

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 494 843

51 Int. Cl.:

G01N 33/574 (2006.01) G01N 33/48 (2006.01) C12Q 1/68 (2006.01)

12 TRADUC

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 19.09.2006 E 06814892 (3)
- (97) Fecha y número de publicación de la concesión europea: 04.06.2014 EP 1934615
- (54) Título: Métodos y materiales para identificar el origen de un carcinoma de origen primario desconocido
- (30) Prioridad:

19.09.2005 US 718501 P 12.10.2005 US 725680 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 16.09.2014

(73) Titular/es:

JANSSEN DIAGNOSTICS, LLC (100.0%) 700 US Highway 202 Raritan, NJ 08869, US

(72) Inventor/es:

WANG, YIXIN; MAZUMDER, ABHIJIT; TALANTOV, DMITRI; JATKOE, TIMOTHY y BADEN, JONATHAN

(74) Agente/Representante:

IZQUIERDO FACES, José

Métodos y materiales para identificar el origen de un carcinoma de origen primario desconocido

Descripción

15

20

25

30

35

40

45

50

55

60

65

5 CAMPO DE LA INVENCIÓN

La presente invención proporciona métodos, usos de kits, etc. para identificar el origen de un carcinoma de origen primario desconocido.

10 ANTECEDENTES DE LA INVENCIÓN

El carcinoma de origen primario desconocido (CUP) es un conjunto de neoplasias heterogéneas, confirmadas por biopsia, en las que la enfermedad metastásica se presenta sin un tejido de origen (ToO) o sitio del tumor primario identificable. Este problema representa aproximadamente el 3%-5% de todos los cánceres, por lo que es la séptima neoplasia más común. Ghosh *et al.* (2005); y Mintzer *et al.* (2004). El pronóstico y régimen terapéutico de los pacientes dependen del origen del tumor primario, lo que recalca la necesidad de identificar el sitio del tumor primario. Greco *et al.* (2004); Lembersky *et al.* (1996); y Schlag *et al.* (1994).

Actualmente se utilizan diversos métodos para resolver este problema. En las figuras 1-2 se esquematizan varios métodos seguidos. Pueden utilizarse Marcadores tumorales séricos para el diagnóstico diferencial. Aunque carecen de especificidad adecuada, pueden utilizarse en combinación con la información clínica y patológica. Ghosh et al. (2005). Pueden utilizarse métodos de inmunohistoquímica (IHC) para identificar el linaje del tumor, pero muy pocos Marcadores IHC son específicos al 100%. Por lo tanto, los patólogos suelen utilizar un panel de Marcadores IHC. Varios estudios han demostrado precisiones del 66%-88% utilizando de cuatro a 14 Marcadores IHC. Brown et al. (1997); DeYoung et al. (2000); y Dennis et al. (2005a). Las pruebas diagnósticas más caras incluyen métodos de formación de imágenes tales como la radiografía de tórax, la tomografía computarizada (CT) y la tomografía de emisión de positrones (PET). Cada uno de estos métodos puede identificar el primario en un 30% a 50% de los casos. Ghosh et al. (2005); y Pavlidis et al. (2003). A pesar de estas sofisticadas tecnologías, la capacidad para resolver los casos de CUP es sólo del 20%-30% ante mortem. Pavlidis et al. (2003); y Varadhachary et al. (2004).

Un nuevo enfoque prometedor reside en la capacidad de determinar perfiles de expresión génica de todo el genoma para identificar el origen de los tumores. Ma et al. (2006); Dennis et al. (2005b); Su et al. (2001); Ramaswamy et al. (2001); Bloom et al. (2004); Giordano et al. (2001); y el documento 20060094035. Estos estudios demostraron la viabilidad de la identificación del tejido de origen en base al perfil de expresión génica. Para que estas tecnologías de determinación de perfiles de expresión sean útiles en la práctica clínica, deben superarse dos obstáculos principales. En primer lugar, puesto que la determinación de perfiles de expresión génica se lleva a cabo totalmente en tejidos primarios, los marcadores génicos candidatos deben validarse en los tejidos metastásicos para confirmar que su expresión específica de tejido se conserva en la metástasis. En segundo lugar, la tecnología de determinación de perfiles de expresión génica debe ser capaz de utilizar tejido fijado en formalina e incluido en parafina (FFPE), ya que las muestras de tejidos fijados son el material convencional en la práctica actual. La fijación en formalina da como resultado la degradación del ARN (Lewis et al. (2001); y Masuda et al. (1999)) por lo que los protocolos de micromatrices existentes no funcionarán con la misma fiabilidad. Bibikova et al. (2004). Además, la tecnología de determinación de perfiles debe ser robusta, reproducible y fácilmente accesible.

Se ha demostrado que la RTPCR cuantitativa (qRTPCR) genera resultados fiables a partir de tejido FFPE. Abrahamsen *et al.* (2003); Specht *et al.* (2001); Godfrey *et al.* (2000); y Cronin *et al.* (2004). Por lo tanto, un enfoque más práctico sería utilizar un método pangenómico como herramienta de descubrimiento y desarrollar un ensayo de diagnóstico en base a una tecnología más robusta. Ramaswamy (2004). Sin embargo, este paradigma requiere un conjunto de genes más pequeño para su desarrollo. Oien y colaboradores utilizaron el análisis en serie de la expresión génica (SAGE) para identificar 61 Marcadores tumorales a partir de los que desarrollaron un método RTPCR en base a once genes para cinco tipos de tumores. Dennis *et al.* (2002). Otro estudio que acoplaba SAGE y qRTPCR desarrolló un panel de cinco genes para cuatro tipos de tumores y consiguió una exactitud del 81%. Buckhaults *et al.* (2003). Un estudio más reciente acoplaba la determinación de perfiles mediante micromatrices con qRTPCR, pero utilizaba 79 Marcadores. Tothill *et al.* (2005).

RESUMEN DE LA INVENCIÓN

La presente invención proporciona un método de identificación del origen de una metástasis de origen desconocido como se define en las reivindicaciones.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Las figuras 1-2 representan los métodos de la técnica anterior de identificación del origen de una metástasis de origen desconocido.

La figura 3 representa el presente algoritmo de diagnóstico de CUP.

La figura 4 representa los datos de micromatriz que muestran las intensidades de dos genes en un panel de tejidos. (A) Antígeno de células madre de próstata (PSCA). (B) Factor de coagulación V (F5). Los gráficos de barras muestran la intensidad en el eje Y, y el tejido en el eje X. Panc Ca, cáncer de páncreas; Panc N, páncreas normal.

- La figura 5 representa los electroferogramas obtenidos a partir de un Agilent Bioanalyzer. Se aisló el ARN a partir de tejido FFPE mediante digestión con proteinasa K durante tres horas (A) o dieciséis horas (B). La muestra C22 (rojo) era un bloque de un año, mientras que la muestra C23 (azul) era un bloque de cinco años. En verde se muestra un marcador de tamaño.
- La figura 6 representa una comparación de los valores de Ct obtenidos a partir de tres métodos de qRTPCR diferentes: cebado con hexámeros aleatorios en la transcripción inversa seguido de qPCR con el ADNc resultante (etapa RH 2), cebado específico de gen (cebador inverso) en la transcripción inversa seguido de qPCR con el ADNc resultante (etapa SPG 2) o cebado específico de gen y qRTPCR en una reacción de una sola etapa (etapa GSP 1). Se dividió ARN de once muestras en los tres métodos y se midieron los niveles de ARN de tres genes: β-actina (A), HUMSPB (B) y TTF (C). La mediana del valor de Ct obtenida con cada método se indica mediante la línea continua.
 - La figura 7 representa los diagramas de placas del ensayo de CUP.
 - La figura 8 es una serie de gráficos que representan el rendimiento del ensayo a lo largo de un intervalo de concentraciones de ARN.
- La figura 9 es un diagrama de flujo de trabajo experimental: designación y validación de Marcadores candidatos (9A); y optimización del ensayo y construcción y ensayo del algoritmo de predicción (9B).
 - La figura 10 representa la expresión de 10 Marcadores génicos candidatos específicos de tejido seleccionados en adenocarcinoma primario de próstata y carcinomas metastásicos FFPE. Para cada gráfico el eje X representa el valor de expresión de Marcador normalizado.
- La figura 11 representa la optimización del ensayo. (A y B) Electroferogramas obtenidos de un Agilent Bioanalyzer. Se aisló el ARN a partir de tejido FFPE mediante digestión con proteinasa K durante tres horas (A) o dieciséis horas (B). La muestra C22 (rojo) era un bloque de un año, mientras que la muestra C23 (azul) era un bloque de cinco años. En verde se muestra un marcador de tamaño. (C y D) Comparación de los valores de Ct obtenidos a partir de tres métodos de qRTPCR diferentes: cebado con hexámeros aleatorios en la transcripción inversa seguido de qPCR con el ADNc resultante (etapa RH 2), cebado específico de gen (cebador inverso) en la transcripción inversa seguido de qPCR con el ADNc resultante (etapa SPG 2) o cebado específico de gen y qRTPCR en una reacción de una sola etapa (GSP 1 etapa). Se dividió ARN de once muestras en los tres métodos y se midieron los niveles de ARN para dos genes: β-actina (C), HUMSPB (D). La mediana del valor de Ct obtenida con cada método se indica mediante la línea continua.
 - La figura 12 es un mapa de calor que muestra los niveles relativos de expresión del panel de 10 Marcadores en 239 muestras. El color rojo indica mayor expresión.

DESCRIPCIÓN DETALLADA

35

40

45

50

55

60

65

La identificación del sito primario en pacientes con carcinoma metastásico de origen primario desconocido (CUP) puede permitir la aplicación de regímenes terapéuticos específicos y puede prolongar la supervivencia. Se validaron Marcadores candidatos mediante reacción en cadena de la polimerasa con transcriptasa inversa (RT-PCR) en 205 carcinomas metastásicos FFPE procedentes de estos seis tejidos, así como metástasis procedentes de otros tipos de cáncer para determinar la especificidad. Se seleccionó una firma genética de diez genes que predijo el tejido de origen de los carcinomas metastásicos para estos seis tipos de cáncer. A continuación, se optimizaron los métodos de qRTPCR y aislamiento de ARN para estos diez Marcadores, y se aplicó el ensayo qRTPCR a un conjunto de 260 tumores metastásicos, generando una exactitud global del 78%. Por último, se ensayó un conjunto independiente de 48 muestras metastásicas. Es importante señalar que treinta y siete muestras en este conjunto tenían un primario conocido o inicialmente presentado como CUP, pero se resolvieron posteriormente, y el ensayo demostró una precisión del 78%.

Un Biomarcador es cualquier indicio del nivel de expresión de un gen Marcador indicado. Los indicios pueden ser directos o indirectos y medir la sobreexpresión o subexpresión del gen dados los parámetros fisiológicos y en comparación con un control interno, el tejido normal u otro carcinoma. Los Biomarcadores incluyen, sin limitación, los ácidos nucleicos (sobreexpresión y subexpresión y directo e indirecto). El uso de ácidos nucleicos como Biomarcadores puede incluir cualquier método conocido en la técnica, incluidos, sin limitación, la medición de la amplificación de ADN, ARN, micro ARN, la pérdida de heterocigosidad (LOH), los polimorfismos de nucleótido único (SNPs, Brookes (1999)), ADN microsatélite, hipometilación o hipermetilación de ADN. El uso de proteínas como Biomarcadores incluye cualquier método conocido en la técnica, incluidos, sin limitación, la medición de la cantidad, la actividad, modificaciones tales como glicosilación, fosforilación, ribosilación de ADP, ubiquitinación, etc., o inmunohistoquímica (IHC). Otros Biomarcadores incluyen formación de imágenes, recuento celular y Marcadores de apoptosis.

Los genes indicados proporcionados en el presente documento son los asociados con un tipo de tejido o tumor concreto. Un gen Marcador puede asociarse con numerosos tipos de cáncer, pero siempre que la expresión del gen esté lo suficientemente asociada con un tipo de tejido o tumor a identificar utilizando el algoritmo descrito en el presente documento para que sea específico para un origen concreto, puede utilizarse el gen en la invención

5

10

15

20

25

30

35

40

45

50

55

60

65

reivindicada para determinar el tejido de origen para un carcinoma de origen primario desconocido (CUP). En la técnica se conocen numerosos genes asociados con uno o más tipos de cáncer. La presente invención proporciona genes Marcadores preferentes y combinaciones de genes Marcadores aún más preferentes tal como se define en las reivindicaciones. Estas se describen detalladamente en el presente documento. "Origen" en la expresión "tejido de origen" se refiere al tipo de tejido (pulmón, colon, etc.) o al tipo histológico (adenocarcinoma, carcinoma de células escamosas, etc.) en función de las circunstancias médicas concretas y será entendido por cualquier experto en la materia. Un gen Marcador corresponde a la secuencia indicada mediante una SEQ ID NO cuando contiene esa secuencia. Un fragmento o segmento génico corresponde a la secuencia de tal gen cuando contiene una porción de la secuencia referenciada o su complemento suficiente para distinguirla como la secuencia del gen. Un producto de expresión génica corresponde a tal secuencia cuando su ARN, ARNm o ADNc hibrida con la composición que tiene tal secuencia (por ejemplo, una sonda) o, en el caso de un péptido o proteína, que está codificada por tal ARNm. Un segmento o fragmento de un producto de expresión génica corresponde a la secuencia de tal gen o producto de expresión génica cuando contiene una porción del producto de expresión génica referenciado o su complemento suficiente para distinguirlo como la secuencia del gen o producto de expresión génica. Los métodos y usos de la invención incluyen uno o más genes Marcadores como se define en las reivindicaciones. "Marcador" o "gen Marcador" se utiliza a lo lago de la presente memoria para referirse a los genes y productos de expresión génica que se corresponden con cualquier gen cuya sobreexpresión o subexpresión esté asociada con un tipo de tejido o tumor. Los genes Marcadores preferentes se describen más detalladamente en la Tabla 1.

Tabla 1

5	SEQ ID NO:	Nombre	Denominación matriz	secuencia
10	1	SP-B	209810_at	gaaaaaccagccactgctttacaggacaggggttgaagctgagcccgc etcacaccaccccatgcactcaaagattggattttacagctacttgcaatt caaaattcagaagaataaaaaatgggaacatacagaactctaaaagataga catcagaaattgttaagttaa
20	2	TTF1	211024_s_at	gtgattcaaatgggttttccacgctagggcggggcacagattggagagggc tctgtgctgacatggctctggactctaaagaccaaacttcactctgggcaca ctctgccagcaaagaggactcgcttgtaaataccaggatttttttt
30				ggetcageggegacegecetcegegaaaatagtttgtttaatgtgaacttgt agetgtaaaaegetgteaaaagttggactaaatgeetagttttagtaatetgt acattttgttgtaaaaagaaaaaceacteecagtceecagecetteacatttttt atgggeattgacaaatetgtgtatattatttggcagtttggtatttgeggegtca gtettttetgttgtaact
35	3	DSG3	205595 at	ccatcccatagaagtccagcagacaggatttgttaagtgccagactttgtca ggaagtcaaggagcttctgctttgtccgcctctgggtctgtccagccag
40				geaacetagetggeceaaegeagetaegaggteaeataetatgetetgta eagaggateettgeteeegtetaatatgaceagaatgagetggaataeeaea etgaceaaatetggatetttggactaaagtatteaaaatageatage
45	,			aatteteaagtae

	4	HPT1	209847_at	
5	•			etgeaceacetaettagatattteatgtgetatagaeattagagagatttttea ttttteeatgaeattttteetetgeaaatggettagetaettgtgttttteeetttt ggggeaagaeagaeteattaaatattetgtaeattttttetttateaaggagata tateagtgttgteteatagaaetgeetggatteeatttatgtitttetgatteeate etgtgteeeetteateettgaeteetttggtattteaetgaattteaaaeatttgte
10	5	PSCA	205319_at	ttcctgaggcacatectaacgcaagtttgaccatgtatgtttgcaccccttttcc ccnaaccctgaccttcccatgggccttttccaggattccnaccnggcagatc agttttagtganacanatccgcntgcagatggcccctccaaccntttntgttg ntgtttccatggcccagcattttccacccttaaccctgtgttcaggcacttnttc
15 20				cccaggaagccttccctgcccaccccatttatgaattgagccaggtttggt ccgtggtgtcccccgcacccagcaggggacaggcaatcaggagggccc agtaaaggctgagatgaagtggactgagtagaactggaggacaagagttg acgtgagttcctgggagtttccagagatg
	6	F5	204713_s_at	atectetacagecagatgteacagggatacgtetacttteacttggtgetgga gaatteanaagteaagaacatgetaagentaagggacecaaggtagaaag agateaageageaaageacaggtteteetggatgaaattactageacataa
25				agttgggagacacctaagccaagacactggttctccttccggaatgaggcc ctgggaggaccttcctagccaagacactggttctccttccagaatgaggcc ctggaaggaccctcctagtgatctgttactcttaaaacaaagtaactcatctaa gattttggttgggagatggcatttggcttctgagaaaggtagctatgaaataat
30				ccaagatactgatgaagacacagctgttaacaattggctgatcagcccca gaatgcctcacgtgcttggggagaaagcacccctcttgccaacaagcctgg aaag
35	7	MGB1	206378_at	gcagcagcctcaccatgaagttgctgatggtcctcatgctggcggccctctc ccagcactgctacgcaggctctggctgccccttattggagaatgtgatttcca agacaatcaatccacaagtgtctaagactgaatacaaagaacttcttcaaga gttcatagacgacaatgccactacaaatgccatagatgaattgaaggaatgt
40				tttettaaceaaacggatgaaactetgageaatgttgaggtgtttatgeaatta atatatgacageagtetttgtgatttattttaactttetgeaagacetttggetea cagaactgeagggtatggtgagaaaceaactacggattgetgeaaaceac acettetetttettatgtetttttact
45	8	PDEF	220192_x_at	gagtggggcccttaaactggattcaaaaaatgctctaaacataggaatggtt gaagaggtcttgcagtcttcagatgaaactaaatctctagaagaggcacaa gaatggctaaagcaattcatccaagggccaccggaagtaattagagctttg
50				aaaaaatctgtttgttcaggcagagagctatatttggaggaagcattacagaa cgaaagagatcttttaggaacagtttggggtgggcctgcaaatttagaggct attgctaagaaaggaaaatttaataaataattggtttttcgtgtggatgtactcc aagtaaagctccagtgactaatatgtataaatgttaaatgatattaaatatgaa
55				catcagttaaaaaaaaaattetttaaggetactattaatatgeagacttaetttta atcatttgaaatetgaacteatttaeeteatttettgeeaattaeteeettgggtat ttaetgegta

5	9	PSA	204582_s_at	tggtgtaattttgtcctcttgtgtcctggggaatactggccatgcctggagac atatcactcaatttctctgaggacacagataggatggggtgtctgtgttatttgt ggggtacagagatgaaagaggggtgggatccacactgagagagtggag agtgacatgtgctggacactgtccatgaagcactgagcagaagctggagg cacaacgcaccagacactcacagcaaggatggagctgaaaacataaccc actctgtcc
15	10	WT1	206067_s_at	atagatgtacatacctccttgcacaaatggaggggaattcattttcatcactgg gagtgtccttagtgtataaaaaccatgctggtatatggcttcaagttgtaaaaa tgaaagtgactttaaaagaaaataggggatggtccaggatctccactgataa gactgtttttaagtaacttaaggacctttgggtctacaagtatatgtgaaaaaa atgagacttactgggtgaggaaatccattgtttaaagatggtcgtgtgtgt
20				gtgtgtgtgtgtgtgtgtgttgtgttttgttttttttt

La presente invención proporciona un método de identificación del origen de una metástasis de origen desconocido tal como se define en las reivindicaciones.

30

35

40

45

50

55

60

65

Los genes Marcadores se seleccionan de entre i) SP-B, TTF y DSG3, ii) F5 y PSCA o iii) CDH17. Preferentemente, los genes Marcadores son SP-B, TTF, DSG3, KRT6F, p73H y/o SFTPC. Más preferentemente, los genes Marcadores son SP-B, TTF y/o DSG3. Los genes Marcadores adicionalmente pueden incluir o ser reemplazados por KRT6F, p73H y/o SFTPC.

En una forma de realización, los genes Marcadores son F5, PSCA, ITGB6, KLK10, CLDN18, TR10 y/o FKBP10. Más preferentemente, los genes Marcadores son F5 y/o PSCA. Preferentemente, los genes Marcadores pueden incluir o ser reemplazados por ITGB6, KLK10, CLDN18, TR10 y/o FKBP10.

En otra forma de realización, los genes Marcadores son CDH17, CDX1 y/o FABP1, preferentemente, CDH17. Los genes Marcadores adicionalmente pueden incluir o ser reemplazados por CDX1 y/o FABP1.

En una forma de realización, la expresión génica se mide utilizando al menos una de las SEQ ID NO: 11-58.

La presente descripción también abarca métodos que miden la expresión génica obteniendo y midiendo la formación de al menos uno de los amplicones SEQ ID NO: 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54 y/o 58.

En una forma de realización, los genes Marcadores puede seleccionarse de un Marcador específico de género seleccionado de al menos uno de entre: i) en el caso de un paciente masculino KLK3, KLK2, NGEP o NPY; o ii) en el caso de una paciente femenina PDEF, MGB, PIP, B305D, B726 o GABA-Pi; y/o WT1, PAX8, STAR o EMX2. Preferentemente, el gen Marcador es KLK2 o KLK3. En esta forma de realización, los genes Marcadores pueden incluir o ser reemplazados por NGEP y/o NPY. En una forma de realización, los genes Marcadores son PDEF, MGB, PIP, B305D, B726 o GABA-Pi, preferentemente, PDEF y MGB. En esta forma de realización, los genes Marcadores pueden incluir o ser reemplazados por PIP, B305D, B726 o GABA-Pi. En una forma de realización, los genes Marcadores son WT1, PAX8, STAR o EMX2, preferentemente, WT1. En esta forma de realización, los genes Marcadores pueden incluir o ser reemplazados por PAX8, STAR o EMX2.

La presente descripción proporciona métodos para obtener información clínica adicional, incluido el sitio de metástasis para determinar el origen del carcinoma; obtener conjuntos de Biomarcadores óptimos para carcinomas que comprenden las etapas de utilizar metástasis de origen conocido, determinar los Biomarcadores para ello y comparar los Biomarcadores con los Biomarcadores de metástasis de origen desconocido; proporcionar orientación para el tratamiento determinando el origen de una metástasis de origen desconocido e identificar los tratamientos apropiados para ello; y proporcionar un pronóstico determinando el origen de una metástasis de origen desconocido e identificar el pronóstico correspondiente para ello.

La presente descripción proporciona adicionalmente métodos para encontrar Biomarcadores determinando el nivel de expresión de un gen Marcador en una metástasis concreta, medir un Biomarcador para el gen Marcador para determinar la expresión del mismo, analizar la expresión del gen Marcador según cualquiera de los métodos

proporcionados en el presente documento o conocidos en la técnica y determinar si el gen Marcador es realmente específico para el tumor de origen.

La presente invención proporciona adicionalmente el uso de una composición que contiene al menos una secuencia aislada seleccionada de entre las SEQ ID NO: 11-58 en los métodos de la invención. La presente invención proporciona adicionalmente el uso de un kit para llevar a cabo un ensayo según los métodos proporcionados en el presente documento que contiene ARN o ADNc que hibrida con los genes Marcadores utilizados en los métodos de la invención.

10 La presente invención proporciona adicionalmente el uso de micromatrices o matrices génicas para llevar a cabo los métodos descritos en el presente documento.

5

15

20

25

30

35

40

45

50

55

60

65

La presente descripción proporciona adicionalmente carteras de diagnóstico/pronóstico que contienen secuencias aisladas de ácidos nucleicos, sus complementos, o porciones de los mismos de una combinación de genes como se describe en el presente documento, en los que la combinación es suficiente para medir o caracterizar la expresión génica en una muestra biológica con células metastásicas con respecto a células de diferentes carcinomas o tejido normal.

Cualquier método descrito en la presente descripción puede incluir adicionalmente medir la expresión de al menos un gen expresado constitutivamente en la muestra.

Preferentemente, los Marcadores para el cáncer de páncreas son el factor de coagulación V (F5), el antígeno de células madre de próstata (PSCA), la integrina β6 (ITGB6), la calicreína 10 (KLK10), claudina18 (CLDN18), la isoforma trio (TR10) y la proteína hipotética FLJ22041 similar a proteínas de unión a FK506 (FKBP10). Preferentemente, los Biomarcadores para F5 y PSCA se miden conjuntamente. Pueden medirse los Biomarcadores para ITGB6, KLK10, CLDN18, TR10 y FKBP10, además de o en lugar de F5 y/o PSCA. F5 se describe por ejemplo en los documentos 20040076955; 20040005563 y W02004031412. PSCA se describe por ejemplo en los documentos WO1998040403; 20030232350 y W02004063355. ITGB6 se describe, por ejemplo, en los documentos WO2004077060 y 20030235820. CLDN18 se describe, por ejemplo, en los documentos WO2005005601. TR10 se describe por ejemplo en el documento 20020055627. FKBP10 se describe, por ejemplo, en el documento WO2000055320.

Preferentemente, los genes Marcadores del cáncer de colon son el transportador asociado al péptido intestinal HPT-1 (CDH17), el factor de transcripción 1 de la caja homeótica de tipo caudal (CDX1) y la proteína 1 de unión a ácidos grasos (FABP1). Preferentemente, un Biomarcador para CDH17 se mide en solitario. Pueden medirse los Biomarcadores para CDX1 y FABP1, además de, o en lugar de un Biomarcador para CDH17. CDH17 es descrito por ejemplo por Takamura et al. (2004); y en el documento W02004063355. CDX1 es descrito por ejemplo por Pilozzi et al. (2004); en los documentos 20050059008 y 20010029020. FABP1 es descrito por ejemplo por Borchers et al. (1997); Chan et al. (1985); Chen et al. (1986); y Lowe et al. (1985).

Preferentemente, los genes Marcadores para el cáncer de pulmón son la proteína B surfactante (PS-B), el factor de transcripción tiroideo (TTF), la desmogleína 3 (DSG3), la queratina 6 isoforma 6F (KRT6F), el gen relacionado con p53 (p73H) y la proteína C surfactante (SFTPC). Preferentemente, los Biomarcadores para SP-B, TTF y DSG3 se miden conjuntamente. Pueden medirse los Biomarcadores para KRT6F, p73H y SFTPC, además de, o en lugar de cualquiera de los Biomarcadores para SP-B, TTF y/o DSG3. SP-B es descrito, por ejemplo, por Pilot-Mathias et al. (1989); en los documentos 20030219760 y 20030232350. TTF es descrito, por ejemplo, por Jones et al. (2005); en los documentos US20040219575; WO1998056953; WO2002073204; 20030138793 y WO2004063355. DSG3 es descrito, por ejemplo, por Wan et al. (2003); en los documentos 20030232350; aWO2004030615 y W02002101357. KRT6F es descrito, por ejemplo, por Takahashi et al. (1995); en los documentos 20040146862 y 20040219572. p73H es descrito, por ejemplo, por Senoo et al. (1998); y en el documento 20030138793. SFTPC es descrito, por ejemplo, por Glasser et al. (1988).

Los genes Marcadores pueden seleccionarse adicionalmente de un Marcador específico de género tal como, en el caso de un paciente masculino KLK3, KLK2, NGEP o NPY; o en el caso de una paciente femenina PDEF, MGB, PIP, B305D, B726 o GABA-Pi; y/o WT1, PAX8, STAR o EMX2.

Preferentemente, los genes Marcadores para el cáncer de mama son el factor epitelial derivado de próstata (PDEF), la mamaglobina (MG), la proteína inducible por prolactina (PIP), B305D, B726 y GABA-π. Preferentemente, los Biomarcadores para PDEF y MG se miden conjuntamente. Pueden medirse los Biomarcadores para PIP, B305D, B726 y GABA-Pi, además de, o en lugar de los Biomarcadores para PDEF y/o MG. PDEF es descrito, por ejemplo, en los documentos WO2004030615; WO2000006589; WO2001073032; por Wallace *et al.* (2005); Feldman *et al.* (2003); y Oettgen *et al.* (2000). MG es descrito, por ejemplo, en los documentos W02004030615; 20030124128; por Fleming *et al.* (2000); Watson *et al.* (1996 y 1998); y en el documento 5668267. PIP es descrito, por ejemplo, por Autiero *et al.* (2002); Clark *et al.* (1999); Myal *et al.* (1991) y Murphy *et al.* (1987). B305D, B726 y GABA-Pi son descritos por Reinholz *et al.* (2005). NGEP es descrito, por ejemplo, por Bera *et al.* (2004).

Preferentemente, los Marcadores para el cáncer de ovario son el tumor de Wilms 1 (WT1), PAX8, la proteína reguladora aguda esteroidogénica (STAR) y EMX2. Preferentemente, se miden los Biomarcadores para WT1. Pueden medirse los Biomarcadores para STAR y EMX2, además de o en lugar de los Biomarcadores para WT1. WT1 es descrito, por ejemplo en los documentos 5350840; 6232073; 6225051; 20040005563; y por Bentov et al. (2003). PAX8 es descrito, por ejemplo, en el documento 20050037010; por Poleev et al. (1992); Di Palma et al. (2003); Marques et al. (2002); Cheung et al. (2003); Goldstein et al. (2002); Oji et al. (2003); Rauscher et al. (1993); Zapata-Benavides et al. (2002); y Dwight et al. (2003). STAR es descrito, por ejemplo, por Gradi et al. (1995); y Kim et al. (2003). EMX2 es descrito, por ejemplo, por Noonan et al. (2001).

10

5

Preferentemente, los Marcadores para el cáncer de próstata son KLK3, KLK2, NGEP y NPY. Preferentemente, se miden los Biomarcadores para KLK3. Pueden medirse los Biomarcadores para KLK2, NGEP y NPY, además de o en lugar de KLK3. KLK2 y KLK3 son descritos, por ejemplo, por Magklara *et al.* (2002). KLK2 se describe, por ejemplo, en los documentos 20030215835 y 5786148. KLK3 se describe, por ejemplo, en el documento 6261766.

15

El método también puede incluir obtener información clínica adicional, incluido el sitio de metástasis para determinar el origen del carcinoma. En la figura 3 se proporciona un diagrama de flujo.

20

La descripción proporciona adicionalmente un método para obtener conjuntos de Biomarcadores óptimos para carcinomas utilizando metástasis de origen conocido, determinar los Biomarcadores para ello y comparar los Biomarcadores con los Biomarcadores de metástasis de origen desconocido.

25

La descripción proporciona adicionalmente un método para proporcionar orientación para el tratamiento determinando el origen de una metástasis de origen desconocido según los métodos descritos en el presente documento e identificando el tratamiento apropiado para ello.

La descripción proporciona adicionalmente un método para proporcionar un pronóstico determinando el origen de una metástasis de origen desconocido según los métodos descritos en el presente documento e identificando el pronóstico correspondiente para ello.

30

La descripción proporciona adicionalmente un método para encontrar Biomarcadores que comprende determinar el nivel de expresión de un gen Marcador en una metástasis concreta, medir un Biomarcador para el gen Marcador para determinar la expresión del mismo, analizar la expresión del gen Marcador según los métodos descritos en el presente documento y determinar si el gen Marcador es realmente específico para el tumor de origen.

35

La invención proporciona adicionalmente el uso de composiciones que comprenden al menos una secuencia aislada seleccionada de entre las SEQ ID NO: 11-58 en los métodos de la invención.

40

La invención proporciona adicionalmente el uso de kits, micromatrices o matrices génicas para llevar a cabo los ensayos descritos en el presente documento.

45

Sólo en raras ocasiones se ha descubierto que la mera presencia o ausencia de secuencias concretas de ácidos nucleicos en una muestra de tejido tenga valor diagnóstico o pronóstico. Por otro lado, se considera cada vez más importante la información sobre la expresión de diversas proteínas, péptidos o ARNm. La mera presencia de secuencias de ácidos nucleicos que tengan el potencial de expresar proteínas, péptidos o ARNm (tales secuencias conocidas como "genes") dentro del genoma por sí misma no es determinante de si una proteína, péptido, o ARNm se expresa en una determinada célula. Que un determinado gen capaz de expresar proteínas, péptidos o ARNm, lo haga o no, y en qué medida se produzca tal expresión, en todo caso, viene determinado por diversos factores complejos. Independientemente de las dificultades en la comprensión y la evaluación de estos factores, el ensayo de la expresión génica puede proporcionar información útil sobre la existencia de eventos importantes, tales como la tumorogénesis, la metástasis, la apoptosis, y otros fenómenos clínicamente pertinentes. Los indicios relativos del grado en que los genes son activos o inactivos pueden encontrarse en los perfiles de expresión génica. Los perfiles de expresión génica de la presente invención se utilizan para proporcionar un diagnóstico y para tratar a los pacientes de CUP.

55

50

La preparación de la muestra requiere la recogida de muestras de pacientes. Las muestras de pacientes utilizadas en el método de la invención son las que se sospecha contienen células enfermas, tales como células tomadas de un ganglio en una biopsia por aspiración con aguja fina (FNA) de tejido. La preparación de la masa de tejido obtenida de una biopsia o una muestra quirúrgica y la microdisección de captura por láser también son adecuadas para su uso. La tecnología de microdisección de captura por láser (LCM) es una manera de seleccionar las células a estudiar, minimizando la variabilidad debida a la heterogeneidad del tipo de célula. Por consiguiente, pueden detectarse fácilmente cambios moderados o pequeños en la expresión del gen Marcador entre las células normales o benignas y las cancerosas. Las muestras también pueden comprender células epiteliales circulantes extraídas de sangre periférica. Éstas pueden obtenerse según varios métodos, pero el método más preferente es la técnica de separación magnética descrita en el documento 6136182. Una vez se ha obtenido la muestra que

65

contiene las células de interés, se obtiene un perfil de expresión génica utilizando un Biomarcador, para los genes en las carteras apropiadas.

Los métodos preferentes para establecer los perfiles de expresión génica incluyen determinar la cantidad de ARN que es producido por un gen que puede codificar una proteína o péptido. Esto se logra mediante PCR con transcriptasa inversa (RT-PCR), RT-PCR competitivo, RT-PCR en tiempo real, RT-PCR de presentación diferencial, análisis de Northern Blot y otros ensayos relacionados. Aunque es posible llevar a cabo estas técnicas mediante reacciones de PCR individuales, es mejor amplificar ADN complementario (ADNc) o ARN complementario (ARNc) producido a partir de ARNm y analizarlo mediante micromatrices. Los expertos en la materia conocen varios métodos y configuraciones de matriz diferentes para su producción y se describen, por ejemplo, en los documentos 5445934, 5532128, 5556752, 5242974, 5384261, 5405783, 5412087, 5424186, 5429807, 5436327, 5472672, 5527681, 5529756, 5545531, 5554501, 5561071, 5571639, 5593839, 5599695, 5624711, 5658734 y 5700637.

5

10

15

20

25

30

35

40

45

50

55

60

65

La tecnología de micromatrices permite medir a nivel del ARNm en estado estacionario de miles de genes simultáneamente, lo que proporciona una poderosa herramienta para la identificación de efectos tales como la aparición, detención o modulación de la proliferación celular incontrolada. Actualmente se encuentra muy extendido el uso de dos tecnologías de micromatrices, las matrices de oligonucleótidos y de ADNc. Aunque existen diferencias en la construcción de estas matrices, esencialmente todas las salidas y análisis de datos de bajada son iguales. El producto de estos análisis son por lo general mediciones de la intensidad de la señal recibida desde una sonda marcada utilizada para detectar una secuencia de ADNc de la muestra que hibrida con una secuencia de ácido nucleico en una ubicación conocida en el micromatriz. Por lo general, la intensidad de la señal es proporcional a la cantidad de ADNc, y por lo tanto de ARNm, expresado en las células de la muestra. Se dispone de un gran número de tales técnicas y resultan útiles. Los métodos preferentes para determinar la expresión génica pueden encontrarse en los documentos 6271002, 6218122, 6218114 y 6004755.

El análisis de los niveles de expresión se lleva a cabo comparando tales intensidades de señal. Esto se realiza mejor generando una matriz de relación de las intensidades de expresión de los genes en una muestra de ensayo frente a las de una muestra de control. Por ejemplo, las intensidades de expresión génica de un tejido enfermo pueden compararse con las intensidades de expresión generadas a partir de tejido benigno o normal del mismo tipo. Una relación de estas intensidades de expresión indica el número de veces que cambia la expresión génica entre las muestras de ensayo y de control.

La selección puede basarse en ensayos estadísticos que producen listas ordenadas relacionadas con la evidencia de significación para la expresión diferencial de cada gen entre los factores relacionados con el sitio de origen original del tumor. Los ejemplos de tales ensayos incluyen ANOVA y Kruskal-Wallis. Las clasificaciones pueden utilizarse como ponderaciones en un modelo diseñado para interpretar la adición total de tales ponderaciones, hasta un punto de corte, como la preponderancia de la evidencia a favor de una clase sobre otra. También puede utilizarse la evidencia anterior como se describe en la literatura para ajustar las ponderaciones.

En la presente invención, se eligieron 10 Marcadores que mostraron evidencia significativa de expresión diferencial entre 6 tipos de tumores. El proceso de selección incluía un grupo *ad hoc* de ensayos estadísticos, optimización de la media-varianza y el conocimiento de expertos. En una forma de realización alternativa, los métodos de extracción de características podrían automatizarse para seleccionar y ensayar los Marcadores a través de enfoques de aprendizaje supervisado. A medida que crece la base de datos, puede repetirse la selección de Marcadores con el fin de producir la mayor precisión diagnóstica posible en cualquier estado determinado de la base de datos.

Una forma de realización preferente es normalizar cada medición identificando un conjunto de control estable y escalando este conjunto a varianza cero en todas las muestras. Este conjunto de control se define como cualquier transcrito endógeno único o conjunto de transcritos endógenos influidos por el error sistemático en el ensayo, y que no se sepa que cambien independientemente de este error. Todos los Marcadores se ajustan mediante el factor específico de muestra que genera varianza cero para cualquier estadístico descriptivo del conjunto de control, tal como la media o la mediana, o para una medición directa. Como alternativa, si la premisa de variación de los controles relacionados solamente con el error sistemático no es cierta, y sin embargo el error de clasificación resultante es menor cuando se realiza la normalización, el conjunto de control seguirá siendo utilizado como se indica. También podrían ser útiles los controles de adición no endógenos, pero no resultan preferentes.

Después del Marcador de selección, se utilizan estas variables seleccionadas en un clasificador diseñado para producir la mayor precisión de clasificación posible. Puede utilizarse un algoritmo de aprendizaje supervisado diseñado para relacionar un conjunto de medidas de entrada con un conjunto de salida de predictores con el fin de construir un modelo a partir de las 10 entradas para predecir el tejido de origen. El problema puede enunciarse como: los datos de entrenamiento dados $\{(x_1, y), (x_n, y)\}$ producen un clasificador $h: X \to Y$ que mapea una muestra $x \in X$ a su etiqueta de tejido de origen $y \in Y$. Las predicciones se basan en los casos resueltos con anterioridad que están contenidos en la base de datos y por lo tanto componen el conjunto de entrenamiento.

El algoritmo de aprendizaje supervisado debe encontrar parámetros basados en las relaciones entre las variables de entrada y las salidas conocidas que minimicen el error de clasificación esperado. A continuación,

pueden utilizarse estos parámetros para predecir el tejido de origen a partir de la entrada de una nueva muestra. Ejemplos de estos algoritmos incluyen modelos lineales de clasificación, clasificadores cuadráticos, métodos basados en árboles, redes neuronales y métodos de prototipo tales como un clasificador de k vecinos más cercanos o algoritmos de cuantificación de vectores de aprendizaje.

Una forma de realización específica para diseñar los 10 Marcadores normalizados es el método LDA, utilizando parámetros por defecto, como se describe en Venables y Ripley (2002). Este método se basa en el análisis discriminante lineal de Fisher, donde las medias dadas $\mu_{y=0}$, $\mu_{y=1}$ y las covarianzas $\Sigma_{y=0}$, $\Sigma_{y=1}$ para las etiquetas de clase y 0 y 1, se busca una combinación lineal de $\mu_1 \mu_1$ que tenga unas medias $\mu_2 \mu_2 \mu_3 \mu_3 \mu_4$ y unas varianzas $\mu_1 \Sigma_{y=1} \mu_1 \mu_2 \mu_3 \mu_3 \mu_4$ que maximicen la relación entre la varianza entre las clases y la varianza dentro de las clases:

15
$$S = \frac{\sigma^2_{entre}}{\sigma^2_{dentro}} = \frac{(\vec{w}.\vec{\mu}_{y=1} - \vec{w}.\vec{\mu}_{y=0})^2}{\vec{w}^T \Sigma_{y=1} \vec{w} + \vec{w}^T \Sigma_{y=0} \vec{w}} = \frac{(\vec{w}.(\vec{\mu}_{y=1} - \vec{\mu}_{y=0}))^2}{\vec{w}^T (\Sigma_{y=0} + \Sigma_{y=1}) \vec{w}}$$

5

10

20

25

30

35

40

45

50

55

60

65

LDA puede generalizarse a un análisis discriminante para múltiples clases, donde *y* tiene N posibles estados, en lugar de sólo dos. Se hace una estimación de las medias y varianzas de clase a partir de los valores contenidos en la base de datos para los Marcadores elegidos. En una forma de realización preferente, la matriz de covarianza se pondera por las probabilidades a priori iguales de cada tipo de tumor sujeta a la siguiente. La predicción en los pacientes masculinos se realiza mediante un modelo en el que las distribuciones de probabilidad a priori son cero para cada grupo de tumores de los órganos reproductores femeninos. Del mismo modo, la predicción en las pacientes femeninas se realiza mediante un modelo en el que las distribuciones de probabilidad a priori son cero para los órganos reproductores masculinos. En la presente invención, las distribuciones de probabilidad a priori son cero para los ensayos en mujeres para próstata y cero para hombres sometidos a ensayo para mama y ovario. Además, las muestras con un antecedente idéntico a una etiqueta de clase se someten a ensayo mediante un modelo en el que la probabilidad a priori es cero para esa etiqueta de clase concreta.

El problema anterior puede verse como una maximización del cociente de Rayleigh manejado como un problema de valor propio generalizado. El subespacio reducido se utiliza en la clasificación calculando la distancia de cada muestra al centroide en el subespacio elegido. El modelo puede ajustarse mediante la máxima verosimilitud, y las probabilidades posteriores se calculan mediante el teorema de Bayes.

Un método alternativo puede incluir encontrar un mapa del espacio de características de dimensión n, donde n es el número de variables utilizadas, a un conjunto de etiquetas de clasificación implicará el reparto del espacio de características en regiones, a continuación, asignar una clasificación a cada región. Las puntuaciones de estos algoritmos de tipo vecinos más cercanos están relacionados con la distancia entre límites de decisión y no se traducen necesariamente en probabilidades de clase.

Si hay demasiadas variables para elegir, y muchas de ellas son ruido aleatorio, la selección de variables y el modelo corren el riesgo de una sobrevaloración del problema. Por lo tanto, suele utilizarse una lista clasificada en diversos puntos de corte como entradas con el fin de limitar el número de variables. También pueden utilizarse algoritmos de búsqueda tal como un algoritmo genético para seleccionar un subconjunto de variables que ensayan una función de coste. Puede intentarse un apareamiento simulado para limitar el riesgo de alcanzar la función de coste en un mínimo local. Sin embargo, estos procedimientos deben validarse con muestras independientes al proceso de selección y modelización.

También pueden utilizarse enfoques de variable latente. Puede utilizarse cualquier algoritmo de aprendizaje no supervisado para hacer una estimación de variedades de baja dimensión a partir de un espacio de alta dimensión para descubrir asociaciones entre las variables de entrada y lo bien que pueden ajustarse a un conjunto menor de variables latentes. Aunque las estimaciones de la eficacia de las reducciones son subjetivas, puede aplicarse un algoritmo supervisado en el conjunto de variables reducido con el fin de hacer una estimación de la precisión de la clasificación. Por lo tanto, un clasificador, que puede construirse a partir de las variables latentes, también puede construirse a partir de un conjunto de variables correlacionadas significativamente con las variables latentes. Un ejemplo de esto podría incluir el uso de variables correlacionadas con los componentes principales, a partir de un análisis de componentes principales, como entradas para cualquier modelo de clasificación supervisada.

Estos algoritmos pueden implementarse en cualquier código de software que tenga métodos para introducir las variables, entrenar las muestras con una función, ensayar una muestra en base al modelo y devolver los resultados a una consola. R, Octave, C, C++, Fortran, Java, Perl y Python tienen bibliotecas disponibles bajo una

licencia de código abierto para realizar muchas de las funciones enumeradas anteriormente. Los paquetes comerciales tales como S+ y Matlab también contienen muchos de estos métodos.

- El código realiza las siguientes etapas en el siguiente orden utilizando R versión 2.2.1 (http://www.r-project.org) con la biblioteca MASS (Venables et al. (2002)) instalada. El término LDA se refiere a la función lda en el espacio de nombres MASS.
 - 1) Los valores de CT para 10 genes Marcadores y 2 controles se almacenan en un disco duro para todas las muestras de conjunto de entrenamiento disponibles.
 - 2) Para cada muestra, la resta del promedio específico de la muestra de los controles de cada marcador normaliza los 10 valores de gen marcador.
 - 3) El conjunto de datos de entrenamiento está compuesto por las metástasis con sitios de origen conocidos, donde cada muestra tiene al menos uno de sus marcadores diana específico para el tejido de origen marcado con un valor de CT normalizado inferior a 5.
- 4) LDA construye 4 conjuntos de 2 modelos LDA a partir de los datos de entrenamiento en (3). En cada conjunto, un modelo que es específico para los hombres, y tiene la probabilidad a priori para mama y ovario establecida en cero, así como la probabilidad a priori para próstata ajustada a las distribuciones de probabilidad a priori equivalentes de las demás etiquetas de clase. El otro modelo en cada par es específico para las mujeres con la probabilidad a priori de próstata establecida en cero, y con las distribuciones de probabilidad a priori para mama y ovario ajustadas a las distribuciones de probabilidad a priori equivalentes encontradas en las demás etiquetas de clase.
 - a. El primer conjunto se utiliza para ensayar muestras de CUP encontradas en el colon, las probabilidades a priori para colon se establecen en cero y todas las demás etiquetas de clase de no reproductivo se ajustan a las distribuciones de probabilidad a priori equivalentes.
 - b. Un segundo conjunto de modelos es específico para un CUP encontrado en el ovario, con la probabilidad a priori para ovario establecida en cero y las demás etiquetas de clase de no reproductivo ajustadas a las distribuciones de probabilidad a priori equivalentes.
 - c. Un tercer conjunto es un CUP encontrado en el pulmón, con probabilidad a priori para pulmón establecida en cero. Todas las demás etiquetas de clase de no reproductivo tienen distribuciones de probabilidad a priori equivalentes.
 - d. El modelo general utilizado para todos los demás tejidos de fondo. Todas las distribuciones de probabilidad a priori se ajustan de manera equivalente a excepción de las etiquetas de clase específicas de reproductivo que se ajustan tal como se ha definido en 4.

Con el fin de ensayar una muestra, se ejecuta un programa R que realiza lo siguiente.

1) Lee un conjunto de datos de ensayo.

5

10

25

30

35

40

45

50

55

60

65

- 2) Genera un promedio específico de la muestra de ambos controles.
- 3) Para cada muestra, utiliza el promedio específico de la muestra a restar de cada Marcador.
- 4) Reemplaza cualquier CT normalizado generado a partir de un CT sin procesar de 40 con 12.
- 5) Para cada muestra en el conjunto de ensayo se ensaya lo siguiente.
 - a. Si el promedio de ambos controles es superior a 34, la muestra se etiqueta como 'CTR_FAILURE' con ceros para las probabilidades a posteriori.
 - b. Se verifican los antecedentes para colon, ovario o pulmón. Si se encuentra una coincidencia, se marca también el género. A continuación se utilizan los antecedentes y un modelo específico de género para evaluar la muestra.
 - c. Si se encuentra mama, páncreas, SCC de pulmón o próstata como etiqueta de antecedentes, a continuación se da a la muestra una etiqueta de 'FAILURE_ineligible_sample', y todas las probabilidades a posteriori se establecen en cero.
 - d. Para todas las demás muestras se utiliza el modelo general para masculino o femenino.

Los resultados se formatean y se escriben en un archivo.

La presente descripción incluye carteras de expresión génica obtenidas mediante este proceso.

Los perfiles de expresión génica pueden presentarse de varias maneras. Lo más común es disponer una matriz de relación o las intensidades de fluorescencia sin procesar en un dendrograma en el que las columnas indican las muestras de ensayo y las filas indican los genes. Los datos se disponen de manera los genes con perfiles de expresión similares estén próximos entre sí. La relación de expresión para cada gen se visualiza en un color. Por ejemplo, una relación inferior a uno (disminución de la expresión) aparece en la porción azul del espectro, mientras que una relación superior a uno (aumento de la expresión) aparece en la porción roja del espectro. Se dispone en el mercado de programas de software para presentar este tipo de datos, incluido "GeneSpring" (Silicon Genetics, Inc.) y "Discovery" e "Infer" (Partek, Inc.)

Las mediciones de la abundancia de especies de ARN únicas se recogen de tumores primarios o de tumores metastásicos de primarios de origen conocido. Estas lecturas, junto con la historia clínica, incluida, pero no limitada a la edad del paciente, el sexo, el lugar de origen del tumor primario y el sitio de metástasis (en caso de ser aplicable) se utilizan para generar una base de datos relacional. La base de datos se utiliza para seleccionar los transcritos de ARN y los factores clínicos que pueden utilizarse como variables de Marcador para predecir el origen primario de un tumor metastásico.

En el caso de medir los niveles de proteína para determinar la expresión génica, cualquier método conocido en la técnica es adecuado siempre que dé como resultado una especificidad y sensibilidad adecuadas. Por ejemplo, pueden medirse los niveles de proteína mediante unión a un anticuerpo o fragmento de anticuerpo específico para la proteína y midiendo la cantidad de proteína unida al anticuerpo. Los anticuerpos pueden marcarse mediante reactivos radiactivos, fluorescentes u otros reactivos detectables para facilitar la detección. Los métodos de detección incluyen, sin limitación, el ensayo inmunoabsorbente ligado a enzimas (ELISA) y técnicas de inmunotransferencia.

Los genes modulados utilizados en los métodos de la invención se describen en los Ejemplos. Los genes que se expresan diferencialmente presentan un aumento o una disminución de la expresión en pacientes con carcinoma de un origen concreto con respecto a aquellos con carcinomas de diferentes orígenes. "Aumento de la expresión" y "disminución de la expresión" son expresiones relacionadas que se refieren a que se encuentra una diferencia detectable (más allá de la contribución del ruido en el sistema utilizado para medirlo) en la cantidad de expresión de los genes con respecto a una línea basal. En este caso, la línea basal se determina en base al algoritmo. Los genes de interés en las células enfermas presentan entonces un aumento o una disminución de la expresión con respecto al nivel de la línea basal utilizando el mismo método de medición. "Enfermo/a", en este contexto, se refiere a una alteración del estado de un cuerpo que interrumpe o altera, o que tiene el potencial de alterar, el rendimiento adecuado de las funciones corporales tal como ocurre con la proliferación incontrolada de células. Se da un diagnóstico de enfermedad cuando algún aspecto del genotipo o fenotipo de la persona concuerda con la presencia de la enfermedad. Sin embargo, el acto de llevar a cabo un diagnóstico o pronóstico puede incluir la determinación de cuestiones sobre la enfermedad/estado, tal como la determinación de la probabilidad de recaída, el tipo de tratamiento y el control del tratamiento. En el control del tratamiento, se emiten juicios clínicos sobre el efecto de un determinado ciclo terapéutico comparando la expresión de los genes a lo largo del tiempo para determinar si

Los genes pueden agruparse de manera que la información obtenida sobre el conjunto de genes en el grupo proporcione una base sólida para emitir un juicio clínicamente pertinente, tal como el diagnóstico, el pronóstico o la elección del tratamiento. Estos conjuntos de genes componen las carteras descritas en el presente documento. Al igual que con la mayoría de los Marcadores de diagnóstico, a menudo resulta deseable utilizar el menor número de Marcadores suficiente para emitir un juicio médico correcto. Esto evita un retraso en el tratamiento a la espera de un análisis adicional, así como un uso improductivo de tiempo y recursos.

los perfiles de expresión génica han cambiado o están cambiando a patrones más conformes con el tejido normal.

Un método para establecer carteras de expresión génica es mediante algoritmos de optimización tal como el algoritmo de varianza media ampliamente utilizado en el establecimiento de carteras de acciones. Este método se describe detalladamente en el documento 20030194734. Esencialmente, el método requiere establecer un conjunto de entradas (acciones en las aplicaciones financieras, expresión medida mediante la intensidad en el presente documento) que optimizará el retorno (por ejemplo, la señal que se genera) que se recibe para utilizarlo minimizando al mismo tiempo la variabilidad del retorno. Se dispone de muchos programas comerciales de software para llevar a cabo tales operaciones. Resulta preferente "Wagner Associates Mean-Variance Optimization Application", denominada "Wagner Software" a lo largo de la presente memoria. Este software utiliza las funciones de la "Wagner Associates Mean-Variance Optimization Library" para determinar una frontera eficaz y resultan preferentes las carteras óptimas en el sentido de Markowitz. Markowitz (1952). El uso de este tipo de software requiere la transformación de los datos de micromatriz de manera que puedan tratarse como una entrada en la forma en que se utilizan la rentabilidad de las acciones y las medidas de riesgo cuando el software se utiliza para los fines previstos de análisis financiero.

El proceso de selección de una cartera también puede incluir la aplicación de reglas heurísticas. Preferentemente, tales reglas se formulan en base a la biología y la comprensión de la tecnología utilizada para producir resultados clínicos. Más preferentemente, se aplican a la salida del método de optimización. Por ejemplo, puede aplicarse el método de la varianza media de selección de la cartera a los datos de micromatriz para varios genes expresados diferencialmente en sujetos con cáncer. La salida del método sería un conjunto optimizado de genes que podrían incluir algunos genes que se expresan en sangre periférica así como en tejido enfermo. Si las muestras utilizadas en el método de ensayo se obtienen a partir de sangre periférica y determinados genes expresados diferencialmente en casos de cáncer también puedan expresarse diferencialmente en sangre periférica, entonces puede aplicarse una regla heurística en la que una cartera se selecciona de la frontera eficaz excluyendo las que se expresan diferencialmente en sangre periférica. Por supuesto, la regla puede aplicarse antes de la formación de la frontera eficaz, por ejemplo, aplicando la regla durante la preselección de datos.

Pueden aplicarse otras reglas heurísticas que no están necesariamente relacionadas con la biología en cuestión. Por ejemplo, puede aplicarse una regla de que sólo un porcentaje prescrito de la cartera pueda estar representado por un gen o grupo de genes concreto. El software disponible en el mercado tal como el Wagner Software se ajusta fácilmente a estos tipos de heurísticos. Esto puede ser útil, por ejemplo, cuando factores distintos de la exactitud y la precisión (por ejemplo, derechos de licencia previstos) tengan un impacto sobre la conveniencia de incluir uno o más genes.

Los perfiles de expresión génica descritos en el presente documento también pueden utilizarse junto con otros métodos de diagnóstico no genéticos útiles en el diagnóstico, el pronóstico o el control del tratamiento del cáncer. Por ejemplo, en algunas circunstancias es beneficioso combinar la potencia diagnóstica de los métodos basados en la expresión génica descritos anteriormente con datos procedentes de Marcadores convencionales tales como Marcadores de proteína sérica (por ejemplo, el Antígeno de Cáncer 27.29 ("CA 27.29")). Existe una variedad de tales Marcadores, incluidos analitos tales como CA 27.29. En uno de tales métodos, se extrae periódicamente sangre de un paciente tratado y a continuación se somete a un inmunoensayo enzimático para uno de los Marcadores séricos descritos anteriormente. Cuando la concentración del Marcador sugiere la reaparición de tumores o el fracaso del tratamiento, se obtiene una fuente de muestras susceptible de análisis de la expresión génica. Cuando exista una masa sospechosa, se hace una biopsia por aspiración con aguja fina (FNA) y a continuación se analizan los perfiles de expresión génica de las células obtenidas de la masa como se ha descrito anteriormente. Como alternativa, las muestras de tejido pueden obtenerse de las áreas adyacentes al tejido del cual se eliminó anteriormente un tumor. Este enfoque puede ser especialmente útil cuando otros ensayos producen resultados ambiguos.

Los kits preparados como se describe en el presente documento incluyen ensayos formateados para determinar los perfiles de expresión génica. Estos pueden incluir todos o algunos de los materiales necesarios para llevar a cabo los ensayos, tal como reactivos e instrucciones y un medio a través del cual se ensayan los Biomarcadores.

Los artículos descritos en el presente documento incluyen representaciones de los perfiles de expresión génica útiles para tratar, diagnosticar, pronosticar y evaluar de otro modo las enfermedades. Estas representaciones de perfiles se reducen a un medio que puede ser leído automáticamente por una máquina tal como medios legibles por ordenador (magnético, óptico, y similares). Los artículos también pueden incluir instrucciones para evaluar los perfiles de expresión génica en dichos medios. Por ejemplo, los artículos pueden comprender un CD ROM con instrucciones de ordenador para comparar los perfiles de expresión génica de las carteras de genes descritas anteriormente. Los artículos también pueden tener perfiles de expresión génica registrados digitalmente en los mismos de manera que puedan compararse con los datos de expresión génica de muestras de pacientes. Como alternativa, los perfiles pueden grabarse en un formato de representación diferente. Un registro gráfico es uno de tales formatos. Los algoritmos de agrupación como los incorporados en el software "DISCOVERY" e "INFER" de Partek, Inc. mencionados anteriormente pueden ayudar mejor a visualizar estos datos.

Los diferentes tipos de artículos de fabricación como se describen en el presente documento son ensayos formateados o medios utilizados para revelar los perfiles de expresión génica. Estos pueden comprender, por ejemplo, micromatrices en las que las sondas o complementos de secuencia están fijados a una matriz con la que se combinan las secuencias indicativas de los genes de interés creando un determinante legible de su presencia. Como alternativa, los artículos tal como se describen en el presente documento pueden fabricarse en forma de kits de reactivos para llevar a cabo la hibridación, la amplificación y la generación de señales indicativas del nivel de expresión de los genes de interés para la detección del cáncer.

Los siguientes ejemplos se proporcionan para ilustrar pero no limitar la invención reivindicada.

50 Ejemplo 1

Materiales y Métodos

Descubrimiento genético de Marcadores de cáncer pancreático.

Se aisló ARN a partir de tejidos de tumor pancreático, de páncreas normal, de pulmón, de colon, de mama y de ovario utilizando Trizol. A continuación se utilizó el ARN para generar ARN marcado amplificado (Lipshutz *et al.* (1999)) que a continuación se hibridó en matrices Affymetrix U133A. A continuación se analizaron los datos de dos maneras.

En el primer método, se filtró este conjunto de datos para conservar sólo los genes con al menos dos lecturas actuales por todo el conjunto de datos. Este filtrado dejó 14.547 genes. Se determinó que 2.736 genes se sobreexpresaban en el cáncer de páncreas frente al páncreas normal con un valor de p inferior a 0,05. Cuarenta y cinco genes de los 2.736 también se sobreexpresaban al menos el doble en comparación con la intensidad máxima encontrada a partir de tejidos de pulmón y colon. Por último, se descubrieron seis conjuntos de sondas que se

14

15

10

5

20

25

30

35

40

45

50

55

60

sobreexpresaban al menos el doble en comparación con la intensidad máxima encontrada a partir de tejidos de pulmón, colon, mama y ovario.

En el segundo método, se filtró este conjunto de datos para conservar sólo aquellos genes con no más de dos lecturas actuales en tejidos de mama, colon, pulmón y ovario. Este filtrado dejó 4.654 genes. Se descubrió que 160 genes de los 4.654 tenían al menos dos lecturas actuales en los tejidos pancreáticos (normales y cancerosos). Finalmente, se seleccionaron ocho conjuntos de sondas que presentaron la mayor expresión diferencial entre el cáncer pancreático y los tejidos normales.

10 Muestras de tejido.

5

15

20

25

30

35

40

45

50

55

60

65

Se obtuvieron un total de 260 tejidos primarios y metástasis FFPE de diversos proveedores comerciales. Las muestras ensayadas fueron: 30 metástasis de mama, 30 metástasis de colorrectal, 56 metástasis de pulmón, 49 metástasis de ovario, 43 metástasis de páncreas, 18 tumores primarios de próstata y 2 metástasis de próstata y 32 de otros orígenes (6 de estómago, 6 de riñón, 3 de laringe, 2 de hígado, 1 de esófago, 1 de faringe, 1 de conducto biliar, 1 de pleura, 3 de vejiga, 5 melanomas, 3 linfomas).

Extracción de ARN.

El aislamiento de ARN a partir de secciones de tejido en parafina se basó en los métodos y reactivos descritos en el manual High Pure RNA Paraffin Kit (Roche) con las siguientes modificaciones. Se seccionaron muestras de tejido incluidas en parafina según el tamaño de la metástasis incluida (2-5 mm = 9 X 10 μm, 6-8 mm = 6 X 10 μm, 8-≥ 10 mm = 3 X 10 μm), y se colocaron en tubos Eppendorf de 1,5 ml con ARNasa/ADNasa. Se desparafinaron las secciones mediante la incubación en 1 ml de xileno durante 2-5 minutos a temperatura ambiente después de una agitación en vórtex de 10-20 segundos. A continuación se centrifugaron los tubos y se eliminó el sobrenadante y se repitió la etapa de desparafinación. Después de eliminar el sobrenadante, se añadió 1 ml de etanol y se agitó en vórtex la muestra durante 1 minuto, se centrifugó y se eliminó el sobrenadante. Este proceso se repitió una vez más. Se eliminó el etanol residual y se secó el sedimento en un horno a 55°C durante 5-10 minutos y se resuspendió en 100 μl de tampón de lisis tisular, 16 μl de SDS al 10% y 80 μl de proteinasa K. Las muestras se agitaron en vórtex y se incubaron en un agitador-calentador puesto a 400 rpm durante 2 horas a 55°C. Se añadieron 325 µl de tampón de unión y 325 µl de etanol a cada muestra, que a continuación se mezcló, se centrifugó y el sobrenadante se añadió a la columna de filtración. La columna de filtración junto con el tubo de recogida se centrifugó durante 1 minuto a 8.000 rpm y se descartó el flujo a través. Se realizó una serie de lavados secuenciales (500 µl de tampón de lavado I \rightarrow 500 µl de tampón de lavado II \rightarrow 300 µl de tampón de lavado II) en la que se añadió cada solución a la columna, se centrifugó y se descartó el flujo a través. A continuación, se centrifugó la columna a velocidad máxima durante 2 minutos, se colocó en un tubo de 1,5 ml nuevo y se añadieron 90 µl de tampón de elución. Se obtuvo ARN después de una incubación de 1 minuto a temperatura ambiente, seguida de una centrifugación de 1 minuto a 8.000 rpm. La muestra se trató con ADNasa con adición de 10 µl de tampón de incubación ADNasa, 2 µl de ADNasa I y se incubó durante 30 minutos a 37°C. Se inactivó la ADNasa después de la adición de 20 µl de tampón de lisis tisular, 18 µl de SDS al 10% y 40 µl de proteinasa K. Nuevamente, se añadieron 325 µl de tampón de unión y 325 µl de etanol a cada muestra que a continuación se mezcló, se centrifugó y el sobrenadante se añadió a la columna de filtración. Los lavados secuenciales y la elución de ARN continuaron como se ha indicado anteriormente salvo que se utilizaron 50 ul de tampón de elución para eluir el ARN. Para eliminar la contaminación de la fibra de vidrio transferida desde la columna, se centrifugó el ARN durante 2 minutos a velocidad máxima y se eliminó el sobrenadante en un tubo Eppendorf de 1,5 ml. Las muestras se cuantificaron mediante lecturas de DO 260/280 obtenidas mediante un espectrofotómetro y se diluyeron las muestras hasta 50 ng/μl. El ARN aislado se almacenó en agua libre de ARNasa a -80°C hasta su uso.

Cebador TaqMan y diseño de sondas.

Se utilizaron los números de referencia de la secuencia de referencia de ARNm apropiada junto con Oligo 6.0 para desarrollar ensayos de CUP TaqMan® (Marcadores pulmonares: proteína B asociada a surfactante pulmonar humana (HUMPSPBA), factor de transcripción tiroideo 1 (TTF1), desmogleína 3 (DSG3), Marcador colorrectal: cadherina 17 (CDH17), Marcadores de mama: mamaglobina (MG), factor de transcripción Ets derivado de próstata (PDEF), Marcador de ovario: tumor de Wilms 1 (WT1), Marcadores pancreáticos: antígeno de células madre de próstata (PSCA), factor de coagulación V (F5), Marcador prostático calicreína 3 (KLK3)) y los ensayos de mantenimiento β actina, hidroximetilbilano sintasa (PBGD). Los cebadores y las sondas de hidrólisis para cada ensayo se enumeran en la Tabla 2. Se excluyó la amplificación de ADN genómico diseñando ensayos alrededor de los sitios de corte y empalme de exón-intrón. Las sondas de hidrólisis se marcaron en el nucleótido 5' con FAM como colorante indicador y en el nucleótido 3' con BHQ1-TT como colorante de extinción interno.

Reacción en cadena de la polimerasa en tiempo real cuantitativa.

Se llevó a cabo la cuantificación de ARN específico de gen en una placa de 384 pocillos en el sistema de detección de secuencias ABI Prism 7900HT (Applied Biosystems). Para cada ciclo de agitador-calentador se amplificaron los patrones y las curvas patrón. Los patrones para cada Marcador consistieron en transcritos *in vitro* de

genes diana que se diluyeron en ARN portador de riñón de rata a 1x10⁵ copias. Las curvas patrón para los Marcadores de mantenimiento consistieron en transcritos *in vitro* de genes diana que se sometieron a dilución en serie en ARN portador de riñón de rata a 1x10⁷, 1x10⁵ y 1x10³ copias. También se incluyeron en cada ciclo de ensayo controles no diana para asegurar que no hubiese contaminación ambiental. Todas las muestras y los controles se procesaron por duplicado. Se realizó la qRTPCR con reactivos de uso general en el laboratorio en una reacción de 10 µl que contenía: tampón de RT-PCR (Bicina/KOH 50 nM pH 8,2, KAc 115 nM, glicerol al 8%, MgCl₂ 2,5 mM, MnSO₄ 3,5 mM, 0,5 mM de cada uno de dCTP, dATP, dGTP y dTTP), aditivos (Tris-Cl 2 mM pH 8, albúmina bovina 0,2 mM, trehalosa 150 mM, Tween 20 al 0,002%), mezcla de enzimas (2U de Tth (Roche), 0,4 mg/µl de Ac TP6-25), mezcla de sonda y cebador (0,2 µM de sonda, 0,5 µm de cebadores). Se siguieron los siguientes parámetros de ciclación: 1 ciclo a 95°C durante 1 minuto; 1 ciclo a 55°C durante 2 minutos; Rampa 5%; 1 ciclo a 70°C durante 2 minutos; y 40 ciclos de 95°C durante 15 segundos, 58°C durante 30 segundos. Una vez terminada la reacción de PCR, se establecieron los valores iniciales y umbral en el software ABI 7900HT Prism y los valores de Ct calculados se exportaron a Microsoft Excel.

Reacción de una sola etapa vs. de dos etapas.

Se llevó a cabo la síntesis de la primera hebra utilizando 100 ng de hexámeros aleatorios o cebadores específicos de gen por reacción. En la primera etapa, se calentaron 11,5 µl de Mezcla-1 (cebadores y 1 ug de ARN total) a 65°C durante 5 minutos y a continuación se enfriaron en hielo. Se añadieron a la Mezcla-1 8,5 µl de Mezcla-2 (1x tampón, DTT 0,01 mM, 0,5 mM de cada uno de los dNTP, 0,25 U/µl de RNasin®, 10 U/µl de Superscript III) y se incubaron a 50°C durante 60 minutos, seguido de 95°C durante 5 minutos. El ADNc se almacenó a -20°C hasta el momento de utilizarlo. La qRTPCR para la segunda etapa de la reacción en 2 etapas se realizó como se ha indicado anteriormente con los parámetros de ciclación: 1 ciclo a 95°C durante 1 minuto; 40 ciclos de 95°C durante 15 segundos, 58°C durante 30 segundos. La qRTPCR para la reacción de una sola etapa se realizó exactamente como se ha indicado en el párrafo anterior. Las reacciones de una sola etapa y de dos etapas se llevaron a cabo en 100 ng de molde (ARN/ADNc). Una vez terminada la reacción de PCR, se establecieron los valores iniciales y umbral en el software ABI 7900HT Prism y los valores de Ct calculados se exportaron a Microsoft Excel.

Generación de un mapa de calor.

Para cada muestra, se calculó un Δ Ct tomando el Ct medio de cada Marcador CUP y restando el Ct medio de un promedio de los Marcadores de mantenimiento (HK) (Δ Ct = Ct(Marcador CUP) - Ct(Marcador HK med.)). Se determinó para cada muestra el Δ Ct mínimo para cada conjunto de Marcadores del tejido de origen (pulmón, mama, próstata, colon, ovario y páncreas). Se puntuó el tejido de origen con el Δ Ct mínimo global y todos los demás tejidos de origen se puntuaron cero. Se ordenaron los datos según el diagnóstico patológico. Se llenó Partek Pro con los datos de viabilidad modificados y se generó un diagrama de intensidad.

Resultados.

5

10

15

20

25

30

35

45

50

55

60

65

40 Descubrimiento de Marcadores pancreáticos novedosos del estado del cáncer y del tumor de origen.

En primer lugar, se analizaron cinco Marcadores candidatos de páncreas: antígeno de células madre de próstata (PSCA), inhibidor de serin-proteinasa, clado A miembro 1 (SERPINA1), citoqueratina 7 (KRT7), metaloproteasa de matriz 11 (MMP11) y mucina 4 (MUC4) (Varadhachary et al. (2004); Fukushima et al. (2004); Argani et al. (2001); Jones et al. (2004); Prasad et al. (2005); y Moniaux et al. (2004)) utilizando micromatrices de ADN y un panel de 13 adenocarcinomas ductales pancreáticos, cinco tejidos normales de páncreas y 98 muestras de tumores de mama, colorrectal, de pulmón y de ovario. Sólo el PSCA demostró sensibilidad moderada (se detectaron seis de trece o el 46% de los tumores pancreáticos) a una alta especificidad (91 de 98 o el 93% fueron identificados correctamente como no de origen pancreático) (figura 4A). Por el contrario, KRT7, SERPINA1, MMP11 y MUC4 demostraron una sensibilidad del 38%, 31%, 85% y 31%, respectivamente, a especificidades del 66%, 91%, 82% y 81%, respectivamente. Estos datos estaban en concordancia con la qRTPCR realizada en 27 metástasis de origen pancreático y 39 metástasis de origen no pancreático para todos los Marcadores excepto para MMP11 que presentó una sensibilidad y especificidad más escasas con qRTPCR y las metástasis. En conclusión, los datos de micromatriz en tejido primario congelado de forma instantánea, sirven como buen indicador de la capacidad del Marcador para identificar una metástasis FFPE como de origen pancreático utilizando qRTPCR aunque pueden resultar útiles Marcadores adicionales para un rendimiento óptimo.

Debido a que el adenocarcinoma ductal pancreático se desarrolla a partir de células del epitelio ductal que comprenden sólo un pequeño porcentaje de todas las células pancreáticas (comprendiendo las células acinares y las células de los islotes la mayoría) y a que los tejidos de adenocarcinoma pancreático contienen una cantidad significativa de tejido normal adyacente (Prasad *et al.* (2005); e Ishikawa *et al.* (2005)), ha resultado difícil identificar Marcadores de cáncer pancreático (es decir, con aumento de la expresión en cáncer) que también diferencien este órgano de los órganos. Para su uso en un panel CUP, es necesaria tal diferenciación. El primero método de consulta (véase Materiales y Métodos) devolvió seis conjuntos de sondas: el factor de coagulación V (F5), una proteína hipotética FLJ22041 similar a proteínas de unión a FK506 (FKBP10), integrina β6 (ITGB6), transglutaminasa 2 (TGM2), ribonucleoproteína nuclear heterogénea A0 (HNRP0) y BAX delta (BAX). El segundo método de consulta

(véase Materiales y Métodos) devolvió ocho conjuntos de sondas: F5, TGM2, factor de transcripción 1 de homeodominio similar a paired (PITX1), ARNm isoforma trio (TRIO), ARNm para p73H (P73), una proteína desconocida para MGC: 10264 (SCD) y dos conjuntos de sondas para claudina18. F5 y TGM2 estaban presentes en ambos resultados de la consulta y, de los dos, F5 parecía el más prometedor (figura 4B).

Optimización de la preparación de muestras y qRTPCR utilizando tejidos FFPE.

A continuación, se optimizaron los métodos de qRTPCR y aislamiento de ARN utilizando tejidos fijados antes de examinar el rendimiento del panel de Marcadores. En primer lugar, se analizó el efecto de la reducción del tiempo de incubación con proteinasa K de dieciséis horas a 3 horas. No hubo ningún efecto sobre el rendimiento. Sin embargo, algunas muestras presentaron fragmentos más largos de ARN cuando se utilizó la etapa de proteinasa K más corta (figura 5). Por ejemplo, cuando se aisló el ARN a partir de un bloque de un año (C22), no se observó diferencia en los electroferogramas. Sin embargo, cuando se aisló el ARN a partir de un bloque de cinco años (C23), se observó una mayor fracción de ARN de alto peso molecular, según la evaluación de la joroba en el hombro, cuando se utilizó la digestión con proteinasa K más corta. Esta tendencia se mantuvo generalmente cuando se procesaron otras muestras, independientemente del órgano de origen para la metástasis FFPE. En conclusión, acortar el tiempo de digestión con proteinasa K no sacrifica los rendimientos de ARN y puede ayudar a aislar ARN menos degradado y más largo.

A continuación, se compararon tres métodos diferentes de transcripción inversa: transcripción inversa con hexámeros aleatorios seguida de qPCR (dos etapas), transcripción inversa con un cebador específico de gen seguida de qPCR (dos etapas) y qRTPCR de una sola etapa utilizando cebadores específicos de gen. Se aisló ARN de once metástasis y se compararon los valores de Ct entre los tres métodos para la β-actina, la proteína B surfactante humana (HUMSPB) y el factor de transcripción tiroideo (TTF) (figura 6). Hubo diferencias estadísticamente significativas (p <0,001) para todas las comparaciones. Para los tres genes, la transcripción inversa con hexámeros aleatorios seguida de qPCR (reacción de dos etapas) dio los valores de Ct más altos mientras que la transcripción inversa con un cebador específico de gen seguida de gPCR (reacción de dos etapas) dio valores de Ct ligeramente más bajos (pero estadísticamente significativos) que la correspondiente reacción en una etapa. Sin embargo, la RTPCR en dos etapas con cebadores específicos de gen tenía una etapa de transcripción inversa más larga. Cuando los valores de Ct de HUMSPB y TTF se normalizaron al valor de β-actina correspondiente para cada muestra, no hubo diferencias en los valores de Ct normalizados entre los tres métodos. En conclusión, la optimización de las condiciones de reacción de RTPCR puede generar valores de Ct más bajos, lo que puede ayudar en el análisis de los bloques de parafina más viejos (Cronin et al. (2004)), y una reacción de RTPCR de una sola etapa con cebadores específicos de gen puede generar valores de Ct comparables a los generados en la correspondiente reacción de dos etapas.

Rendimiento diagnóstico de un ensayo qRTPCR de CUP.

A continuación, se realizaron 12 reacciones de qRTPCR (10 Marcadores y dos genes de mantenimiento) en 239 metástasis FFPE. Los Marcadores utilizados para el ensayo se muestran en la Tabla 2. Los Marcadores de pulmón fueron proteína B asociada a surfactante humana (HUMPSPB), factor de transcripción tiroideo 1 (TTF1) y desmogleína 3 (DSG3). El Marcador colorrectal fue cadherina 17 (CDH17). Los Marcadores de mama fueron mamaglobina (MG) y el factor de transcripción Ets derivado de próstata (PDEF). El Marcador de ovario fue tumor de Wilms 1 (WT1). Los Marcadores pancreáticos fueron el antígeno de células madre de próstata (PSCA) y el factor de coagulación V (F5), y el Marcador prostático fue calicreína 3 (KLK3). Para las descripciones de los genes, véase la Tabla 31.

Tabla 2. Secuencias de cebador y sonda, números de registro y longitudes de amplicón

Diana	SEQ	Secuencia (5'-3')	Descripción	SEQ
	ID			ID
	NO			NO
SP-B	59	cacagccccgacctttgatga	Cebador directo	11
		ggtcccagagcccgtctca	Cebador inverso	12
		agctgtccagctgcaaaggaaaagcc	Sonda*	13
		cacagececgacetttgatgagaacteagetgtccagetgcaaaggaaaage caagtgagaegggetetgggace	Amplicón	14

60

5

10

15

20

25

30

35

40

45

50

55

TTF1	60	ccaacccagacccgcgc	Cebador directo	15
		cgcccatgccgctcatgttca	Cebador inverso	16
		cccgccatctcccgcttcatg	Sonda*	17
		ccaacccagacccgcgttccccgccatctcccgcttcatgggcccggcgagc ggcatgaacatgagcggcatgggcg	Amplicón	18
DSG3	61	gcagagaaggagaagataactcaa	Cebador directo	19
DSGS	01	actccagagattcggtaggtga	Cebador inverso	20
			Sonda*	21
		attgccaagattacttcagattacca		22
		gcagagaaggagaagataactcaaaaagaaacccaattgccaagattacttc agattaccaagcaacccagaaaatcacctaccgaatctctggagt	Amplicón	22
CDH17	62	tccctcggcagtggaagctta	Cebador directo	23
		tcctcaaactctgtgtgcctggta	Cebador inverso	24
		ccaaaatcaatggtactcatgcccgactg	Sonda*	25
		tccctcggcagtggaagcttacaaaacgactgggaagtttccaaaatcaatggt	Amplicón	26
MC	62	actcatgcccgactgtctaccaggcacacagagtttgagga	Cobador directo	27
MG	63	agttgctgatggtcctcatgc	Cebador directo	27
		cacttgtggattgattgtcttgga	Cebador inverso	28
		ccctctcccagcactgctacgca	Sonda*	28
		agttgctgatggtcctcatgctggcggccctctcccagcactgctacgcaggctct ggctgccccttattggagaatgtgatttccaagacaatcaat	Amplicón	30
PDEF	64	cgcccacctggacatctgga	Cebador directo	31
		cactggtcgaggcacagtagtga	Cebador inverso	32
		gtcagcggcctggatgaaagagcgg	Sonda*	33
		cgcccacctggacatctggaagtcagcggcctggatgaaagagcggacttca cctgggctcgattcactactgtgcctcgaccagtg	Amplicón	34
WT1	65		Cebador directo	35
VVII	03	gcggagcccaatacagaatacac cggggctactccaggcaca		36
			Cebador inverso	37
		tcagaggcattcaggatgtgcgacg	Sonda*	
		gcggagcccaatacagaatacacacgcacggtgtcttcagaggcattcagga	Amplicón	38
D004	00	tgtgcgacgtgtgcctggagtagccccg	0.1	
PSCA	66	ctgttgatggcaggcttggc	Cebador directo	39
		ttgctcacctgggctttgca	Cebador inverso	40
		gcagccaggcactgccctgct	Sonda*	41
		ctgttgatggcaggcttggccctgcagccaggcactgccctgctgtgctactcct	Amplicón	42
		gcaaagcccaggtgagcaa		
F5	67	tgaagaaatatcctgggattattca	Cebador directo	43
		tatgtggtatcttctggaatatcatca	Cebador inverso	44
	1	acaaagggaaacagatattgaagactc	Sonda*	45
		tgaagaaatatcctgggattattcagaatttgtacaaagggaaacagatattgaa gactctgatgatattccagaagataccacata	Amplicón	46
KLK3	68	ccccagtgggtcctcaca	Cebador directo	47
		aggatgaaacaagctgtgccga	Cebador inverso	48
		caggaacaaaagcgtgatcttgctgg	Sonda*	49
		ccccagtgggtcctcacagctgcccactgcatcaggaacaaaagcgtgatct	Amplicón	50
		tgctgggtcggcacagcttgtttcatcct	•	
β actina	69	gccctgaggcactcttcca	Cebador directo	51
		cggatgtccacgtcacacttca	Cebador inverso	52
		cttccttgggcatggagtcctg	Sonda*	53
		gcctgaggcactcttccagccttccttcctgggcatggagtcctgtggcatccac	Amplicón	54
		gaaactaccttcaactccatcatgaagtgtgacgtggacatccg		
PBGD	70	ccacacagcctactttccaa	Cebador directo	55
		tacccacgcgaatcactctca	Cebador inverso	56
		aacggcaatgcggctgcaacggcggaa	Sonda*	57
	1	ccacacagcctactttccaagcggagccatgtctggtaacggcaatgcggc	Amplicón	58
		tgcaacggcggaagaaaacaacccaaagatgagagtgattcgcgtgggta		
	1	5'FAM-3'BHQ1-TT	1	

El análisis de los valores de Ct normalizados en un mapa de calor reveló la alta especificidad de los Marcadores de mama y próstata, la especificidad moderada de los Marcadores de colon, pulmón y ovario, y la especificidad algo menor de los pancreáticos. La combinación de los datos normalizados de qRTPCR con el refinamiento computacional mejora el rendimiento del panel de Marcadores. Los resultados se obtuvieron a partir de los datos normalizados de qRTPCR combinados con el algoritmo y se determinó la precisión del ensayo qRTPCR.

Análisis.

5

10

15

20

25

30

35

40

45

50

55

60

En este ejemplo, se utilizó la determinación de perfiles de expresión basada en micromatrices en tumores primarios para identificar los Marcadores candidatos para su uso con las metástasis. El hecho de que los tumores primarios pueden utilizarse para descubrir Marcadores del tumor de origen para las metástasis es coherente con varios hallazgos recientes. Por ejemplo, Weigelt y colaboradores han demostrado que los perfiles de expresión génica de los tumores de mama primarios se mantienen en las metástasis a distancia. Weigelt et al. (2003). Italiano y colaboradores descubrieron que el estado de EGFR, según la evaluación de IHC, era similar en los 80 tumores colorrectales primarios y las 80 metástasis relacionadas. Italiano et al. (2005). Sólo cinco de los 80 presentaron discordancia en el estado de EGFR. Italiano et al. (2005). Backus y colaboradores identificaron supuestos Marcadores para detectar metástasis de cáncer de mama utilizando un análisis de la expresión génica de todo el genoma de mama y otros tejidos, y demostraron que la mamaglobina y CK19 detectaban metástasis clínicamente tratables en los ganglios linfáticos centinela de la mama con un 90% de sensibilidad y un 94% de especificidad. Backus et al. (2005).

Los estudios basados en micromatrices con tejido primario confirmaron la especificidad y la sensibilidad de los Marcadores conocidos. Como resultado, a excepción de F5, todos los Marcadores utilizados tienen alta especificidad para los tejidos estudiados en el presente documento. Argani et al. (2001; Backus et al. (2005); Cunha et al. (2005); Borgono et al. (2004); McCarthy et al. (2003); Hwang et al. (2004); Fleming et al. (2000); Nakamura et al. (2002); Khoor y et al. (1997) Un estudio reciente determinó que, utilizando IHC, el PSCA se sobreexpresa en las metástasis de cáncer de próstata. Lam et al. (2005) Dennis et al. (2002) también demostraron que podría utilizarse PSCA como Marcador del tumor de origen para páncreas y próstata. Como se muestra en el presente documento, se descubrió una fuerte expresión de PSCA en algunos tejidos de próstata a nivel del ARN pero, debido a la inclusión del PSA en el ensayo, ya pueden separarse los cánceres de próstata y páncreas. Un hallazgo novedoso de este estudio fue el uso de F5 como Marcador complementario (de PSCA) para tejido de origen pancreático. En el conjunto de datos de micromatriz con tejido primario y el conjunto de datos de qRTPCR con metástasis FFPE, F5 complementaba a PSCA (figura 4 y Tabla 3).

Tabla 3. Datos de viabilidad

	Mama	Colon	Pulmón	Otro	Ovario	Páncreas	Próstata	Total
Total ensayados	30	30	56	32	49	43	20	260
#Correcto	22	27	45	16	43	31	20	204
#Otro / Ningún ensayo	1	1	3	n/a	1	4	0	10
#Incorrecto	7	2	8	16	5	8	0	46
% ensayado	96,67	96,67	94,64	100	97,96	90,70	100	96,15
% correcto de ensayados	75,86	93,10	84,91	0	89,58	79,49	100	81,60
Correcto del total (%)	73,33	90,00	80,36	50,00	87,76	72,09	100	78,46

Investigadores anteriores han generado ensayos de CUP utilizando IHC o micromatrices. Su et al. (2001); Ramaswamy et al. (2001); y Bloom et al. (2004). Más recientemente, se ha acoplado SAGE a un pequeño panel de Marcadores qRTPCR. Dennis (2002); y Buckhaults et al. (2003). Este estudio es el primero en combinar perfiles de expresión en base a micromatrices con un pequeño panel de ensayos de gRTPCR. Los estudios de micromatrices con tejido primario identificaron algunos, pero no todos, de los mismos Marcadores de tejido de origen que los identificados anteriormente mediante estudios SAGE. Algunos estudios han demostrado que existe una concordancia moderada entre los datos de perfiles basados en micromatrices de ADN y basados en SAGE y que la correlación mejora para los genes con niveles de expresión más altos. Van Ruissen et al. (2005); y Kim (2003). Por ejemplo, Dennis y colaboradores identificaron PSA, MG, PSCA y HUMSPB mientras que Buckhaults y colaboradores (Dennis et al. (2002)) identificaron PDEF. Resulta preferente ejecutar el ensayo de CUP utilizando gRTPCR porque es una tecnología robusta y puede tener ventajas de rendimiento frente a IHC. Al-Mulla et al. (2005); y Haas et al. (2005). Como se muestra en el presente documento, se mejoró el protocolo gRTPCR mediante el uso de cebadores específicos de gen en una reacción de una sola etapa. Ésta es la primera demostración del uso de cebadores específicos de gen en una reacción de qRTPCR de una sola etapa con tejido FFPE. Otros investigadores han realizado un gRTPCR de dos etapas (síntesis de ADNc en una reacción seguida de qPCR) o han utilizado hexámeros aleatorios o cebadores específicos de gen truncados. Abrahamsen et al. (2003); Specht et al. (2001); Godfrey et al. (2000); Cronin et al. (2004); y Mikhitarian et al. (2004).

Ejemplo 2

Protocolo de aislamiento de ARN total de CUP FFPE

65 (Kit Highpure Cat #3270289)

Objetivo:

Aislamiento de ARN total a partir de tejido FFPE

5 Procedimiento:

Preparación de las soluciones de trabajo

1. Proteinasa K (PK) en kit

Disolver liofilizado en 4,5 ml de tampón de elución. Alicuotar y almacenar a -20°C, estable durante 12 meses. PK-4x250mg (cat #3115852)

Disolver liofilizado en 12,5 ml de tampón de elución (1x tampón TE (pH 7,4-7). Alicuotar y almacenar a -20°C.

2. Tampón de lavado I

15

25

30

10

Añadir 60 ml de etanol absoluto al tampón de lavado I, almacenar a temperatura ambiente.

3. Tampón de lavado II

Añadir 200 ml de etanol absoluto al tampón de lavado II, almacenar a temperatura ambiente.

4. ADNasa I

Disolver liofilizado en 400 µl de tampón de elución. Alicuotar y almacenar a -20°C, estable durante 12 meses.

Corte de bloques de parafina ~ 30-45 minutos para 12 bloques (12 bloques x 2 tubos = 24 tubos)

Las secciones cortadas del bloque deben procesarse de inmediato para la extracción de ARN

1. Utilizar una hoja de afeitar limpia y afilada en el micrótomo para cortar 6 secciones de 10 micras de espesor de los bloques de tejido recortado (tamaño 3-4 x 5-10mm).

Comentario: Bloque nuevo - Descartar secciones de cera hasta la sección de tejido obtenida. Bloque utilizado – Descartar las 3 primeras secciones de tejido.

35

- 2. Colocar inmediatamente el tejido cortado en tubos de microcentrífuga de 1,5 ml y tapar herméticamente para minimizar la humedad.
- 3. Se recomienda tomar el número de secciones en función del tamaño del tumor que se muestra en la Tabla 4.

40 Tabla 4

Tamaño de MET | Secciones/Tubo

Talliallo de IVIL I	Secciones/ Lubo
8-10 mm	6
6-8 mm	12
2-4 mm	18

Desparafinación ~ 30-45 minutos

50

55

- 1. Añadir a cada muestra 1,0 ml de xileno y agitar en vórtex enérgicamente durante 10-20 segundos e incubar a temperatura ambiente 2-5 minutos. Centrifugar 2 minutos a velocidad máxima. Eliminar el sobrenadante cuidadosamente.
- Comentario: si el tejido parece flotar, centrifugar durante 2 minutos más.
- 2. Repetir la etapa 1.
- 3. Centrifugar 2 minutos a velocidad máxima. Eliminar el sobrenadante.
- 4. Añadir 1 ml de etanol abs. y agitar en vórtex enérgicamente 1 minuto. Centrifugar 2 minutos a velocidad máxima. Eliminar el sobrenadante.
- 5. Repetir la etapa 4.
 - 6. Secar el tubo brevemente sobre una toalla de papel para deshacerse de los residuos de etanol.
 - 7. Secar en horno el sedimento de tejido durante 5-10 minutos a 55°C.
 - Comentario: es muy importante eliminar completamente el etanol y secar bien los sedimentos, el etanol residual puede inhibir la digestión con PK.
- 65 Comentario: si la PK está a -20C, calentar a temperatura ambiente 20-30 minutos.

Extracción de ARN ~ 2,5-3 horas

5

- 1. Añadir a un sedimento de tejido 100 µl de tampón de lisis tisular, 16 µl de SDS al 10% y **80** µl de solución de trabajo de proteinasa K, agitar en vórtex brevemente en varios intervalos e incubar **2 horas** a 55°C agitando a 400 rpm.
- 2. Añadir 325 µl de tampón de unión y 325 µl de etanol abs. Mezclar suavemente pipeteando arriba y abajo.
- 3. Centrifugar el lisado a velocidad máxima durante 2 minutos.
- 4. Combinar el tubo de filtración y el tubo de recogida (12 tubos), y pipetear el sobrenadante de lisado en el filtro.
- 5. Centrifugar durante 30 segundos a 8.000 rpm y descartar el flujo a través.
- 10 Comentario: puede repetirse la etapa 4-5, si necesita combinarse el ARN con 2 preparaciones más de sedimentos de tejido.
 - 6. Repetir la centrifugación a 8.000 rpm durante 30 segundos para secar el filtro.
 - 7. Añadir a la columna 500 µl de solución de trabajo de tampón de lavado I y centrifugar durante 15-30 segundos a 8.000 rpm, descartar el flujo a través.
- 8. Añadir 500 μl de solución de trabajo de tampón de lavado II. Centrifugar durante 15-30 segundos a 8.000 rpm, descartar el flujo a través.
 - 9. Añadir 300 µl de solución de trabajo de tampón de lavado II, centrifugar durante 15-30 segundos a 8.000 rpm, descartar el flujo a través.
 - 10. Centrifugar el filtro High Pure durante 2 minutos a velocidad máxima.
- 20 11. Colocar el tubo de filtración High Pure en un nuevo tubo de 1,5 ml y añadir 90 μl de tampón de elución. Incubar durante 1-2 minutos a temperatura ambiente. Centrifugar 1 minuto a 8.000 rpm. Tratamiento con ADNasa I ~ 1,5 horas.
 - 12. Añadir al eluato 10 µl de 10x tampón de incubación de ADNasa y 1,0 µl de solución de trabajo de ADNasa I y mezclar. Incubar durante 45 minutos a 37°C (o 2,0 µl de ADNasa I durante 30 minutos).
- 25 13. Añadir 20 μl de tampón de lisis tisular, 18 μl de SDS al 10% y 40 μl de solución de trabajo de proteinasa K. Agitar en vórtex brevemente. Incubar durante **30 minutos** (30-60 minutos) a 55°C.
 - 14. Añadir 325 µl de tampón de unión y 325 µl de etanol abs. Mezclar y pipetear en un nuevo tubo de filtración High Pure con el tubo de recogida (12 tubos).
 - 15. Centrifugar durante 30 segundos a 8.000 rpm y descartar el flujo a través.
- 30 16. Repetir la centrifugación a 8.000 rpm durante 30 segundos para secar el filtro.
 - 17. Añadir 500 µl de solución de trabajo de tampón de lavado I a la columna. Centrifugar durante 15 segundos a 8.000 rpm, descartar el flujo a través.
 - 18. Añadir 500 µl de solución de trabajo de tampón de lavado II. Centrifugar durante 15 segundos a 8.000 rpm, descartar el flujo a través.
- 35 19. Añadir 300 μl de solución de trabajo de tampón de lavado II. Centrifugar durante 15 segundos a 8.000 rpm, descartar el flujo a través.
 - 20. Centrifugar el filtro High Pure durante 2 minutos a velocidad máxima.
 - 21. Colocar el tubo de filtración High Pure en un nuevo tubo de 1,5 ml. Añadir 50 µl de tampón de elución; incubar durante 1-2 minutos a temperatura ambiente. Centrifugar durante 1 minuto a 8.000 rpm para recoger el ARN eluido.
- 22. Centrifugar el eluato durante 2 minutos a velocidad máxima y transferir el sobrenadante a un nuevo tubo sin agitar las fibras de vidrio del fondo.
 - 23. Tomar una lectura de DO a 260/280 y diluir a 50 ng/µl. Almacenar a -80°C.

Protocolo del Ensayo ASR de CUP (ABI 7900)

Objetivo: Utilizar qRTPCR para determinar el tejido de origen de una muestra de CUP

45 Preparación del control:

50

55

60

65

1. Controles positivos (Consultar la Tabla 5 y la Placa C en Preparación de Placas, figura 7)

Tabla 5. Diluciones en serie de IVT – 5 μ l 1x10⁸ en 470 μ l de H₂O + 25 μ l de 10.000 ARNr

Control IVT	CE/µI	Muestra	Agua	ARNr residual
BACTIN	100E+05	50	425	25
CDH17	100E+05	50	425	25
DSG3	100E+05	50	425	25
F5	100E+05	50	425	25
Hump	100E+05	50	425	25
MG	100E+05	50	425	25
PBGD	100E+05	50	425	25
PDEF	100E+05	50	425	25
PSCA	100E+05	50	425	25
TTF1	100E+05	50	425	25
WT1	100E+05	50	425	25

1E6. Tabla 5 Diluir 50.000 CE/ μ l de ARNr a 500 CE/ μ l - 5 μ l 50.000 CE/ μ l + 495 μ l de H $_2$ O

Alicuotar 10 µl por tira de tubos (2 placas); Colocar la mezcla a -80°C hasta el momento de utilizarla.

2. Curvas patrón (Consúltense la Tabla 6 y la Placa C en Preparación de Placas, figura 7)

Etapa 1: La curva patrón se preparó exactamente como se muestra en la Tabla 6.

Tabla 7. Solución de reserva - $1x10^8$ IVT. Diluir 50.000 CE/µl de ARNr a 500 CE/µl – 5 µl 50.000 CE/µl + 495 µl de H_2O

Control IVT	CE/µI	Muestra	Agua	ARNr residual
BACTIN-1	100E+07	50	425	25
BACTIN-2	100E+06	50	425	25
BACTIN-3	100E+05	50	425	25
BACTIN-4	100E+04	50	425	25
BACTIN-5	100E+03	50	425	25
PBGD-1	100E+07	50	425	25
PBGD-2	100E+06	50	425	25
PBGD-3	100E+05	50	425	25
PBGD-4	100E+04	50	425	25
PBGD-5	100E+03	50	425	25

20

5

10

15

Alicuotar 10 μl por tira de tubos (2 placas); Colocar la mezcla a -80°C hasta el momento de utilizarla.

Mezcla de enzimas:

1. Mezcla maestra: Enzima (Tth) / Anticuerpo (TP6-25), véase la tabla 7.

Tabla 7

30

25

Reactivo	2x
Enzima Tth (5U/µI)	600,00
Anticuerpo: TP6-25 (1mg/ml)	600,00
Agua	300,00
Total	1.500,00

35

40

Alicuotar 500 μl/tubo y congelar a -20°C.

Mezcla maestra de CUP:

1. 2,5X Mezcla maestra de CUP (Tablas 8-11):

Tabla 8

45

5x Aditivos ml 2,5x Conc. 0,50 1M Tris-Cl pH 8 5mM 1,25 40mg/ml de Albúmina, bovina 500µg/ml 37,50 Trehalosa de reserva 1M 375mM 2,5 Tween 20 al 20% v 0,50% 7,00 ddH_2O 48,75

50

Dejar que el reactivo se mezcle completamente > 15 minutos

55 Tabla 9

Tr.		
ml	5x Aditivos	2,5 x Conc
12,50	Bicina/hidróxido de potasio 1M pH 8,2	125mM
5,75	Acteato de potasio 5M	287,5mM
20,00	Glicerol (V x D = M -> $19.6 \times 1.26 = 24.6 g$)	20%
1,25	Cloruro de magnesio 500mM	6,25mM
1,75	Cloruro de magnesio 500mM	8,75mM
5,00	ddH ₂ O	
46,25		

60

Dejar que el reactivo se mezcle completamente > 15 minutos; Combinar las mezclas anteriores en un recipiente estéril - añadir lo siguiente

Tabla 10

5x Aditivos 2,5x Conc. ml 1,25 dATP 100mM 1,25mM 1,25 dCTP 100mM 1,25mM 1,25 dTTP 100mM 1,25mM dGTP 100mM 1,25 1,25mM 100,00

Dejar que el reactivo se mezcle completamente > 15 minutos; alicuotar 1,8 ml/tubo y congelar a -20°C

Tabla 11

Cebador/sonda Reserva (µM) FC (µM) μΙ 100,0 Cebador directo 10 100 Cebador inverso 100 10 100,0 Sonda (5'FAM/3'BHQ1-TT) 100 4 40,0 Agua DI 760,0 Total 1.000,0

Mezcla de cebador y sonda:

Alicuotar 250 μl/tubo y congelar a -20°C

30 Mezcla de reacción:

> 1. Mezcla maestra de CUP (CMM): (Consúltense las tablas 12-14 y la Placa A en Preparación de Placas, figura 7)

> > Tabla 12

X1 (10µl) 450 Reactivo 2,5 x Mezcla maestra de CUP 1X 4,00 1800 90 ROX 1x 0,20 2x mezcla TthAb 2U 1,00 450 Agua 2,3 1035 Total 7,50 3375

Preferentemente, cada ciclo/placa no tendrá más de 356 reacciones: 12 muestras con 12 Marcadores (288 45 reacciones con 2 repeticiones para cada una) + 10 controles de curva patrón por duplicado (20) + 2 controles positivos y 2 controles negativos para cada Marcador. (4x12 = 48)

Ajustar el agua para el volumen de muestra - 4,3 µl de muestra MAX; Mezclar bien

Tabla 13

FC Reactivo X1 (10µl) 34 17 Cebadores 10µM/Sonda 4µM 0,5µM/0,2µM 0,50 1x 7,50 CMM 255 Total 8.00 272

2. Marcadores ToO: Mezclar bien

Tabla 14

Reactivo FC X1 (10µl) 44 Cebadores 10µM/Sonda 4µM 0,5μΜ/0,2μΜ 0,50 22 CMM 1x 7,50 330 8,00 Total 352

23

5

10

15

20

25

35

40

50

55

60

3. Marcadores \(\beta\)-actina y PBGD: Mezclar bien

Preparación de la muestra:

5 Tabla 15

Muestra	ID de la muestra	Conc	Agua añadida = 50ng/µl
A1			3.
A2			
A3			
A4			
A5			
A6			
A7			
A8			
A9			
A10			
A11			
A12			

1. Muestras de CUP: 12 muestras en placas de 96 pocillos: A1-A12 (Consúltense la Tabla 16 y la Placa B en Preparación de Placas, figura 7);

Alicuotar 50 μl de 50 ng/μl (2 μl/rxn)

Cargar la placa:

1. Preparación de placa de 384 pocillos: (Consúltese la Placa de D en Preparación de Placas, figura 7)

Se cargan sobre la placa 2 µl de muestra y 8 µl de CMM. (muestra = 50 ng/µl) Se cargan sobre la placa 4 µl de muestra y 6 µl de CMM (muestra = 25 ng/µl)

Se sella y se etiqueta la placa. Se centrifuga a 2.000 rpm durante 1 minuto. **Preparación de ABI 7900HT**: Colocar en el ABI 7900. Seleccionar el programa "CUP 384" y pulsar "inicio".

Tabla 16

Condiciones de termociclación
95C x 60s
55C x 2m
RAMPA 5 %
70C x 2m
40 ciclos de
95C x 15s
58C x 30s

ROX conectado

Los datos se analizan, se extraen los Ct y se insertan en el algoritmo

Ejemplo 3

Algoritmo CUP

Los valores ΔCt normalizados de actina para HPT, MGB, PDEF, PSA, SP-B, TFF, DSG, WT1, PSCA y F5 se colocan en 6 conjuntos en base al tejido de origen del que se seleccionaron originalmente. Se restan las constantes 9,00, 11,00, 7,50, 5,00, 10,00, 9,50, 6,50, 8,00, 9,00 y 800 de cada ΔCt respectivamente. A continuación, para cada muestra se selecciona el valor de CT mínimo de cada uno de los 6 conjuntos (HPT, min (MGB o PDEF), PSA, min (SP-B, TFF o DSG), WT1, y min (PSCA o F5)) como variable representativa para el grupo.

Estas variables, y el sitio de metástasis se utilizan para clasificar la muestra utilizando discriminantes lineales. Deben construirse dos modelos diferentes, uno para hombres y otro para mujeres, a partir de los datos de entrenamiento que utilizan la función de biblioteca MASS "lda" (Venables *et al.* (2002) en R (versión 2.0.1). A continuación se calcula una probabilidad a posteriori para cada ToO utilizando la función "predict" para el modelo masculino o femenino.

24

50

10

15

20

25

30

35

40

45

55

60

Las variables utilizadas en los modelos masculinos son HPT, PSA, el mínimo de ('SP-B', 'TFF', 'DSG3'), el mínimo de ('PSCA', 'F5') y el sitio de metástasis. La categoría sitio de metástasis tiene 4 niveles correspondientes a colon, pulmón, ovario y resto de los tejidos. Para los modelos femeninos, las variables son HPT, el mínimo de ('MGB', 'PDEF'), el mínimo de ('SP-B', 'TFF', 'DSG3'), WT1, el mínimo de ('PSCA', 'F5') y el sitio de metástasis.

5

15

20

Ejemplo de Código R:

#Entrenar el modelo masculino dat.m<-CUP2.MIN.NORM[, c

10 ('HPT', 'PSA', 'SP.B.TTF.DSG3', 'PSCA.F5', 'Class', 'background')] CUP.lda.m<-lda(Class~.,dat.m,prior=c(0,0.09,0.23,0.43,0,0.16,0.02)/sum(c (0, 0.09, 0.23, 0.43, 0, 0.16, 0.02)))

#Entrenar el modelo femenino dat.f<-CUP2.MIN.NORM[, c

('HPT', 'MFB.PDEF', 'SP.B.TTF.DSG3', 'WT1', 'PSCA.F5', 'Class', 'background')] CUP.lda.f<-lda(Class~.,dat.f,prior= c(0.03, 0.09, 0.23, 0.43, 0.04, 0.16,0)/sum(c (0.03, 0.09, 0.23, 0.44, 0.16,0)))

#si la muestra desconocida (i) es de hombre predict(CUP.lda.m, CUP2.MIN.NORM.TEST[i,])

#si la muestra desconocida (i) es de mujer predict(CUP.lda.f, CUP2.MIN.NORM.TEST[i,])

Para ejecutar este código, una trama de datos llamada CUP2.MIN.NORM debe contener los datos de entrenamiento con el valor mínimo calculado para cada tejido de origen establecido como se ha descrito anteriormente.

"Class" (clase) se corresponde con el tejido de origen, y "background" (antecedentes) se corresponde con 30 los sitios de metástasis descritos anteriormente.

Los datos de ensayo pueden estar contenidos en CUP2. MIN.NORM.TEST, y puede ensayarse una muestra específica en la fila i utilizando la función "predict". Una vez más, los datos de ensayo deben estar en el mismo formato que el conjunto de entrenamiento y tener los ajustes de valor mínimo aplicados a él también.

35

Ejemplo 4

Muestras resueltas de CUP

40

Se compararon 48 muestras resueltas y no resueltas de CUP para determinar la correlación con respecto a las muestras de CUP verdaderas. Los métodos utilizados fueron los descritos en los Ejemplos 1-3. Los resultados obtenidos se presentan en la Tabla 17. Se ensayaron 11 muestras de CUP no resuelto, el diagnóstico se realizó en 8 muestras, 3 eran de otra categoría.

45

Tabla 17

50

Categoria de muestra	Muestra #	Correcto	Incorrecto	Ningún ensayo	% de Precisión
ToO conocido	15	11	3	1	79
CUP resuelto	22	17	4	1	81
CUP no resuelto	11	8	N/a	3	73

วบ

Ejemplo 5

55 Límites del ensayo de CUP

La figura 8 representa los resultados obtenidos, utilizando los métodos descritos en los Ejemplos 1-3, para determinar los límites de los ensayos de CUP. Se puso a prueba el rendimiento del ensayo a lo largo de un intervalo de concentraciones de ARN y se descubrió que los ensayos de CUP son eficaces en el intervalo de 100 ng - 12,5 ng de ARN.

Ejemplo 6

Ensayo qRTPCR

65

Materiales y métodos. *Muestras de tejido congeladas para análisis de micromatrices*. Se utilizó un total de 700 tejidos humanos primarios congelados para los perfiles de micromatrices de expresión génica. Las muestras se obtuvieron de diversas instituciones académicas, como la Universidad de Washington (St. Louis, MO), el Centro Médico Erasmus (Rotterdam, Países Bajos) y empresas de banco de tejidos comerciales, incluidas Genomics Collaborative, Inc (Cambridge, MA), Asterand (Detroit, MI), Oncomatrix (La Jolla, CA) y Clinomics Biosciences (Pittsfield, MA). Para cada muestra, se recogió también información clínica, patológica y demográfica del paciente. Se revisaron las características histopatológicas de cada muestra para confirmar el diagnóstico, y para hacer una estimación de la conservación de la muestra y del contenido del tumor.

Extracción de ARN e hibridación con Affymetrix Gene Chip. Se diseccionaron muestras de cáncer congeladas con más de un 70% de células tumorales, benignas y muestras normales, y se homogeneizaron con un homogeneizador mecánico (UltraTurrex T8, Alemania) en reactivo Trizol (Invitrogen, Carlsbad, CA). Se homogeneizó el tejido en reactivo Trizol siguiendo el protocolo estándar de Trizol para el aislamiento de ARN a partir de tejidos congelados (Invitrogen, Carlsbad, CA). Después de la centrifugación se recogió la fase líquida superior y se hizo precipitar el ARN total con alcohol isopropílico a -20°C. Los sedimentos de ARN se lavaron con etanol al 75%, se resolvieron en agua y se almacenaron a -80°C hasta su uso.

Se examinó la calidad del ARN con un equipo Agilent 2100 Bioanalyzer RNA 6000 Nano Assay (Agilent Technologies, Palo Alto, CA). Se preparó el ARNc marcado y se hibridó con la matriz de oligonucleótidos de alta densidad Hu133A Gene Chip (Affymetrix, Santa Clara, CA), que contenía un total de 22.000 conjuntos de sondas, según el protocolo estándar del fabricante. Se exploraron las matrices utilizando los protocolos y escáneres de Affymetrix. Para su posterior análisis, cada conjunto de sonda se consideró un gen distinto. Los valores de expresión para cada gen se calcularon utilizando el software de análisis Affymetrix Gene Chip MAS 5.0. Todas las matrices cumplían tres estándares de control de calidad: el porcentaje de lectura "actual" para la matriz fue superior al 35%, el factor de escala fue inferior a 12 cuando se escalaba a una intensidad diana global de 600, y el nivel basal medio fue inferior a 150.

Selección de Marcadores candidatos. Para la selección de los Marcadores candidatos de tejido de origen (ToO) para tejidos de pulmón, colon, mama, ovario y próstata, se midieron los niveles de expresión de los conjuntos de sonda en las muestras de ARN incluyendo un total de 682 tejidos normales, benignos y cancerosos de mama, colon, pulmón, ovario, próstata. Los Marcadores candidatos específicos de tejido se seleccionaron en base al número de consultas estadísticas.

Con el fin de generar candidatos pancreáticos, se utilizaron perfiles de expresión génica de 13 muestras de adenocarcinoma ductal pancreático primario, 5 muestras normales de páncreas y 98 muestras de cáncer de pulmón, colon, mama y ovario para seleccionar los Marcadores de adenocarcinoma pancreático. Se realizaron dos consultas. En la primera consulta, se creó un conjunto de datos contenía 14.547 genes con al menos 2 lecturas "actuales" en muestras de páncreas. Se identificó un total de 2.736 genes que se sobreexpresaban en el cáncer de páncreas en comparación con la normalidad mediante la t de Student (p <0,05). Se seleccionaron los genes cuya mínima expresión en el 11º percentil de cáncer de páncreas era al menos 2 veces superior al máximo en el cáncer de colon y de pulmón, generando 45 conjuntos de sondas. Como etapa final, se seleccionaron 6 genes con una expresión máxima al menos 2 veces superior a la máxima expresión en cánceres de colon, pulmón, mama y ovario. En una segunda consulta, se creó un conjunto de datos de 4.654 conjuntos de sondas con un máximo de 2 lecturas "actuales" en las muestras de mama, colon, pulmón y ovario. Se seleccionó un total de 160 genes con al menos 2 lecturas "actuales" en muestras normales y cancerosas de páncreas. De los 160 genes, se seleccionaron 10 genes después de comparar su nivel de expresión entre los tejidos normales y de páncreas. Se combinaron los resultados de ambas consultas de páncreas.

Además del análisis de los perfiles de expresión génica, se seleccionaron algunos Marcadores de la literatura. Se combinaron los resultados de todas las consultas para crear una lista corta de Marcadores candidatos ToO para cada tipo de tejido. Se hizo una estimación de la sensibilidad y la especificidad de cada Marcador. Los Marcadores que demostraron la mayor capacidad para diferenciar los tejidos por su origen se designaron para el ensayo de RT-PCR en base a la redundancia y complementariedad de los Marcadores.

Tejidos de CUP y de carcinoma metastásico FFPE de origen conocido. Se adquirió un total de 386 carcinomas metastásicos FFPE (estadio III-IV) de origen conocido y 24 adenocarcinomas primarios de próstata FFPE de diversos proveedores comerciales, incluidos Proteogenex (Los Angeles, CA), Genómica Collaborative, Inc. (Cambridge, MA), Asterand (Detroit, MI), Ardáis (Lexington, MA) y Oncomatrix (La Jolla, CA). Se obtuvo un conjunto independiente de 48 tejidos de CUP y de carcinoma metastásico de primario conocido, de Albany Medical College (Albany, NY). Para cada muestra, se recogió información clínica, patológica y demográfica del paciente. Se revisaron las características histopatológicas de cada muestra para confirmar el diagnóstico, y para hacer una estimación de la conservación de la muestra y del contenido del tumor. Para las muestras metastásicas, se establecieron de manera inequívoca los diagnósticos de carcinoma metastásico y ToO en base a la historia clínica del paciente y la evaluación histológica del carcinoma metastásico en comparación con los correspondientes primarios.

65

5

20

25

30

35

40

45

50

55

Aislamiento de ARN a partir de muestras FFPE. El aislamiento de ARN a partir de secciones de tejido en parafina fue tal como se describe en el manual del kit High Pure RNA Paraffin (Roche) con las siguientes modificaciones. Las muestras de tejido incluidas en parafina se seccionaron según el tamaño de la metástasis incluida (2-5 mm = 9 X 10 μm, 6-8 mm = 6 X 10 μm, 8-≥ 10 mm = 3 X 10 μm). Las secciones se desparafinaron como se describe en el manual del kit, el sedimento de tejido se secó en un horno a 55°C durante 5-10 minutos y se resuspendió en 100 μl de tampón de lisis tisular, 16 μl de SDS al 10% y 80 μl de proteinasa K. Las muestras se agitaron en vórtex y se incubaron en un agitador-calentador puesto a 400 rpm durante 2 horas a 55°C. El posterior procesamiento de la muestra se realizó según el manual del kit High Pure RNA Paraffin. Las muestras se cuantificaron mediante lecturas de OD 260/280 obtenidas mediante un espectrofotómetro y las muestras se diluyeron a 50 ng/μl. El ARN aislado se almacenó en agua libre de ARNasa a -80°C hasta su uso.

qRTPCR para el cribado previo de Marcadores candidatos. Se sometió a transcripción inversa con hexámeros aleatorios un μg de ARN total de cada muestra, utilizando la transcriptasa inversa Superscript II según las instrucciones del fabricante (Invitrogen, Carlsbad, CA). Los cebadores y las sondas MGB para los Marcadores génicos candidatos ensayados y el gen de control ACTB se diseñaron utilizando el software Primer Express (Applied Biosystems, Foster City, CA), o bien se utilizó ABI Assay-on-Demand (Applied Biosystems, Foster City, CA). Se ensayaron todos los cebadores y sondas de diseño propio para una eficacia de amplificación óptima superior al 90%. La amplificación por RT-PCR se llevó a cabo en una mezcla de reacción de 20 ml que contenía 200 ng de ADNc molde, 2 x de mezcla TaqMan[®] Universal PCR Master Mix (10 ml) (Applied Biosystems, Foster City, CA), 500 nM de cebadores directo e inverso y 250 nM de sonda. Las reacciones se llevaron a cabo en un sistema de detección de secuencias ABI PRISM 7900HT (Applied Biosystems, Foster City, CA). Las condiciones de ciclación fueron: 2 minutos de activación de AmpErase UNG a 50°C, 10 minutos de activación de la polimerasa a 95°C y 50 ciclos a 95°C durante 15 segundos y temperatura de hibridación (60°C) durante 60 segundos. En cada ensayo, se incluyó por duplicado el control "no molde" junto con ADNc molde para el gen de interés y para el gen de control. La expresión relativa de cada gen diana se representó como ΔCt, que es igual al Ct del gen diana menos el Ct del gen de control (ACTB).

qRTPCR de una sola etapa optimizada. Se utilizaron los números de referencia de la secuencia de referencia del ARNm apropiada junto con Oligo 6.0 para desarrollar los ensayos de CUP TaqMan[®] (Marcadores de pulmón: proteína B asociada a surfactante pulmonar humana (HUMPSPBA), factor de transcripción tiroideo 1 (TTF1), desmogleína 3 (DSG3), Marcador colorrectal: cadherina 17 (CDH17), Marcadores de mama: mamaglobina (MG), factor de transcripción Ets derivado de próstata (PDEF), Marcador de ovario: tumor de Wilms 1 (WT1), Marcadores pancreáticos: antígeno de células madre de próstata (PSCA), factor de coagulación V (F5), Marcador prostático: calicreína 3 (KLK3)) y ensayos de mantenimiento beta actina (β-actina), hidroximetilbilano sintasa (PBGD). Los cebadores específicos de gen y las sondas de hidrólisis para el ensayo de qRT-PCR de una sola etapa optimizado se enumeran en la Tabla 2 (SEQ ID NO: 11-58). Se excluyó la amplificación de ADN genómico diseñando los ensayos alrededor de los sitios de corte y empalme de exón-intrón. Se marcaron las sondas de hidrólisis en el nucleótido 5' con FAM como colorante indicador y en el nucleótido 3' con BHQ1-TT como colorante de extinción interno.

La cuantificación de ARN específico de gen se llevó a cabo en una placa de 384 pocillos en el sistema de detección de secuencias ABI Prism 7900HT (Applied Biosystems). Para cada ciclo del agitador-calentador, se amplificaron los patrones y las curvas patrón. Los patrones para cada Marcador consistieron en transcritos *in vitro* de genes diana que se diluyeron en ARN portador de riñón de rata a 1x10⁵ copias. Las curvas patrón para los Marcadores de mantenimiento consistieron en transcritos *in vitro* de genes diana que se sometieron a dilución en serie en ARN portador de riñón de rata a 1x10⁷, 1x10⁵ y 1x10³ copias. También se incluyeron en cada ciclo de ensayo controles no diana para asegurar que no hubiese contaminación ambiental. Todas las muestras y los controles se procesaron por duplicado. La qRTPCR se realizó con reactivos de uso general en el laboratorio en una reacción de 10 μl que contenía: tampón de RT-PCR (Bicina/KOH 50 nM pH 8,2, KAc 115 nM, glicerol al 8%, MgCl₂ 2,5 mM, MnSO₄ 3,5 mM, 0,5 mM de cada uno de dCTP, dATP, dGTP y dTTP), aditivos (Tris-Cl 2 mM pH 8, albúmina bovina 0,2 mM, trehalosa 150 mM, Tween 20 al 0,002%), mezcla de enzimas (2U de Tth (Roche), 0,4 mg/μl de Ac TP6-25), mezcla de cebador y sonda (0,2 μM de sonda, 0,5 μM de cebadores). Se siguieron los siguientes parámetros de ciclación: 1 ciclo a 95°C durante 1 minuto; 1 ciclo a 55°C durante 2 minutos; rampa 5%; 1 ciclo a 70°C durante 2 minutos; y 40 ciclos de 95°C durante 15 segundos, 58°C durante 30 segundos. Una vez terminada la reacción de PCR, se establecieron los valores iniciales y umbral en el software ABI 7900HT Prism y los valores de Ct calculados se exportaron a Microsoft Excel.

Reacción de una sola etapa vs. de dos etapas. Para comparar las reacciones de RT-PCR de dos etapas y de una sola etapa, se llevó a cabo la síntesis de la primera hebra de la reacción de dos etapas utilizando 100 ng de hexámeros aleatorios o cebadores específicos de gen por reacción. En la primera etapa, se calentaron 11,5 µl de Mezcla-1 (cebadores y 1 µg de ARN total) a 65°C durante 5 minutos y a continuación se enfriaron en hielo. Se añadieron a la Mezcla-1, 8,5 µl de Mezcla-2 (1x de tampón, DTT 0,01 mM, 0,5 mM de cada dNTP, 0,25 U/µl de RNasin®, 10 U/µl de Superscript III) y se incubó a 50°C durante 60 minutos, seguido de 95°C durante 5 minutos. El ADNc se almacenó a -20°C hasta el momento de utilizarlo. La qRTPCR para la segunda etapa de la reacción de dos etapas se realizó como se ha indicado anteriormente con los siguientes parámetros de ciclación: 1 ciclo a 95°C durante 1 minuto; 40 ciclos de 95°C durante 15 segundos, 58°C durante 30 segundos. La qRTPCR para la reacción

de una sola etapa se realizó exactamente como se ha indicado en el párrafo anterior. La reacción de una sola etapa y la de dos etapas se llevaron a cabo en 100 ng de molde (ARN/ADNc). Una vez terminada la reacción de PCR, se establecieron los valores inicial y umbral en el software ABI 7900HT Prism y los valores de Ct calculados se exportaron a Microsoft Excel.

Desarrollo del algoritmo. Se construyeron discriminadores lineales utilizando la función de biblioteca MASS (Venables y Ripley) '1da' en el lenguaje R (versión 2.1.1). El modelo utilizado depende del tejido del que se extrajo la metástasis, así como del género del paciente. Cuando se encuentra un sitio de metástasis de pulmón, colon u ovario, se establece en cero la clase distribución de probabilidad a priori para la clase que es equivalente al sitio de metástasis. Además, se establece en cero la probabilidad a priori para la clase mama y ovario en los pacientes masculinos, mientras que en pacientes femeninas, la distribución de probabilidad a priori de la clase próstata se establece en cero. Todas las demás probabilidades a priori utilizadas en los modelos son equivalentes. Además, la clasificación para cada muestra se basa en la probabilidad a posteriori más alta determinada por el modelo para cada clase. Para hacer una estimación del rendimiento de los modelos, se realizó la validación cruzada dejando uno fuera. Además de esto, los conjuntos de datos se dividieron al azar en mitades, preservando al mismo tiempo la relación proporcional entre cada clase, en conjuntos de entrenamiento y de ensayo. Esta división aleatoria se repitió tres veces.

Resultados. El objetivo de este estudio fue desarrollar un ensayo qRTPCR para predecir el tejido de origen del carcinoma metastásico. El trabajo experimental consistió en dos partes principales. La primera parte incluía la designación de Marcadores candidatos específicos de tejido, su validación en tejidos de carcinoma metastásico FFPE y la selección de diez Marcadores para el ensayo (figura 9A.). La segunda parte incluía la optimización del ensayo qRTPCR seguida de la implementación del ensayo en otro conjunto de carcinomas metastásicos FFPE, la construcción de un algoritmo de predicción, su validación cruzada y la validación en un conjunto independiente de muestras (figura 9B).

Características de la muestra. Se utilizó ARN de un total de 700 muestras de tejido primario congelado para la determinación del perfil de expresión génica y la identificación de genes específicos del tipo de tejido. Las muestras incluyeron 545 carcinomas primarios (29 de pulmón, 13 de páncreas, 315 de mama, 128 de colorrectal, 38 de próstata, 22 de ovario), 37 lesiones benignas (1 de pulmón, 4 de colorrectal, 6 de mama, 26 de próstata) y 118 tejidos normales (36 de pulmón, 5 de páncreas, 36 de colorrectal, 14 de mama, 3 de próstata, 24 de ovario).

En el estudio se utilizó un total de 375 carcinomas metastásicos de origen conocido (estadio III-IV) y 26 muestras de adenocarcinoma primario de próstata. Los carcinomas metastásicos de origen pulmonar, pancreático, colorrectal, ovárico, prostático, así como otros tipos de cáncer. La categoría de muestra "otro" consistió en metástasis derivadas de tejidos distintos de pulmón, páncreas, colon, mama, ovario y próstata. Las características de los pacientes se resumen en la Tabla 18.

Tabla 18

			CUP metastasico	Conjunto de Muestras
5	Número total		401	48
	Promedio de edad		57,8±11*	62,13±11,7
	Genero	Femenino	241	20
		Masculino	160	28
	Tejido de origen			
10	Pulmón		65	9
	Páncreas		63	2
	Colorrectal		61	4
	Mama		63	5
4 =	Ovario		82	2
15	Próstata		27	2
	Riñón		8	8
	Estómago		7	0
	Otro**		25	5
00	Carcinoma de primario desconocido			11
20	Diagnóstico histopatológico			
	Adenocarcinoma, moderadamente/bien diferenciado		306	27
	Adenocarcinoma, poco diferenciado		49	4
	Carcinoma de células escamosas		16	5
0.5	Carcinoma poco diferenciado		16	10
25	Carcinoma de células pequeñas		3	
	Melanoma		5	
	Linfoma		3	
	Carcinoma hepatocelular		2	
00	Mesotelioma		1	
30	Otro***		14	2
	Sitio de metástasis			
	Nódulos linfáticos		73	1
	Cerebro		17	14
25	Pulmón		20	7
35	Hígado		75	11
	Región pélvica (ovario, vejiga, trompas de falopio)		53	2
	Abdomen (epiplón (epiplón, mesenterio, colon,		91	5
	peritoneo)			
40	Otro (piel, tiroides, pared torácica, zona umbilical)		44	8
40	Desconocido		2	
	Primario (próstata)		26	
	* So descended la odad de 26 pacientes			

^{*} Se desconoce la edad de 26 pacientes

45

50

55

60

65

Las muestras se separaron en dos conjuntos: el conjunto de validación (205 muestras), que se utilizó para validar la expresión diferencial específica de tejido de los Marcadores candidatos y el conjunto de entrenamiento (260 muestras), que se utilizó para ensayar el procedimiento qRTPCR de una sola etapa optimizado y entrenar un algoritmo de predicción. El primer conjunto de 205 muestras incluyó 25 metástasis de cáncer de pulmón, 41 de páncreas, 31 de colorrectal, 33 de mama, 33 de ovario, 1 de próstata, 23 de otras metástasis de cáncer y 18 cánceres primarios de próstata. El segundo conjunto consistió en 260 muestras que incluyeron 56 metástasis de cáncer de pulmón, 43 de páncreas, 30 de colorrectal, 30 de mama, 49 de ovario, 32 de otras metástasis de cáncer y 20 cánceres primarios de próstata. Sesenta y cuatro muestras, incluidas 16 metástasis de pulmón, 21 de páncreas, 15 de otras metástasis, y 12 carcinomas primarios de próstata fueron del mismo paciente en ambos conjuntos.

El conjunto independiente de muestras obtenido de Albany Medical College estaba compuesto por 33 muestras de CUP con un primario sugerido para 22 de ellos, y 15 carcinomas metastásicos de origen conocido. Para los CUP con un primario sugerido, el diagnóstico se hizo en base a las características morfológicas y/o a los resultados de ensayo con un panel de Marcadores IHC. Las características demográficas, clínicas y patológicas de los pacientes se presentan en la Tabla 18.

Selección de Marcadores candidatos. El análisis de los perfiles de expresión génica de 5 tipos de tejidos primarios (pulmón, colon, mama, ovario, próstata) dio como resultado la designación de los 13 Marcadores candidatos específicos de tejido para el ensayo qRTPCR. Se han identificado los mejores candidatos en estudios

^{**} esófago, vejiga, pleura, vesícula biliar del hígado, conductos biliares, laringe, faringe, linfoma no Hodgkin

^{***} de células pequeñas, mesotelioma, hepatocelular, melanoma, linfoma

anteriores de cánceres *in situ*. Argani *et al.* (2001); Backus *et al.* (2005); Cunha *et al.* (2005); Borgono *et al.* (2004); McCarthy *et al.* (2003); Hwang *et al.* (2004); Fleming *et al.* (2000); Nakamura *et al.* (2002); y Khoor *et al.* (1997). Además del análisis de los datos de micromatriz, se seleccionaron dos Marcadores de la literatura, incluido un Marcador DSG3 complementario de carcinoma de células escamosas de pulmón y el Marcador de mama PDEF. Backus *et al.* (2005). Los datos de micromatriz confirmaron la elevada sensibilidad y especificidad de estos Marcadores.

Se utilizó un enfoque especial para identificar los Marcadores específicos de páncreas. En primer lugar, se analizaron cinco Marcadores candidatos de páncreas: antígeno de células madre de próstata (PSCA), inhibidor de serin-proteinasa, clado A miembro 1 (SERPINA1), citoqueratina 7 (KRT7), metaloproteasa de matriz 11 (MMP11) y mucina 4 (MUC4) (Varadhachary et al. (2004); Argani et al. (2001); Jones et al. (2004); Prasad et al. (2005); y Moniaux et al. (2004)) utilizando micromatrices de ADN y un panel de 13 adenocarcinomas ductales pancreáticos, cinco tejidos normales de páncreas y 98 muestras de tumores de mama, colorrectal, de pulmón y de ovario. Sólo PSCA demostró sensibilidad moderada (se detectaron seis de trece o el 46% de los tumores pancreáticos) con elevada especificidad (91 de 98 o el 93% se identificaron correctamente como no de origen pancreático). Por el contrario, KRT7, SERPINA1, MMP11 y MUC4 demostraron una sensibilidad del 38%, 31%, 85% y 31%, respectivamente, con especificidades del 66%, 91%, 82% y 81%, respectivamente. Estos datos estaban en concordancia con la gRTPCR realizada en 27 metástasis de origen pancreático y 39 metástasis de origen no pancreático para todos los Marcadores excepto para MMP11 que presentó la sensibilidad y especificidad más escasas con qRTPCR y las metástasis. En conclusión, los datos de micromatriz en tejido primario congelado de forma instantánea, sirve como buen indicador de la capacidad del Marcador para identificar una metástasis FFPE como de origen pancreático utilizando qRTPCR, aunque pueden resultar útiles Marcadores adicionales para un rendimiento óptimo.

El adenocarcinoma ductal pancreático se desarrolla a partir de células del epitelio ductal que comprenden sólo un pequeño porcentaje de todas las células pancreáticas (comprendiendo las células acinares y de los islotes la mayoría) en el páncreas normal. Además, los tejidos de adenocarcinoma pancreático contienen una cantidad significativa de tejido normal adyacente. Prasad et al. (2005); e Ishikawa et al. (2005). Debido a esto, los Marcadores pancreáticos candidatos se enriquecieron para los genes elevados en el adenocarcinoma de páncreas con respecto a las células pancreáticas normales. El primer método de consulta devolvió seis conjuntos de sondas: factor de coagulación V (F5), una proteína hipotética FLJ22041 similar a proteínas de unión a FK506 (FKBP10), integrina beta 6 (ITGB6), transglutaminasa 2 (TGM2), ribonucleoproteína nuclear heterogénea A0 (HNRP0) y BAX delta (BAX). El segundo método de consulta (véase la sección de Materiales y Métodos para más detalles) devolvieron ocho conjuntos de sondas: F5, TGM2, factor de transcripción 1 de homeodominio similar a paired (PITX1), ARNm isoforma trio (TRIO), ARNm para p73H (p73), una proteína desconocida para MGC:10264 (SCD) y dos conjuntos de sondas para claudina18.

Se seleccionó un total de 23 Marcadores candidatos específicos de tejido para su posterior validación mediante RT-PCR en tejidos FFPE de carcinoma metastásico mediante qRT-PCR. Los Marcadores candidatos se ensayaron en 205 carcinomas metastásicos FFPE, de pulmón, páncreas, colon, mama, ovario, próstata y carcinomas primarios de próstata. La Tabla 19 proporciona los símbolos de genes de los Marcadores específicos de tejido seleccionados para la validación por RT-PCR y también resume los resultados de los ensayos realizados con estos Marcadores.

45

5

10

15

20

25

30

35

40

50

55

60

Tabla 19

		•						
E		e tejido SEQ ID NO	Método ID			ección de Marca	dores	
5	Tipo de tejido		Micromatriz	Lit.	Tejido met. corres. baja expr.	Redundancia de Marcador	Reactividad cruzada de tejido	¿Marcador adecuado?
	Pulmón	1/59	X	Х				X
10		60	Х	Х				X
10		61		Х		Х		Х
	Páncreas	66		Х				X
		67	X					Х
		71	X			Х		
15		72	X		X			
. •		73		X				
		74		X				
		75		Х				
20		76		Х				
20	Colon	4/85	X	Χ				X
		77	X	Χ				
		78	X	Χ		X		
		79	X	Х		Х		
25	Próstata	9/86	X	X				X
20		80	Х	Х		X		
	Mama	63	X	Х				X
		81	X	Х			X	
		64		Х				X
30	Ovario	82	X	X			X	
		83	X	Х			X	
		65	X	Х				X

De 23 Marcadores ensayados, se rechazaron trece en base a su reactividad cruzada, bajo nivel de expresión en los tejidos metastásicos correspondientes o redundancia. Se seleccionaron diez Marcadores para la versión final del ensayo. Los Marcadores pulmonares fueron proteína B asociada a surfactante pulmonar humana (HUMPSPB), factor de transcripción tiroideo 1 (TTF1) y desmogleína 3 (DSG3). Los Marcadores pancreáticos fueron el antígeno de células madre de próstata (PSCA) y el factor de coagulación V (F5), y el Marcador prostático fue calicreína 3 (KLK3). El Marcador colorrectal fue cadherina 17 (CDH17). Los Marcadores de mama fueron mamaglobina (MG) y factor de transcripción Ets derivado de próstata (PDEF). El Marcador de ovario fue tumor de Wilms 1 (WT1). En la figura 10 se presentan los valores de expresión relativos normalizados medios de los Marcadores seleccionados en diferentes tejidos metastásicos.

Optimización de la preparación de muestras y qRT-PCR utilizando tejidos FFPE. A continuación, se optimizaron los métodos de qRTPCR y aislamiento de ARN utilizando tejidos fijados antes de examinar el rendimiento del panel de Marcadores. En primer lugar, se analizó el efecto de la reducción del tiempo de incubación con proteinasa K de dieciséis horas a 3 horas. No hubo ningún efecto sobre el rendimiento. Sin embargo, algunas muestras presentaron fragmentos más largos de ARN cuando se utilizó la etapa de proteinasa K más corta (figura 11A, B). Por ejemplo, cuando el ARN se aisló a partir de un bloque de un año (C22), no se observó ninguna diferencia en los electroferogramas. Sin embargo, cuando el ARN se aisló a partir de un bloque de cinco años (C23), se observó una fracción mayor de ARN de mayor peso molecular, según lo evaluado por la joroba en el hombro, cuando se utilizó la digestión con proteinasa K más corta. Esta tendencia se mantuvo generalmente cuando se procesaron otras muestras, independientemente del órgano de origen para la metástasis FFPE. En conclusión, acortar el tiempo de digestión con proteinasa K no sacrifica el rendimiento de ARN y puede ayudar a aislar ARN menos degradado y más largo.

A continuación, se compararon tres métodos diferentes de transcripción inversa: transcripción inversa con hexámeros aleatorios seguida de qPCR (dos etapas), transcripción inversa con un cebador específico de gen seguida de qPCR (dos etapas) y qRTPCR de una sola etapa utilizando cebadores específicos de gen. Se aisló ARN de once metástasis y se compararon los valores de Ct entre los tres métodos para β-actina, HUMSPB (figura 11C, D) y TTF. Los resultados mostraron diferencias estadísticamente significativas (p <0,001) para todas las comparaciones. Para ambos genes, la transcripción inversa con hexámeros aleatorios seguida de qPCR (reacción de dos etapas) dio los valores más altos de Ct mientras que la transcripción inversa con un cebador específico de gen seguida de qPCR (reacción de dos etapas) dio valores de Ct ligeramente más bajos (pero estadísticamente

significativos) que la reacción de 1 etapa correspondiente. Sin embargo, la RT-PCR de dos etapas con cebadores específicos de gen tenía una etapa de transcripción inversa más larga. Cuando los valores de Ct de HUMSPB se normalizaron al valor de β-actina correspondiente para cada muestra, no hubo diferencias en los valores de Ct normalizados entre los tres métodos. En conclusión, la optimización de las condiciones de reacción de RT-PCR puede generar valores de Ct más bajos, lo que ayuda a analizar los bloques de parafina más viejos (Cronin *et al.* (2004)), y una reacción de RTPCR de una sola etapa con cebadores específicos de gen puede generar valores de Ct comparables a los generados en la reacción de dos etapas correspondiente.

Rendimiento diagnóstico del ensayo qRTPCR optimizado. Se realizaron 12 reacciones de qRTPCR (10 Marcadores y 2 genes de mantenimiento) en un nuevo conjunto de 260 metástasis FFPE. Veintiún muestras dieron valores de Ct altos para los genes de mantenimiento por lo que sólo se utilizaron 239 en un análisis de mapa de calor. El análisis de los valores de Ct normalizados en un mapa de calor reveló la alta especificidad de los Marcadores de mama y próstata, una especificidad moderada de los de colon, pulmón y ovario, y una especificidad algo más baja de los Marcadores pancreáticos (figura 12). La combinación de los datos de qRTPCR normalizados con refinamiento computacional mejora el rendimiento del panel de Marcadores.

Utilizando los valores de expresión, normalizados a la media de la expresión de dos genes de mantenimiento, se desarrolló un algoritmo para predecir el tejido metastásico de origen combinando los datos de qRTPCR normalizados con el algoritmo y se determinó la precisión del ensayo qRTPCR realizando una validación cruzada dejando uno fuera (LOOCV). Para los seis tipos de tejidos incluidos en el ensayo, se estimó por separado que tanto el número de lecturas falsos positivos, cuando una muestra se predijo erróneamente como otro tipo de tumor incluido en el ensayo (páncreas como de colon, por ejemplo), como el número de veces que una muestra no se predijo como aquellos incluidos en los tipos de tejidos de ensayo (otros). Los resultados de la LOOCV se presentan en la Tabla 20.

Tabla 20

	Tejido de origen							
Predicción	Mama	Colon	Pulmón	Ovario	Páncreas	Próstata	Otro	Total
Mama	22	0	2	1	1	0	0	
Colon	1	27	3	2	4	0	4	
Pulmón	1	2	45	2	3	0	5	
Otro	1	1	3	1	4	0	16	
Ovario	5	0	0	43	0	0	1	
Páncreas	0	0	3	0	31	0	6	
Próstata	0	0	0	0	0	20	0	
Total	30	30	56	49	43	20	32	260
#Correcto	22	27	45	43	31	20	16	204
Precisión	72,3	90,0	87,8	87,8	72,1	100,0	50,0	78,5

El tejido de origen se predijo correctamente para 204 de 260 muestras analizadas, con una precisión global del 78%. Una proporción significativa de las lecturas falsos positivos se debieron a la reactividad cruzada de los Marcadores en tejidos histológicamente similares. Por ejemplo, tres carcinomas metastásicos de células escamosas de origen faríngeo, laríngeo y esofágico se predijeron erróneamente como pulmonar debido a la expresión de DSG3 en estos tejidos. La expresión positiva de CDH17 en carcinomas distintos del GI de colon, incluidos estómago y páncreas, hicieron que se clasificaran erróneamente como de colon 4 de 6 metástasis de cáncer de estómago ensayadas y 3 de 43 metástasis de cáncer de páncreas ensayadas.

Además de un ensayo LOOCV, los datos se dividieron aleatoriamente en 3 pares de conjuntos de ensayo y de entrenamiento separados. Cada división contenía aproximadamente un 50% de las muestras de cada clase. A divisiones 50/50 en tres pares de conjuntos de ensayo y de entrenamiento separados, las precisiones de clasificación globales del ensayo fueron 77%, 71% y 75%, lo que confirma la estabilidad de rendimiento del ensayo.

Por último, se ensayó otro conjunto independiente de 48 carcinomas metastásicos FFPE que incluía carcinoma metastásico de origen primario conocido, muestras de CUP con un diagnóstico de tejido de origen emitido por la evaluación patológica incluida IHC y muestras de CUP que siguieron siendo CUP después del ensayo IHC. Se hizo una estimación por separado de la precisión de la predicción del tejido de origen para cada categoría de muestras. La Tabla 21 resume los resultados de ensayo.

Tabla 21

	Ensayado	Correcto	Precisión
Met. conocida	15	11	73,3
CUP resuelto	22	17	77,3
CUP no resuelto	11		

La predicción del tejido de origen concordaba, con sólo unas pocas excepciones, con el diagnóstico del tejido de origen o primario conocido evaluado mediante evaluación clínica/patológica incluida IHC. Al igual que en el conjunto de entrenamiento, el ensayo no fue capaz de diferenciar los carcinomas de células escamosas procedentes de diferentes fuentes y se predijeron falsamente como de pulmón.

El ensayo también realizó diagnósticos de supuesto tejido de origen para ocho de once muestras que siguieron siendo CUP después de ensayos de diagnóstico convencionales. Uno de los casos CUP fue especialmente interesante. Se diagnosticó carcinoma metastásico en pulmón y pleura a un paciente masculino con antecedentes de cáncer de próstata. Los ensayos de PSA en suero e IHC con anticuerpos para PSA en el tejido metastásico dieron negativo, por lo que el diagnóstico del patólogo fue de CUP con una inclinación hacia los tumores gastrointestinales. El ensayo predijo claramente (probabilidad a posteriori del 0,99) que el tejido de origen era colon.

Análisis. En este estudio, se utilizó la determinación de perfiles de expresión en base a micromatrices de tumores primarios para identificar Marcadores candidatos para su uso con metástasis. El hecho de que los tumores primarios pueden utilizarse para descubrir Marcadores del tumor de origen para las metástasis concuerda con varios hallazgos recientes. Por ejemplo, Weigelt y colaboradores han demostrado que los perfiles de expresión génica de tumores primarios de mama se mantienen en las metástasis distantes. Weigelt et al. (2003). Backus y colaboradores identificaron supuestos Marcadores para detectar metástasis de cáncer de mama utilizando un análisis de expresión génica de todo el genoma de mama y otros tejidos y demostraron que la mamaglobina y CK19 detectaban metástasis clínicamente tratables en los ganglios linfáticos centinela de mama con un 90% de sensibilidad y un 94% de especificidad. Backus et al. (2005).

Durante el desarrollo del ensayo, la selección se centró en seis tipos de cáncer, incluido pulmón, páncreas y colon que se encuentran entre los más prevalentes en el CUP (Ghosh *et al.* (2005); y Pavlidis *et al.* 2005)) y mama, ovario y próstata para los cuales el tratamiento podría ser potencialmente más beneficioso para los pacientes. Ghosh *et al.* (2005). Sin embargo, pueden añadirse al panel Marcadores y tipos de tejido adicionales, siempre y cuando no se comprometa la precisión global del ensayo y, en su caso, no se afecte a la logística de las reacciones de RT-PCR.

Los estudios basados en micromatrices con tejido primario confirmaron la especificidad y la sensibilidad de los Marcadores conocidos. Como resultado, la mayoría de los Marcadores específicos de tejido tiene una alta especificidad para los tejidos estudiados en el presente documento. Un estudio reciente descubrió que, mediante IHC, PSCA se sobreexpresa en las metástasis de cáncer de próstata. Lam et al. (2005). Dennis et al. (2002) también demostraron que podría utilizarse PSCA como Marcador del tumor de origen para páncreas y próstata. Hubo una fuerte expresión de PSCA en algunos tejidos de próstata a nivel del ARN pero, debido a la inclusión del PSA en el ensayo, ya pueden separarse los cánceres de próstata y de páncreas. Un nuevo hallazgo de este estudio fue el uso de F5 como Marcador complementario (para PSCA) para tejido de origen pancreático. Tanto en el conjunto de datos de micromatriz con el tejido primario como en los datos de qRTPCR establecidos con metástasis FFPE, se descubrió que F5 complementaba a PSCA.

Investigadores anteriores han generado ensayos de CUP mediante IHC (Brown et al. (1997). DeYoung et al. (2000); y Dennis et al. (2005a)) o micromatrices. Su et al. (2001); Ramaswamy et al. (2001); y Bloom et al. (2004). Más recientemente, se ha acoplado SAGE a un pequeño panel de Marcadores qRTPCR. Dennis et al. (2002); y Buckhaults et al. (2003). Este estudio es el primero en combinar la determinación de perfiles de expresión basada en micromatrices con un pequeño panel de ensayos de qRTPCR. Los estudios de micromatrices con tejido primario identificaron algunos, pero no todos, de los mismos Marcadores de tejido de origen que los identificados anteriormente mediante estudios SAGE. Este hallazgo no resulta sorprendente dados los estudios que han demostrado que existe una concordancia moderada entre los datos de perfiles basados en micromatrices de ADN y basados en SAGE y que la correlación mejora para los genes con niveles de expresión más altos. Van Ruissen et al. (2005); y Kim et al. (2003). Por ejemplo, Dennis y colaboradores identificaron PSA, MG, PSCA y HUMSPB mientras que Buckhaults y colaboradores (Buckhaults et al. (2003)) identificaron PDEF.

La ejecución del ensayo de CUP se realiza preferentemente mediante qRTPCR debido a que es una tecnología robusta y puede tener ventajas de rendimiento frente a IHC. Al-Mulla *et al.* (2005); y Haas *et al.* (2005). Además, como se muestra en el presente documento, se ha mejorado el protocolo qRTPCR mediante el uso de cebadores específicos de gen en una reacción de una sola etapa. Esta es la primera demostración de la utilización de cebadores específicos de gen en una reacción qRTPCR de una sola etapa con tejido FFPE. Otros investigadores han realizado una qRTPCR de dos etapas (síntesis de ADNc en una reacción seguida de qPCR) o han utilizado

20

15

30

25

40

35

45

50

55

hexámeros aleatorios o cebadores específicos de gen truncados. Abrahamsen et al. (2003); Specht et al. (2001); Godfrey et al. (2000); Cronin et al. (2004); y Mikhitarian et al. (2004).

En resumen, la precisión global del 78% del ensayo para seis tipos de tejido supera a otros estudios. Brown et al. (1997); DeYoung et al. (2000); Dennis et al. (2005a); Su et al. (2001); Ramaswamy et al. (2001); y Bloom et al. (2004).

Ejemplo 7

5

10

15

20

60

65

En este estudio se construyeron carteras de marcadores génicos que utilizaban un clasificador, eligiendo de MVO y utilizando este clasificador para predecir el origen del tejido y el estado del cáncer para cinco tipos principales de cáncer incluidos de mama, colon, pulmón, ovario y próstata. Se analizaron 103 muestra de tejido humano normal congelado de forma instantánea, 23 de lesiones epiteliales proliferativas benignas y trescientas setenta y ocho de cáncer primario, mediante Affymetrix Human U133A GeneChip. También se analizaron muestras de leucocitos con el fin de restar la expresión génica potencialmente enmascarada por la co-expresión en células leucocitarias de fondo. Se desarrolló un nuevo método bioinformático basado en MVO para seleccionar carteras de marcadores génicos para los tejidos de origen y el estado del cáncer. Los datos demostraron que podría utilizarse un panel de 26 genes como clasificador para predecir con precisión el tejido de origen y el estado del cáncer de entre los 5 tipos de cáncer. Por lo tanto, puede obtenerse un método de clasificación de múltiples cánceres determinando los perfiles de expresión génica de un número razonablemente pequeño de marcadores génicos.

La Tabla 22 muestra los Marcadores identificados para los orígenes de tejido indicados. Para las descripciones de los genes, véase la Tabla 31.

25 Tabla 22

	Tejido	SEQ ID NO:	Nombre
30	Pulmón	59	SP-B
30		60	TTF1
		61	DSG3
	Páncreas	66	PSCA
35		67	F5
		71	ITGB6
		72	TGM2
40		84	HNRPA0
	Colon	85	HPT1
		77	FABP1
45		78	CDX1
		79	GUCY2C
	Próstata	86	PSA
50		80	hKLK2
	Mama	63	MGB1
		81	PIP
		64	PDEF
55	Ovario	82	HE4
		83	PAX8
		65	WT1

El conjunto de muestras incluía un total de 299 carcinomas metastásicos de colon, mama, páncreas, ovario, próstata, pulmón y otros carcinomas y muestras de cáncer primario de próstata. Se implementó una QC basada en la evaluación histológica, el rendimiento de ARN y la expresión del gen de control beta-actina. Otras categorías de muestras incluían metástasis originadas a partir de carcinomas de estómago (5), de riñón (6) colangiocarcinoma/de

vesícula biliar (4), de hígado (2), de cabeza y cuello (4), de íleon (1) y un mesotelioma. Los resultados se resumen en la Tabla 23.

Tabla 23

Tipo de	Recogido	QC	QC aislamiento de	QC pto. corte
tejido		histología	ARN	ACTB
Pulmón	41	37	36	25
Páncreas	63	57	49	41
Colon	45	42	42	31
Mama	40	35	35	34
Ovario	37	36	35	33
Próstata	27	27	25	19
Otro	46	34	29	23
Total	299	268	251	205

El ensayo de las muestras anteriormente indicadas dio como resultado la reducción del conjunto de Marcadores a los de la Tabla 24, con los resultados que se observan en la Tabla 25.

Tabla 24

Tabla final de Marcadores					
Pulmón	proteína asociada a surfactante	SP-B			
	factor de transcripción tiroideo 1	TTF1			
	desmogleína 3	DSG3			
Páncreas	antígeno de células madre de próstata	PSCA			
	factor de coagulación 5	F5			
Colon	transportador asociado a péptido intestinal	HPT1			
Próstata	antígeno específico de próstata	PSA			
Mama	mamaglobina	MGB			
	Factor de transcripción Ets	PDEF			
Ovario	Tumor de Wilms	WT1 1			

Tabla 25

Cáncer	Muestras #	Macador	Correcto	Sensi. %	Incorrecto	Espec. %
Pulmón	25/180	SP-B	13/25	52	0/180	100
		TTF	12/25	48	1/180	99
		DSG3	5/25	20	0/180	100
Páncreas	41/164	PSCA	24/41	59	6/164	96
		F5	6/41	15	4/164	98
Colon	31/174	HPT1	22/31	71	2/174	99
Mama	33/172	MGB	23/33	70	3/172	98
		PDEF	16/33	48	1/172	99
Próstata	19/186	PSA	19/19	100	0/186	100
		PDEF	19/19	100	2/186	99
Ovario	33/172	WT1	24/33	71	1/172	99
Total	205					

Los resultados demostraron que de 205 tumores metastásicos incluidos en parafina; 166 muestras (81%) presentaron resultados de ensayo concluyentes, Tabla 26.

Tabla 26

Precisión (%) Candidato Correcto Incorrecto Sin SP-B + TFF+DSG3 Pulmón 0 76 PSCA+F5 Páncreas 27 13 66 Colon HPT1 24 2 5 78 0 Próstata PSA 19 0 100 MGB + PDEF 3 Mama 23 7 70 Ovario WT1 23 2 8 70 Otro 20 3 87 11 39 Global 155 76

De los resultados falsos positivos, muchos falsos provenían de tejidos histológicamente y embriológicamente similares, Tabla 27.

Tabla 27

ID de la muestra Diagnóstico Predicho OV 26 Ovario Mama Br 24 Mama Colon Br 37 Mama Colon CRC_25 Colon Ovario Pn_59 Páncreas Colon Cont_27 Estómago Páncreas Estómago Cont_34 Colon Cont_35 Estómago Colon Cont_43 Conducto biliar Páncreas Cont 44 Conducto biliar Páncreas Cong_25 Hígado Páncreas

Se consideraron los siguientes parámetros para el desarrollo de modelos:

Separar los Marcadores en conjuntos femeninos y masculinos y calcular la probabilidad de CUP por separado para los pacientes masculinos y femeninos. El conjunto masculino incluía: SP_B, TTF1, DSG3, PSCA, F5, PSA, HPT1; el conjunto femenino incluía: SP_B, TTF1, DSG3, PSCA, F5, HPT1, MGB, PDEF, WT1. Se excluyó la expresión de fondo de los resultados de ensayo: Pulmón: SP_B, TTF1, DSG3; Ovario: WT1; y Colón: HPT1.

El modelo CUP se ajustó a la prevalencia de CUP (%): pulmón 23, páncreas 16, colorrectal 9, mama 3, ovario 4, próstata 2, otro 43. La prevalencia para mama y ovario se ajustó al 0% para los pacientes masculinos y la próstata se ajustó al 0% para las pacientes femeninas.

Se tomaron las siguientes etapas: colocar los Marcadores a escala similar; reducir el número de variables de 12 a 8 seleccionando el valor mínimo de cada conjunto específico de tejido; dejar fuera 1 muestra; construir el modelo a partir de las muestras restantes; ensayar la muestra dejada fuera; repetir hasta haber ensayado el 100% de las muestras; dejar fuera al azar ~50% de las muestras (~50% por tejido); construir el modelo a partir de las muestras restantes; ensayar ~50% de las muestras; y repetir para 3 divisiones aleatorias diferentes.

Se ajustó la precisión de la clasificación a la prevalencia del tipo de cáncer para producir los resultados que se resumen en la Tabla 28 con los datos no tratados que se muestran en la Tabla 29.

55

5

10

15

20

25

30

35

40

45

50

60

Tabla 28

		Mama	Colon	Pulmón	Otro	Ovario	Pánc.	Próstata	Gobal	Ajustado
5	Correcto	23	29	22	19	24	35	19	171	
5	Sin ensayo	3	2	2		2	3	0	12	
	Incorrecto	7	0	1	4	7	3	0	22	
	Prevalencia	0,03	0,09	0,23	0,43	0,04	0,16	0,02		
10	Ensayados/total %	91	94	92	100	94	93	100	94	95
. •	Correctos/total %	70	94	88	83	73	85	100	89	89
	Sin ensayo %	9	6	8	n/a	6	7	0	6	5
	Correcto	23	25	19	20	20	24	19	150	
15	Sin ensayo %	7	6	5		10	15	0	43	
	Incorrecto	3	0	1	3	3	2	0	12	
	Prevalencia	0,03	0/09	0,23	0,43	0,04	0,16	0,02		
	Ensayados/total %	79	81	80	100	70	63	100	79	83
20	Correctos/total %	70	81	76	87	61	59	100	73	76
	Correctos/ensayados %	88	100	95	87	87	92	100	93	91
	Sin ensayo %	21	19	20	n/a	30	37	0	21	17

5	F1 WT1	39 34.85	00 34.13	00 35.32	00 40.00	00 40 00	00 36.17	00 31.64	00 40.00	75 30.58	00 30.35	00 35.76	42 37.27	70 36.13	00 37.45	14 31.60	61 33.55	00 35.11	00 31.87	.21 31.23	.12 32.12	00 39.44	.86 36.60	.72 37.09	19 37.21	.14 31.11	.00 32.64	.75 35.41
10	PSCA TTF1		24.67 40.00	30.69 40.00	40.00 40.00	30.72 40.00	40.00 40.00	33,44 40.00	40.00 40.00	40.00 26.75	35.00 40.00	27.47 40.00	25.02 26.42	32.43 30.70	36.04 40.00	27.95 32.14	38.34 38.61	40.00 40.00	28.12 40.00	27,31 39.	40.00 31.	30.76 40.00	38.26 24.	8	37.85 28.19	40.00 28.	40.00 40.	40.00 34.
15	MG PDEF	40.00 30.36	9.51 25.07	_	2.26 26.01	35.73 33.19	40.00 37.72	40.00 34.07	40.00 35.99	40.00 32.47	40.00 30.45	40.00 28.21	40.00 25.79	40.00 32.77	40.00 37.12	8.94 32.19	40.00 36.67	40.00 40.00	40.00 33.60	38.04 34.29	40.00 39.23	40.00 36.10	.26	00	00	0.00 32.98	40.00 40.00	40.00 40.00
20	KLK3	40.00	0 40.00 29	28.20	0 40.00 22	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	0 40.00 28	40.00	40.00	40.00	40.00	40.00	40.00	3 40.00 37	9 40.00 40	40.00 40	5 40.00 40	40.00	40.00
25	5 HUMP	35.74 22.19	30.83 40.00	26.66 40.00	40.00 40.00	40.00 40.00	26.52 40.00	28.76 40.00	40.00 40.00	32.64 20.89	29.98 34.44	39.34 21.57	32.24 23.68	00 21.21		31.23 40.00	33.69 40.00	00 40.00	33.81 40.00	.88 38.61	38.00 40.00	21 40.00	.76 21.38	51 19.88	.16 21.51	.86 20.65	.79 40.00	90 40.00
30	DSG3 F		31.27 30		40.00 40	34.01 40	40.00 26	33.26 28	40.00 40	40.00 32	31.84 29	40.00 39	40.00 32	40.00 40.00	37.05 37	25.56 31		40.00 40.00			29.62 38	26.72 37	40.00 38	40.00 34	40.00 28	40.00 28	40.00 29	40.00 28
35	CDH17	40.00	40.00	40.00	40.00	40.00	29.39	26.22	33.76	26.36	26.20	40.00	40.00	40.00	40.00	35.65	40.00	38.40	32.43	40.00	40.00	40.00	40.00	37.05	40.00	39.47	40.00	40.00
40	PBGD Ave	30.04 26.71	23	27.95 25.71	28	33.89 31.24	30.34 27.52	28.63 25.55	34.29 31.32	28.77 25.96	30.62 27.54	28.79 26.74	27.50 24.78	32.32 30.76	27.79 25.14	27.07 24.14	26.94 24.55	30.05 27.41	24	22	73 27	2	28.23 25.37	26.44 24.05	30.56 27.68	28.25 24.87	30.45 27.21	32.47 28.88
45	BACTIN	23.37		47	25.12	28.59	24.69	22.47	28.35	23.15	24.46	24.68	90	29.19		21.21		24.76	23.82	22.09 2	24.89	40		.65	24.80	21.49		.28
50	Predicción	pulmón (III)	desc. mama	: mama	io mama	: mama	colon :	colon :	colon	pulmón colon	desc. colon	desc. pulmòn	c. pulmón			desc. pulmón	c. pulmón	SEE STATE OF THE SEE ST	pangued	<u>a</u> !		desc. pulmón	desc. pulmón	desc. pulmón	pulmón otro	pulmón otro	cotro :	cotro
55	Origen Ant.	mama pulmó	mama desc	mama desc.	mama ovario	ma desc.	colon desc.	colon desc.	colon desc.	colon pulmó	colon desc	pulmón desc	pulmón desc.	pulmón desc.	pulmón desc.	pulmón desc	pulmón desc.	pulmón desc.	pulmón desc.	pulmón desc.	pulmón desc.	pulmón deso	pulmón desc	pulmón desc	otro pulmó		otro desc.	otro desc.
60) Género Ori	f ma	f ma	f ma	f ma	f mama	f co	00 H	f co	m co	00 H	m pulr	m pul	m pul	m pul	f. pulr	m pulr	m puli	lud m	m pul	m pul	m pul	m pulr	f pull	f ot	m otro	f ot	m oti
60	Tabla 29 Muestra ID Gé	128	134	166	331	356	163	184	339	346	363	101	106	110	112	199	200	313	323	325	335	347	374	385	114	129	179	194
65	T N																											

5	38.20	40.00	35.12	40.00	40.00	38.18	34.91	34.24	29.71	38.59	30.69	31.16	38.76	38.11	36.65	40.00	34.71	39.28	40.00	25.28	40.00
	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	30.89	39.13	40.00	40.00	40.00	40.00	25.45	40.00	40.00	29.75
10	32.47	40.00	33.06	40.00	40.00	40.00	40.00	40.00	40.00	31.76	30.23	24.28	40.00	29.31	40.00	40.00	40.00	40.00	40.00	40.00	40.00
15	30.55	31.82	31.89	37.85	34.69	32.89	38.30	39.02	36.62	32.12	30.15	24.70	27.65	33.49	40.00	36.68	39.67	30.81	27.75	32.93	40.00
	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	30.28	40.00	40.00	40.00	40.00	40.00	40.00	40.00
20	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	21.38	25.98	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00
25	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	38.84	37.01	23.69	27.70	40.00	40.00	40.00	40.00	19.71	40.00	40.00	30.55
	40.00	34.06	27.75	37.01	36.27	29.24	36.13	34.75	34.90	30.60	29.05	29.47	40.00	31.06	40.00	26.82	27.15	34.94	32.72	34.07	26.32
30	40.00	40.00	40.00	40.00	40.00	40.00	40.00	39.36	40.00	40.00	38.96	40.00	40.00	27.86	36.01	40.00	40.00	40.00	36.98	40.00	35.91
35	34.17	29.64	40.00	30.54	31.79	32.36	40.00	40.00	40.00	40.00	28.28	40.00	40.00	28.95	27.92	40.00	40.00	37.30	33.97	40.00	26.83
40	28.57	26.77	28.26	25.64	25.67	29.35	27.63	26.72	28.08	26.72	26.44	24.66	30.04	24.49	28.84	29.38	28.48	25.77	24.29	26.14	27.12
40	31.47	29.74	30.62	28.82	29.20	31.37	30.22	30.16	31.54	29.88	29.46	26.95	31.87	34	30.59	31.94	31.52	28.38	27.43	29.12	29.80
45	25.67	23.80	25.90	22.45	22.14	27.32	25.04	23.27	24.62	23.55	23.42	22.37	28.20	21.66	27.09	26.81	25.44	23.15	21.14	23.16	24.44
50	offerth	otro	planting	otro	otro	Applications of the second	otro	otro	ovario	なるとは、	desc. páncreas	próstata pulmón próstata	pulmón próstata	desc. pulmónSCC	colon	desc. páncreas	desc. páncreas	desc. pulmón	otro	ovario	colon
55	colon	desc.	desc.	desc.	desc.	desc.	desc.	desc.	desc. ovario	desc.		pulmón	pulmón	desc.	pulmón colon	desc.	desc.	desc.	desc. otro	desc.	desc. colon
60	otro	otro	otro	otro	otro	otro	otro	otro	ovario	ovario	páncreas	próstata	próstata	CUP	CUP	CUP	CUP	CUP	CUP	CUP	CUP
00	-	Ε	E	J	ε	-	E	Ε	4-	•	+	ε	Ε	-	Ε	E	٤	E	Ε	+	-
65	302	305	317	333	334	342	382	404	354	148	417	136	407	116	123	157	177	306	360	372	187

Ejemplo 8

Estudio prospectivo de firma genética del cáncer metastásico de sitio primario desconocido CUP para predecir el tejido de origen

El objetivo específico de este estudio era determinar la capacidad de la firma genética de 10 genes para predecir el tejido de origen del carcinoma metastásico en pacientes con carcinoma de origen primario desconocido (CUP).

Objetivo principal: Confirmar la viabilidad de realizar el análisis genético a partir de muestras de biopsia core en pacientes consecutivos con CUP.

Objetivo secundario: correlacionar los resultados del ensayo de RT-PCR de firma genética de 10 genes con la evaluación diagnóstica realizada en el M.D. Anderson Cancer Center (MDACC). Tercer objetivo: Correlacionar la prevalencia 6 tipos de cáncer predichos por el ensayo con la prevalencia proveniente de la literatura y de la experiencia del MDACC.

Se utilizó el método descrito en el presente documento para realizar un análisis de expresión génica con micromatriz de 700 carcinomas primarios congelados, y muestras benignas y normales y marcadores génicos candidatos identificados, específicos para carcinomas de pulmón, páncreas, colon, mama, próstata y ovario. Se ensayaron los marcadores génicos candidatos mediante RT-PCR en 205 muestras fijadas en formalina e incluidas en parafina (FFPE) de carcinoma metastásico (estadio III-IV) originado a partir de pulmón, páncreas, colon, mama, ovario y próstata, así como metástasis originadas a partir de otros tipos de cáncer para el control de la especificidad. Los demás tipos de cáncer metastásico incluían carcinomas gástrico, de células renales, hepatocelular, colangiocarcinoma/de vesícula biliar y de cabeza y cuello. Los resultados permitieron seleccionar una firma genética de 10 genes que predijo el tejido de origen del carcinoma metastásico y dio una precisión global del 76%. El CV medio para mediciones repetidas en los experimentos de RT-PCR es del 1,5%, calculado en base a 4 puntos de datos duplicados. Se utilizó la beta-actina (ACTB) como gen de mantenimiento y la mediana de su expresión fue similar en muestras metastásicas de origen diferente (CV = 5,6%).

El objetivo específico de este estudio era validar la capacidad de la firma genética de 10 genes para predecir el tejido de origen del carcinoma metastásico en los pacientes con CUP en comparación con la evaluación diagnóstica exhaustiva.

Elegibilidad de los pacientes

El paciente debe tener al menos 18 años de edad con un estado funcional ECOG de 0-2. Se aceptaron pacientes con diagnóstico de adenocarcinoma o diagnóstico de carcinoma poco diferenciado. El grupo de pacientes con adenocarcinoma incluye tumores bien, moderadamente y poco diferenciados.

Pacientes han cumplido los criterios para CUP: ningún primario detectado después de una evaluación completa que se define como la historia completa y un examen físico, un examen detallado de laboratorio, estudios de formación de imágenes y estudios invasivos dirigidos a los síntomas o signos. Sólo se permitió participar en el estudio a los pacientes no tratados.

Si un paciente ha sido tratado con quimioterapia o radiación, se permite su participación en el estudio si se dispone de tejido anterior (al tratamiento) en forma de bloques archivados dentro del período de 10 años.

Los pacientes dieron su consentimiento/autorización por escrito para participar en este estudio.

Diseño del estudio

Se permitió participar en el estudio a pacientes con diagnóstico de CUP que se habían sometido a una biopsia core o biopsia por escisión de la lesión metastásica más accesible. Sólo los pacientes con biopsia FNA no fueron elegibles. Se admitió a los primeros 60 pacientes consecutivos que se presentaron que cumplían con los criterios de inclusión y el consentimiento para el estudio. Si el MDACC solicitaba una biopsia repetida para fines de diagnóstico para su tratamiento, se obtenía tejido adicional para el estudio si el paciente daba su consentimiento. Se registró a todos los participantes en el protocolo en el sistema de gestión de datos de pacientes (PDMS) institucional.

Se realizó una evaluación diagnóstica completa, que incluía evaluaciones clínicas y patológicas, en todos los pacientes incluidos según las normas del MDACC. La parte de patología de la evaluación diagnóstica puede haber incluido ensayos de inmunohistoquímica (IHC) con Marcadores que incluían CK-7, CK-20, TTF-1 y otros que el patólogo consideró indicados. Esto es parte del trabajo de rutina de todos los pacientes que se presentan con CUP.

40

10

5

15

20

25

30

35

40

45

50

55

60

Recogida de muestras de tejido

El estudio incluía muestras de carcinoma metastásico fijadas en formalina e incluidas en parafina recogidas de pacientes con CUP.

5

Se utilizaron seis secciones de 10 µm para el aislamiento de ARN, las muestras de tejido más pequeñas requieren nueve secciones de 10 µm. Se confirmaron el diagnóstico histopatológico y el contenido del tumor para cada muestra utilizada para el aislamiento de ARN en una sección adicional teñida con hematoxilina y eosina (HE). La muestra de tumor debía tener más de un 30% de contenido del tumor en la sección HE.

10

Los datos clínicos fueron suministrados de forma anónima a Veridex e incluían la edad del paciente, el sexo, la histología del tumor mediante microscopia óptica, el grado de malignidad del tumor (diferenciación), el sitio de metástasis, la fecha de obtención de la muestra, la descripción de la evaluación diagnóstica realizada para cada paciente.

15

Procesamiento de tejidos y experimentos de RT-PCR

20

Se extrajo el ARN total de cada muestra de tejido utilizando el protocolo descrito anteriormente. Sólo se utilizaron las muestras que produjeron más de 1 µm de ARN total de la cantidad estándar de tejido para el posterior ensayo de RT-PCR. Las muestras con menos rendimiento de ARN se consideran degradadas y se excluyeron de los posteriores experimentos. Se llevó a cabo control de la integridad del ARN en base a la expresión de mantenimiento con el fin de excluir las muestras con ARN degradado, según el procedimiento estándar de Veridex.

25

Se utilizó un ensayo de RT-PCR que incluye un panel de 10 genes y 1-2 genes de control para el análisis de las muestras de ARN. El ensayo de PCR y la transcripción inversa se llevan a cabo utilizando los protocolos descritos anteriormente.

~

Se calculó el valor de expresión relativa para cada gen ensayado presentado como ΔCt, que es igual al Ct del gen diana menos el Ct de los genes de control, y se utilizó para la predicción del tejido de origen.

30

Tamaño de muestra e interpretación de datos

35

Se estudió un tamaño de muestra limitado de 60 pacientes debido a la naturaleza exploratoria del estudio piloto. Hasta la fecha, se han sometido a ensayo 22 pacientes. Las muestras de un paciente no consiguieron producir suficiente ARN para la RT-PCR y 3 no lograron pasar el control QC evaluado mediante RT-PCR con genes de control. Se utilizó un total de 18 pacientes para determinada la probabilidad de lesión metastásica del paciente.

40

Se utilizó el modelo estadístico para determinar la probabilidad del tejido de origen del carcinoma metastásico de las siguientes siete categorías: pulmón, páncreas, colon, mama, próstata, ovario y ningún ensayo (otro). Para cada muestra, la probabilidad para cada categoría se calcula a partir de un modelo de clasificación lineal. Los resultados de ensayo se resumen en la Tabla 30.

45

La probabilidad de lesión metastásica de un paciente (con primarios conocidos) que viene de uno de estos 6 sitios (colon, páncreas, pulmón, próstata, ovario, mama) es de aproximadamente un 76%. Este número proviene de la literatura dada la incidencia de diversos tipos de cáncer y el potencial de propagación y datos no publicados generados en el M.D. Anderson a partir de registro de tumores. Para las muestras ensayadas, la prevalencia de 6 sitios fue del 67% (12 de 18 muestras ensayadas), en estrecha concordancia con las observaciones anteriores.

50

55

60

Tabla 30

	Date	os del _l	paciente	Probabi	lidad a p	osteriori To	oO (%)				
	ID	M/F	predicción	Mama	Colon	Pulmón	SCC pulmón	Otro	Ovario	Páncreas	Próstata
5	1	М	Otro	0,00	0,00	0,81	0,00	98,68	0,00	0,51	0,00
Ū	4	F	Colon	0,00	99,70	0,00	0,00	0,09	0,20	0,01	0,00
	5	М	Pulmón	0,00	33,29	52,27	0,01	13,30	0,00	1,13	0,00
	6	F	Colon	0,00	99,91	0,00	0,00	0,09	0,00	0,00	0,00
	2	М	Colon	0,00	93,19	0,01	0,00	2,90	0,00	3,90	0,00
10	10	F	Otro	0,02	2,04	0,03	0,03	61,43	1,12	35,34	0,00
	16	F	Colon	0,00	48,59	0,01	1,57	47,62	0,17	2,05	0,00
	22	M	SCC pulmón	0,00	8,85	0,01	71,69	11,84	0,00	7,62	0,00
	23	M	Colon	0,00	99,27	0,01	0,00	0,72	0,00	0,00	0,00
	24	F	Colon	0,00	90,59	0,00	0,00	2,36	0,00	7,04	0,00
15	26	F	Pulmón	0,00	0,00	99,93	0,00	0,06	0,00	0,01	0,00
	17	М	Otro	0,00	0,07	0,02	0,09	94,06	0,00	5,77	0,00
	19	F	Otro	0,02	0,11	0,04	0,22	76,36	23,24	0,01	0,00
	21	F	Páncreas	0,00	6,97	0,00	0,00	2,37	8,43	82,23	0,00
20	27	F	Otro	0,00	0,04	0,04	0,59	99,06	0,14	0,13	0,00
20	11	М	Otro	0,00	0,23	0,07	0,09	99,52	0,00	0,09	0,00
	32	F	Ovario	0,00	0,01	0,00	0,00	7,23	92,63	0,13	0,00
	34	M	SCC pulmón	0,00	0,03	0,00	65,64	7,96	0,00	26,38	0,00
	3	F	no pasó el ctrl.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
25	8	М	no pasó el ctrl.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	20	F	no pasó el ctrl.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Aunque la invención precedente se ha descrito con cierto detalle a modo de ilustración y ejemplo con fines de claridad de comprensión, las descripciones y los ejemplos no deben interpretarse como limitativos del alcance de la invención.

Tabla 31

	Nombre	SEQ ID NO	Registro	Descripción
_	CDH17	62	NM_004063	cadherina 17
5	CDX1	78	NM_001804	Factor de transcripción 1 de la caja homeótica
	DSG3	61/3	NM_001944	desmogleína 3
	F5	67/6	NM_000130	factor de coagulación V
	FABP1	71	NM_001443	proteína de unión a ácidos grasos 1, hígado
10	GUCY2C	79	NM_004963	guanilato ciclasa 2C
10	HE4	82	NM_006103	supuesto marcador de carcinoma de ovario
	KLK2	80	BC005196	calicreína 2, de próstata
	HNRPA0	84	NM 006805	ribonucleoproteína nuclear heterogénea A0
	HPT1	85/4	U07969	Transportador asociado a péptido intestinal
15	ITGB6	71	NM_000888	Integrina, beta 6
	KLK3	68	NM_001648	calicreina 3
	MGB1	63/7	NM_002411	mamaglobina 1
	PAX8	83	BC001060	Gen paired box 8
	PBGD	70	NM_000190	hidroximetilbilano sintasa
20	PDEF	64/8	NM_012391	Factor de transcripción Ets que contiene dominio
	PIP	81	NM_002652	Proteína inducida por prolactina
	PSA	86/9	U17040	Precursor de antígeno específico de próstata
	PSCA	66/5	NM_005672	Antígeno de células madre de próstata
0.5	SP-B	59/1	NM_198843	proteína B asociada a surfactante pulmonar
25	TGM2	72	NM 004613	transglutaminasa 2
	TTF1	60/2	NM_003317	similar a factor de transcripción tiroideo 1
	WT1	65/10	NM_024426	Tumor de Wilms 1
	β-actin	69	NM_001101	β-actina
30	KRT6F	87	L42612	queratina 6 isoforma K6f
30	p73H	88	AB010153	proteína relacionada con p53
	SFTPC	89	NM_003018	proteína C asociada a surfactante pulmonar
	KLK10	90	NM_002776	calicreina 10
	CLDN18	91	NM_016369	Claudina 18
35	TR10	92	BD280579	Receptor del factor de necrosis tumoral
	B305D	93		
	B726	94		
	GABA-pi	95	BC109105	receptor de ácido gamma-aminobutírico A, pi
	StAR	96	NM_01007243	reguladora esteroidogénica aguda
40	EMX2	97	NM 004098	homólogo 2 de espiráculos vacíos (<i>Drosophila</i>)
	NGEP	98	AY617079	variante larga de NGEP
	NPY	99	NM_000905	neuropéptido Y
	SERPINA1	100	NM_000295	inhibidor de serpin peptidasa, clado A miembro 1
4.5	KRT7	101	NM_005556	Queratina 7
45	MMP11	102	NM_005940	metalopeptidasa de matriz 11 (estromelisina 3)
	MUC4	103	NM_018406	asociada a mucina 4 de superficie celular
	FLJ22041	104	AK025694	
	BAX	105	NM_138763	Variante Δ de transcrito proteína asociada a BCL2
50	PITX1	106	NM_002653	factor 1 de trans de homeodominio similar a paired
30	MGC:10264	107	BC005807	estearoil-CoA desaturasa (Δ-9-desaturasa)

REFERENCIAS

Patentes y publicaciones de solicitud de patentes de los Estados Unidos

	5242974	5700637	20030194733
60	5350840	5786148	20030198970
	5384261	6004755	20030215803
	5405783	6136182	20030215835
	5412087	6218114	20030219760
	5424186	6218122	20030219767

43

55

6

	5429807	6225051	20030232350
	5436327	6232073	20030235820
_	5445934	6261766	20040005563
5	5472672	6271002	20040009154
	5527681	6339148	20040009489
	5529756	20010029020	20040018969
	5532128	20020055627	20040029114
10	5545531	20020068288	20040076955
10	5554501	20020168647	20040126808
	5556752	20030044859	20040146862
	5561071	20030087818	20040219572
	5571639	20030104448	20040219575
15	5593839	20030124128	20050037010
. •	5599695	20030124579	20050059008
	5624711	20030138793	20060094035
	5658734	20030190656	

20

Patentes y publicaciones de patentes extranjeras

25

35

45

50

55

65

WO1998040403	WO2001073032	WO2004030615
WO1998056953	WO2002046467	WO2004031412
WO2000006589	WO2002073204	WO2004063355
WO2000055320	WO2002101357	WO2004077060
WO2001031342	WO2004018999	WO2005005601

30 Artículos de revistas

Abrahamsen *et al.* (2003) Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction J Mol Diag 5:34-41

Al-Mulla et al. (2005) BRCA1 gene expression in breast cancer: a correlative study between real-time RT-PCR and immunohistochemistry J Histochem Cytochem 53:621-629

Argani et al. (2001) Discovery of new Markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma Cancer Res G1:4320-4324

Autiero *et al.* (2002) Intragenic amplification and formation of extrachromosomal small circular DNA molecules from the PIP gene on chromosome 7 in primary breast carcinomas Int J Cancer 99:370-377

Backus *et al.* (2005) Identification and characterization of optimal gene expression Markers for detection of breast cancer metastasis J Mol Diagn 7:327-336

Bentov *et al.* (2003) The WT1 Wilms' tumor suppressor gene: a novel target for insulin-like growth factor-I action Endocrinol 144:4276-4279

Bera et al. (2004) NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate Proc Natl Acad Sci USA 101:3059-3064

Bibikova et al (2004) Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays Am j Pathol 165:1799-1807

Bloom *et al.* (2004) Multi-platform, multi-site, microarray-based human tumor classification Am J Pathol 164:9-16 Borchers *et al.* (1997) Heart-type fatty acid binding protein - involvement in growth inhibition and differentiation Prostaglandins Leukot Essent Fatty Acids 57:77-84

Borgono et al. (2004) Human tissue kallikreins: physiologic roles and applications in cancer Mol Cancer Res 2:257-280

Brookes (1999) The essence of SNPs Gene 23:177-186

Brown *et al.* (1997) Immunohistochemical identification of tumor Markers in metastatic adenocarcinoma. A diagnostic adjunct in the determination of primary site Am J Clin Pathol 107:12-19

Buckhaults et al. (2003) Identifying tumor origin using a gene expression-based classification map Cancer Res 63:4144-4149

Chan et al. (1985) Human liver fatty acid binding protein cDNA and amino acid sequence. Functional and evolutionary implications J Biol Chem 260:2629-2632

60 Chen *et al.* (1986) Human liver fatty acid binding protein gene is located on chromosome 2 Somat Cell Mol Genet 12:303-306

Cheung et al. (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas J Clin Endocrinol Metab 88:354-357

Clark *et al.* (1999) The potential role for prolactin-inducible protein (PIP) as a Marker of human breast cancer micrometastasis Br J Cancer 81:1002-1008

- Cronin et al. (2004) Measurement of gene expression in archival paraffin-embedded tissue Am J Pathol 164:35-42
- Cunha et al. (2006) Tissue-specificity of prostate specific antigens: Comparative analysis of transcript levels in prostate and non-prostatic tissues Cancer Lett 236:229-238
- Dennis *et al.* (2002) Identification from public data of molecular Markers of adenocarcinoma characteristic of the site of origin Can Res 62:5999-6005
 - Dennis *et al.* (2005a) Hunting the primary: novel strategies for defining the origin of tumors J Pathol 205:236-247 Dennis *et al.* (2005b) Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm Clin Can Res 11:3766-3772
- DeYoung *et al.* (2000) Immunohistologic evaluation of metastatic carcinomas of unknown origin: an algorithmic approach Semin Diagn Pathol 17:184-193
 - Di Palma et al. (2003) The paired domain-containing factor Pax8 and the homeodomain-containing factor TTF-1 directly interact and synergistically activate transcription Biol Chem 278:3395-3402
- Dwight *et al.* (2003) Involvement of the PAX8 peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors J Clin Endocrinol Metab 88:4440-4445
 - Feldman et al. (2003) PDEF expression in human breast cancer is correlated with invasive potential and altered gene expression Cancer Res 63:4626-4631
 - Fleming et al. (2000) Mammaglobin, a breast-specific gene, and its utility as a Marker for breast cancer Ann N Y Acad Sci 923:78-89
- Fukushima *et al.* (2004) Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays Oncogene 23:9042-9051
 - Ghosh *et al* (2005) Management of patients with metastatic cancer of unknown primary Curr Probl Surg 42:12-66 Giordano *et al.* (2001) Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles Am J Pathol.159:1231-1238
- Glasser *et al* (1988) cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal) J Biol Chem 263:9-12
 - Godfrey et al. (2000) Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5' nuclease quantitative reverse transcription-polymerase chain reaction J Mol Diag 2:84-91
- Goldstein *et al.* (2002) WT1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas Am J Clin Pathol 117:541-545
 - Gradi et al. (1995) The human steroidogenic acute regulatory (StAR) gene is expressed in the urogenital system and encodes a mitochondrial polypeptide Biochim Biophys Acta 1258:228-233
 - Greco et al. (2004) Carcinoma of unknown primary site: sequential treatment with paclitaxel/carboplatin/etoposide and gemcitabine/irinotecan: A Minnie Pearl cancer research network phase II trial The Oncologist 9:644-652
- Haas et al. (2005) Combined application of RT-PCR and immunohistochemistry on paraffin embedded sentinel lymph nodes of prostate cancer patients Pathol Res Pract 200:763-770
 - Hwang et al. (2004) Wilms tumor gene product: sensitive and contextually specific Marker of serous carcinomas of ovarian surface epithelial origin Appl Immunohistochem Mol Morphol 12:122-126
- Ishikawa *et al.* (2005) Experimental trial for diagnosis of pancreatic ductal carcinoma based on gene expression profiles of pancreatic ductal cells Cancer Sci 96:387-393
 - Italiano *et al.* (2005) Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites: biological and clinical implications Ann Oncol 16:1503-1507
 - Jones et al. (2004) Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival Clin Cancer Res 10:2832-2845
 - Jones et al. (2005) Thyroid transcription factor 1 expression in small cell carcinoma of the urinary bladder: an immunohistochemical profile of 44 cases Hum Pathol 36:718-723
 - Khoor et al. (1997) Expression of surfactant protein B precursor and surfactant protein B mRNA in adenocarcinoma of the lung Mod Pathol 10:62-67
- Kim (2003) Comparison of oligonucleotide-microarray and serial analysis of gene expression (SAGE) in transcript profiling analysis of megakaryocytes derived from CD34+ cells Exp Mol Med 35:460-466
 - Kim et al. (2003) Steroidogenic acute regulatory protein expression in the normal human brain and intracranial tumors Brain Res 978:245-249
- Lam *et al.* (2005) Prostate stem cell antigen is overexpressed in prostate cancer metastases Clin Can Res 11:2591-2596
 - Lembersky et al. (1996) Metastases of unknown primary site Med Clin North Am. 80:153-171
 - Lewis et al. (2001) Unlocking the archive-gene expression in paraffin-embedded tissue J Pathol 195:66-71
 - Lipshutz et al. (1999) High density synthetic oligonucleotide arrays Nature Genetics 21:S20-24
- Lowe et al. (1985) Human liver fatty acid binding protein. Isolation of a full length cDNA and comparative sequence analyses of orthologous and paralogous proteins J Biol Chem 260:3413-3417
 - Ma et al. (2006) Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay Arch Pathol Lab med 130:465-473
 - Magklara *et al.* (2002) Characterization of androgen receptor and nuclear receptor co-regulator expression in human breast cancer cell lines exhibiting differential regulation of kallikreins 2 and 3 Int J Cancer 100:507-514
- Markowitz (1952) Portfolio Selection J Finance 7:77-91

- Marques et al. (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas J Clin Endocrinol Metab 87:3947-3952
- Masuda *et al.* (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples Nucl Acids Res 27:4436-4443
- McCarthy *et al.* (2003) Novel Markers of pancreatic adenocarcinoma in fine-needle aspiration: mesothelin and prostate :stem cell antigen labeling increases accuracy in cytologically borderline cases Appl Immunohistochem Mol Morphol 11:238-243
 - Mikhitarian *et al.* (2004) Enhanced detection of RNA from paraffin-embedded tissue using a panel of truncated genespecific primers for reverse transcription BioTechniques 36:1-4
- Mintzer *et al.* (2004) Cancer of unknown primary: changing approaches, a multidisciplinary case presentation from the Joan Karnell Cancer Center of Pennsylvania Hospital The Oncologist 9:330-338
 - Moniaux et al. (2004) Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy Br J Cancer 91:1633-1638
- Murphy *et al.* (1987) Isolation and sequencing of a cDNA clone for a prolactin-inducible protein (PIP). Regulation of PIP gene expression in the human breast cancer cell line, T-47D J Biol Chem 262:15236-15241
 - Myal et al. (1991) The prolactin-inducible protein (PIPGCDFP-15) gene: cloning, structure and regulation J Mol Cell Endocrinol 80:165-175
 - Nakamura et al. (2002) Expression of thyroid transcription factor-1 in normal and neoplastic lung tissues Mod Pathol 15:1058-1067
- Noonan *et al.* (2001) Characterization of the homeodomain gene EMX2: sequence conservation, expression analysis, and a search for mutations in endometrial cancers Genomics 76:37-44
 - Oettgen et al. (2000) PDEF, a novel prostate epithelium-specific Ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression J Biol Chem 275:1216-1225
- Oji et al. (2003) Overexpression of the Wilms' tumor gene WT1 in head and neck squamous cell carcinoma Cancer Sci 94:523-529
 - Pavlidis *et al.* (2003) Diagnostic and therapeutic management of cancer of an unknown primary Eur J Can 39: 990-2005
 - Pilot-Mathias et al. (1989) Structure and organization of the gene encoding human pulmonary surfactant proteolipid SP-B DNA 8:75-86
- 30 Pilozzi *et al.* (2004) CDX1 expression is reduced in colorectal carcinoma and is associated with promoter hypermethylation J Pathol 204:289-295
 - Poleev *et al.* (1992) PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors Development 116:611-623
- Prasad *et al.* (2005) Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells Cancer Res 65:1619-1626
 - Ramaswamy (2004) Translating cancer genomics into clinical oncology N Engl J Med 350:1814-1816
 - Ramaswamy et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures Proc Natl Acad Sci USA 98:15149-15154
- Rauscher (1993) The WT1 Wilms tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor FASEB J 7:896-903
 - Reinholz *et al.* (2005) Evaluation of a panel of tumor Markers for molecular detection of circulating cancer cells in women with suspected breast cancer Clin Cancer Res 11:3722
 - Schlag et al. (1994) Cancer of unknown primary site Ann Chir Gynaecol 83:8-12
- Senoo *et al.* (1998) A second p53-related protein, p73L, with high homology to p73 Biochem Biophys Res Comm 248:603-607
 - Specht *et al.* (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffinembedded tumor tissue Amer J Pathol 158:419-429
 - Su et al. (2001) Molecular classification of human carcinomas by use of gene expression signatures Cancer Res 61:7388-7393
- Takahashi *et al.* (1995) Cloning and characterization of multiple human genes and cDNAs encoding highly related type II keratin 6 isoforms J Biol Chem 270:18581-18592
 - Takamura *et al.* (2004) Reduced expression of liver-intestine cadherin is associated with progression and lymph node metastasis of human colorectal carcinoma Cancer Lett 212:253-259
- Tothill *et al.* (2005) An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin Can Res 65:4031-4040
 - van Ruissen *et al.* (2005) Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips BMC Genomics 6:91
 - Varadhachary et al. (2004) Diagnostic strategies for unknown primary cancer Cancer 100:1776-1785
- Venables *et al.* (2002) Modern Applied Statistics with S. Fourth edition. Springer Wallace *et al.* (2005) Accurate Molecular detection of non-small cell lung cancer metastases in mediastinal lymph nodes sampled by endoscopic ultrasound-guided needle aspiration Cest 127:430-437
 - Wan et al. (2003) Desmosomal proteins, including desmoglein 3, serve as novel negative Markers for epidermal stem cell-containing population of keratinocytes J Cell Sci 116:4239-4248
- Watson *et al.* (1996) Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer Cancer Res 56:860-865

Watson et al. (1998) Structure and transcriptional regulation of the human mammaglobin gene, a breast cancer

associated member of the uteroglobin gene family localized to chromosome 11q13 Oncogene 16:817-824 Weigelt et al. (2003) Gene expression profiles of primary breast tumors maintained in distant metastases Proc Natl Acad Sci USA 100:15901-15905 5 Zapata-Benavides et al. (2002) Downregulation of Wilms' tumor 1 protein inhibits breast cancer proliferation Biochem Biophys Res Commun 295:784-790 LISTADO DE SECUENCIAS 10 <110> Veridex, LLC Wang, Yixin Mazumder, Abhijit Talantov, Dmitri Jatkoe, Timothy Baden, Jonathan <120> Métodos y materiales para identificar el origen de un carcinoma de origen primario desconocido <130> VDX5007WOPCT 15 <150> 60/718.501 <151> 19-09-2005 <150> 60/725.680 20 <151> 12-10-2005 <160> 107 <170> PatentIn versión 3.3 25 <210> 1 <211> 476 <212> ADN <213> humano 30 <400> 1 gaaaaaccag ccactgcttt acaggacagg gggttgaagc tgagccccgc ctcacaccca 60 35 cccccatgca ctcaaagatt ggattttaca gctacttgca attcaaaatt cagaagaata 120 aaaaatggga acatacagaa ctctaaaaga tagacatcag aaattgttaa gttaagcttt 180 40 240 ttcaaaaaat cagcaattcc ccagcgtagt caagggtgga cactgcacgc tctggcatga tgggatggcg accgggcaag ctttcttcct cgagatgctc tgctgcttga gagctattgc 300 360 tttgttaaga tataaaaagg ggtttctttt tgtctttctg taaggtggac ttccagattt 45 420 tgattgaaag tcctagggtg attctatttc tgctgtgatt tatctgctga aagctcagct 476 ggggttgtgc aagctaggga cccattcctg tgtaatacaa tgtctgcacc aatgct 50 <210> 2 <211> 493 <212> ADN <213> humano

60

55

<400> 2

	gtgattcaaa	tgggttttcc	acgctagggc	ggggcacaga	ttggagaggg	ctctgtgctg	60
5	acatggctct	ggactctaaa	gaccaaactt	cactctgggc	acactctgcc	agcaaagagg	120
	actcgcttgt	aaataccagg	atttttttt	ttttttgaag	ggaggacggg	agctggggag	180
	aggaaagagt	cttcaacata	acccacttgt	cactgacaca	aaggaagtgc	cccctcccg	240
10	gcaccctctg	gccgcctagg	ctcagcggcg	accgccctcc	gcgaaaatag	tttgtttaat	300
15				agttggacta			360
	ctgtacattt	tgttgtaaaa	agaaaaacca	ctcccagtcc	ccagcccttc	acatttttta	420
	tgggcattga	caaatctgtg	tatattattt	ggcagtttgg	tatttgcggc	gtcagtcttt	480
20	ttctgttgta	act					493
25	<210> 3 <211> 545 <212> ADN <213> humano						
	<400> 3						
30	ccatcccata g	gaagtccagc	agacaggatt	tgttaagtgc	cagactttgt	caggaagtca	60
	aggagcttct g	gctttgtccg	cctctgggtc	tgtccagcca	gctgtttcca	tccctgaccc	120
35	tctgcagcat g	gtaactatt	tagtaacgga	gacttactcg	gcttctggtt	ccctcgtgca	180
	accttccact o	gcaggctttg	atccacttct	cacacaaaat	gtgatagtga	cagaaagggt	240
	gatctgtccc a	atttccagtg	ttcctggcaa	cctagctggc	ccaacgcagc	tacgagggtc	300
40	acatactatg (ctctgtacag	aggatccttg	ctcccgtcta	atatgaccag	aatgagctgg	360
	aataccacac t	tgaccaaatc	tggatctttg	gactaaagta	ttcaaaatag	catagcaaag	420
45	ctcactgtat 1	tgggctaata	atttggcact	tattagcttc	tctcataaac	tgatcacgat	480
70	tataaattaa a	atgtttgggt	tcatacccca	aaagcaatat	gttgtcactc	ctaattctca	540
	agtac			4			545
50	<210> 4 <211> 284						
55	<212> ADN <213> humano						
	<400> 4						
60							

	ctgcacccac	ctacttagat	atttcatgtg	ctatagacat	tagagagatt	tttcatttt	60
5	ccatgacatt	tttcctctct	gcaaatggct	tagctacttg	tgtttttccc	ttttggggca	120
	agacagactc	attaaatatt	ctgtacattt	tttctttatc	aaggagatat	atcagtgttg	180
40	tctcatagaa	ctgcctggat	tccatttatg	ttttttctga	ttccatcctg	tgtccccttc	240
10	atccttgact	cctttggtat	ttcactgaat	ttcaaacatt	tgtc		284
15	<210> 5 <211> 394 <212> ADN <213> humano						
20	<220> <221> misc_feature <222> (58)(58) <223> n es a, c, g, c						
25	<220> <221> misc_feature <222> (95)(95) <223> n es a, c, g, c						
30	<220> <221> misc_feature <222> (99) (99) <223> n es a, c, g, c						
35	<220> <221> misc_feature <222> (119)(119) <223> n es a, c, g, c						
40	<220> <221> misc_feature <222> (123)(123) <223> n es a, c, g, c						
45	<220> <221> misc_feature <222> (130)(130) <223> n es a, c, g, c						
50	<220> <221> misc_feature <222> (151)(151) <223> n es a, c, g, c						
55	<220> <221> misc_feature <222> (155)(155) <223> n es a, c, g, c						
60	<220> <221> misc_feature <222> (161)(161)						
65	<223> n es a, c, g, c	o t					

```
<221> misc feature
     <222> (212)..(212)
     <223> n es a, c, g, o t
 5
     <400> 5
10
             ttcctgaggc acatcctaac gcaagtttga ccatgtatgt ttgcaccct tttccccnaa
                                                                                     60
             ccctgacctt cccatgggcc ttttccagga ttccnaccng gcagatcagt tttagtgana
                                                                                    120
             canateegen tgeagatgge ecetecaace nttintgttg ntgttteeat ggeecageat
                                                                                    180
15
                                                                                    240
             tttccaccct taaccctgtg ttcaggcact tnttccccca ggaagccttc cctgcccacc
             ccatttatga attgagccag gtttggtccg tggtgtcccc cgcacccagc aggggacagg
                                                                                    300
             caatcaggag ggcccagtaa aggctgagat gaagtggact gagtagaact ggaggacaag
                                                                                    360
20
                                                                                   394
             agttgacgtg agttcctggg agtttccaga gatg
     <210>6
25
     <211> 470
     <212> ADN
     <213> humano
     <220>
30
     <221> misc feature
     <222> (61)..(61)
     <223> n es a, c, g, o t
     <220>
35
     <221> misc feature
     <222> (82) .. (82)
     <223> n es a, c, q, o t
     <400> 6
40
          atcctctaca gccagatgtc acagggatac gtctactttc acttggtgct ggagaattca
                                                                                       60
          naagtcaaga acatgctaag cntaagggac ccaaggtaga aagagatcaa gcagcaaagc
                                                                                      120
45
          acaggttctc ctggatgaaa ttactagcac ataaagttgg gagacaccta agccaagaca
                                                                                      180
          ctggttctcc ttccggaatg aggccctggg aggaccttcc tagccaagac actggttctc-
                                                                                      240
50
          cttccagaat gaggccctgg aaggaccctc ctagtgatct gttactctta aaacaaagta
                                                                                      300
                                                                                      360
          actcatctaa gattttggtt gggagatggc atttggcttc tgagaaaggt agctatgaaa
          taatccaaga tactgatgaa gacacagctg ttaacaattg gctgatcagc ccccagaatg
                                                                                      420
55
                                                                                      470
          cctcacgtgc ttggggagaa agcacccctc ttgccaacaa gcctggaaag
     <210> 7
60
     <211> 396
     <212> ADN
     <213> humano
     <400> 7
65
```

	gcagcagcct	caccatgaag	ttgctgatgg	tcctcatgct	ggcggccctc	tcccagcact	60
5	gctacgcagg	ctctggctgc	cccttattgg	agaatgtgat	ttccaagaca	atcaatccac	120
	aagtgtctaa	gactgaatac	aaagaacttc	ttcaagagtt	catagacgac	aatgccacta	180
	caaatgccat	agatgaattg	aaggaatgtt	ttcttaacca	aacggatgaa	actctgagca	240
10	atgttgaggt	gtttatgcaa	ttaatatatg	acagcagtct	ttgtgattta	ttttaacttt	300
	ctgcaagacc	tttggctcac	agaactgcag	ggtatggtga	gaaaccaact	acggattgct	360
15	gcaaaccaca	ccttctcttt	cttatgtctt	tttact		٠.	396
20	<210> 8 <211> 491 <212> ADN <213> humano						
	<400> 8						
25							
						ttgaagaggt	60
00	cttgcagtct	tcagatgaaa	ctaaatctct	agaagaggca	caagaatggc	taaagcaatt	120
30				***			100
						caggcagaga	180
35				aagagatctt			240
				,		tggtttttcg	300
						aatgatatta	360
40						cagacttact	420
			actcatttac	ctcatttctt	gccaattact	cccttgggta	480
45	tttactgcgt	a .					491
50	<210> 9 <211> 265 <212> ADN <213> humano						
30	<400> 9						
55	tggtgtaatt	ttgtcctctc	tgtgtcctgg	ggaatactgg	ccatgcctg	g agacatatca	60
	ctcaatttct	ctgaggacac	agataggatg	gggtgtctgt	gttatttgtg	g gggtacagag	- 120
	atgaaagagg	ggtgggatcc	acactgagag	agtggagagt	gacatgtgc	t ggacactgtc	180
60	catgaagcac	tgagcagaag	ctggaggcac	aacgcaccag	acactcaca	g caaggatgga	240
	gctgaaaaca	taacccactc	tgtcc		. *		265
65	<210> 10 <211> 441						

	<212> ADN <213> humano	
5	<400> 10	
	atagatgtac atacctcctt gcacaaatgg aggggaattc attttcatca ctgggagtgt	60
40	ccttagtgta taaaaaccat gctggtatat ggcttcaagt tgtaaaaatg aaagtgactt	120
10	taaaagaaaa taggggatgg tccaggatct ccactgataa gactgttttt aagtaactta	180
	aggacctttg ggtctacaag tatatgtgaa aaaaatgaga cttactgggt gaggaaatcc	240
15	attgtttaaa gatggtcgtg tgtgtgtgtg tgtgtgtgtg tgtgttgtgt tgtgttttgt	300
	tttttaaggg agggaattta ttatttaccg ttgcttgaaa ttactgtgta aatatatgtc	360
	tgataatgat ttgctctttg acaactaaaa ttaggactgt ataagtacta gatgcatcac	420
20	tgggtgttga tcttacaaga t	441
25	<210> 11 <211> 21 <212> ADN <213> humano	
30	<400> 11 21 cacagccccg acctttgatg a 21	
35	<210> 12 <211> 19 <212> ADN <213> humano	
	<400> 12 ggtcccagag cccgtctca 19	
40	<210> 13 <211> 26 <212> ADN <213> humano	
45	<400> 13 agctgtccag ctgcaaagga aaagcc 26	
50	<210> 14 <211> 75 <212> ADN <213> humano	
	<400> 14	
55		•
		5
	acgggctctg ggacc	,
60	<210> 15 <211> 17 <212> ADN <213> humano	
65	<400> 15	

	ccaacccaga cccgcgc	17		
5	<210> 16 <211> 21 <212> ADN <213> humano			
10	<400> 16 cgcccatgcc gctcatgttc a	21		
15	<210> 17 <211> 21 <212> ADN <213> humano			
13	<400> 17 cccgccatct cccgcttcat g	21		
20	<210> 18 <211> 78 <212> ADN <213> humano			
25	<400> 18			
	ccaacccaga cccq	gcgctto	c cccgccatct cccgcttcat gggcccggcg	agcggcatga 60
30	acatgagcgg cat	gggcg		78
	<210> 19 <211> 23			
35	<211> 23 <212> ADN <213> humano			
35 40	<212> ADN <213> humano <400> 19 gagagaagga gaagataact c	caa	23	
40	<212> ADN <213> humano <400> 19	caa	23	
	<212> ADN <213> humano <400> 19 gagagaagga gaagataact c <210> 20 <211> 22 <212> ADN		23	
40	<212> ADN <213> humano <400> 19 gagagaagga gaagataact o <210> 20 <211> 22 <212> ADN <213> humano <400> 20		23	
40 45	<212> ADN <213> humano <400> 19 gagagaagga gaagataact o <210> 20 <211> 22 <212> ADN <213> humano <400> 20 actccagaga ttcggtaggt ga <210> 21 <210> 21 <210> 20	22	23	
40 45 50	<212> ADN <213> humano <400> 19 gagagaagga gaagataact o <210> 20 <211> 22 <212> ADN <213> humano <400> 20 actccagaga ttcggtaggt ga <210> 21 <211> 26 <212> ADN <213> humano <400> 20	22		

	gcagagaagg agaagataac tcaaaaagaa acccaattgc caagattact tcagattacc	. 60
5	aagcaaccca gaaaatcacc taccgaatct ctggagt	97
10	<210> 23 <211> 21 <212> ADN <213> humano	
15	<400> 23 tccctcggca gtggaagctt a 21	
	<210> 24 <211> 24 <212> ADN <213> humano	
20	<400> 24 tcctcaaact ctgtgtgcct ggta 24	
25	<210> 25 <211> 29 <212> ADN <213> humano	
30	<400> 25 ccaaaatcaa tggtactcat gcccgactg 29	
35	<210> 26 <211> 95 <212> ADN <213> humano	
	<400> 26	
40	tccctcggca gtggaagctt acaaaacgac tgggaagttt ccaaaatcaa tggtactcat	60
	gcccgactgt ctaccaggca cacagagttt gagga	95
45	<210> 27 <211> 21 <212> ADN	
50	<213> humano <400> 27 agttgctgat ggtcctcatg c 21	
55	<210> 28 <211> 24 <212> ADN <213> humano	
60	<400> 28 cacttgtgga ttgattgtct tgga 24	
65	<210> 29 <211> 23 <212> ADN <213> humano	

	<400> 29 ccctctccca gcactgctac gca 23	
5	<210> 30 <211> 107 <212> ADN <213> humano	
10	<400> 30	
	agttgctgat ggtcctcatg ctggcggccc tctcccagca ctgctacgca ggctctggct	60
15	gccccttatt ggagaatgtg atttccaaga caatcaatcc acaagtg	107
20	<210> 31 <211> 20 <212> ADN <213> humano	
25	<400> 31 cgcccacctg gacatctgga 20	
	<210> 32 <211> 23 <212> ADN <213> humano	
30	<400> 32 cactggtcga ggcacagtag tga 23	
35	<210> 33 <211> 25 <212> ADN <213> humano	
40	<400> 33 gtcagcggcc tggatgaaag agcgg 25	
45	<210> 34 <211> 86 <212> ADN <213> humano	
	<400> 34	
50	cgcccacctg gacatctgga agtcagcggc ctggatgaaa gagcggactt cacctggggc	60
	gattcactac tgtgcctcga ccagtg	. 86
55	<210> 35 <211> 23	
60	<212> ADN <213> humano	
	<400> 35 gcggagccca atacagaata cac 23	
65	<210> 36 <211> 19 <212> ADN	

 400> 36	
2211 > 25	
10	
15	
gcggagccca atacagaata cacacgcacg gtgtcttcag aggcattcag gatgtgcgac gtgtgcctgg agtagccccg 2210 > 39	
25	
210> 39	60
120	80
ctgttgatgg caggcttggc 20 <210> 40	
<pre><400> 40 ttgctcacct gggctttgca</pre>	
45	
<pre>50 gcagccaggc actgccctgc t 21</pre>	
<pre><211> 74 <212> ADN 55 <213> humano <400> 42 60</pre>	
ctgttgatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta ctcctgcaaa	
ctgttgatgg caggettgge cetgeageca ggeactgeee tgetgtgeta eteetgeaaa	
	60
	74

5	<210> 43 <211> 25 <212> ADN <213> humano		
	<400> 43 tgaagaaata tcctgggatt attca	25	
10	<210> 44 <211> 27 <212> ADN <213> humano		
15	<400> 44 tatgtggtat cttctggaat atcatca	27	
20	<210> 45 <211> 27 <212> ADN <213> humano		
25	<400> 45 acaaagggaa acagatattg aagactc	27	
	<210> 46 <211> 87 <212> ADN <213> humano		
30	<400> 46		
35	tgaagaaata tcctggga tgatgatatt ccagaaga		5C
40	<210> 47 <211> 19 <212> ADN <213> humano		
40 45	<211> 19 <212> ADN		
	<211> 19 <212> ADN <213> humano <400> 47		
45 50	<211> 19 <212> ADN <213> humano <400> 47 cccccagtgg gtcctcaca 19 <210> 48 <211> 22 <212> ADN	22	
45	<211> 19 <212> ADN <213> humano <400> 47 cccccagtgg gtcctcaca 19 <210> 48 <211> 22 <212> ADN <213> humano <400> 48 aggatgaaac aagctgtgcc ga <210> 49 <211> 26 <212> ADN	22	
45 50	<211> 19 <212> ADN <213> humano <400> 47 cccccagtgg gtcctcaca 19 <210> 48 <211> 22 <212> ADN <213> humano <400> 48 aggatgaaac aagctgtgcc ga <210> 49 <211> 26	22	

	<213> humano	
	<400> 50	
5		
	cccccagtgg gtcctcacag ctgcccactg catcaggaac aaaagcgtga tcttgctggg	60
	tcggcacagc ttgtttcatc ct	82
10	<210> 51 <211> 19 <212> ADN <213> humano	
15	<400> 51 gccctgaggc actcttcca 19	
20	<210> 52 <211> 22 <212> ADN <213> humano	
25	<400> 52 cggatgtcca cgtcacactt ca 22	
30	<210> 53 <211> 25 <212> ADN <213> humano	
	<400> 53 cttccttcct gggcatggag tcctg 25	
35	<210> 54 <211> 100 <212> ADN <213> humano	
40	<400> 54	
45	gccctgaggc actcttccag ccttccttcc tgggcatgga gtcctgtggc atccacgaaa	60
45	ctaccttcaa ctccatcatg aagtgtgacg tggacatccg	100
50	<210> 55 <211> 22 <212> ADN <213> humano	
55	<400> 55 ccacacacag cctactttcc aa 22	
60	<210> 56 <211> 21 <212> ADN <213> humano	
65	<400> 56 tacccacgcg aatcactctc a 21	
-	<210> 57	

	<211> 27 <212> ADN <213> humano	
5	<400> 57 aacggcaatg cggctgcaac ggcggaa 27	
10	<210> 58 <211> 103 <212> ADN <213> humano	
	<400> 58	
15		60
	ccacacacag cctactttcc aagcggagcc atgtctggta acggcaatgc ggctgcaacg gcggaagaaa acagcccaaa gatgagagtg attcgcgtgg gta	60 103
20	geggaagaaa weageeeaaa gaegagageg accegegegg gea	203
25	<210> 59 <211> 2724 <212> ADN <213> humano	
	<400> 59	
30		
50		
35		
40		
45		
50		
55		
60		
65		

	ggtgccatgg	ctgagtcaca	cctgctgcag	tggctgctgc	tgctgctgcc	cacgctctgt	60
5	ggcccaggca	ctgctgcctg	gaccacctca	tccttggcct	gtgcccaggg	ccctgagttc	120
	tggtgccaaa	gcctggagca	agcattgcag	tgcagagccc	tagggcattg	cctacaggaa	180
10	gtctggggac	atgtgggagc	cgatgaccta	tgccaagagt	gtgaggacat	cgtccacatc	240
10	cttaacaaga	tggccaagga	ggccattttc	caggacacga	tgaggaagtt	cctggagcag	300
	gagtgcaacg	tcctcccctt	gaagctgctc	atgccccagt	gcaaccaagt	gcttgacgac	360
15	tacttccccc	tggtcatcga	ctacttccag	aaccagactg	actcaaacgg	catctgtatg	420
	cacctgggcc	tgtgcaaatc	ccggcagcca	gagccagagc	aggagccagg	gatgtcagac	480
	cccctgccca	aacctctgcg	ggaccctctg	ccagaccctc	tgctggacaa	gctcgtcctc	540
20	cctgtgctgc	ccggggccct	ccaggcgagg	cctgggcctc	acacacagga	tctctccgag	600
	cagcaattcc	ccattcctct	cccctattgc	tggctctgca	gggctctgat	caagcggatc	660
25	caagccatga	ttcccaaggg	tgcgctagct	gtggcagtgg	cccaggtgtg	ccgcgtggta	720
20	cctctggtgg	cgggcggcat	ctgccagtgc	ctggctgagc	gctactccgt	catcctgctc	780
	gacacgctgc	tgggccgcat	gctgccccag	ctggtctgcc	gcctcgtcct	ccggtgctcc	840
30	atggatgaca	gcgctggccc	aaggtcgccg	acaggagaat	ggctgccgcg	agactctgag	900
	tgccacctct	gcatgtccgt	gaccacccag	gccgggaaca	gcagcgagca	ggccatacca	960
	caggcaatgc	tccaggcctg	tgttggctcc	tggctggaca	gggaaaagtg	caagcaattt	1020
35	gtggagcagc	acacgcccca	gctgctgacc	ctggtgccca	ggggctggga	tgcccacacc	1080
	acctgccagg	ccctcggggt	gtgtgggacc	atgtccagcc	ctctccagtg	tatccacagc	1140
40	cccgaccttt	gatgagaact	cagctgtcca	gaaaaagaca	ccgtccttta	aagtgctgca	1200
40	gtatggccag	acgtggtggc	tcacacctgc	aatcccagca	ccttaggagg	ccgaggcagg	1260
	aggatccttg	aggtcaggag	ttcgagacca	gcctcgccaa	catggtgaaa	ccccatttct	1320
45	actaaaaata	caaaaaatta	gccaagtgtg	gtggcatatg	cctgtaatcc	caactactca	1380
	gaaggccgag	gcaggagaat	tacttgaacg	caggagaatc	actgcagccc	aggaggcaga	1440
	ggttgcagtg	agccgagatt	gcaccactgc	actccagcct	gggtgacaga	gcaagactcc	1500

	atctcagtaa ataaataaat aaataaaaag cgctgcagta gctgtggcct caccctgaag	1560
5	tcagcgggcc caggcctacc tcactctctc ccttggcaga gaagcagacg tccatagctc	1620
	ctctccctca caagcgctcc cagcctgccc tccagctgct gctctcccct cccagtctct	1680
	actcactggg atgaggttag gtcatgagga caccaaaaac ctaaaaataa acaaaaagcc	1740
10	aaacaagcct tagcttttct taaagactga aatgcctgga agtgtccctt tatttataaa	1800
	ataacttttg tcatatttct tatacatgtt tcttgtaaga aattcagaaa ctacagacaa	1860
	agagagtgga aattacccac tgtcaggcct ctgagcccaa gctaagccat catatcccct	1920
15	gtgccctgca cgtatacacc cagatggcct gaagcaactg aagatccaca aaagaagtga	1980
	aaatagccag ttcctgcctt aactgatgac attccaccat tgtgatttgt tcctgcccca	2040
20	ccctaactga tcaattgacc ttgtgacaat acaccttccc cacccttgag aaggtgcttt	2100
20	gtaatattct ccccacccac cccacgcccg cacccccgca cccttaagaa ggtatttgt	2160
	aatattctct ccgccattga gaatgtgctt tgtaagatcc accccctgcc cacaaaaaat	2220
25	tgctcctaac tccaccgcct atcccaaacc tacaagaact aatgataatc ccaccaccct	2280
20	ttgctgactc tttttggact cagcccacct gcacccaggt gattaaaaag ctttattgtt	2340
	cacacaaagc ctgtttggta gtctcttcac agggaagcat gtgacaccca caatcccacc	2400
30	tagcccagga gagagctacg gcagggtgtg tgttttgaca ctgagcttgg ggctttttcc	2460
	atcttctccc cacagcctct ggctccacac ctccaccgtt caagcgccag aaagagctgt	2520
	ctatgcagcc tgctcttggg cctggggatg agacacacaa ttcattggct cctggatttt	2580
35	aagtagacat ttgtaaatct atagctaact actgtcctta aagccattgt ttccattaca	2640
	aaatccaact ctctgagaga aaagggtgtt ttaaatttaa aaaaataaaa acaaaaagt	2700
	ttgattgaga aaaaaaaaaa aaaa	2724
40		
45	<210> 60 <211> 2352 <212> ADN <213> humano	
	<400> 60	
50	gaaacttaaa ggtgtttacc ttgtcatcag catgtaagct aattatctcg ggcaagatgt	60
	aggettetat tgtettgttg etttageget taegeeeege etetggtgge tgeetaaaae	120
EE	ctggcgccgg gctaaaacaa acgcgaggca gcccccgagc ctccactcaa gccaattaag	180
55	gaggactcgg tccactccgt tacgtgtaca tccaacaaga tcggcgttaa ggtaacacca	240
	gaatatttgg caaagggaga aaaaaaaagc agcgaggctt cgccttcccc ctctcccttt	300
60	tttttcctcc tcttccttcc tcctccagcc gccgccgaat catgtcgatg agtccaaagc	360
	acacgactcc gttctcagtg tctgacatct tgagtcccct ggaggaaagc tacaagaaag	420

_	tgggcatgga	gggcggcggc	ctcggggctc	cgctggcggc	gtacaggcag	ggccaggcgg	480
5	caccgccaac	agcggccatg	cagcagcacg	ccgtggggca	ccacggcgcc	gtcaccgccg	540
	cctaccacat	gacggcggcg	ggggtgcccc	agctctcgca	ctccgccgtg	gggggctact	600
10	gcaacggcaa	cctgggcaac	atgagcgagc	tgccgccgta	ccaggacacc	atgaggaaca .	660
10	gcgcctctgg	ccccggatgg	tacggcgcca	acccagaccc	gcgcttcccc	gccatctccc	720
	gcttcatggg	cccggcgagc	ggcatgaaca	tgagcggcat	gggcggcctg	ggctcgctgg	780
15	gggacgtgag	caagaacatg	gccccgctgc	caagcgcgcc	gcgcaggaag	cgccgggtgc	840
	tcttctcgca	ggcgcaggtg	tacgagctgg	agcgacgctt	caagcaacag	aagtacctgt	900
	cggcgccgga	gcgcgagcac	ctggccagca	tgatccacct	gacgcccacg	caggtcaaga	960
20	tctggttcca	gaaccaccgc	tacaaaatga	agcgccaggc	caaggacaag	gcggcgcagc	1020
	agcaactgca	gcaggacagc	ggcggcggcg	ggggcggcgg	gggcaccggg	tgcccgcagc	1080
25	agcaacaggc	tcagcagcag	tcgccgcgac	gcgtggcggt	gccggtcctg	gtgaaagacg	1140
25	gcaaaccgtg	ccaggcgggt	gcccccgcgc	cgggcgccgc	cagcctacaa	ggccacgcgc	1200
	agcagcaggc	gcagcaccag	gcgcaggccg	cgcaggcggc	ggcagcggcc	atctccgtgg	1260
30	gcagcggtgg	cgccggcctt	ggcgcacacc	cgggccacca	gccaggcagc	gcaggccagt	1320
	ctccggacct	ggcgcaccac	gccgccagcc	ccgcggcgct	gcagggccag	gtatccagcc	1380
	tgtcccacct	gaactcctcg	ggctcggact	acggcaccat	gtcctgctcc	accttgctat	1440
35	acggtcggac	ctggtgagag	gacgccgggc	cggccctagc	ccagcgctct	gcctcaccgc	1500
	ttccctcctg	cccgccacac	agaccaccat	ccaccgctgc	tccacgcgct	tcgacttttc	1560
	ttaacaacct	ggccgcgttt	agaccaagga	acaaaaaac	cacaaaggcc	aaactgctgg	1620
40	acgtctttct	ttttttcccc	ccctaaaatt	tgtgggtttt	tttttttaaa	aaaagaaaat	1680
	gaaaaacaac	caagcgcatc	caatctcaag	gaatctttaa	gcagagaagg	gcataaaaca	1740
45	gctttggggt	gtctttttt	ggtgattcaa	atgggttttc	cacgctaggg	cggggcacag	1800
40	attggagagg	gctctgtgct	gacatggctc	tggactctaa	agaccaaact	tcactctggg	1860
	cacactctgc	cagcaaagag	gactcgcttg	taaataccag	gattttttt	tttttttgaa	1920
50	gggaggacgg	gagctgggga	gaggaaagag	tcttcaacat	aacccacttg	tcactgacac	1980
	aaaggaagtg	cccctcccc	ggcaccctct	ggccgcctag	gctcagcggc	gaccgccctc	2040
	cgcgaaaata	gtttgtttaa	tgtgaacttg	tagctgtaaa	acgctgtcaa	aagttggact	2100
55	aaatgcctag	tttttagtaa	tctgtacatt	ttgttgtaaa	aagaaaaacc	actcccagtc	2160
	cccagccctt	cacattttt	atgggcattg	acaaatctgt	gtatattatt	tggcagtttg	2220
	gtatttgcgg	cgtcagtctt	tttctgttgt	aacttatgta	gatatttggd	ttaaatatag	2280
60	ttcctaag	aa gcttctaa	ta aattatac	aa attaaaaa	ga ttctttt	ct gattaaaaaa	2340
	aaaaaaaa	aa aa				-	2352

<210> 61 <211> 3336 <212> ADN 5 <213> humano

<400> 61

10		
	ttttcttaga cattaactgc agacggctgg caggatagaa gcagcggctc acttggactt	60
	tttcaccagg gaaatcagag acaatgatgg ggctcttccc cagaactaca ggggctctgg	120
15	ccatcttcgt ggtggtcata ttggttcatg gagaattgcg aatagagact aaaggtcaat	180
	atgatgaaga agagatgact atgcaacaag ctaaaagaag gcaaaaacgt gaatgggtga	240
	aatttgccaa accctgcaga gaaggagaag ataactcaaa aagaaaccca attgccaaga	300
20	ttacttcaga ttaccaagca acccagaaaa tcacctaccg aatctctgga gtgggaatcg	360
	atcagccgcc ttttggaatc tttgttgttg acaaaaacac tggagatatt aacataacag	420
0.5	ctatagtcga ccgggaggaa actccaagct tcctgatcac atgtcgggct ctaaatgccc	480
25	aaggactaga tgtagagaaa ccacttatac taacggttaa aattttggat attaatgata	540
	atcctccagt attttcacaa caaattttca tgggtgaaat tgaagaaaat agtgcctcaa	600
30	actcactggt gatgatacta aatgccacag atgcagatga accaaaccac ttgaattcta	660
	aaattgcctt caaaattgtc tctcaggaac cagcaggcac acccatgttc ctcctaagca	720
	gaaacactgg ggaagtccgt actttgacca attctcttga ccgagagcaa gctagcagct	780
35	atcgtctggt tgtgagtggt gcagacaaag atggagaagg actatcaact caatgtgaat	840
	gtaatattaa agtgaaagat gtcaacgata acttcccaat gtttagagac tctcagtatt	900
	cagcacgtat tgaagaaaat attttaagtt ctgaattact tcgatttcaa gtaacagatt	960
40	tggatgaaga gtacacagat aattggcttg cagtatattt ctttacctct gggaatgaag	1020
	gaaattggtt tgaaatacaa actgatccta gaactaatga aggcatcctg aaagtggtga	1080
45	aggetetaga ttatgaacaa etacaaageg tgaaaettag tattgetgte aaaaacaaag	1140
45	ctgaatttca ccaatcagtt atctctcgat accgagttca gtcaacccca gtcacaattc	1200
	aggtaataaa tgtaagagaa ggaattgcat tccgtcctgc ttccaagaca tttactgtgc	1260
50	aaaaaggcat aagtagcaaa aaattggtgg attatatcct gggaacatat caagccatcg	1320
	atgaggacac taacaaagct gcctcaaatg tcaaatatgt catgggacgt aacgatggtg	1380
	gatacctaat gattgattca aaaactgctg aaatcaaatt tgtcaaaaat atgaaccgag	1440
55	attctacttt catagttaac aaaacaatca cagctgaggt tctggccata gatgaataca	1500
	cgggtaaaac ttctacaggc acggtatatg ttagagtacc cgatttcaat gacaattgtc	1560

60

	caacagctgt	cctcgaaaaa	gatgcagttt	gcagttcttc	accttccgtg	gttgtctccg	1620
5	ctagaacact	gaataataga	tacactggcc	cctatacatt	tgcactggaa	gatcaacctg	1680
	taaagttgcc	tgccgtatgg	agtatcacaa	ccctcaatgc	tacctcggcc	ctcctcagag:	1740
	cccaggaaca	gatacctcct	ggagtatacc	acatctccct	ggtacttaca	gacagtcaga	1800
10	acaatcggtg	tgagatgcca	cgcagcttga	cactggaagt	ctgtcagtgt	gacaacaggg	1860
	gcatctgtgg	aacttcttac	ccaaccacaa	gccctgggac	caggtatggc	aggccgcact	1920
15	cagggaggct	ggggcctgcc	gccatcggcc	tgctgctcct	tggtctcctg	ctgctgctgt	1980
	tggcccccct	tctgctgttg	acctgtgact	gtggggcagg	ttctactggg	ggagtgacag	2040
	gtggttttat	cccagttcct	gatggctcag	aaggaacaat	tcatcagtgg	ggaattgaag	2100
20	gagcccatcc	tgaagacaag	gaaatcacaa	atatttgtgt	gcctcctgta	acagccaatg	2160
	gagccgattt	catggaaagt	tctgaagttt	gtacaaatac	gtatgccaga	ggcacagcgg	2220
25	tggaaggcac	ttcaggaatg	gaaatgacca	ctaagcttgg	agcagccact	gaatctggag	2280
25	gtgctgcagg	ctttgcaaca	gggacagtgt	caggagctgc	ttcaggattc	ggagcagcca	2340
	ctggagttgg	catctgttcc	tcagggcagt	ctggaaccat	gagaacaagg	cattccactg	2400
30	gaggaaccaa	taaggactac	gctgatgggg	cgataagcat	gaattttctg	gactcctact	2460
	tttctcagaa	agcatttgcc	tgtgcggagg	aagacgatgg	ccaggaagca	aatgactgct	2520
0.5	tgttgatcta	tgataatgaa	ggcgcagatg	ccactggttc	tcctgtgggc	tccgtgggtt	2580
35	gttgcagttt	tattgctgat	gacctggatg	acagcttctt	ggactcactt	ggacccaaat	2640
	ttaaaaaact	tgcagagata	agccttggtg	ttgatggtga	aggcaaagaa	gttcagccac	2700
40	cctctaaaga	cagcggttat	gggattgaat	cctgtggcca	tcccatagaa	gtccagcaga	2760
	caggatttgt	taagtgccag	actttgtcag	gaagtcaagg	agcttctgct	ttgtccgcct	2820
	ctgggtctgt	ccagccagct	gtttccatco	ctgaccctct	gcagcatggt	aactatttag	2880
45	taacggagac	ttactcggct	tctggttccc	tcgtgcaaco	ttccactgca	ggctttgatc	2940
	cacttctcac	acaaaatgtg	atagtgacag	aaagggtgat	ctgtcccatt	tccagtgttc	3000
50	ctggcaacct	agctggccca	acgcagctac	gagggtcaca	tactatgcto	tgtacagagg.	3060
00	atccttgctc	ccgtctaata	tgaccagaat	gagctggaat	accacactga	a ccaaatctgg	3120
	atctttggad	taaagtatto	aaaatagcat	agcaaagcto	actgtattg	g gctaataatt	. 3180
55	tggcacttat	tagcttctct	cataaactga	tcacgatta	aaattaaat	g tttgggttca	3240
	taccccaaa	gcaatatgtt	gtcactccta	attctcaag	t actattcaa	a ttgtagtaaa	3300
60	tcttaaagt1	tttcaaaaço	ctaaaatca	attcgc			3336

<210> 62
<211> 3697
65 <212> ADN
<213> humano

<400> 62

5								
	agggagtgtt	cccgggggag	atactccagt	cgtagcaaga	gtctcgacca	ctgaatggaa	. 60	
	gaaaaggact	tttaaccacc	attttgtgac	ttacagaaag	gaatttgaat	aaagaaaact	120	
10	atgatacttc	aggcccatct	tcactccctg	tgtcttctta	tgctttattt	ggcaactgga	180	
	tatggccaag	aggggaagtt	tagtggaccc	ctgaaaccca	tgacattttc	tatttatgaa	240	,
15	ggccaagaac	cgagtcaaat	tatattccag	tttaaggcca	atcctcctgc	tgtgactttt	300	
	gaactaactg	gggagacaga	caacatattt	gtgatagaac	gggagggact	tctgtattac	360	
	aacagagcct	tggacaggga	aacaagatct	actcacaatc	tccaggttgc	agccctggac	420	
20	gctaatggaa	ttatagtgga	gggtccagtc	cctatcacca	tagaagtgaa	ggacatcaac	480	
	gacaatcgac	ccacgtttct	ccagtcaaag	tacgaaggct	cagtaaggca	gaactctcgc	540	
	ccaggaaagc	ccttcttgta	tgtcaatgcc	acagacctgg	atgatccggc	cactcccaat	600	
25	ggccagcttt	attaccagat	tgtcatccag	cttcccatga	tcaacaatgt	catgtacttt	660	
	cagatcaaca	acaaaacggg	agccatctct	cttacccgag	agggatctca	ggaattgaat	720	
	cctgctaaga	atccttccta	taatctggtg	atctcagtga	aggacatggg	aggccagagt	780	
30	gagaattcct	tcagtgatac	cacatctgtg	gatatcatag	tgacagagaa	tatttggaaa	840	
	gcaccaaaac	ctgtggagat	ggtggaaaac	tcaactgatc	ctcaccccat	caaaatcact	900	
35	caggtgcggt	ggaatgatcc	cggtgcacaa	tattccttag	ttgacaaaga	gaagctgcca	960	
00	agattcccat	tttcaattga	ccaggaagga	gatatttacg	tgactcagcc	cttggaccga	1020	
	gaagaaaagg	atgcatatgt	tttttatgca	gttgcaaagg	atgagtacgg	aaaaccactt	1080	
40	tcatatccgc	tggaaattca	tgtaaaagtt	aaagatatta	atgataatcc	acctacatgt	1140	
	ccgtcaccag	taaccgtatt	tgaggtccag	gagaatgaac	gactgggtaa	cagtatcggg	1200	
	acccttactg	cacatgacag	ggatgaagaa	aatactgcca	acagttttct	aaactacagg	1260	
45	attgtggagc	aaactcccaa	acttcccatg	gatggactct	tcctaatcca	aacctatgct	1320	
	ggaatgttac	agttagctaa	acagtccttg	aagaagcaag	atactcctca	gtacaactta	1380	
50	acgatagagg	tgtctgacaa	agatttcaag	accctttgtt	ttgtgcaaat	caacgttatt	1440	
50	gatatcaatg	atcagatccc	catctttgaa	aaatcagatt	atggaaacct	gactcttgct	1500	
	gaagacacaa	acattgggtc	caccatctta	accatccagg	ccactgatgc	tgatgagcca	1560	
55	tttactggga	gttctaaaat	tctgtatcat	atcataaagg	gagacagtga	gggacgcctg	1620	
	ggggttgaca	cagatcccca	taccaacacc	ggatatgtca	taattaaaaa	gcctcttgat	1680	
	tttgaaacag	cagctgtttc	caacattgtg	ttcaaagcag	aaaatcctga	gcctctagtg	1740	
60	tttggtgtga	agtacaatgc	aagttcttt	gccaagttca	cgcttattgt	gacagatgtg	1800	

	aatgaagcac	ctcaattttc	ccaacacgta	ttccaagcga	aagtcagtga	ggatgtagct	1860
5	ataggcacta	aagtgggcaa	tgtgactgcc	aaggatccag	aaggtctgga	cataagctat	1920
	tcactgaggg	gagacacaag	äggttggctt	aaaattgacc	acgtgactgg	tgagatcttt ·	1980
	agtgtggctc	cattggacag	agaagccgga	agtccatatc	gggtacaagt	ggtggccaca	2040
10	gaagtagggg	ggtcttcctt	gagctctgtg	tcagagttcc	acctgatcct	tatggatgtg	2100
	aatgacaacc	ctcccaggct	agccaaggac	tacacgggct	tgttcttctg	ccatcccctc	2160
15	agtgcacctg	gaagtctcat	tttcgaggct	actgatgatg	atcagcactt	atttcggggt	2220
	ccccatttta	cattttccct	cggcagtgga	agcttacaaa	acgactggga	agtttccaaa	2280
	atcaatggta	ctcatgcccg	actgtctacc	aggcacacag	agtttgagga	gagggagtat	2340
20	gtcgtcttga	tccgcatcaa	tgatgggggt	cggccaccct	tggaaggcat	tgtttcttta	2400
	ccagttacat	tctgcagttg	tgtggaagga	agttgtttcc	ggccagcagg	tcaccagact	2460
	gggataccca	ctgtgggcat	ggcagttggt	atactgctga	ccacccttct	ggtgattggt	2520
25	ataattttag	cagttgtgtt	tatccgcata	aagaaggata	aaggcaaaga	taatgttgaa	2580
	agtgctcaag	catctgaagt	caaacctctg	agaagctgaa	tttgaaaagg	aatgtttgaa	2640
30	tttatatagc	aagtgctatt	tcagcaacaa	ccatctcatc	ctattacttt	tcatctaacg	2700
	tgcattataa	tttttaaac	agatattccc	tcttgtcctt	taatatttgc	taaatatttc	2760
	ttttttgagg	tggagtcttg	ctctgtcgcc	caggctggag	tacagtggtg	tgatcccagc	2820
35	tcactgcaac	ctccgcctcc	tgggttcaca	tgattctcct	gcctcagctt	cctaagtagc	2880
	tgggtttaca	ggcacccacc	accatgccca	gctaattttt	gtattttaa	tagagacggg	2940
	gtttcgccat	ttggccaggc	tggtcttgaa	ctcctgacgt	caagtgatct	gcctgccttg	3000
40	gtctcccaat	acaggcatga	accactgcac	ccacctactt	agatatttca	tgtgctatag	3060
	acattagaga	gatttttcat	ttttccatga	catttttcct	ctctgcaaat	ggcttagcta	3120
45	cttgtgttt	tcccttttgg	ggcaagacag	actcattaaa	tattctgtac	atttttctt	3180
	tatcaaggag	atatatcagt	gttgtctcat	agaactgcct	ggattccatt	tatgttttt	3240
	ctgattccat	cctgtgtccc	cttcatcctt	gactcctttg	gtatttcact	gaatttcaaa	3300
50	catttgtcag	agaagaaaaa	cgtgaggact	caggaaaaat	aaataaataa	aagaacagcc	3360
	ttttccctta	gtattaacag	aaatgtttct	gtgtcattaa	ccatctttaa	tcaatgtgac	3420
	atgttgctct	ttggctgaaa	ttcttcaact	tggaaatgac	acagacccac	agaaggtgtt	3480
55	caaacacaac	ctactctgca	aaccttggta	aaggaaccag	tcagctggcc	agatttcctc	3540
	actacctgcc	atgcatacat	gctgcgcatg	ttttcttcat	tcgtatgtta	gtaaagtttt	3600
60	ggttattata	tatttaacat	gtggaagaaa	acaagacatg	aaaagagtgg	tgacaaatca	3660
	****						3.00
	agaataaac	a ctoottota	u icaditito	T TTOTTAA			369

<210> 63 <211> 503 <212> ADN 5 <213> humano <400> 63 10 gacagegget teettgatee ttgccaeeeg egactgaaca eegacageag eageeteaee 60 atgaagttgc tgatggtcct catgctggcg gccctctccc agcactgcta cgcaggctct 120 180 ggctgcccct tattggagaa tgtgatttcc aagacaatca atccacaagt gtctaagact 15 gaatacaaag aacttcttca agagttcata gacgacaatg ccactacaaa tgccatagat 240 gaattgaagg aatgttttct taaccaaacg gatgaaactc tgagcaatgt tgaggtgttt 300 atgcaattaa tatatgacag cagtctttgt gatttatttt aactttctgc aagacctttg 360 20 gctcacagaa ctgcagggta tggtgagaaa ccaactacgg attgctgcaa accacactt 420 480 ctctttctta tgtcttttta ctacaaacta caagacaatt gttgaaacct gctatacatg 25 503 tttattttaa taaattgatg gca <210> 64 <211> 1894 30 <212> ADN <213> humano <400> 64 35 gtctgacttc ctcccagcac attcctgcac tctgccgtgt ccacactgcc ccacagaccc 60 agtectecaa geetgetgee ageteeetge aageeeetea ggttgggeet tgeeaeggtg 120 40 180 ccagcaggca gccctgggct gggggtaggg gactccctac aggcacgcag ccctgagacc tcagagggcc accccttgag ggtggccagg cccccagtgg ccaacctgag tgctgcctct 240 300 gecaccagee etgetggeee etggtteege tggeeeeeca gatgeetgge tgagacaege 45 360 cagtggcctc agctgcccac acctcttccc ggcccctgaa gttggcactg cagcagacag ctccctgggc accaggcagc taacagacac agccgccagc ccaaacagca gcggcatggg 420 cagogocago cogggtotga goagogtato coccagocao etectgotgo coccogacao 480 50 ggtgtcgcgg acaggcttgg agaaggcggc agcgggggca gtgggtctcg agagacggga 540 600 ctggagtccc agtccacccg ccacgcccga gcagggcctg tccgccttct acctctccta 660 55 ctttgacatg ctgtaccctg aggacagcag ctgggcagcc aaggcccctg gggccagcag 720 tegggaggag ceacetgagg ageetgagea gtgeeeggte attgacagee aageeecage gggcagcctg gacttggtgc ccggcgggct gaccttggag gagcactcgc tggagcaggt 780 60 840 gcagtccatg gtggtgggcg aagtgctcaa ggacatcgag acggcctgca agctgctcaa 900 catcaccgca gatcccatgg actggagccc cagcaatgtg cagaagtggc tcctgtggac

67

agagcaccaa taccggctgc cccccatggg caaggccttc caggagctgg cgggcaagga

5	gergrace	aryrryyayy	ageagreecy	ccagcyctcy	ccccigggig	gggacgcgcc	1020
5	gcacgcccac	ctggacatct	ggaagtcagc	ggcctggatg	aaagagcgga	cttcacctgg	1080
	ggcgattcac	tactgtgcct	cgaccagtga	ggagagctgg	accgacagcg	aggtggactc	1140
10	atcatgctcc	gggcagccca	tccacctgtg	gcagttcctc	aaggagttgc	tactcaagcc	1200
	ccacagctat	ggccgcttca	ttaggtggct	caacaaggag	aagggcatct	tcaaaattga	1260
	ggactcagcc	caggtggccc	ggctgtgggg	catccgcaag	aaccgtcccg	ccatgaacta	1320
15	cgacaagctg	agccgctcca	tccgccagta	ttacaagaag	ggcatcatcc	ggaagccaga	1380
	catctcccag	cgcctcgtct	accagttcgt	gcaccccatc	tgagtgcctg	gcccagggcc	1440
20	tgaaacccgc	cctcaggggc	ctctctcctg	cctgccctgc	ctcagccagg	ccctgagatg	1500
20	ggggaaaacg	ggcagtctgc	tctgctgctc	tgaccttcca	gagcccaagg	tcagggaggg	1560
	gcaaccaact	gccccagggg	gatatgggtc	ctctggggcc	ttcgggacca	tggggcaggg	1620
25	gtgcttcctc	ctcaggccca	gctgctcccc	tggaggacag	agggagacag	ggctgctccc	1680
	caacacctgc	ctctgacccc	agcatttcca	gagcagagcc	tacagaaggg	cagtgactcg	1740
	acaaaggcca	caggcagtcc	aggcctctct	ctgctccatc	cccctgcctc	ccattctgca	1800
30	ccacacctgg	catggtgcag	ggagacatct	gcacccctga	gttgggcagc	caggagtgcc	1860
	cccgggaatg	gataataaag	atactagaga	actg			1894
35							
40	<210> 65 <211> 3029 <212> ADN <213> humano						
	<400> 65						
45							
70	ccaggcagct	ggggtaagga	gttcaaggca	gcgcccacac	ccgggggctc	tecgcaacee	60
	gaccgcctgt	ccgctccccc	acttcccgcc	ctccctccca	cctactcatt	cacccaccca	120
50	cccacccaga	gccgggacgg	cagcccaggc	gcccgggccc	cgccgtctcc	tcgccgcgat	180
	cctggacttc	ctcttgctgc	aggacccggc	ttccacgtgt	gtcccggagc	cggcgtctca	240
	gcacacgctc	cgctccgggc	ctgggtgcct	acagcagcca	gagcagcagg	gagtccggga	300
55	cccgggcggc	atctgggcca	agttaggcgc	cgccgaggcc	agcgctgaac	gtctccaggg	360
	ccggaggagc	cgcggggcgt	ccgggtctga	gccgcagcaa	atgggctccg	acgtgcggga	420
60	cctgaacgcg	ctgctgcccg	ccgtcccctc	cctgggtggc	ggcggcggct	gtgccctgcc	480
60	tgtgagcggc	gcggcgcagt	gggcgccggt	gctggacttt	gcgcccccgg	gcgcttcggc	540
						cgccgccgcc	600
65	gcctcactcc	ttcatcaaac	aggagccgag	ctggggcggc	gcggagccgc	acgaggagca	660

	gtgcctgagc	gccttcactg	tccacttttc	cggccagtic	actggcacag	ccggagcctg	720
5	tcgctacggg	cccttcggtc	ctcctccgcc	cagccaggcg	tcatccggcc	aggccaggat	780
	gtttcctaac	gcgccctacc	tgcccagctg	cctcgagagc	cagcccgcta	ttcgcaatca	840
10	gggttacagc	acggtcacct	tcgacgggac	gcccagctac	ggtcacacgc	cctcgcacca	900
10	tgcggcgcag	ttccccaacc	actcattcaa	gcatgaggat	cccatgggcc	agcagggctc	960
	gctgggtgag	cagcagtact	cggtgccgcc	cccggtctat	ggctgccaca	ccccaccga	1020
15	cagctgcacc	ggcagccagg	ctttgctgct	gaggacgccc	tacagcagtg	acaatttata	1080
	ccaaatgaca	tcccagcttg	aatgcatgac	ctggaatcag	atgaacttag	gagccacctt	1140
00	aaagggagtt	gctgctggga	gctccagctc	agtgaaatgg	acagaagggc	agagcaacca	1200
20	cagcacaggg	tacgagagcg	ataaccacac	aacgcccatc	ctctgcggag	cccaatacag	1260
	aatacacacg	cacggtgtct	tcagaggcat	tcaggatgtg	cgacgtgtgc	ctggagtagc	1320
25	cccgactctt	gtacggtcgg	catctgagac	cagtgagaaa	cgccccttca	tgtgtgctta	1380
	cccaggctgc	aataagagat	attttaagct	gtcccactta	cagatgcaca	gcaggaagca	1440
	cactggtgag	aaaccatacc	agtgtgactt	caaggactgt	gaacgaaggt	tttctcgttc	1500
30	agaccagctc	aaaagacacc	aaaggagaca	tacaggtgtg	aaaccattcc	agtgtaaaac	1560
	ttgtcagcga	aagttctccc	ggtccgacca	cctgaagacc	cacaccagga	ctcatacagg	1620
25	taaaacaagt	gaaaagccct	tcagctgtcg	gtggccaagt	tgtcagaaaa	agtttgcccg	1680
35	gtcagatgaa	ttagtccgcc	atcacaacat	gcatcagaga	aacatgacca	aactccagct	1740
	ggcgctttga	ggggtctccc	tcggggaccg	ttcagtgtcc	caggcagcac	agtgtgtgaa	1800
40	ctgctttcaa	gtctgactct	ccactcctcc	tcactaaaaa	ggaaacttca	gttgatcttc	1860
	ttcatccaac	ttccaagaca	agataccggt	gcttctggaa	actaccaggt	gtgcctggaa	1920
	gagttggtct	ctgccctgcc	tacttttagt	tgactcacag	gccctggaga	agcagctaac	1980
45	aatgtctggt	tagttaaaag	cccattgcca	tttggtgtgg	attttctact	gtaagaagag	2040
	ccatagctga	tcatgtcccc	ctgacccttc	ccttcttttt	ttatgctcgt	tttcgctggg	2100
- 0	gatggaatta	ttgtaccatt	ttctatcatg	gaatatttat	aggccagggc	atgtgtatgt	2160
50	gtctgctaat	gtaaactttg	tcatggtttc	catttactaa	cagcaacago	aagaaataaa	2220
	tcagagagca	aggcatcggg	ggtgaatctt	gtctaacatt	cccgaggtca	gccaggctgc	2280
55	taacctggaa	agcaggatgt	agttctgcca	ggcaactttt	aaagctcatg	catttcaagc	2340
-	agctgaagaa	aaaatcagaa	ctaaccagta	cctctgtata	gaaatctaaa	agaattttac	2400
	cattcagtta	attcaatgtg	aacactggca	cactgctctt	aagaaactat	gaagatctga	2460
60	gattttttt	totatottt	toactctttt	gagtggtaat	catatototo	tttatagatg	2520

5	tacatacctc	cttgcacaaa	tggaggggaa	ttcattttca	ı tcactggga	g tgtccttagt	2580
	gtataaaaac	catgctggta	tatggcttca	agttgtaaaa	atgaaagtg	a ctttaaaaga	2640
	aaatagggga	tggtccagga	tctccactga	taagactgt	t tttaagtaa	c ttaaggacct	2700
10	ttgggtctac	aagtatatgt	gaaaaaaatg	agacttact	ggtgaggaa	a tccattgttt	2760
	aaagatggtc	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtg	t gtgttgtgt	t gtgttttgtt	2820
15	ttttaaggga	gggaatttat	tatttaccgt	tgcttgaaa	t tactgtgta	a atatatgtct	2880
	gataatgatt	tgctctttga	caactaaaat	taggactgt	a taagtacta	g atgcatcact	2940
	gggtgttgat	cttacaagat	attgatgata	acacttaaa	a ttgtaacct	g catttttcac	3000
20	tttgctctca	attaaagtct	attcaaaag				3029
25	<210> 66 <211> 1064 <212> ADN <213> humano						
30	<400> 66						
	tttgaggcca	tataaagtca	cctgaggccc	tctccaccac	agcccaccag	tgaccatgaa	60
35	ggctgtgctg	cttgccctgt	tgatggcagg	cttggccctg	cagccaggca	ctgccctgct	120
JJ	gtgctactcc	tgcaaagccc	aggtgagcaa	cgaggactgc	ctgcaggtgg	agaactgcac	180
	ccagctgggg	gagcagtgct	ggaccgcgcg	catccgcgca	gttggcctcc	tgaccgtcat	240
40	cagcaaaggc	tgcagcttga	actgcgtgga	tgactcacag	gactactacg	tgggcaagaa	300
	gaacatcacg	tgctgtgaca	ccgacttgtg	caacgccagc	ggggcccatg	ccctgcagcc	360
	ggctgctgcc	atccttgcgc	tgctccctgc	actcggcctg	ctgctctggg	gacccggcca	420
45	gctctaggct	ctggggggcc	ccgctgcagc	ccacactggg	tgtggtgccc	caggcctctg	480
	tgccactcct	cacacacccg	gcccagtggg	agcctgtcct	ggttcctgag	gcacatccta	540
	acgcaagtct	gaccatgtat	gtctgcgccc	ctgtccccca	ccctgaccct	cccatggccc	600
50	tctccaggac	tcccacccgg	cagatcggct	ctattgacac	agatccgcct	gcagatggcc	660
	cctccaaccc	tctctgctgc	tgtttccatg	gcccagcatt	ctccaccctt	aaccctgtgc	720
55	tcaggcacct	cttcccccag	gaagccttcc	ctgcccaccc	catctatgac	ttgagccagg	780
55	tctggtccgt	ggtgtccccc	gcacccagca	ggggacaggc	actcaggagg	gcccggtaaa	840
	ggctgagatg	aagtggactg	agtagaactg	gaggacagga	gtcgacgtga	gttcctggga	900
60	gtctccagag	atggggcctg	gaggcctgga	ggaaggggcc	aggcctcaca	ttcgtggggc	960
	tccctgaatg	gcagcctcag	cacagcgtag	gcccttaata	aacacctgtt	ggataagcca	1020
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaa		1064

<210> 67 <211> 6962 <212> ADN <213> humano 5

10	gcaagaactg	caggggagga	ggacgctgcc	acccacagcc	tctagagctc	attgcagctg	60
10	ggacagcccg	gagtgtggtt	agcagctcgg	caagcgctgc	ccaggtcctg	gggtggtggc	120
	agccagcggg	agcaggaaag	gaagcatgtt	cccaggctgc	ccacgcctct	gggtcctggt	180
15	ggtcttgggc	accagctggg	taggctgggg	gagccaaggg	acagaagcgg	cacagctaag	240
	gcagttctac	gtggctgctc	agggcatcag	ttggagctac	cgacctgagc	ccacaaactc	300
	aagtttgaat	ctttctgtaa	cttcctttaa	gaaaattgtc	tacagagagt	atgaaccata	360
20	ttttaagaaa	gaaaaaccac	aatctaccat	ttcaggactt	cttgggccta	ctttatatgc	420
	tgaagtcgga	gacatcataa	aagttcactt	taaaaataag	gcagataagc	ccttgagcat	480
	ccatcctcaa	ggaattaggt	acagtaaatt	atcagaaggt	gcttcttacc	ttgaccacac	540
25	attccctgcg	gagaagatgg	acgacgctgt	ggctccaggc	cgagaataca	cctatgaatg	.600
	gagtatcagt	gaggacagtg	gacccaccca	tgatgaccct	ccatgcctca	cacacatcta	660
	ttactcccat	gaaaatctga	tcgaggattt	~caactcgggg	ctgattgggc	ccctgcttat	720
30	ctgtaaaaaa	gggaccctaa	ctgagggtgg	gacacagaag	acgtttgaca	agcaaatcgt	780
	gctactattt	gctgtgtttg	atgaaagcaa	gagctggagc	cagtcatcat	ccctaatgta	840
	cacagtcaat	ggatatgtga	atgggacaat	gccagatata	acagtttgtg	cccatgacca	900
35	catcagctgg	catctgctgg	gaatgagctc	ggggccagaa	ttattctcca	ttcatttcaa	960
	cggccaggtc	ctggagcaga	accatcataa	ggtctcagcc	atcacccttg	tcagtgctac	1020
40	atccactacc	gcaaatatga	ctgtgggccc	agagggaaag	tggatcatat	cttctctcac	1080
40	cccaaaacat	ttgcaagctg	ggatgcaggc	ttacattgac	attaaaaact	gcccaaagaa	1140
	aaccaggaat	cttaagaaaa	taactcgtga	gcagaggcgg	cacatgaaga	ggtgggaata	1200
45	cttcattgct	gcagaggaag	tcatttggga	ctatgcacct	gtaataccag	cgaatatgga	1260
40	caaaaaatac	aggtctcagc	atttggataa	tttctcaaac	caaattggaa	aacattataa	1320
	gaaagttatg	tacacacagt	acgaagatga	gtccttcacc	aaacatacag	tgaatcccaa	1380
50	tatgaaagaa	gatgggattt	tgggtcctat	tatcagagcc	caggtcagag	acacactcaa	1440
00	aatcgtgttc	aaaaatatgg	ccagccgccc	ctatagcatt	taccctcatg	gagtgacctt	1500
	ctcgccttat	gaagatgaag	tcaactcttc	tttcacctca	ggcaggaaca	acaccatgat	1560
55	cagagcagtt	caaccagggg	aaacctatac	ttataagtgg	aacatcttag	agtttgatga	1620
	acccacagaa	aatgatgccc	agtgcttaac	aagaccatac	tacagtgacg	tggacatcat	1680
	gagagacato	gcctctgggc	taataggact	acttctaatc	tgtaagagca	gatccctgga	1740

65

	caggcgagga	atacagaggg	cagcagacat	cgaacagcag	gctgtgtttg	ctgtgtttga	1800
5	tgagaacaaa	agctggtacc	ttgaggacaa	catcaacaag	ttttgtgaaa	atcctgatga	1860
	ggtgaaacgt	gatgacccca	agttttatga	atcaaacatc	atgagcacta	tcaatggcta	1920
10	tgtgcctgag	agcataacta	ctcttggatt	ctgctttgat	gacactgtcc	agtggcactt	1980
10	ctgtagtgtg	gggacccaga	atgaaatttt	gaccatccac	ttcactgggc	actcattcat	2040
	ctatggaaag	aggcatgagg	acaccttgac	cctcttcccc	atgcgtggag	aatctgtgac	2100
15	ggtcacaatg	gataatgttg	gaacttggat	gttaacttcc	atgaattcta	gtccaagaag.	2160
	caaaaagctg	aggctgaaat	tcagggatgt	taaatgtatc	ccagatgatg	atgaagactc	2220
	atatgagatt	tttgaacctc	cagaatctac	agtcatggct	acacggaaaa	tgcatgatcg	2280
20	tttagaacct	gaagatgaag	agagtgatgc	tgactatgat	taccagaaca	gactggctgc	2340
	agcattagga	atcaggtcat	tccgaaactc	átcattgaat	caggaagaag	aagagttcaa	2400
25	tcttactgcc	ctagctctgg	agaatggcac	tgaattcgtt	tcttcaaaca	cagatataat	2460
25	tgttggttca	aattattctt	ccccaagtaa	tattagtaag	ttcactgtca	ataaccttgc	2520
	agaacctcag	aaagcccctt	ctcaccaaca	agccaccaca	gctggttccc	cactgagaca	2580
30	cctcattggc	aagaactcag	ttctcaattc	ttccacagca	gagcattcca	gcccatattc	2640
	tgaagaccct	atagaggatc	ctctacagcc	agatgtcaca	gggatacgtc	tactttcact	2700
	tggtgctgga	gaattcaaaa	gtcaagaaca	tgctaagcat	aagggaccca	aggtagaaag	2760
35	agatcaagca	gcaaagcaca	ggttctcctg	gatgaaatta	ctagcacata	aagttgggag	2820
	acacctaagc	caagacactg	gttctccttc	cggaatgagg	ccctgggagg	accttcctag	2880
40	ccaagacact	ggttctcctt	ccagaatgag	gccctggaag	gaccctccta	gtgatctgtt	2940
40	actcttaaaa	caaagtaact	catctaagat	tttggttggg	agatggcatt	tggcttctga	3000
	gaaaggtagc	tatgaaataa	tccaagatac	tgatgaagac	acagctgtta	acaattggct	3060
45	gatcagcccc	cagaatgcct	cacgtgcttg	gggagaaagc	acccctcttg	ccaacaagcc	3120
	tggaaagcag	agtggccacc	caaagtttcc	tagagttaga	cataaatctc	tacaagtaag	3180
	acaggatgga	ggaaagagta	gactgaagaa	aagccagttt	ctcattaaga	cacgaaaaaa	3240
50	gaaaaaagag	aagcacacac	accatgctcc	tttatctccg	aggacctttc	accetetaag	3300
	aagtgaagcc	tacaacacat	tttcagaaag	aagacttaag	cattcgttgg	g tgcttcataa	3360
	atccaatgaa	acatctcttc	ccacagacct	caatcagaca	ttgccctcta	tggattttgg	3420
55	ctggatagcc	tcacttcctg	accataatca	gaattcctca	aatgacactg	gtcaggcaag	3480
	ctgtcctcca	ggtctttato	agacagtgco	cccagaggaa	cactatcaaa	cattccccat	3540
60	tcaagaccct	gatcaaatgo	actctactto	agaccccagt	cacagatcct	cttctccaga	3600
60	gctcagtgaa	atgcttgagt	atgaccgaag	tcacaagtco	ttccccacaç	atataagtca	3660

	aatgtcccct tcctcagaac atgaagtctg gcagacagtc atctctccag acctcagcca	3720
5	ggtgaccctc tctccagaac tcagccagac aaacctctct ccagacctca gccacacgac	3780
	tctctctcca gaactcattc agagaaacct ttccccagcc ctcggtcaga tgcccatttc	3840
40	tccagacctc agccatacaa ccctttctcc agacctcagc catacaaccc tttctttaga	3900
10	cctcagccag acaaacctct ctccagaact cagtcagaca aacctttctc cagccctcgg	3960
	tcagatgccc ctttctccag acctcagcca tacaaccctt tctctagact tcagccagac	4020
15	aaacctctct ccagaactca gccatatgac tctctctcca gaactcagtc agacaaacct	4080
	ttccccagcc ctcggtcaga tgcccatttc tccagacctc agccatacaa ccctttctct	4140
	agacttcagc cagacaaacc tctctccaga actcagtcaa acaaaccttt ccccagccct	4200
20	cggtcagatg cccctttctc cagaccccag ccatacaacc ctttctctag acctcagcca	4260
	gacaaacctc tctccagaac tcagtcagac aaacctttcc ccagacctca gtgagatgcc	4320
	cctctttgca gatctcagtc aaattcccct taccccagac ctcgaccaga tgacactttc	4380
25	tccagacctt ggtgagacag atctttcccc aaactttggt cagatgtccc tttccccaga	4440
	cctcagccag gtgactctct ctccagacat cagtgacacc acccttctcc cggatctcag	4500
30	ccagatatca cctcctccag accttgatca gatattctac ccttctgaat ctagtcagtc	4560
	attgcttctt caagaattta atgagtcttt tccttatcca gaccttggtc agatgccatc	4620
	tccttcatct cctactctca atgatacttt tctatcaaag gaatttaatc cactggttat	4680
35	agtgggcctc agtaaagatg gtacagatta cattgagatc attccaaagg aagaggtcca	4740
	gagcagtgaa gatgactatg ctgaaattga ttatgtgccc tatgatgacc cctacaaaac	4800
	tgatgttagg acaaacatca actcctccag agatcctgac aacattgcag catggtacct	4860
40	ccgcagcaac aatggaaaca gaagaaatta ttacattgct gctgaagaaa tatcctggga	4920
	ttattcagaa tttgtacaaa gggaaacaga tattgaagac tctgatgata ttccagaaga	4980
45	taccacatat aagaaagtag tttttcgaaa gtacctcgac agcactttta ccaaacgtga	5040
10	tcctcgaggg gagtatgaag agcatctcgg aattcttggt cctattatca gagctgaagt	5100
	ggatgatgtt atccaagttc gttttaaaaa tttagcatcc agaccgtatt ctctacatgc	5160
50	ccatggactt tcctatgaaa aatcatcaga gggaaagact tatgaagatg actctcctga	5220
	atggtttaag gaagataatg ctgttcagcc aaatagcagt tatacctacg tatggcatgc	5280
	cactgagcga tcagggccag aaagtcctgg ctctgcctgt cgggcttggg cctactactc	5340
55	agctgtgaac ccagaaaaag atattcactc aggcttgata ggtcccctcc taatctgcca	5400
	aaaaggaata ctacataagg acagcaacat gcctatggac atgagagaat ttgtcttact	5460
60	atttatgacc tttgatgaaa agaagagctg gtactatgaa aagaagtccc gaagttcttg	5520
00		

_	gagacteaca teeteagaaa tgaaaaaate ceatgagtee tatgetatta atgggatgat	3300
5	ctacagcttg cctggcctga aaatgtatga gcaagagtgg gtgaggttac acctgctgaa	5640
	cataggcggc tcccaagaca ttcacgtggt tcactttcac ggccagacct tgctggaaaa	5700
10	tggcaataaa cagcaccagt taggggtctg gccccttctg cctggttcat ttaaaactct	5760
	tgaaatgaag gcatcaaaac ctggctggtg gctcctaaac acagaggttg gagaaaacca	5820
	gagagcaggg atgcaaacgc catttcttat catggacaga gactgtagga tgccaatggg	5880
15	actaagcact ggtatcatat ctgattcaca gatcaaggct tcagagtttc tgggttactg	5940
	ggagcccaga ttagcaagat taaacaatgg tggatcttat aatgcttgga gtgtagaaaa	6000
20	acttgcagca gaatttgcct ctaaaccttg gatccaggtg gacatgcaaa aggaagtcat	6060
20	aatcacaggg atccagaccc aaggtgccaa acactacctg aagtcctgct ataccacaga	6120
	gttctatgta gcttacagtt ccaaccagat caactggcag atcttcaaag ggaacagcac	6180
25	aaggaatgtg atgtatttta atggcaattc agatgcctct acaataaaag agaatcagtt	6240
	tgacccacct attgtggcta gatatattag gatctctcca actcgagcct ataacagacc	6300
	tacccttcga ttggaactgc aaggttgtga ggtaaatgga tgttccacac ccctgggtat	6360
30	ggaaaatgga aagatagaaa acaagcaaat cacagcttct tcgtttaaga aatcttggtg	6420
	gggagattac tgggaaccct tccgtgcccg tctgaatgcc cagggacgtg tgaatgcctg	6480
35	gcaagccaag gcaaacaaca ataagcagtg gctagaaatt gatctactca agatcaagaa	6540
	gataacggca attataacac agggctgcaa gtctctgtcc tctgaaatgt atgtaaagag	6600
	ctataccatc cactacagtg agcagggagt ggaatggaaa ccatacaggc tgaaatcctc	6660
40	catggtggac aagatttttg aaggaaatac taataccaaa ggacatgtga agaacttttt	6720
	caaccccca atcatttcca ggtttatccg tgtcattcct aaaacatgga atcaaagtat	6780
15	tgcacttcgc ctggaactct ttggctgtga tatttactag aattgaacat tcaaaaaccc	6840
45	ctggaagaga ctctttaaga cctcaaacca tttagaatgg gcaatgtatt ttacgctgtg	6900
	ttaaatgtta acagttttcc actatttctc tttcttttct	6960
50	ac	6962
55	<210> 68 <211> 1464 <212> ADN <213> humano	
	<400> 68	
e0		60
60	agccccaagc ttaccacctg cacccggaga gctgtgtcac catgtgggtc ccggttgtct	60
		120
65	gaggctggga gtgcgagaag cattcccaac cctggcaggt gcttgtggcc tctcgtggca	180

	gggcagtctg	cggcggtgtt	Ciggigiacc	cccagryygr	ccicacaget	gcccactyca	240
_	tcaggaacaa	aagcgtgatc	ttgctgggtc	ggcacagcct	gtttcatcct	gaagacacag	300
5	gccaggtatt	tcaggtcagc	cacagcttcc	cacacccgct	ctacgatatg	agcctcctga	360
	agaatcgatt	cctcaggcca	ggtgatgact	ccagcçacga	cctcatgctg	ctccgcctgt	420
10	cagagcctgc	cgagctcacg	gatgctgtga	aggtcatgga	cctgcccacc	caggagccag	480
	cactggggac	cacctgctac	gcctcaggct	ggggcagcat	tgaaccagag	gagttcttga	540
	ccccaaagaa	acttcagtgt	gtggacctcc	atgttatttc	caatgacgtg	tgtgcgcaag	600
15	ttcaccctca	gaaggtgacc	aagttcatgc	tgtgtgctgg	acgctggaca	gggggcaaaa	660
	gcacctgctc	gggtgattct	gggggcccac	ttgtctgtaa	tggtgtgctt	caaggtatca	720
	cgtcatgggg	cagtgaacca	tgtgccctgc	ccgaaaggcc	ttccctgtac	accaaggtgg	780
20	tgcattaccg	gaagtggatc	aaggacacca	tcgtggccaa	cccctgagca	ccccțatcaa	840
	cccctattg	tagtaaactt	ggaaccttgg	aaatgaccag	gccaagactc	aagcctcccc	900
25	agttctactg	acctttgtcc	ttaggtgtga	ggtccagggt	tgctaggaaa	agaaatcagc	960
25	agacacaggt	gtagaccaga	gtgtttctta	aatggtgtaa	ttttgtcctc	tctgtgtcct	1020
	ggggaatact	ggccatgcct	ggagacatat	cactcaattt	ctctgaggac	acagatagga	1080
30	tggggtgtct	gtgttatttg	tggggtacag	agatgaaaga	ggggtgggat	ccacactgag	1140
	agagtggaga	gtgacatgtg	ctggacactg	tccatgaagc	actgagcaga	agctggaggc	1200
	acaacgcacc	agacactcac	agcaaggatg	gagctgaaaa	cataacccac	tctgtcctgg	1260
35	aggcactggg	aagcctagag	aaggctgtga	gccaaggagg	gagggtcttc	ctttggcatg	1320
	ggatggggat	gaagtaagga	gagggactgg	accccctgga	agctgattca	ctatgggggg	1380
	aggtgtattg	aagtcctcca	gacaaccctc	agatttgatg	atttcctagt	agaactcaca	1440
40	gaaataaaga	gctgttatac	tgtg				1464
45	<210> 69 <211> 1793 <212> ADN <213> humano						
50	<400> 69						
	cgcgtccgcc	ccgcgagcac	agagcctcgc	ctttgccgat	ccgccgcccg	tccacacccg	60
55	ccgccagctc	accatggatg	atgatatcgc	cgcgctcgtc	gtcgacaacg	gctccggcat	. 120
JU	gtgcaaggcc	ggcttcgcgg	gcgacgatgc	ccccgggcc	gtcttcccct	ccatcgtggg	180
	gcgccccagg	caccagggcg	tgatggtggg	catgggtcag	aaggattcct	atgtgggcga	240
60	cgaggcccag	agcaagagag	gcatcctcac	cctgaagtac	cccatcgagc	acggcatcgt	300
-	caccaactgg	gacgacatgg	agaaaatctg	gcaccacacc	ttctacaatg	agctgcgtgt	360

	ggctcccgag gagcaccccg tgctgctgac cgaggccccc ctgaacccca aggccaaccg	420
5	cgagaagatg acccagatca tgtttgagac cttcaacacc ccagccatgt acgttgctat	480
J	ccaggctgtg ctatccctgt acgcctctgg ccgtaccact ggcatcgtga tggactccgg	540
	tgacggggtc acccacactg tgcccatcta cgaggggtat gccctcccc atgccatcct	600
10	gcgtctggac ctggctggcc gggacctgac tgactacctc atgaagatcc tcaccgagcg	660
	cggctacagc ttcaccacca cggccgagcg ggaaatcgtg cgtgacatta aggagaagct	720
	gtgctacgtc gccctggact tcgagcaaga gatggccacg gctgcttcca gctcctccct	780
15	ggagaagagc tacgagctgc ctgacggcca ggtcatcacc attggcaatg agcggttccg	840
	ctgccctgag gcactcttcc agccttcctt cctgggcatg gagtcctgtg gcatccacga	900
20	aactaccttc aactccatca tgaagtgtga cgtggacatc cgcaaagacc tgtacgccaa	960
	cacagtgctg tctggcggca ccaccatgta ccctggcatt gccgacagga tgcagaagga	1020
	gatcactgcc ctggcaccca gcacaatgaa gatcaagatc attgctcctc ctgagcgcaa	1080
25	gtactccgtg tggatcggcg gctccatcct ggcctcgctg tccaccttcc agcagatgtg	1140
	gatcagcaag caggagtatg acgagtccgg cccctccatc gtccaccgca aatgcttcta	1200
00	ggcggactat gacttagttg cgttacaccc tttcttgaca aaacctaact tgcgcagaaa	1260
30	acaagatgag attggcatgg ctttatttgt tttttttgtt ttgttttggt tttttttt	1320
	tttttggctt gactcaggat ttaaaaactg gaacggtgaa ggtgacagca gtcggttgga	1380
35	gcgagcatcc cccaaagttc acaatgtggc cgaggacttt gattgcacat tgttgttttt	1440
	ttaatagtca ttccaaatat gagatgcatt gttacaggaa gtcccttgcc atcctaaaag	1500
	ccaccccact tctctctaag gagaatggcc cagtcctctc ccaagtccac acaggggagg	1560
40	tgatagcatt gctttcgtgt aaattatgta atgcaaaatt tttttaatct tcgccttaat	1620
	actttttat tttgttttat tttgaatgat gagccttcgt gccccccctt cccccttttt	1680
15	gtcccccaac ttgagatgta tgaaggcttt tggtctccct gggagtgggt ggaggcagcc	1740
45	agggcttacc tgtacactga cttgagacca gttgaataaa agtgcacacc tta	1793
50	<210> 70 <211> 1526 <212> ADN <213> humano	
	<400> 70	
55		60
	ccggaagtga cgcgaggctc tgcggagacc aggagtcaga ctgtaggacg acctcgggtc	60
	ccacgtgtcc ccggtactcg ccggccggag cccccggctt cccggggccg ggggacctta	120
60	gcggcaccca cacacagcct actttccaag cggagccatg tctggtaacg gcaatgcggc	180
	tgcaacggcg gaagaaaaca gcccaaagat gagagtgatt cgcgtgggta cccgcaagag	240

	ccagcitiget c	.gcatacaga	cggacagtgt	ggeggcaaca	ttgaaagcct	cgtactttgg	300
5	cctgcagttt g	gaaatcattg	ctatgtccac	cacaggggac	aágattcttg	atactgcact	360
5	ctctaagatt g	gagagaaaa	gcctgtttac	caaggagctt	gaacatgccc	tggagaagaa	420
	tgaagtggac c	tggttgttc	actccttgaa	ggacctgccc	actgtgcttc	ctcctggctt	480
10	caccatcgga g	ccatctgca	agcgggaaaa	ccctcatgat	gctgttgtct	ttcacccaaa	540
	atttgttggg a	agaccctag	aaaccctgcc	agagaagagt	gtggtgggaa	ccagctccct	600
	gcgaagagca g	gcccagctgc	agagaaagtt	cccgcatctg	gagttcagga	gtattcgggg	660
15	aaacctcaac a	acccggcttc	ggaagctgga	cgagcagcag	gagttcagtg	ccatcatcct	720
	ggcaacagct g	gcctgcagc	gcatgggctg	gcacaaccgg	gtggggcaga	tectgcaccc	780
	tgaggaatgc a	atgtatgctg	tgggccaggg	ggccttgggc	gtggaagtgc	gagccaagga	840
20	ccaggacatc t	ttggatctgg	tgggtgtgct	gcacgatccc	gagactctgc	ttcgctgcat	900
	cgctgaaagg g	gccttcctga	ggcacctgga	aggaggctgc	agtgtgccag	tagccgtgca	960
0.5	tacagctatg a	aaggatgggc	aactgtacct	gactggagga	gtctggagtc	tagacggctc	1020
25	agatagcata d	caagagacca	tgcaggctac	catccatgtc	cctgcccagc	atgaagatgg	1080
	ccctgaggat	gacccacagt	tggtaggcat	cactgctcgt	aacattccac	gagggcccca	1140
30	gttggctgcc o	cagaacttgg	gcatcagcct	ggccaacttg	ttgctgagca	aaggagccaa	1200
50	aaacatcctg (gatgttgcac	ggcagcttaa	cgatgcccat	taactggttt	gtggggcaca	1260
	gatgcctggg t	ttgctgctgt	ccagtgccta	catcccgggc	ctcagtgccc	cattctcact	1320
35	gctatctggg g	gagtgattac	cccgggagac	tgaactgcag	ggttcaagcc	ttccagggat	1380
	ttgcctcacc 1	ttggggcctt	gatgactgcc	ttgcctcctc	agtatgtggg	ggcttcatct	1440
	ctttagagaa g	gtccaagcaa	cagcctttga	atgtaaccaa	tcctactaat	aaaccagttc	1500
40	tgaaggtgta a	aaaaaaaaa	aaaaaa				1526
45	<210> 71 <211> 2397 <212> ADN <213> humano						
	<400> 71						
50							
	gcaagaactg a	aacgaatgg	ggattgaact	gctttgcctg	ttctttctat	ttctaggaag	60
	gaatgatcac g	tacaaggtg	gctgtgccct	gggaggtgca	gaaacctgtg	aagactgcct	120
55	gcttattgga c	ctcagtgtg	cctggtgtgc	tcaggagaat	tttactcatc	catctggagt	180
	tggcgaaagg t	gtgataccc	cagcaaacct	tttagctaaa	ggatgtcaat	taaacttcat	240
60	cgaaaaccct g	tctcccaag	tagaaatact	taaaaataag	cctctcagtg	taggcagaca	300
60	gaaaaatagt t	ctgacattg	ttcagattqc	gcctcaaagc	ttgatcctta	agttgagacc	360

	aggtggtgcg	cagactctgc	aggtgcatgt	ccgccagact	gaggactacc	cggtggattt	420
5	gtattacctc	atggacctct	ccgcctccat	ggatgacgac	ctcaacacaa	taaaggagct	480
J	gggctcccgg	ctttccaaag	agatgtctaa	attaaccagc	aactttagac	tgggcttcgg	540
	atcttttgtg	gaaaaacctg	tatccccttt	cgtgaaaaca	acaccagaag	aaattgccaa	600
10	cccttgcagt	agtattccat	acttctgttt	acctacattt	ggattcaagc	acattttgcc	660
	attgacaaat	gatgctgaaa	gattcaatga	aattgtgaag	aatcagaaaa	tttctgctaa	720
	tattgacaca	cccgaaggtg	gatttgatgc	aattatgcaa	gctgctgtgt	gtaaggaaaa	780
15	aattggctgg	cggaatgact	ccctccacct	cctggtcttt	gtgagtgatg	ctgattctca	840
	ttttggaatg	gacagcaaac	tagcaggcat	cgtcattcct	aatgacgggc	tctgtcactt	900
	ggacagcaag	aatgaatact	ccatgtcaac	tgtcttggaa	tatccaacaa	ttggacaact	960
20	cattgataaa	ctggtacaaa	acaacgtgtt	attgatcttc	gctgtaaccc	aagaacaagt	1020
	tcatttatat	gagaattacg	caaaacttat	tcctggagct	acagtaggtc	tacttcagaa	1080
0.5	ggactccgga	-aacattctcc	agctgatcat	ctcagcttat	gaagaactgc	ggtctgaggt	1140
25	ggaactggaa	gtattaggag	acactgaagg	actcaacttg	tcatttacag	ccatctgtaa	1200
	caacggtac	ctcttccaac	accaaaagaa	atgctctcac	atgaaagtgg	gagacacagc	1260
30	ttccttcag	gtgactgtga	atatcccaca	ctgcgagaga	agaagcaggc	acattatcat	1320
00	aaagcctgtg	g gggctggggg	atgccctgga	attacttgtc	agcccagaat	gcaactġcga	1380
	ctgtcagaaa	a gaagtggaag	tgaacagctc	caaatgtcac	cacgggaacg	gctctttcca	1440
35	gtgtggggt	g tgtgcctgcc	accctggcca	catggggcct	cgctgtgagt	gtggcgagga	1500
	catgctgag	c acagattcct	gcaaggaggc	cccagatcat	ccctcctgca	gcggaagggg	1560
	tgactgcta	c tgtgggcagt	gtatctgcca	cttgtctccc	tatggaaaca	tttatgggcc	1620
40	ttattgcca	g tgtgacaatt	tctcctgcgt	gagacacaaa	gggctgctct	gcggaggtaa	1680
	cggcgactg	t gactgtggtg	aatgtgtgtg	caggagcggc	tggactggcg	agtactgcaa	1740
	ctgcaccac	c agcacggact	cctgcgtctc	tgaagatgga	gtgctctgca	gcgggcgcgg	1800
45	ggactgtgt	t tgtggcaagt	gtgtttgcad	: aaaccctgga	gcctcaggac	caacctgtga	1860
	acgatgtcc	t_acctgtggtg	acccctgtaa	ctctaaacgg	agctgcattg	agtgccacct	1920
	gtcagcagc	t ggccaagcco	gagaagaatg	g tgtggacaag	tgcaaactag	ctggtgcgac	1980
50	catcagtga	a gaagaagatt	tctcaaagga	a tggttctgti	tcctgctctc	tgcaaggaga	2040
	aaatgaatg	t cttattaca	tcctaataa	tacagataa	gaggggaaaa	ccatcattca	2100
55	cagcatcaa	t gaaaaagat	gtccgaagc	tccaaacat	cccatgatca	tgttaggggt	2160
55	ttccctggc	t attcttctc	tcggggttg	t cctactgtg	atctggaago	tactggtgtc	2220
	atttcatga	t cgtaaagaaq	g ttgccaaati	t tgaagcagaa	cgatcaaaag	ccaagtggca	2280

	aacgggaacc	aatccactct	acagaggatc	cacaagtact	tttaaaaatg	taacttataa	2340
5	acacagggaa	aaacaaaagg	tagacctttc	cacagattgc	tagaactact	ttatgca .	2397
J							
	<210> 72 <211> 2118						
10	<212> ADN <213> humano						
	<400> 72						
15							
	tggggagccc	aagcagaaac	gcaagctggt	ggctgaggtg	tccctgcaga	acccgctccc	60
	tgtggccctg	gaaggctgca	ccttcactgt	ggagggggcc	ggcctgactg	aggagcagaa	120
20	gacggtggag	atcccagacc	ccgtggaggc	aggggaggaa	gttaaggtga	gaatggacct	180
	gctgccgctc	cacatgggcc	tccacaagct	ggtggtgaac	ttcgagagcg	acaagctgaa	240
	ggctgtgaag	ggcttccgga	atgtcatcat	tggccccgce-	taagggaccc	ctgctcccag	300
25	cctgctgaga	gccccacct	tgatcccaat	ccttatccca	agctagtgag	caaaatatgc	360
	cccttcttgg	gccccagacc	ccagggcagg	gtgggcagcc	tatgggggct	ctcggaaatg	420
30	gaatgtgccc	ctggcccatc	tcagcctcct	gagcctgtgg	gtccccactc	acccctttg	480
30	ctgtgaggaa	tgctctgtgc	cagaaacagt	gggagccctg	accttggctg	actggggctg	540
	gggtgagaga	ggaaagacct	acattccctc	tcctgcccag	atgccctttg	gaaagccatt	600
35	gaccacccac	catattgttt	gatctacttc	atagctcctt	ggagcaggca	aaaaagggac	660
	agcatgcccc	ttggctggat	cagggaatcc	agctccctag	actgcatccc	gtacctcttc	720
	ccatgactgc	acccagctcc	aggggccctt	gggacagcca	gagctgggtg	gggacagtga	780
40	taggcccaag	gtcccctcca	catcccagca	gcccaagctt	aatagccctc	cccctcaacc	840
	tcaccattgt	gaagcaccta	ctatgtgctg	ggtgcctccc	acacttgctg	gggctcacgg	900
	ggcctccaac	ccatttaatc	accatgggaa	actgttgtgg	gcgctgcttc	caggataagg	960
45				cctccacacc			1020
	caaggctggg	taatgtgaag	gcccaagagc	agagtctggg	cctctgactc	tgagtccact	1080
50	gctccattta	taaccccagc	ctgacctgag	actgtcggag	aggctgtctg	gggcctttat	1140
50	caaaaaaga	ctcagccaag	acaaggaggt	agagagggga	ctgggggact	gggagtcaga	1200
	gccctggctg	ggttcaggtc	ccacgtctgg	ccaggcactg	ccttctcctc	tctgggcctt	1260
55	tgtttccttg	ttggtcagag	gagtgattga	accagctcat	ctccaaggat	cctctccact	1320
				ccttgtaaat			1380
				gatatttctg			1440
60			1	tccttcctat			1500
				cacccctgct			1560

							1620
		agacttccca					1620
5	4	gctacccctt					1680
	gaggaagctt	ggggaaccca	tgagttgtca	gctttgactt	tatctcctgc	tctttctaca	1740
40	tgactgggcc	tcccttgggc	tggaagaatt	ggggattctc	tattggaggt	gagatcacag	1800
10	cctccagggc	ccccaaatc	ccagggaagg	acttggagag	aatcatgctg	ttgcatttag	1860
	aactttctgc	tttgcacagg	aaagagtcac	acaattaatc	aacatgtata	ttttctctat	1920
15	acatagagct	ctatttctct.	acggttttat	aaaagccttg	ggttccaacc	aggcagtaga	1980
	tgtgcttctg	aaccgcaagg	agcaaacact	gaaataaaat	agtttatttt	tcacactcaa	2040
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
20	aaaaaaaaa	aaaaaaa					2118
25	<210> 73 <211> 2832 <212> ADN <213> humano						
30	<400> 73						
	aaagctcaaa	ccgacaccct	cacgcagatg	atgacatcaa	ctctttttc	ttccccaagt	60
25	gtacacaatg	tgatggagac	tgttacgcag	gagacagctc	ctccagatga	aatgaccaca	120
35	tcatttccct	ccagtgtcac	caacacactc	atgatgacat	caaagactat	aacaatgaca	180
	acctccacag	actccactct	tggaaacaca	gaagagacat	caacagcagg	aactgaaagt	240
40	tctaccccag	tgacctcagc	agtctcaata	acagctggac	aggaaggaca	atcacgaaca	300
	acttcctgga	ggacctctat	ccaagacaca	tcagcttctt	ctcagaacca	ctggactcgg	360
	agcacgcaga	ccaccaggga	atctcaaacc	agcaccctaa	cacacagaac	cacttcaact,	420
45	ccttctttct	ctccaagtgt	acacaatgtg	acagggactg	tttctcagaa	gacatctcct	480
	tcaggtgaaa	cagctacctc	atccctctgt	agtgtcacaa	acacatccat	gatgacatca	540
50	gagaagataa	cagtgacaac	ctccacaggo	tccactcttg	gaaacccagg	ggagacatca	600
50	tcagtacctg	ttactggaag	tcttatgcca	gtcacctcag	cagccttagt	aacagttgat	660
	ccagaaggac	aatcaccago	aactttctca	aggacttcta	ctcaggacac	aacagctttt	720
55	tctaagaaco	accagactca	gagcgtggag	accaccagag	tatctcaaat	caacaccctc	780
	aacaccctca	caccggttac	aacatcaact	gttttatcct	caccaagtg	attcaaccca	840
	agtggaacag	tttctcagga	gacattccct	tctggtgaaa	caaccatct	atccccttcc	900
60	agtgtcagca	atacattcct	ggtaacatca	aaggtgttca	gaatgccaat	ctccagagac	960
	tctactcttg	gaaacacaga	ggagacatca	ctatctgtaa	gtggaacca	t ttctgcaatc	1020
65	acttccaaag	tttcaaccat	atggtggtca	gacactctgt	caacagcac	ctccccagt	1080
30							

	tctctacctc	caaaaatatc	cacagctttc	cacacccagc	agagtgaagg	tgcagagacc	1140
5	acaggacggc	ctcatgagag	gagctcattc	tctccaggtg	tgtctcaaga	aatatttact	1200
	ctacatgaaa	caacaacatg	gccttcctca	ttctccagca	aaggccacac	aacttggtca	1260
	caaacagaac	tgccctcaac	atcaacaggt	gctgccacta	ggcttgtcac	aggaaatcca	1320
10	tctacaggga	cagctggcac	tattccaagg	gtcccctcta	aggtctcagc	aataggggaa	1380
	ccaggagagc	ccaccacata	ctcctcccac	agcacaactc	tcccaaaaac	aacaggggca	1440
	ggcgcccaga	cacaatggac	acaagaaacg	gggaccactg	gagaggctct	tctcagcagc	1500
15	ccaagctaca	gtgtgactca	gatgataaaa	acggccacat	ccccatcttc	ttcacctatg	1560
	ctggatagac	acacatcaca	acaaattaca	acggcaccat	caacaaatca	ttcaacaata	1620
20	cattccacaa	gcacctctcc	tcaggaatca	ccagctgttt	cccaaagggg	tcacactcaa	1680
20	gccccgcaga	ccacacaaga	atcacaaacc	acgaggtccg	tctccccat	gactgacacc	1740
	aagacagtca	ccaccccagg	ttcttccttc	acagccagtg	ggcactcgcc	ctcagaaatt	1800
25	gttcctcagg	acgcacccac	cataagtgca	gcaacaacct	ttgccccagc	tcccaccggg	1860
	gatggtcaca	caacccaggc	cccgaccaca	gcactgcagg	cagcacccag	cagccatgat	1920
	gccaccctgg	ggccctcagg	aggcacgtca	cttţccaaaa	caggtgccct	tactctggcc	1980
30	aactctgtag	tgtcaacacc	agggggccca	gaaggacaat	ggacatcagc	ctctgccagc	2040
	acctcacctg	acacagcagc	agccatgacc	catacccacc	aggctgagag	cacagaggcc	2100
	tctggacaaa	cacagaccag	cgaaccggcc	tcctcagggt	cacgaaccac	ctcagcgggc	2160
35	acagctaccc	cttcctcatc	cggggcgagt	ggcacaacac	cttcaggaag	cgaaggaata	2220
	tccacctcag	gagagacgac	aaggttttca	tcaaacccct	ccagggacag	tcacacaacc	2280
40	cagtcaacaa	ccgaattgct	gtccgcctca	gccagtcatg	gtgccatccc	agtaagcaca	2340
40	ggaatggcgt	cttcgatcgt	ccccggcacc	tttcatccca	ccctctctga	ggcctccact	2400
	gcagggagac	cgacaggaca	gtcaagccca	acttctccca	gtgcctctcc	tcaggagaca	2460
45	gccgccattt	cccggatggc	ccagactcag	aggacaagaa	ccagcagagg	gtctgacact	2520
	atcagcctgg	cgtcccaggc	aaccgacacc	ttctcaacag	tcccacccac	acctccatcg	2580
	atcacatcca	ctgggcttac	atctccacaa	acccagaccc	acactctgto	accttcaggg	2640
50	tctggtaaaa	ccttcaccac	ggccctcato	agcaacgcca	cccctcttcc	tgtcacctac	2700
	gcttcctcgg	catccacagg	tcacaccacc	cctcttcatg	tcaccgatgo	ttcctcagta	2760
	tccacaggtc	acgccacccc	tcttcctgtc	accagccctt	cctcagtato	cacaggtcac	2820
55	accacccctc	tt					2832

<210> 74 <211> 1607 60 <212> ADN <213> humano <400> 74

	aatgactcct	ttcggtaagt	gcagtggaag	ctgtacactg	cccaggcaaa	gcgtccgggc	60
5	agcgtaggcg	ggcgactcag	atcccagcca	gtggacttag	cccctgtttg	ctcctccgat	120
	aactggggtg	accttggtta	atattcacca	gcagcctccc	ccgttgcccc	tctggatcca	180
	ctgcttaaat	acggacgagg	acagggccct	gtctcctcag	cttcaggcac	caccactgac	240
10	ctgggacagt	gaatcgacaa	tgccgtcttc	tgtctcgtgg	ggcatcctcc	tgctggcagg	300
	cctgtgctgc	ctggtccctg	tctccctggc	tgaggatccc	cagggagatg	ctgcccagaa	360
15	gacagataca	tcccaccatg	atcaggatca	cccaaccttc	aacaagatca	cccccaacct	420
13	ggctgagttc	gccttcagcc	tataccgcca	gctggcacac	cagtccaaca	gcaccaatat	480
	cttcttctcc	ccagtgagca	tcgctacagc	ctttgcaatg	ctctccctgg	ggaccaaggc	540
20	tgacactcac	gatgaaatcc	tggagggcct	gaatttcaac	ctcacggaga	ttccggaggc	600
	tcagatccat	gaaggcttcc	aggaactcct	ccgtaccctc	aaccagccag	acagccagct	660
	ccagctgacc	accggcaatg	gcctgttcct	cagcgagggc	ctgaagctag	tggataagtt	720
25	tttggaggat	gttaaaaagt	tgtaccactc	agaagccttc	actgtcaact	tcggggacac	780
	cgaagaggcc	aagaaacaga	tcaacgatta	cgtggagaag	ggtactcaag	ggaaaattgt	840
30	ggatttggtc	aaggagcttg	acagagacac	agtttttgct	ctggtgaatt	acatcttctt	900
	taaaggcaaa	tgggagagac	cctttgaagt	caaggacacc	gaggaagagg	acttccacgt	960
	ggaccaggtg	accaccgtga	aggtgcctat	gatgaagcgt	ttaggcatgt	ttaacatcca	1020
35	gcactgtaag	aagctgtcca	gctgggtgct	gctgatgaaa	tacctgggca	atgccaccgc	1080
	catcttcttc	ctgcctgatg	aggggaaact	acagcacctg	gaaaatgaac	tcacccacga	1140
40	tatcatcacc	aagttcctgg	aaaatgaaga	cagaaggtct	gccagcttac	atttacccaa	1200
40	actgtccatt	actggaacct	atgatctgaa	gagcgtcctg	ggtcaactgg	gcatcactaa	1260
	ggtcttcagc	aatggggctg	acctctccgg	ggtcacagag	gaggcacccc	tgaagctctc	1320
45	caaggccgtg	cataaggctg	tgctgaccat	cgacgagaaa	gggactgaag	ctgctggggc	1380
	catgtttta	gaggccatac	ccatgtctat	ccccccgag	gtcaagttca	acaaaccctt	1440
	tgtcttctta	atgattgaac	aaaataccaa	gtctcccctc	ttcatgggaa	aagtggtgaa	1500
50	tcccacccaa	aaataactgo	ctctcgctcc	tcaacccctc	ccctccatcc	ctggccccct	1560
	ccctggatga	cattaaagaa	gggttgagct	ggtccctgcc	tgcaaaa		1607

55

<210> 75 <211> 1753 <212> ADN <213> humano

60

<400> 75

	cagccccgcc cctacctgtg gaagcccagc cgcccgctcc cgcggataaa aggcgcggag	60
_	tgtccccgag gtcagcgagt gcgcgctcct cctcgcccgc cgctaggtcc atcccggccc	120
5	agccaccatg tccatccact tcagctcccc ggtattcacc tcgcgctcag ccgccttctc	180
	gggccgcggc gcccaggtgc gcctgagctc cgctcgcccc ggcggccttg gcagcagcag	240
	cctctacggc ctcggcgcct cacggccgcg cgtggccgtg cgctctgcct atgggggccc	300
10	ggtgggcgcc ggcatccgcg aggtcaccat taaccagagc ctgctggccc cgctgcggct	360
	ggacgccgac ccctccctcc agcgggtgcg ccaggaggag agcgagcaga tcaagaccct	420
45	caacaacaag tttgcctcct tcatcgacaa ggtgcggttt ctggagcagc agaacaagct	480
15	gctggagacc aagtggacgc tgctgcagga gcagaagtcg gccaagagca gccgcctccc	540
	agacatcttt gaggcccaga ttgctggcct tcggggtcag cttgaggcac tgcaggtgga	600
20	tgggggccgc ctggaggcgg agctgcggag catgcaggat gtggtggagg acttcaagaa	660
20	taagtacgaa gatgaaatta accaccgcac agctgctgag aatgagtttg tggtgctgaa	720
	gaaggatgtg gatgctgcct acatgagcaa ggtggagctg gaggccaagg tggatgccct	780
25	gaatgatgag atcaacttcc tcaggaccct caatgagacg gagttgacag agctgcagtc	840
25	ccagatetee gacacatetg tggtgetgte catggacaae agtegeteee tggacetgga	900
	cggcatcatc gctgaggtca aggcgcagta tgaggagatg gccaaatgca gccgggctga	960
30	ggctgaagcc tggtaccaga ccaagtttga gaccctccag gcccaggctg ggaagcatgg	1020
30	ggacgacctc cggaataccc ggaatgagat ttcagagatg aaccgggcca tccagaggct	1080
	gcaggctgag atcgacaaca tcaagaacca gcgtgccaag ttggaggccg ccattgccga	1140
35	ggctgaggag cgtggggagc tggcgctcaa ggatgctcgt gccaagcagg aggagctgga	1200
55	agccgccctg cagcggggca agcaggatat ggcacggcag ctgcgtgagt accaggaact	1260
	catgagcgtg aagctggccc tggacatcga gatcgccacc taccgcaagc tgctggaggg	1320
40	cgaggagagc cggttggctg gagatggagt gggagccgtg aatatctctg tgatgaattc	1380
-1 0	cactggtggc agtagcagtg gcggtggcat tgggctgacc ctcgggggaa ccatgggcag	1440
	caatgccctg agcttctcca gcagtgcggg tcctgggctc ctgaaggctt attccatccg	1500
45	gaccgcatcc gccagtcgca ggagtgcccg cgactgagcc gcctcccacc actccactcc	1560
40	tccagccacc acccacatc acaagaagat tcccaccct gcctcccatg cctggtccca	1620
	agacagtgag acagtctgga aagtgatgtc agaatagctt ccaataaagc agcctcattc	1680
50	tgaggcctga gtgatccacg tgaaaaaaaa aaaaaaaaaa	1740
00	aaaaaaaaa aaa	1753
55	<210> 76 <211> 2255 <212> ADN <213> humano	

65

60

<400> 76

	gatggctccg	gccgcctggc	tccgcagcgc	ggccgcgcgc	gccctcctgc	ccccgatgct	60
_	gctgctgctg	ctccagccgc	cgccgctgct	ggcccgggct	ctgccgccgg	acgcccacca	120
5	cctccatgcc	gagaggaggg	ggccacagcc	ctggcatgca	gccctgccca	gtagcccggc	180
	acctgcccct	gccacgcagg.	aagccccccg	gcctgccagc	agcctcaggc	ctccccgctg	240
10	tggcgtgccc	gacccatctg	atgggctgag	tgcccgcaac	cgacagaaga	ggttcgtgct	300
	ttctggcggg	cgctgggaga	agacggacct	cacctacagg	atccttcggt	tcccatggca	360
	gttggtgcag	gagcaggtgc	ggcagacgat	ggcagaggcc	ctaaaggtat	ggagcgatgt	420
15	gacgccactc	acctttactg	aggtgcacga	gggccgtgct	gacatcatga	tcgacttcgc	480
	caggtactgg	catggggacg	acctgccgtt	tgatgggcct	gggggcatcc	tggcccatgc	540
	cttctcccc	aagactcacc	gagaagggga	tgtccacttc	gactatgatg	agacctggac	600
20	tatcggggat	gaccagggca	cagacctgct	gcaggtggca	gcccatgaat	ttggccacgt	660
	gctggggctg	cagcacacaa	cagcagccaa	ggccctgatg	tccgccttct	acacctttcg	720
25	ctacccactg	agtctcagcc	cagatgactg	caggggcgtt	caacacctat	atggccagcc	780
	ctggcccact	gtcacctcca	ggaccccagc	cctgggcccc	caggctggga	tagacaccaa	840
	tgagattgca	ccgctggagc	cagacgcccc	gccagatgcc	tgtgaggcct	cctttgacgc	900
30	ggtctccacc	atccgaggcg	agctcttttt	cttcaaagcg	ggctttgtgt	ggcgcctccg	960
	tgggggccag	ctgcagcccg	gctacccagc	attggcctct	cgccactggc	agggactgcc	1020
	cagccctgtg	gacgctgcct	tcgaggatgc	ccagggccac	atttggttct	tccaaggtgc	1080
35	tcagtactgg	gtgtacgacg	gtgaaaagcc	agtcctgggc	cccgcacccc	tcaccgagct	1140
	gggcctggtg	aggttcccgg	tccatgctgc	cttggtctgg	ggtcccgaga	agaacaagat	1200
40	ctacttcttc	cgaggcaggg	actactggcg	tttccacccc	agcacccggc	gtgtagacag	1260
+0	tcccgtgccc	cgcagggcca	ctgactggag	aggggtgccc	tctgagatcg	acgctgcctt	1320
	ccaggatgct	gatggctatg	cctacttcct	gcgcggccgc	ctctactgga	agtttgaccc	1380
45	tgtgaaggtg	aaggctctgg	aaggcttccc	ccgtctcgtg	ggtcctgact	tctttggctg	1440
	tgccgagcct	gccaacactt	tcctctgacc	atggcttgga	tgccctcagg	ggtgctgacc	1500
	cctgccaggc	cacgaatatc	aggctagaga	cccatggcca	tctttgtggc	tgtgggcacc	1560
50	aggcatggga	ctgagcccat	gtctcctcag	ggggatgggg	tggggtacaa	ccaccatgac	1620
	aactgccooo	agggccacgc	aggtcgtggt	cacctgccag	cgactgtctc	agactgggca	1680

	gggaggcttt	ggcatgactt	aagaggaagg	gcagtcttgg	gcccgctatg	caggtcctgg	1740
5	caaacctggc	tgccctgtct	ccatccctgt	ccctcagggt	agcaccatgg	caggactggg	1800
3	ggaactggag	tgtccttgct	gtatccctgt	tgtgaggttc	cttccagggg	ctggcactga	1860
	agcaagggtg	ctggggcccc	atggccttca	gccctggctg	agcaactggg	ctgtagggca	1920
10	gggccacttc	ctgaggtcag	gtcttggtag	gtgcctgcat	ctgtctgcct	tctggctgac	1980
	aatcctggaa	atctgttctc	cagaatccag	gccaaaaagt	tcacagtcaa	atggggaggg	2040
	gtattcttca	tgcaggagac	cccaggccct	ggaggctgca	acatacctca	atcctgtccc	2100
15	aggccggatc	ctcctgaagc	ccttttcgca	gcactgctat	cctccaaagc	cattgtaaat	2160
	gtgtgtacag	tgtgtataaa	ccttcttctt	cttttttt	ttttaaactg	aggattgtca	2220
20	ttaaacacag	ttgttttcta	aaaaaaaaa	aaaaa			2255
20							
25	<210> 77 <211> 462 <212> ADN <213> humano						
	<400> 77						
30	agctctattg	ccaccatgag	tttctccggc	aagtaccaac	tgcagagcca (ggaaaacttt	60
	gaagccttca	tgaaggcaat	cggtctgccg	gaagagctca	tccagaaggg	gaaggatatc	120
0.5	aagggggtgt	cggaaatcgt	gcagaatggg	aagcacttca	agttcaccat	caccgctggg	180
35	tccaaagtga	tccaaaacga	attcacggtg	ggggaggaat	gtgagctgga	gacaatgaca	240
	ggggagaaag	tcaagacagt	ggttcagttg	gaaggtgaca	ataaactggt	gacaactttc	300
40	aaaaacatca	agtctgtgac	cgaactcaac	ggcgacataa	tcaccaatac	catgacattg	360
	ggtgacattg	tcttcaagag	aatcagcaag	agaatttaaa	caagtctgca	tttcatatta	420
	ttttagtgtg	taaaattaat	gtaataaagt	gaactttgtt	tt		462
45	<210> 78 <211> 2108 <212> ADN						
50	<213> humano						
	<400> 78						
	gggaccgcct	cggaggcaga	agagccgcga	ggagccagcg	gagcaccgcg	ggctggggcg	60
55	cagccacccg	ccgctcctcg	agtcccctcg	cccctttccc	ttcgtgcccc	ccggcagcct	120
	ccagcgtcgg	tccccaggca	gcatggtgag	gtctgctccc	ggaccctcgc	caccatgtac	180
60	gtgagctacc	tcctggacaa	ggacgtgagc	atgtacccta	gctccgtgcg	ccactctggc	240
60	ggcctcaacc	tggcgccgca	gaacttcgtc	agccccccgc	agtacccgga	ctacggcggt	300
	taccacgtgg	cggccgcagc	tgcagcggca	gcgaacttgg	g acagcgcgca	gtccccgggg	360
65	ccatcctggc	cggcagcgta	tggcgcccca	ctccgggagg	actggaatgg	ctacgcgccc	420

	ggaggcgccg	cggccgccgc	caacgccgtg	gctcacggcc	tcaacggtgg	ctcccggcc	480
_	gcagccatgg	gctacagcag	cccgcagac	taccatccgc	accaccaccc	gcatcaccac	540
5	ccgcaccacc	cggccgccgc	gccttcctgc	gcttctgggc	tgctgcaaac	gctcaacccc	600
	ggccctcctg	ggcccgccgc	caccgctgcc	gccgagcagc	tgtctcccgg	cggccagcgg	660
10	cggaacctgt	gcgagtggat	gcggaagccg	gcgcagcagt	ccctcggcag	ccaagtgaaa	720
	accaggacga	aagacaaata	tcgagtggtg	tacacggacc	accagcggct	ggagctggag	780
	aaggagtttc	actacagtcg	ctacatcacc	atccggagga	aagccgagct	agccgccacg	840
15	ctggggctct	ctgagaggca	ggttaaaatc	tggtttcaga	accgcagagc	aaaggagagg	900
	aaaatcaaca	agaagaagtt	gcagcagcaa	cagcagcagc	agccaccaca	gccgcctccg	960
20	ccgccaccac	agcctcccca	gcctcagcca	ggtcctctga	gaagtgtccc	agagcccttg	1020
20	agtccggtgt	cttccctgca	agcctcagtg	tctggctctg	tccctggggt	tctggggcca	1080
	actggggggg	tgctaaaccc	caccgtcacc	cagtgaccca	ccggggtctg	cagcggcaga	1140
25	gcaattccag	gctgagccat	gaggagcgtg	gactctgcta	gactcctcag	gagagacccc	1200
	tcccctccca	cccacagcca	tagacctaca	gacctggctc	tcagaggaaa	aatgggagcc	1260
	aggagtaaga	caagtgggat	ttggggcctc	aagaaatata	ctctcccaga	tttttacttt	1320
30	ttcccatctg	gctttttctg	ccactgagga	gacagaaagc	ctccgctggg	cttcattccg	1380
	gactggcaga	agcattgcct	ggactgacca	caccaaccag	gccttcatcc	tcctccccag	1440
35	ctcttctctt	cctagatctg	caggctacac	ctctggctag	agccgagggg	agagagggac	1500
	tcaagggaaa	ggcaagcttg	aggccaagat	ggctgctgcc	tgctcatggc	cctcggaggt	1560
	ccagctgggc	ctcctgcctc	cgggcaggca	aggtttacac	tgcggaagcc	aaaggcagct	1620
40	aagatagaaa	gctggactga	ccaaagactg	cagaaccccc	aggtggcctg	cgtcttttt	1680
	ctcttccctt	cccagaccag	gaaaggcttg	gctggtgtat	gcacagggtg	tggtatgagg	1740
4-	gggtggttat	tggactccag	gcctgaccag	ggggcccgaa	cagggacttg	tttagagagc	1800
45	ctgtcaccag	agcttctctg	ggctgaatgt	atgtcagtgc	tataaatgcc	agagccaacc	1860
	tggacttcct	gtcattttca	caatcttggg	gctgatgaag	aagggggtgg	ggggagtttg	1920
50	tgttgttgtt	gctgctgttt	gggttgttgg	tctgtgtaac	atccaagcca	gagtttttaa	1980
	agccttctgg	atccatgggg	ggagaagtga	tatggtgaag	ggaagtgggg	agtatttgaa	2040
	cacagttgaa	tttttctaa	aaagaaaaag	agataaatga	gctttccaga	aaaaaaaaa	21.00
55	aaaaaaaa						2108

<210> 79 <211> 3745 60 <212> ADN <213> humano

<400> 79

	cgcaaagcaa	gtgggcacaa	ggagtatggt	tctaacgtga	ttggggtcat	gaagacgttg	60
5	ctgttggact	tggctttgtg	gtcactgctc	ttccagcccg	ggtggctgtc	ctttagttcc	120
	caggtgagtc	agaactgcca	caatggcagc	tatgaaatca	gcgtcctgat	gatgggcaac	180
	tcagcctttg	cagagcccct	gaaaaacttg	gaagatgcgg	tgaatgaggg	gctggaaata	240
10	gtgagaggac	gtctgcaaaa	tgctggccta	aatgtgactg	tgaacgctac	tttcatgtat	. 300
	tcggatggtc	tgattcataa	ctcaggcgac	tgccggagta	gcacctgtga	aggcctcgac	360
15	ctactcagga	aaatttcaaa	tgcacaacgg	atgggctgtg	tcctcatagg	gccctcatgt	420
15	acatactcca	ccttccagat	gtaccttgac	acagaattga	gctaccccat	gatctcagct	480
	ggaagttttg	gattgtcatg	tgactataaa	gaaaccttaa	ccaggctgat	gtctccagct	540
20	agaaagttga	tgtacttctt	ggttaacttt	tggaaaacca	acgatctgcc	cttcaaaact	600
20	tattcctgga	gcacttcgta	tgtttacaag	aatggtacag	aaactgagga	ctgtttctgg	660
	taccttaatg	ctctggaggc	tagcgtttcc	tatttctccc	acgaactcgg	ctttaaggtg	720
25	gtgttaagac	aagataagga	gtttcaggat	atcttaatgg	accacaacag	gaaaagcaat	780
	gtgattatta	tgtgtggtgg	tccagagttc	ctctacaagc	tgaagggtga	ccgagcagtg	840
	gctgaagaca	ttgtcattat	tctagtggat	cttttcaatg	accagtactt	ggaggacaat	900
30	gtcacagccc	ctgactatat	gaaaaatgtc	cttgttctga	cgctgtctcc	tgggaattcc	960
	cttctaaata	gctctttctc	caggaatcta	tcaccaacaa	aacgagactt	tgctcttgcc	1020
	tatttgaatg	gaatcctgct	ctttggacat	atgctgaaga	tatttcttga	aaatggagaa	1080
35	aatattacca	ccccaaatt	tgctcatgct	ttcaggaatc	tcacttttga	agggtatgac	1140
	ggtccagtga	ccttggatga	ctggggggat	gttgacagta	ccatggtgct	tctgtatacc	1200
40	tctgtggaca	ccaagaaata	caaggttctt	ttgacctatg	atacccacgt	aaataagacc	1260
10	tatcctgtgg	atatgagccc	cacattcact	tggaagaact	ctaaacttcc	taatgatatt	1320
	acaggccggg	gccctcagat	cctgatgatt	gcagtcttca	ccctcactgg	agctgtggtg	1380
45	ctgctcctgc	tcgtcgctct	cctgatgctc	agaaaatata	gaaaagatta	tgaacttcgt	1440
	cagaaaaaat	ggtcccacat	tcctcctgaa	aatatctttc	ctctggagac	caatgagacc	1500
	aatcatgtta	gcctcaagat	cgatgatgac	aaaagacgag	atacaatcca	gagactácga	1560
50	cagtgcaaat	t acgacaaaaa	gcgagtgatt	ctcaaagatc	tcaagcacaa	tgatggtaat	1620
	ticactgaaa	a aacagaagat	agaattgaad	aagttgctto	agattgacta	ttacaacctg	1680
	accaagttc	t acggcacagt	gaaacttgat	t accatgatct	tcggggtgat	t agaatactgt	1740
55	gagagagga	t ccctccggga	agttttaaa	t gacacaattt	cctaccctga	tggcacattc	1800

	atggattggg	agtttaagat	ctctgtcttg	tatgacattg	ctaagggaat	gtcatatctg	1860
5	cactccagta	agacagaagt	ccatggtcgt	ctgaaatcta	ccaactgcgt	agtggacagt	1920
	agaatggtgg	tgaagatcac	tgattttggc	tgcaattcca	ttttacctcc	aaaaaaggac	1980
	ctgtggacag	ctccagagca	cctccgccaa	gccaacatct	ctcagaaagg	agatgtgtac	2040
10	agctatggga	tcatcgcaca	ggagatcatt	ctgcggaaag	aaaccttcta	cactttgagc	2100
	tgtcgggacc	ggaatgagaa	gattttcaga	gtggaaaatt	ccaatggaat	gaaacccttc	2160
	cgcccagatt	tattcttgga	aacagcagag	gaaaaagagc	tagaagtgta	cctacttgta	2220
15	aaaaactgtt	gggaggaaga	tccagaaaag	agaccagatt	tcaaaaaaat	tgagactaca	2280
	cttgccaaga	tatttggact	ttttcatgac	caaaaaaatg	aaagctatat	ggataccttg	2340
20	atccgacgtc	tacagctata	ttctcgaaac	ctggaacatc	tggtagagga	aaggacacag	2400
20	ctgtacaagg	cagagaggga	cagggctgac	agacttaact	ttatgttgct	tccaaggcta	2460
	gtggtaaagt	ctctgaagga	gaaaggcttt	gtggagccgg	aactatatga	ggaagttaca	2520
25	atctacttca	gtgacattgt	aggtttcact	actatctgca	aatacagcac	ccccatggaa	2580
	gtggtggaca	tgcttaatga	catctataag	agttttgacc	acattgttga	tcatcatgat	2640
	gtctacaagg	tggaaaccat	cggtgatgcg	tacatggtgg	ctagtggttt	gcctaagaga	2700
30	aatggcaatc	ggcatgcaat	agacattgcc	aagatggcct	tggaaatcct	cagcttcatg	2760
	gggacctttg	agctggagca	tcttcctggc	ctcccaatat	ggattcgcat	tggagttcac	2820
	tctggtccct	gtgctgctgg	agttgtggga	atcaagatgc	ctcgttattg	tctátttgga	2880
35	gatacggtca	acacagcctc	taggatggaa	tccactggcc	tccctttgag	aattcacgtg	2940
	agtggctcca	ccatagccat	cctgaagaga	actgagtgcc	agttccttta	tgaagtgaga	3000
40	ggagaaacat	acttaaaggg	aagaggaaat	gagactacct	actggctgac	tgggatgaag	3060
40	gaccagaaat	tcaacctgcc	aacccctcct	actgtggaga	atcaacagcg	tttgcaagca	3120
	gaattttcag	acatgattgc	caactcttta	cagaaaagac	aggcagcagg	gataagaagc	3180
45	caaaaaccca	gacgggtagc	cagctataaa	aaaggcactc	tggaatactt	gcagctgaat	3240
	accacagaca	aggagagcac	ctattttaa	acctaaatga	ggtataagga	ctcacacaaa	3300
	ttaaaataca	gctgcactga	ggcagcgacc	tcaagtgtco	tgaaagctta	cattttcctg	3360
50	agacctcaat	gaagcagaaa	tgtacttagg	cttggctgcc	ctgtctggaa	catggacttt	3420
	cttgcatgaa	tcagatgtgt	gttctcagtg	aaataactac	cttccactct	ggaaccttat	3480
	tccagcagtt	gttccaggga	gcttctacct	ggaaaagaaa	agaaatgaat	agactatcta	3540
55	gaacttgaga	agattttatt	cttatttcat	ttattttttg	tttgtttatt	tttatcgttt	3600
	ttgtttactg	gctttccttc	tgtattcata	agattttta	aattgtcata	a attatatttt	3660
60	aaatacccat	cttcattaaa	gtatatttaa	ctcataattt	ttgcagaaa	a tatgctatat	3720
60							

65

attaggcaag aataaaagct aaagg

<210> 80 <211> 901 <212> ADN <213> humano 5 <400> 80 60 agccccaaac tcaccacctg gccgtggaca cctgtgtcag catgtgggac ctggttctct 10 120 ccatcgcctt gtctgtgggg tgcactggtg ccgtgcccct catccagtct cggattgtgg 180 gaggctggga gtgtgagaag cattcccaac cctggcaggt ggctgtgtac agtcatggat 15 gggcacactg tgggggtgtc ctggtgcacc cccagtgggt gctcacagct gcccattgcc 240 taaagaagaa tagccaggtc tggctgggtc ggcacaacct gtttgagcct gaagacacag 300 gccagagggt ccctgtcagc cacagcttcc cacacccgct ctacaatatg agccttctga 360 20 agcatcaaag ccttagacca gatgaagact ccagccatga cctcatgctg cttcgcctgt 420 cagageetge caagateaca gatgttgtga aggteetggg cetgeecace caggageeag 480 540 cactggggac cacctgctac gcctcaggct ggggcagcat cgaaccagag gagttcttgc 25 600 gccccaggag tcttcagtgt gtgagcctcc atctcctgtc caatgacatg tgtgctagag 660 cttactctga gaaggtgaca gagttcatgt tgtgtgctgg gctctggaca ggtggtaaag 30 720 acacttgtgg gggtgattct gggggtccac ttgtctgtaa tggtgtgctt caaggtatca 780 catcatgggg ccctgagcca tgtgccctgc ctgaaaagcc tgctgtgtac accaaggtgg 840 tgcattaccg gaagtggatc aaggacacca tcgcagccaa cccctgagtg cccctgtccc 35 900 901 а 40 <210> 81 <211>618 <212> ADN <213> humano 45 <400> 81 60 ggggaccact tctctgggac acattgcctt ctgttttctc cagcatgcgc ttgctccagc 50 120 tcctgttcag ggccagccct gccaccctgc tcctggttct ctgcctgcag ttgggggcca acaaagctca ggacaacact cggaagatca taataaagaa ttttgacatt cccaagtcag 180 tacgtccaaa tgacgaagtc actgcagtgc ttgcagttca aacagaattg aaagaatgca 240 55 300 tggtggttaa aacttacctc attagcagca tccctctaca aggtgcattt aactataagt atactgcctg cctatgtgac gacaatccaa aaaccttcta ctgggacttt tacaccaaca 360 420 gaactgtgca aattgcagcc gtcgttgatg ttattcggga attaggcatc tgccctgatg 60

	atgctgctgt a	atccccatc	aaaaacaacc	ggttttatac	tattgaaatc	ctaaaggtag	480
5	aataatggaa g	ccctgtctg	tttgccacac	ccaggtgatt	tcctctaaag	aaacttggct	540
	ggaatttctg c	tgtggtcta	taaaataaac	ttcttaacat	gcttctacaa	aaaaaaaaa	600
	aaaaaaaaa a	aaaaaaa	,				618
10	<210> 82 <211> 594 <212> ADN <213> humano						
15	<400> 82						
00	gtcggtttag ga	ctttctgc (ctccactatt	gctatcggta	ctggaatagc	aggcatttca	60
20	acat'ctgtca cg	accttcca 1	tagcctatat	aatgacttat	ctgctagcat	cacagacata	120
	tcacaaactt ta	tcagtcct (ccaggcccaa	gttgaatctt	tagctgcagt	tgtcctccaa	180
25	aaccgccgag gc	cttgactt a	acttactgct	taaagaggag	gactctgcat	attcttaaat	240
	gaggagtgtt gt	ttttacat a	aaatcaatct	ggcctggtgt	atgacaacat	aaaaaaattc	300
	aaggatagag co	caaaaact	taccaaccaa	gcaagtaatt	tcactgaacc	cccttgggca	360
30	ctccctaatt gg	gtgtcctg	ggtcctccca	attcttagtc	ctttaatacc	catttttctc	420
	ctccttttat to	cagaccttg	tatcttctgt	ttagcttctc	aattcatcca	aaaccatatc	480
	caggccatca co	caatcattc	tatacgacaa	atgtttctta	taacatcccc	acaatatcac	540
35	cccttaccac aa	agacctccc	ttcaacttaa	tctctcccga	tataggttcc	caca	594
40	<210> 83 <211> 1372 <212> ADN <213> humano						
45	<400> 83						
10	gaattcggcg a	tgcctcaca	actccatcag	atctggccat	ggagggctga	accagctggg	60
	aggggccttt g	tgaatggca	gacctctgcc	ggaagtggtc	cgccagcgca	tcgtagacct	120
50	ggcccaccag g	gtgtaaggc	cctgcgacat	ctctcgccag	ctccgcgtca	gccatggttg	180
	cgtcagcaag a	tccttggca	ggtactacga	gactggcagc	atccggcctg	gagtgatagg	240
	gggctccaag c	ccaaggtgg	ccacccccaa	ggtggtggag	aagattgggg	actacaaacg	300
55	ccagaaccct a	accatgtttg	cctgggagat	ccgagaccgg	ctcctggctg	agggcgtctg	360
	tgacaatgac a	actgtgccca	gtgtcagctc	cattaataga	atcatccgga	ccaaagtgca	420
60	gcaaccattc a	acctcccta	tggacagctg	cgtggccacc	aagtccctga	gtcccggaca	480
- •	cacgctgatc o	cccagctcag	ctgtaactcc	cccggagtca	ccccagtcgg	attccctggg	540
	ctccacctac t	tccatcaatg	ggctcctggg	catcgctcag	cctggcagcg	acaagaggaa	600
65	aatggatgac a	agtgatcagg	atagctgccg	actaagcatt	<u>g</u> actcacaga	gcagcagcag	660

_	cggaccccga	aagcaccttc	gcacggatgc	cttcagccag	caccacctcg	agccgctcga	720
5	gtgcccattt	gagcggcagc	actacccaga	ggcctatgcc	tcccccagcc	acaccaaagg	780
	cgagcagggc	ctctacccgc	tgcccttgct	caacagcacc	ctggacgacg	ggaaggccac	840
10	cctgacccct	tccaacacgc	cactggggcg	caacctctcg	actcaccaga	cctaccccgt	900
	ggtggcagat	cctcactcac	ccttcgccat	aaagcaggaa	acccccgagg	tgtccagttc	960
	tagctccacc	ccttcctctt	tatctagctc	cgcctttttg	gatctgcagc	aagtcggctc	1020
15	cggggtcccg	cccttcaatg	cctttcccca	tgctgcctcc	gtgtacgggc	agttcacggg	1080
	ccaggccctc	ctctcagggc	gagagatggt	ggggcccacg	ctgcccggat	acccacccca	1140
00	catccccacc	agcggacagg	gcagctatgc	ctcctctgcc	atcgcaggca	tggtggcagg	1200
20	aagtgaatac	tctggcaatg	cctatggcca	caccccctac	tcctcctaca	gcgaggcctg	1260
	gcgcttcccc	aactccagct	tgctgagttc	cccatattat	tacagttcca	catcaaggcc	1320
25	gagtgcaccg	cccaccactg	ccacggcctt	tgaccatctg	tagttgaagc	tt	1372
20							
30	<210> 84 <211> 2983 <212> ADN <213> humano						
	<400> 84						
35	gcccagatag	gggagcggag	gtggcggcgg	cggcggtagc	ggtggccttg	gttgtcttcc	60
	agtctcctcg	gctcgccctt	tagccggcac	cgctcccctt	ccctcccct	tcctctcttc	120
40	cttccttccc	tccccttccc	ttttccctt	ccccgtcggt	gagcggcggg	ggtggctcca	180
40	gcaacggctg	ggcccaagct	gtgtagaggc	cttaaccaac	gataacggcg	gcgacggcga	240
	aacctcggag	ctcgcagggc	gggggcaagg	cccgggcctt	ggagatggag	aattctcagt	300
45	tgtgtaagct	gttcatcggc	ggcctcaatg	tgcagacgag	tgagtcgggc	ctgcgcggcc	360
	actttgaggc	ctttgggact	ctgacggact	gcgtggtggt	ggtgaatccc	cagaccaagc	420
	gctcccgttg	ctttggcttc	gtgacctact	ccaatgtgga	ggaggcggac	gccgccatgg	480
50	ccgcctcgcc	ccatgccgtg	gacggcaaca	ctgtggagct	gaagcgggcg	gtgtcccggg	540
	aggattcggc	gcggcccggt	gcccacgcca	aggttaagaa	gctctttgtc	ggaggcctta	600
55	aaggagacgt	ggctgagggc	gacctgatcg	agcacttctc	gcagtttggc	accgtggaaa	660
55	aggccgagat	tattgccgac	aagcagtccg	gcaagaagcg	tggattcggc	ttcgtgtatt	720
	tccagaatca	cgacgcggca	gacaaggccg	cggtggtcaa	gttccatccg	attcagggcc	780
60	atcgcgtgga	ggtgaagaaa	gcagtcccca	aggaggatat	ctactccggt	gggggtggag	840
	gcggctcccg	atectcccgg	ggcggccgag	gcggccgggg	gcgcggcggt	ggtcgagacc	900
	agaacggcct	ttccaagggc	ggcggcggcg	gttacaacag	ctacggtggt	tacggcggcg	960

	gcggaggcgg cggctacaat gcctacggag gcggcggcgg cggttcgtcc tacggtggga 1	:020
5	gcgactacgg taacggcttc ggcggcttcg gcagctacag ccagcatcag tcctcctatg 1	080
	ggcccatgaa gagcggcggc ggcggcggcg gtggaggcag tagctggggc ggtcgcagta 1	.140
	atagtggacc ttacagaggc ggctatggcg gtgggggtgg ctatggaggc agctccttct l	.200
10	aaaagaaaat ttaaaatgcc tgggagtggc tataggggta gctctttcca acagcccaag l	1260
	tggggtcaac tcctaagccc cacccctca cacacccgc cttccctgtt ttgcccttgg 1	L320
	gggagccact tctaaggctg cttacccttg ggggtgttcc tctatttgcc tgccacctct 1	1380
15	cttgtctctc cctctgaaga tggactcggc cccacataca catttttgtg ttacagtcat 1	.440
	tgatggactc tatttttta ttattacttg gaccttggtc gtttttatac tagcaaaatg 1	1500
00	tcttgtttta atttgtgttt tttgggggga gggagggag	L560
20	aaaacctggg tgggggttgg ggtggggggt agtttacttt gttgtaagga cttgataacc 1	L620
	tggctacagc gttttctatg aaatctactt ggatcccatg cctgaaattt ggaagcatat 1	1680
25	gtacaaaaat catttttacg ttttatttt aataaatcat tgtgtttgac cgtacatgtc 1	L740
20	taacattttt tttctaggat ccattccgta ccgtttttta agggatattt gtttaagact 3	1800
	ttacgtgtta attctttatt cttgatgtgt acttagagaa acttaagagg tcctgtggtt 3	1860
30	tttttcccct ctcctgttgc cctgctagtt gcgtgttgaa ttatatccct tacaggcaaa	1920
	actittgaag tggtggatgt ggctttttaa actcttaagt ttctgtgcat ccatctcttg	1980
	tactaagcga attgtttatc atcttgacat ggttggtcat ttctatgaca atttacttca	2040
35	aactgtgtac tgtgtagttc tatatagttt gtgttaagca tgtcattcat ataaactgtt 2	2100
	taaaattttt cagatggcct agtttcatcc ctcttactgg tttgtctgta atgaatggtt	2160
	aaaaataagg gttatatttt accctcaaat gcgtttttgt actttcagag caggtttaaa	2220
40	cgttttttt tttttttcc tatatccgaa ctgttggcct catggaaatc cctttcccga	2280
	tctttgtagc accatctact ggcagaatgg cagagtagct gcgaaacaat ttgtttaaaa	2340
45	acttgcttaa gacaattgca tcagatttgg aagttttgcc atcaaaattc tttgcagaat	2400
45	tggaagttaa cacatttgct tgtaactgag atgggcttca caggaatgta gttgccagtt	2460
	catatcacaa tagccctttc tatatgaggt ttgaaaatgt aaactgctat gcatagcttg	2520
50	ggcaatagcc ctaaattgct atgacaacta atgaaccagc tacgtatact ggtattttag	2580
00	gtgcaagttg taaagcaaaa tatctgtgta ttctgcttgg ttaacaaatg tatatttgta	2640
	gccctttcct gcaatagcat tcaagttgtt gtttataaga gaagaacaaa agtgataata	2700
55	ggtgaaaatt gcctttctgg atagaaatag agaatagcaa cgtttatgga tatcacaaat	2760
	aaagaattca attctttaca tgattgagtg agagtatgta taacctggtg ggtgggttca	2820
	gagtaccttt taatctagta tgcttaactt gatgttaata tttaacttaa atatttgact	2880
60	tacatgitga cgitgaaggc icaaagctat actaagaagc iticigaaag atigggciit	2940
		2983
	aaaataaaat aatattttaa tattgaaaaa aaaaaaaa	2303

<210> 85 <211> 3345 <212> ADN <213> humano 5

<400> 85

10	gaattccgtc	tcgaccactg	aatggaagaa	aaggactttt	aaccaccatt	ttgtgactta	60
10	cagaaaggaa	tttgaataaa	gaaaactatg	atacttcagg	cccatcttca	ctccctgtgt	120
	cttcttatgc	tttatttggc	aactggatat	ggccaagagg	ggaagtttag	tggacccctg	180
15	aaacccatga	cattttctat	ttatgaaggc	caagaaccga	gtcaaattat	attccagttt	240
.0	aaggccaatc	ctcctgctgt	gacttttgaa	ctaactgggg	agacagacaa	catatttgtg	300
	atagaacggg	agggacttct	gtattacaac	agagccttgg	acagggaaac	aagatctact	360
20	cacaatctcc	aggttgcagc	cctggacgct	aatggaatta	tagtggaggg	tccagtccct	420
	atcaccatag	aagtgaagga	catcaacgac	aatcgaccca	cgtttctcca	gtcaaagtac	480
	gaaggctcag	taaggcagaa	ctctcgccca	ggaaagccct	tcttgtatgt	caatgccaca	540
25	gacctggatg	atccggccac	tcccaatggc	cagctttatt	accagattgt	catccagctt	600
	cccatgatca	acaatgtcat	gtactttcag	atcaacaaca	aaacgggagc	catctctctt	660
	acccgagagg	gatctcagga	attgaatcct	gctaagaatc	cttcctataa	tctggtgatc	720
30	tcagtgaagg	acatgggagg	ccagagtgag	aattccttca	gtgataccac	atctgtggat	780
	atcatagtga	cagagaatat	ttggaaagca	ccaaaacctg	tggagatggt	ggaaaactca	840
	actgatcctc	accccatcaa	aatcactcag	gtgcggtgga	atgatcccgg	tgcacaatat	900
35	tccttagttg	acaaagagaa	gctgccaaga	ttcccatttt	caattgacca	ggaaggagat	960
	atttacgtga	ctcagccctt	ggaccgagaa	gaaaaggatg	catatgtttt	ttatgcagtt ·	1020
	gcaaaggatg	agtacggaaa	accactttca	tatccgctgg	aaattcatgt	aaaagttaaa	1080
40	gatattaatg	ataatccacc	tacatgtccg	tcaccagtaa	ccgtatttga	ggtccaggag	1140
	aatgaacgac	tgggtaacag	tatcgggacc	cttactgcac	atgacaggga	tgaagaaaat	1200
	actgccaaca	gttttctaaa	ctacaggatt	gtggagcaaa	ctcccaaact	tcccatggat	1260
45	ggactcttcc	taatccaaac	ctatgctgga	atgttacagt	tagctaaaca	gtccttgaag	1320
	aagcaagata	ctcctcagta	caacttaacg	atagaggtgt	ctgacaaaga	tttcaagacc	1380
	ctttgttttg	tgcaaatcaa	cgttattgat	atcaatgatc	agatccccat	ctttgaaaaa	1440
50	tcagattatg	gaaacctgac	tcttgctgaa	gacacaaaca	ttgggtccac	catcttaacc	1500

55

60

```
atccaggcca ctgatgctga tgagccattt actgggagtt ctaaaattct gtatcatatc
                                                                             1560
                                                                             1620
        ataaagggag acagtgaggg acgcctgggg gttgacacag atccccatac caacaccgga
 5
                                                                             1680
        tatgtcataa ttaaaaagcc tcttgatttt gaaacagcag ctgtttccaa cattgtgttc
                                                                             1740
        aaagcagaaa atcctgagcc tctagtgttt ggtgtgaagt acaatgcaag ttcttttgcc
10
        aagttcacgc ttattgtgac agatgtgaat gaagcacctc aattttccca acacgtattc
                                                                             1800
        caagcgaaag tcagtgagga tgtagctata ggcactaaag tgggcaatgt gactgccaag
                                                                             1860
        gatccagaag gtctggacat aagctattca ctgaggggag acacaagagg ttggcttaaa
                                                                             1920
15
                                                                             1980
        attgaccacg tgactggtga gatctttagt gtggctccat tggacagaga agccggaagt
        ccatatcggg tacaagtggt ggccacagaa gtaggggggt cttccttaag ctctgtgtca
                                                                             2040
        gagttccacc tgatccttat ggatgtgaat gacaaccctc ccaggctagc caaggactac
                                                                             2100
20
        acgggcttgt tcttctgcca tcccctcagt gcacctggaa gtctcatttt cgaggctact
                                                                             2160
        gatgatgatc agcacttatt tcggggtccc cattttacat tttccctcgg cagtggaagc
                                                                             2220
        ttacaaaacg actgggaagt ttccaaaatc aatggtactc atgcccgact gtctaccagg
                                                                             2280
25
        cacacagact ttgaggagag ggcgtatgtc gtcttgatcc gcatcaatga tgggggtcgg
                                                                             2340
        ccacccttgg aaggcattgt ttctttacca gttacattct gcagttgtgt ggaaggaagt
                                                                             2400
30
                                                                             2460
        tgtttccggc cagcaggtca ccagactggg atacccactg tgggcatggc agttggtata
        ctgctgacca cccttctggt gattggtata attttagcag ttgtgtttat ccgcataaag
                                                                             2520
        aaggataaag gcaaagataa tgttgaaagt gctcaagcat ctgaagtcaa acctctgaga
                                                                             2580
35
        agctgaattt gaaaaggaat gtttgaattt atatagcaag tgctatttca gcaacaacca
                                                                             2640
                                                                             2700
        tctcatccta ttacttttca tctaacgtgc attataattt tttaaacaga tattccctct
        tgtcctttaa tattigctaa atattictti titgaggtgg agictigcic igicgcccag
                                                                              2760
40
        gctggagtac agtggtgta tcccagctca ctgcaacctc cgcctcctgg gttcacatga
                                                                              2820
                                                                              2880
        ttctcctgcc tcagcttcct aagtagctgg gtttacaggc acccaccacc atgcccagct
        aatttttgta tttttaatag agacggggtt tcgccatttg gccaggctgg tcttgaactc
                                                                              2940
45
         ctgacqtcaa gtgatctgcc tgccttggtc tcccaataca ggcatgaacc actgcaccca
                                                                              3000
                                                                              3060
         cctacttaga tatttcatgt gctatagaca ttagagagat ttttcatttt tccatgacat
50
                                                                              3120
         ttttcctctc tgcaaatggc ttagctactt gtgtttttcc cttttggggc aagacagact
         cattaaatat tctgtacatt ttttctttat caaggagata tatcagtgtt gtctcataga
                                                                              3180
                                                                              3240
         actgcctgga ttccatttat gttttttctg attccatcct gtgtcccctt catccttgac
55
                                                                              3300
         tcctttggta tttcactgaa tttcaaacat ttgtcagaga agaaaaaagt gaggactcag
                                                                              3345
         gaaaaataaa taaataaaag aacagccttt tgcggccgcg aattc
60
```

<400> 86

65

<210> 86 <211> 990 <212> ADN <213> humano

	agccccaagc	ttaccacctg	cacccggaga	gctgtgtcac	catgtgggtc	ccggttgtct	160
5	tcctcaccct	gtccgtgacg	tggattggtg	ctgcacccct	catcctgtct	cggattgtgg	120
	gaggctggga	gtgcgagaag	cattcccaac	cctggcaggt	gcttgtggcc	tctcgtggca	180
	gggcagtctg	cggcggtgtt	ctggtgcacc	cccagtgggt	cctcacagct	gcccactgca	240
10	tcaggaacaa	aagcgtgatc	ttgctgggtc	ggcacagcct	gtttcatcct	gaagacacag	300
	gccaggtatt	tcaggtcagc	cacagcttcc	cacacccgct	ctacgatatg	agcctcctga	360
15	agaatcgatt	cctcaggcca	ggtgatgact	ccagccacga	cctcatgctg	ctccgcctgt	420
10	cagagcctgc	cgagctcacg	gatgctgtga	aggtcatgga	cctgcccacc	caggagccag	480
	cactggggac	cacctgctac	gcctcaggct	ggggcagcat	tgaaccagag	gagttcttga	540
20	ccccaaagaa	acttcagtgt	gtggacctcc	atgttatttc	caatgacgtg	tgtgcgcaag	600
	ttcaccctca	gaaggtgacc	aagttcatgc	tgtgtgctgg	acgctggaca	gggggcaaaa	660
	gcacctgctc	gggtgattct	gggggcccac	ttgtctgtaa	tggtgtgctt	caaggtatca	720
25	cgtcatgggg	cagtgaacca	tgtgccctgc	ccgaaaggcc	ttccctgtac	accaaggtgg	780
	tgcattaccg	gaagtggatc	aaggacacca	tcgtggccaa	cccctgagca	cccctatcaa	840
00	cccctattg	tagtaaactt	ggaaccttgg	aaatgaccag	gccaagactc	aagcctcccc	900
30	agttctactg	acctttgtcc	ttaggtgtga	ggtccagggt	tgctaggaaa	agaaatcagc	960
	agacacaggt	gtagaccaga	gtgtttctta			·	990
35	.040: 07						
	<210> 87 <211> 1805 <212> ADN <213> humano						
40	<400> 87						
	gcgcacacto	tcctaagccc	tctcatctcc	tggaaccatg	gccagcacat	ccaccaccat	60
45	caggagccac	agcagcagcc	gccggggttt	cagtgccaac	tcagccaggc	tccctggggt	120
	cagccgctct	ggcttcagca	gcatctccgt	gtcccgctcc	aggggcagtg	gtggcctggg	180
50	tggcgcatgt	ggaggagctg	gctttggcag	ccgcagtctg	tatggcctgg	ggggctccaa	240
	gaggatctcc	attggagggg	gcagctgtgc	catcagtggc	ggctatggca	gcagagccgg	300
	aggcagctat	ggctttggtg	gcgccgggag	tggatttggt	ttcggtggtg	gagccggcat	360
55	tggctttggt	ctgggtggtg	gagccggcct	tgctggtggc	tttgggggcc	ctggcttccc	420
	tgtgtgccc	cctggaggca	tccaagaggt	cactgtcaac	cagagtctcc	tgactcccct	480

	caaccigcaa	actgactccg	ccacccagcg	ggrgcgggcc	gaggagcgcg	aycayaccaa	340
5	gaccctcaac	aacaagtttg	cctccttcat	cgacaaggtg	cggttcctag	agcagcagaa	600
	caaggttctg	gacaccaagt	ggaccctgct	gcaggagcag	ggcaccaaga	ctgtgaggca	660
	gaacctggag	ccgttgttcg	agcagtacat	caacaacctc	aggaggcagc	tggacaacat	720
10	cgtgggggaa	cggggtcgtc	tggactcgga	gctgagaaac	atgcaggacc	tggtggagga	780
	cctcaagaac	aaatatgagg	atgaaatcaa	caagcgcaca	gcagcagaga	atgaatttgt	840
4.5	gactctgaag	aaggatgtgg	atgctgccta	catgaacaag	gttgaactgc	aagccaaggc	900
15	agacactctt	acagatgaga	tcaacttcct	gagagccttg	tatgatgcag	agcŧgtccca	960
	gatgcagacc	cacatctcag	acacatccgt	ggtgctatcc	atggacaaca	accgcaacct	1020
20	ggacctggac	agcatcatcg	ctgaggtcaa	ggcccaatat	gaggagattg	ctcagaggag	1080
	cagggctgag	gctgagtcct	ggtaccagac	aaagtacgag	gagctgcaga	teacageagg	1140
	cagacatggg	gacgacctgc	gcaacaccaa	gcaggagatt	gctgagatca	accgcatgat	1200
25	ccagaggctg	agatctgaga	tcgaccacgt	caagaagcag	tgtgccaacc	tacaggccgc	1260
	cattgctgat	gctgagcagc	gtggggagat	ggccctcaag	gatgctaaga	acaagctgga	1320
	agggctggag	gatgccctgc	agaaggccaa	gcaggacctg	gcccggctgc	tgaaggagta	1380
30	ccaggagctg	atgaacgtca	agctggccct	ggacgtggag	atcgccacct	accgcaagct	1440
	gctggagggc	gaggagtgca	ggctgaatgg	cgaaggcgtt	ggacaagtca	acatctctgt	1500
35	agtgcagtcc	accgtctcca	gtggctatgg	cggtgccagc	ggtgtcggca	gtggcttagg	1560
00	cctgggtgga	ggaagcagct	actcctatgg	cagtggtctt	ggcgttggag	gcggctttag	1620
	ttccagcagc	ggcagagcca	ctgggggtgg	cctcagctct	gttggaggcg	gcagttccac	1680
40	catcaagtac	accaccacct	cctcctccag	caggaagagc	tacaagcact	gaagtcgtgc	1740
	cgccagctct	cagtcccaca	gctctcaggo	ccctctctgg	cagcagagco	ctctcctcag	1800
	gttgc						1805
45							
50	<210> 88 <211> 2820 <212> ADN <213> humano						
	<400> 88						
55							
55	tggcaaaatc						60
	gttgtacctg	gaaaacaatg	cccagactca	atttagtgag	ccacagtaca	cgaacctggg	120
60		agcatggacc				- ,	180
	cacagaccac	gcgcagaaca	gcgtcacggc	gccctcgccc	tacgcacagc	ccagccccac	240
	cttcgatgct	ctctctccat	cacccgccat	cccctccaac	accgactacc	caggcccgca	300
65							

	cagttccgac gtgtcc	tcc agcagtcgag	caccgccaag	tcggccacct	ggacgtattc	360
5	cactgaactg aagaaa	tct actgccaaat	tgcaaagaca	tgccccatcc	agatcaaggt	420
J	gatgacccca cctcct	agg gagctgttat	ccgcgccatg	cctgtctaca	aaaaagctga	480
	gcacgtcacg gaggtg	gtga agcggtgccc	caaccatgag	ctgagccgtg	agttcaacga	540
10	gggacagatt gcccct	ccta gtcatttgat	tcgagtagag	gggaacagcc	atgcccagta	600
	tgtagaagat cccatc	acag gaagacagag	tgtgctggta	ccttatgagc	caccccaggt	660
	tggcactgaa ttcacg	acag tcttgtacaa	tttcatgtgt	aacagcagtt	gtgttggagg	720
15	gatgaaccgc cgtcca	attt taatcattgt	tactctggaa	accagagatg	ggcaagtcct	780
	gggccgacgc tgcttt	gagg cccggatctg	tgcttgccca	ggaagagaca	ggaaggcgga	840
	tgaagatagc atcaga	aagc agcaagtttc	ggacagtaca	aagaacggtg	atggtacgaa	900
20	gcgcccgttt cgtcag	aaca cacatggtat	ccagatgaca	tccatcaaga	aacgaagatc	960
	cccagatgat gaactg	ttat acttaccagt	gaggggccgt	gagacttatg	aaatgctgtt	1020
25	gaagatcaaa gagtco	ctgg aactcatgca	gtaccttcct	cagcacacaa	ttgaaacgta	1080
25	caggcaacag caacag	cagc agcaccagca	cttacttcag	aaacagacct	caatacagtc	1140
	tccatcttca tatggt	aaca gctccccac	tctgaacaaa	atgaacagca	tgaacaagct	1200
30	gccttctgtg agccag	ctta tcaaccctca	gcagcgcaac	gccctcactc	ctacaaccat	1260
00	tcctgatggc atggga	gcca acattcccat	gatgggcacc	cacatgccaa	tggctggaga	1320
	catgaatgga ctcago	ccca cccaggcact	ccctcccca	ctctccatgc	catccacctc	1380
35	ccactgcaca ccccca	cctc cgtatccca	agattgcagc	attgtcagtt	tcttagcgag	1440
	gttgggctgt tcatca	tgtc tggactattt	cacgacccag	gggctgacca	ccatctatca	1500
	gattgagcat tactco	atgg atgatctgg	aagtctgaaa	atccctgagc	aatttcgaca	1560
40	tgcgatctgg aagggc	atcc tggaccacc	gcagctccac	gaattctcct	ccccttctca	1620
	tctcctgcgg acccca	agca gtgcctcta	agtcagtgtg	ggctccagtg	agacccgggg	1680
	tgagcgtgtt attgat	gctg tgcgattca	cctccgccag	accatctctt	tcccaccccg	1740
45	agatgagtgg aatgad	ttca actttgaca	t ggatgctcgc	cgcaataagc	aacagcgcat	1800
	caaagaggag ggggag	tgag cctcaccat	g tgagctcttc	ctatccctct	cctaactgcc	1860
5 0	agccccctaa aagca	tcct gcttaatct	t caaagccttc	tccctagctc	ctccccttcc	1920
50	tcttgtctga tttct	aggg gaaggagaa	g taagaggcta	cctcttacct	aacatctgac	1980
	ctggcatcta attct	attc tggctttaa	g ccttcaaaac	tatagcttgc	agaactgtag	2040
55	ctgccatggc taggt	ngaag tgagcaaaa	a agagttgggt	gtctccttaa	gctgcagaga	2100
55	tttctcattg acttt	ataa agcatgttc	a cccttatagt	ctaagactat	atatataaat	216
	gtataaatat acagt	ataga tttttgggt	g gggggcattg	agtattgttt	aaaatgtaat	2220

```
ttaaatgaaa gaaaattgag ttgcacttat tgaccatttt ttaatttact tgttttggat
                                                                               2280
        ggcttgtcta tactccttcc cttaaggggt atcatgtatg gtgataggta tctagagctt
                                                                               2340
 5
        aatgCtacat gtgagtgcga tgatgtacag attctttcag ttctttggat tctaaataca
                                                                               2400
        tgccacatca aacctttgag tagatccatt tccattgctt attatgtagg taagactgta
                                                                               2460
10
                                                                               2520
        gatatgtatt cttttctcag tgttggtata ttttatatta ctgacatttc ttctagtgat
        gatggttcac gttggggtga tttaatccag ttataagaag aagttcatgt ccaaacggtc
                                                                               2580
        ctctttagtt tttggttggg aatgaggaaa attcttaaaa ggcccatagc agccagttca
                                                                               2640
15
                                                                               2700
         aaaacacccg acgtcatgta tttgagcata tcagtaaccc ccttaaattt aatacccaga
        taccttatct tacaatgttg attgggaaaa catttgctgc ccattacaga ggtattaaaa
                                                                               2760
        ctaaatttca ctactagatt gactaactca aatacacatt tgctactgtt gtaagaattc
                                                                               2820
20
     <210>89
     <211>991
25
     <212> ADN
     <213> humano
     <400> 89
30
                                                                                60
         cttatctcgg cttcgtttct ggagggccag gaacaaacag gcttcaaagc caagggcttg
                                                                               120
         gctggcacac agggggcttg gtccttcacc tctgtcccct ctccctacgg acacatataa
         gaccctggtc acacctggga gaggaggaga ggagagcata gcacctgcag caagatggat
                                                                               180
35
         gtgggcagca aagaggtcct gatggagagc ccgccggact actccgcagc tccccggggc
                                                                               240
                                                                               300
         cgatttggca ttccctgctg cccagtgcac ctgaaacgcc ttcttatcgt ggtggtggtg
40
                                                                               360
         gtggtcctca tcgtcgtggt gattgtggga gccctgctca tgggtctcca catgagccag
                                                                               420
         aaacacacgg agatggttct ggagatgagc attggggcgc cggaagccca gcaacgcctg
         gccctgagtg agcacctggt taccactgcc accttctcca tcggctccac tggcctcgtg
                                                                               480
45
                                                                               540
         gtgtatgact accagcagct gctgatcgcc tacaagccag cccctggcac ctgctgctac
         atcatgaaga tagctccaga gagcatcccc agtcttgagg ctctcaatag aaaagtccac
                                                                               600
                                                                               660
         aacttccaga tggaatgctc tctgcaggcc aagcccgcag tgcctacgtc taagctgggc
50
         caggcagagg ggcgagatgc aggctcagca ccctccggag gggacccggc cttcctgggc
                                                                               720
         atggccgtga acaccctgtg tggcgaggtg ccgctctact acatctagga cgcctccggt
                                                                               780
         gagcagggtc agtggaagcc ccaacgggaa aggaaacgcc ccgggcaaag ggtcttttgc
                                                                               840
55
                                                                               900
          agcttttgca gacgggcaag aagctgcttc tgcccacacc gcagggacaa accctggaga
          aatgggagct tggggagagg atgggagtgg gcagaggtgg cacccagggg cccgggaact
                                                                               960
                                                                               991
          cctgccacaa cagaataaag cagcctgatt g
60
```

<210> 90

<211> 1580 <212> ADN

<213> humano <400> 90

5 60 catcctgcca cccctagcct tgctggggac gtgaaccctc tccccgcgcc tgggaagcct tcttggcacc gggacccgga gaatccccac ggaagccagt tccaaaaggg atgaaaaggg 120 10 ggcgtttcgg gcactgggag aagcctgtat tccagggccc ctcccagagc aggaatctgg 180 gacccaggag tgccagcctc acccacgcag atcctggcca tgagagctcc gcacctccac 240 ctctccgccg cctctggcgc ccgggctctg gcgaagctgc tgccgctgct gatggcgcaa 300 15 360 ctctgggccg cagaggcggc gctgctcccc caaaacgaca cgcgcttgga ccccgaagcc tatggctccc cgtgcgcgcg cggctcgcag ccctggcagg tctcgctctt caacggcctc 420 tcgttccaet gcgcgggtgt cctggtggac cagagttggg tgctgacggc cgcgcactgc 480 20 ggaaacaagc cactgtgggc tcgagtaggg gatgaccacc tgctgcttct tcagggagag 540 600 cagctccgcc ggaccactcg ctctgttgtc catcccaagt accaccaggg ctcaggcccc 660 atcctgccaa ggcgaacgga tgagcacgat ctcatgttgc tgaagctggc caggcccgta 25 gtgctggggc cccgcgtccg ggccctgcag cttccctacc gctgtgctca gcccggagac 720 780 cagtgccagg ttgctggctg gggcaccacg gccgcccgga gagtgaagta caacaagggc ctgacctgct ccagcatcac tatcctgagc cctaaagagt gtgaggtctt ctaccctggc 840 30 900 gtggtcacca acaacatgat atgtgctgga ctggaccggg gccaggaccc ttgccagagt gactctggag gccccctggt ctgtgacgag accctccaag gcatcctctc gtggggtgtt 960 35 tacccctgtg gctctgccca gcatccagct gtctacaccc agatctgcaa atacatgtcc 1020 tggatcaata aagtcatacg ctccaactga tccagatgct acgctccagc tgatccagat 1080 gttatgctcc tgctgatcca gatgcccaga ggctccatcg tccatcctct tcctcccag 1140 40 toggotgaac totoccottg totgoactgt toaaacctot googcootco acacctotaa 1200 acatetecce teteacetea treccecace tatececatt etetgeetgt actgaagetg 1260 aaatgcagga agtggtggca aaggtttatt ccagagaagc caggaagccg gtcatcaccc 1320 45 1380 agcctctgag agcagttact ggggtcaccc aacctgactt cctctgccac tccctgctgt gtgactttgg gcaagccaag tgccctctct gaacctcagt ttcctcatct gcaaaatggg 1440 aacaatgacg tgcctacctc ttagacatgt tgtgaggaga ctatgatata acatgtgtat 1500 50 gtaaatcttc atggtgattg tcatgtaagg cttaacacag tgggtggtga gttctgacta 1560 1580 aaggttacct gttgtcgtga

55

```
<210> 91
<211> 3359
<212> ADN
60 <213> humano
```

<400> 91

	cacaccttcg	gcagcaggag	ggcggcagct	tctcgcaggc	ggcagggcgg	gcggccagga	60
5	tcatgtccac	caccacatgc	caagtggtgg	cgttcctcct	gtccatcctg	gggctggccg	120
Ū	gctgcatcgc	ggccaccggg	atggacatgt	ggagcaccca	ggacctgtac	gacaaccccg	180
	tcacctccgt	gttccagtac	gaagggctct	ggaggagctg	cgtgaggcag	agttcaggct	240
10	tcaccgaatg	caggccctat	ttcaccatcc	tgggacttcc	agccatgctg	caggcagtgc	300
	gagccctgat	gatcgtaggc	atcgtcctgg	gtgccattgg	cctcctggta	tccatctttg	360
	ccctgaaatg	catccgcatt	ggcagcatgg	aggactctgc	caaagccaac	atgacactga	420
15	cctccgggat	catgttcatt	gtctcaggtc	tttgtgcaat	tgctggagtg	tctgtgtttg	480
	ccaacatgct	ggtgactaac	ttctggatgt	ccacagctaa	catgtacacc	ggcatgggtg	540
20	⁽ ggatggtgca	gactgttcag	accaggtaca	catttggtgc	ggctctgttc	gtgggctggg	600
_0	tcgctggagg	cctcacacta	attgggggtg	tgatgatgtg	catcgcctgc	cggggcctgg	660
	caccagaaga	aaccaactac	aaagccgttt	cttatcatgc	ctcaggccac	agtgttgcct	720
25	acaagcctgg	aggcttcaag	gccagcactg	gctttgggtc	caacaccaaa	aacaagaaga	780
	tatacgatgg	aggtgcccgc	acagaggacg	aggtacaatc	ttatccttcc	aagcacgact	840
	atgtgtaatg	ctctaagacc	tctcagcacg	ggcggaagaa	actcccggag	agctcaccca	900
30	aaaaacaagg	agatcccatc	tagatttctt	cttgcttttg	actcacagct	ggaagttaga	960
	aaagcctcga	tttcatcttt	ggagaggcca	aatggtctta	gcctcagtct	ctgtctctaa	1020
35	atattccacc	ataaaacagc	tgagttattt	atgaattaga	ggctatagct	cacattttca	1080
00	atcctctatt	tcttttttta	aatataactt	tctactctga	tgagagaatg	tggttttaat	1140
	ctctctctca	cattttgatg	atttagacag	actcccctc	ttcctcctag	tcaataaacc	1200
40	cattgatgat	ctatttccca	gcttatcccc	aagaaaactt	ttgaaaggaa	agagtagacc	1260
	caaagatgtt	attttctgct	gtttgaattt	tgtctcccca	ccccaactt	ggctagtaat	1320
	aaacacttac	tgaagaagaa	gcaataagag	aaagatattt	gtaatctctc	cagcccatga	1380
45	tctcggtttt	cttacactgt	gatcttaaaa	gttaccaaac	caaagtcatt	ttcagtttga	1440
	ggcaaccaaa	cctttctact	gctgttgaca	tcttcttatt	acagcaacac	cattctagga	1500
50	gtttcctgag	ctctccactg	gagtcctctt	tctgtcgcgg	gtcagaaatt	gtccctagat	1560
00	gaatgagaaa	attattttt	ttaatttaag	tcctaaatat	agttaaaata	aataatgttt	1620
	tagtaaaatg	atacactatc	tctgtgaaat	agcctcaccc	ctacatgtgg	atagaaggaa	1680
55	atgaaaaaat	aattgctttg	acattgtcta	tatggtactt	tgtaaagtca	tgcttaagta	1740
	caaattccat	gaaaagctca	ctgatcctaa	ttctttccct	ttgaggtctc	tatggctctg	1800

	attgtacatg	atagtaagtg	taagccatgt	aaaaagtaaa	taatgtctgg	gcacagtggc	1860
_	tcacgcctgt	aatcctagca	ctttgggagg	ctgaggagga	aggatcactt	gagcccagaa	1920
5	gttcgagact	agcctgggca	acatggagaa	gccctgtctc	tacaaaatac	agagagaaaa	1980
	aatcagccag	tcatggtggc	ctacacctgt	agtcccagca	ttccgggagg	ctgaggtggg	2040
10	aggatcactt	gagcccaggg	aggttggggc	tgcagtgagc	catgatcaca	ccactgcact	2100
10	ccagccaggt	gacatagcga	gatcctgtct	aaaaaaataa	aaaataaata	atggaacaca	2160
	gcaagtccta	ggaagtaggt	taaaactaat	tctttaaaaa	aaaaaaaag	ttgagcctga	2220
15	attaaatgta	atgtttccaa	gtgacaggta	tccacatttg	catggttaca	agccactgcc -	2280
. •	agttagcagt	agcactttcc	tggcactgtg	gtcggttttg	ttttgttttg	ctttgtttag	2340
	agacggggtc	tcactttcca	ggctggcctc	aaactcctgc	actcaagcaa	ttcttctacc	2400
20	ctggcctccc	aagtagctgg	aattacaggt	gtgcgccatc	acaactagct	ggtggtcagt	2460
	tttgttactc	tgagagctgt	tcacttctct	gaattcacct	agagtggttg	gaccatcaga	2520
	tgtttgggca	aaactgaaag	ctctttgcaa	ccacacacct	tccctgagct	tacatcactg	2580
25	cccttttgag	cagaaagtct	aaattccttc	caagacagta	gaattccatc	ccagtaccaa	2640
	agccagatag	gccccctagg	aaactgaggt	aagagcagtc	tctaaaaact	acccacagca	2700
	gcattggtgc	aggggaactt	ggccattagg	ttattatttg	agaggaaagt	cctcacatca	2760
30	atagtacata	tgaaagtgac	ctccaagggg	attggtgaat	actcataagg	atcttcaggc	2820
	tgaacagact	atgtctgggg	aaagaacgga	ttatgcccca	ttaaataaca	agttgtgttc -	2880
	aagagtcaga	gcagtgagct	cagaggccct	tctcactgag	acagcaacat	ttaaaccaaa	2940
35	ccagaggaag	tatttgtgga	actcactgcc	tcagtttggg	taaaggatga	gcagacaagt	3000
	caactaaaga	aaaaagaaaa	gcaaggagga	gggttgagca	atctagagca	tggagtttgt	3060
	taagtgctct	ctggatttga	gttgaagagc	atccatttga	gttgaaggcc	acagggcaca	3120
40	atgagetete	ccttctacca	ccagaaagtc	cctggtcagg	tctcaggtag	tgcggtgtgg	3180
	ctcagctggg	tttttaatta	gcgcattctc	tatccaacat	ttaattgttt	gaaagcctcc	3240
15	atatagttag	attgtgcttt	gtaattttgt	tgttgttgct	ctatcttatt	gtatatgcat	3300
45	tgagtattaa	cctgaatgtt	ttgttactta	aatattaaaa	acactgttat	cctacagtt	3359
50	<210> 92 <211> 733						
	<212> ADN <213> humano						
	<400> 92						
55							
	gggatccgga	gcccaaatct	tctgacaaaa	ctcacacatg	cccaccgtg	c ccagcacctg	60
00	aattcgaggg	tgcaccgtca	gtcttcctct	teccccaaa	acccaagga	c accctcatga	120
60							

	tctcccggac	tcctgaggtc	acatgcgtgg	tggtggacgt	aagccacgaa	gaccctgagg	180
5	tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	240
	aggagcagta	caacagcacg	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
	ggctgaatgg	caaggagtac	aagtgcaagg	tctccaacaa	agccctccca	acccccatcg	360
10	agaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	420
	catcccggga	tgagctgacc	aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	480
	atccaagcga	catcgccgtg.	gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	540
15	ccacgcctcc	cgtgctggac	tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	600
	acaagagcag	gtggcagcag	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
20	acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
20	gactctagag	gat					733
25	<210> 93 <211> 1076 <212> ADN <213> humano						
30	<400> 93						
	atggtggttg	aggttgattc	catgccggct	gcctcttctg	tgaagaagcc	atttggtctc	60
35	aggagcaaga	tgggcaagtg	gtgctgccgt	tgcttcccct	gctgcaggga	gagcggcaag	120
00	agcaacgtgg	gcacttctgg	agaccacgac	gactctgcta	tgaagacact	caggagcaag	180
	atgggcaagt	ggtgccgcca	ctgcttcccc	tgctgcaggg	ggagtggcaa	gagcaacgtg	240
40	ggcgcttctg	gagaccacga	cgactctgct	atgaagacac	tcaggaacaa	gatgggcaag	300
	tggtgctgcc	actgcttccc	ctgctgcagg	gggagcggca	agagcaaggt	gggcgcttgg	360
	ggagactacg	atgacagtgc	cttcatggag	cccaggtacc	acgtccgtgg	agaagatctg	420
45	gacaagctcc	acagagctgc	ctggtggggt	aaagtcccca	gaaaggatct	catcgtcatg	480
	ctcagggaca	ctgacgtgaa	caagaaggac	aagcaaaaga	ggactgctct	acatctggcc	540
50	tctgccaatg	ggaattcaga	agtagtaaaa	ctcctgctgg	acagacgatg	tcaacttaat	600
50	gtccttgaca	acaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
	tgtgcgttaa	tgttgctgga	acatggcact	gatccaaata	ttccagatga	gtatggaaat	720
55	accactctgc	actacgctat	ctataatgaa	gataaattaa	tggccaaagc	actgctctta	780
-	tatggtgctg	atatcgaatc	aaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
					aaaaagcgaa		900
60	ctggatagat	atggaaggac	tgctctcata	cttgctgtat	gttgtggatc	agcaagtata	960
	gtcagccttc	tacttgagca	aaatattgat	gtatcttctc	aagatctatc	tggacagacg	1020

gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctga 1076 5 <210> 94 <211> 3675 <212> ADN <213> humano 10 <400> 94 tccgagctga ttacagacac caaggaagat gctgtaaaga gtcagcagcc acagccctgg 60 15 ctagctggcc ctgtgggcat ttattagtaa agttttaatg acaaaagctt tgagtcaaca 120 cacccgtggg taattaacct ggtcatcccc accctggaga gccatcctgc ccatgggtga 180 20 tcaaagaagg aacatctgca ggaacacctg atgaggctgc acccttggcg gaaagaacac 240 ctgacacagc tgaaagcttg gtggaaaaaa cacctgatga ggctgcaccc ttggtggaaa 300 gaacacctga cacggctgaa agcttggtgg aaaaaacacc tgatgaggct gcatccttgg 360 25 420 tggagggaac atctgacaaa attcaatgtt tggagaaagc gacatctgga aagttcgaac agtcagcaga agaaacacct agggaaatta cgagtcctge-aaaagaaaca tctgagaaat 480 540 ttacqtqqcc aqcaaaaqqa aqacctagga aqatcqcatq qqaqaaaaaa qaaqacacac 30 600 ctagggaaat tatgagtccc gcaaaagaaa catctgagaa atttacgtgg gcagcaaaag gaagacctag gaagatcgca tgggagaaaa aagaaacacc tgtaaagact ggatgcgtgg 660 720 caagagtaac atctaataaa actaaagttt tggaaaaagg aagatctaag atgattgcat 35 780 gtcctacaaa agaatcatct acaaaagcaa gtgccaatga tcagaggttc ccatcagaat ccaaacaaga ggaagatgaa gaatattett gtgatteteg gagtetettt gagagttetg 840 900 caaagattca agtgtgtata cctgagtcta tatatcaaaa agtaatggag ataaatagag 40 aagtagaaga gcctcctaag aagccatctg ccttcaagcc tgccattgaa atgcaaaact 960 1020 ctgttccaaa taaagccttt gaattgaaga atgaacaaac attgagagca gatccgatgt 45 1080 tcccaccaga atccaaacaa aaggactatg aagaaaattc ttgggattct gagagtctct gtgagactgt ttcacagaag gatgtgtgtt tacccaaggc tacacatcaa aaagaaatag 1140 ataaaataaa tggaaaatta gaagagtctc ctaataaaga tggtcttctg aaggctacct 1200 50 gcggaatgaa agtttctatt ccaactaaag ccttagaatt gaaggacatg caaactttca. 1260 aagcagagcc tccggggaag ccatctgcct tcgagcctgc cactgaaatg caaaagtctg 1320 1380 tcccaaataa agccttggaa ttgaaaaatg aacaaacatt gagagcagat gagatactcc 55 catcagaatc caaacaaaag gactatgaag aaagttcttg ggattctgag agtctctgtg 1440 agactgtttc acagaaggat gtgtgtttac ccaaggctcc atcaaaaaga aatagataaa 1500 1560 ataaatggaa aattagaagg gtctcctgtt aaagatggtc ttctgaaggc taactgcgga 60 1620 atgaaagttt ctattccaac taaagcctta gaattgatgg acatgcaaac tttcaaagca

	gagcctcccg	agaagccatc	tgccttcgag	cctgccattg	aaatgcaaaa	gtctgttcca	1680
5	aataaagcct	tggaattgaa	gaatgaacaa	acattgagag	cagatgagat	actcccatca	1740
	gaatccaaac	aaaaggacta	tgaagaaagt	tcttgggatt	ctgagagtct	ctgtgagact	1800
	gtttcacaga	aggatgtgtg	tttacccaag	gctccatcaa	aaagaaatag	ataaaataaa	1860
10	tggaaaatta	gaagagtctc	ctgataatga	tggttttctg	aaggctccct	gcagaatgaa	1920
	agtttctatt	ccaactaaag	ccttagaatt	gatggacatg	caaactttca	aagcagagcc	1980
	tcccgagaag	ccatctgcct	tcgagcctgc	cattgaaatg	caaaagtctg	ttccaaataa	2040
15	agccttggaa	ttgaagaatg	aacaaacatt	gagagcagat	cagatgttcc	cttcagaatc	2100
	aaaacaaaag	aagttgaaga	aaattcttgg	gattctgaga	gtctccgtga	gactgtttca	2160
	cagaaggatg	tgtgtgtacc	caaggctaca	catcaaaaag	aaatġgataa	aataagtgga	2220
20	aaattagaag	attcaactag	cctatcaaaa	atcttggata	cagttcattc	ttgtgaaaga	2280
	gcaagggaac	ttcaaaaaga	tcactgtgaa	caacgtacag	gaaaaatgga	acaaatgaaa	2340
	aagaagtttt	gtgtactgaa	aaagaaactg	tcagaagcaa	aagaaataaa	atcacagtta	2400
25	gagaaccaaa	aagttaaatg	ggaacaagag	ctctgcagtg	tgaggtttct	cacactcatg	2460
	aaaatgaaaa	ttatctctta	catgaaaatt	gcatgttgaa	aaaggaaatt	gccatgctaa	2520
20	aactggaaat	agccacactg	aaacaccaat	accaggaaaa	ggaaaataaa	tactttgagg	2580
30	acattaagat	tttaaaagaa	aagaatgctg	aacttcagat	gaccctaaaa	ctgaaagagg	2640
	aatcattaac	taaaagggca	tctcaatata	gtgggcagct	taaagttctg	atagctgaga	2700
35	acacaatgct	cacttctaaa	ttgaaggaaa	aacaagacaa	agaaatacta	gaggcagaaa	2760
33	ttgaatcaca	ccatcctaga	ctggcttctg	ctgtacaaga	ccatgatcaa	attgtgacat	2820
	caagaaaaag	tcaagaacct	gctttccaca	ttgcaggaga	tgcttgtttg	caaagaaaaa	2880
40	tgaatgttga	tgtgagtagt	acgatatata	acaatgaggt	gctccatcaa	ccactttctg	2940
.0	aagctcaaag	gaaatccaaa	agcctaaaaa	ttaatctcaa	ttatgcggag	atgctctaag	3000
	agaaaataca	ttggtttcag	aacatgcaca	aagagaccaa	cgtgaaacac	agtgtcaaat	3060
45	gaaggaagct	gaacacatgt	atcaaaacga	acaagataat	gtgaacaaac	acactgaaca	3120
	gcaggagtct	ctagatcaga	aattatttca	actacaaago	aaaaatatgt	ggcttcaaca	3180
	gcaattagtt	catgcacata	agaaagctga	caacaaaagc	aagataacaa	ttgatattca	3240
50	ttttcttgag	aggaaaatgo	aacatcatct	cctaaaagag	aaaaatgagg	agatatttaa	3300
	ttacaataac	catttaaaaa	accgtatata	tcaatatgaa	aaagagaaag	cagaaacaga	3360
	aaactcatga	gagacaagca	gtaagaaact	tcttttggag	aaacaacaga	ccagatcttt	3420
55	actcacaact	catgctagga	ggccagtcct	agcatcacct	tatgttgaaa	atcttaccaa	3480

	tagtctgtgt caacagaata cttattttag aagaaaaatt catgatttct tcctgaagcc	3540
5	tacagacata aaataacagt gtgaagaatt acttgttcac gaattgcata aagctgcaca	3600
	ggattcccat ctaccctgat gatgcagcag acatcattca atccaaccag aatctcgctc	3660
10	tgtcactcag gctgg	3675
15	<210> 95 <211> 2658 <212> ADN <213> humano	
	<400> 95	
20	acccagaaga ccgtgccttg cctggaagtc ctgcctgtag gcctgaagga cttgccctaa	60
	cagageetea acaaetaeet ggtgatteet aetteageee ettggtgtga geagettete	120
	aacatgaact acagcctcca cttggccttc gtgtgtctga gtctcttcac tgagaggatg	180
25	tgcatccagg ggagtcagtt caacgtcgag gtcggcagaa gtgacaagct ttccctgcct	240
	ggctttgaga acctcacagc aggatataac aaatttctca ggcccaattt tggtggagaa	300
	cccgtacaga tagcgctgac tctggacatt gcaagtatct ctagcatttc agagagtaac	360
30	atggactaca cagccaccat atacctccga cagcgctgga tggaccagcg gctggtgttt	420
	gaaggcaaca agagcttcac tctggatgcc cgcctcgtgg agttcctctg ggtgccagat	480
35	acttacattg tggagtccaa gaagtccttc ctccatgaag tcactgtggg aaacaggctc	540
55	atccgcctct tctccaatgg cacggtcctg tatgccctca gaatcacgac aactgttgca	.600
	tgtaacatgg atctgtctaa ataccccatg gacacacaga catgcaagtt gcagctggaa	660
40	agctggggct atgatggaaa tgatgtggag ttcacctggc tgagagggaa cgactctgtg	720
10	cgtggactgg aacacctgcg gcttgctcag tacaccatag agcggtattt caccttagtc	780
	accagatcgc agcaggagac aggaaattac actagattgg tcttacagtt tgagcttcgg	840
45	aggaatgttc tgtatttcat tttggaaacc tacgttcctt ccactttcct ggtggtgttg	900
	tcctgggttt cattttggat ctctctcgat tcagtccctg caagaacctg cattggagtg	960
	acgaccgtgt tatcaatgac cacactgatg atcgggtccc gcacttctct tcccaacacc	1020
50	aactgcttca tcaaggccat cgatgtgtac ctggggatct gctttagctt tgtgtttggg	1080
	gccttgctag aatatgcagt tgctcactac agttccttac agcagatggc agccaaagat	1140
	agggggacaa caaaggaagt agaagaagtc agtattacta atatcatcaa cagctccatc	1200
55	tccagcttta aacggaagat cagctttgcc agcattgaaa tttccagcga caacgttgac	1260
	tacagtgact tgacaatgaa aaccagcgac aagttaaagt ttgtcttccg agaaaagatg	1320
	ggcaggattg ttgattattt cacaattcaa aaccccagta atgttgatca ctattccaaa	1380
60	ctactgtttc ctttgatttt tatgctagcc aatgtatttt actgggcata ctacatgtat	1440

	ttttgagtca	atgitaaatt	ccttgcatgc	cataggict	caacaggaca	agacaacyac	1200
5	gtaaatggta	ttttaggcca	agtgtgcacc	cacatccaat	ggtgctacaa	gtgactgaaa	1560
3	taatatttga	gtctttctgc	tcaaagaatg	aagctccaac	cattgttcta	agctgtgtag	1620
	aagtcctagc	attataggat	cttgtaatag	aaacatcagt	ccattcctct	ttcatcttaa	1680
10	tcaaggacat	tcccatggag	cccaagatta	caaatgtact	cagggctgtt	tattcggtgg	, 1740
	ctccctggtt	tgcatttacc	tcatataaag	aatgggaagg	agaccattgg	gtaaccctca	1800
	agtgtcagaa	gttgtttcta	aagtaactat	acatgtttt	tactaaatct	ctgcagtgct	1860
15	tataaaatac	attgttgcct	atttagggag	taacattttc	tagtttttgt	ttctggttaa	1920
	aatgaaatat	gggcttatgt	caattcattg	gaagtcaatg	cactaactca	ataccaagat	1980
20	gagtttttaa	ataatgaata	ttatttaata	ccacaacaga	attatcccca	atttccaata	2040
20	agtcctatca	ttgaaaattc	aaatataagt	gaagaaaaaa	ttagtagatc	aacaatctaa	2100
	acaaatccct	cggttctaag	atacaatgga	ttccccatac	tggaaggact	ctgaggcttt	2160
25	attccccac	tatgcatatc	ttatcatttt	attattatac	acacatccat	cctaaactat	2220
	actaaagccc	ttttcccatg	catggatgga	aatggaagat	tttttttaa	cttgttctag	2280
	aagtcttaat	atgggctgtt	gccatgaagg	cttgcagaat	tgagtccatt	ttctagctgc	2340
30	ctttattcac	atagtgacgg	ggtactaaaa	gtactgggtt	gactcagaga	gtcgctgtca	2400
	ttctgtcatt	gctgctactc	taacactgag	caacactctc	ccagtggcag	atcccctgta	2460
35	tcattccaag	aggagcattc	atccctttgc	tctaatgatc	aggaatgatg	cttattagaa	2520
33	aacaaactgc	ttgacccagg	aacaagtggc	ttagcttaag	taaacttggc	tttgctcaga	2580
	tccctgatcc	ttccagctgg	tctgctctga	gtggcttatc	ccgcatgagc	aggagcgtgc	2640
40	tggccctgag	tactgaac			,		2658
45	<210> 96 <211> 2531 <212> ADN <213> humano						
	<400> 96						
50							
	gcagtgtgag	gcaatcgctc	tatccttgac	cccttccttt	gcacagtgag	tgatggcgtt	60
	tttatctcct	gatgatgatg	cacagccttc	agcgggggac	atttaagacg	cagaacacca	120
55	ggtccaggct	gcagctgcgg	gactcagagg	cgaagcttga	ggggctcagg	aaggacgaag	180
	aaccaccctt	gagagaagag	gcagcagcag	cggcggcagc	agcagcggca	gcgaccccac	240
60	cactgccaca	tttgccagga	aacaatgctg	ctagcgacat	tcaagctgtg	cgctgggagc	-300
60	tcctacagac	acatgcgcaa	catgaagggg	ctgaggcaac	aggctgtgat	ggccatcagc	360
	caggagctga	accggagggc	cctggggggc	cccaccccta	gcacgtggat	taaccaggtt	420
65							

	cggcggcgga	gctctctact	cggttctcgg	ctggaagaga	ctctctacag	tgaccaggag	480
F	ctggcctatc	tccagcaggg	ggaggaggcc	atgcagaagg	ccttgggcat	ccttagcaac	540
5	caagagggct	ggaagaagga	gagtcagcag	gacaatgggg	acaaagtgat	gagtaaagtg	600
	gtcccagatg	tgggcaaggt	gttccggctg	gaggtcgtgg	tggaccagcc	catggagagg	660
10	ctctatgaag	agctcgtgga	gcgcatggaa	gcaatggggg	agtggaaccc	caatgtcaag	720
	gagatcaagg	tcctgcagaa	gatcgggggg	ccccgtgact	ttgtgagcgt	gcgctgtgcc	780
	aagcgccgag	gctccacctg	tgtgctggct	ggcatggcca	cagacttcgg	gaacatgcct	840
15	gagcagaagg	gtgtcatcag	ggcggagcac	ggtcccactt	gcatggtgct	tcacccgttg	900
	gctggaagtc	cctctaagac	caaacttacg	tggctactca	gcatcgacct	caaggggtgg	960
20	ctgcccaaga	gcatcatcaa	ccaggtcctg	tcccagaccc	aggtggattt	tgccaaccac	1020
20	ctgcgcaagc	gcctggagtc	ccaccctgcc	tctgaagcca	ggtgttgaag	accagcctgc	1080
	tgttcccaac	tgtgcccagc	tgcactggta	cacacgctca	tcaggagaat	ccctactgga	1140
25	agcctgcaag	tctaagatct	ccatctggtg	acagtgggat	gggtggggtt	cgtgtttaga	1200
	gtatgacact	aggattcaga	ttggtgaaag	tttttagtac	caagaaaaca	gggatgaggc	1260
	tcttggatta	aaaggtaact	tcattcactg	attagctatg	acatgagggt	tcaggcccct	1320
30	aaaataattg	taaaactttt	tttctgggcc	cttatgtacc	cacctaaaac	catctttaaa	1380
	atgctagtgg	ctgatatggg	tgtgggggat	gctaaccaca	gggcctgaga	agtcttgctt	1440
	tatgggctca	agaatgccat	gcgctggcag	tacatgtgca	caaagcagaa	tctcagaggg	1500
35	tctcctgcag	ccctctgctc	ctcccggccg	ctgcacagca	acaccacaga	acaagcagca	1560
	ccccacagtg	ggtgccttcc	agaaatatag	tccaagcttt	ctctgtggaa	aaagacaaaa	1620
40	ctcattagta	gacatgtttc	cctattgctt	tcataggcac	cagtcagaat	aaagaatcat	1680
10	aattcacaca	aacatcagtc	tttgttttaa	tattgtactg	ttaaaaaaat	ctatgcagct	1740
	gggtgcagtg	gctcacgcct	gtaatcccag	cattttggga	ggctgaggta	ggcggatcac	1800
45	aaggtcagga	gatcgagacc	atcctggcca	acatggtgaa	accccgtctc	tactaaaata	1860
	caaaaaatta	gctgggtgtg	gtggcgcaaa	cctgtagtcg	tagctacttg	ggaggctgag	1920
	gcaggggaat	cacttgaacc	ccggaggcgg	aggttgtagt	gggccgagat	tgtgccactg	1980
50	cgctccagcg	tgggcgacag	agtgagactc	catctcaaaa	aaaaaaaaa	aaaaatctat	2040
	gctagtagat	tacaacttca	cactagagga	gttctggaca	aagcttttaa	ttagtcaaac	2100
EE	taaattaagg	ctcattaaaa	ggaaaggaac	tactgggaaa	ttatgcaatt	caataattta	2160
55	gactctgtta	ccaggatctt	tcataaaaat	ttaatttcca	taatcataac	ctaaatgagt	2220
	tcttaaagaa	ttctataago	aatagctgat	taatgggccc	tggaagatga	agattataac.	2280
60	tgtttattta	cctaattaaa	aggaaaggca	gtgccaaata	tgagaggata	a aacaatatta	2340

	gttaacattt	ctgttattta	tgatgccaat	tagtagtaag	ataattccac	agctgtcaac	2400
5	tttgtttggg	gctggcaact	tctctgctta	aacaggctaa	aagtttagta	ttctgggaga	2460
	agtggctgga	agaaggggta	atatggtgaa	agcaaattcc	ctttcccagg	agtcaagaga	2520
	atttatgtga	g .	2				2531
10							
15	<210> 97 <211> 2849 <212> ADN <213> humano						
	<400> 97						
20							
20	cgggcgccgc	aggagcgagt	gagctgggag	cgaggggcga	aggcgcggag	aagcccggcc	60
	gcccggtggg	cggcagaagg	ctcagccgag	gcggcggcgc	cgactccgtt	ccactctcgg	120
25	cccggatcca	ggcctccggg	ttcccaggcg	ctcacctccc	tctgacgcac	tttaaagagt	180
	ctccccctt	ccacctcagg	gcgagtaata	gcgaccaatc	atcaagccat	ttaccaggct	240
	tcggaggaag	ctgtttatgt	gatccccgca	ctaattaggc	tcatgaacta	acaaatcgtt	300
30	tgcacaactt	gtgaagaagc	gaacacttcc	atggattgtc	cttggactta	gggcgccctg	360
	cccgcctttt	gcagaggaga	aaaaactttt	ttttttttt	gcctccccg	agaactttcc	420
25	ccccttctcc	tccctgcctc	taactccgat	cccccacgc	catctcgcca	aaaaaaaaa	480
35	aaaaaaaaa	aaagaaaaaa	aaagaaaaaa	aaagaaaaaa	aattacccca	atccacgcct	540
	gcaaattctt	ctggaaggat	tttccccct	ctcttcaggt	tgggcgcgtt	tggtgcaaga	600
40	ttctcgggat	cctcggcttt	gcctctccct	ctccctcccc	cctcctttcc	tttttccttt	660
	cctttccttt	ctttcttcct	ttccttcccc	ccacccccac	ccccacccca	aacaaacgag	720
	tccccaattc	tcgtccgtcc	tcgccgcggg	cagcgggcgg	cggaggcagc	gtgcggcggt	780
45	cgccaggagc	tgggagccca	gggcgcccgc	tcctcggcgc	agcatgttco	agccggcgcc	840
	caagcgctgc	ttcaccatcg	agtcgctggt	ggccaaggac	agtcccctgc	ccgcctcgcg	900
50	ctccgaggac	cccatccgtc	ccgcggcact	cagctacgct	aactccagc	ccataaatcc	960
50	gttcctcaac	ggcttccact	cggccgccgc	cgccgccgcc	ggtaggggcg	tctactccaa	1020
	cccggacttg	gtgttcgccg	aggcggtctc	gcacccgccc	aaccccgccg	tgccagtgca	1080
55	cccggtgccg	ccgccgcacg	ccctggccgc	ccacccccta	ccctcctcg	actcgccaca	1140
	cccctattc	gcctcgcagc	agcgggatcc	gtccaccttc	tacccctgg	tcatccaccg	1200
	ctaccgatat	ctgggtcatc	gcttccaagg	gaacgacact	agccccgaga	gtttcctttt	1260
60						cgtcccagct	1320
						g. aaaggaagca	1380
65						agaaccgaag	1440
50	5 - 55	J J	- 55		2 23		

	aacaaageee aaaaggcaga ageeggagga agaaggeeea gaeeegcaac aaaagaaaaa	T300
5	agggacgcac catattaacc ggtggagaat cgccaccaag caggcgagtc cggaggaaat	1560
5	agacgtgacc tcagatgatt aaaaacataa acctaacccc acagaaacgg acaacatgga	1620
	gcaaaagaga cagggagagg tggagaagga aaaaacccta caaaacaaaa	1680
10	tacacgttca ccgagaaagg gagagggaat cggagggagc agcggaatgc ggcgaagact	1740
	ctggacagcg agggcacagg gtcccaaacc gaggccgcgc caagatggca gaggatggag	1800
	gctccttcat caacaagcga ccctcgtcta aagaggcagc tgagtgagag acacagagag	1860
15	aaggagaaag agggagggag agagagaaag agagagaaag agagagagagagag	1920
	agaaagctga acgtgcactc tgacaagggg agctgtcaat caaacaccaa accggggaga	1980
20	caagatgatt ggcaggtatt ccgtttatca cagtccactt aaaaaatgat gatgatgata	2040
	aaaaccacga cccaaccagg cacaggactt ttttgttttt tgcacttcgc tgtgtttccc	2100
	ccccatcttt aaaaataatt agtaataaaa aacaaaaatt ccatatctag ccccatccca	2160
25	cacctgtttc aaatccttga aatgcatgta gcagttgttg ggcgaatggt gtttaaagac	2220
	cgaaaatgaa ttgtaatttt cttttccttt taaagacagg ttctgtgtgc tttttatttt	2280
30	gattttttt cccaagaaat gtgcagtctg taaacacttt ttgatacctt ctgatgtcaa	- 2340
30	agtgattgtg caagctaaat gaagtaggct cagcgatagt ggtcctctta cagagaaacg	2400
	gggagcagga cgacgggggg gctgggggtg gcgggggagg gtgcccacaa aaagaatcag	2460
35	gacttgtact gggaaaaaa cccctaaatt aattatattt cttggacatt ccctttccta	2520
	acatcctgag gcttaaaacc ctgatgcaaa cttctccttt cagtggttgg agaaattggc	2580
	cgagttcaac cattcactgc aatgcctatt ccaaacttta aatctatcta ttgcaaaacc	2640
40	tgaaggactg tagttagcgg ggatgatgtt aagtgtggcc aagcgcacgg cggcaagttt	2700
	tcaagcactg agtttctatt ccaagatcat agacttacta aagagagtga caaatgcttc	2760
45	cttaatgtct tctataccag aatgtaaata tttttgtgtt ttgtgttaat ttgttagaat	2820
	tctaacacac tatatacttc caagaagta	2849
50	<210> 98 <211> 3308 <212> ADN <213> humano	
55	<400> 98	
	aaaagataga tcctgctcca ggagccggga agcctcgccc tggccagctg tgctgggcac	60
60	ctcccctgcc tgcttcctgg cccacttgca ggcaaggtga gggcatgcga atggctgcca	120
	ctgcctgggc ggggctccaa gggccacccc tccccaccct ctgtcccgca gtgaggacgg	180
65	gactctactg ccgagaccag gctcacgctg agaggtgggc catgacctcc gagacctctt	240

	ccggaagcca ctgtgccagg agcaggatgc tgcggcgacg ggcccaggaa gaggacagca	300
_	ccgtcctgat cgatgtgagc ccccctgagg cagagaagag gggctcttac gggagcacag	360
5	cccacgcctc ggagccaggt ggacagcaag cggccgcctg cagagctggg agtcctgcca	420
	agccccggat cgcagacttc gtcctcgttt gggaggagga cctgaagcta gacaggcagc	480
10	aggacagtgc cgcccgggac agaacagaca tgcacaggac ctggcgggag actttctgg	540
	ataatcttcg tgcggctggg ctgtgtgtag accagcagga cgtccaggac gggaacacca	600
	cagtgcacta cgccctcctc agcgcctcct gggctgtgct ctgctactac gccgaagacc	660
15	tgcgcctgaa gctgcccttg caggagttac ccaaccaggc ctccaactgg tcggccggcc	720
	tgctggcatg gctgggcatc cccaacgtcc tgctggaggt tgtgccagac gtacccccg	780
	agtactactc ctgccggttc agagtgaaca agctgccacg cttcctcggg agtgacaacc	840
20	aggacacctt cttcacaagc accaagaggc accaaattct gtttgagatc ctggccaaga	900
	ccccgtatgg ccacgagaag aaaaacctgc ttgggatcca ccagctgctg gcagagggtg	960
25	tcctcagtgc cgccttcccc ctgcatgacg gccccttcaa gacgccccca gagggcccgc	1020
20	aggctccacg cctcaaccag cgccaagtcc ttttccagca ctggggcgcgc tggggcaagt	1080
	ggaacaagta ccagcccctg gaccacgtgc gcaggtactt cggggagaag gtggccctct	1140
30	acttcgcctg gctcgggttt tacacaggct ggctcctgcc agcggcagtg gtgggcacac	1200
	tggtgttcct ggtgggctgc ttcctggtgt tctcagacat acccacgcag gaactgtgtg	1260
	gcagcaagga cagcttcgag atgtgcccac tttgcctcga ctgccctttc tggctgctct	1320
35	ccagcgcctg tgccctggcc caggccggcc ggctgttcga ccacggcggc accgtgttct	1380
	tcagcttgtt catggcactg tgggccgtgc tgctgctgga gtactggaag cggaagagcg	1440
40	ccacgctggc ctaccgctgg gactgctctg actacgagga cactgaggag aggcctcggc	1500
40	cccagtttgc cgcctcagcc cccatgacag ccccgaaccc catcacgggt gaggacgagc	1560
	cctacttccc tgagaggagc cgcgcgccc gcatgctggc cggctctgtg gtgatcgtgg	1620
45	tgatggtggc cgtggtggtc atgtgcctcg tgtctatcat cctgtaccgt gccatcatgg	1680
	ccatcgtggt gtccaggtcg ggcaacaccc ttctcgcagc ctgggcctct cgcatcgcca	1740
	gcctcacggg gtctgtagtg aacctcgtct tcatcctcat cctctccaag atctatgtat	1800
50	ccctggccca cgtcctgaca cgatgggaaa tgcaccgcac ccagaccaag ttcgaggacg	1860
	ccttcaccct caaggtgttc atcttccagt tcgtcaactt ctactcctca cccgtctaca	1920
	ttgccttctt caagggcagg tttgtgggat acccaggcaa ctaccacacc ttgtttggag	1980
55	tccgcaatga ggagtgcgcg gctggaggct gcctgatcga gctggcacag gagctcctgg	2040
	tcatcatggt gggcaagcag gtcatcaaca acatgcagga ggtcctcatc ccgaagctaa	2100

	agggctggtg gcagaagttc cggcttcgct ccaagaagag gaaggcggga gcttctgcag	2160
_	gggctagcca ggggccctgg gaggacgact atgagcttgt gccctgtgag ggtctgtttg	2220
5	acgagtacct ggaaatggtg ctgcagttcg gcttcgtcac catcttcgtg gccgcctgtc	2280
	cgctcgcgcc gctcttcgcc ctgctcaaca actgggtgga gatccgcttg gacgcgcgca	2340
10	agttcgtctg cgagtaccgg cgccctgtgg ccgagcgcgc ccaggacatc ggcatctggt	2400
	tccacatcct ggcgggcctc acgcacctgg cggtcatcag caacgccttc ctcctggcct	2460
	tctcgtccga cttcctgccg cgcgcctact accggtggac ccgcgcccac gacctgcgcg	2520
15	gcttcctcaa cttcacgctg gcgcgagccc cgtcctcctt cgccgccgcg cacaaccgca	2580
	cgtgcaggta tcgggctttc cgggatgacg atggacatta ttcccagacc tactggaatc	2640
20	ttcttgccat ccgcctggcc ttcgtcattg tgtttgagca tgtggttttc tccgttggcc	2700
20	gcctcctgga cctcctggtg cctgacatec cagagtctgt ggagatcaaa gtgaagcggg	2760
	agtactacct ggctaagcag gcactggctg agaatgaggt tctttttgga acgaacggaa	2820
25	caaaggatga gcagcccaag ggctcagagc tcagctccca ctggacaccc ttcacggttc	2880
	ccaaggccag ccagctgcag cagtgacgcc tggaaggaca tctggtggtc cttaggggag	2940
	tggcccctcc tgagccctgc gagcagcgtc cttttcctct tccctcaggc agcggctgtg	3000
30	tgaaccgctg gctgctgttg tgcctcatct ctgggcacat tgcctgcttc cccccagcgc	3060
	cggcttctct cctcagagcg cctgtcactc catccccggc agggagggac cgtcagctca	3120
35	caaggccctc tttgtttcct gctcccagac ataagcccaa ggggcccctg cacccaaggg	3180
33	accetgice teggingest ecceagges etggacacga cagitetest caggeagging	3240
	ggctttgtgg tcctcgccgc ccctggccac atcgccctct cctcttacac ctggtgacct	3300
40	tcgaatgt	3308
	<210> 99 <211> 551	
45	<212> ADN <213> humano	
	<400> 99	
50		
	accccatccg ctggctctca cccctcggag acgctcgccc gacagcatag tacttgccgc	60
	ccagccacgc ccgcgccca gccaccatgc taggtaacaa gcgactgggg ctgtccggac	120
55	tgaccctcgc cctgtccctg ctcgtgtgcc tgggtgcgct ggccgaggcg tacccctcca	180
	agccggacaa cccgggcgag gacgcaccag cggaggacat ggccagatac tactcggcgc	240
0.0	tgcgacacta catcaacctc atcaccaggc agagatatgg aaaacgatcc agcccagaga	300
60	cactgattte agacctettg atgagagaaa gcacagaaaa tgttcccaga actcggettg	360
	aagaccctgc aatgtggtga tgggaaatga gacttgctct ctggcctttt cctattttca	420

	gcccatattt	catcgtgtaa	aacgagaato	cacccatcct	t accaatgca	t gcagccactg	480
5	tgctgaattc	tgcaatgttt	tcctttgtca	tcattgtata	a tatgtgtgt	t taaataaagt	540
	atcatgcatt	с					551
10	<210> 100 <211> 1607 <212> ADN <213> humano						
15	<400> 100						
	aatgactcct	ttcggtaagt	gcagtggaag	ctgtacactg	cccaggcaaa	gcgtccgggc	60
20	agcgtaggcg	ggcgactcag	atcccagcca	gtggacttag	cccctgtttg	ctcctccgat	120
	aactggggtg	accttggtta	atattcacca	gcagcctccc	ccgttgcccc	tctggatcca	180
	ctgcttaaat	acggacgagg	acagggccct	gtctcctcag	cttcaggcac	caccactgac	240
25	ctgggacagt	gaatcgacaa	tgccgtcttc	tgtctcgtgg	ggcatcctcc	tgctggcagg	300
	cctgtgctgc	ctggtccctg	tctccctggc	tgaggatccc	cagggagatg	ctgcccagaa	360
30	gacagataca	tcccaccatg	atcaggatca	cccaaccttc	aacaagatca	ccccaacct	420
00	ggctgagttc	gccttcagcc	tataccgcca	gctggcacac	cagtccaaca	gcaccaatat	480
	cttcttctcc	ccagtgagca	tcgctacagc	ctttgcaatg	ctctccctgg	ggaccaaggc	540
35	tgacactcac	gatgaaatcc	tggagggcct	gaatttcaac	ctcacggaga	ttccggaggc .	600
	tcagatccat	gaaggcttcc	aggaactcct	ccgtaccctc	aaccagccag	acagccagct	660
	ccagctgacc	accggcaatg	gcctgttcct	cagcgagggc	ctgaagctag	tggataagtt	720
40	tttggaggat	gttaaaaagt	tgtaccactc	agaagccttc	actgtcaact	tcggggacac	780
	cgaagaggcc	aagaaacaga	tcaacgatta	cgtggagaag	ggtactcaag	ggaaaattgt	840
15	ggatttggtc	aaggagcttg	acagagacac	agtttttgct	ctggtgaatt	acatcttctt	900
45	taaaggcaaa	tgggagagac	cctttgaagt	caaggacacc	gaggaagagg	acttccacgt	960
	ggaccaggtg	accaccgtga	aggtgcctat	gatgaagcgt	ttaggcatgt	ttaacatcca	1020
50	gcactgtaag	aagctgtcca	gctgggtgct	gctgatgaaa	tacctgggca	atgccaccgc	1080
	catcttcttc	ctgcctgatg	aggggaaact	acagcacctg	gaaaatgaac	tcacccacga	1140
	tatcatcacc	aagttcctgg	aaaatgaaga	cagaaggtct	gccagcttac	atttacccaa	1200
55	actgtccatt	actggaacct	atgatctgaa	gagcgtcctg	ggtcaactgg	gcatcactaa	1260
	ggtcttcagc	aatggggctg	acctctccgg	ggtcacagag	gaggcacccc	tgaagctctc	1320
00	caaggccgtg	cataaggctg	tgctgaccat	cgacgagaaa	gggactgaag	ctgctggggc	1380
60	catgtttta	gaggccatac	ccatgtctat	ccccccgag	gtcaagttca	acaaaccctt	1440
	tgtcttctta	atgattgaac	aaaataccaa	gtctccctc	ttcatgggaa	aagtggtgaa	1500

	tcccacccaa aaataactgc ctctcgctcc tcaacccctc ccctccatcc ctggccccct	1560
5	ccctggatga cattaaagaa gggttgagct ggtccctgcc tgcaaaa	1607
10	<210> 101 <211> 1753 <212> ADN <213> humano	
	<400> 101	
15	cancerence estacetoto nagoresans concentre commatana annegronado	60
	cagccccgcc cctacctgtg gaagcccagc cgcccgctcc cgcggataaa aggcgcggag	120
	tgtccccgag gtcagcgagt gcgcgctcct cctcgcccgc cgctaggtcc atcccggccc	180
20	agccaccatg tocatocact toagctococ ggtattoacc togcgotoag cogcottoto	
	gggccgcggc gcccaggtgc gcctgagctc cgctcgcccc ggcggccttg gcagcagcag	240
25	cctctacggc ctcggcgcct cacggccgcg cgtggccgtg cgctctgcct atgggggccc	300
23	ggtgggcgcc ggcatccgcg aggtcaccat taaccagagc ctgctggccc cgctgcggct	360
	ggacgccgac ccctcctcc agcgggtgcg ccaggaggag agcgagcaga tcaagaccct	420 480
30	caacaacaag tttgcctcct tcatcgacaa ggtgcggttt ctggagcagc agaacaagct	
	gctggagacc aagtggacgc tgctgcagga gcagaagtcg gccaagagca gccgcctccc	540
	agacatettt gaggeecaga ttgetggeet teggggteag ettgaggeac tgeaggtgga	600
35	tgggggccgc ctggaggcgg agctgcggag catgcaggat gtggtggagg acttcaagaa	660
	taagtacgaa gatgaaatta accaccgcac agctgctgag aatgagtttg tggtgctgaa	720
	gaaggatgtg gatgctgcct acatgagcaa ggtggagctg gaggccaagg tggatgccct	780
40	gaatgatgag atcaacttcc tcaggaccct caatgagacg gagttgacag agctgcagtc	840
	ccagatetec gacacatetg tggtgetgte catggacaac agtegeteec tggacetgga	900
4.5	cggcatcatc gctgaggtca aggcgcagta tgaggagatg gccaaatgca gccgggctga	960
45		1020
		1080
50		1140
50		1200
		1260
55	catgagcgtg aagctggccc tggacatcga gatcgccacc taccgcaagc tgctggaggg	1320
	cgaggagagc cggttggctg gagatggagt gggagccgtg aatatctctg tgatgaattc	1380
	cactggtggc agtagcagtg gcggtggcat tgggctgacc ctcggggggaa ccatgggcag	1440
60	caatgccctg agcttctcca gcagtgcggg tcctgggctc ctgaaggctt attccatccg	1500
	gaccgcatcc gccagtcgca ggagtgcccg cgactgagcc gcctcccacc actccactcc	1560

	tccagccacc acccacaatc acaagaagat tcccaccct gcctcccatg cctggtccca	1620
_	agacagtgag acagtctgga aagtgatgtc agaatagctt ccaataaagc agcctcattc	1680
5	tgaggcctga gtgatccacg tgaaaaaaaa aaaaaaaaaa	1740
	aaaaaaaaa aaa	1753
10		
15	<210> 102 <211> 2276 <212> ADN <213> humano	
10	<400> 102	
20	aagcccagca gccccggggc ggatggctcc ggccgcctgg ctccgcagcg cggccgcgcg	60
	cgccctcctg cccccgatgc tgctgctgct gctccagccg ccgccgctgc tggcccgggc	120
	tctgccgccg gacgcccacc acctccatgc cgagaggagg gggccacagc cctggcatgc	180
25	agccctgccc agtagcccgg cacctgcccc tgccacgcag gaagcccccc ggcctgccag	240
	cagcctcagg cctccccgct gtggcgtgcc cgacccatct gatgggctga gtgcccgcaa	300
20	ccgacagaag aggttcgtgc tttctggcgg gcgctgggag aagacggacc tcacctacag	360
30	gatccttcgg ttcccatggc agttggtgca ggagcaggtg cggcagacga tggcagaggc	420
	cctaaaggta tggagcgatg tgacgccact cacctttact gaggtgcacg agggccgtgc	480
35	tgacatcatg atcgacttcg ccaggtactg gcatggggac gacctgccgt ttgatgggcc	540
	tgggggcatc ctggcccatg ccttcttccc caagactcac cgagaagggg atgtccactt	600
	cgactatgat gagacctgga ctatcgggga tgaccagggc acagacctgc tgcaggtggc	660
40	agcccatgaa tttggccacg tgctggggct gcagcacaca acagcagcca aggccctgat	720
	gtccgccttc tacacctttc gctacccact gagtctcagc ccagatgact gcaggggcgt	780
	tcaacaccta tatggccagc cctggcccac tgtcacctcc aggaccccag ccctgggccc	840
45	ccaggctggg atagacacca atgagattgc accgctggag ccagacgccc cgccagatgc	900
	ctgtgaggcc tcctttgacg cggtctccac catccgaggc gagctctttt tcttcaaagc	960
	gggctttgtg tggcgcctcc gtgggggcca gctgcagccc ggctacccag cattggcctc	1020
50	tcgccactgg cagggactgc ccagccctgt ggacgctgcc ttcgaggatg cccagggcca	1080
	catttggttc ttccaaggtg ctcagtactg ggtgtacgac ggtgaaaagc cagtcctggg	1140
55	ccccgcaccc ctcaccgagc tgggcctggt gaggttcccg gtccatgctg ccttggtctg	1200
00	gggtcccgag aagaacaaga tctacttctt ccgaggcagg gactactggc gtttccaccc	1260
	cagcacccgg cgtgtagaca gtcccgtgcc ccgcagggcc actgactgga gaggggtgcc	1320
60	ctctgagatc gacgctgcct tccaggatgc tgatggctat gcctacttcc tgcgcggccg	1380
	cctctactgg aagtttgacc ctgtgaaggt gaaggctctg gaaggcttcc cccgtctcgt	1440

```
gggtcctgac ttctttggct gtgccgagcc tgccaacact ttcctctgac catggcttgg:
                                                                            1500
         atgccctcag gggtgctgac ccctgccagg ccacgaatat caggctagag acccatggcc
                                                                            1560
 5
         atctttgtgg ctgtgggcac caggcatggg actgagccca tgtctcctca gggggatggg
                                                                            1620
         gtggggtaca accaccatga caactgccgg gagggccacg caggtcgtgg tcacctgcca
                                                                            1680
10
         gcgactgtct cagactgggc agggaggctt tggcatgact taagaggaag ggcagtcttg
                                                                            1740
         ggcccgctat gcaggtcctg gcaaacctgg ctgccctgtc tccatccctg tccctcaggg
                                                                            1800
         tagcaccatg gcaggactgg gggaactgga gtgtccttgc tgtatccctg ttgtgaggtt
                                                                            1860
15
         ccttccaggg gctggcactg aagcaagggt gctggggccc catggccttc agccctggct
                                                                            1920
         gagcaactgg gctgtagggc agggccactt cctgaggtca ggtcttggta ggtgcctgca
                                                                            1980
         tctgtctgcc ttctggctga caatcctgga aatctgttct ccagaatcca ggccaaaaag
                                                                            2040
20
                                                                            2100
         ttcacagtca aatggggagg ggtattcttc atgcaggaga ccccaggccc tggaggctgc
         aacatacctc aatcctgtcc caggccggat cctcctgaag cccttttcgc agcactgcta
                                                                            2160
                                                                            2220
25
         tcctccaaag ccattgtaaa tgtgtgtaca gtgtgtataa accttcttct tcttttttt
                                                                            2276
         30
     <210> 103
     <211> 7381
     <212> ADN
     <213> humano
35
     <400> 103
        tacagececa aggregates etergogose ettectace cattetace ageageceaa
                                                                             60
40
                                                                            120
        agctctggtg ggacaggggc agcccctggg gagggaggag aggacccagg aacccggcta
        ggagggtggc ccacccattt ccagtgtgac ctgttcccat tcccccatgt ctcctccat
                                                                            180
                                                                            240
        ccctcccgcc actcagctca ggctgatgag aagcagagca acgggtgtat cggtgttttc
45
        tttcctggtg gggtagtggg gtggggctga ggagagaaaa gggtgattag cgtggggccc
                                                                            300
                                                                            360
        cgccctcttt tgtcctcttc ccaggttccc tggccccttc ggagaaacgc acttggttcg
                                                                            420
        ggccagccgc ctgaggggac gggctcacgt ctgctcctca cactgcagct gctgggccgt
50
                                                                            480
        ggagcttccc cagggagcca gggggacttt tgccgcagcc atgaaggggg cacgctggag
        gagggtcccc tgggtgtccc tgagctgcct gtgtctctgc ctccttccgc atgtggtccc
                                                                            540
                                                                            600
        aggaaccaca gaggacacat taataactgg aagtaaaact cctgccccag tcacctcaac
55
                                                                            660
        aggeteaaca acagegacae tagagggaca ateaactgea gettetteaa ggacetetaa
        tcaggacata tcagcttcat ctcagaacca ccagactaag agcacggaga ccaccagcaa
                                                                            720
60
        agctcaaacc gacaccctca cgcagatgat gacatcaact cttttttctt ccccaagtgt
                                                                            780
                                                                            840
         acacaatgtg atggagactg ttacgcagga gacagctcct ccagatgaaa tgaccacatc
```

115

	atttccctcc agtgtcacca acacactcat gatgacatca aagactataa caatgacaac	900
5	ctccacagac tccactcttg gaaacacaga agagacatca acagcaggaa ctgaaagttc	960
	taccccagtg acctcagcag tctcaataac agctggacag gaaggacaat cacgaacaac	1020
	ttcctggagg acctctatcc aagacacatc agcttcttct cagaaccact ggactcggag	1080
10	cacgcagacc accagggaat ctcaaaccag caccctaaca cacagaacca cttcaactcc	1140
	ttctttctct ccaagtgtac acaatgtgac agggactgtt tctcagaaga catctccttc	1200
15	aggtgaaaca gctacctcat ccctctgtag tgtcacaaac acatccatga tgacatcaga	1260
10	gaagataaca gtgacaacct ccacaggctc cactcttgga aacccagggg agacatcatc	1320
	agtacctgtt actggaagtc ttatgccagt cacctcagca gccttagtaa cagttgatcc	1380
20	agaaggacaa tcaccagcaa ctttctcaag gacttctact caggacacaa cagcttttc	1440
	taagaaccac cagactcaga gcgtggagac caccagagta tctcaaatca acaccctcaa	1500
	caccctcaca ccggttacaa catcaactgt tttatcctca ccaagtggat tcaacccaag	1560
25	tggaacagtt tctcaggaga cattcccttc tggtgaaaca accatctcat ccccttccag	1620
	tgtcagcaat acattcctgg taacatcaaa ggtgttcaga atgccaatct ccagagactc	1680
30	tactcttgga aacacagagg agacatcact atctgtaagt ggaaccattt ctgcaatcac	1740
	ttccaaagtt tcaaccatat ggtggtcaga cactctgtca acagcactct cccccagttc	1800
	tctacctcca aaaatatcca cagctttcca cacccagcag agtgaaggtg cagagaccac	1860
35	aggacggcct catgagagga gctcattctc tccaggtgtg tctcaagaaa tatttactct	1920
	acatgaaaca acaacatggc cttcctcatt ctccagcaaa ggccacacaa cttggtcaca	1980
40	aacagaactg ccctcaacat caacaggtgc tgccactagg cttgtcacag gaaatccatc	2040
40	tacaagggca gctggcacta ttccaagggt cccctctaag gtctcagcaa taggggaacc	2100
	aggagagccc accacatact cctcccacag cacaactctc ccaaaaacaa caggggcagg	2160
45	cgcccagaca caatggacac aagaaacggg gaccactgga gaggctcttc tcagcagccc	2220
	aagctatagt gtgattcaga tgataaaaac ggccacatcc ccatcttctt cacctatgct	2280
	ggatagacac acatcacaac aaattacaac ggcaccatca acaaatcatt caacaataca	2340
50	ttccacaagc acctctcctc aggaatcacc agctgtttcc caaaggggtc acactcgagc	2400
	cccgcagacc acacaagaat cacaaaccac gaggtccgtc tcccccatga ctgacaccaa	2460
EE	gacagtcacc accccaggtt cttccttcac agccagtggg cactcgccct cagaaattgt	2520
55	tcctcaggac gcacccacca taagtgcagc aacaaccttt gccccagctc ccaccgggaa	2580
	tggtcacaca acccaggccc cgaccacagc actgcaggca gcacccagca gccatgatgc	2640
60	caccctgggg ccctcaggag gcacgtcact ttccaaaaca ggtgccctta ctctggccaa	2700
	ctctgtagtg tcaacaccag ggggcccaga aggacaatgg acatcagcct ctgccagcac	2760

	ctcacctgac	acagcagcag	ccatgaccca	tacccaccag	gctgagagca	cagaggcctc	2820
5	tggacaaaca	cagaccagcg	aaccggcctc	ctcagggtca	cgaaccacct	cagcgggcac	2880
	agctacccct	tcctcatccg	gggcgagtgg	cacaacacct	tcaggaagcg	aaggaatatc	2940
	cacctcagga	gagacgacaa	ggttttcatc	aaacccctcc	agggacagtc	acacaaccca	3000
10	gtcaacaacc	gaattgctgt	ccgcctcagc	cagtcatggt	gccatcccag	taagcacagg	3060
	aatggcgtct	tcgatcgtcc	ccggcacctt	tcatcccacc	ctctctgagg	cctccactgc	3120
	agggagaccg	acaggacagt	caagcccaac	ttctcccagt	gcctctcctc	aggagacagc	3180
15	cgccatttcc	cggatggccc	agactcagag	gacaggaacc	agcagagggt	ctgacactat	3240
	cagcctggcg	tcccaggcaa	ccgacacctt	ctcaacagtc	ccacccacac	ctccatcgat	3300
20	cacatccagt	gggcttacat	ctccacaaac	ccagacccac	actctgtcac	cttcagggtc	3360
20	tggtaaaacc	ttcaccacgg	ccctcatcag	caacgccacc	cctcttcctg	tcaccagcac	3420
	ctcctcagcc	tccacaggtc	acgccacccc	tcttgctgtc	agcagtgcta	cctcagcttc	3480
25	cacagtatcc	tcggactccc	ctctgaagat	ggaaacatca	ggaatgacaa	caccgtcact	3540
	gaagacagac	ggtgggagac	gcacagccac	atcaccaccc	cccacaacct	cccagaccat	3600
	catttccacc	attcccagca	ctgccatgca	cacccgctcc	acagctgccc	ccatccccat	3660
30	cctgcctgag	agaggagttt	ccctcttccc	ctatggggca	ggcgccgggg	acctggagtt	3720
	cgtcaggagg	accgtggact	tcacctcccc	actcttcaag	ccggcgactg	gcttccccct	3780
0.5	tggctcctct	ctccgtgatt	ccctctactt	cacagacaat	ggccagatca	tcttcccaga	3840
35	gtcagactac	cagattttct	cctaccccaa	cccactccca	acaggcttca	caggccggga	3900
	ccctgtggcc	ctggtggctc	cgttctggga	cgatgctgac	ttctccactg	gtcgggggac	3960
40	cacattttat	caggaatacg	agacgttcta	tggtgaacac	agcctgctag	tccagcaggc	4020
10	cgagtcttgg	attagaaaga	tgacaaacaa	cgggggctac	aaggccaggt	gggccctaaa	4080
	ggtcacgtgg	gtcaatgccc	acgcctatcc	tgcccagtgg	accctcggga	gcaacaccta	4140
45	ccaagccatc	ctctccacgg	acgggagcag	gtcctatgcc	ctgtttctct	accagagcgg	4200
	tgggatgcag	tgggacgtgg	cccagcgctc	aggcaacccg	gtgctcatgg	gcttctctag	4260
	tggagatggc	tatttcgaaa	acagcccact	gatgtcccag	ccagtgtggg	agaggtatcg	4320
50	ccctgataga	ttcctgaatt	ccaactcagg	cctccaaggg	ctgcagttct	acaggctaca	4380
						gccagcctcg	4440
	gtggcccago	: tggggctgga	accaggtcto	ctgcccttgt	tcctggcago	agggacgacg	4500
55						ggcagctgtg	4560
	cagcttcacc	tcttggcgag	gaggcgtgtg	ctgcagctac	gggccctggg	gagagtttcg	4620

	tgaaggctgg	cacgtgcagc	gtccttggca	gttggcccag	gaactggagc	cacagagctg	4680
5	gtgctgccgc	tggaatgaca	agccctacct	ctgtgccctg	taccagcaga	ggcggcccca	4740
Ü	cgtgggctgt	gctacataca	ggcccccaca	gcccgcctgg	atgttcgggg	accccacat	4800
	caccaccttg	gatggtgtca	gttacacctt	caatgggctg	ggggacttcc	tgctggtcgg	4860
10	ggcccaagac	gggaactcct	ccttcctgct	tcagggccgc	accgcccaga	ctggctcagc	4920
	ccaggccacc	aacttcatcg	cctttgcggc	tcagtaccgc	tccagcagcc	tgggccccgt	4980
	cacggtccaa	tggctccttg	agcctcacga	cgcaatccgt	gtcctgctgg	ataaccagac	5040
15	tgtgacattt	cagcctgacc	atgaagacgg	cggaggccag	gagacgttca	acgccaccgg	5100
	agtcctcctg	agccgcaacg	gctctgaggt	ctcggccagc	ttcgacggct	gggccaccgt	5160
20	ctcggtgatc	gcgctctcca	acatcctcca	cgcctccgcc	agcctcccgc	ccgagtacca	5220
	gaaccgcacg	gaggggctcc	tgggggtctg	gaataacaat	ccagaggacg	acttcaggat	5280
	gcccaatggc	tccaccattc	ccccagggag	ccctgaggag	atgcttttcc	actttggaat	5340
25	gacctggcag	atcaacggga	caggcctcct	tggcaagagg	aatgaccagc	tgccttccaa	5400
	cttcacccct	gttttctact	cacaactgca	aaaaaacagc	tcctgggctg	aacatttgat	5460
00	ctccaactgt	gacggagata	gctcatgcat	ctatgacacc	ctggccctgc	gcaacgcaag	5520
30	catcggactt	cacacgaggg	aagtcagtaa	aaactacgag	caggcgaacg	ccaccctcaa	5580
	tcagtacccg	ccctccatca	atggtggtcg	tgtgattgaa	gcctacaagg	ggcagaccac	5640
35	gctgattcag	tacaccagca	atgctgagga	tgccaacttc	acgctcagag	acagctgcac	5700
	cgacttggag	ctctttgaga	atgggacgtt	gctgtggaca	cccaagtcgc	tggagccatt	5760
	cactctggag	attctagcaa	gaagtgccaa	gattggcttg	gcatctgcac	tccagcccag	5820
40	gactgtggtc	tgccattgca	atgcagagag	ccagtgtttg	tacaatcaga	ccagcagggt	5880
	gggcaactç	tccctggagg	tggctggctg	caagtgtgac	gggggcacct	tcggccgcta	5940
4.5	ctgcgagggc	tccgaggatg	cctgtgagga	gccgtgcttc	ccgagtgtcc	actgcgttcc	6000
45	tgggaaggg	tgcgaggcct	gccctccaaa	cctgactggg	gatgggcggc	actgtgcggc	6060
	tctggggagd	tctttcctgt	gtcagaacca	gtcctgccct	gtgaattact	gctacaatca	6120
50	aggccactgo	tacatctccc	agactctggg	ctgtcagccc	atgtgcacct	gcccccagc	6180
	cttcactgac	agccgctgct	tcctggctgg	gaacaactto	agtccaacto	tcaacctaga	6240
	acttccctta	agagtcatco	agctcttgct	cagtgaagag	gaaaatgcct	ccatggcaga	6300
55	ggtcaacgc	tcggtggcat	acagactggg	gaccctggad	atgcgggcct	ttctccgcaa	6360
	cagccaagt	g gaacgaatco	attctgcago	accggcctcg	ggaagcccca	tccaacactg	6420
00	gatggtcate	tcggagttc	agtaccgcc	tcggggcccg	gtcattgact	t tcctgaacaa	6480
60	ccagctgctg	gccgcggtgg	tggaggcgtt	cttatacca	gttccacgga	a ggagtgagga	6540

	gcccaggaac	gacgtggtct	tccagcccat	ctccggggaa	a gacgtgcgc	g atgtgacagc	6600
5	cctgaacgtg	agcacgctga	aggcttactt	cagatgcgat	t ggctacaag	g gctacgacct	6660
Ū	ggtctacagc	ccccagagcg	gcttcacctg	cgtgtcccc	g tgcagtagg	g gctactgtga	6720
	ccatggaggc	cagtgccagc	acctgcccag	tgggccccg	c tgcagctgt	g tgtccttctc	6780
10	catctacacg	gcctggggcg	agcactgtga	gcacctgag	c atgaaactc	g acgcgttctt	6840
	cggcatcttc	tttggggccc	tgggcggcct	cttgctgct	g ggggtcggg	a cgttcgtggt	6900
	cctgcgcttc	tggggttgct	ccggggccag	gttctccta	t ttcctgaac	t cagctgaggc	6960
15	cttgccttga	aggggcagct	gtggcctagg	ctacctcaa	g actcacctc	a tccttaccgc	7020
	acaṭttaagg	cgccattgct	tttgggagag	tggaaaagg	g aaggtgact	g aaggctgtca	7080
20	ggattcttca	aggagaatga	atactgggaa	tcaagacaa	g actatacct	t atccataggc	7140
20	gcaggtgcac	agggggaggc	cataaagato	aaacatgca	t ggatgggtc	c tcacgcagac	7200
	acacccacag	aaggacacta	gcctgtgcad	gcgcgegtg	c acacacaca	c acacacacac	7260
25	gagttcataa	tgtggtgatg	gccctaagtt	aagcaaaat	g cttctgcac	a caaaactctc	7320
	tggtttactt	caaattaact	ctatttaaat	aaagtctct	c tgactttt	g tgtctccaaa	7380
	a .						7381
30							
35	<210> 104 <211> 2323 <212> ADN <213> humano						
	<400> 104						
40							
	agctatgatc	gcaacacctt	ggtggccatc	gtggtgggtg	tggggcgcct	catcactggc	60
	atggaccgag	gcctcatggg	catgtgtgtc	aacgagcggc	gacgcctcat	tgtgcctccc	120
45					caccggatgc		180
					ccgtgcaggt		240
5 0					actttgtccg		300
50					acagtaaggg		360
			,		accaggggct		420
55					tggcctatgg		480
				_	acgtcctcct		540
				,	tccccccgg		600
60					gctccttgat		660
			. ,		cctatatcgg		720
	atcatccccg	ggatggacca	ggggctgcag	ggtgcctgca	tgggggaacg	ccggagaatt	780

	accatecece egeacetege etatggggag aatggaactg gagacaagat eeetggetet	840
5	gccgtgctaa tcttcaacgt ccatgtcatt gacttccaca accctgcgga tgtggtggaa	900
Ü	atcaggacac tgtcccggcc atccgagacc tgcaatgaga ccaccaagct tggggacttt	960
	gttcgatacc attacaactg ttctttgctg gacggcaccc agctgttcac ctcgcatgac	1020
10	tacggggccc cccaggaggc gactctcggg gccaacaagg tgatcgaagg cctggacacg	1080
	ggcctgcagg gcatgtgtgt gggagagagg cggcagctca tcgtgccccc gcacctggcc	1140
	cacggggaga gtggagcccg gggagtccca ggcagtgctg tgctgctgtt tgaggtggag	1200
15	ctggtgtccc gggaggatgg gctgcccaca ggctacctgt ttgtgtggca caaggaccct	1260
	cctgccaacc tgtttgaaga catggacctc aacaaggatg gcgaggtccc tccggaggag	1320
20	ttctccacct tcatcaaggc tcaagtgagt gagggcaaag gacgcctcat gcctgggcag	1380
	gaccctgaga aaaccatagg agacatgttc cagaaccagg accgcaacca ggacggcaag	1440
	atcacagtcg acgagctcaa gctgaagtca gatgaggacg aggagcgggt ccacgaggag	1500
25	ctctgagggg cagggagcct ggccaggcct gagacacaga ggcccactgc gagggggaca	1560
	gtggcggtgg gactgacctg ctgacagtca ccctcctct gctgggatga ggtccaggag	1620
00	ccaactaaaa caatggcaga ggagacatct ctggtgttcc caccacccta gatgaaaatc	1680
30	cacagcacag acctctaccg tgtttctctt ccatccctaa accacttcct taaaatgttt	1740
	ggatttgcaa agccaatttg gggcctgtgg agcctggggt tggatagggc catggctggt	1800
35	ccccaccat acctcccctc cacatcactg acacagctga gcttgttatc catctccca	1860
	aactttctct ttctttgtac ttcttgtcat ccccactccc agcccctatt cctctatgtg	1920
	acagctggct aggacccctc tgccttcctt cccaatcctg actggctcct agggaagggg	1980
40	aaggctcctg gagggcagcc ctacctctcc catgcccttt gccctcctcc ctcgcctcca	2040
	gtggaggctg agctgaccct gggctgctgg aggccagact gggctgtagt tagctttca	2100
4.5	tccctaaaga aggctttccc taaggaacca tagaagagag gaagaaaaca aagggcatgt	2160
45	gtgagggaag ctgcttgggt gggtgttagg gctatgaaat cttggatttg gggctgaggg	2220
	gtgggaggga gggcagagct ctgcacactc aaaggctaaa ctggtgtcag tcctttttc	2280
50	ctttgttcca aataaaagat taaaccaaaa aaaaaaaaaa	2323
55	<210> 105 <211> 741 <212> ADN <213> humano	
	<400> 105	
60	tcacgtgacc cgggcgcgct gcggccgccc gcgcggaccc ggcgagaggc ggcggcggga	60
	gcggcggtga tggacgggtc cggggagcag cccagaggcg gggggcccac cagctctgag	120

	cagatcatga	agacaggggc	ccttttgctt	caggggatga	ttgccgccgt	ggacacagac	180
5	tcccccgag	aggtcttttt	ccgagtggca	gctgacatgt	tttctgacgg	caacttcaac	240
	tggggccggg	ttgtcgccct	tttctacttt	gccagcaaac	tggtgctcaa	ggccctgtgc	300
	accaaggtgc	cggaactgat	cagaaccatc	atgggctgga	cattggactt	cctccgggag	360
10	cggctgttgg	gctggatcca	agaccagggt	ggttgggacg	gcctcctctc	ctactttggg	420
	acgcccacgt	ggcagaccgt	gaccatcttt	gtggcgggag	tgctcaccgc	ctcgctcacc	480
	atctggaaga	agatgggctg	aggcccccag	ctgccttgga	ctgtgtttt	cctccataaa	540
15	ttatggcatt	tttctgggag	gggtggggat	tgggggacat	gggcatttt	cttacttttg	600
	taattattgg	ggggtgtggg	gaagagtggt	cttgaggggg	taataaacct	ccttcgggac	660
20	acaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	720
20	aaaaaaaaa	aaaaaaaaa	a				741
25	<210> 106 <211> 2373 <212> ADN <213> humano						
30	<400> 106						
	cccaggccca	ccccacccag	cacccctggc	gcagggactg	ctggaacctg	gctgtgcgcg	60
35	ctgtcgcttt	aagacagact	ctgccggcgc	cgtccggagc	cttagaaacc	ggccccggat	120
	cgcgagccgg	agccggagcc	ggagccgggg	ccggccgggc	tgctgaggcc	cgagcggcag	180
40	gagcgcagcg	cggagcgctg	agccaggcgc	ccagtcgcga	gaagctgccg	ccgcctctgc	240
40	ccgcccggcg	ccgcagcccc	gggcggtcca	tggggcgggc	acggcgtcgc	tgcaggcgcc	300
	ggcagccctg	gagggcagcc	gcttaggcgc	tgcgctcttg	tcccgcagg	tcgcagccag	360
45	ggcggcgggg	cgcgcccagc	cccggcccct	ggagcgcccg	ccgcggtccc	cacctccatg	420
	gacgccttca	aggggggcat	gagcctggag	cggctgccgg	aggggctccg	gccgccgccg	480
	ccgccacccc	atgacatggg	gcccgccttc	cacctggccc	ggcccgccga	ccccgcgag	540
50	ccgctcgaga	actccgccag	cgagtcgtct	gacacggagc	tgccagagaa	ggagcgcggc	600
	ggggaaccca	aggggcccga	ggacagtggt	gcgggaggca	cgggctgcgg	cggcgcagac	660
	gacccagcca	agaagaagaa	gcagcggcgg	caacgtacgc	acttcacaag	ccagcagttg	720
55	caagagctag	aggccacgtt	ccagaggaac	cgctaccccg	acatgagcat	gagggaggag	780
	atcgccgtgt	ggaccaacct	caccgagccg	cgcgtgcggg	tctggttcaa	gaaccggcga	840
60	gccaagtggc	gtaagcgcga	gcgtaaccag	cagctggacc	tgtgcaaggg	tggctacgtg	900
00	ccgcagttca	gcggcctagt	gcagccctac	gaggacgtgt	acgccgccgg	ctactcctac	960
	aacaactggg	ccgccaagag	cctggcgcca	gcgccgctct	ccaccaagag	cttcaccttc	1020

5	ttcaactcca	tgagcccgct	gtcgtcgcag	tccatgttct	cagcacccag	ctccatctcc	1080
	tccatgacca	tgccgtccag	catgggccca	ggcgccgtgc	ctggcatgcc	caactcgggc	1140
	ctcaacaaca	tcaacaacct	caccggctcc	tcgctcaact	cggccatgtc	gccgggcgct	1200
10 15	tgcccgtacg	gcactcccgc	ctcgccctac	agcgtctacc	gggacacgtg	caactcgagc	1260
	ctagccagcc	tgcggctcaa	gtccaaacag	cactcgtcgt	ttggctacgg	cgccctgcag	1320
	ggcccggcct	cgggcctcaa	cgcgtgccag	tacaacagct	gaccgccccg	ccgcaccacg	1380
	cgggccggcg	gccggagcgg	ggaagggcgc	gggcgcggag	gacgcacgcg	gggccccggc	1440
	tcgcaagccc	cagctcaccg	cgccgcggac	ctcacacctg	cgcagccccc	tcctcccact	1500
20	tcccactccg	ggttggtttt	gtgtttgctt	ttccggaccc	cactctgccc	tccaaaaaga	1560
	caaaaaaaaa	aaaaaaaaa	aaagcaaaaa	gacgtcggag	aaaagtgccg	cgaaaaaatg	1620
	gatgagttgc	aatttctctc	gggatggcgc	gggtggtgtg	tgtgtgttcc	cacgggcccc	1680
25	ggaggcccac	tccgcggagg	gcacgcggcg	cggtaggcga	gcgccgaggc	ccagcggccg	1740
	ggggaggacg	acctcgtatc	ccgcgtcccc	gccgcgctgg	atccggactg	agtggccggg	1800
	cctgcggact	ggatgtgcgg	ggcctggact	tgcctaggat	ttcccgaccc	cgtacaaacc	1860
30	aagttgccct	ctccgagcta	ggcccggccg	agagcgcctt	agctcgagtc	ggatccgtgt	1920
	tggggcgggc	gttgggtttg	gggggacggt	gccccagcc	caggatcggg	cactcagtgg	1980
0.5	agccgcacac	ggccccggcg	cgcctggtag	g agcctcgctg	gccccgcgcc	ccggagccct	2040
35	atattaaggc	cacggagcga	cagcgggcag	g tgcgggcctg	gcgggaggtg	ggggaggtcc	2100
40	atctcagaac	accccagcct	tgagcttag	tgcaggccca	ggccctctgc	tctgctcccg	2160
	ggctaggagg	tggccctctg	tctgggcgaa	cagccccctc	ctcaccgccd	gccgtgcaag	2220
	agtcgagccg	gcagagcaag	gggcgcggc	ccagggccct	gcgcccactt	tgcacacccg	2280
	ctctccggcc	cgcgcccctg	tttacagcg	t ccctgtgtat	gttggactga	ctgtaataaa	2340
45	tctgtctata	tcgactaaaa	aaaaaaaaa	a aaa			2373
50	<210> 107 <211> 1314						
	<212> ADN <213> humano						
55	<400> 107						
60	aattcccggc	tcggggacct	ccacgcaccg	cggctagcgc (gacaaccag c	tagcgtgca	60
				cttcgaaacc g			120
	aactccgctc	cggagcctca	gccccctgga	aagtgatccc (ggcatccgag a	gccaagatg	180
				agctcctata (240
65	gcgcctccct	ccagggtcct	gcagaatgga -	ggagataagt 1	tggagacqat q	cccctctac	300

	ttggaagacg	acattcgccc	tgatataaaa	gatgatatat	atgaccccac	ctacaaggat	360
5	aaggaaggcc	caagccccaa	ggttgaatat	gtctggagaa	acatcatcct	tatgtctctg	420
	ctacacttgg	gagccctgta	tgggatcact	ttgattccta	cctgcaagtt	ctacacctgg	480
	ctttgggggg	tattctacía	ttttgtcagt	gccctgggca	taacagcagg	agctcatcgt	540
10	ctgtggagcc	accgctctta	caaagctcgg	ctgcccctac	ggctctttct	gatcattgcc	600
	aacacaatgg	cattccagaa	tgatgtctat	gaatgggctc	gtgaccaccg	tgcccaccac	660
	aagttttcag	aaacacatgc	tgatcctcat	aattcccgac	gtggcttttt	cttctctcac	720
15	gtgggttggc	tgcttgtgcg	caaacaccca	gctgtcaaag	agaaggggag	tacgctagac	780
	ttgtctgacc	tagaagctga	gaaactggtg	atgttccaga	ggaggtacta	caaacctggc	840
20	ttgctgatga	tgtgcttcat	cctgcccacg	cttgtgccct	ggtatttctg	gggtgaaact	900
	tttcaaaaca	gtgtgttcgt	tgccactttc	ttgcgatatg	ctgtggtgct	taatgccacc	960
	tggctggtga	acagtgctgc	ccacctcttc	ggatatcgtc	cttatgacaa	gaacattagc	1020
25	ccccgggaga	atatcctggt	ttcacttgga	gctgtgggtg	agggcttcca	caactaccac	1080
	cactcctttc	cctatgacta	ctctgccagt	gagtaccgct	ggcacatcaa	cttcaccaca	1140
	ttcttcattg	attgcatggc	cgccctcggt	ctggcctatg	accggaagaa	agtctccaag	1200
30	gccgccatct	tggccaggat	taaaagaacc	ggagatggaa	actaaaaaaa	aaaaaaaaa	1260
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaataaaa	aaaaaaaaaa	aaaa	1314
		4					

REIVINDICACIONES

10

20

35

- 1. Método de identificación del origen de una metástasis de origen desconocido que comprende las etapas de
- 5 a. medir los Biomarcadores asociados con tres carcinomas diferentes en una muestra que contiene células metastásicas, en el que los Biomarcadores son los niveles de expresión de genes Marcadores y en el que los genes Marcadores están seleccionados de entre:
 - i. SP-B, TTF y DSG3, que son marcadores para el cáncer de pulmón;
 - ii. F5 y PSCA, que son marcadores para el cáncer de páncreas; y
 - iii. CDH17, que es un marcador para el cáncer de colon;
 - b. combinar los datos de los Biomarcadores en un algoritmo en el que el algoritmo
- i. normaliza los Biomarcadores frente a una referencia; e
 - ii. impone un punto de corte que optimiza la sensibilidad y la especificidad de cada Biomarcador, pondera la prevalencia de los carcinomas y selecciona un tejido de origen;
 - c. determinar el origen en base a la probabilidad más alta determinada por el algoritmo o determinar que el carcinoma no se deriva de un conjunto concreto de carcinomas; y
 - d. opcionalmente medir los Biomarcadores específicos para uno o más carcinomas diferentes adicionales, y repetir las etapas c) y d) para los Biomarcadores adicionales;
- 2. Método según la reivindicación 1 en el que la expresión génica se mide utilizando al menos una de las SEQ ID NO: 11-54 y 57-58.
 - 3. Método según la reivindicación 1, que comprende adicionalmente obtener información clínica adicional, incluido el sitio de metástasis, para determinar el origen del carcinoma.
- Método según la reivindicación 1 que comprende adicionalmente medir la expresión de al menos un gen expresado constitutivamente en la muestra.
 - 5. Método de orientación para el tratamiento determinando el origen de una metástasis de origen desconocido según la reivindicación 1 e identificando el tratamiento apropiado para ello.
 - 6. Método para proporcionar un pronóstico determinando el origen de una metástasis de origen desconocido, según la reivindicación 1 e identificando el correspondiente pronóstico para ello.
- 7. Uso de una composición que comprende al menos una secuencia aislada seleccionada de entre las SEQ ID NO: 11-54 y 57-58 en el método según cualquiera de las reivindicaciones 1-6.
 - 8. Uso de un kit que comprende ARN o ADNc que hibrida con los genes marcadores según la reivindicación 1 en un método según cualquiera de las reivindicaciones 1-6.
- 45 9. Uso de una micromatriz o matriz génica para llevar a cabo el método según la reivindicación 1.

50

55

60

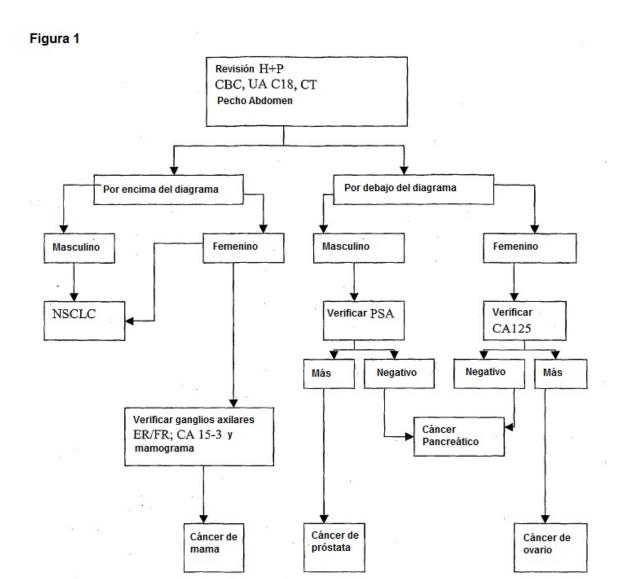


Figura 2

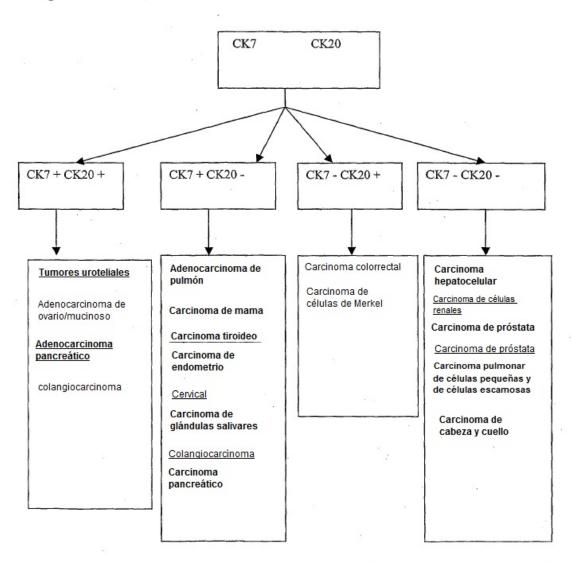


Figura 3

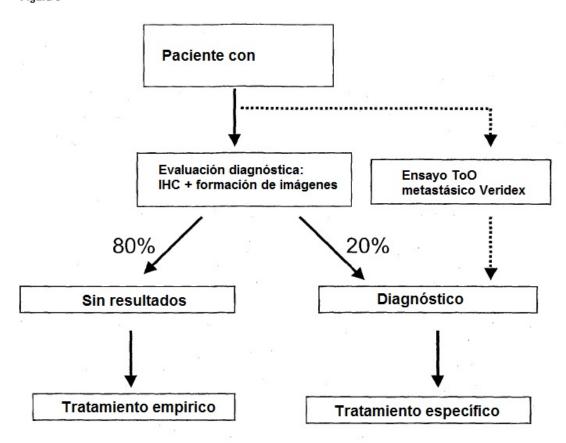
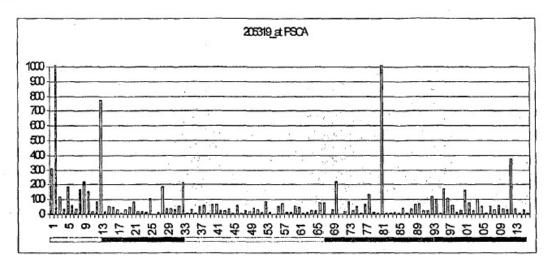



Figura 4

Α

В

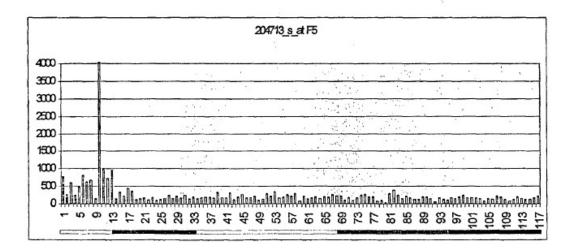
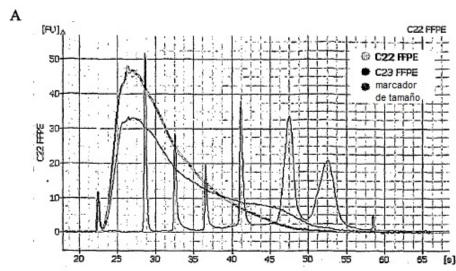
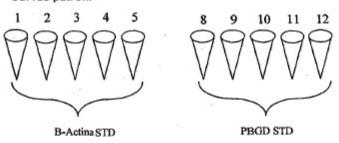
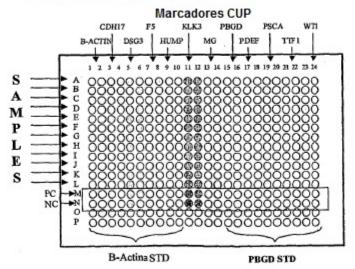


Figura 5




Figura 7

1. Tubos Cluster: tubos de 2 ml en una fila de 12 0 0 0 0 0 0 2. Placa de 96 pocillos: muestras FFPE en placa de 96 pocillos 12 3. Tira de tubos: PC y curvas patrón en tira de tubos


Muestras PC:

Curvas patrón:

4. Preparación de placa de 384 pocillos:

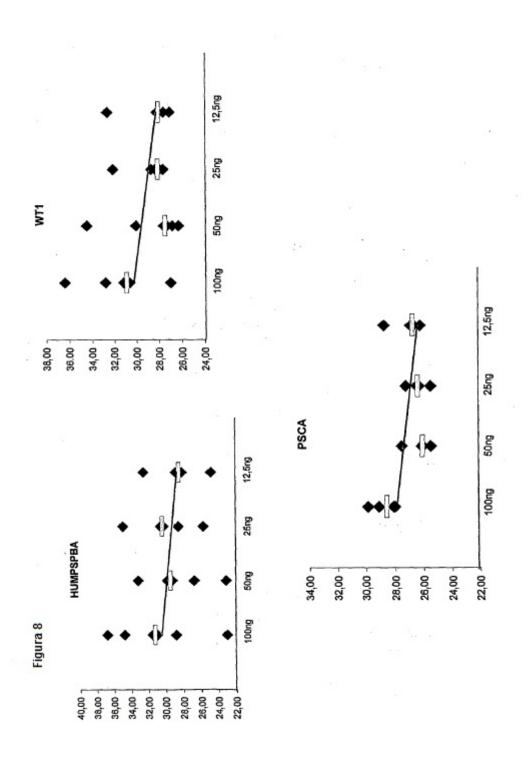
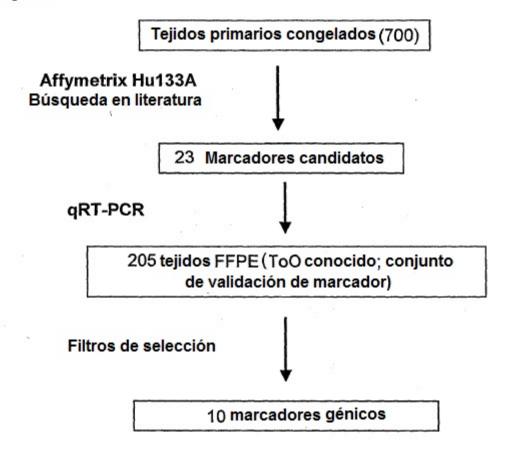
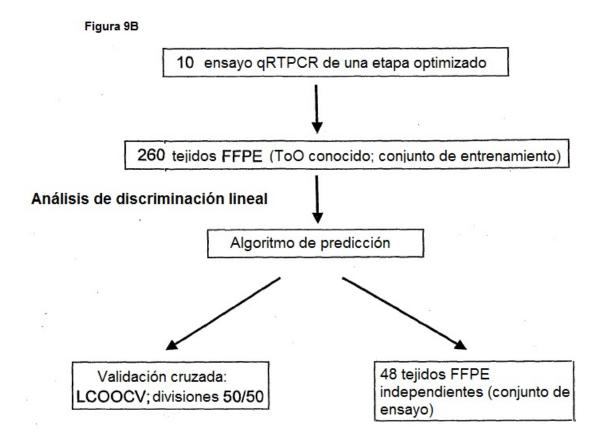
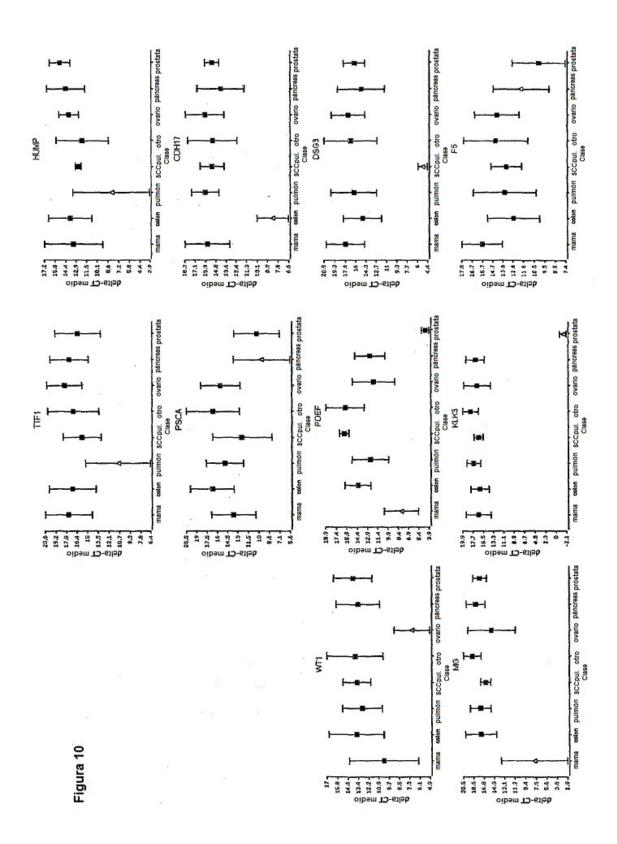





Figura 9A

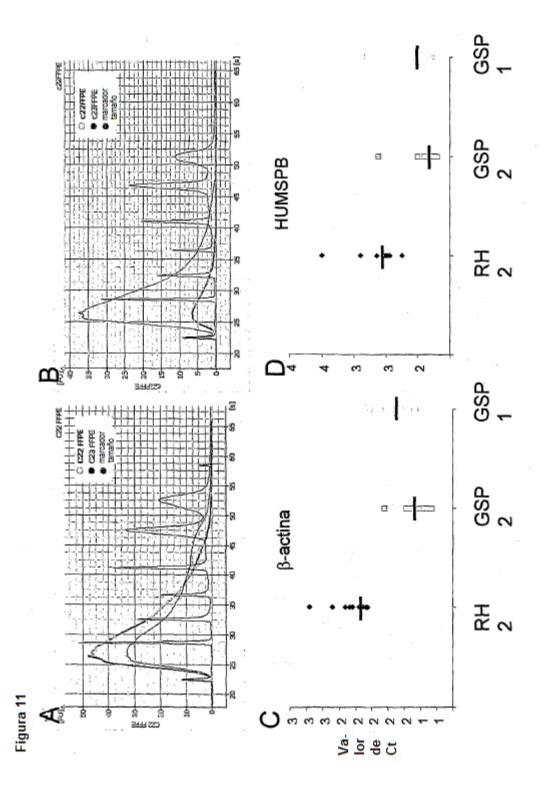
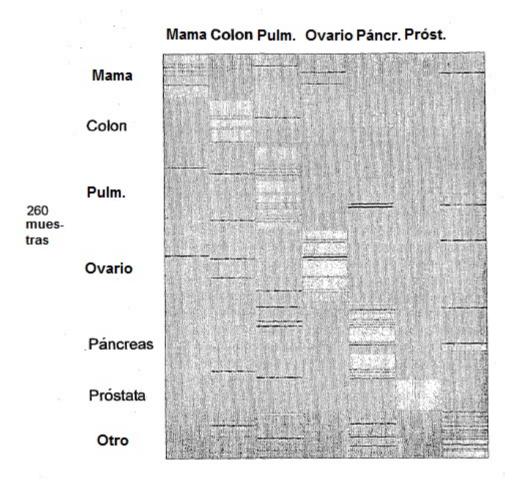



Figura 12

