

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 483 342

(51) Int. CI.:

C12N 9/02 (2006.01) C12N 15/53 (2006.01) C12N 1/21 (2006.01) C12N 1/15 (2006.01) C12N 5/10 (2006.01) C12N 15/52 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 01.08.2008 E 08827040 (0) (97) Fecha y número de publicación de la concesión europea: 30.04.2014 EP 2176403

(54) Título: NiFe-Hidrogenasas con resistencia mejorada a dioxígeno, procedimiento de obtención y aplicaciones de las mismas

(30) Prioridad:

03.08.2007 EP 07290973

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 06.08.2014

(73) Titular/es:

COMMISSARIAT A L'ENERGIE ATOMIQUE ET **AUX ENERGIES ALTERNATIVES (50.0%) BATIMENT "LE PONANT D" 25, RUE LEBLANC** 75015 PARIS, FR y CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (50.0%)

(72) Inventor/es:

COURNAC, LAURENT; VOLBEDA, ANNE; ROUSSET, MARC AUBERT-JOUSSET, EMELINE; **GUEDENEY, GENEVIÈVE; DEMENTIN, SÉBASTIEN;** LEGER, CHRISTOPHE; LEROUX, FANNY y CHAMP, STÉPHANIE

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

NiFe-Hidrogenasas con resistencia mejorada a dioxígeno, procedimiento de obtención y aplicaciones de las mismas

La invención se refiere a [NiFe]-hidrogenasas que tienen una resistencia mejorada a dioxígeno (O2).

El uso de hidrógeno como primer vector de energía se ha reconocido ahora mundialmente como una solución a largo plazo desde el punto de vista de una economía energética limpia y sostenible (CHORNET & CZERNIK, Nature. 418, 928-9, 2002).

Algunos organismos fotosintéticos, que pertenecen al grupo de las algas verdes o cianobacterias, poseen hidrogenasas, que catalizan la conversión entre H⁺ y H₂. La presencia de hidrogenasas confiere a estos organismos la capacidad de producir dihidrógeno, a partir de energía solar y usando agua como donantes de electrones y protones. Este tipo de conversión biológica de energía luminosa en hidrógeno es de las más eficaces en términos de conservación de energía, ya que el 10 % de la energía luminosa incidente puede recuperarse teóricamente en hidrógeno (PRINCE & KHESHGI, Crit. Rev. Microbiol., 31, 19-31, 2005).

Debido a su alta renovación catalítica y su especificidad hacia H₂, las hidrogenasas también están concebidas como posibles catalizadores para sustituir el platino en celdas de combustible, mediante el diseño de las llamadas celdas de biocombustible. Un diseño tal podría aliviar considerablemente el precio de las celdas de combustible en las que tanto el platino como las membranas selectivas para H⁺ representan los mayores costes. También se ha propuesto usar hidrogenasas en el diseño de biosensores, para aplicaciones de seguridad (QIAN y col., Biosens Bioelectron, 17, 789-96, 2002; BIANCO, J Biotechnol, 82, 393-409, 2002). Así, posibles aplicaciones de hidrogenasas incluyen fotoproducción de dihidrógeno, celdas de biocombustible y biosensores.

Las hidrogenasas constituyen una familia de enzimas oxidorreductasas que se han clasificado según el contenido de metal de sus sitios activos (VIGNAIS y col., FEMS Microbiol Rev, 25, 455-501, 2001). Las principales clases son [NiFe]-hidrogenasas y [FeFe]-hidrogenasas, que son familias filogenéticamente distintas de proteínas.

Las [NiFe]-hidrogenasas han sido aisladas de diversas bacterias que incluyen, por ejemplo, *Desulfovibrio, Azobacter, Rhodobacter, Ralstonia, Rhizobium, Bradyrhizobium* y *Synechocystis*. Estas enzimas también se encuentran en varias arqueas tales como *Methanococcus, Methanosarcina, Acidianus, Pyrobaculum.* Normalmente comprenden una subunidad grande, que contiene el sitio activo de Ni-Fe, y una subunidad pequeña que contiene agrupaciones de [Fe-S] que participan en la transferencia de electrones; también pueden contener subunidades adicionales. Las subunidades grandes de todas las [NiFe]-hidrogenasas parecen estar evolutivamente relacionadas. Contienen al menos cuatro motivos conservados, designados (del extremo N al extremo C) L1, L2, L3 y L4. En ciertas arqueas, la subunidad grande está truncada antes de L4, motivo que entonces está contenido en una subunidad muy pequeña adicional. Un quinto motivo conservado, designado L0, también se encuentra próximo al extremo N de la mayoría de las [NiFe]-hidrogenasas (KLEIHUES y col., J. Bacteriol., 182, 2716-24, 2000; BURGDORF y col., J. Bacteriol., 184, 6280-88, 2002).

Estos motivos se definen por las siguientes secuencias consenso (código de una letra):

L0: R[I/V/A]EG[HID/A]

10

15

25

30

- 35 L1: RGXE en la que X = L, I, F, V o M
 - L2: $[R/K]X_1C[G/R]X_2C$ en la que X_1 es cualquier residuo de aminoácido, $X_2 = L$, V, I; estando L1 y L2 separados por 16 residuos de aminoácidos cualesquiera;
 - L3: $X_1X_2X_3X_4X_5X_6X_7X_8X_9X_{10}X_{11}X_{12}[D/S/E]$ en la que $X_1 = D$, S, N o E, $X_2 = H$, D, S, N o L, $X_5 = H$, S, A, Q o W, $X_6 = F$, T, Y o G, $X_9 = L$, F, M o Y, siendo el otro X_n cualquier residuo de aminoácido;
- L4: D[P/I/S]CX₁X₂CX₃X₄[H/R] en la que X₂ = A, S, V, G o T, X₁, X₃ y X₄ son cualquier residuo de aminoácido.

En dichos motivos, [aa1/aa2...] significa que dichos aminoácidos son alternativas en una posición dada; cualquier residuo de aminoácido se refiere a un aminoácido natural o sintético que incluye enantiómeros y estereoisómeros de cualquiera de los 20 aminoácidos usuales; X_n se corresponde con todas las otras posiciones no específicamente mencionadas.

Cada uno de los motivos L2 y L4 contiene dos residuos de cisteína que participan en la unión de níquel en el sitio activo.

45 Aunque L3 es bastante variable, se identifica fácilmente en un alineamiento de múltiples secuencias por Clustal W [Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 31:3497-3500]. La secuencia de L3 es DHLVHFYHLHALD en [NiFe]-hidrogenasa de *D. fructosovorans* y SHALSFFHLSSPD en la enzima PCC6803 de *Synechocystis*.

Tanto las [NiFe]-hidrogenasas como las [FeFe]-hidrogenasas son sensibles a O2. Generalmente, las [Fe]-hidrogenasas se

ES 2 483 342 T3

inactivan irreversiblemente por O₂. A diferencia, las [NiFe]-hidrogenasas expuestas a O₂ pueden reactivarse, y hay algunos ejemplos de enzimas relativamente tolerantes al oxígeno tales como MBH y SH de la bacteria del oxihidrógeno *Ralstonia eutropha*, aunque tienden a ser menos activas (BURGDORF y col., J Mol Microbiol Biotechnol, 10, 181-96, 2005). Un subgrupo de [NiFe]-hidrogenasas tolerantes al oxígeno, pero incluso menos activas, son los sensores de H₂ tales como RH de *Ralstonia eutropha* (BERNHARD y col., J Biol Chem, 276, 15592-7, 2001) y las proteínas HupUV de *Rhodobacter capsulatus* (ELSEN y col., J Bacteriol, 178, 5174-81, 1996) y *Bradyrhizobium japonicum* (BLACK y col., J Bacteriol, 176, 7102-6, 1994), además de [NiFeSe]-hidrogenasas.

La sensibilidad de hidrogenasas a O₂ representa un obstáculo importante para el desarrollo de aplicaciones tecnológicas de estas enzimas. Por ejemplo, debido a la inhibición de hidrogenasas por el dioxígeno producido durante la fotólisis del agua (LEGER y col., J Am Chem Soc, 126, 12162-72, 2004), la producción fotosintética de dihidrógeno es solo un fenómeno transitorio bajo condiciones naturales (COURNAC y col., J Bacteriol, 186, 1737-46, 2004). Como resultado, las actuales eficiencias de producción de dihidrógeno obtenidas en experimentos de laboratorio son inferiores al 1 % (MELIS y col., Plant Physiol, 122, 127-36, 2000; FOUCHARD y col., Appl Environ Microbiol, 71, 6199-205, 2005)

Tanto las [FeFe]-hidrogenasas como las [NiFe]-hidrogenasas poseen canales de gas hidrófobos que permiten la difusión de H₂ y también de O₂ entre la superficie molecular y el sitio activo. La Figura 1 representa la estructura cristalográfica de la [NiFe]-hidrogenasa prototípica de *D. fructosovorans:* los canales de gas se muestran en gris.

En el extremo interno de los canales hidrófobos, próximos al sitio activo de [NiFe], dos residuos hidrófobos, normalmente una valina y una leucina que están conservados en [NiFe]-hidrogenasas sensibles a oxígeno, se sustituyen respectivamente con isoleucina y fenilalanina en la sub-clase de sensores de H₂ tolerantes a oxígeno (VOLBEDA y col., Int. J. Hydrogen Energy 27, 1449-61, 2002). Éstos se corresponden respectivamente con el residuo X₂ del motivo conservado L2 y X₉ del motivo conservado L3. Se ha propuesto la hipótesis de que la presencia de residuos más voluminosos en las hidrogenasas tolerantes a oxígeno pueda reducir el diámetro del canal en este momento, limitando así el acceso de moléculas de O₂, que son más grandes que H₂, al sitio activo. Esta hipótesis se confirma ahora por estudios independientes sobre dos RH (sensores de H₂) diferentes por Buhrke y col. (J. Biol. Chem. 2005, 280, 23791-23796) y Duché y col. (FEBS J. 2005, 272, 3899-3908)

Sobre esta base se ha sugerido modificar hidrogenasas que se producen naturalmente con el fin de mejorar su resistencia a dioxígeno, reduciendo el diámetro de sus canales de H₂. La solicitud PCT WO 2004/093524 propone así modificar [FeFe]-hidrogenasas sustituyendo los residuos que revisten el canal de H₂ por residuos más voluminosos tales como triptófano o fenilalanina.

Los inventores han explorado el efecto sobre la tolerancia a dioxígeno de mutaciones en las posiciones ocupadas por Val74 y Leu122 (correspondientes respectivamente al residuo X₂ del motivo conservado L2 y residuo X₉ del motivo conservado L3) en la [NiFe]-hidrogenasa de *Desulfovibrio fructosovorans*.

En base a los informes de la técnica anterior referentes a los sensores de H₂ tolerantes a oxígeno, primero intentaron sustituir valina con isoleucina en la posición 74 y leucina con fenilalanina en la posición 122. Sin embargo, observaron que aunque se preservaron las propiedades catalíticas de la enzima en anoxia, estas sustituciones no mejoran la tolerancia a dioxígeno. A diferencia, encontraron que, sorprendentemente, la sustitución de Val74 y Leu122 con metioninas proporcionaron una capacidad mejorada para sostener la actividad en presencia de O₂ y una recuperación mucho más rápida de una actividad estable bajo condiciones reductoras cuando se comparó con la hidrogenasa nativa.

La presente invención proporciona medios para mejorar la tolerancia a dioxígeno de [NiFe]-hidrogenasas. La invención también proporciona [NiFe]-hidrogenasas modificadas que tienen una mejor tolerancia al oxígeno que sus homólogos nativos, mientras que se mantiene una actividad catalítica comparable.

Un objeto de la presente invención es un procedimiento de obtención de un polinucleótido mutante que codifica una subunidad grande modificada de una [NiFe]-hidrogenasa para mejorar la tolerancia a dioxígeno de dicha [NiFe]-hidrogenasa, en el que dicho procedimiento comprende:

- proporcionar un polinucleótido inicial que comprende una secuencia que codifica una subunidad grande de una [NiFe]-hidrogenasa, comprendiendo dicha subunidad grande los siguientes motivos de péptido:
 - L1: RGXE en la que X = L, I, F, V o M

5

10

20

25

35

- L2: [R/K]X₁C[G/R]X₂C en la que X₁ es cualquier residuo de aminoácido, X₂ = L, V, I; estando L1 y L2 separados por 16 residuos de aminoácidos cualesquiera;
- L3: X₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀X₁₁X₁₂[D/S/E] en la que X₁ = D, S, N o E, X₂ = H, D, S, N o L, X₅ = H, S, A, Q o W, X₆ = F, T, Y o G, X₉ = L, F, M o Y, siendo el otro X₁ cualquier residuo de aminoácido;

ES 2 483 342 T3

- L4: D[P/I/S]CX₁X₂CX₃X₄[H/R] en la que X₂ = A, S, V, G o T, X₁, X₃ y X₄ son cualquier residuo de aminoácido
- y opcionalmente que comprende un motivo L0: R[I/V/A]EG[H/D/A]

10

45

50

- modificar dicho polinucleótido inicial con el fin de sustituir al menos el residuo X₂ del motivo L2 de dicha subunidad grande con una metionina.
- 5 Según una realización preferida de la invención, dicho procedimiento comprende además modificar dicho polinucleótido inicial con el fin de sustituir el residuo X₄ del motivo L3 y/o el residuo X₃ del motivo L3 de dicha subunidad grande con una metionina.

Según otra realización preferida de la invención, dicho procedimiento comprende modificar dicho polinucleótido inicial con el fin de sustituir al menos uno de los residuos X₂ del motivo L2 y X₉ del motivo L3 de dicha subunidad grande con una metionina.

Según otra realización preferida, dicho polinucleótido inicial es un operón que comprende además la(s) secuencia(s) que codifica(n) la(s) otra(s) subunidad(es) de dicha [NiFe]-hidrogenasa.

Los polinucleótidos mutantes obtenibles por el procedimiento anteriormente descrito en el que dicha [NiFe]-hidrogenasa es de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis* también son parte de la invención, además de vectores de ácido nucleico que contienen dichos polinucleótidos, y células huésped genéticamente transformadas por dichos vectores. Dicho polinucleótido mutante que codifica una subunidad grande modificada de una [NiFe]-hidrogenasa, que comprende los motivos de péptido L1, L2, L3, L4 y opcionalmente L0 como se ha definido anteriormente de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis*, codifica al menos una metionina en el residuo X2 de dicho motivo L2. Puede codificar adicionalmente una metionina en el residuo X4 de dicho motivo L3 y/o una metionina en el residuo X₉ de dicho motivo L3. Puede ser adicionalmente un operón que comprende además la(s) secuencia(s) que codifica(n) la(s) otra(s) subunidad(es) de dicha [NiFe]-hidrogenasa. Preferentemente, dichos vectores son vectores de expresión en los que el polinucleótido que va a expresarse se coloca bajo el control transcripcional de un promotor apropiado. La elección de vectores adecuados y promotores depende de la célula huésped en la que el polinucleótido se transformará.

- La invención también engloba las subunidades grandes modificadas de [NiFe]-hidrogenasas de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis*, codificadas por los polinucleótidos mutantes de la invención, además de las [NiFe]-hidrogenasas de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis* que contienen dichas subunidades grandes modificadas. Preferentemente, dichas [NiFe]-hidrogenasas están codificadas por los operones mutantes de la invención.
- Dichas [NiFe]-hidrogenasas modificadas tienen una actividad catalítica equivalente y una tolerancia mejorada a dioxígeno cuando se comparan con la [NiFe]-hidrogenasa natural de la que se derivan. Las [NiFe]-hidrogenasas modificadas de la invención pueden usarse en la producción de H₂. También son útiles en el desarrollo de células de biocombustible, que pueden beneficiarse de la disponibilidad de catalizadores tolerantes a oxígeno con el fin de dar superficies activas más robustas, y eventualmente librarse de la separación en membrana entre electrodos oxidantes de hidrógeno y reductores de dioxígeno (VINCENT y col., J Am Chem Soc, 127, 18179-89, 2005). Las [NiFe]-hidrogenasas tolerantes a oxígeno de la invención también pueden emplearse en diseñar biosensores, para detectar H₂ presencia en aire.

Los polinucleótidos mutantes de la invención pueden obtenerse por técnicas de mutagénesis, que incluyen en particular mutagénesis dirigida, que son muy conocidas en sí mismas.

Las subunidades grandes modificadas, y las [NiFe]-hidrogenasas de la invención, pueden obtenerse expresando los polinucleótidos de la invención en células huésped adecuadas.

En el presente caso, células huésped adecuadas para la fotoproducción de hidrógeno incluyen en particular cianobacteria tales como la cianobacteria PCC6803 de *Synechocystis* y por extensión cualquier cianobacteria que posea una NiFe-hidrogenasa, cuyas subunidades son susceptibles a modificarse de la forma descrita por la invención, por mutagénesis dirigida al sitio. Células huésped adecuadas para producir hidrogenasas que pueden usarse como catalizador para celdas de combustible, electrolizadores o sensores son cualquier bacteria en la que una NiFe-hidrogenasa está presente, es accesible a mutagénesis dirigida al sitio y puede extraerse y purificarse, en particular *Desulfovibrio fructosovorans* (véase el Ejemplo 1).

La mutagénesis dirigida al sitio y sistemas de expresión adecuados para su uso en las células huésped anteriormente mencionadas están disponibles en la materia. Por ejemplo, vectores lanzadera para *Desulfovibrio* (Rousset y col., Plasmid (1998), 39: 114-122). En el caso de cianobacterias, sistemas disponibles se describen en las siguientes revisiones: (i) Thiel T, Genetic analysis of cyanobacteria, en The molecular biology of cyanobacteria, DA Bryant (ed), Kluwer Academic Publishers, Los Países Bajos, 1994, pág. 581-611; (ii) Elhai J. Genetic techniques appropriate for the biotechnological

exploitation of cyanobacteria, Journal of Applied Phycology 6, 177-186, 1994; (iii) Porter RD Transformation in cyanobacteria, CRC Critical reviews in microbiology, 13(2), 111-132, 1986.

La presente invención se ilustra adicionalmente por la descripción adicional que sigue, que se refiere a ejemplos que ilustran la preparación y propiedades de [NiFe]-hidrogenasas modificadas de la invención. Sin embargo, debe entenderse que estos ejemplos se facilitan solo a modo de ilustración de la invención y no constituyen de ningún modo una limitación de la misma.

Leyendas de figuras

5

10

15

20

25

35

40

- **Figura 1.** Estructura cristalográfica de la [NiFe]-hidrogenasa de *D. fructosovorans* a 1,8 Å de resolución (PDB: 1YQW). La localización del sitio activo de Ni-Fe y de las agrupaciones de Fe-S se indica por las flechas correspondientes. El canal de gas se representa en gris, con un radio de 0,8 Å.
- **Figura 2.** Actividad de intercambio ensayada por EM. D_2 se burbujeó en el medio en el recipiente hasta que el O_2 fue capturado y disminuyó a la concentración deseada, entonces el recipiente se cerró y se inyectó una alícuota de hidrogenasa activada (en el tiempo inicial en cada gráfica) como se explica en el Ejemplo 2. En la gráfica D, un segundo burbujeo de D_2 se realizó en tiempo=18 min. Línea de puntos: concentración de oxígeno, línea negra: tasa de intercambio de isótopos mediado por hidrogenasa (calculada en cada punto de las tasas de producción de H_2 y HD obtenidas por curvas de concentración de gas que se derivan numéricamente con respecto al tiempo usando un periodo de tiempo de 30 s para el cálculo).
- **Figura 3.** Espectros de EPR de hidrogenasa nativa y mutante L122M-V74M en el estado oxidado. Los componentes gx, gy y gz de las especies de Ni Ni-A se indican por las tres flechas en la posición superior sobre la figura y aquellos de las especies de Ni Ni-B se indican por las tres flechas en la posición inferior. Condiciones experimentales: temperatura, 100K; potencia de microondas, 10 mW; amplitud de modulación, 1 mT a 100 kHz.
- **Figura 4.** Inactivación aerobia de [NiFe]-hidrogenasa de *D. fructosovorans* WT y de L122M-V74M. Actividad (panel A) y concentración de oxígeno (panel B) contra el tiempo, en experimentos de voltametría con película de proteínas. La actividad se midió como una corriente y se normalizó por su valor antes de que empezara la inactivación aerobia. Alícuotas de disolución saturada con aire (cinco veces 20 μl, luego tres veces 200 μl) se inyectaron en la celda electroquímica que contenía inicialmente 3 ml de tampón. Las actuales escalas se indican como barras sobre la esquina izquierda inferior. Potencial del electrodo: 200 mV frente a SHE. T=40 °C. pH 7. Tasa de rotación del electrodo omega = 2 krpm.
- Figura 5. Efecto de mutaciones sobre la puerta del canal de gas en [NiFe]-hidrogenasa de *D. fructosovorans*. (A)
 Zoom de la región próxima al sitio activo de la enzima nativa; (B) Mismo zoom para el mutante doble V74M/L122M;
 (C) ídem con conformaciones alternativas para M122 y C543.
 - La **Figura 6** representa la actividad de intercambio de H^{\dagger}/D_2 ensayada por EM y determinada en extractos de células sin *Synechocystis* que alojan la cepa $\Delta hoxH$ de *Synechocystis* complementada con una copia natural del gen de hidrogenasa. Línea de puntos: concentración de oxígeno, Línea continua: tasas de intercambio de isótopos mediado por hidrogenasa.
 - La **Figura 7** representa la actividad de intercambio de H[†]/D₂ ensayada por EM y determinada en extractos de células sin *Synechocystis* que alojan la enzima natural. Línea de puntos: concentración de oxígeno, Línea continua: tasas de intercambio de isótopos mediado por hidrogenasa.
 - La **Figura 8** representa la actividad de intercambio de H⁻/D₂ ensayada por EM y determinada en extractos de células sin *Synechocystis* que alojan el mutante HoxH de I64M-L112M. Línea de puntos: concentración de oxígeno, Línea continua: tasas de intercambio de isótopos mediado por hidrogenasa.
 - La **Figura 9** representa la actividad de intercambio de $H+/D_2$ ensayada por EM y determinada en extractos de células sin *Synechocystis* que alojan el mutante HoxH de I64M-L107M. Línea de puntos: concentración de oxígeno, Línea continua: tasas de intercambio de isótopos mediado por hidrogenasa.
- Figura 10. Comparación de la inactivación a concentración de oxígeno del aire de enzimas V74M (indicada M), L122M-V74M (indicada MM) y natural (indicada WT). La flecha indica la inyección de enzima activada. Las líneas discontinuas representan la actividad de consumo de D₂ y las líneas continuas representan la actividad de intercambio de H[†]/D₂. La variación de la concentración de oxígeno en el medio se indica por la línea con flecha.

Ejemplo 1: construcción y expresión de [nife]-hidrogenasas mutantes

El efecto sobre la tolerancia a dioxígeno de mutaciones de los residuos hidrófobos X₂ del motivo L2 y X₉ del motivo L3 se estudió en la subunidad grande *hynB* de la [NiFe]-hidrogenasa de *Desulfovibrio fructosovorans* (del operón de [NiFe]-

hidrogenasa GenBank M35333), en el que estos residuos son respectivamente Val74 y Leu122. Se construyeron los mutantes V74M, L122F-V74I y L122M-V74M.

D. fructosovorans se usó como modelo debido a que un sistema genético que permite la producción de grandes cantidades de hidrogenasa recombinante ha sido desarrollado en este organismo (ROUSSET y col., Proc. Natl. Acad. Sci. U S A, 95, 11625-30, 1998; DEMENTIN y col., J Biol Chem, 279, 10508-13,2004).

Cepas bacterianas, plásmidos y condiciones de crecimiento

La cepa de *Escherichia coli* DH5 α , F⁻, *end*A1, *hsd*R17 ($r_K^ m_K^+$), *sup*E44, *thi*¹, λ , *rec*A1, *gyr*A96, *rel*A1, Δ (*arg*F⁻ *lacZYA*) U169, ϕ 80d/*acZ* Δ M15 se usó como huésped en la clonación de plásmidos recombinantes. La bacteria se cultivó rutinariamente a 37 °C en medio LB. Se añadió ampicilina a 100 μ g/ml o gentamicina a 20 μ g/ml cuando las células alojaron derivados de pUC18 o pBGF4, respectivamente. El plásmido pBGF4, que es un vector lanzadera de la familia pBM, que informa del gen de resistencia a gentamicina (ROUSSET y col., Plasmid, 39, 114-22, 1998), se usó para llevar el operón de [NiFe]-hidrogenasa de *D. fructosovorans* como se ha descrito previamente (ROUSSET y col., Proc. Natl. Acad. Sci. U S A, 95, 11625-30, 1998).

La cepa de *D. fructosovorans* MR400 [*hyn::npt* ΔhynABC] que lleva una deleción en el operón de [NiFe]-hidrogenasa (ROUSSET y col., Mol. Microbiol., 5, 1735-40, 1991) se cultivó anaeróbicamente a 37 °C en medio SOS (ROUSSET y col., Plasmid, 39, 114-22, 1998). Se realizaron grandes volúmenes de cultivo como se ha descrito previamente (ROUSSET y col., Proc. Natl. Acad. Sci. U S A, 95, 11625-30, 1998). La kanamicina a 50 μg/ml estuvo presente rutinariamente, y se añadieron 50 μg de gentamicina/ml solo cuando las células alojaron el plásmido pBGF4.

Mutagénesis dirigida al sitio

5

10

25

35

40

50

20 El fragmento AatlI-Pstl de pBGF4 se subclonó en pUC18 para generar el molde que se usó en experimentos de mutagénesis. El kit de mutagénesis dirigida al sitio QuikChange TM XL (Stratagene, Ámsterdam, Los Países Bajos) se usó para generar mutaciones puntuales en la subunidad grande hynB.

La sustitución de valina 74 en metionina se realizó reemplazando guanina 1533 (según la numeración de secuencias de GenBank M35333) del codón GTG que codifica valina por adenina dando el codón ATG que codifica metionina. La sustitución de valina 117 en metionina se realizó reemplazando guanina 1662 y citosina 1664 (según la numeración de secuencias M35333) del codón GTC que codifica valina por adenina y guanina, respectivamente, dando el codón ATG que codifica metionina. La sustitución de leucina 122 en metionina se realizó reemplazando citosina 1677 (según la numeración de secuencias M35333) del codón CTG que codifica leucina por adenina dando el codón ATG que codifica metionina.

Después de la mutagénesis, el fragmento *AatII-PstI* se secuenció completamente y se insertó en pBGF4 digerido por *AatII-PstI*. El plásmido recombinante se introdujo en la cepa de *D. fructosovorans* MR400 por electroporación (ROUSSET y col., Plasmid, 39, 114-22, 1998).

Purificación de proteínas

La secuencia de Strep tag II (IBA Gmbh, Göttingen, Alemania) se introdujo en el gen de hidrogenasa: la marca S W S H P Q F E K más un ligador de cinco aminoácidos G A S G A A se introdujo sobre la extremidad del extremo N de la subunidad grande. La enzima se purificó por afinidad sobre una columna Strep-Tactin® (IBA Gmbh) en un tampón Tris/HCl 100 mM a pH 8, NaCl 0,5 M. La elución se llevó a cabo como se describe por el fabricante.

Se realizó una etapa de purificación adicional usando una columna de calidad preparativa HiLoad TM 26/60 Superdex TM 200 (Amersham Biosciences, Uppsala, Suecia). El rendimiento de purificación de la hidrogenasa M74/M122 recombinante fue 2,25 mg de enzima pura por litro de cultivo. El rendimiento de purificación de L122F-V74I recombinante fue similar.

Ejemplo 2: actividad catalítica de [nife]-hidrogenasas wt, de l122f-v74i y de l122m-v74m.

La actividad de hidrogenasa se evaluó en presencia de O_2 monitorizando la actividad de intercambio de H^{\dagger}/D_2 , una propiedad intrínseca de los sitios activos de hidrogenasa que no implica la transferencia de electrones de manera que no pueda producirse la reducción catalítica de dioxígeno.

45 Reacción de intercambio de H⁺/deuterio

El intercambio de H^+ /deuterio en fase acuosa se monitorizó continuamente por un procedimiento de espectrometría de masas de entrada en membrana (JOUANNEAU y col., J Bacteriol, 143, 628-36, 1980) a 30 °C en un recipiente de 1,5 ml que contenía tampón fosfato 50 mM, pH 7. Antes de las mediciones, la hidrogenasa se activó por incubación bajo una atmósfera de H_2 en presencia de MV 100 μ M. La anoxia de muestras durante la activación se monitorizó fácilmente por el color azul de MV reducido. El ensayo se realizó entonces del siguiente modo: D_2 se burbujeó en el medio en el recipiente

hasta que el O_2 fue capturado y disminuyó a la concentración deseada, el recipiente se cerró entonces y se inyectó una alícuota de hidrogenasa activada (20 μ l de muestra activada, que representa 1 a 2,5 μ g de enzima) (en el tiempo inicial en las gráficas que componen la Figura 2). La actividad de hidrogenasa se calculó entonces a partir de la velocidad de intercambio isotópica como se ha expuesto previamente (COURNAC y col., J Bacteriol, 186, 1737-46, 2004).

5 Los resultados se muestran en la Figura 2.

10

15

40

50

Como era de esperar, la inactivación de enzima nativa fue casi instantánea a concentraciones de dioxígeno de aproximadamente 10 µM y superiores (Fig. 2A). Alguna actividad se detectó pronto después de la inyección a menores concentraciones de O₂ (aproximadamente 4 µM en la Fig. 2B) que desapareció dentro de algunos minutos. Además, la enzima nativa requerida prolongó la incubación bajo condiciones reductoras para ser reactivada. Más sorprendentemente, el mutante L122F-V74I se inactivó del mismo modo que la enzima nativa (Fig. 2C).

La actividad de captación de hidrógeno específica del mutante L122M-V74M fue 320 U, que es comparable a la de la hidrogenasa nativa (500 U). La inactivación del mutante L122M-V74M en presencia de dioxígeno aproximadamente 20 μ M (Fig. 2D) fue mucho más lenta que la de la enzima nativa. De forma interesante, el intercambio de H⁺/D₂ se recuperó a un gran grado cuando la concentración de O₂ se fijó por debajo de 10 μ M. Aproximadamente el 50 % de la actividad inicial se mantuvo bajo O₂ 6 μ M, una concentración a la que la enzima nativa se inhibe completamente. Estos resultados muestran que la mutación confiere dos características interesantes: i) la capacidad para sostener la actividad en presencia de O₂ y ii) la capacidad para recuperar una actividad estable sin la necesidad de una reactivación prolongada bajo condiciones reductoras según se requiera por la hidrogenasa nativa.

Ejemplo 3: espectroscopía de epr de las [nife]-hidrogenasas wt y de l122m-v74m.

20 La rápida reactivación del mutante L122M-V74M sugiere que estas mutaciones tienen una influencia directa sobre los iones de Ni-Fe del sitio activo. Para investigar esta influencia, tanto las hidrogenasas naturales como mutantes se analizaron por espectroscopía de EPR.

Los espectros de EPR se registraron en un espectrómetro ESP 300E de Brüker acoplado a criostato de flujo de helio ESR 900de Oxford Instruments.

25 Los resultados se muestran en la Figura 3.

En el estado oxidado de la hidrogenasa nativa, el centro de NiFe está presente en una mezcla de dos especies activas para EPR, las especies de Ni-A no listas (g = 2,31, 2,24, 2,01) y las especies de Ni-B listas (g = 2,32, 2,16, 2,01), siendo las especies de Ni-A las más abundantes con Ni-A/Ni-B = 80/20 (Figura 3). En el caso del mutante L122M-V74M en el estado oxidado, la relación de las especies paramagnéticas se invierte con Ni-A/Ni-B=20/80 (Fig. 3).

Se ha propuesto que en las especies de Ni-A hay un ligando de peróxido que conecta el Ni y el Fe (OGATA y col., Structure (Camb), 13, 1635-42, 2005; VOLBEDA y col., J Biol Inorg Chem, 10, 239-49, 2005), que requiere una activación reductora prolongada para ser tanto eliminado como reducido (VOLBEDA y col., J Biol Inorg Chem, 10, 239-49, 2005; FERNANDEZ y col., Coordin. Chem. Rev., 249, 1596-608, 2005). A diferencia, en las especies de Ni-B, se cree que el ligando de conexión es un ión hidróxido que es fácilmente separable bajo condiciones reductoras (VOLBEDA y col., J Biol Inorg Chem, 10, 239-49, 2005; FERNANDEZ y col., Coordin. Chem. Rev., 249, 1596-608, 2005).

En la enzima nativa el estado de Ni-A se obtiene solo bajo condiciones oxidantes aerobias mientras que las especies de Ni-B pueden formarse tras la oxidación anaerobia. La cantidad significativa de señal de Ni-B observada en el mutante L122M-V74M observado está, por tanto, completamente de acuerdo con su rápida reactivación y sugiere que las cadenas laterales de metionina del mutante protegen la enzima limitando la accesibilidad del dioxígeno al sitio activo. La mutación L122M-V74M no tiene efecto sobre el estado activo de Ni-C reducido de la enzima o sobre las agrupaciones de hierro-azufre reducidas, como se mide por espectroscopía de EPR, que indica que la enzima mutada está completamente madurada y es funcional y que H₂ pueden alcanzar el sitio activo.

Ejemplo 4: inactivación aerobia de las [nife]-hidrogenasas wt y de l122m-v74m

Se usó voltametría con película de proteínas para determinar cómo se afecta la tasa de inactivación aerobia por la mutación. En esta técnica la enzima se adsorbe sobre un electrodo de manera que se produzca transferencia electrónica directa, la actividad se mide como una corriente y no se necesita usar mediadores solubles (LEGER y col., Biochemistry, 42, 8653-62, 2003).

Las mediciones electroquímicas se realizaron como se ha descrito previamente (LEGER y col., J Am Chem Soc, 126, 12162-72, 2004). El electrodo de borde de grafito pirolítico sobre el que las enzimas se adsorben se equilibró a +200 mV frente a SHE, sumergido en una disolución a pH 7, 40 °C, se lavó continuamente con H₂ y la actividad se midió como una corriente (Fig. 4A). Las alícuotas de disolución aireadas se inyectaron repetidamente en la celda electroquímica y la disminución resultante en la corriente frente al tiempo revela la inactivación aerobia de la enzima: cuanto más rápida sea

la disminución en la corriente, mayor será la sensibilidad al dioxígeno (LEGER y col., J Am Chem Soc, 126, 12162-72, 2004; DEWENTIN y col., J Biol Chem, 279, 10508-13, 2004; LAMLE y col., J Am Chem Soc, 126, 14899-909, 2004). La representación formada con dientes de sierra de la concentración de dioxígeno contra el tiempo en la Fig. 4B resulta del O_2 que es lavado por el H_2 . El perfil de concentración del dioxígeno en la Fig. 4B se reconstruyó a partir de las cantidades de disolución aireada inyectadas en la celda electroquímica, suponiendo una concentración inicial de O_2 250 μ M en el tampón saturado con aire. Después de cada inyección, la concentración de O_2 disminuye exponencialmente con tiempo y la constante de tiempo de la disminución se determinó ajustando la tasa de la primera inactivación como se describe en (LEGER y col., J Am Chem Soc, 126, 12162-72, 2004).

La Figura 4A compara los resultados de dos experimentos de inactivación realizados bajo exactamente las mismas condiciones. Después de la exposición a cantidades suficientes de O₂, ambas enzimas pierden toda la actividad. Sin embargo, siendo todas las cosas iguales, el mutante MM se inactiva significativamente más lentamente que la enzima nativa. Los presentes inventores determinaron que la mutación disminuye la constante de velocidad bimolecular para la reacción con dioxígeno de 32 s⁻¹mM⁻¹ de O₂ (LEGER y col., J Am Chem Soc, 126, 12162-72, 2004) a 20 s⁻¹mM⁻¹, que indica que 1) el acceso de O₂ al sitio activo limita la tasa de inactivación, y 2) que este procedimiento es más lento en el mutante. Por tanto, los experimentos electroquímicos también están completamente de acuerdo con la noción de que las cadenas laterales de metionina del mutante bloquean la entrada de la cavidad del sitio activo al oxígeno.

Ejemplo 5: estructura de la [nife]-hidrogenasa de l122m-v74m

5

10

15

20

25

30

35

La estructura cristalina del mutante L122M-V74M en el estado oxidado se resolvió para determinar el impacto de las mutaciones sobre la forma del túnel de gas, la reactividad de las metioninas hacia dioxígeno y las posibles modificaciones inducidas por las mutaciones en la cavidad del sitio activo.

Los cristales del mutante doble de metionina de [NiFe]-hidrogenasa de D. fructosovorans se obtuvieron y se guardaron en nitrógeno líquido como se describe para el mutante S499A (VOLBEDA y col., J Biol Inorg Chem, 10, 239-49, 2005). Se recogieron datos de difracción a 100K en un detector ADSC Q315R cuadrado usando una longitud de onda de rayos X de 1,0 Å en la línea del haz de ED23-1 de la Instalación Europea de Radiación Sincrotrón en Grenoble, Francia. Con el fin de reducir los efectos del daño por radiación, tres conjuntos de imágenes se recogieron de diferentes partes de un cristal crioenfriado. Para cada imagen se usaron un $\Delta \phi$ de $0,5^{\rm c}$ y un tiempo de exposición de 0,6 segundos. Las manchas de difracción se integraron, se modificó la escala y se sometieron a una corrección a dosis cero (DIEDERICHS y col., Acta Crystallogr D Biol Crystallogr, 59, 903-9, 2003) con XDS (KABSCH, International Tables for Crystallography, F, 2001). Se realizó una reducción de datos final con el paquete CCP4 (anónimo, Acta Crystallogr D Biol Crystallogr, 50, 760-3, 1994). La estadística de los datos de intensidad se facilita en la siguiente Tabla 1.

Tabla 1

Grupo espacial	P2
Dimensiones de la celdilla: β (°)	91,6
a, b, c (Å)	64,6, 99,9, 183,0
Moléculas/unidad asimétrica	3
Resolución (Å)	25-2,4 (2,5-2,4)
R _{sim} (%)	9,5 (24,0)
<i>/<\sigma(I)></i>	11,8 (4,4)
Número de observaciones	402274 (19482)
Reflexiones únicas	86783 (8361)
Completitud (%)	95,3 (80,1)
Redundancia	4,6 (2,3)

Los números entre paréntesis se refieren a la cáscara de mayor de resolución.

La estructura cristalina se refinó con REFMAC (MURSHUDOV y col., Acta Crystallogr D Biol Crystallogr, 53, 240-55, 1997) con aproximadamente la misma estrategia que se describe para el mutante S499A (VOLBEDA y col., J Biol Inorg Chem, 10, 239-49, 2005). Los residuos en los dos sitios de mutación, Val74 y Leu122, se cambiaron primero a alaninas y todas las moléculas de agua se delecionaron del modelo de partida. Después del refinamiento del cuerpo rígido de cada subunidad, las metioninas se modelaron en las posiciones 74 y 122 de las subunidades grandes. A continuación, los

cuerpos de TLS se usaron con el fin de modelar los movimientos anisotrópicos globales de cada subunidad (WINN y col., Acta Crystallogr D Biol Crystallogr, 57, 122-33, 2001) y normalmente 10 ciclos de refinamiento de TLS y 10-15 ciclos de refinamiento de posiciones atómicas y factores moderados isotrópicos se alternaron con correcciones de modelo manuales usando TURBO-FRODO (ROUSSEL & CAMBILLAU, 81, 1991), que incluye moléculas de agua en las que el mapa de densidad electrónica indicó picos significativos en posiciones geométricamente adecuadas. Durante el refinamiento fue evidente que los residuos mutados se alteraron parcialmente. En el modelo final la cadena lateral de Met74 tiene una ocupación aparente del 80-90 %, dependiendo de la molécula de enzima en la unidad asimétrica, mientras que la Met122 tiene dos conformaciones con aproximadamente la misma ocupación. La estadística de refinamiento se muestra en la siguiente Tabla 2.

10 Tabla 2

5

15

20

25

30

Resolución (Å)	25-2,4	
Reflexiones en el conjunto de trabajo	82430	
R _{trabajo} (%)	14,7	
Reflexiones en el conjunto de prueba	4350	
R _{libre} (%)	19,4	
Número total de átomos	19338	
Moléculas de agua	718	
$\Sigma_{ ext{enlace}}$ (Å)	0,010	
σ _{ángulo} (Å)	1,20	
Factores B promedio (Ų)		
Molécula 1	40,9	
Molécula 2	41,1	
Molécula 3	41,1	
Excluyendo moléculas de disolvente		

Picos significativos en los mapas de densidad electrónica de Fourier de diferencias (Fobs-Fcale) indicaron una mezcla de al menos dos estados de sitio activo entre las tres moléculas de enzima presentes en la celdilla unidad. Para una de las tres moléculas de enzima, un ligando de peróxido se modeló con 70 % de ocupación para el átomo de oxígeno de no puente, reflejando la fracción de especies de Ni-A y/o Ni-SU no listas. El 30 % restante debe entonces corresponderse con la forma de Ni-B que contiene hidróxido. Las otras dos moléculas en la unidad asimétrica contienen un puente de hidróxido putativo, de acuerdo con resultados de EPR que indicaron que la mayoría de la fracción paramagnética de la enzima está en el estado Ni-B listo. Estas dos moléculas también muestran dos conformaciones para el ligando de Ni de Cys543 terminal, que se modelan con 70 % y 30 % de ocupación, respectivamente (Fig. 5B y C). Los cambios inducidos por las mutaciones están altamente localizados, ya que no se detectaron modificaciones significativas en ninguna parte en la estructura. Las cadenas laterales de Met74 y Met122 mutantes no reaccionaron con el dioxígeno para formar aductos estables, como se indica por sus densidades electrónicas correspondientes (no mostradas). Como consecuencia de la sustitución de la Val74 y Leu122 nativa por los residuos de metionina más voluminosos, el túnel de gas en la superficie de separación con la cavidad del sitio activo parece significativamente más estrecho (Fig. 5B y C). Sin embargo, el discreto desorden observado de las cadenas laterales de Met74 y Met122 sugiere que pueden permitir el paso de moléculas de qas fluctuando entre diferentes conformaciones. La naturaleza de la cadena lateral de los aminoácidos localizados en la superficie de separación del canal de gas y la cavidad del sitio activo es un elemento crucial en la reactividad del O2 de [NiFe]-hidrogenasa de D. fructosovorans. Así, el impedimento estérico no parece ser el único parámetro determinante: la sustitución de valina y leucina con isoleucina y fenilalanina, como se inspira de sensores de H2 tolerantes a oxígeno, no proporcionó ninguna tolerancia al oxígeno. Se necesitará más investigación para explicar la diferencia en la tolerancia al oxígeno de los mutantes SI- y L122M-V74M. Quizás, la mayor flexibilidad inherente de las cadenas laterales de metionina cuando se compara con cadenas laterales de isoleucina o fenilalanina es responsable de los fenotipos observados.

Ejemplo 6: mutagénesis dirigida al sitio de la subunidad hoxh en pcc6803 de synechocystis y actividad catalítica de las enzimas wt, de hoxh aada, de i64m-l112m y de i64m-l107m

Cepas y condiciones de crecimiento

Cepas de *Escherichia coli* XL1 Blue, HB101 y DH10β se usaron como huésped en la clonación de los plásmidos recombinantes. La bacteria se cultivó rutinariamente a 37 °C en medio LB. Se añadieron ampicilina a 100 μg/ml o cloranfenicol a 50 μg/ml cuando las células alojaron derivados de pUC18 o pUC19.

La cepa PCC 6803 de Synechocystis natural y cepas mutantes se cultivaron autotróficamente en medio de Allen modificado líquido (Allen, J. Phycol., 4, 1-4, 1968) a 30 °C bajo iluminación continua usando una lámpara tubular de fluorescencia, que proporcionó una intensidad de luz promedio de 30 μmoles de fotones m⁻² s⁻¹. Los transformantes se seleccionaron sobre placas de agar de Allen que contenían 25 μg de cloranfenicol ml⁻¹ para el mutante de deleción Δ*hoxH* o 25 μg de espectinomicina ml⁻¹ para los mutantes del gen *hoxH*. La segregación correcta de los transformantes se comprobó por PCR.

Mutagénesis dirigida al sitio

15

35

45

El plásmido pUC19, en el que se ha insertado una secuencia que comprende el ORF de *hoxH* y 300 pb en la dirección 5' y en la dirección 3' (posición 1673795 a 1671771 de la secuencia completa de *Synechocystis* (Kaneko y col., DNA Res., 3, 109-136, 1996), se subclonó en células de *Escherichia coli* y se mutagenizó. El kit de mutagénesis dirigida al sitio QuickChange TM XL (Stratagene, Ámsterdam, Los Países Bajos) se usó para generar mutaciones puntuales en el gen *hoxH*. El plásmido también contiene un casete de resistencia a espectinomicina (*aadA*) insertado 50 pb después del ORF de *hoxH*. El plásmido final se secuenció completamente. Los residuos 164, L107 y L112 en *Synechocystis* se corresponden con los residuos V74, L117 y L122 en *D. fructosovorans*, respectivamente.

Con el fin de insertar genes mutagenizados, una cepa ΔhoxH de Synechocystis sp. PCC 6803 se construyó primero transformando la cepa natural con pUC18 que aloja la siguiente construcción: el ORF de hoxH y 300 pb en la dirección 5' y en la dirección 3' (posición 1673795 a 1671771 de la secuencia completa de Kaneko y col. 1996) en la que un casete de resistencia a cloranfenicol se insertó en sitios de restricción Cla I en la posición 19 y 1376 de hoxH. De hecho, a partir de un mutante de deleción es necesario debido al alto número de copias de cromosomas en Synechocystis.

La cepa resultante Δ*hoxH* se transformó con el plásmido pUC19 modificado que contiene los mutantes de *hoxH*. Las cepas que alojan el gen modificado se seleccionaron entonces sobre espectinomicina como se ha descrito anteriormente. Así se obtuvieron los mutantes de HoxH I64M-L112M y I64M-L107M.

Reacción de intercambio de H⁺/deuterio

La actividad de hidrogenasa se evaluó en presencia de O_2 monitorizando la actividad de intercambio de H^{\dagger}/D_2 como se describe en el Ejemplo 2. Los resultados se muestran en las Figuras 6-9.

30 Las Figuras 6 y 7 son los controles: la Figura 6 representa la actividad medida en el caso de la cepa Δ*hoxH* de *Synechocystis* sp. complementada con una copia natural (WT) del gen de hidrogenasa (*hoxH*) y la Figura 7 representa la actividad medida en el caso de la enzima WT.

La Figura 8 presenta la actividad medida en el extracto de I64M-L112M. Cuando se inyectó O₂, la actividad disminuyó primero y luego aumentó para permanecer estable mientras que el O₂ estaba todavía presente. La adición de metil viológeno (MV) reducido no aumentó la actividad.

En el caso del mutante I64M-L107M (Fig. 9), la actividad de hidrogenasa pareció ser incluso más robusta que para I64M-L122M ya que se requirieron varias inyecciones de O₂ para reducir la actividad.

Ejemplo 7: actividad catalítica de [nife]-hidrogenasas wt, de l122f-v74m y de the v74m

La actividad de hidrogenasa de las [NiFe]-hidrogenasas naturales (indicadas WT), de L122F-V74M (indicadas MM) y de V74M (indicadas M) se evaluó en presencia de O_2 monitorizando la actividad de intercambio de H^+/D_2 .

El medio se burbujeó con D_2 y se dejó abierto, de manera que la concentración de O_2 fuera próxima a aquella en el aire. Los resultados se muestran en la Figura 10.

Después de la inyección, el mutante M (V74M) fue inmediatamente activo. Consumió D₂ y produjo metil viológeno (MV) reducido que se oxidó por O₂. Esta reacción fue seguida del consumo de D₂ (línea discontinua en la gráfica A) y por la disminución de O₂ (línea superior en la gráfica A) reducido por el metil viológeno (MV). Cuando el oxígeno estaba presente, el flujo de electrones se accionó hacia la reducción de oxígeno, que previno que se produjera la reacción de intercambio. Cuando se eliminó el oxígeno, entonces el medio se redujo completamente y la reacción de intercambio pudo empezar. Este experimento demuestra que los mutantes M son activos en presencia de alta concentración de oxígeno.

En el caso del mutante MM (L122F-V74M), la enzima también fue activa en presencia de 150 µM de O2, pero la cinética

ES 2 483 342 T3

fue mucho más lenta. Por tanto, la enzima se inhibió por tiempo de exposición más largo a O2.

Como control, la enzima WT se inhibió fácilmente por O₂.

Conclusión

En resumen, los resultados anteriores muestran por primera vez que es posible mejorar la resistencia a dioxígeno de [NiFe]-hidrogenasas. Los presentes inventores han transformado una hidrogenasa sensible a oxígeno en una enzima tolerante a oxígeno que es catalíticamente activa en presencia de hasta 20 µM de oxígeno. Debido a que no hay pruebas de que las metioninas introducidas reaccionen con el dioxígeno (Fig. 5), los presentes inventores llegan a la conclusión de que protegen la enzima lo más probablemente previniendo que el dioxígeno llegue al sitio activo. El mutante L122M-V74M oxidado por dioxígeno está en el mismo estado rédox que la enzima nativa oxidada anaeróbicamente (de LACEY y col., Coordin. Chem. Rev., 249, 1596-1608, 2005). Esto se demuestra claramente por la señal de EPR de Ni-B principal (Fig. 3) y la abundancia de un ligando de unión a hidroxilo en el sitio activo. Este efecto protector es responsable de la rápida reactivación (Fig. 2) y la tasa de inactivación más lenta (Fig. 4), cuya combinación explica probablemente la capacidad de la enzima modificada para funcionar continuamente en presencia de concentraciones micromolares de O₂, que inactivan completamente la WT.

15

5

10

REIVINDICACIONES

- 1. Un procedimiento de obtención de un polinucleótido mutante que codifica una subunidad grande modificada de una [NiFe]-hidrogenasa para mejorar la tolerancia a dioxígeno de dicha [NiFe]-hidrogenasa, en el que dicho procedimiento comprende:
- 5 proporcionar un polinucleótido inicial que comprende una secuencia que codifica una subunidad grande de una [NiFe]-hidrogenasa, comprendiendo dicha subunidad grande los siguientes motivos de péptido:
 - L1: RGXE en la que X = L, I, F, V o M

10

30

- L2: [R/K]X₁C[G/R]X₂C en la que X₁ es cualquier residuo de aminoácido, X₂ = L, V o I; estando L1 y L2 separados por 16 residuos de aminoácidos cualesquiera;
- L3: $X_1X_2X_3X_4X_5X_6X_7X_8X_9X_{10}X_{11}X_{12}[D/S/E]$ en la que $X_1 = D$, S, N o E, $X_2 = H$, D, S, N o L, $X_5 = H$, S, A, Q o W, $X_6 = F$, T, Y o G, $X_9 = L$, F, M o Y, siendo el otro X_1 cualquier residuo de aminoácido;
- L4: D[P/I/S]CX₁X₂CX₃X₄[H/R] en la que X₂ = A, S, V, G o T, X₁, X₃ y X₄ son cualquier residuo de aminoácido
- y opcionalmente que comprende un motivo L0: R[I/V/A]EG[H/D/A].
- modificar dicho polinucleótido inicial con el fin de sustituir al menos el residuo X₂ del motivo L2 de dicha subunidad grande con una metionina.
 - 2. Un procedimiento de la reivindicación 1, en el que dicho polinucleótido inicial es modificado adicionalmente con el fin de sustituir el residuo X_4 del motivo L3 de dicha subunidad grande con una metionina.
- 3. Un procedimiento de la reivindicación 1 o la reivindicación 2, en el que dicho polinucleótido inicial es modificado adicionalmente con el fin de sustituir el residuo X₀ del motivo L3 de dicha subunidad grande con una metionina.
 - 4. Un procedimiento de una cualquiera de las reivindicaciones 1 a 3, en el que dicha secuencia que codifica una subunidad grande de una [NiFe]-hidrogenasa es de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis*.
- 5. Un procedimiento de una cualquiera de las reivindicaciones 1 a 4, en el que dicho polinucleótido inicial es un operón que comprende además la(s) secuencia(s) que codifica(n) la(s) otra(s) subunidad(es) de dicha [NiFe]-hidrogenasa.
 - 6. Un polinucleótido mutante que codifica una subunidad grande modificada de una [NiFe]-hidrogenasa que comprende los motivos de péptido L1, L2, L3, L4 como se define en la reivindicación 1 y opcionalmente L0 como se define en la reivindicación 1 de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis*, **caracterizado porque** dicho polinucleótido mutante codifica al menos una metionina en el residuo X2 de dicho motivo L2.
 - 7. El polinucleótido mutante de la reivindicación 6, en el que codifica adicionalmente una metionina en el residuo X₄ de dicho motivo L3.
 - 8. El polinucleótido mutante de la reivindicación 6 o la reivindicación 7, en el que codifica adicionalmente una metionina en el residuo X_9 de dicho motivo L3.
- 9. El polinucleótido mutante de una cualquiera de las reivindicaciones 6 a 8, en el que es un operón que comprende además la(s) secuencia(s) que codifica(n) la(s) otra(s) subunidad(es) de dicha [NiFe]-hidrogenasa.
 - 10. Un vector que comprende un polinucleótido mutante de una cualquiera de las reivindicaciones 6 a 9.
 - 11. Una célula huésped transformada por un vector de la reivindicación 10.
- Una subunidad grande modificada de la [NiFe]-hidrogenasa de Desulfovibrio fructosovorans o cianobacterias tales
 como Synechocystis en las que el residuo X₂ del motivo L2 como se define en la reivindicación 1 está sustituido con una metionina.
 - 13. Una subunidad grande modificada de la [NiFe]-hidrogenasa según la reivindicación 12 en la que el residuo X₄ del motivo L3 como se define en la reivindicación 1 está adicionalmente sustituido con una metionina.
- 14. Una subunidad grande modificada de una [NiFe]-hidrogenasa según la reivindicación 12 o la reivindicación 13 en la que el residuo X₉ del motivo L3 como se define en la reivindicación 1 está adicionalmente sustituido con una metionina.
 - 15. Una [NiFe]-hidrogenasa de *Desulfovibrio fructosovorans* o cianobacterias tales como *Synechocystis* que contiene una subunidad grande modificada de una cualquiera de las reivindicaciones 12 a 14.

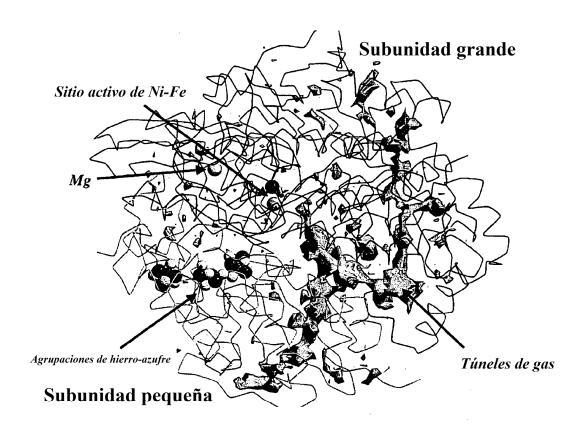


Figura 1

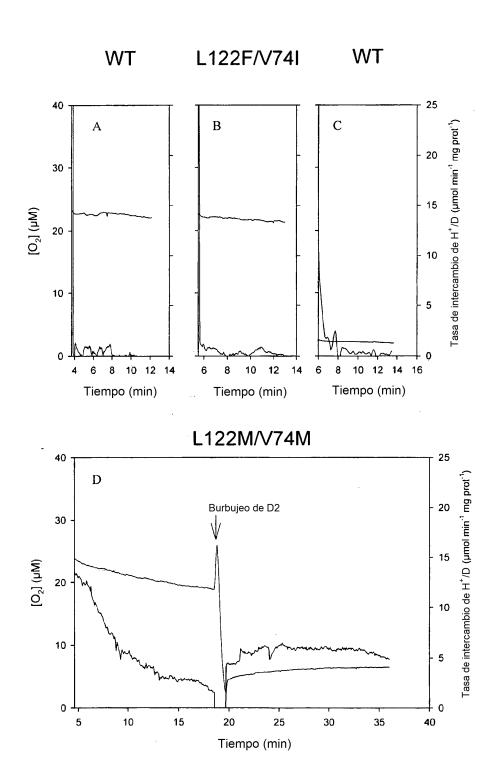


Figura 2

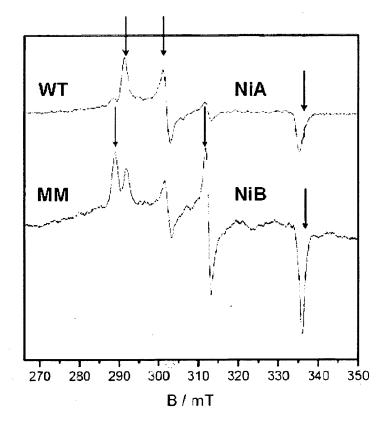
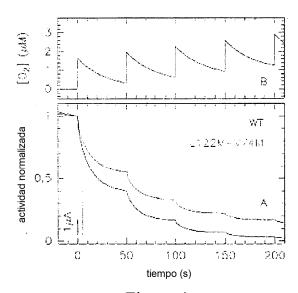
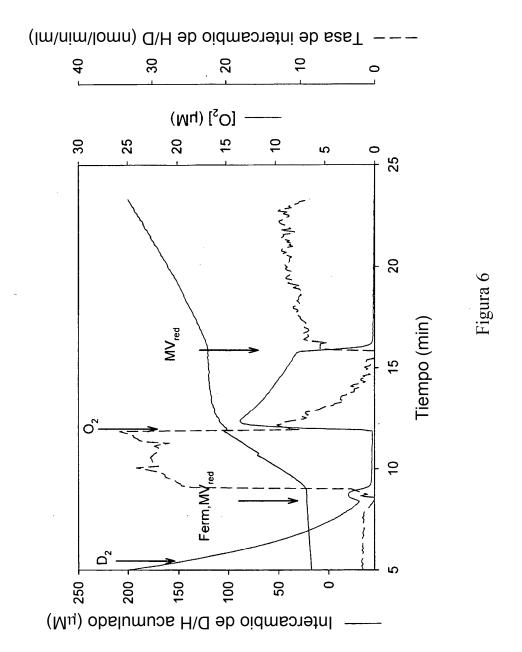
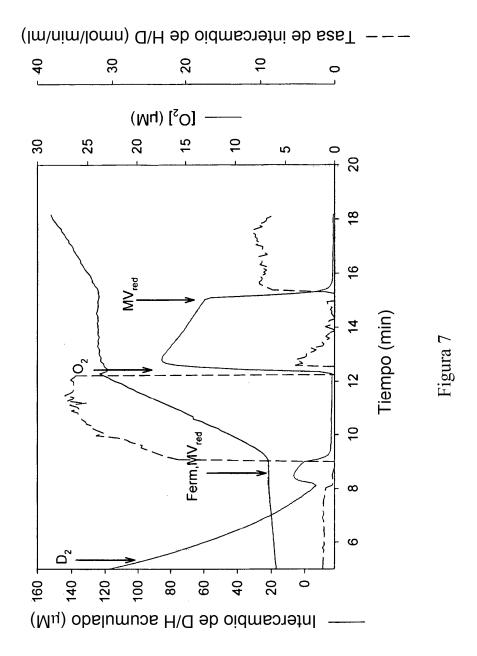


Figura 3

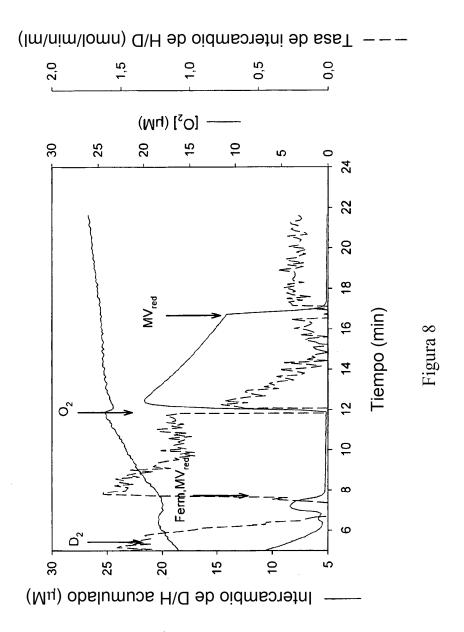

Figura 4



Figura 5

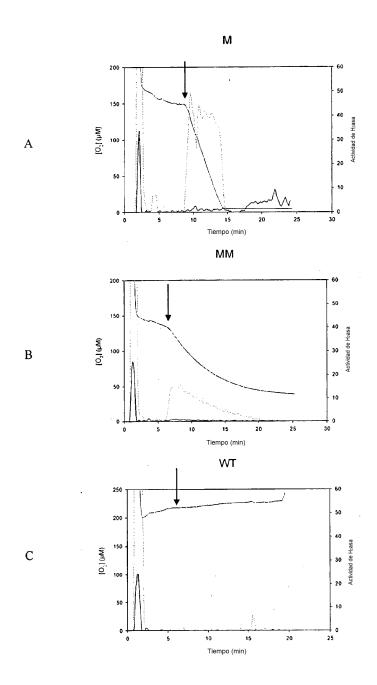


Figura 10