

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 485 378

51 Int. Cl.:

F04C 29/00 (2006.01) **F04C 23/00** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 24.12.2007 E 07851757 (0)
(97) Fecha y número de publicación de la concesión europea: 11.06.2014 EP 2097648

(54) Título: Compresor giratorio de capacidad variable

(30) Prioridad:

27.12.2006 KR 20060135595

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 13.08.2014

(73) Titular/es:

LG ELECTRONICS INC. (100.0%) 20 YEOUIDO-DONG YEONGDEUNGPO-GU SEOUL 150-721, KR

(72) Inventor/es:

BYUN, SANG-MYUNG y HAN, JEONG-MIN

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Compresor giratorio de capacidad variable

Campo técnico

5

10

15

20

25

30

35

40

45

La presente invención versa acerca de un compresor giratorio que tiene una capacidad variable y, más en particular, para evitar que se genere ruido cuando se convierte un modo de accionamiento del convertidor.

Técnica antecedente

En general, un compresor giratorio adapta un procedimiento para comprimir un refrigerante utilizando un pistón rotatorio que gira excéntricamente en el interior de un espacio de compresión de un cilindro y una paleta que hace contacto con el pistón rotatorio para dividir el espacio de compresión del cilindro en una cámara de succión y una cámara de descarga. Recientemente, se ha presentado un compresor giratorio de capacidad variable, que es capaz de variar una capacidad de refrigeración de un compresor según la variación de cargas. Para variar la capacidad de refrigeración del compresor, se está sometiendo a una amplia investigación una técnica para adaptar un motor inversor, una técnica para variar una capacidad de un compresor al derivar parcialmente un refrigerante comprimido fuera de un cilindro y similares. Sin embargo, al adaptar el motor inversor a un compresor, se aumenta un coste de fabricación debido a un precio elevado del motor inversor del compresor. Además, al derivar un refrigerante, se complica un sistema de tuberías, que aumenta una resistencia a la fluencia del refrigerante, degradando, de ese modo, la eficacia del compresor.

En consecuencia, se ha propuesto un procedimiento, mediante el cual se puede simplificar el sistema de tuberías sin utilizar el motor inversor y también se puede variar una capacidad de un compresor. Por ejemplo, en un modo de accionamiento normal (modo de plena potencia) de un compresor, se mantienen un pistón rotatorio y una paleta en contacto entre sí, de forma que se pueda dividir una cámara de succión y una cámara de descarga. Por otra parte, en un modo de accionamiento de ahorro del compresor, el pistón rotatorio y la paleta están separados el uno del otro, de forma que se puedan conectar entre sí la cámara de succión y la cámara de descarga. Con este fin, se debería restringir un movimiento de vaivén de la paleta o se debería liberar el movimiento lineal restringido de la misma según un modo de accionamiento del compresor.

Sin embargo, los esquemas de restricción de paleta bien conocidos en la técnica relacionada no pueden restringir completamente la paleta durante un cierto periodo de tiempo cuando se realiza la conmutación del modo del compresor, reduciendo, de ese modo, el rendimiento del compresor. Además, la restricción incompleta de la paleta genera mucho ruido cuando vibra la paleta, lo que aumenta el ruido del compresor. En particular, cuando se cambia el modo de accionamiento del compresor del modo de accionamiento normal al modo de accionamiento de ahorro como se muestra en la Fig. 2, se genera un ruido tremendo durante cierto periodo de tiempo.

El documento WO 2006/090978 A1 describe un compresor giratorio de tipo de capacidad variable. Aquí, el compresor giratorio de tipo de capacidad variable comprende una carcasa que mantiene un estado de presión de descarga, un motor instalado en la carcasa y genera una fuerza motriz, dos conjuntos de cilindros fijados en la carcasa y se comprime un refrigerante por medio de pistones rotatorios y paletas respectivos. Los pistones rotatorios respectivos están acoplados excéntricamente a un eje de rotación del motor y llevan a cabo un movimiento giratorio. Las paletas respectivas hacen contacto con los pistones rotatorios y llevan a cabo un movimiento lineal. Uno de los conjuntos de cilindro está dotado de un paso de restricción de la paleta para conectar un interior de la carcasa a una ranura para la paleta, en el que se inserta la paleta de forma deslizable, en una dirección particular o en una dirección inclinada en una dirección de movimiento de la paleta. De ese modo, se restringe la paleta por medio de una presión de descarga en el interior de la carcasa. Se coloca el paso de restricción de la paleta en un surco de guía de la descarga del cilindro situado en la paleta, y se forma mediante penetración hacia el centro de la ranura para la paleta desde una superficie circunferencial externa del cilindro. Una salida del paso de restricción de la paleta está formada en una parte central próxima a la ranura para la paleta en una dirección longitudinal, de forma que la paleta pueda llevar a cabo un movimiento lineal estable de vaivén. Un área de sección del paso de restricción de la paleta es igual o más estrecha que un área de sección longitudinal de la ranura para la paleta, evitando, de ese modo, que sea restringida en exceso.

El documento KR 100 595 766 B1 describe otro compresor giratorio de capacidad variable. Aquí, el compresor giratorio de capacidad variable comprende una carcasa, un conjunto de cilindro instalado en el interior de la carcasa y que tiene un espacio V2 de compresión del conjunto de cilindro, una paleta que hace contacto con un pistón rotatorio para llevar a cabo un movimiento lineal de vaivén en una dirección radial y, por lo tanto, divide el espacio V2 de compresión del conjunto de cilindro en una cámara de succión y en una cámara de descarga. Además, hay conectados pasos en un espacio interno de la carcasa con una ranura para la paleta que es proporcionada en el conjunto de cilindro y tiene la paleta insertada de forma deslizante en la misma.

55

50

Divulgación de la invención

Problema técnico

Por lo tanto, un objeto de la presente invención para proporcionar un compresor giratorio de capacidad variable capaz de reducir notablemente el ruido del compresor, provocado cuando una paleta colisiona con un pistón rotatorio debido a la vibración de la paleta, al restringir rápidamente la paleta tras cambiar el modo de accionamiento del compresor.

Se soluciona este objeto por medio del compresor giratorio de capacidad variable según la reivindicación 1. Se describen ventajas, mejoras y realizaciones adicionales de la invención en las reivindicaciones dependientes respectivas.

Se proporciona un compresor giratorio de capacidad variable que comprende: una carcasa; un conjunto de cilindro instalado en la carcasa y que tiene un espacio de compresión; un pistón rotatorio que gira de forma excéntrica en el espacio de compresión del conjunto de cilindro; una paleta que hace contacto con el pistón rotatorio para llevar a cabo un movimiento lineal de vaivén en una dirección radial y que divide el espacio de compresión del conjunto de cilindro en una cámara de succión y en una cámara de descarga; y un dispositivo de restricción de la paleta para restringir una paleta al aplicar presión sobre una cara lateral de la paleta, en el que se forma un área A de sección de un paso para aplicar una presión de restricción sobre la cara lateral de la paleta de manera que sea mayor que un área B de paleta de la paleta que recibe la presión de restricción aplicada a través del paso.

Más en particular, la presente invención proporciona un compresor giratorio de capacidad variable en el que una relación A/B entre el área A de sección del paso y el área B de paleta varía desde el 1,5% hasta el 16,4%.

20 Efectos ventajosos

25

30

35

45

50

Se proporciona el compresor giratorio de capacidad variable según la presente invención de forma que se aplique un área de sección de un paso de restricción de la paleta a través del cual se aplica presión a uno o ambos lados de la paleta que no es mayor que un área de paleta de la paleta que tiene la presión de restricción aplicada a la misma, más en particular, que una relación entre el área de sección y el área de paleta varíe desde el 1,5% hasta el 16,4%. En consecuencia, el compresor puede llevar a cabo uniformemente un modo de accionamiento normal. Además, al convertir el modo de accionamiento normal en un modo de accionamiento de ahorro, es posible evitar de antemano que vibre la paleta, lo que puede reducir de forma eficaz el ruido del compresor.

Breve descripción de los dibujos

La Fig. 1 es una vista en corte horizontal que muestra un compresor giratorio de capacidad variable de tipo doble según una realización de la presente invención;

la Fig. 2 es una vista en corte tomada a lo largo de la línea [I - I] de la Fig. 1, que es una vista en planta que muestra una segunda parte de compresión del compresor giratorio de capacidad variable de tipo doble de la Fig. 1.

la Fig. 3 es una vista ampliada de un dispositivo de restricción de la paleta de la Fig. 2;

las Figuras 4 y 5 son vistas en planta que muestran el compresor giratorio de capacidad variable de tipo doble de la Fig. 1 en un modo de accionamiento normal y en un modo de accionamiento de ahorro, respectivamente. Las Figuras 6 y 7 son gráficos cada uno de los cuales muestra el ruido medido al adaptar una relación distinta entre un área de sección de un paso de restricción y un área de paleta de una paleta en el compresor giratorio de capacidad variable de tipo doble de la Fig. 1.

40 La Fig. 8 es una vista en planta que muestra otra realización del compresor giratorio de capacidad variable de tipo doble según la presente invención.

Mejor modo para llevar a cabo la invención

Normalmente, se pueden dividir los compresores giratorios en compresores giratorios de tipo simple y en compresores giratorios de tipo doble según el número de cilindros. Por ejemplo, para un compresor giratorio de tipo simple, se forma una cámara de compresión utilizando una fuerza de rotación transferida desde una parte del motor. Para un compresor giratorio de tipo doble, se forman una pluralidad de cámaras de compresión que tienen un desfase de 180° entre las mismas utilizando una fuerza de rotación transferida desde la parte del motor. De aquí en adelante, se proporcionará una explicación de un compresor giratorio de capacidad variable de tipo doble en el que se forma verticalmente una pluralidad de cámaras de compresión, teniendo al menos una de las múltiples cámaras de compresión una capacidad variable. Sin embargo, también se puede aplicar la presente invención al compresor giratorio de capacidad variable de tipo simple.

De aquí en adelante, se describirá con detalle un compresor giratorio de capacidad variable de tipo doble según una realización ilustrada en los dibujos adjuntos.

Como se muestra en la Fig. 1, el compresor giratorio de capacidad variable de tipo doble según la presente invención puede incluir una carcasa 100 que tiene un espacio hermético, una parte 200 del motor instalado en un lado superior de la carcasa 100, una primera parte 300 de compresión y una segunda parte 400 de compresión dispuestas en un lado inferior de la carcasa 100 para comprimir un refrigerante por medio de una fuerza de rotación generada en la parte 100 del motor, y una unidad 500 de conmutación del modo para conmutar un modo de accionamiento, de forma que la segunda parte 400 de compresión pueda llevar a cabo un modo de accionamiento normal (modo de plena potencia) o un modo de accionamiento de ahorro.

5

10

15

30

35

40

45

50

55

Se puede mantener el espacio hermético de la carcasa 100 en una atmósfera de presión de descarga por medio de un refrigerante descargado de la primera parte 300 de compresión y de la segunda parte 400 de compresión. Se pueden conectar un primer tubo SP1 de succión de gas y un segundo tubo SP2 de succión de gas a una superficie circunferencial inferior de la carcasa 100, respectivamente, de forma que permitan que se succione un refrigerante al interior de la primera parte 300 de compresión y la segunda parte 400 de compresión. Se puede conectar un tubo de descarga DP de gas a un extremo superior de la carcasa 100, de forma que se pueda transferir un refrigerante descargado de las partes primera y segunda 300 y 400 de compresión al espacio hermético hacia un sistema de refrigeración.

La parte 200 del motor puede incluir un estátor 210 fijado al interior de la carcasa 100 y que recibe energía del exterior, un rotor 220 dispuesto en el interior del estátor 210 con un cierto entrehierro entre los mismos y girado por medio de la interacción con el estátor 210, y un eje 230 de rotación acoplado al rotor 210 para transmitir una fuerza de rotación a las partes primera y segunda 300 y 400 de compresión.

El eje 230 de rotación puede incluir una porción 231 de eje acoplada al rotor 220, y una primera porción excéntrica 231 y una segunda porción excéntrica 233 dispuestas excéntricamente tanto en el lado izquierdo como en el derecho por debajo de la porción 231 de eje. Se pueden disponer de forma simétrica las porciones excéntricas primera y segunda 232 y 233 con un desfase de aproximadamente 180° entre las mismas. En consecuencia, se pueden acoplar de forma giratoria, respectivamente, las porciones excéntricas primera y segunda 232 y 233 a un primer pistón rotatorio 340 y a un segundo pistón rotatorio 430 que serán explicados a continuación.

La primera parte 300 de compresión puede incluir un primer cilindro 310 que tiene forma anular y está instalado en la carcasa 100, una placa superior 320 de soporte (de aquí en adelante, denominado "soporte superior") y una placa central 330 de soporte (de aquí en adelante, denominado "soporte central") que cubre los lados superior e inferior del primer cilindro 310, formando, de ese modo, un primer espacio V1 de compresión, para soportar el eje 230 de rotación en una dirección radial, un primer pistón rotatorio 340 acoplado de forma giratoria a una porción excéntrica superior del eje 230 de rotación y comprime un refrigerante al orbitar en el primer espacio V1 de compresión del primer cilindro 310, y una primera paleta 350 acoplada al primer cilindro 310 para ser amovible en una dirección radial, de forma que se encuentre en contacto con una superficie circunferencial externa del primer pistón rotatorio 340 para dividir el primer espacio V1 de compresión del primer cilindro 310 en una primera cámara de succión y en una primera cámara de descarga. La primera parte 300 de compresión puede incluir, además, un resorte 360 de soporte de la paleta formado de un resorte de compresión para soportar elásticamente un lado trasero de la primera paleta 350, una primera válvula 370 de descarga acoplada con posibilidad de apertura a un extremo de una primera abertura 321 de descarga proporcionada en una parte central del soporte superior 320 para controlar una descarga de un refrigerante descargado desde la cámara de descarga del primer espacio V1 de compresión, y un primer silenciador 380 acoplado al soporte superior 320 y que tiene un volumen interno para recibir la primera válvula 370 de descarga.

El primer cilindro 310 puede incluir una primera ranura 311 para la paleta formada en un lado de una superficie circunferencial interna del mismo que constituye el primer espacio V1 de compresión para que la primera paleta 350 realice un movimiento de vaivén en una dirección radial, una primera entrada (no mostrada) formada en un lado de la primera ranura 311 para la paleta en una dirección radial para introducir un refrigerante en el segundo espacio V2 de compresión, y un primer surco (no mostrado) de guía de descarga instalado de forma inclinada en el otro lado de la primera ranura 311 para la paleta en una dirección del eje para descargar un refrigerante en el interior de la carcasa 100.

Uno del soporte superior 320 y del soporte central 330 puede tener un diámetro menor que el del primer cilindro 310, de forma que se pueda soportar incluso un extremo externo (o un extremo trasero, utilizado igualmente con posterioridad) de la primera paleta 350 por medio de una presión de descarga de un refrigerante que llena el espacio hermético de la carcasa 100.

Como se muestra en las Figuras 1 y 2, la segunda parte 400 del compresor puede incluir un segundo cilindro 410 que tiene una forma anular y está instalado en un lado inferior del primer cilindro 310 en el interior de la carcasa 100, cubriendo el soporte central 330 y un soporte inferior 420 los lados superior e inferior del segundo cilindro 410, formando, de ese modo, un segundo espacio V2 de compresión, para soportar el eje 230 de rotación en una dirección radial y en una dirección del eje, un segundo pistón rotatorio 430 acoplado de forma giratoria a una porción excéntrica inferior del eje 230 de rotación para comprimir un refrigerante al orbitar en el segundo espacio V2 de compresión del segundo cilindro 410, y una segunda paleta 440 acoplada al segundo cilindro 410 para ser amovible

en una dirección radial, de forma que haga contacto con la superficie circunferencial externa, o sea separada de la misma, del segundo pistón rotatorio 430 para dividir el segundo espacio V2 de compresión del segundo cilindro 410 en una segunda cámara de succión y en una segunda cámara de descarga o para conectar entre sí la segunda cámara de succión y la segunda cámara de descarga. La segunda parte 400 de compresión puede incluir, además, una segunda válvula 450 de descarga acoplada con posibilidad de apertura a un extremo de una segunda abertura 421 de descarga proporcionada en la parte central del soporte inferior 420 para controlar un gas refrigerante descargado de la segunda cámara de compresión, y un segundo silenciador 460 acoplado al soporte inferior 420 y que tiene un cierto volumen interno para recibir la segunda válvula 450 de descarga.

Se puede implementar el segundo cilindro 410 de forma que el espacio V2 de compresión pueda tener la misma capacidad que el espacio V1 de compresión, o una capacidad distinta del mismo, del primer cilindro 310. Por ejemplo, en un caso en el que los dos cilindros 310 y 410 tienen la misma capacidad, si el segundo cilindro 410 lleva a cabo un modo de accionamiento de ahorro, el compresor puede ser accionado con una capacidad correspondiente a la capacidad de otro cilindro (por ejemplo, el primer cilindro 310) y, por lo tanto, la función del compresor puede variar hasta un 50%. Por otra parte, en un caso en el que los dos cilindros 310 y 410 tienen distintas capacidades, la función del compresor puede variar adoptando una relación correspondiente a una capacidad de un cilindro que lleva a cabo un modo de accionamiento normal.

El segundo cilindro 410 puede incluir una segunda ranura 411 para la paleta formada en un lado de una superficie circunferencial interna del mismo que constituye el segundo espacio V2 de compresión para que la segunda paleta 440 realice un movimiento de vaivén en una dirección radial, una segunda entrada 412 (no mostrada) formada en un lado de la segunda ranura 411 para la paleta para introducir un refrigerante en el interior del segundo espacio V2 de compresión, y un segundo surco (no mostrado) de guía de la descarga formado de manera inclinada en el otro lado de la segunda ranura 411 para la paleta en una dirección del eje para descargar un refrigerante en el interior de la carcasa 100.

20

40

45

50

55

60

Como se muestra en las Figuras 2 y 3, se puede formar herméticamente una cámara 413 de la paleta en un lado 25 trasero de la segunda ranura 411 para la paleta, y puede estar conectada a un tubo 530 de conexión del lado común de una unidad 500 de conmutación del modo que será explicada a continuación. La cámara 413 de la paleta también puede estar separada del espacio hermético de la carcasa 100, de forma que mantenga un lado trasero de la segunda paleta 440 como una atmósfera de presión de succión o una atmósfera de presión de descarga. Además, se puede formar un paso 414 de restricción (de aquí en adelante, denominado "primer paso") de la paleta del lado de presión elevada que conecta el interior de la carcasa 100 con la segunda ranura 411 para la paleta en una 30 dirección perpendicular o una dirección inclinada con respecto a una dirección de movimiento de la segunda paleta 440 y restringe, de ese modo, la segunda paleta 440 por medio de una presión de descarga en el interior de la carcasa 100 en el segundo cilindro 410. Se puede formar un paso de restricción (de aquí en adelante, denominado "segundo paso") de la paleta del lado de presión reducida que conecta la segunda ranura 411 para la paleta con la segunda entrada 412 para generar una diferencia de presión con el primer paso 414, de forma que se restrinja 35 rápidamente la segunda paleta 440 en un lado opuesto al primer paso 414.

La cámara 413 de la paleta conectada al tubo 530 de conexión del lado común que será explicada más adelante tiene un cierto volumen interno. En consecuencia, aunque se haya movido por completo la segunda paleta 440 hacia atrás, de forma que sea recibida en el interior de la segunda ranura 411 para la paleta, la superficie trasera de la segunda paleta 440 puede tener una superficie de presión para una presión suministrada a través del tubo 530 de conexión del lado común.

Se puede colocar el primer paso 414 en el surco (no mostrado) de guía de descarga del segundo cilindro 410 situado en la segunda paleta 440, y puede estar formado con penetración hacia un centro de la segunda ranura 411 para la paleta desde una superficie circunferencial externa del segundo cilindro 410. Se puede formar el primer paso 414 para que tenga un diámetro de dos escalones formado estrechamente hacia la segunda ranura 411 para la paleta utilizando una broca de dos escalones. Se puede formar una salida del primer paso 414 en una parte aproximadamente central de la segunda ranura 411 para la paleta en una dirección longitudinal, de forma que la segunda paleta 440 pueda llevar a cabo un movimiento lineal estable de vaivén. Además, el primer paso 414 puede estar formado en una posición en la que el primer paso 414 puede estar conectado a la cámara 413 de la paleta por medio de una separación entre la segunda paleta 440 y la segunda ranura 411 para la paleta cuando se acciona el compresor en el modo de accionamiento normal. En consecuencia, se puede introducir una presión de descarga en la cámara 413 de la paleta para aumentar, de esta manera, la presión en una superficie trasera de la segunda paleta 440. Sin embargo, cuando se restringe la segunda paleta 440 en el modo de accionamiento de ahorro del compresor, si el primer paso 414 está conectado a la cámara 413 de la paleta, se aumenta una presión en la cámara 413 de la paleta y, de ese modo, se retrae la segunda paleta 440 para hacerla vibrar, posiblemente, de ese modo. En consecuencia, puede ser preferente formar el primer paso 414 para que esté colocado dentro de un intervalo de vaivén de la segunda paleta 440.

Preferentemente, un área de sección del primer paso 414 es igual o más estrecha que una superficie de presión aplicada sobre la superficie trasera de la segunda paleta 440, en concreto, un área de sección de la segunda ranura 411 para la paleta, evitando, de ese modo, que la segunda paleta 440 sea restringida en exceso. Por ejemplo,

cuando se divide un área A de sección del primer paso 414 por un área B de paleta de la segunda paleta 440, es decir, el área B de paleta de una superficie lateral de la segunda paleta 440 a la que se aplica una presión de restricción, una relación (A/B) entre el área A de sección del primer paso 414 y el área B de paleta de la paleta 440 puede encontrarse dentro del intervalo desde 1,5% hasta 16,4%. En consecuencia, se puede minimizar el ruido generado durante una conmutación del modo.

Aunque no se muestra en los dibujos, se puede formar el paso 414 de restricción de la paleta del lado de presión elevada (es decir, el primer paso) para que sea rebajado en una cierta profundidad en ambas superficies laterales del segundo cilindro 410, o puede ser rebajado una cierta profundidad en el soporte inferior 420 o el soporte central 330, cada uno de los cuales está acoplado a ambas superficies laterales del segundo cilindro 410 o está formado atravesando el soporte inferior 420 o el soporte central 330. Aquí, si se forma el primer paso 414 para ser rebajado en una superficie superior del soporte inferior 420 o del soporte central 330, se puede formar el primer paso 414 al mismo tiempo que el segundo cilindro 410 o se procesa cada soporte 420 y 430 mediante sinterización, reduciendo, de ese modo, el coste de fabricación.

10

30

35

40

45

50

55

Por otro lado, se puede disponer el segundo paso 415 en la misma línea con el primer paso 414, si es posible, de forma que se pueda generar una diferencia de presión entre una presión de descarga y una presión de succión en ambas superficies laterales de la segunda paleta 440, permitiendo, de ese modo, que la segunda paleta 440 haga contacto con la segunda ranura 411 para la paleta. En algunos casos, también se puede formar el segundo paso 415 en una línea paralela al primer paso 414 o al menos dentro de un ángulo, de forma que se cruce con el primer paso 414.

Se puede colocar el segundo paso 415 para que esté conectado a la cámara 413 de la paleta por medio de una separación entre la segunda paleta 440 y la segunda ranura 411 para la paleta cuando se acciona el compresor en el modo de accionamiento de ahorro. Sin embargo, si se mueve la segunda paleta 440 hacia delante mientras que el compresor se encuentra en el modo de accionamiento normal, cuando el segundo paso 415 está conectado a la cámara 413 de la paleta, se puede soltar una presión Pd de descarga que llena la cámara 413 de la paleta a la segunda entrada 412 en la que se introduce un refrigerante de una presión Ps de succión. En consecuencia, puede que no se soporte de forma satisfactoria la segunda paleta 440. Por lo tanto, se puede formar el segundo paso 415 para estar colocado dentro de un intervalo de vaivén de la segunda paleta 440.

El área A de sección del segundo paso 415 puede encontrarse en un intervalo desde 1,5% hasta 16,4% con respecto al área B de paleta de la paleta 440 cuando se divide el área A de sección del segundo paso 414 por el área B de paleta de la segunda paleta 440, es decir, el área B de paleta de la superficie lateral de la segunda paleta 440 a la que se aplica una presión de restricción. En consecuencia, se puede minimizar el ruido generado durante una conmutación del modo de accionamiento.

Aunque no se muestra en los dibujos, se pueden formar el primer paso 414 y el segundo paso 415 de forma plural en la dirección de la altura de la segunda paleta 440. Además, las áreas de sección del primer paso 414 y del segundo paso 415 pueden ser las mismas o pueden ser distintas.

La unidad 500 de conmutación del modo puede incluir un tubo 510 de conexión del lado de presión reducida que diverge del segundo tubo SP2 de succión de gas, un tubo 520 de conexión del lado de presión elevada conectado a un espacio interno de la carcasa 100, un tubo 530 de conexión del lado común conectado a la cámara 413 de la paleta del segundo cilindro 410 y conectado, de forma alterna, tanto al tubo 510 de conexión del lado de presión reducida como al tubo 520 de conexión del lado de presión elevada, una primera válvula 540 de conmutación del modo conectada a la cámara 413 de la paleta del segundo cilindro 410 por medio del tubo 530 de conexión del lado común, y una segunda válvula 550 de conmutación del modo conectada a la primera válvula 540 de conmutación del modo para controlar una conmutación de la primera válvula 540 de conmutación del modo.

El tubo 510 de conexión del lado de presión reducida puede estar conectado entre un lado de succión del segundo cilindro 410 y un tubo de succión de gas del lado de entrada de un acumulador 110, o entre el lado de succión del segundo cilindro 410 y un tubo de succión de gas del lado de salida (segundo tubo SP2 de succión de gas).

El tubo 520 de conexión del lado de presión elevada puede estar conectado a una porción inferior de la carcasa 100, es decir, a una porción por debajo de la segunda parte 400 de compresión. Sin embargo, en este estado, se introduce en exceso el aceite en la carcasa 100 en el interior de la cámara 413 de la paleta. En consecuencia, se puede retrasar un cambio de presión de la cámara 413 de la paleta tras cambiar el modo de accionamiento del compresor, lo que tiene como resultado un mayor ruido debido a la vibración generada por la paleta. Además, se puede aumentar un índice de viscosidad entre la segunda ranura 411 para la paleta y la segunda paleta 440, lo que puede interrumpir una operación uniforme de la paleta. Por lo tanto, se puede instalar, preferentemente, el tubo 520 de conexión del lado de presión elevada en una porción más alta en la que no se encuentra sumergida en el aceite, en concreto, se puede conectar el tubo 520 de conexión del lado de presión elevada entre un extremo inferior de la parte 200 del motor y un extremo superior de la primera parte 300 de compresión, como se muestra en la Fig. 1. De esta manera, un refrigerante de una presión de descarga que llena el espacio interno de la carcasa 100 puede fluir hacia la primera válvula 540 de conmutación del modo. Además, aquí, se debería suministrar una cierta cantidad de aceite al interior de la cámara 413 de la paleta, de forma que lubrique entre la segunda ranura 411 para la paleta y la

segunda paleta 440. En consecuencia, se puede formar un agujero diminuto (no mostrado) de suministro de aceite en el soporte inferior 420 para suministrar, de esta manera, aceite cuando la segunda paleta 440 lleva a cabo un movimiento de vaivén.

Se describirá como sigue un efecto operativo del compresor giratorio de capacidad variable de tipo doble según la presente invención.

5

10

Es decir, cuando se hace girar el rotor 220 mientras se aplica potencia al estátor 210 de la parte 200 del motor, se gira el eje 230 de rotación junto con el rotor 220. En consecuencia, se transmite una fuerza de rotación de la parte 200 del motor a la primera parte 300 de compresión y a la segunda parte 400 de compresión. Dependiendo de la capacitancia de un aparato climatizador, se accionan normalmente (es decir, en un modo de plena potencia) de manera conjunta las partes primera y segunda 300 y 400 de compresión, de forma que generen una capacidad de refrigeración de una gran capacitancia. De forma alternativa, la primera parte 300 de compresión lleva a cabo un accionamiento normal y la segunda parte 400 de compresión lleva a cabo un accionamiento de ahorro, de forma que se genere una capacidad de refrigeración de capacitancia pequeña.

Aquí, en un caso en el que el compresor o un aparato climatizador que lo contiene se encuentra en un modo de plena potencia, se aplica potencia a la segunda válvula 550 de conmutación del modo. En consecuencia, como se muestra en la Fig. 4, se bloquea el tubo 510 de conexión del lado de presión reducida mientras que el tubo 520 de conexión del lado de presión elevada está conectado al tubo 530 de conexión del lado común. Entonces, se puede suministrar un gas de presión elevada o aceite de presión elevada en el interior de la carcasa 100 al interior de la cámara 413 de la paleta del segundo cilindro 410 por medio del tubo 520 de conexión del lado de la presión elevada y, de ese modo, se puede retraer la segunda paleta 440 por medio de una presión de la cámara 413 de la paleta. Como resultado, se puede mantener la segunda paleta 440 en una situación de estar en contacto con el segundo pistón rotatorio 430, y comprimir normalmente gas refrigerante introducido en el segundo espacio V2 de compresión y luego descargar el gas refrigerante comprimido.

En ese momento, se suministra un aceite o gas refrigerante a una presión elevada al interior del primer paso 414 formado en el segundo cilindro 410 o el soporte 430 o 420 para presurizar, de ese modo, una superficie lateral de la segunda paleta 440. Sin embargo, dado que el área de sección del primer paso 414 es menor que la de la segunda ranura 411 para la paleta, una fuerza de presurización de la cámara 413 de la paleta en una dirección lateral puede ser menor que una fuerza de presurización de la cámara 413 de la paleta en direcciones de vaivén. Como resultado, no se puede restringir la segunda paleta 440. Por lo tanto, la primera paleta 350 y la segunda paleta 440 hacen contacto, respectivamente, con los pistones rotatorios 340 y 440, para dividir, de ese modo, el primer espacio V1 de compresión y el segundo espacio V2 de compresión en una cámara de succión y en una cámara de compresión. Dado que la primera paleta 310 y la segunda paleta 440 comprimen cada refrigerante succionado al interior de cada cámara de succión y luego descargan el refrigerante comprimido el compresor o el aparato climatizador que lo contiene puede llevar a cabo un accionamiento de un 100%.

En cambio, cuando el compresor o el aparato climatizador que lo contiene se encuentra en un modo de accionamiento de ahorro de forma similar al accionamiento inicial, la segunda válvula 550 de conmutación del modo entra en un estado desconectado y, en consecuencia, se opera de una forma contraria al accionamiento normal (plena potencia), como se muestra en la Fig. 5, para conectar, de ese modo, el tubo 510 de conexión del lado de presión reducida con el tubo 530 de conexión del lado común. Como resultado, se puede introducir parcialmente un gas refrigerante de una presión reducida succionado al interior del segundo cilindro 410 en el interior de la cámara 413 de la paleta. En consecuencia, se puede retraer la segunda paleta 440 por medio de una presión del segundo espacio V2 de compresión para que sea recibida en el interior de la segunda ranura 411 para la paleta y, por lo tanto, se pueden conectar entre sí la cámara de succión y la cámara de compresión del segundo espacio V2 de compresión. No se puede comprimir el refrigerante succionado al interior del segundo espacio V2 de compresión.

45 Aquí, se genera una gran diferencia de presión entre una presión aplicada sobre una superficie lateral de la segunda paleta 440 por el primer paso 414 formado en el segundo cilindro 410 o el soporte 430 o 420 y una presión aplicada sobre la otra superficie lateral de la segunda paleta 440 por el segundo paso 415 formado en el segundo cilindro 410 o el soporte 430 o 420. En consecuencia, la presión aplicada mediante el primer paso 414 puede ser movida, de forma deseable, hacia el segundo paso 415 y, de esta manera, se puede restringir rápidamente de forma eficaz la 50 segunda paleta 440 sin vibración. Además, en el momento en el que se convierte una presión de la cámara 413 de la paleta desde una presión de descarga en una presión de succión, la presión de descarga restante en la cámara 413 de la paleta puede ser transformada en un tipo de una presión intermedia Pm. Sin embargo, dado que se deja escapar la presión intermedia Pm de la cámara 413 de la paleta a través del segundo paso 415 a una presión inferior a la presión intermedia Pm, se puede convertir rápidamente la presión de la cámara 413 de la paleta en la 55 presión Ps de succión. En consecuencia, se puede evitar de forma más eficaz que la segunda paleta 440 vibre, lo que tiene como resultado una restricción rápida y eficaz de la segunda paleta 440. Por lo tanto, dado que la cámara de succión y la cámara de compresión del segundo cilindro 410 están conectadas entre sí, puede que no se comprima un refrigerante succionado al interior de la cámara de succión del segundo cilindro 410 sino que, más bien, sea succionado nuevamente al interior de la cámara de succión a lo largo del emplazamiento del pistón rotatorio 430. Como resultado, la segunda parte 400 de compresión puede no comprimir el refrigerante y, por lo 60

tanto, el compresor o el aparato climatizador que lo contiene lleva a cabo un accionamiento con una capacidad correspondiente únicamente a la capacidad de la primera parte 300 de compresión.

Aquí, cuando una relación entre el área A de sección del primer paso 414 o el segundo paso 415 y un área B de paleta lateral de la paleta se encuentra en un intervalo de 1,5%~16,4%, se puede aumentar una fuerza de restricción con respecto a la segunda paleta 440, lo que permite que se restrinja rápidamente la segunda paleta 440. La relación apropiada puede ser aplicada igualmente a una relación entre la suma de las áreas de sección del primer paso 414 y del segundo paso 415 y un área obtenida al sumar las áreas de paleta de ambas superficies laterales de la paleta 440.

En las Figuras 6 y 7 se muestran los resultados del ensayo. Es decir, se puede observar a partir de la Fig. 6 que se genera el ruido de conmutación del modo durante aproximadamente 0,24 segundos cuando el área A de sección del paso se corresponde con un 1,5% del área B de la paleta y, por lo tanto, se reduce el ruido en aproximadamente 1/10 en comparación con el de la técnica relacionada. Además, se puede observar a partir de la Fig. 7 que no se genera el ruido de conmutación del modo cuando el área A de sección del paso se corresponde con un 16,4% del área B de paleta de la paleta.

15 Modo de la invención

5

Por otra parte, las anteriores realizaciones han mostrado el caso de tener el paso de restricción de la paleta del lado de presión elevada y el paso de restricción de la paleta del lado de presión reducida, pero pueden ser aplicadas a un caso de tener únicamente el paso de restricción de la paleta del lado de presión elevada, como se muestra en la Fig. 8.

Es decir, en un caso en el que se forma un paso de restricción de la paleta (de aquí en adelante, "primer paso") del lado de presión elevada en la segunda ranura 411 para la paleta del segundo cilindro 410, si se forma el área A de sección del primer paso 414 para que esté en el intervalo de 1,5%~16,4% con respecto al área B de paleta de la segunda paleta 440, como se muestra en las anteriores realizaciones, se puede restringir la segunda paleta 440 de forma rápida y estable por medio de una presión aplicada desde el primer paso 414. En consecuencia, se puede reducir drásticamente el ruido generado cuando se cambia el modo de accionamiento del compresor de un modo de accionamiento normal a un modo de accionamiento de ahorro. Una descripción detallada y los efectos de la operación al efecto son los mismos o similares a los de las realizaciones mencionadas anteriormente y, por lo tanto, serán omitidos.

Aplicabilidad industrial

30 Se puede aplicar el compresor giratorio de capacidad variable según la presente invención a un compresor giratorio de tipo simple al igual que a un compresor giratorio de tipo doble, y también puede ser aplicado a cada una de las piezas de compresión en el compresor giratorio de tipo doble.

REIVINDICACIONES

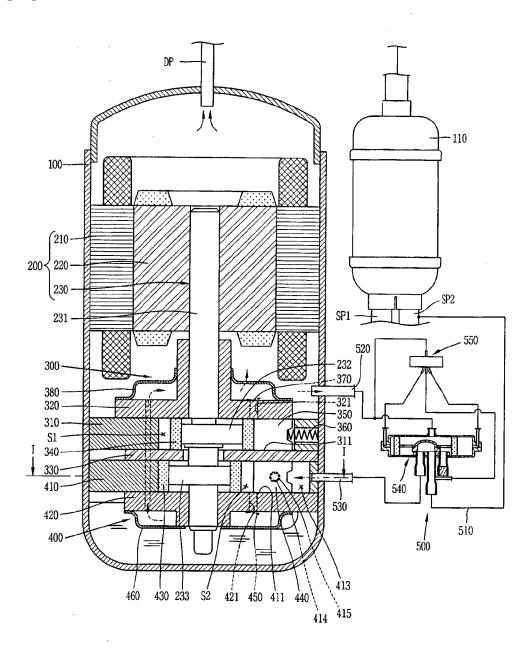
- 1. Un compresor giratorio de capacidad variable que comprende:
 - una carcasa (100);

5

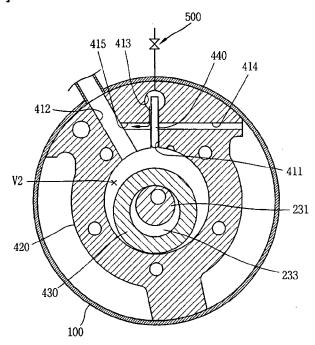
10

15

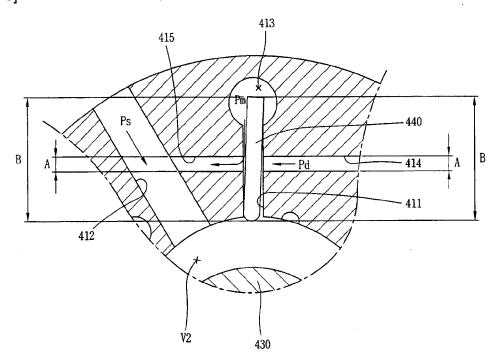
40

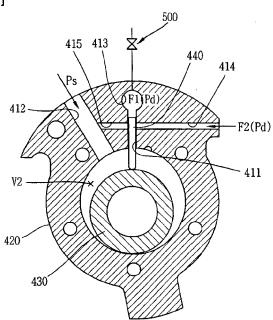

45

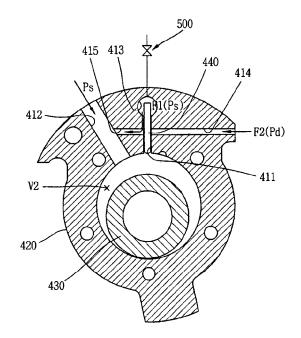
- un conjunto (400) de cilindro instalado en el interior de la carcasa (100) y que tiene un espacio (V2) de compresión;
- un pistón rotatorio (430) al que se hace girar excéntricamente en el espacio (V2) de compresión del conjunto (400) de cilindro;
- una paleta (440) que se pone en contacto con el pistón rotatorio (430) para llevar a cabo un movimiento lineal de vaivén en una dirección radial y, por lo tanto, dividir el espacio (V2) de compresión del conjunto (400) de cilindro en una cámara de succión y en una cámara de descarga;
- un primer paso (414) para conectar un espacio interno de la carcasa (100) con una ranura (411) de la paleta que está proporcionado en el conjunto (400) de cilindro y tiene la paleta (440) insertada de forma deslizante en la misma, de forma que aplique una presión de descarga sobre una cara lateral de la paleta (440); y
- un segundo paso (415) para conectar la ranura (411) para la paleta a una entrada (412) que está conectada a la cámara de succión del conjunto (400) de cilindro, de forma que se aplique una presión de succión sobre la cara lateral frente a la paleta (440),
- en el que cada área A de sección de los pasos primero (414) y segundo (415) no es mayor que un área B de paleta de la paleta (440) correspondiente a cada paso (414, 415).
 - 2. El compresor giratorio de la reivindicación 1, en el que la relación (A/B) entre el área A de sección de los pasos (414, 415) y el área B de paleta oscila entre el 1,5% y el 16,4%.
- 3. El compresor giratorio de la reivindicación 1, en el que se forman los pasos (414, 415) para ser aproximadamente perpendiculares a la ranura (411) para la paleta.
 - **4.** El compresor giratorio de la reivindicación 1, en el que el área de sección del primer paso (414) está formada para que sea aproximadamente la misma que el área de sección del segundo paso (415).
- El compresor giratorio de una cualquiera de las reivindicaciones 1 a 4, en el que una cámara (413) de la paleta separada del espacio interno de la carcasa (100) está formada en un lado externo de la ranura (411) para la paleta.
 - 6. El compresor giratorio de la reivindicación 5, en el que hay formada una separación entre la paleta (440) y la ranura (411) para la paleta, de forma que la cámara (413)' de la paleta esté conectada al paso (414, 415) cuando se retraiga la paleta (440) al interior de la ranura (411) para la paleta.
- 7. El compresor giratorio de una cualquiera de las reivindicaciones 1 a 6, en el que una unidad (500) de conmutación del modo está conectada a la cámara (413) de la paleta para permitir que se suministre una presión de succión o una presión de descarga al interior de la cámara (413) de la paleta según un modo de accionamiento del compresor.
 - 8. El compresor giratorio de la reivindicación 7, en el que la unidad (500) de conmutación del modo comprende:
 - un tubo (530) de conexión del lado común conectado a la cámara (413) de la paleta:
 - un tubo (510) de conexión del lado de presión reducida conectado a una entrada (412) del conjunto (400) de cilindro;
 - un tubo (520) de conexión del lado de presión elevada conectado al espacio interno de la carcasa (100);
 - una válvula (540) de conmutación del modo conectada, respectivamente, al tubo (530) de conexión del lado común, al tubo (510) de conexión del lado de presión reducida y al tubo (520) de conexión del lado de presión elevada, de forma que conecte el tubo (510) de conexión del lado de presión reducida al tubo (530) de conexión del lado común o bien conecte el tubo (520) de conexión del lado de presión elevada al tubo (530) de conexión del lado común según un modo de accionamiento del compresor,
- en el que el tubo (520) de conexión del lado de presión elevada está acoplado a la carcasa (100), de forma que 50 se coloque un extremo del tubo (520) de conexión del lado de presión elevada para que esté más elevado que la superficie del aceite que llena el espacio interno de la carcasa (100).
 - **9.** El compresor giratorio de la reivindicación 8, en el que el tubo (520) de conexión del lado de presión elevada tiene un extremo acoplado a una posición que no está más baja que el conjunto (400) de cilindro.
- **10.** El compresor giratorio de la reivindicación 9, en el que una parte (200) del motor que genera una fuerza motriz para comprimir un refrigerante está dispuesta en un lado superior del conjunto (400) de cilindro, y se conecta el

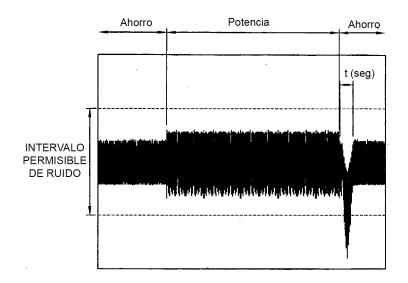

ES 2 485 378 T3

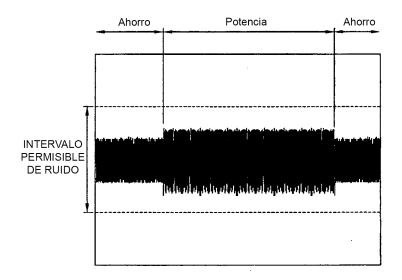
tubo (520) de conexión del lado de presión elevada entre la parte (200) del motor y el conjunto (400) de cilindro.

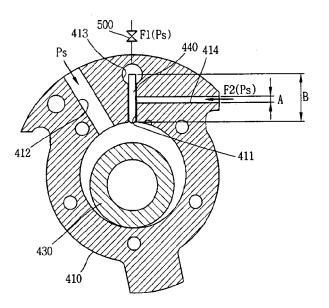

[Fig. 1]


[Fig. 2]


[Fig. 3]


[Fig. 4]


[Fig. 5]


[Fig. 6]

[Fig. 7]

[Fig. 8]

