en forma de la sal hemi-fumarato del mismo.

Antagonistas de MCP-1 puede seleccionarse, por ejemplo, de anticuerpos anti-MCP-1, preferiblemente anticuerpos monoclonales o monoclonales humanizados, inhibidores de la expresión de MCP-1, antagonistas de CCR2, inhibidores de TNF-alfa, inhibidores de la expresión génica de VCAM-1y anticuerpos monoclonales anti-C5a.

Antagonistas de MCP-1 y composiciones que contienen dichos inhibidores se describen, por ejemplo, en los documentos WO 02/070509, WO 02/081463, WO 02/060900, US2006/670364, US2006/677365, WO 2006/097624, US2006/316449, WO 2004/056727, WO 03/053368, WO 00/198289, WO 00/157226, WO 00/046195, WO 00/046196, WO 00/046199, WO 00/046198, WO 00/046197, WO 99/046991, WO 99/007351, WO 98/006703, WO 97/012615, WO 2005/105133, WO 03/037376, WO 2006/125202, WO 2006/085961, WO 2004/024921, WO 2006/074265.

Antagonistas de MCP-1 adecuados son, por ejemplo, C-243 (Telik Inc.); NOX-E36 (Noxxon Pharma AG); AP-761 (Actimis Pharmaceuticals Inc.); ABN-912, NIBR-177 (Novartis AG); CC-11006 (Celgene Corp.); SSR-150106 (Sanofi-Aventis); MLN-1202 (Millenium Pharmaceuticals Inc.); AGI-1067, AGIX-4207, AGM-1096 (AtherioGenics Inc.); PRS-211095, PRS-211092 (Pharmos Corp.); anticuerpos monoclonales anti-C5a, por ejemplo neutrazumab (G2 Therapies Ltd.); AZD-6942 (AstraZeneca plc); 2-mercaptoimidazoles (Johnson & Johnson); TEI-E00526, TEI-6122 (Deltagen); RS-504393 (Roche Holding AG); SB-282241, SB-380732, ADR-7 (GlaxoSmithKline); anticuerpos monoclonales anti-MCP-1 (Johnson & Johnson).

Combinaciones de inhibidores de QC con antagonistas de MCP-1 pueden ser útiles para el tratamiento de enfermedades inflamatorias, en general, incluyendo enfermedades neurodegenerativas.

10 Combinaciones de inhibidores de QC con antagonistas de MCP-1 son preferibles para el tratamiento de la enfermedad de Alzheimer.

Del modo más preferible, el inhibidor de QC se combina con uno o más compuestos seleccionados del grupo siguiente:

PF-4360365, m266, bapineuzumab, R-1450, posifeno, (+)-fenserina, MK-0752, LY-450139, E-2012, (R)flurbiprofeno, AZD-103, AAB-001 (Bapineuzumab), tramiprosato, EGb-761, TAK-070, doxofilina, teofilina, cilomilast, 15 tofimilast, roflumilast, tetomilast, tipelukast, ibudilast, HT-0712, MEM-1414, oglemilast, Linezolid, budipina, isocarboxazida, fenelzina, tranilcipromina, indantadol, moclobemida, rasagilina, ladostigilo, safinamida, ABT-239, ABT-834, GSK-189254A, ciproxifán, JNJ-17216498, Fmoc-Ala-Pyrr-CN, Z-Phe-Pro-Benzotiazol, Z-321, ONO-1603, JTP-4819, S-17092, BIBP3226; amida de (R)-N2-(difenilacetil)-(R)-N-[1-(4-hidroxifenil)etil]arginina, cevimelina, sabcomelina, (PD-151832), donepezil, rivastigmina, (-)-fenserina, ladostigilo, galantamina, tacrina, metrifonato, 20 memantina, topiramato, AVP-923, EN-3231, neramexano, valsartán, benazepril, enalapril, hidroclorotiazida, amlodipina, diltiazem, isradipina, nicardipina, nifedipina, nimodipina, nisoldipina, nitrendipina, verapamilo, amlodipina, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, carvedilol, esmolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol, timolol, PLAVIX® (bisulfato de clopidogrel), PLETAL® (cilostazol), aspirina, ZETIA® (ezetimiba) y KT6-971, estatinas, atorvastatina, pitavastatina o simvastatina; dexametasona, cladribina, 25 rapamicina, vincristina, taxol, aliskiren, C-243, ABN-912, SSR-150106, MLN-1202 y betaferón.

En particular, se consideran las combinaciones siguientes:

5

30

35

45

- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con atorvastatina para el tratamiento y/o la prevención de aterosclerosis,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inmunodepresores, preferiblemente rapamicina, para el tratamiento y/o la prevención de reestenosis,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inmunodepresores, preferiblemente paclitaxel, para el tratamiento y/o la prevención de reestenosis.
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores AChE, preferiblemente donepezil, para la prevención y/o el tratamiento de la enfermedad de Alzheimer,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con interferones, preferiblemente aronex, para la prevención y/o el tratamiento de esclerosis múltiple,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con interferones, preferiblemente betaferón, para la prevención y/o el tratamiento de esclerosis múltiple,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con interferones, preferiblemente Rebif, para la prevención y/o el tratamiento de esclerosis múltiple,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con copaxona, para la prevención y/o el tratamiento de esclerosis múltiple,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con dexametasona, para la prevención y/o el tratamiento de reestenosis,

- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con dexametasona, para la prevención y/o el tratamiento de aterosclerosis,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC
 seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con dexametasona, para la prevención y/o el tratamiento de artritis reumatoide,

10

15

20

30

35

50

55

- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de HMG-Co-A-reductasa, para la prevención y/o el tratamiento de reestenosis, seleccionándose el inhibidor de HMG-Co-A-reductasa de atorvastatina, cerivastatina, fluvastatina, lovastatina, pitavastatina, pravastatina, rosuvastatina y simvastatina.
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de HMG-Co-A-reductasa, para la prevención y/o el tratamiento de aterosclerosis, seleccionándose el inhibidor de HMG-Co-A-reductasa de atorvastatina, cerivastatina, fluvastatina, lovastatina, pitavastatina, pravastatina, rosuvastatina y simvastatina.
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de HMG-Co-A-reductasa, para la prevención y/o el tratamiento de artritis reumatoide, seleccionándose el inhibidor de HMG-Co-A-reductasa de atorvastatina, cerivastatina, fluvastatina, lovastatina, pitavastatina, pravastatina, rosuvastatina y simvastatina,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con anticuerpos beta amiloides, para la prevención y/o el tratamiento de deterioro cognitivo leve, siendo el anticuerpo beta-amiloide Acl-24,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con anticuerpos beta amiloides, para la prevención y/o el tratamiento de la enfermedad de Alzheimer, siendo el anticuerpo beta-amiloide AcI-24,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con anticuerpos beta amiloides, para la prevención y/o el tratamiento de neurodegeneración en el síndrome de Down, siendo el anticuerpo beta-amiloide AcI-24,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de beta-secretasa, para la prevención y/o el tratamiento de deterioro cognitivo leve, seleccionándose el inhibidor de beta-secretasa de WY-25105, GW-840736X y CTS-21166,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de beta-secretasa, para la prevención y/o el tratamiento de la enfermedad de Alzheimer, seleccionándose el inhibidor de beta-secretasa de WY-25105, GW-840736X y CTS-21166,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de beta-secretasa, para la prevención y/o el tratamiento de neurodegeneración en el síndrome de Down, seleccionándose el inhibidor de beta-secretasa de WY-25105, GW-840736X y CTS21166,
- un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC
 seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de gamma-secretasa, para la prevención y/o el tratamiento de deterioro cognitivo leve, seleccionándose el inhibidor de gamma-secretasa de LY-450139, LY-411575 y AN-37124,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de gamma-secretasa, para la prevención y/o el tratamiento de la enfermedad de Alzheimer, seleccionándose el inhibidor de gamma-secretasa de LY-450139, LY-411575 y AN-37124,
 - un inhibidor de QC, preferiblemente un inhibidor de QC de fórmula (I), más preferiblemente un inhibidor de QC seleccionado de uno cualquiera de los ejemplos 1-35, en combinación con inhibidores de gamma-secretasa, para la prevención y/o el tratamiento de neurodegeneración en el síndrome de Down, seleccionándose el inhibidor de gamma-secretasa de LY-450139, LY4 y AN-37124.

Dicha politerapia es útil, en particular, para AD, FAD, FDD y neurodegeneración en el síndrome de Down, así como de aterosclerosis, artritis reumatoide, reestenosis y pancreatitis.

Dichas politerapias pueden dar como resultado un mejor efecto terapéutico (menos proliferación, así como menos inflamación, un estímulo para la proliferación) que el que tendría lugar con cualquier agente solo.

5 Con respecto a la combinación específica de inhibidores de QC y otros compuestos, consúltese, en particular, el documento WO 2004/098625 a este respecto, que se incorpora al presente documento por referencia.

Composiciones farmacéuticas

10

15

20

25

30

35

40

45

Para preparar las composiciones farmacéuticas de la presente invención, se puede usar al menos un compuesto de fórmula (I), opcionalmente en combinación con al menos uno de los otros agentes anteriormente mencionados, como principio(s) activo(s). El/Los principio(s) activo(s) se mezcla(n) íntimamente con un vehículo farmacéutico de acuerdo con técnicas de combinación farmacéutica convencionales, vehículo que puede adoptar una amplia variedad de formas dependiendo de la forma de preparación deseada para administración, por ejemplo, oral o parenteral tal como intramuscular. En la preparación de las composiciones en forma de dosificación oral se puede emplear cualquiera de los medios farmacéuticos usuales. Así, para preparaciones orales líquidas, tales como, por ejemplo, suspensiones, elixires y soluciones, vehículos y aditivos adecuados incluyen agua, glicoles, aceites, alcoholes, aromatizantes, conservantes, colorantes y similares; para preparaciones orales sólidas tales como, por ejemplo, polvos, cápsulas, cápsulas de gel y comprimidos, vehículos y aditivos adecuados incluyen almidones, azúcares, diluyentes, agentes de granulación, lubricantes, aglutinantes, disgregantes y similares. Debido a su facilidad de administración, los comprimidos y cápsulas representan la forma de dosificación unitaria oral más ventajosa, en cuyo caso se emplean obviamente vehículos farmacéuticos sólidos. Si se desea, los comprimidos pueden recubrirse de azúcar o recubrirse entéricamente por técnicas convencionales. Para la vía parenteral, el vehículo comprenderá normalmente agua estéril, aunque pueden incluirse otros componentes, por ejemplo, para fines tales como ayudar en la solubilidad o para su conservación.

También se pueden preparar suspensiones inyectables, en cuyo caso se pueden emplear vehículos líquidos apropiados, agentes de suspensión y similares. Las composiciones farmacéuticas del presente documento contendrán, por unidad de dosificación, por ejemplo, comprimido, cápsula, polvo, inyección, cucharadita al ras y similares, una cantidad del (de los) principio(s) activo(s) necesaria para administrar una dosis eficaz como se ha descrito anteriormente. Las composiciones farmacéuticas del presente documento contendrán, por unidad de dosificación, por ejemplo, comprimido, cápsula, polvo, inyección, supositorio, cucharadita al ras y similares, de aproximadamente 0,03 mg a 100 mg/kg (preferida 0,1 - 30 mg/kg) y puede administrarse a una dosificación de aproximadamente 0,1 - 300 mg/kg por día (preferida 1 - 50 mg/kg por día) de cada principio activo o combinación de los mismos. Sin embargo, las dosificaciones, pueden variarse dependiendo de los requerimientos de los pacientes, la gravedad de la afección que está tratándose y el compuesto empleado. Se puede emplear el uso de cualquier administración diaria o dosificación posperiódica.

Preferiblemente, estas composiciones están en formas de dosificación unitaria tales como comprimidos, píldoras, cápsulas, polvos, gránulos, soluciones o suspensiones parenterales estériles, aerosol dosificado o pulverizadores líquidos, gotas, ampollas, dispositivos autoinyectores o supositorios; para administración parenteral oral, intranasal, sublinqual o rectal, o para administración por inhalación o insuflación. De forma alternativa, la composición puede presentarse en una forma adecuada para administración una vez a la semana o una vez al mes; por ejemplo, una sal insoluble del compuesto activo, tal como la sal decanoato, puede adaptarse para proporcionar una preparación de liberación prolongada para inyección intramuscular. Para preparar composiciones sólidas tales como comprimidos, el principal principio activo se mezcla con un vehículo farmacéutico, por ejemplo, componentes de formación de comprimidos convencionales tales como almidón de maíz, lactosa, sacarosa, sorbitol, talco, ácido esteárico, estearato de magnesio, fosfato de dicalcio o gomas, y otros diluyentes farmacéuticos, por ejemplo, agua, para formar una composición de preformulación sólida que contiene una mezcla homogénea de un compuesto de la presente invención, o una sal farmacéuticamente aceptable del mismo. Cuando se hace referencia a estas composiciones de preformulación como homogéneas, se quiere decir que el principio activo está disperso uniformemente por toda la composición de manera que la composición pueda subdividirse fácilmente en formas de dosificación igualmente eficaces tales como comprimidos. píldoras y cápsulas. A continuación, esta composición de preformulación sólida se subdivide en formas de dosificación unitarias del tipo descrito anteriormente que contienen de 0,1 a aproximadamente 500 mg de cada principio activo o combinaciones de las mismas de la presente invención.

Los comprimidos o píldoras de las composiciones de la presente invención pueden recubrirse o combinarse de otro modo para proporcionar una forma de dosificación que proporciona la ventaja de una acción prolongada. Por ejemplo, el comprimido o píldora puede comprender un componente de dosificación interna y uno de dosificación externa, estando el último en forma de una envoltura sobre el primero. Los dos componentes pueden estar separados por una capa entérica que sirve para resistir a la disgregación en el estómago y permite que el componente interno pase intacto al duodeno o se retrase su liberación. Se puede usar una diversidad de materiales para tales capas o recubrimientos entéricos, incluyendo tales materiales varios ácidos poliméricos con materiales tales como goma laca, alcohol cetílico y acetato de celulosa.

Estas formas líquidas en las que las composiciones de la presente invención pueden incorporarse para administración por vía oral o por inyección incluyen soluciones acuosas, jarabes aromatizados de forma adecuada, suspensiones

acuosas o aceitosas, y emulsiones aromatizadas con aceites comestibles tales como aceite de semilla de algodón, aceite de sésamo, aceite de coco o aceite de cacahuete, además de elixires y vehículos farmacéuticos similares. Agentes de dispersión o suspensión adecuados para suspensión acuosa incluyen gomas sintéticas y naturales tales como tragacanto, goma arábiga, alginato, dextrano, carboximetilcelulosa de sodio, metilcelulosa, polivinilpirrolidona o gelatina.

- La composición farmacéutica puede contener entre aproximadamente 0,01 mg y 100 mg, preferiblemente aproximadamente 5 a 50 mg, de cada compuesto, y puede constituirse en cualquier forma adecuada para el modo de administración seleccionado. Vehículos incluyen excipientes farmacéuticos necesarios e inertes, que incluyen, pero sin quedar limitados a, aglutinantes, agentes de suspensión, lubricantes, aromas, edulcorantes, conservantes, colorantes y recubrimientos. Composiciones adecuadas para administración por vía oral incluyen formas sólidas, tales como píldoras, comprimidos, comprimidos oblongos, cápsulas (incluyendo cada una formulaciones de liberación inmediata, liberación controlada y de liberación sostenida), gránulos y polvos, y formas líquidas, tales como soluciones, jarabes, elixires, emulsiones y suspensiones. Formas útiles para administración parenteral incluyen soluciones, emulsiones y suspensiones estériles.
- De forma ventajosa, los compuestos de la presente invención pueden administrarse en una monodosis diaria, o la dosificación diaria total puede administrarse en dosis divididas de dos, tres o cuatro veces al día. Además, los compuestos para la presente invención pueden administrarse en forma intranasal mediante uso tópico de vehículos intranasales adecuados, o mediante parches cutáneos transdérmicos muy conocidos por los expertos habituales en la técnica. Para administrarse en forma de sistema de liberación transdérmica, la administración de la dosificación será, naturalmente, continua en vez de intermitente durante toda la pauta de dosificación.
- Por ejemplo, para administración por vía oral en forma de un comprimido o cápsula, el componente de fármaco activo puede combinarse con un vehículo inerte farmacéuticamente aceptable no tóxico oral tal como etanol, glicerol, agua y similares. Además, cuando se desee o sea necesario, también pueden incorporarse en la mezcla aglutinantes adecuados; lubricantes, agentes disgregantes y colorantes. Aglutinantes adecuados incluyen, sin limitación, almidón, gelatina, azúcares naturales tales como glucosa o beta-lactosa, edulcorantes de maíz, gomas naturales y sintéticas tales como goma arábiga, tragacanto u oleato de sodio, estearato de sodio, estearato de magnesio, benzoato de sodio, acetato de sodio, cloruro de sodio y similares. Disgregantes incluyen, sin limitación, almidón, metilcelulosa, agar, bentonita, goma xantana y similares.
 - Las formas líquidas en agentes de suspensión o dispersantes aromatizados adecuados tales como las gomas sintéticas y naturales, por ejemplo, tragacanto, goma arábiga, metilcelulosa y similares. Para administración parenteral se desean suspensiones y soluciones estériles. Cuando se desea administración intravenosa se emplean preparaciones isotónicas que generalmente contienen conservantes adecuados.

30

35

40

- Los compuestos o combinaciones de la presente invención también pueden administrarse en forma de sistemas de liberación de liposomas, tales como pequeñas vesículas unilaminares, vesículas unilaminares grandes y vesículas multilaminares. Los liposomas pueden formarse a partir de una diversidad de fosfolípidos, tales como colesterol, estearilamina o fosfatidilcolinas.
- Los compuestos o combinaciones de la presente invención también pueden administrarse mediante el uso de anticuerpos monoclonales como vehículos individuales a los que se acoplan las moléculas de compuesto. Los compuestos de la presente invención también pueden acoplarse con polímeros solubles como vehículos de fármaco dirigibles a una diana. Tales polímeros pueden incluir polivinilpirrolidona, copolímero de pirano, polihidroxipropilmetacrilamidafenol, polihidroxietilaspartamidafenol, o poli(óxido de etileno)-polilisina sustituido con residuo de palmitoílo. Además, los compuestos de la presente invención pueden acoplarse a una clase de polímeros biodegradables útiles en alcanzar la liberación controlada de un fármaco, por ejemplo, ácido polihidroxiburítico, poli-épsilon-caprolactona, ácido polihidroxiburítico, poliortoésteres, poliacetales, polidihidropiranos, policianoacrilatos y copolímeros de bloques de hidrogeles reticulados o anfipáticos.
- Los compuestos o combinaciones de la presente invención pueden administrarse en cualquiera de las anteriores composiciones y de acuerdo con pautas de dosificación establecidas en la técnica, siempre que se requiera el tratamiento de los trastornos tratados.
- La dosificación diaria de los productos puede variar en un amplio intervalo de 0,01 a 1.000 mg por mamífero por día. Para administración oral, las composiciones se proporcionan preferiblemente en forma de comprimidos que contienen, 0,01, 0,05, 0,1, 0,5, 1,0, 2,5, 5,0, 10,0, 15,0, 25,0, 50,0, 100, 150, 200, 250 y 500 miligramos de cada principio activo o combinaciones de los mismos para el ajuste sintomático de la dosificación al paciente que se va a tratar. Una cantidad eficaz del fármaco se suministra generalmente a un nivel de dosificación de aproximadamente 0,1 mg/kg a aproximadamente 300 mg/kg de peso corporal por día. Preferiblemente, el intervalo es de aproximadamente 1 a aproximadamente 50 mg/kg de peso corporal por día. Los compuestos o combinaciones pueden administrarse en una pauta de 1 a 4 veces por día.

Dosificaciones óptimas que se van a administrar se pueden determinar fácilmente por los expertos en la técnica, y variarán con el compuesto particular usado, el modo de administración, la concentración de la preparación, el modo de administración y el avance de la condición de enfermedad. Además, factores asociados al paciente particular que se está

tratando, que incluyen la edad del paciente, el peso, la dieta y el tiempo de administración, producirá la necesidad de ajustar dosificaciones.

En otro aspecto, la invención también proporciona un procedimiento de preparación de una composición farmacéutica que comprende al menos un compuesto de fórmula (I) opcionalmente en combinación con al menos uno de los otros agentes anteriormente mencionados y un vehículo farmacéuticamente aceptable.

Las composiciones están preferiblemente en una forma de dosificación unitaria en una cantidad apropiada para la dosificación diaria relevante.

Dosificaciones adecuadas, incluyendo en especial dosificaciones unitarias de los compuestos de la presente invención, incluyen las dosificaciones conocidas que incluyen dosis unitarias para estos compuestos como se describen o se citan en los textos de referencia tales como las Farmacopeas Británica y Estadounidense, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (Londres, The Pharmaceutical Press) (por ejemplo, véase la 31ª edición, página 341 y páginas citadas en su interior) o las publicaciones anteriormente mencionadas.

Ejemplos

5

10

Ejemplo	Estructura	Nombre	[M+H] [†]
1	THE STATE OF THE S	1-(1H-Benzo[d]imidazol-6-il)-5-ciclohexil-3-metoxi-4- metil-1H-pirrol-2(5H)-ona	326,3
2	T N O O	1-(1H-Benzo[d]imidazol-6-il)-5-isopropil-3-metoxi-4- metil-1H-pirrol-2(5H)-ona	286,0
3	F N O	1-(1H-Benzo[d]imidazol-5-il)-5-(2,6-difluorofenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	356,3
4	P F NH	1-(1H-Benzo[d]imidazol-5-il)-5-(2,4,5-trifluorofenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	374,3
5	HN N O O	1-(1H-Benzo[d]imidazol-5-il)-5-(2,3,5-trifluorofenil)-3- metoxi-4-fenil-1H-pirrol-2(5H)-ona	436,4

6	Br N N O	1-(1H-Benzo[d]imidazol-6-il)-5-(5-bromo-2-fluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona	416,3
7	F CI	1-(1H-Benzo[d]imidazol-6-il)-5-(2-cloro-3,6-difluorofenil)- 3-metoxi-4-metil-1H-pirrol-2(5H)-ona	390,2
8	F F O	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	356,3
9	F F	(R)-1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona	356,2
10	F F O O	(S)-1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona	356,3
11	F N N N O	1-(1H-Benzo[d]imidazol-6-il)-4-etil-5-(2,3-difluorofenil)-3- metoxi-1H-pirrol-2(5H)-ona	370,1
12	F F N N N	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3- metoxi-4-propil-1H-pirrol-2(5H)-ona	384,1

13	N P P P P P P P P P P P P P P P P P P P	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4- isopropil-3-metoxi-1H-pirrol-2(5H)-ona	384,1
14	F CF3	1-(1H-Benzo[d]imidazol-6-il)-4-(trifluorometil)-5-(2,3- difluorofenil)-3-metoxi-1H-pirrol-2(5H)-ona	
15	F F O O	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3- metoxi-4-fenil-1H-pirrol-2(5H)-ona	418,1
16	N F F	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-(4-fluorofenil)-3-metoxi-1H-pirrol-2(5H)-ona	436,1
17	O O NH	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-diclorofenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	388,2
18	O O NH	(R)-1-(1H-Benzo[d]imidazol-5-il)-5-(2,3-diclorofenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	388,2
19	O O NH NH N	(S)-1-(1H-Benzo[d]imidazol-5-il)-5-(2,3-diclorofenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	388,3

20	O N N N N N N N N N N N N N N N N N N N	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4- morfolinofenil)-1H-pirrol-2(5H)-ona	405,3
21		1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(bifen-4-il)-1H-pirrol-2(5H)-ona	396,1
22	HZZ A	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4- (piperidin-1-il)fenil)-1H-pirrol-2(5H)-ona	403,1
23	TZ ZZ Z	1-(1H-Benzo[d]imidazol-6-il)-5-(4-(ciclohexiloxi)fenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	418,5
24	HZ Z O	1-(1H-Benzo[d]imidazol-5-il)-3-metoxi-4-fenil-5-(quinolin-3-il)-1H-pirrol-2(5H)-ona	433,4

25	HZZ	1-(1H-Benzo[d]imidazol-6-il)-5-(4-ciclohexilfenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona	402,1
26	E E E E E E E E E E E E E E E E E E E	1-(1H-Benzo[d]imidazol-6-il)-5-(4-(4,4-difluorociclohexil) fenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona	438,3
27	HZZ H	1-(1H-Benzo[d]imidazol-6-il)-5-(4-(tetrahidro-2H-piran-4-il)fenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona	
28	HZ Z L	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(1-metilpiperidin-4-il)fenil)-1H-pirrol-2(5H)-ona	
29		1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(4-morfolinociclohexil)fenil)-1H-pirrol-2(5H)-ona	487,2

30	HZ Z O	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4- fenoxiciclohexil)-1H-pirrol-2(5H)-ona	418,2
31	TZ Z O	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(1- fenilpiperidin-4-il)-1H-pirrol-2(5H)-ona	403,1
32	HZZZ O ZZ O	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4- fenilciclohexil)-1H-pirrol-2(5H)-ona	402,2
33	O N F F	1-(1H-Benzo[d]imidazol-5-il)-3-etoxi-5-(2,3-difluorofenil)- 4-metil-1H-pirrol-2(5H)-ona	370,2
34	F F F N N N N N N N N N N N N N N N N N	3-(2,2,3,3-Tetrafluoropropoxi)-1-(1H-benzo[d]imidazol-5-il)-5-(2,3-difluoro-fenil)-4-metil-1H-pirrol-2(5H)-ona	456,3
35	F ₃ C O N NH	3-(2,2,2-Trifluoroetoxi)-1-(1H-benzo[d]imidazol-5-il)-5- (2,3-difluorofenil)-4-metil-1H-pirrol-2(5H)-ona	424,1

Descripción de la síntesis general:

Procedimiento 1

$$R_1$$
 R_2 R_2 R_2 R_3 R_4 R_2 R_4 R_5 R_5

Se añadió solución de hidróxido de potasio (10-15 eq en agua) a una solución de diazald (5-9 eq) en una mezcla de etilenglicol y éter dietílico a temperatura ambiente. La mezcla de reacción se calentó hasta 40 °C y el diazometano liberado junto con el éter dietílico se recogió directamente en una suspensión agitada de la 3-hidroxi-1H-pirrol-2(5H)-ona correspondiente (1eq) en MeOH acuoso (90/10 v/v) o MeOH puro y se mantuvo a -5 °C. Se formó una mezcla de color amarillo intenso. La solución se agitó a temperatura ambiente durante una noche. La masa de reacción se calentó hasta temperatura ambiente y se eliminó el exceso de diazometano purgando con nitrógeno gas. Después de esta etapa, se evaporó el disolvente y el material restante se recogió en CHCl₃. El producto se purificó por cromatografía en columna sobre alúmina neutra usando metanol al 2% en cloroformo.

Procedimiento 2

$\underline{5\text{-}(2\text{-}(2,3\text{-}Difluorofenil})\text{-}4\text{-}hidroxi\text{-}3\text{-}metil\text{-}5\text{-}oxo\text{-}2H\text{-}pirrol\text{-}1(5H)\text{-}il})\text{-}1H\text{-}benzo[d]imidazol\text{-}1\text{-}carboxilato de terc\text{-}butilo}$

Se suspendió clorhidrato de 1-(1H-benzo[d]imidazol-5-il)-5-(2,3-difluorofenil)-3-hidroxi-4-metil-1H-pirrol-2-(5H)-ona (4,77 g, 12,6 mmol, 1 eq.) en THF (150 ml). Se añadieron trietilamina (1,94 ml, 13,9 mmol, 1,1 eq.) y Boc₂O (2,97 ml, 13,9 mmol, 1,1 eq.) y la mezcla se calentó hasta reflujo durante una noche. El disolvente se evaporó y el residuo se purificó por cromatografía ultrarrápida sobre gel de sílice usando un gradiente de CHCl₃/MeOH. Rendimiento: 2,74 g (49,2%).

20 Alquilación y desprotección

Se disolvió $5-(2-(2,3-difluorofenil)-4-hidroxi-3-metil-5-oxo-2H-pirrol-1(5H)-il)-1H-benzo[d]imidazol-1-carboxilato de terc-butilo (1 eq.) en MeCN (10 ml en caso de 1 mmol). Se añadieron <math>P_1$ -tBu (1,5 eq.) y el haluro de alquilo respectivo (1 eq.) y la mezcla se calentó hasta 70 °C con monitorización con TLC (3-6 h). Después de enfriar hasta

temperatura ambiente, la reacción se inactivó con agua y se extrajo con EtOAc (3x25 ml). Las fases orgánicas reunidas se secaron sobre Na₂SO₄ y se evaporó hasta sequedad. El residuo se disolvió en TFA/CH₂Cl₂ 6:4 (10 ml) y se agitó a temperatura ambiente durante 2-4 horas. La mezcla se basificó por medio de NaHCO₃ acuoso saturado y se extrajo con EtOAc (3x25 ml). Las fases orgánicas reunidas se secaron sobre Na₂SO₄ y se evaporaron. El residuo se purificó por cromatografía ultrarrápida sobre sílice usando un gradiente de CHCl₃/MeOH.

Síntesis de los ejemplos

10

30

35

40

Eiemplo 1:1-(1H-Benzo[d]imidazol-6-il)-5-ciclohexil-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/2 v/v, 30 ml), 1-(1H-benzo[d]imidazol-6-il)-5-ciclohexil-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (1,00 g, 3,22 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,250 g (25%); EM m/z: 326,1 [M+H] † ; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 1,05 (d, 3H), 1,40 (d, 2H), 1,65-1,60 (m, 4H), 2,05 (s, 3H), 4,03 (s, 3H), 4,40 (s, 1 H), 7,05 (s, 1 H), 7,62 (s, 1 H), 7,63 (s, 1 H), 7,82 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 11,25 min (98,78%)

Ejemplo 2: 1-(1H-Benzo[d]imidazol-6-il)-5-isopropil-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/2 v/v, 30 ml), 1-(1H-benzo[d]imidazol-6-il)-5-isopropil-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (0,500 g, 1,83 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,040 g (7,6%); EM m/z: 286,1 [M+H]⁺; RMN de ¹H: (400 MHz, DMSO-D₆) δ: 0,54 (d, 3H), 0,94-0,92 (q, 3H), 1,95 (t, 3H), 3,86 (s, 1 H), 4,73 (s, 1 H), 7,26-7,15 (m, 1 H), 7,65-7,51 (m, 2H), 8,22 (d, 1 H), 12,46 (d, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 8,32 min (96,64%)

Ejemplo 3: 1-(1H-Benzo[d]imidazol-5-il)-5-(2,6-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

20 El compuesto se sintetizó partiendo de KOH (10eq en agua), diazald (5 eq), etilenglicol/Et₂O (3/1 v/v), 1-(1H-benzo[d]imidazol-6-il)-5-(2,6-difluorofenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (0,189 g, 0,5 mmol, 1 eq) y MeOH/H₂O (90/10 v/v); Rendimiento: 0,058 g (32,6%); EM m/z: 356,3 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D₆) δ: 1,65-1,81 (s, 3H), 3,83-3,93 (s, 3H), 6,14 (s, 1H), 6,83 - 7,78 (m, 6H), 8,15 (s, 1H), 12,07 - 12,07 (s ancho, 1H); HPLC (PROCEDIMIENTO [A]): t.r. 11,24 min (99%)

25 Ejemplo 4: 1-(1H-Benzo[d]imidazol-5-il)-5-(2,4,5-trifluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 g, 267,8 mmol en agua), diazald (20 g, 93,37 mmol 5 eq) etilenglicol/ $\rm Et_2O$ (2/1 v/v, 140 ml), 1-(1H-benzo[d]imidazol-5-il)-5-(2,4,5-trifluorofenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (2 g, 5,57 mmol, 1 eq) y MeOH (50 ml); Rendimiento: 1,05 g (50,55%); EM m/z: 374,0 [M+H] † ; RMN de 1 H: (400 MHz, DMSO-D $_{6}$) δ : 12,44 (s, 1 H); 8,17 (s, 1 H); 7,66 (s, 1 H), 7,52-7,10 (m, 4H); 6,00 (s, 1 H); 3,96 (s, 3H); 1,78 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 12,37 min (98,7%)

Ejemplo 5: 1-(1H-Benzo[d]imidazol-5-il)-5-(2,3,5-trifluorofenil)-3-metoxi-4-fenil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (10 eq en agua), diazald (5 eq), etilenglicol/Et₂O (3/1 v/v), 1-(1H-benzo[d]imidazol-6-il)-5-(2,3,5-trifluorofenil)-3-hidroxi-4-fenil-1H-pirrol-2(5H)-ona (0,230 g, 0,5 mmol, 1 eq) y MeOH/H₂O (90/10 v/v); Rendimiento: 0,015 g (6,9%); EM m/z: 436,4 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 4,11 (s, 1 H), 6,94 (s, 1 H), 7,22-7,42 (m, 6H), 7,58-7,68 (m, 3H), 7,73-7,76 (m, 1 H), 7,95 (s, 1 H), 9,07 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 15,38 min (82%)

Eiemplo 6: 1-(1H-BenzoIdlimidazol-6-il)-5-(5-bromo-2-fluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 g, 267,8 mmol en agua), diazald (20 g, 93,37 mmol, 5 eq), etilenglicol/ Et_2O (2/1 v/v, 140 ml) 1-(1H-benzo[d]imidazol-5-il)-5-(5-bromo-2-fluorofenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (2 g, 5,57 mmol, 1 eq) y MeOH (50 ml); Rendimiento: 1,3 g (57,2%); EM m/z: 416,3 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 1,76 (s, 3H), 3,95 (s, 3H), 6,00 (s, 1H), 7,13 (m, 1,3 H), 7,25-7,27 (m, 1,6 H), 7,47-7,49 (m, 1,6H), 7,47-7,52 (m, 1,5 H), 7,65 (m, 1,5H), 8,15 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 12,55 min (98,5%)

Ejemplo 7: 1-(1H-Benzo[d]imidazol-6-il)-5-(2-cloro-3,6-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (10 eq en agua), diazald (5 eq) etilenglicol/Et₂O (3/1 v/v), 1-(1H-45 benzo[d]imidazol-6-il)-5-(2-cloro-3,6-difluorofenil)-3-hidroxi-4-fenil-1H-pirrol-2(5H)-ona (0,103 g, 0,25 mmol, 1 eq) y MeOH/H₂O (90/10 v/v); Rendimiento: 0,013 g (13,3%); EM m/z: 390,2 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D₆) $\bar{\delta}$: 1,78, 1,81 (2s, 3H), 3,94, 3,95 (2s, 3H), 6,34-6,35 (m, 1 H), 7,11-7,17 (m, 1 H), 7,25-7,29 (m, 1 H), 7,35-7,40 (m, 1 H), 7,52-7,54 (m, 1 H), 7,67 (s, 1H), 8,35 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 12,59 min (95%)

Ejemplo 8: 1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

50 El compuesto se sintetizó partiendo de KOH (11 g, 196,4 mmol en agua), diazald (15 g, 10,00 mmol), etilenglicol/ Et_2O (2/1 v/v, 140 ml), 1-(1H-benzo[d]imidazol-5-il)-5-(5-bromo-2-fluorofenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (1,46 g, 4,28 mmol, 1 eq) y MeOH (50 ml); Rendimiento: 0,700 g (46%); EM m/z: 356,3 [M+H] $^+$; RMN de

 1 H: (400 MHz, DMSO-D₆) δ: 12,40 (s, 1 H), 8,15 (s, 1 H), 7,66 (s,1H), 7,54-7,41 (dd, 1 H), 7,33-7,21 (m, 2H), 7,15-7,10 (m, 2H), 6,09 (s, 1 H), 3,96 (s, 3H), 1,78 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 11,60 min (100%)

Ejemplo 9: (R)-1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

Se sometieron 20 mg/5 ml de 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona (que se puede preparar de acuerdo con el Ejemplo 8) a cromatografía quiral semipreparativa en una columna 250/21 Chirobiotic Tag (Suministrador: Supelco), 5μ, detección: UV @ 214 nm, Fase móvil: tampón acetato de amonio al 40% (pH 4,0, 40 mM)/MeOH al 60%, isocrática 10 ml/min, t.r., rendimiento 8 mg como enantiómero que eluye segundo, rotación óptica c= 0.5 g/100 ml (MeOH) α_D²⁰=214.1°

Ejemplo 10: (S)-1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

Se sometieron 20 mg/5 ml de 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona (que se puede preparar de acuerdo con el Ejemplo 8) a cromatografía quiral semipreparativa en una columna 250/21 Chirobiotic Tag (Suministrador: Supelco), 5μ , detección: UV @ 214 nm, Fase móvil: tampón acetato de amonio al 40% (pH 4,0, 40 mM)/MeOH al 60%, isocrática 10 ml/min, t.r., rendimiento 8 mg como enantiómero que eluye primero, rotación óptica c= 0,5 g/100 ml (MeOH) α_D^{20} =215°

15 Ejemplo 11: 1-(1H-Benzo[d]imidazol-6-il)-4-etil-5-(2,3-difluorofenil)-3-metoxi-1H-pirrol-2(5H)-ona

20

25

40

45

50

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et $_2$ O (1/5 v/v, 30 ml), 1-(1H-benzo[d]imidazol-6-il)-4-etil-5-(2,3-difluorofenil)-3-hidroxi-1H-pirrol-2(5H)-ona (1,2 g, 2,81 mmol, 1 eq) y MeOH (10 ml), el producto se purificó seguidamente por HPLC preparativa; Rendimiento: 0,085 g (8,2%); EM m/z: 370,1 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D $_6$) δ : 1,01 (t, 3H), 1,94 (m, 1 H), 2,39 (m, 1 H), 3,96 (s, 3H), 6,24 (s, 1 H), 7,12 (s, 1 H), 7,55-7,26 (m, 3H), 7,67 (s, 1 H), 8,17 (s, 1 H), 12,43 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 13,32 min (100%)

Ejemplo 12: 1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-propil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/ $\rm Et_2O$ (1/3 v/v, 40 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-hidroxi-4-propil-1H-pirrol-2(5H)-ona (1,0 g, 2,71 mmol, 1 eq) y MeOH (10 ml), el producto se purificó seguidamente por HPLC preparativa; Rendimiento: 0,120 g (11,6%); EM m/z: 384,1 [M+H] † ; RMN de 1 H: (400 MHz, CDCl $_{3}$) δ : 0,96 (t, 3H), 1,6-1,4 (m, 6H), 1,94-1,87 (m, 1 H), 2,47-2,39 (m, 1 H), 4,08 (s, 3H), 5,90 (s ancho, 1 H), 6,92 (s ancho, 1 H), 7,03-6,94 (m,2H), 7,54 (s ancho, 1 H), 7,83 (s, 1 H), 7,94 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 14,38 min (100%)

Ejemplo 13: 1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-isopropil-3-metoxi-1H-pirrol-2(5H)-ona

30 El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et₂O (1/7,5 v/v, 17 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-isopropil-3-hidroxi-1H-pirrol-2(5H)-ona (0,15 g, 0,34 mmol, 1 eq) y MeOH (10 ml), el producto se purificó seguidamente por TLC preparativa; Rendimiento: 0,040 g (10,4 %); EM m/z: 384,1 [M+H]⁺; RMN de ¹H: (400 MHz, CDCl₃) δ: 7,88 (s, 1 H), 7,80 (s ancho, 1 H), 7,52 (s ancho, 1 H), 7,2-6,88 (m, 4H), 6,0 (s, 1H), 4,08 (s, 3H), 2,61 (s ancho, 1H), 1,1-1,04 (m, 6H); HPLC (PROCEDIMIENTO [A]): t.r. 14,51 min (96,9%)

Ejemplo 15: 1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-fenil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et₂O (1/2,8 v/v, 34 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-hidroxi-4-fenil-1H-pirrol-2(5H)-ona (1 g, 2,48 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,160 g (60%); EM m/z: 418,1 $[M+H]^{+}$; RMN de ^{1}H : (400 MHz, CDCl₃) δ : 7,87 (s, 1H), 7,74 (s, 1H), 7,58-7,50 (m, 3H), 7,36-7,2 (m, 5H), 4,18 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 14,70 min (99,68%)

Ejemplo 16: 1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-(4-fluorofenil)-3-metoxi-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/4,2 v/v, 31 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-(4-fluorofenil)-3-hidroxi-1H-pirrol-2(5H)-ona (0,5 g , 1,2 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,160 g (60%); EM m/z: 436,1 $[M+H]^+$; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 10,5 (ancho, 1 H), 7,88 (s, 1H), 7,72 (s,1H),7,59-7,56 (m, 1H), 7,26-7,00 (m, 4H), 6,91-6,86 (m,3H), 6,38 (s ancho, 1 H), 4,20 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 15,20 min (97,35%)

Ejemplo 17: 1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-diclorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (9,0 g, 160,71 mmol en agua), diazald (24 g, 112,02 mmol), etilenglicol/Et₂O (2/1 v/v, 140 ml), 1-(1H-benzo[d]imidazol-5-il)-5-(2,3-diclorofenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (3 g, 8,04 mmol, 1 eq) y MeOH (50 ml); Rendimiento: 1,2 g (38,46%); EM m/z: 388,1 [M+H] $^{+}$; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 12,44 (s, 1 H), 8,16 (d, 1 H), 7,64 (d, 1H), 7,54-7,40 (m, 2H), 7,32-7,18 (m, 3H), 7,08 (t, 1 H), 6,31 (s, 1H), 3,96 (s, 3H), 1,73 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 13,75 min (99,4%)

Ejemplo 18: (R)-1-(1H-Benzo[d]imidazol-5-il)-5-(2,3-diclorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

Se sometieron 1,2 g de 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-diclorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona (que se puede preparar de acuerdo con el Ejemplo 17) a condiciones de HPLC quiral semipreparativa: columna: CHIRAL PAK IC (30X250mm) 5μ , fase móvil n-HEXANO: IPA: DEA: TFA (50:50:0,1:0,05) rendimiento: 267mg del isómero como enantiómero que eluye primero.

Ejemplo 19: (S)-1-(1H-Benzo[d]imidazol-5il)-5-(2,3-diclorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

5

10

15

30

35

40

Se sometieron 1,2 g de 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-diclorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona (que se puede preparar de acuerdo con el Ejemplo 17) a condiciones de HPLC quiral semipreparativa: columna: CHIRAL PAK IC (30X250mm) 5μ, fase móvil n-HEXANO: IPA: DEA: TFA (50:50:0,1:0,05) rendimiento: 127 mg del isómero como enantiómero que eluye primero.

Ejemplo 20: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-morfolinofenil)-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/2 v/v, 30 ml), 1-(1H-Benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(4-morfolinofenil)-1H-pirrol-2(5H)-ona (0,500 g, 1,28 mmol, 1 eq) y MeOH (10 ml), el producto se purificó por TLC preparativa usando metanol al 4% en cloroformo como eluyente; Rendimiento: 0,100 g (19,34%); EM m/z: 405,1 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 12,37 (s, 1H), 8,13 (d, 1H), 7,68-7,64 (m, 1H), 7,50-7,48 (m, 1H), 7,38 (m, 1H), 7,25-7,22 (m, 1H), 7,08-7,06 (m, 2H), 6,82-6,80 (m, 2H), 5,68 (d, 1 H), 3,93 (s, 3H), 3,66-3,63 (m, 4H), 3,17-3,01 (m, 4H), 1,66 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 9,33 min (96,37%)

Ejemplo 21: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(bifen-4-il)-1H-pirrol-2(5H)-ona

20 El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/2 v/v, 60 ml), 1-(1H-benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(bifen-4-il)-1H-pirrol-2(5H)-ona (1 g, 2,63 mmol, 1 eq) y MeOH (20 ml); rendimiento 0,070 g (17,7%); EM m/z: 396,1 [M+H]⁺; RMN de ¹H: (400 MHz, DMSO-D₆) δ: 12,39 (s, 1 H), 8,14 (s, 1 H), 7,76-7,72 (m, 1 H), 7,59-7,28 (m, 11 H), 5,88 (s, 1 H), 3,96 (s, 3H),1,75 (s, 3H); HPLC (PROCEDIMIENTO [A]): t.r. 14,00 min (98,38%)

25 Ejemplo 22: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(piperidin-1-il)fenil)-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/ Et_2O (1/2 v/v, 60 ml), 1-(1H-benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(4-(piperidin-1-il)fenil)-1H-pirrol-2(5H)-ona (0,700 g, 1,88 mmol, 1 eq) y MeOH (20 ml); Rendimiento: 0,050 g (7%); EM m/z: 403,1 [M+H] $^+$; RMN de 1 H: (400 MHz, DMSO-D₆) δ : 8,59 (s, 1H), 7,81 (s, 1 H), 7,55-7,53 (m, 1 H), 7,45-7,42 (m, 1 H), 7,06-7,04 (m, 2H), 6,82-6,79 (m, 2H), 5,69 (s, 1 H), 3,93 (s, 3H), 3,05-3,02 (m, 4H), 1,70 (s, 3H), 1,53-1,46 (m, 6H); HPLC (PROCEDIMIENTO [A]): t.r. 6,03 min (99,04%)

Ejemplo 23: 1-(1H-Benzo[d]imidazol-6-il)-5-(4-(ciclohexiloxi)fenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/2 v/v, 30 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(4-(ciclohexiloxi)fenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (0,500 g, 1,24 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,050 g (10%); EM m/z: 418,2 [M+H] $^+$; RMN de 1 H: (400 MHz, CDCl₃) δ : 7,90 (s, 1H), 7,78 (s, 1H), 7,5 (s, 1H), 7,26 (s, 2H), 7,06 (d, 2H), 6,76 (d, 2H), 5,24 (s, 1H), 4,07 (d, 4H), 1,80 (d, 2H), 1,76 (d,5H), 1,45 (d, 3H), 1,30 (d, 4H); HPLC (PROCEDIMIENTO [A]): t.r. 15,23 min (100%)

Ejemplo 24: 1-(1H-Benzo[d]imidazol-5-il)-3-metoxi-4-fenil-5-(quinolin-3-il)-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (10 eq en agua), diazald (5 eq) etilenglicol/ Et_2O (3/1 v/v), 1-(1H-benzo[d]imidazol-6-il)-5-(quinolin-3-il)-3-hidroxi-4-fenil-1H-pirrol-2(5H)-ona (0,230 g, 0,5 mmol, 1 eq) y MeOH/H₂O (90/10 v/v); Rendimiento: 0,003 g (1,4%); EM m/z: 433,4 [M+H]⁺; RMN de ¹H: (400 MHz, DMSO-D₆) δ : 4,17 (s, 3H), 6,85, 6,87 (2s, 1 H), 7,19-7,22 (m, 1 H), 7,30-7,34 (m, 2H), 7,37-7,41 (m, 1 H), 7,45-7,53 (m, 2H), 7,60-7,63 (m, 1 H), 7,69-7,71 (m, 2H), 7,78-7,80 (m, 1 H), 7,84-7,86 (m, 2H), 8,11 (s, 1 H), 8,35 (s, 1 H), 8,84 (s, 1 H); HPLC (PROCEDIMIENTO [A]): t.r. 12,26 min (100%)

Ejemplo 25: 1-(1H-Benzo[d]imidazol-6-il)-5-(4-ciclohexilfenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

45 El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et₂O (1/2 v/v, 30 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(4-ciclohexilfenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (0,900 g, 2,32 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,200 g (21,4%); EM m/z: 402,1 [M+H]⁺; RMN de ¹H: (400 MHz, DMSO-D₆) δ: 12,4 (ancho, 1 H), 8,32 (s, 1 H), 7,71 (s, 1 H), 7,46-7,44 (m, 1 H), 7,34 (m, 1 H), 7,16-7,11 (m, 4H), 5,77 (s, 1 H), 3,93 (s, 3H), 2,39 (m, 1H), 1,79-1,60 (m, 8H), 1,40-1,20 (m, 6H); HPLC (PROCEDIMIENTO [A]): t.r. 15,68 min (96,92%)

50 Ejemplo 26: 1-(1H-Benzo[d]imidazol-6-il)-5-(4-(4,4-difluorociclohexil)fenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/ Et_2O (1/2,5 v/v, 28 ml), 1-(1H-benzo[d]imidazol-6-il)-5-(4-(4,4-difluorociclohexil)-fenil)-3-hidroxi-4-metil-1H-pirrol-2(5H)-ona (0,800 g, 1,88)

mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,060 g (7,3%); EM m/z: 438,3 [M+H] $^{+}$; RMN de 1 H: (400 MHz, DMSODe) δ : 12,39 (s, 1 H), 8,14 (d, 1 H), 7,69 (d, 1 H), 7,49 (d, 1 H), 7,26-7,15 (m, 4H), 5,79 (s, 1 H), 3,93 (s, 3H), 2,67-2,54 (m, 1 H), 2,03-1,88 (m, 3H), 1,83-1,76 (m, 3H), 1,69 (s, 3H), 1,59-1,50 (m, 2H); HPLC (PROCEDIMIENTO [A]): t.r. 14,64 min (95,14%)

5 <u>Ejemplo 29: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(4-morfolinociclo-hexil)fenil)-1H-pirrol-2(5H)-ona</u>

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (8 eq), etilenglicol/Et₂O (1/2 v/v, 30 ml), 1-(1H-benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(4-(4-morfolinociclohexil)fenil)-1H-pirrol-2(5H)-ona (0,350 g, 0,74 mmol, 1 eq) y MeOH (10 ml); Rendimiento: 0,040 g (11%); EM m/z: 487,2 [M+H]⁺; RMN de 1 H: (400 MHz, CDCl₃) δ : 12,34 (s, 1H), 8,13 (d, 1H), 7,70 (d, 1 H), 7,45 (d, 2H), 7,17 (d, 5H), 5,75 (s, 1 H), 3,95 (s, 3H), 3,56 (d, 4H), 2,35 (d, 4H), 2,1 (d, 1H), 1,90 (d, 2H), 1,69 (d, 5H), 1,4 (d, 4H); HPLC (PROCEDIMIENTO [A]): t.r. 7,84 min (98,72%)

Ejemplo 30: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-fenoxiciclohexil)-1H-pirrol-2(5H)-ona

10

15

30

45

50

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et₂O (1/3 v/v, 40 ml), 1-(1H-benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(4-fenoxiciclohexil)-1H-pirrol-2(5H)-ona (0,900 g, 2,23mmol, 1 eq) y MeOH (10ml) y se purificó por HPLC preparativa; Rendimiento: 0,051 g (12,2%); EM m/z: 418,2 [M+H] $^{+}$; RMN de 1 H: (400 MHz, DMSO-D $_{6}$) δ : 12,52 (ancho, 1 H), 8,26-8,25 (d, 1 H), 7,67-7,53 (m, 2H), 7,27-7,15 (m, 3H), 4,80-4,72 (m, 1 H), 4,50 (s, 0,5H), 4,20 (m, 1 H), 3,86 (s, 3H), 2,03-1,90 (m, 4H), 1,69-1,65 (m, 2H), 1,46-1,39 (m, 2H), 1,21-0,99 (m, 2H); HPLC (PROCEDIMIENTO [A]): t.r. 13,30 min (97,08%)

Ejemplo 31: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(1-fenilpiperidin-4-il)-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et₂O (1/5 v/v, 18 ml), 1-(1H-benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(1-fenilpiperidin-4-il)-1H-pirrol-2(5H)-ona (0,280 g, 0,72 mmol, 1 eq) y MeOH (15 ml), el producto se purificó seguidamente por TLC preparativa; Rendimiento: 0,021 g (5,2%); EM m/z: 403,1 [M+H]⁺; RMN de ¹H: (400 MHz, CDCl₃) δ: 7,95 (s, 1H), 7,65-7,60 (m, 1 H), 7,17 (m, 3H), 6,80 (d, 1 H), 4,52 (s, 1 H), 4,03 (s, 3H), 3,69-3,66 (m, 3H), 2,54-2,41 (m, 3H), 2,05 (s, 4H), 1,88 (m, 5H), 1,41-1,25 (m, 2H); HPLC (PROCEDIMIENTO [A]): t.r. 6,05 min (88,89%)

25 Ejemplo 32: 1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-fenilciclohexil)-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de KOH (15 eq en agua), diazald (9 eq), etilenglicol/Et₂O (1/2 v/v, 60 ml), 1-(1H-benzo[d]imidazol-6-il)-3-hidroxi-4-metil-5-(4-fenilciclohexil)-1H-pirrol-2(5H)-ona (1,0 g, 2,58 mmol, 1 eq) y MeOH (20 ml); Rendimiento: 0,100 g (10%); EM m/z: 402,2 $[M+H]^{+}$; RMN de ^{1}H : (400 MHz, DMSO-D₆) δ : 12,53 (s, 1 H), 8,32 (s, 1 H), 7,64 (m, 2H), 7,25-7,08 (m, 7H), 4,81 (s, 1 H), 3,87 (s, 3H), 2,20-2,20 (m, 2H), 2,01 (s, 3H), 1,78-1,4 (m, 5H), 1,37-1,14 (m, 7H); HPLC (PROCEDIMIENTO [A]): t.r. 14,80 min (96,02%)

Ejemplo 33: 1-(1H-Benzo[d]imidazol-5-il)-3-etoxi-5-(2,3-difluorofenil)-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de 5-(2-(2,3-difluorofenil)-4-hidroxi-3-metil-5-oxo-2H-pirrol-1(5H)-il)-1H-benzo[d]imidazol-1-carboxilato de terc-butilo (0,22 g, 0,5 mmol), bromoetano (0,056 ml, 0,75 mmol) y P₁-tBu (0,191 ml, 0,75 mmol) de acuerdo con el procedimiento descrito antes.

Rendimiento: 0,044 g (23,8%); EM m/z 370,2 [M+H] $^{+}$; HPLC (λ = 214 nm, [A]): t.r. 14,22 min (95,3%); RMN de 1 H (400 MHz, DMSO-d₆): δ 1,22-1,26 (m, 3H); 1,72 (s, 3H); 4,21-4,30 (m, 2H); 6,09 (s, 1 H); 7,08-7,22 (m, 2H); 7,30 (m, 2H); 7,49 (d, 1H, 3 J=8,7 Hz); 7,69 (s, 1 H); 8,32 (s, 1 H)

 $\underline{\text{Ejemplo}} \quad 34: \quad 3-(2,2,3,3-\text{tetrafluoropropoxi})-1-(1H-\text{benzo}[d]\text{imidazol}-5-\text{il})-5-(2,3-\text{difluoro-fenil})-4-\text{metil}-1H-\text{pirrol}-2(5H)-\text{ona}$

40 El compuesto se sintetizó partiendo de 5-(2-(2,3-difluorofenil)-4-hidroxi-3-metil-5-oxo-2H-pirrol-1(5H)-il)-1H-benzo[d]imidazol-1-carboxilato de terc-butilo (0,441 g, 1 mmol), 1,1,2,2-tetrafluoro-3-yodopropano (0,17 ml, 1,5 mmol) y P₁-tBu (0,38 ml, 1,5 mmol) de acuerdo con el procedimiento descrito antes.

Rendimiento: 0,138 g (30,3%); EM m/z 456,3 [M+H] $^{+}$; HPLC (λ = 214 nm, [A]): t.r. 16,02 min (100%); RMN de 1 H (400 MHz, DMSO-d $_{6}$): δ 1,74 (s, 3H); 4,76-4,92 (m, 2H); 6,17 (s, 1 H); 6,49-6,78 (m, 1 H); 7,04-7,17 (m, 2H); 7,23-7,31 (m, 2H); 7,51 (d, 1H, 3 J=8,7 Hz); 7,69 (s, 1 H); 8,33 (s, 1 H)

Ejemplo 35: 3-(2,2,2-trifluoroetoxi)-1-(1H-benzo[d]imidazol-5-il)-5-(2,3-difluorofenil)-4-metil-1H-pirrol-2(5H)-ona

El compuesto se sintetizó partiendo de 5-(2-(2,3-difluorofenil)-4-hidroxi-3-metil-5-oxo-2H-pirrol-1(5H)-il)-1H-benzo[d]imidazol-1-carboxilato de terc-butilo (0,441 g, 1 mmol), trifluoroyodoetano (0,15 ml, 1,5 mmol) y P_1 -tBu (1,38 ml, 1,5 mmol) de acuerdo con el procedimiento descrito antes y se purificó seguidamente por HPLC semipreparativa. Rendimiento: 0,007 g (1,6%); EM m/z 424,1 [M+H] $^+$; HPLC (λ = 214 nm, [A]): t.r. 15,29 min (98,6%); RMN de 1 H (400 MHz, DMSO-d $_6$): δ 1,73 (s, 3H); 4,88-5,00 (m, 2H); 6,16 (s, 1H); 7,09-7,29 (m, 4H); 7,39-7,52 (m, 1 H); 7,63 (s, 1 H); 8,13 (s, 1 H); 12,38 (s, 1 H)

Ejemplos de compuestos que también se pueden preparar de acuerdo con la invención incluyen los Ejemplos 14, 27 y 28 descritos en el presente documento.

Procedimientos analíticos

El sistema de HPLC analítico consistía en un dispositivo Merck-Hitachi (modelo LaChrom®) que usa una columna analítica Li-Chrospher® 100 RP 18 (5 μ m) (longitud: 125 mm, diámetro: 4 mm) y un detector de haz de diodos (DAD) con λ = 214 nm como longitud de onda comunicada en el informe. Los compuestos se analizaron usando un gradiente a un caudal de 1 ml/min; en el que el eluyente (A) era acetonitrilo, el eluyente (B) era agua, conteniendo ambos ácido trifluoroacético al 0,1 % (v/v) aplicando el gradiente siguiente: Procedimiento [A] 0 min - 5 min - 5 % de (A); 5 min - 17 min 5 - 15 % de (A); 17 min - 29 min - 15 - 95 % de (A); 29 min - 32 min 95 % de (A); 32 min - 33 min 95 - 5 % de (A); 33 min - 38 min, 5% de (S); Procedimiento [B]: 0 min - 25 min 20 - 80 % de (A); 25 min - 30 min 80 - 95 % de (A); 30 min - 31 min - 95 - 20 % de (A); 31 min - 40 min, 20% (A). Procedimiento [C]: 0 min - 20 min 5 - 60 % de (A), 20 min - 25 min - 60 - 95 % de (A), 25 min - 30 min - 95 % de (A). Las purezas de todos los compuestos comunicados en el informe se determinaron mediante el porcentaje del área del pico a 214 nm.

Los espectros de masas-ESI (ionización por termopulverización) se obtuvieron con un espectrómetro SCIEX API 365 (Perkin Elmer) usando un modo de ionización positiva.

Evaluación de la actividad

Ensayos fluorométricos

10

15

20

25

30

35

Todas las mediciones se realizaron con un BioAssay Reader HTS-7000Plus para microplacas (Perkin Elmer) a 30 °C. La actividad de QC se evaluó fluorométricamente usando H-Gln-βNA. Las muestras consistieron en sustrato fluorogénico 0,2 mM, 0,25 U de piroglutamil aminopeptidasa (Unizyme, Hørsholm, Dinamarca) en Tris 0,2 M/HCl, pH 8,0 que contenía EDTA 20 mM y un alícuota apropiadamente diluida de QC en un volumen final de 250 μl. Las longitudes de onda de excitación/emisión fueron 320/410 nm. Las reacciones de ensayo se iniciaron mediante la adición de glutaminil ciclasa. La actividad de QC se determinó a partir de una curva patrón de β-naftilamina bajo condiciones de ensayo. Una unidad se define como la cantidad de QC que cataliza la formación de 1 μmol de pGlu-βNA a partir de H-Gln-βNA por minuto bajo las condiciones descritas.

En un segundo ensayo fluorométrico, la actividad de QC se determinó usando H-Gln-AMC como sustrato. Las reacciones se llevaron a cabo a 30 °C utilizando el lector NOVOStar para microplacas (BMG labtechnologies). Las muestras consistieron en concentraciones variables del sustrato fluorogénico, 0,1 U de piroglutamil aminopeptidasa (Qiagen) en Tris 0,05 M/HCl, pH 8,0 que contenía EDTA 5 mM y una alícuota apropiadamente diluida de QC en un volumen final de 250 µl. Las longitudes de onda de excitación/emisión fueron 380/460 nm. Las reacciones de ensayo se iniciaron mediante la adición de glutaminil ciclasa. La actividad de QC se determinó a partir de una curva patrón de 7-amino-4-metilcumarina bajo condiciones de ensayo. Los datos cinéticos se evaluaron usando el software GraFit.

Ensayo espectrofotométrico de QC

Este ensayo novedoso se usó para determinar los parámetros cinéticos para la mayoría de los sustratos de QC. La actividad de QC se analizó espectrofotométricamente usando un procedimiento continuo, que se derivó adaptando un ensayo discontinuo previo (Bateman, R. C. J. 1989 J Neurosci Methods 30, 23-28) utilizando glutamato deshidrogenasa como enzima auxiliar. Las muestras consistieron en el sustrato de QC respectivo, NADH 0,3 mM, ácido α-cetoglutárico 14 mM y 30 U/ml de glutamato deshidrogenasa en un volumen final de 250 μl. Las reacciones se iniciaron mediante la adición de QC y se siguieron monitorizando la disminución en la absorbancia a 340 nm durante 8-15 min.

40 Se evaluaron las velocidades iniciales y la actividad enzimática se determinó a partir de una curva patrón de amoniaco bajo condiciones de ensayo. Todas las muestras se midieron a 30 °C usando el lector SPECTRAFluor Plus o el Sunrise (ambos de TECAN) para microplacas. Los datos cinéticos se evaluaron usando el software GraFit.

Ensayo de inhibidor

Para el ensayo de inhibidor, la composición de muestra fue la misma que se ha descrito anteriormente, excepto que se añadió el compuesto inhibidor supuesto. Para una prueba rápida de inhibición de QC, las muestras contenían 4 mM del inhibidor respectivo y una concentración de sustrato a 1 K_M. Para investigaciones detalladas de la inhibición y determinación de valores de K_i, primero se investigó la influencia del inhibidor sobre las enzimas auxiliares. En cada caso no hubo influencia sobre ninguna enzima detectada, permitiendo así la determinación fidedigna de la inhibición de QC. La constante inhibidora se evaluó ajustando el conjunto de curvas de progreso a la ecuación general para la inhibición competitiva usando el software GraFit.

Resultados

Los Ejemplos 1 a 13, 15 a 24 y 33 a 35 se probaron y proporcionaron valores de Cl_{50} de QCh menores de 10 mM. En la tabla siguiente se indican diversos valores específicos:

Ejemplo n.º	QCh K _i [nM]	QCh, Cl ₅₀ [nM]
5	54,9	317
8	20,9	117
9	4,7	18,7
10	32,3	169
17	46,6	557
25	45,3	195
26	36,2	292
29	18,7	221
32	164	821

Procedimientos analíticos

HPLC:

10

15

25

Procedimiento [A]: El sistema de HPLC analítico consistía en un dispositivo Merck-Hitachi (modelo LaChrom®) que usa una columna analítica LUNA® RP 18 (5 μ m) (longitud: 125 mm, diámetro: 4 mm) y un detector de haz de diodos (DAD) con λ = 214 nm como longitud de onda comunicada en el informe. Los compuestos se analizaron usando un gradiente a un caudal de 1 ml/min; en el que el eluyente (A) era acetonitrilo, el eluyente (B) era agua, conteniendo ambos ácido trifluoroacético al 0,1 % (v/v) aplicando el gradiente siguiente: 0 min - 5 min \rightarrow 5% de (A), 5 min - 17 min \rightarrow 5 - 15% de (A), 15 min - 27 min \rightarrow 15 - 95% de (A), 27 min - 30 min \rightarrow 95% de (A), Procedimiento [B]: 0 min - 15 min \rightarrow 5-60 % de (A), 15 min - 20 min \rightarrow 60 - 95 % de (A), 20 min - 23 min \rightarrow 95 % de (A).

Procedimiento [B]: El sistema de HPLC analítico consistía en un dispositivo Agilent MSD 1100 que usa una columna analítica Waters SunFire RP 18 (2,5 mm), (longitud: 50 mm, diámetro: 2,1 mm), y un detector de haz de diodos (DAD) con λ = 254 nm como longitud de onda comunicada en el informe. Los compuestos se analizaron usando un gradiente a un caudal de 0,6 ml/min; en el que el eluyente (A) era acetonitrilo, el eluyente (B) era agua y el eluyente (C) era ácido fórmico al 2% en acetonitrilo aplicando el gradiente siguiente:

Tiempo (minutos)	% de disolvente B	% de disolvente C
0	90	5
2,5	10	5
4	10	5
4,5	90	5
6	90	5

Las purezas de todos los compuestos indicados se determinaron por el porcentaje del área del pico a 214 nm.

Espectrometría de masas, espectroscopía de RMN:

20 Los espectros de masas de IEP se obtuvieron con un espectrómetro SCIEX API 365 (Perkin Elmer) utilizando el modo de ionización positivo.

Los espectros de RMN de ¹H (500 MHz) se registraron en un BRUKER AC 500. El disolvente fue DMSO-D₆, a menos que se haya indicado lo contrario. Los desplazamientos químicos se expresan en partes por millón (ppm) hacia abajo a partir de tetrametilsilano. Los patrones de desdoblamiento se han diseñado como sigue: s (singlete), d (doblete), dd (doblete de dobletes), t (triplete), m (multiplete) y ancho (señal ancha).

Espectrometría de masas MALDI-TOF

La espectrometría de masas por desorción/ionización láser asistida por matriz se llevó a cabo usando el sistema Hewlett-Packard G2025 LD-TOF con un analizador de tiempo de vuelo lineal. El instrumento estaba equipado con un láser de nitrógeno de 337 nm, una fuente de aceleración de potencial (5 kV) y un tubo de vuelo de 1,0 m. La operación del

detector fue en el modo positivo y las señales se registran y se filtran usando el osciloscopio de almacenamiento digital LeCroy 9350M conectado a un ordenador personal. Se mezclaron muestras (5 μ l) con volúmenes iguales de la solución de matriz. Para la solución de matriz se usó DHAP/DAHC, preparado disolviendo 30 mg de 2',6'-dihidroxiacetofenona (Aldrich) y 44 mg de hidrogenocitrato de diamonio (Fluka) en 1 ml de acetonitrilo/TFA al 0,1 % en agua (1/1, ν). Un pequeño volumen (ν 1 μ l) de la mezcla de matriz-analito se transfirió a una punta de la sonda y se evaporó inmediatamente en una cámara de vacío (accesorio de preparación de muestras Hewlett-Packard G2024A) para garantizar la rápida y homogénea cristalización de muestras.

Para la prueba a largo plazo de ciclación de Glu¹, se incubaron péptidos derivados de Aβ en 100 μl de tampón acetato de sodio 0,1 M, pH 5,2 o tampón bis-Tris 0,1 M, pH 6,5 a 30 °C. Los péptidos se aplicaron en concentraciones de [Aβ(3-11)a] 0,5 mM o [Aβ(3-21)a] 0,15 mM y se añadieron 0,2 U de QC cada 24 horas. En el caso de Aβ(3-21)a, los ensayos contenían 1 % de DMSO. A diferentes tiempos, las muestras se sacan del tubo de ensayo, los péptidos se extraen usando ZipTips (Millipore) según las recomendaciones del fabricante, se mezclan con solución de matriz (1:1 v/v) y posteriormente se registran los espectros de masas. Los controles negativos no contienen QC o enzima desactivada por calor. Para los estudios de inhibidores, la composición de muestra fue la misma que se ha descrito anteriormente, con excepción del compuesto inhibidor añadido (5 mM o 2 mM de un compuesto de prueba de la invención).

Los compuestos y combinaciones de la invención pueden tener la ventaja de que son, por ejemplo, más potentes, más selectivos, tienen menos efectos secundarios, tienen mejor formulación y propiedades de estabilidad, tienen mejores propiedades farmacocinéticas, tienen mayor biodisponibilidad, son capaces de cruzar la barrera hematoencefálica y son más eficaces en el cerebro de mamíferos, son más compatibles o eficaces en combinación con otros fármacos o se sintetizan más fácilmente que otros compuestos de la técnica anterior.

A lo largo de toda la memoria descriptiva y las reivindicaciones que siguen, a menos que el contexto requiera otra cosa, la palabra 'comprenden', y variaciones tales como 'comprende' y 'que comprende', se entenderá que implican la inclusión de un número entero, etapa, grupo de números enteros o grupo de etapas establecidos, pero no la exclusión de cualquier otro número entero, etapa, grupo de números enteros o grupo de etapas.

Todas las patentes y solicitudes de patente citadas a lo largo de la memoria descriptiva de la presente invención se incorporan en el presente documento por referencia en su totalidad.

La invención engloba todas las combinaciones de grupos preferidos y más preferidos y realizaciones de grupos citados anteriormente.

Abreviaturas

5

10

15

20

30 (DHQ)₂PHAL hidroquinina 1,4-ftalazindiil diéter

AcOH ácido acético

DAD detector de haz de diodos

DCC diciclohexil carbodiimida

DEA Dietilamina

35 DHAP/DAHC dihidroxiacetona fosfato/dihidro-5-azacitidina

DMF dimetilformamida
DMSO dimetil sulfóxido

EDTA ácido etilendiamina-N,N,N',N'-tetraacético

EtOAc acetato de etilo

40 EtOH etanol

FPLC cromatografía líquida de resolución rápida
HPLC cromatografía líquida de alta resolución

IPA isopropanol

LD-TOF espectrometría de masas por desorción láser tiempo de vuelo

45 ML aguas madres

EM espectrometría de masas

NMR resonancia magnética nuclear

Pd₂dba₃ tris(dibencilidenacetona)dipaladio

TEA trietilamina

TFA ácido trifluoroacético

5 THF tetrahidrofurano

TLC cromatografía en capa fina

TMSCN cianuro de trimetilsililo

Listado de secuencias

```
<110> Probiodrug AG
<120> Nuevos inhibidores ciclasa
<130> PBC 00082
<150> US 61/312.339
<151> 10-03-2010
<160> 20
<170> PatentIn version 3.5
<210>
<211>
<212>
        42
        PRT
      Homo sapiens
<400>
Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys 1 	 10 	 15
Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20 25 30
Gly Leu Met Val Gly Gly Val Val Ile Ala 35
<210>
<211> 40
<212> PRT
<213> Homo sapiens
<400> 2
Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys
1 10 15
Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20 25 30
Gly Leu Met Val Gly Gly Val Val
35 40
<210> 3
<211> 40
<212>
      PRT
<213>
      Homo sapiens
<400>
Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val 1 	ext{ } 10 	ext{ } 15
Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu 20 25 30
```

Met Val Gly Gly Val Val Ile Ala

```
35
                                           40
       <210>
                38
       <211>
                PRT
       <213> Homo sapiens
       <400> 4
       Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val
1 15
       Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu 20 25 30
       Met Val Gly Gly Val Val 35
       <210> 5
<211> 17
<212> PRT
       <213>
               Homo sapiens
      <220>
       <221> MOD_RES
      <222> (17)..(17)
     <223> AMIDACIÓN
      <400> 5
      Gln Gly Pro Trp Leu Glu Glu Glu Glu Glu Ala Tyr Gly Trp Met Asp 1 \hspace{1cm} 15
      Phe
      <210> 6
<211> 13
<212> PRT
<213> Homo sapiens
      <400> 6
      Gln Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile Leu 1 \hspace{1cm} 5 \hspace{1cm} 10
      <210> 7
<211> 10
<212> PRT
<213> Homo sapiens
       <220>
       <221> MOD_RES
      <222> (10)..(10)
10
      <223> AMIDACIÓN
      Gln His Trp Ser Tyr Gly Leu Arg Pro Gly 1 	 5
```

```
<210>
       PRT
       Homo sapiens
<400> 8
Gln Pro Lys Val Pro Glu Trp Val Asn Thr Pro Ser Thr Cys Cys Leu 1 \hspace{1.5cm} 10 \hspace{1.5cm} 15
Lys Tyr Tyr Glu Lys Val Leu Pro Arg Arg Leu Val Val Gly Tyr Arg 20 30
Lys Ala Leu Asn Cys His Leu Pro Ala Ile Ile Phe Val Thr Lys Arg 45
Asn Arg Glu Val Cys Thr Asn Pro Asn Asp Asp Trp Val Gln Glu Tyr 50 60
Ile Lys Asp Pro Asn Leu Pro Leu Leu Pro Thr Arg Asn Leu Ser Thr 65 70 75
Val Lys Ile Ile Thr Ala Lys Asn Gly Gln Pro Gln Leu Leu Asn Ser 85 90 95
Gln
<210>
<211>
        76
<212> PRT
<213> Homo sapiens
<400> 9
Gln Pro Asp Ser Val Ser Ile Pro Ile Thr Cys Cys Phe Asn Val Ile 10 	 15
Asn Arg Lys Ile Pro Ile Gln Arg Leu Glu Ser Tyr Thr Arg Ile Thr 20 30
Asn Ile Gln Cys Pro Lys Glu Ala Val Ile Phe Lys Thr Lys Arg Gly 35 40
Lys Glu Val Cys Ala Asp Pro Lys Glu Arg Trp Val Arg Asp Ser Met 50 60
Lys His Leu Asp Gln Ile Phe Gln Asn Leu Lys Pro 75
<210>
        76
<211>
        PRT
        Homo sapiens
```

<400> 10 Gln Pro Asp Ala Ile Asn Ala Pro Val Thr Cys Cys Tyr Asn Phe Thr $1 \hspace{1cm} 5 \hspace{1cm} 15$ Asn Arg Lys Ile Ser Val Gln Arg Leu Ala Ser Tyr Arg Arg Ile Thr 20 25 30Ser Ser Lys Cys Pro Lys Glu Ala Val Ile Phe Lys Thr Ile Val Ala Lys Glu Ile Cys Ala Asp Pro Lys Gln Lys Trp Val Gln Asp Ser Met $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$ Asp His Leu Asp Lys Gln Thr Gln Thr Pro Lys Thr 65 70 75 <210> <211> 68 **PRT** Homo sapiens <400> Gln Val Gly Thr Asn Lys Glu Leu Cys Cys Leu Val Tyr Thr Ser Trp
1 10 15 Glm Ile Pro Glm Lys Phe Ile Val Asp Tyr Ser Glu Thr Ser Pro Glm 20 25 30 Cys Pro Lys Pro Gly Val Ile Leu Leu Thr Lys Arg Gly Arg Gln Ile $\frac{35}{40}$ Cys Ala Asp Pro Asn Lys Lys Trp Val Gln Lys Tyr Ile Ser Asp Leu 50 60 Lys Leu Asn Ala 65 <210> 12 373 PRT <213> Homo sapiens <400> Gln His His Gly Val Thr Lys Cys Asn Ile Thr Cys Ser Lys Met Thr 10 15Ser Lys Ile Pro Val Ala Leu Leu Ile His Tyr Gln Gln Asn Gln Ala 20 30Ser Cys Gly Lys Arg Ala Ile Ile Leu Glu Thr Arg Gln His Arg Leu 35 40 Phe Cys Ala Asp Pro Lys Glu Gln Trp Val Lys Asp Ala Met Gln His 50 55 60

Leu Asp Arg Gln Ala Ala Leu Thr Arg Asn Gly Gly Thr Phe Glu 65 70 75 Lys Gln Ile Gly Glu Val Lys Pro Arg Thr Thr Pro Ala Ala Gly Gly 85 90 95 Met Asp Glu Ser Val Val Leu Glu Pro Glu Ala Thr Gly Glu Ser Ser 100 105 110 Ser Leu Glu Pro Thr Pro Ser Ser Gln Glu Ala Gln Arg Ala Leu Gly Thr Ser Pro Glu Leu Pro Thr Gly Val Thr Gly Ser Ser Gly Thr Arg 130 135 140 Leu Pro Pro Thr Pro Lys Ala Gln Asp Gly Gly Pro Val Gly Thr Glu 145 150 160 Leu Phe Arg Val Pro Pro Val Ser Thr Ala Ala Thr Trp Gln Ser Ser 165 170 175Ala Pro His Gln Pro Gly Pro Ser Leu Trp Ala Glu Ala Lys Thr Ser 180 185 190 Glu Ala Pro Ser Thr Gln Asp Pro Ser Thr Gln Ala Ser Thr Ala Ser 195 200 Ser Pro Ala Pro Glu Glu Asn Ala Pro Ser Glu Gly Gln Arg Val Trp 210 215 220 Gly Gln Gly Gln Ser Pro Arg Pro Glu Asn Ser Leu Glu Arg Glu Glu 225 230 240 Met Gly Pro Val Pro Ala His Thr Asp Ala Phe Gln Asp Trp Gly Pro 245 250 255 Gly Ser Met Ala His Val Ser Val Val Pro Val Ser Ser Glu Gly Thr $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270$ Pro Ser Arg Glu Pro Val Ala Ser Gly Ser Trp Thr Pro Lys Ala Glu 275 280 285 Glu Pro Ile His Ala Thr Met Asp Pro Gln Arg Leu Gly Val Leu Ile 290 295 Thr Pro Val Pro Asp Ala Gln Ala Ala Thr Arg Arg Gln Ala Val Gly 305 310 315 Leu Leu Ala Phe Leu Gly Leu Leu Phe Cys Leu Gly Val Ala Met Phe 325 330 335

```
Thr Tyr Gln Ser Leu Gln Gly Cys Pro Arg Lys Met Ala Gly Glu Met 340 350
Ala Glu Gly Leu Arg Tyr Ile Pro Arg Ser Cys Gly Ser Asn Ser Tyr 355 360 365
Val Leu Val Pro Val
370
       13
76
<210>
<211>
       PRT
       Homo sapiens
<400>
Gln Pro Val Gly Ile Asn Thr Ser Thr Thr Cys Cys Tyr Arg Phe Ile 10 	 15
Asn Lys Lys Ile Pro Lys Gln Arg Leu Glu Ser Tyr Arg Arg Thr Thr 20 25 30
Ser Ser His Cys Pro Arg Glu Ala Val Ile Phe Lys Thr Lys Leu Asp 45
Lys Glu Ile Cys Ala Asp Pro Thr Gln Lys Trp Val Gln Asp Phe Met 50 60
Lys His Leu Asp Lys Lys Thr Gln Thr Pro Lys Leu 65 70 75
<210>
<211>
<212>
        14
33
       PRT
       Homo sapiens
<400>
Gln Pro Leu Pro Asp Cys Cys Arg Gln Lys Thr Cys Ser Cys Arg Leu 10 15
Tyr Glu Leu Leu His Gly Ala Gly Asn His Ala Ala Gly Ile Leu Thr
Leu
<210>
        15
<211>
<212>
        PRT
        Homo sapiens
<213>
<400> 15
Arg Pro Lys Pro Gln Gln Phe Phe Gly Leu Met 1 5 10
```

```
<210> 16
      <211> 32
      <212> PRT
      <213> Secuencia artificial
     <220>
      <223> Péptido sintético
      <400> 16
      Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser
1 10 15
     Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala 20 \hspace{1cm} 25 \hspace{1cm} 30
      <210> 17
      <211> 30
     <212> PRT
10
      <213>
             Secuencia artificial
      <220>
      <223> Péptido sintético
      <400> 17
      Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser 10 15
      Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val 20 25 30
15
      <210> 18
      <211> 34
      <212> PRT
      <213>
              Secuencia artificial
      <220>
20
     <223> Péptido sintético
      <400> 18
      Glu Ala Ser Asn Cys Phe Ala Ile Arg His Phe Glu Asn Lys Phe Ala 10 \ 15
      Val Glu Thr Leu Ile Cys Ser Arg Thr Val Lys Lys Asn Ile Ile Glu 20 30
      Glu Asn
      <210> 19
      <211> 34
      <212> PRT
```

<213> Secuencia artificial

<220>

<223> Péptido sintético

5 **<400> 19**

His Tyr

<210> 20

<211> 5

<212> PRT

10 <213> Secuencia artificial

<220>

<223> Péptido sintético

Gln Tyr Asn Ala Asp 1 5

15

REIVINDICACIONES

Un compuesto de fórmula (I):

o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo, incluidos todos los tautómeros y estereoisómeros del mismo, en la que:

 R^1 representa -alquilo C_{1-6} , -arilo, -alquil C_{1-6} -arilo, -cicloalquilo, -alquil C_{1-6} -cicloalquilo, -heteroarilo, -heteroarilo, -alquil C_{1-6} -heterociclilo, -cicloalquilo sustituido con fenilo, -cicloalquilo sustituido con fenilo, -cicloalquilo sustituido con fenilo, heterociclilo sustituido con fenilo, heterociclilo sustituido con fenilo, heterociclilo sustituido con fenilo, fenilo sustituido con heterociclilo, fenilo sustituido con heterociclilo, fenilo sustituido con -O-cicloalquilo o fenilo sustituido con -cicloalquil-heterociclilo;

y donde cualquiera de los grupos arilo, cicloalquilo, heterociclilo, heteroarilo, fenilo o fenoxi anteriormente citados puede estar opcionalmente sustituido con uno o más grupos seleccionados de alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , haloalquilo C_{1-6} , -tioalquilo C_{1-6} , -SO-alquilo C_{1-4} , -SO₂-alquilo C_{1-4} , alcoxi C_{1-6} -, -O-cicloalquilo C_{3-8} , cicloalquilo C_{3-8} , -SO₂-cicloalquilo C_{3-8} , -SO-cicloalquilo C_{3-6} , alqueniloxi C_{3-6} -, alquiniloxi C_{3-6} -, -C(O)-alquilo C_{1-6} , -C(O)O-alquilo C_{1-6} , alcoxi C_{1-6} -alquilo C_{1-6} -, nitro, halógeno, ciano, hidroxilo, -C(O)OH, -NH₂, -NH-alquilo C_{1-4} , -N(alquil C_{1-4})(alquilo C_{1-4}), -C(O)NH(alquilo C_{1-4}), -C(O)NH(alquilo C_{1-4}), -C(O)NH(cicloalquilo C_{3-10});

 R^2 representa -alquilo C_{1-6} , haloalquilo C_{1-6} , -arilo, -alquil C_{1-6} -arilo, -cicloalquilo, -alquil C_{1-6} -cicloalquilo, -heteroarilo, -

y donde cualquiera de los grupos arilo, heteroarilo o heterociclilo anteriormente citados puede estar opcionalmente sustituido con uno o más grupos seleccionados de alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , haloalquilo C_{1-6} , -tioalquilo C_{1-6} , -SO-alquilo C_{1-4} , -SO₂-alquilo C_{1-4} , alcoxi C_{1-6} -, -O-cicloalquilo C_{3-8} , cicloalquilo C_{3-8} , -SO₂-cicloalquilo C_{3-8} , -SO-cicloalquilo C_{3-6} , alqueniloxi C_{3-6} -, alquiniloxi C_{3-6} -, -C(O)alquilo C_{1-6} , -C(O)O-alquilo C_{1-6} , alcoxi C_{1-6} -alquilo C_{1-6} , nitro, halógeno, ciano, hidroxilo, -C(O)OH, -NH₂, -NH-alquilo C_{1-4} , -N(alquilo C_{1-4})(alquilo C_{1-4}), -C(O)NH(alquilo C_{1-4}) y -C(O)NH(cicloalquilo C_{3-10});

R³ representa alquilo C₁₋₆ o haloalquilo C₁₋₆;

n representa 0; y

5

10

15

20

25

30

35

 R^a representa alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , haloalquilo C_{1-6} , -tioalquilo C_{1-6} , -SO-alquilo C_{1-4} , -SO₂-alquilo C_{1-4} , alcoxi C_{1-6-} , -O-cicloalquilo C_{3-8} , cicloalquilo C_{3-8} , -SO₂-cicloalquilo C_{3-8} , -SO-cicloalquilo C_{3-6} , alqueniloxi C_{3-6-} , alquiniloxi C_{3-6-} , -C(O)alquilo C_{1-6} , -C(O)O-alquilo C_{1-6} , alcoxi C_{1-6} -alquilo C_{1-6-} , nitro, halógeno, ciano, hidroxilo, -C(O)OH, -NH₂, -NH-alquilo C_{1-4} , -N(alquilo C_{1-4})(alquilo C_{1-4}), -C(O)NH(alquilo C_{1-4}) y -C(O)NH(cicloalquilo C_{3-10}).

- 2. Un compuesto según la reivindicación 1, en el que R¹ representa -alquilo C₁₋₆, -arilo, -cicloalquilo, -heteroarilo, -heterociclilo, -cicloalquilo sustituido con fenilo, -cicloalquilo sustituido con fenoxi, -fenilo sustituido con cicloalquilo, -fenilo sustituido con fenoxi, -fenilo sustituido con fenilo, heterociclilo sustituido con fenilo, heteroarilo sustituido con fenilo, fenilo sustituido con -O-cicloalquilo o fenilo sustituido con -cicloalquil-heterociclilo.
- 3. Un compuesto según la reivindicación 2, en el que R¹ representa -alquilo C₁₋₆, -arilo, -cicloalquilo, -heteroarilo, fenilo sustituido con fenilo, fenilo sustituido con heterociclilo o fenilo sustituido con -O-cicloalquilo, donde dicho grupo fenilo está opcionalmente sustituido con uno o más grupos halógeno, donde dicho grupo heterociclilo está opcionalmente sustituido con uno o más grupos alquilo C₁₋₆, y donde dicho grupo cicloalquilo está opcionalmente sustituido con uno o más grupos halógeno.

- 4. Un compuesto según la reivindicación 3, en el que R¹ representa fenilo opcionalmente sustituido con uno o más grupos halógeno.
- 5. Un compuesto según cualquiera de las reivindicaciones 1 a 4, en el que R^2 representa -alquilo C_{1-6} , haloalquilo C_{1-6} , -arilo, -cicloalquilo, -heteroarilo o -heterociclilo.
- 5 6. Un compuesto según la reivindicación 5, en el que R² representa metilo, etilo, propilo, isopropilo, trifluorometilo o fenilo opcionalmente sustituido con uno o más grupos halógeno.
 - 7. Un compuesto según la reivindicación 6, en el que R² representa metilo o fenilo no sustituido.
 - 8. Un compuesto según cualquiera de las reivindicaciones 1 a 7, en el que R³ representa alquilo C₁₋₆;

0

- 10 R³ representa haloalquilo C₁₋₆.
 - 9. Un compuesto según uno cualquiera de los ejemplos 1 a 35 o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo, incluyendo todos los tautómeros y estereoisómeros:

1	N N N N N N N N N N N N N N N N N N N	1-(1H-Benzo[d]imidazol-6-il)-5-ciclohexil-3-metoxi-4-metil-1H- pirrol-2(5H)-ona
2	TY NO	1-(1H-Benzo[d]imidazol-6-il)-5-isopropil-3-metoxi-4-metil-1H-pirrol- 2(5H)-ona
3	F N O	1-(1H-Benzo[d]imidazol-5-il)-5-(2,6-difluorofenil)-3-metoxi-4-metil- 1H-pirrol-2(5H)-ona
4	O O N NH NH NH	1-(1H-Benzo[d]imidazol-5-il)-5-(2,4,5-trifluorofenil)-3-metoxi-4- metil-1H-pirrol-2(5H)-ona
5	HN N O	1-(1H-Benzo[d]imidazol-5-il)-5-(2,3,5-trifluorofenil)-3-metoxi-4- fenil-1H-pirrol-2(5H)-ona

6	Br F	1-(1H-Benzo[d]imidazol-6-il)-5-(5-bromo-2-fluorofenil)-3-metoxi-4- metil-1H-pirrol-2(5H)-ona
7	F CI	1-(1H-Benzo[d]imidazol-6-il)-5-(2-cloro-3,6-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona
8	F F F	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil- 1H-pirrol-2(5H)-ona
9	F F	(R)-1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona
10	F N N N	(S)-1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4- metil-1H-pirrol-2(5H)-ona
11	N N N N N N N N N N N N N N N N N N N	1-(1H-Benzo[d]imidazol-6-il)-4-etil-5-(2,3-difluorofenil)-3-metoxi- 1H-pirrol-2(5H)-ona
12	F F N N	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-propil- 1H-pirrol-2(5H)-ona

13	F NH NH O	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-isopropil-3- metoxi-1H-pirrol-2(5H)-ona
14	F CF ₃	1-(1H-Benzo[d]imidazol-6-il)-4-(trifluorometil)-5-(2,3-difluorofenil)- 3-metoxi-1H-pirrol-2(5H)-ona
15	F N N N O	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-fenil- 1H-pirrol-2(5H)-ona
16	N F F	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-4-(4-fluorofenil)- 3-metoxi-1H-pirrol-2(5H)-ona
17	O O NH	1-(1H-Benzo[d]imidazol-6-il)-5-(2,3-diclorofenil)-3-metoxi-4-metil- 1H-pirrol-2(5H)-ona
18	O NH NN CI	(R)-1-(1H-Benzo[d]imidazol-5-il)-5-(2,3-diclorofenil)-3-metoxi-4- metil-1H-pirrol-2(5H)-ona
19	O O NH N NH	(S)-1-(1H-Benzo[d]imidazol-5-il)-5-(2,3-diclorofenil)-3-metoxi-4- metil-1H-pirrol-2(5H)-ona

20	O Z Z H	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-morfolinofenil)- 1H-pirrol-2(5H)-ona
21	2 21	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(bifen-4-il)-1H- pirrol-2(5H)-ona
22	TEZ ZET O	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(piperidin-1- il)fenil)-1H-pirrol-2(5H)-ona
23		1-(1H-Benzo[d]imidazol-6-il)-5-(4-(ciclohexiloxi)fenil)-3-metoxi-4- metil-1H-pirrol-2(5H)-ona
24	HANDO	1-(1H-Benzo[d]imidazol-5-il)-3-metoxi-4-fenil-5-(quinolin-3-il)-1H- pirrol-2(5H)-ona

25	T T T T T T T T T T T T T T T T T T T	1-(1H-Benzo[d]imidazol-6-il)-5-(4-ciclohexilfenil)-3-metoxi-4-metil- 1H-pirrol-2(5H)-ona
26	F P P P P P P P P P P P P P P P P P P P	1-(1H-Benzo[d]imidazol-6-il)-5-(4-(4,4-difluorociclohexil) fenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona
27	HZZ	1-(1H-Benzo[d]imidazol-6-il)-5-(4-(tetrahidro-2H-piran-4-il)fenil)-3- metoxi-4-metil-1H-pirrol-2(5H)-ona
28	ZZT ZZT C	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(1- metilpiperidin-4-il)fenil)-1H-pirrol-2(5H)-ona
29	0 2 -	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-(4- morfolinociclohexil)fenil)-1H-pirrol-2(5H)-ona

30	N N N N N N N N N N N N N N N N N N N	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4- fenoxiciclohexil)-1H-pirrol-2(5H)-ona
31	T Z Z O	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(1-fenilpiperidin-4-il)-1H-pirrol-2(5H)-ona
32	HZZ	1-(1H-Benzo[d]imidazol-6-il)-3-metoxi-4-metil-5-(4-fenilciclohexil)- 1H-pirrol-2(5H)-ona
33	O N F F	1-(1H-Benzo[d]imidazol-5-il)-3-etoxi-5-(2,3-difluorofenil)-4-metil- 1H-pirrol-2(5H)-ona
34	F F F F NH	3-(2,2,3,3-Tetrafluoropropoxi)-1-(1H-benzo[d]imidazol-5-il)-5-(2,3-difluoro-fenil)-4-metil-1H-pirrol-2(5H)-ona
35	F ₃ C O N N NH	3-(2,2,2-Trifluoroetoxi)-1-(1H-benzo[d]imidazol-5-il)-5-(2,3-difluorofenil)-4-metil-1H-pirrol-2(5H)-ona

- 10. Un compuesto según la reivindicación 1, que es 1-(1H-benzo[d]imidazol-6-il)-5-(2,3-difluorofenil)-3-metoxi-4-metil-1H-pirrol-2(5H)-ona o una sal farmacéuticamente aceptable, solvato o polimorfo del mismo.
- 11. Un compuesto según las reivindicaciones 1 a 10, para su uso como medicamento.
- 12. Una composición farmacéutica que comprende un compuesto según una cualquiera de las reivindicaciones 1 a 11, opcionalmente en combinación con uno o más diluyentes o vehículos farmacéuticamente aceptables.
- 13. La composición farmacéutica de la reivindicación 12, que comprende adicionalmente al menos un compuesto seleccionado del grupo que consiste en neuroprotectores, antiparkinsonianos, inhibidores del depósito de proteína amiloide, inhibidores de la síntesis de beta-amiloide, antidepresivos, ansiolíticos, antisicóticos y fármacos contra la esclerosis múltiple;

10 o

15

5

que comprende adicionalmente al menos un compuesto seleccionado del grupo que consiste en inhibidores de PEP, LiCI, inhibidores de inhibidores de DP IV o enzimas del tipo DP IV, inhibidores de acetilcolinesterasa (ACE), potenciadores de PIMT, inhibidores de beta-secretasas, inhibidores de gamma-secretasas, inhibidores de endopeptidasa neutra, inhibidores de fosfodiesterasa-4 (PDE-4), inhibidores de TNFalfa, antagonistas del receptor muscarínico M1, antagonistas del receptor de NMDA, inhibidores del receptor sigma 1, antagonistas de histamina H3, inmunomoduladores, inmunodepresores o un agente seleccionado del grupo que consiste en antegren (natalizumab), Neurelan (fampridina-SR), campat (alemtuzumab), IR 208, NBI 5788/MSP 771 (tiplimotida), paclitaxel, Anergix.MS (AG284), SH636, differin (CD 271, adapaleno), BAY 361677 (interleucina-4), inhibidores de metaloproteinasa de matriz, interferón-tau (trofoblastina) y SAIK-MS.

14. Un compuesto según una cualquiera de las reivindicaciones 1 a 10 o una composición farmacéutica según una cualquiera de las reivindicaciones 13 o 14 para su uso en el tratamiento de una enfermedad seleccionada del grupo que consiste en enfermedad de Kennedy, cáncer duodenal con o sin infecciones por *Helicobacter pylori*, cáncer colorrectal, síndrome de Zolliger-Ellison, cáncer gástrico con o sin infecciones por *Helicobacter pylori*, afecciones psicóticas patógenas, esquizofrenia, infertilidad, neoplasia, respuestas del huésped inflamatorias, cáncer, metástasis maligna, melanoma, psoriasis, alteración en las respuestas humorales e inmunitarias mediadas por la célula, procesos de adhesión y migración de leucocitos en el endotelio, alteraciones en el consumo de alimento, alteraciones en el ciclo sueño/vigilia, alteración en la regulación homeostática del metabolismo de la energía, alteración en la función autónoma, alteración en el equilibrio hormonal o alteración en la regulación de fluidos corporales, esclerosis múltiple, síndrome de Guillain-Barré y polirradiculoneuropatía desmielinizante inflamatoria

0

para su uso en el tratamiento de una enfermedad seleccionada del grupo que consiste en deterioro cognitivo leve, enfermedad de Alzheimer, demencia británica familiar, demencia danesa familiar, neurodegeneración en el síndrome de Down y enfermedad de Huntington;

35

para su uso en el tratamiento de una enfermedad seleccionada del grupo que consiste en artritis reumatoide, aterosclerosis, pancreatitis y reestenosis.

- 15. Un procedimiento de preparación de un compuesto de fórmula (I) según una cualquiera de las reivindicaciones 1 a 10, que comprende:
- 40 (a) preparar un compuesto de fórmula (I) a partir de un compuesto de fórmula (II)

$$(R^a)_n$$
 R^1 R^2 OH

en la que Ra, n, R1 y R2 son como se definen en la reivindicación 1; y/o

(b) desproteger un compuesto de fórmula (I) que está protegido.