

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 500 651

51 Int. Cl.:

G01N 33/569 (2006.01) C07K 14/20 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 26.08.2010 E 10763756 (3)
 (97) Fecha y número de publicación de la concesión europea: 25.06.2014 EP 2470907

(54) Título: Proteínas utilizadas para el diagnóstico de una borreliosis de Lyme

(30) Prioridad:

28.08.2009 FR 0904093

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 30.09.2014

(73) Titular/es:

BIOMÉRIEUX (100.0%) Chemin de l'Orme 69280 Marcy L'etoile, FR

(72) Inventor/es:

LEVET, LIONEL y
MEJAN-LETOURNEUR, ODILE

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

ES 2 500 651 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Proteínas utilizadas para el diagnóstico de una borreliosis de Lyme

5

10

15

20

25

30

35

40

45

50

55

La borreliosis de Lyme (LB) es una enfermedad infecciosa no contagiosa, debida a una espiroqueta denominada *Borrelia burgdoferi*, transmitida al hombre por una picadura de garrapata del género *Ixodes*. La LB, sin tratamiento, conlleva unos trastornos patológicos diversos (dermatológicos, artríticos, cardiacos, neurológicos y a veces oculares). Es la enfermedad por vector más frecuente en los EE.UU. y en algunos países templados del hemisferio norte.

Varias especies de borrelias, actualmente denominadas bajo el término de grupo burgdorferi o *Borrelia burgdorferi* sensu lato (que incluye *Borrelia burgdorferi* sensu stricto, *B. garinii* y *B. afzelii*) están implicadas en esta infección. Estas especies son patógenas para el hombre.

En los Estados Unidos, la especie infecciosa implicada es *Borrelia burgdorferi* sensu stricto. En Europa, a esta especie, se añaden *B. garinii* y *B. afzelii*. En Asia, las especies implicadas son *B. garinii* y *B. afzelii*.

En los Estados Unidos, hay declarados aproximadamente 10.000 casos anuales. En Europa, las tasas de incidencia varían en menos de 5 por 100.000.

La borreliosis de Lyme evoluciona pasando por tres fases distintas, desde la infección precoz hasta la fase tardía. La fase precoz (fase I), puede ser asintomática o traducirse en un cuadro pseudogripal. En el 50-80% de los casos, se observa la aparición de una erupción cutánea inflamatoria varios días después de la picadura de la garrapata, de aspecto muy particular, denominada eritema migratorio (EM). En ausencia de tratamiento, la diseminación de la Borrelia por vía sanguínea se traduce algunas semanas más tarde en la aparición de artritis inflamatorias, de afecciones neurológicas (neuroborreliosis) y meníngeas, de manifestaciones cutáneas y cardiacas (fase II). Después de varios meses o años, la enfermedad evoluciona hacia una forma crónica atrofiante, encefalopatía, encefalomielitis y artritis crónica (Fase III).

Existe un tropismo orgánico particular de cada una de las especies de *Borrelia burgdorferi*. Si la primera fase de eritema migratorio está relacionada indistintamente a las tres especies, la evolución hacia una forma neurológica está asociada preferiblemente a la especie *B. garinii*, las artritis lo está más a *B-burgdorferi* sensu stricto, y la acrodermatitis crónica atrofiante es específica de *B-afzelii*.

El parecido de los síntomas clínicos entre la borreliosis de Lyme y otras enfermedades no relacionadas, así como la variabilidad de las manifestaciones, hacen difícil el diagnóstico clínico. El diagnóstico de la borreliosis puede ser particularmente difícil en base a observaciones clínicas, si las pruebas de anamnesis están ausentes (picadura de garrapata o EM). La fase precoz de la enfermedad puede no ser aparente hasta el momento en el que alcanza fases clínicas muy avanzadas.

Es por ello que el diagnóstico de LB se basa en signos clínicos, pero también en la detección de los anticuerpos específicos de patógenos de *Borrelia burgdorferi* en el suero, generalmente por ELISA (Enzyme Linked ImmunoSorbent Assay) o también EIA, IFA. Los anticuerpos IgM anti-*borrelia burgdorferi* aparecen en general algunos días o semanas después del comienzo de la infección y pueden persistir durante la evolución de la enfermedad. La respuesta IgG es más tardía. La mayoría de los pacientes tienen las IgG aproximadamente un mes después del comienzo de la infección activa y estas IgG pueden también persistir durante años después de la exposición inicial y de la resolución de los síntomas.

En Europa, la evaluación de la respuesta serológica es complicada debido a la existencia de tres especies patógenas y de la variabilidad inter-especies para los antígenos inmunodominantes principales. Los antígenos actualmente utilizados de forma rutinaria para la detección de las IgG e IgM de LB son unas muestras celulares tratadas con ultrasonidos de Borrelia burgdorferi sensu lato. Los rendimientos de los ensayos serológicos con estos antígenos en términos de especificidad y de sensibilidad son muy variables. Así, debido a una especificidad insuficiente, que implica unas reactividades cruzadas con unos anticuerpos asociados a diferentes bacterias patógenas, en particular Treponema pallidium (agente etiológico de la sifilis), unas espiroquetas, rickettisies, erchilia o Helicobacter pylori, el diagnóstico de las muestras ensavadas positivas en ELISA debe ser confirmado por inmunotransferencia. La sensibilidad es también un factor importante. En efecto, Borrelia burgdorferi sensu lato expresa diferentes proteínas de superficie por adaptación a diversos microentornos, de manera que la diversidad genética y la expresión diferencial de los genes de Borrelia burgdorferi en los pacientes tienen unas implicaciones importantes para el desarrollo de ensayos serológicos de LB. La lipoproteína OspC (Outer-surface protein C) y la proteína DbpA (Decorin-binding proteín A) pertenecen a estas proteínas. La DbpA aparece principalmente expresada en el mamífero después de la infección. Estas proteínas presentan una gran variabilidad de secuencias según las especies de Borrelia burgdorferi e Inter-especies. Las proteínas DbpA son particularmente variables y se reparten en cuatro grupos: un grupo que corresponde a la genoespecie Borrelia afzelli, otro grupo que corresponde a la genoespecie Borrelia sensu stricto y dos grupos que corresponden a la genoespecie Borrelia burgdorferi garinii.

La identidad de las secuencias de aminoácidos inter-especie entre las proteínas DbpA es sólo del 40-44%. Es del 54-72% para las proteínas OspC. El documento WO 00/78800 describe una combinación de proteínas que comprenden DbpA y OspC, y su utilización en un procedimiento de diagnóstico de una Borreliosis de Lyme.

Por lo tanto, es necesario desarrollar un kit que responda a los criterios de especificidad y de sensibilidad esperados y en particular que mejora la detección de las IgM, en términos de sensibilidad, en el caso de infección reciente.

5

10

15

20

25

30

35

40

45

50

55

60

La presente invención se propone resolver el conjunto de los inconvenientes del estado de la técnica, mediante nuevas proteínas recombinantes quiméricas, fácilmente sintetizables y purificables, y que presentan una fuerte inmunorreactividad frente a sueros de pacientes susceptibles de ser infectados por una o varias especies patógenas de *Borrelia burgdorferi*. Estas proteínas de fusión quiméricas permiten paliar los problemas de sensibilidad y de especificidad relacionados: con la presencia de varias especies patógenas de *Borrelia burgdorferi*, con la gran variabilidad de las secuencias de los antígenos de superficie de *Borrelia burgdorferi* y con la necesidad de utilizar varios antígenos representativos de las especies *B. garinii*, *B. burgdorferi* sensu stricto y *B. afzelii* para elaborar un ensayo de diagnóstico de la borreliosis de Lyme basado al menos en la detección de los anticuerpos anti-OspC y anti-ObpA.

Las proteínas de fusión quiméricas de la invención permiten por otra parte resolver las dificultades encontradas para expresar ciertos antígenos en forma recombinante a un nivel elevado. En efecto, a pesar de un trabajo importante sobre la construcción de los genes para obtener una expresión optimizada de estos en E. coli, los inventores han mostrado por primera vez que las proteínas OspC están poco expresadas en forma recombinante en E. coli, mientras que de manera muy imprevisible, han encontrado que las proteínas DbpA podían ser expresadas en las mismas condiciones en forma soluble en condiciones no desnaturalizantes y con unos rendimientos más elevados. La facilidad de expresión de las proteínas DbpA se ha explotado para crear unas proteínas quiméricas compuestas de DbpA y de OspC y los inventores han podido demostrar que las proteínas quiméricas estaban mejor expresadas que las proteínas OspC aisladas, lo que era completamente inesperado ya que no se ha descrito jamás, ni se ha sugerido, que las proteínas DbpA podían tener las propiedades de proteínas de fusión. Asimismo, a fin de mejorar los niveles de expresión, los inventores han concebido unas proteínas quiméricas DbpA-OspC utilizando las propiedades de fusión inesperadas de las proteínas DbpA para mejorar la expresión y la solubilidad de las proteínas quiméricas. En la construcción molecular para la expresión de una proteína quimérica de la invención, el gen que codifica para la proteína DbpA está integrado secuencia arriba del o de los que codifican para una o más proteínas OspC. En función de esta construcción molecular, la proteína quimérica de la invención presenta en su extremo Nterminal una secuencia que pertenece a una secuencia proteica DbpA, y en su extremo C-terminal una secuencia que pertenece a una secuencia proteica OspC. Este tipo de construcción, además del hecho de que permite facilitar y optimizar la expresión y la solubilidad de la proteína quimérica, presenta además otra ventaja, que es mejorar el reconocimiento de la quimérica por unos anticuerpos anti-Borrelia debido a la mejor presentación de estos de la región inmunodominante de la proteína OspC. Una ventaja suplementaria de las proteínas quiméricas de la invención es limitar el número de proteínas recombinantes en la constitución de un kit de diagnóstico de la Borreliosis de Lyme. Por otra parte, las propiedades de fusión de las proteínas DbpA hacen de ellas excelentes candidatas para la expresión de proteínas vaccíneas quiméricas DbpA-OspC para prevenir una infección por Borrelia. En consecuencia, las proteínas quiméricas de la invención son útiles como agente activo en una vacuna preventiva contra la borreliosis.

Asimismo, la presente invención tiene por objeto una proteína quimérica de fusión DbpA-OspC de Borrelia, no natural, de síntesis, es decir obtenida por ingeniería genética (proteína recombinante) o por síntesis peptídica, siendo dicha proteína seleccionada del grupo que consiste en:

(a) una proteína cuya secuencia en aminoácidos comprende en su extremo N-terminal (o consiste en) la secuencia SEC ID nº 1, y en su extremo C-terminal la SEC ID nº 2, o una variante de dicha proteína cuya secuencia en aminoácidos comprende (o consiste en) una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 1 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 2, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia, o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;

(b) una proteína cuya secuencia en aminoácidos comprende en su extremo N-terminal (o consiste en) la secuencia SEC ID nº 3, y en su extremo C-terminal la secuencia SEC ID nº 4, o una variante de dicha proteína cuya secuencia en aminoácidos comprende (o consiste en) una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 3 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 4, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;

(c) una proteína, cuya secuencia en aminoácidos comprende en su extremo N-terminal (o consiste en) la secuencia SEC ID nº 5, y en su extremo C-terminal la secuencia SEC ID nº 7, o una variante de dicha proteína cuya secuencia en aminoácidos comprende (o consiste en) una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 5 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 7, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;

(d) una proteína, cuya secuencia en aminoácidos comprende en su extremo N-terminal (o consiste en) la secuencia SEC ID nº 6, y en su extremo C-terminal la secuencia SEC ID nº 7, o una variante de dicha proteína cuya secuencia en aminoácidos comprende (o consiste en) una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 6 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 7, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;

5

10

15

20

25

30

35

40

45

50

55

(e) una proteína, cuya secuencia en aminoácidos comprende en su extremo N-terminal (o consiste en) la secuencia SEC ID nº 5, la secuencia SEC ID nº 6 y en su extremo C-terminal la secuencia SEC ID nº 7, o una variante de dicha proteína cuya secuencia en aminoácidos comprende (o consiste en) una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 5, una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 6 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 7, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia; y

(f) una proteína cuya secuencia en aminoácidos comprende (o consiste en) una secuencia seleccionada entre las SEC ID nos 8, 9, 10, 11, 12, 13 y 14.

Cada una de las proteínas identificadas anteriormente comprende al menos una secuencia del dominio extracelular de una proteína DbpA de una especie de borrelia seleccionada entre *B. afzelii* (SEC ID nº 1), *B. burgdorferi* sensu lato (SEC ID nº 3) y *B. garinii* (grupo III: SEC ID nº 5) (grupo IV: SEC ID nº 6) o una secuencia que presenta al menos el 40% de identidad con dichas secuencias y al menos una secuencia de una proteína OspC de *B. afzelii* (SEC ID nº 2), *B. burgdorferi* sensu stricto (SEC ID nº 4) y *B. garinii* (SEC ID nº 7) o una secuencia que presenta al menos el 50% de identidad con dichas secuencias. Preferiblemente, la(s) secuencia(s) DbpA está(n) colocada(s) en el lado N-terminal de la proteína recombinante quimérica y la secuencia OspC está colocada del lado C-terminal de la proteína recombinante quimérica

Una secuencia de al menos 6 histidinas puede ser añadida a nivel del extremo N-terminal o C-terminal de la proteína quimérica para permitir su purificación sobre resina de metal-quelato. La secuencia de 6 histidinas, identificada en la SEC ID nº 22 está colocada preferiblemente en el lado N-terminal de la construcción. Esto se ilustra, a título de ejemplo, por las secuencias SEC ID nº 9, 11, 13 y 14 que comprenden en el lado N-terminal una cola poly-His (6). La cola poly-His puede ser codificada por cualquiera de las secuencias identificadas en las SEC ID nº 23, 24 y 25.

Unos aminoácidos adicionales pueden estar presentes secuencia arriba de la cola poly-His debido a la inserción en la secuencia de ADN codificante de una pequeña secuencia que permite facilitar la clonación de la secuencia de interés en el plásmido de expresión. Este es el caso, en particular, en las secuencias SEC ID nº 9, 11, 13 y 14 que comprenden una unidad "MRGS" (SEC ID nº 26) secuencia arriba de la cola poly-His. La unidad "MRGS" está codificada por ATGAGGGGATCC (SEC ID nº 27).

Se puede introducir una región de unión entre cada una de las secuencias DbpA y OspC que componen una proteína recombinante quimérica. Este tipo de región corresponde a una región de espaciamiento, flexible, que asegura una mejor accesibilidad de los anticuerpos potenciales a cada uno de los dominios. Es rica en aminoácidos Gly y Ser, aminoácidos descritos como que aportan una flexibilidad en la estructura terciaria de la proteína. Es asimismo posible introducir en una secuencia de interés codificante un brazo ADN (o linker) para favorecer la unión entre las secuencias que codifican dos proteínas de interés. Este es el caso en particular en la secuencia SEC ID nº 14 que comprende una unidad "GSGG" (SEC ID nº 28) codificada por la secuencia GGTTCCGGGGGT (SEC ID nº 29) que actúa como brazo de unión entre las proteínas DbpA grupo IV y OspC de *B. garinii*.

Las proteínas preferidas son identificadas en las SEC ID nºs 8, 9, 10, 11, 12, 13 y 14. Están respectivamente codificadas por las secuencias de ADN correspondientes identificadas en las SEC ID nºs 15, 16, 17, 18, 19, 20 y 21.

La invención tiene también por objeto las secuencias de ADN que codifican las proteínas tales como se han definido anteriormente y en particular las secuencias identificadas SEC ID nos 15, 16, 17, 18, 19, 20 y 21.

La invención tiene asimismo por objeto un casete de expresión que es funcional en una célula derivada de un organismo procariota (por ejemplo *Escherichia coli*) o eucariota, tal como la levadura (por ejemplo *Pichia*, *Schizosaccharomyces*) que permite la expresión del ácido nucleico descrito anteriormente (ADN), cuando está colocada bajo el control de los elementos que permiten su expresión, así como el vector que comprende tal casete.

Las proteínas de la invención son utilizables en particular para el diagnóstico de una infección de Borrelia. Así, la presente invención tiene por objeto un procedimiento para el diagnóstico *in vitro* de una Borreliosis de Lyme en una muestra biológica (por ejemplo una muestra de suero, de sangre, de plasma, etc.) según el cual se pone en contacto la muestra biológica con al menos una proteína tal como se ha definido antes, y se determina si hay formación de un complejo inmunológico entre dicha proteína y los anticuerpos de la muestra biológica (IgG y/o IgM), por ejemplo, por adición de al menos una anti-inmunoglobulina humana marcada por cualquier marcador apropiado. Por marcador, se entiende un trazador capaz de generar una señal. Una lista no limitativa de estos trazadores comprende las enzimas que producen una señal detectable, por ejemplo por colorimetría, fluorescencia o luminiscencia, como la peroxidasa de rábano picante, la fosfatasa alcalina, la β-galactosidasa, la glucosa-6-fosfato deshidrogenasa; los cromóforos

como los compuestos fluorescentes, luminiscentes o colorantes; los grupos de densidad electrónica detectables por microscopía electrónica o por sus propiedades eléctricas como la conductividad, mediante los métodos de amperometría o de voltametría, o por unas mediciones de impedancia; los grupos detectables por unos métodos ópticos como la difracción, la resonancia plasmón de superficie, la variación de ángulo de contacto o por unos métodos físicos como la espectroscopía de fuerza atómica, el efecto túnel, etc.; las moléculas radioactivas como ³²P, ³⁵S o ¹²⁵I. Preferentemente, la o las proteína(s) está(n) inmovilizadas sobre un soporte sólido que puede ser el cono de un aparato Vidas[®], el pocillo de una placa de microtitulación, un gel, una partícula, etc.

En un modo de realización de la invención, la muestra biológica se pone además en contacto con al menos una proteína quimérica VIsE, tal como se describe a continuación.

La proteína VIsE (surface expressed lipoprotein with Extensive antigenic Variation) es principalmente expresada *in vivo*, de manera transitoria y rápidamente después de la infección del hospedante. Es muy inmunogénica en el hospedante infectado, implicando la producción de IgG y de IgM. El locus de VIs está localizado en un plásmido lineal de 28 kb (Ip28-1) presente en las tres genoespecies de borrelia responsables de Lyme y compuesto de casetes silenciosos y de un sitio de expresión (VIsE). *In vivo*, se producen unas recombinaciones aleatorias entre casetes de expresión y casetes silenciosos durante la infección y son el origen de la variabilidad antigénica de VIsE. La proteína VIsE está compuesta de seis regiones variables VR1-VR6, situadas en la superficie de la proteína VIsE, espaciadas por regiones denominadas invariables IR1-IR6.

La proteína VsIE quimérica comprende (o consiste esencialmente en):

- (i) al menos una secuencia seleccionada ente las secuencias identificadas en las SEC ID nºs 30, 31, 32, 33 y 34 y las secuencias que presentan al menos el 50% de identidad, preferentemente el 60% o el 70% de identidad y ventajosamente al menos el 80% o el 85% de identidad con las SEC ID nº 30, 31, 32, 33 y 34, y
 - (ii) al menos una secuencia que comprende la secuencia SEC ID nº 35 o una secuencia que presenta al menos el 80% de identidad, preferentemente al menos el 85% de identidad y ventajosamente al menos el 90% de identidad con la SEC ID nº 35, la secuencia SEC ID nº 36 o una secuencia que presenta al menos el 80% de identidad, preferentemente al menos el 85% de identidad y ventajosamente al menos el 90% de identidad con la SEC ID nº 36, la secuencia SEC ID nº 37 o una secuencia que presenta al menos el 80% de identidad, preferentemente al menos el 85% de identidad y ventajosamente al menos el 90% de identidad con la SEC ID nº 37, y facultativamente, la secuencia SEC ID nº 43. La proteína quimérica VISE, preferentemente comprende la secuencia SEC ID nº 43.
 - Como se ha descrito anteriormente, se puede añadir una cola poli-histidina (x6) a nivel del extremo N-terminal de la proteína quimérica para permitir su purificación sobre resina de metal-quelato, así como unos aminoácidos adicionales secuencia arriba de la cola poly-his.

Una proteína quimérica preferida comprende (o consiste esencialmente en, o también consiste en):

- (i) la secuencia SEC ID nº 30 o una secuencia que presenta al menos el 50% de identidad, preferentemente al menos el 60% o el 70% de identidad y ventajosamente al menos el 80 o el 85% de identidad con la SEC ID nº 30; y
- (ii) la secuencia que comprende la secuencia SEC ID nº 35 o una secuencia que presenta al menos el 80% de identidad, preferentemente al menos el 85% de identidad y ventajosamente al menos el 90% de identidad con las SEC ID nº 35, la secuencia SEC ID nº 36 o una secuencia que presenta al menos el 80% de identidad, preferentemente al menos el 85% de identidad y ventajosamente al menos el 90% de identidad con las SEC ID nº 36, la secuencia SEC ID nº 37 o una secuencia que presenta al menos el 80% de identidad, preferentemente al menos el 85% de identidad y ventajosamente al menos el 90% de identidad con la SEC ID nº 37, y la secuencia SEC ID nº 43.

La proteína quimérica preferida comprende (o consiste esencialmente en, o también consiste en):

(i) la secuencia SEC ID nº 30; y

10

15

20

25

30

- (ii) la secuencia que comprende las secuencias SEC ID nºs 35, 36, 37 y 43.
- 45 La proteína comprende o consiste en una secuencia identificada como la SEC ID nº 38
 - La SEC ID nº 30 corresponde a la secuencia del dominio extracelular de VIsE de *B. garinii* (cepa pBi) separada de su secuencia señal (aa 1-19) y de la región C-terminal de la proteína madura situada después del dominio IR6.
 - La SEC ID nº 31 corresponde a la secuencia del dominio extracelular de VIsE de *B. garinii* (cepa pBr) separada de su secuencia señal y de la región C-terminal de la proteína madura situada después del dominio IR6.
- La SEC ID nº 32 corresponde a la secuencia del dominio extracelular de VIsE de *B. garinii* (cepa pLi) separada de su secuencia señal y de la región C-terminal de la proteína madura situada después del dominio IR6.

La SEC ID nº 33 corresponde a la secuencia del dominio extracelular de VIsE de *B. afzelli* (cepa pKo) separada de su secuencia señal y de la región C-terminal de la proteína madura situada después del dominio IR6.

La SEC ID nº 34 corresponde a la secuencia del dominio extracelular de VIsE de *B. burgdorferi* sensu stricto (cepa B31) separada de su secuencia señal y de la región C-terminal de la proteína madura situada después del dominio IR6.

La SEC ID nº 35 corresponde a la secuencia del dominio IR6 de B. burgdorferi sensu stricto (cepa B31).

La SEC ID nº 36 corresponde a la secuencia del dominio IR6 de B. afzelii (cepa ACA-1).

La SEC ID nº 37 corresponde a la secuencia del dominio IR6 de B. garinii (cepa Ip90).

La SEC ID nº 43 corresponde a la secuencia de la región variable VR6 de B. burgdorferi sensu stricto (cepa B31).

La invención tiene también por objeto un equipo para el diagnóstico *in vitro* de una Borrelisis de Lyme que comprende al menos una proteína quimérica DbpA-OspC tal como se ha definido anteriormente, que comprende preferentemente al menos una anti-inmunoglobulina humana marcada por cualquier marcador apropiado que responde a las definiciones dadas anteriormente. El equipo puede comprender además una proteína VIsE quimérica tal como se ha definido anteriormente.

Las proteínas de la invención son igualmente utilizables como ingrediente activo para la preparación de una composición vaccínea para prevenir una infección por Borrelia. Asimismo, la presente invención tiene también por objeto una composición vaccínea que comprende al menos una proteína tal como se ha definido anteriormente y un vehículo farmacéuticamente aceptable.

Los ejemplos siguientes, se dan a título ilustrativo y no tienen carácter limitativo. Permiten entender mejor la invención. El orden de las secuencias que codifican las diferentes regiones epitópicas inmunodominantes de las proteínas recombinantes quiméricas puede ser eventualmente modificado. Los epítopos pueden también presentar unas variaciones con respecto a las secuencias descritas en los ejemplos según la especie de Borrelia burgdorferi y la o las cepas que representan. La longitud de las regiones de unión puede también ser modificada para mejorar la flexibilidad entre dos dominios. Finalmente, las regiones de fijación pueden ser insertadas dentro de las regiones de unión.

Eiemplos

5

15

20

25

30

35

Ejemplo 1: preparación de construcciones plasmídicas que codifican para las proteínas recombinantes quiméricas DpbA-OspC.

Las secuencias de ADN que codifican para las diferentes secuencias DpbA y OspC descritas son identificadas en la tabla 1. Las secuencias de ADN se optimizaron para favorecer la expresión en *E. coli* utilizando GeneOptimizer[™] y sintetizadas respectivamente por GenScript corporation (Scotch Plains, NJ, USA) o GeneArt GmbH Regensburg, Alemania).

Tabla 1: origen de las secuencias

		Especies de B. burgdorferi											
		"Isolat; ** aminoácidos (aa);											
	***N° de acceso GenBank												
proteína	B. sensu stricto	B. afzelii	B. garinii										
DbpA	*B31; **aa 2-192; ***AF069269	*PKo; **aa 2-150; ***AJ131967	*40; **aa 2-187; ***AF441832 *PBi; **aa 2-176; ***AJ841673										
OspC	*B31; **aa 26-210; ***X73622	*PKo; **aa 2-212; ***X62162	*PEi; **aa 32-208; ***AJ749866										

Cada proteína recombinante quimérica comprende al menos una región epitópica que corresponde al dominio extracelular de una secuencia DbpA de Borrelia burgdorferi sensu stricto o *B. afzelii* o *B. garinii* y al menos una región epitópica que corresponde al dominio extracelular de una secuencia OspC de Borrelia burgdorferi sensu stricto o *B. afzelii* o *B. garinii*.

Las asociaciones de diferentes secuencias nucleotídicas que codifican para unas secuencias DbpA y/o OspC así como las modificaciones de secuencias nucleotídicas, tales como deleciones, adición de secuencia de unión o adición de secuencia linker se realizaron por ingeniería genética utilizando las técnicas de PCR bien conocidas por el experto en la materia y descritas por ejemplo en Sambrook J. *et al.*, Molecular Cloning: A Laboratory Manual, 1989

Las secuencias de ADN que codifican para las proteínas quiméricas de interés se han introducido en el vector de expresión pMR [2] entre el sitio de restricción BamHI en dirección 5' y el sitio EcoRI o HindIII en dirección 3'. Las construcciones plasmídicas y las proteínas correspondientes citadas en ejemplo (bLYM114, bLYM120 y bLYM121) se describen en la tabla 2. La presencia de MRGS en N-terminal de las proteínas recombinantes y la secuencia nucleotídica ATG AGG GGA TCC correspondiente se ha introducido mediante la técnica de clonación utilizada en el vector de expresión pMR. Sólo el codón de iniciación ATG y por lo tanto el aminoácido Met es realmente indispensable en esta secuencia.

Se introdujo una secuencia poli-histidina (6xHis) en el lado N-terminal de cada proteína recombinante. Esta secuencia permite la purificación de las proteínas recombinantes sobre columna de afinidad de metal-quelato. Es una región de fijación sobre el gel Ni-NTA que permite facilitar posteriormente la etapa de purificación de la proteína recombinante quimérica. Este péptido HHHHHHH (SEC ID n° 22) está codificado por las secuencias nucleotídicas CATCATCATCATCATCAT (SEC ID n° 23) o CATCATCATCATCATCAC (SEC ID n° 24) o CATCATCACCACCATCAT (SEC ID n° 25) o por cualquier otra secuencia que codifica para la secuencia SEC ID n° 22. Esta región de fijación particular, que comprende una sucesión de histidina, permite en particular la fijación orientada de la proteína recombinante sobre un soporte constituido de sílice o de óxidos metálicos.

Tabla 2: construcciones plasmídicas y proteínas recombinantes

5

10

15

20

25

30

35

40

Características de las p	oroteínas recomb	inantes	Características de las construccion plasmídicas						
Nombre	N-terminal Tag	Secuencia B. burgdorferi	Vector parental	Sitio de inserción en el vector de la secuencia inserto					
bLYM114 SEC ID n° 9	6 x His	B. afzelii strain PKo DbpA aa 2-150 + OspC aa 2-212	pMR78*	5'BamHI / 3'EcoRI					
bLYM120 SEC ID nº 11	6 x His	B. sensu stricto strain B31 DbpA aa 28-192 + OspC aa 26-210	pMR78*	5'BamHI / 3'HindIII					
bLYM121 SEC ID nº 14	6 x His	B. garinii DbpA III aa 25- 187 strain 40 + DbpA IV aa 24-176 strain PBi + OspC aa 32-208 strain PEi	pMR78*	5'BamHI / 3'HindIII					
* [2]									

Ejemplo 2: Expresión de las proteínas recombinantes bLYM114, bLYM120 y bLYM121 del ejemplo 1 y purificación.

Una construcción plasmídica que corresponde a una secuencia SEC ID nº 16, 18 ó 21 insertada en un vector de expresión (pMR) se utilizó para transformar una bacteria de *E. coli* (cepa BL21) según un protocolo clásico conocido por el experto en la materia. Las bacterias transformadas se seleccionaron gracias a su resistencia a la ampicilina llevada por el vector pMR.

Un clon de bacteria recombinante se seleccionó entonces para sembrar un pre-cultivo de 40 ml de medio 2xYT (triptona 16 g/l; extracto de levadura 10 g/l; NaCl 5 g/l, pH 7,0) que contiene 100 μg/ml de ampicilina. Después de 15 a 18 horas de incubación a 30°C bajo agitación a 250 rpm, este pre-cultivo se utilizó para sembrar 1 litro de medio 2xYT que contenía el 2% de glucosa y 100 μg/ml de ampicilina. Este cultivo se incubó a 30°C bajo agitación a 250 rpm hasta que la DO a 600 nm alcanzó 1,0/1,2. El cultivo se mantuvo durante 3 horas 30 minutos o 4 horas a 30°C añadiendo isopropil-β-D-tiogalactopiranosido (IPTG) 0,4 mM y se recogió por centrifugación a 6000 g durante 30 minutos. El residuo celular se almacenó a -60°C. Para la purificación, la biomasa húmeda se descongeló y se resuspendió en un tampón de lisis que contiene unos inhibidores de proteasas sin EDTA (Roche) y de benzonasa nucleasa (Novagen) y se sometió a una ruptura celular a 1,6 kBar en un destructor de células (Constant System Ltd, Daventry, REINO UNIDO). El lisado se centrifugó después a 10,000 rpm durante 45 minutos a 2-8°C. El sobrenadante obtenido contiene las proteínas solubles. Este sobrenadante se filtró sobre un filtro de 0,45 μ y se purificó por cromatografía de afinidad sobre una columna de quelación de metales (matrice nickel-nitrilotriacetic acid (Ni-NTA, Qiagen). Para ello, el sobrenadante se depositó (1 ml/min) a 18-25°C sobre una columna de 8 ml de gel Ni-NTA equilibrada en tampón A (véase la tabla 3). La columna se lavó después en tampón A, hasta obtener en salida

de columna una DO_{280nm} =0. La elución de la proteína recombinante se obtiene de un tampón B, según las indicaciones detalladas en la tabla 3, y la proteína purificada se dializó en casete de diálisis 10000 o 20000 MWCO (Slide-A-Lyser[®], Pierce) contra un tampón de diálisis. Las condiciones de purificaciones sobre gel Ni-NTA son descritas en la tabla 3.

Tabla 3: purificación de las proteínas recombinantes

5

10

20

25

Proteína	bLYM114	bLYM120	bLYM121								
T Totolina	SEC ID nº 14	SEC ID nº 11	SEC ID nº 14								
Tampón de lisis y de lavado		Tampón A ¹									
Tampón de elución		Tampón B ²									
Etapa de elución 1	90% Tampón A + 10% Tampón B (4CV)	92% Tampón A + 8% Tampón B (4CV)	100 % Tampón B								
Etapa de elución 2	100 % Tampón B	100 % Tampón B	NA								
Rendimiento de purificación mg proteína/ g biomasa húmeda	12	13	20								
Rendimiento de purificación mg proteína /L de cultivo	80	122	245								
¹ fosfato sódico 50 mM, Imidazol 30 mM, NaCl 500 mM, Tween 20 0,1%, Glicerol 5 %, pH = 7,8											
² fosfato sódico 50 mM, Imidazol 325 mM, NaCL 500 mM, Glicerol 5 %, pH = 7,5											

Las muestras se analizaron sobre NuPAGE® Novex® 4-12% en un tampón NuPAGE® MES-SDS, según las instrucciones del fabricante (Invitrogen). Las proteínas se colorearon con azul brillante de Coomasie o se transfirieron electroforéticamente sobre una membrana de nitrocelulosa. La membrana se bloqueó con leche en polvo al 5% (w/v) en PBS y se incubó con un anticuerpo anti-pentahistidina (Qiagen) en PBS que contiene Tween 20 al 0,05%. Se utilizó un conjugado IgG anti-ratón de cabra marcado con peroxidasa de rábano picante (Jackson Immunoresearch laboratories) en PBS/Tween como anticuerpo secundario.

La determinación de la concentración en proteínas se efectuó utilizando el kit Bradford (Pierce Coomassie Plus, Perbio Science) con la BSA como referencia proteica.

Ejemplo 3: detección de las IgG y de las IgM humanas con las proteínas recombinantes quiméricas mediante una técnica Immunotransferencia en línea

Cada proteína recombinante se depositó en una membrana de difluoruro de polivinilideno (PVDF, Immobilon, Millipore, Bedford, Mass. USA) según el protocolo siguiente:

La concentración en proteína se ajusta a 1 mg/ml en PBS pH 7,2 y se diluye en PBS pH 7,2 adicionado de Tween 20 al 0,03% (dilución 1/200). La membrana PVDF se humidificó en metanol, se lavó en agua desmineralizada y se puso sobre un papel de transferencia húmedo. Una regla de plástico se sumergió en la dilución de proteínas y se fijó sobre la membrana PVDF. Después del depósito de las proteínas y del secado de las membranas, las membranas se cortaron verticalmente en bandas. Antes de usarlas, las bandas se incubaron con gelatina al 5% en TBS pH 7,5 durante 1 hora a 37°C. Los protocolos de inmunotransferencia se realizaron a temperatura ambiente, tal como se describe por Bretz A.G. *et al.* [3]. Las bandas se incubaron durante 2 horas con unos sueros humanos diluidos al 1/200 en TBS con gelatina al 1%, se lavaron e incubaron con un anticuerpo anti-IgG o anti-IgM humanas marcado con fosfatasa alcalina (Sigma, St-Louis USA) diluidos al 1/1000 en TBS con gelatina al 1%. Después del lavado, las bandas se incubaron con el sustrato BCIP-NBT de la fosfatasa alcalina (KPL, Gaithersburg, MD, USA) durante 30 minutos, y después se lavaron en agua destilada y se secaron.

30 Panel de sueros ensayados

Los sueros humanos se recogieron a partir de pacientes de LB típicos bien definidos clínicamente, que correspondían a las diferentes fases de LB (22 con un eritema migratorio [EM], 5 con una carditis, 20 con una

neuroborreliosis [NB], 20 con artritis de Lyme [LA], 20 con una acrodermatitis crónica atrófica [ACA] y 10 con linfocitoma de cutis benigno [LCB]. Se han encontrado unas IgG anti-Lyme mediante inmunotransferencia, descrita anteriormente y utilizando unos lisados de células enteras [4], en los sueros de pacientes con LA, ACA y carditis. EM, NB y LCB se identificaron clínicamente, pero no se encontraron todos los sueros correspondientes positivos por inmunotransferencia casera [4], ni por los kits disponibles comercialmente (VIDAS® Lyme (biomérieux), Borrelia IgG, (Diasorin®) y Borrelia IgM (r-biopharm®). Por el contrario, todos los casos de NB incluidos en el estudio tenían unos anticuerpos detectables en el líquido cefalorraquídeo [LCR] (índice que se extiende de 2 a 27,1 por VIDAS® Lyme (biomérieux). La presencia de IgM se buscó sólo en los casos clínicos de fase I y II y no en las fases crónicas.

El grupo de control negativo consistía en 31 sueros anteriormente encontrado como negativos para la presencia de anticuerpos anti-Lyme en los ensayos clásicos. Además, se enseyaron 64 sueros de donantes de sangre sanos residentes en una región endémica para Lyme (Monthley, Valais, Suiza) con la proteína recombinante.

La intensidad de la reacción se evaluó de la siguiente manera: [+], [++], [-] o resultados equívocos. Los resultados equívocos se consideraron como negativos.

Los resultados se presentan en la tabla 4.

5

10

15

20

25

30

Tabla 4: Reactividad en inmunotransferencia en línea de los sueros humanos de pacientes con borreliosis de Lyme con 3 proteínas recombinantes quiméricas bLYM114 (SEC ID nº 9), bLYM120 (SEC ID nº 11) y bLYM121 (SEC ID nº 14)

Proteína			lç	gG			IgM				
	Fase I	Fas	se II		Fase III		Fase I	Fas	se II		
	EM (n=22)	NB (n=20)	Carditis (n=5)	LA (n=19)	ACA (n=20)	LCB (n=10)	EM (n=22)	NB (n=20)	Carditis (n=5)		
bLYM114	5	10	0	7	12	2	7	7	2		
bLYM120	6	7	0	8	6	0	11	7	2		
bLYM121	2	10	5	9	8	0	7	7	2		
Σ bLYM 114+120+121	9	13	5	18	17	2	11	7	2		
Sueros	40,9%	59,1%	100%	94,7%	85%	20%	50%	35%	40%		
positivos (%) e intensidad	1[+++]	8[+++]	4[+++]	7[+++]	8[+++]		1[+++]				
de la reacción	4[++]	2[++]		8[++]	5[++]	1[++]	7[++]	5[++]	2[++]		
Teaccion	4[+]	3[+]	1[+]	3[+]	4[+]	1[+]	5[+]	2[+]			
Total de los	66,7%					42,5%					
positivos e intensidad de			28[+++]				1[+	+++]			
la reacción			20[++]			14[++]					
			16[+]				7[+]				

La especificidad es del 100% en base a 31 sueros procedentes de sujetos sanos determinados Lyme negativos por los ensayos comercializados estándares.

Detección de las IgG

Los resultados indican que las proteínas de fusión quiméricas recombinantes son unas herramientas de diagnóstico sensibles a todas las fases de la infección para las IgG y las IgM. Ponen en evidencia un efecto complementario de las tres proteínas recombinantes basadas respectivamente en secuencias de *Borrelia afzelii*, B. sensu stricto y *B.garinii* para la detección de las IgG. La utilización combinada de las tres proteínas recombinantes quiméricas permite en la fase I de la infección detectar unas IgG en 9 casos de los pacientes con un EM de 22 (es decir el 40,9% de sensibilidad).

Detección de las IgM

Unas IgM antiproteínas quiméricas se encontraron en 11 casos de 22 (es decir el 50% de sensibilidad). Por lo tanto, estas proteínas quiméricas detectan más frecuentemente las IgM que las IgG en los sueros de pacientes LB en las fases I. Los ensayos efectuados en los controles: immunotransferencia casera [4], y el kit comercializado Borrelia

IgM (r-biopharm®) no detectan más los sueros IgM positivos. Además, 3 sueros encontrados negativos por el ensayo de imunotransferencia y Borrelia IgM (r-biopharm®) son detectados por las tres proteínas quiméricas citadas en el ejemplo (3/3) o por una de las tres proteínas citadas en el ejemplo (1/3). La utilización combinada de las tres proteínas recombinantes permite mejorar, en la fase I de la infección, un 13,6% la sensibilidad de detección de las IgM.

Ejemplo 4: preparación de las construcciones plasmídicas que codifican para las proteínas recombinantes quiméricas VIsE.

Las secuencias de ADN que codifican las diferentes secuencias de la proteína son identificadas en la tabla 5.

Especies de *B. burgdorferi**Isolat; **aminoácidos (aa); ***n° de acceso GenBank

proteína

B. sensu stricto

B. afzelii

B. garinii

*PBi; **aa 20-293;

***AJ630106

(GenScript Corp)

Tabla 5: origen de las secuencias

10

15

IR6

5

Las secuencias se optimizaron para su expresión en *E. coli* utilizando GeneOptimizerTM y se sintetizaron respectivamente por GenScript corporation (Scotch Plains, NJ, USA) o GeneArt GmbH (Regensburg, Alemania).

*ACA-1; **aa 172-188;

****U76405

(GeneArt GmbH)

*lp90; **aa 167-191;

***AAN87834

(GeneArt GmbH)

Se realizaron unas modificaciones complementarias en el ADN, deleciones o asociaciones de diferentes secuencias mediante la PCR por ingeniería genética utilizando las técnicas de la PCR bien conocidas por el experto en la materia y descritas por ejemplo en Sambrook J. et al., Molecular Cloning: A Laboratory Manual, 1989. Las secuencias de ADN se enlazaron en el vector de expresion pMR [2] o pET-3d (Novagen®). Las construcciones plasmídicas y las proteínas correspondientes citadas en ejemplo (bLYM110, bLYM125) están descritas en la tabla 6.

Tabla 6: Construcciones plasmídicas y proteínas correspondientes

Característi	cas de las proteínas	recombinantes	Características de las construcciones plasmídicas				
nombre	N-terminal Tag	Secuencia B. burgdorferi	Vector parental	Sitio de inserción en el vector de la secuencia inserto			
bLYM110 SEC ID n° 39	6 x His	vlsE <i>garinii</i> pBi aa 20- 293 + 3 IR6 [sensu	pMR78	5'BamHI / 3'HindIII			
bLYM125 SEC ID nº 41	8 x His	stricto B21 aa <i>274-305</i> + <i>afzelii</i> ACA-1aa 172-188 + <i>garinii</i> lp90 aa 167- 191]	pET-3d	5'Ncol / 3'BamHl			

Ejemplo 5: Expresión de las proteínas recombinantes del ejemplo 4 y purificación.

*B31; **aa 274-305;

***U76405

(GeneArt GmbH)

Se utilizó una construcción plasmídica descrita en el ejemplo 4 para transformar una bacteria *E. coli* (cepa BL21) según un protocolo clásico conocido por el experto en la materia. Las bacterias transformadas se seleccionaron gracias a su resistencia a la ampicilina llevada por el vector pMR o pET.

25

30

20

Después se seleccionó un clon de bacteria recombinante entonces para sembrar un pre-cultivo de 40 ml de medio 2xYT (triptona 16 g/l; extracto de levadura 10 g/l; NaCl 5 g/l, pH 7,0) que contienía 100 μg/ml de ampicilina. Después de 15 a 18 horas de incubación a 30°C bajo agitación a 250 rpm, este pre-cultivo se utilizó para sembrar 1 litro de medio 2xYT que contenía 2% de glucosa y 100 μg/ml de ampicilina. Este cultivo se incubó a 30°C bajo agitación a 250 rpm hasta que la DO a 600 nm alcanzó 1,0/1,2. El cultivo se mantuvo durante 3 horas 30 minutos o 4 horas a 30°C añadiendo isopropil-β-D-tiogalactopiranosido (IPTG) 0,4 mM y se recogió por centrifugación a 6000 g durante 30 minutos. El residuo celular se almacenó a -60°C. Para la purificación, la biomasa húmeda se resuspendió en un tampón de lisis que contenía unos inhibidores de proteasas sin EDTA (Roche) y de benzonasa nucleasa (Novagen)

y se sometió a una ruptura celular a 1,6 kBar en un destructor de células (Constant System Ltd, Daventry, REINO UNIDO). El lisado se centrifugó entonces a 10000 rpm durante 45 minutos a 2-8°C. Después de la filtración sobre un filtro de 0,22 µm, el sobrenadante se cargó sobre una columna NiNTA (Quiagen®) equilibrada en tampón de lisis. La resina se lavó entonces con el mismo tampón hasta que el A_{280nm} alcanzó la línea de base. Se efectuó una elución con el tampón de elución y la proteína purificada se dializó sobre un casete Pierce de diálisis Slide-A-Lyser® 10000 o 20000 MWCO contra un tampón de diálisis. Las condiciones de las purificaciones sobre gel Ni-NTA son descritas en la tabla 7.

Tabla 7: purificación de las proteínas recombinantes

Proteína	bLYM110	bLYM125								
Fiotenia	SEC ID nº 39	SEC ID nº 41								
Tampón de lisis y de lavado	Tampón A ¹	Tampón A ¹ + Urea 2M								
Tampón de elución	Tampón B ²	Tampón B ² modificado con 600 ml de imidazol								
Etapa de elución 1	86% Tampón A + 14% Tampón B (4CV)	92% Tampón A + 8% Tampón B (4CV)								
Etapa de elución 2	100 % Tampón B	100 % Tampón B								
Rendimiento de purificación mg proteína /g biomasa húmeda	0,5	0,8								
Rendimiento de purificación mg proteína /L de cultivo	8,7	17								
¹ fosfato sódico 50 mM, Imidazol 30 mM, NaCl 500 mM, Tween 20 0,1%, Glicerol 5%, pH = 7,8										
² fosfato sódico 50 mM, Imidazol 325 mM, NaCl 500 mM, Glicerol 5%, pH = 7,5										

Las muestras se analizaron sobre NuPAGE[®] Novex[®] 4-12% en un tampón circulante NuPAGE[®] MES-SDS, según las instrucciones del fabricante (InvitrogenTM). Las proteínas se colorearon con azul brillante de Coomasie o se transfirieron electroforéticamente sobre una membrana de nitrocelulosa. La membrana se bloqueó con leche en polvo al 5% (w/v) en PBS y se incubó con un anticuerpo anti-pentahistidina (Qiagen[®]) en PBS que contiene Tween 20 al 0,05%. Se utilizó un conjugado IgG anti-ratón de cabra marcado con peroxidasa de rábano picante (Jackson Immunoresearch laboratories) en PBS/Tween como anticuerpo secundario.

La determinación de la concentración en proteínas se efectuó utilizando el kit de ensayo Bradford (Pierce Coomassie Plus, Perbio Science) con la BSA como referencia proteica.

Ejemplo 6: Detección de las IgG y de las IgM humanas con la proteína recombinante quimérica bLYM110 del ejemplo 5 mediante una técnica Inmonotransferencia en línea

La proteína recombinante se ha depositado sobre una membrana de difluorouro de polivinilideno (PVDF, Immobilon, Millipore[®], Vedford, Mass. USA) según el protocolo siguiente:

Se ajustó la concentración en proteína a 1 mg/ml en PBS pH 7,2 y se diluyó en el PBS pH 7,2 adicionado de Tween 20 0,03% (dilución 1/200) La membrana PVDF se humidificó en metanol, se lavó en agua desmineralizada y se puso sobre un papel de transferencia húmedo. Una regla de plástico se sumergió en la dilución de proteínas y se fijó sobre la membrana PVDF. Después del depósito de las proteínas y del secado de las membranas, las membranas se cortaron verticalmente en bandas. Antes de la utilización, las bandas se incubaron con gelatina al 5% en TBS pH 7,5 durante 1 hora a 37°C. Los protocolos de inmunotransferencia se realizaron a temperatura ambiente, tal como se describe por Bretz A.G. *et al.* [3]. Las bandas se incubaron durante 2 horas con unos sueros humanos diluidos al 1/200 en TBS con gelatina al 1%, se lavaron e incubaron con una IgG o IgM anti-humanas marcada con fosfatasa alcalina (SigmaTM, St-Louis USA) diluidas al 1/1000 en TBS con gelatina al 1%. Después del lavado, las bandas se incubaron con el sustrato BCIP-NBT (KPL, Gaithersburg, MD, USA) durante 30 minutos, y después se lavaron en agua destilada y se secaron.

Panel de sueros ensayados

5

10

15

20

25

30

35

Los sueros humanos se recogieron a partir de pacientes de LB típicos bien definidos clínicamente que corresponden a las fases de LB (22 con un eritema migratorio [EM], 5 con una carditis, 20 con una neuroborreliosis [NB], 20 con artritis de Lyme [LA], 20 con una acrodermatitis crónica atrófica [ACA] y 10 con un linfocitoma de cutis benigno [LCB]. Se encontraron unas IgG anti-Lyme por inmunotransferencia, descrita anteriormente y utilizando unos lisados de células enteras [4], en los sueros de pacientes con LA, ACA y carditis. Las EM, NB y LCB se identificaron

clínicamente, pero no se encontraron todos los sueros correspondientes positivos por inmunotransferencia casera [4], ni por los kits disponibles comercialmente (VIDAS® Lyme (biomérieux), Borrelia IgG, (Diasorin®) y Borrelia IgM (r-biopharm®). Por el contrario, todos los casos de NB incluidos en el estudio tenían unos anticuerpos detectables en el líquido cefalorraquídeo [LCR] (índice que se extiende de 2 a 27,1).

El grupo de control negativo consistía en 31 sueros anteriormente encontrados como negativos para la presencia de anticuerpos anti-Lyme en los ensayos clásicos. Además, se ensayaron 64 sueros de donantes de sangre sanos residentes en una región endémica para Lyme (Monthley, Valais, Suiza) con la proteína recombinante. La intensidad de la reacción se evaluó de la siguiente manera: [+], [+++], [-] o resultados equívocos. Los resultados equívocos se consideraron como negativos.

10 Los resultados son presentados en la tabla 8 siguiente

Tabla 8

	IgG												
Fase I	Fas	se II			Donantes								
EM (n=22)	NB (n=20)	Carditis (n=5)	LA (n=19)	ACA (n=20)	Limf. (n=10)	(n=64)							
17	20	5	19	20	9	6							
77,3%	100%	100%	100%	100%	90%	9,4%							
12[+++]	11[+++]	4[+++]	13[+++]	20[+++]	3[+++]	6[+]							
4[++]	7[++]	1[++]	4[++]		2[++]								
1[+]	2[+]		2[+] 4[+]										
		Total	positivos IgG 9	3,7%									
			IgM										
EM (n=22)	NB (n=20)	Carditis (n=5)				(n=64)							
5	4	2				1							
22%	20%	40%				1,5%							
1[++]	2[++]	1[++]				1[+]							
4[+]	1[+]	1[+]											
Total positivos IgM 23,4%													

Detección de las IgG

15

20

25

30

Los resultados indican que la proteína recombinante bLYM110 es un antígeno de diagnóstico altamente sensible a todas las fases de la infección para las IgG. En la fase I de la infección, las IgG se detectaron en 17 de 22 casos de pacientes con un EM (es decir, el 77,3% de sensibilidad). Cinco de los pacientes con EM que se encontraron negativos con la proteína recombinante lo eran también con la inmunotransferencia casero y con los kits disponibles en el comercio. Siete sueros EM encontrados positivos con la proteína recombinante no se detectaron por inmunotransferencia, lo que representa una mejora del 31,8% de la sensibilidad con la proteína recombinante. En la fase primaria de la infección, en ausencia de enrojecimiento característico, el diagnóstico puede ser difícil, ya que las otras manifestaciones clínicas de la enfermedad de Lyme no son específicas. Además, sólo algunos pacientes que tienen un EM son detectados por los ensayos clásicos. Por lo tanto, la proteína de la invención mejora la detección de las IgG en la fase I de la infección, llevando su detección a más del 77% en los pacientes que presentan un EM.

Detección de las IgM

Se encontraron unas IgM anti-proteína quimérica en el 23,4% de los sueros de LB. La proteína detecta más frecuentemente las IgG que las IgM en los sueros de pacientes de LB en las fases I y II.

Ejemplo 7: Evaluación y validación de las proteínas recombinantes quiméricas bLYM114, bLYM120, bLYM121 y bLYM125 en un ensayo VIDAS[®] (bioMérieux)

Esta validación se realiza en ensayo VIDAS[®] mediante la utilización:

1) de las proteínas quiméricas recombinantes bLYM114, bLYM120, bLYM121, obtenidas según los ejemplos 1, 2 para la detección de las IgM, y

2) unas proteínas quiméricas recombinantes bLYM114, bLYM120, obtenidas según los ejemplos 1, 2, y de la proteína quimérica bLYM125, obtenida según los ejemplos 4, 5, para la detección de las IgG.

El principio del ensayo VIDAS[®] es el siguiente: un cono constituye el soporte sólido que sirve también de sistema de pipeteo para los reactivos presentes en el pasador. La o las proteínas recombinantes se fijan sobre el cono. Después de una etapa de dilución, la muestra se aspira y se descarga varias veces en el interior del cono. Esto permite a las inmunoglobulinas anti-Lyme de la muestra unirse a las proteínas recombinantes. Los componentes no se han unido se eliminan por lavado. Un anticuerpo anti-inmunoglobulinas humanas conjugado con la fosfatasa alcalina (PAL) se incuba en el cono, en el que se fija a las inmunoglobulinas anti-Lyme. Las etapas de lavado eliminan el conjugado no fijado. Durante la última etapa de revelación, el sustrato de la fosfatasa alcalina (PAL), el 4-metil-umbeliferilfosfato, se hidroliza en 4-metil-umberliferona cuya fluorescencia emitida a 450 nm se mide. La intensidad de la fluorescencia se mide por el sistema óptico de Vidas[®] y es proporcional a la presencia de inmunoglobulinas anti-Lyme presentes en la muestra. Los resultados son analizados automáticamente por el VIDAS[®] y se expresan en RFV (Relative Fluorescent Value).

Se ensayaron así 255 sueros positivos (sueros equívocos + sueros positivos) y 298 sueros negativos (equívocos + negativos) con el sistema Vidas[®].

Los conos Vidas $^{\otimes}$ Lyme IgG son sensibilizados por 300 μ l de solución que comprende las proteínas bLYM114, bLYM120 y bLYM125 de la invención a una concentración de 1 μ g/ml cada una en una solución de sensibilización común.

En la primera etapa, los sueros se incuban durante 5,3 minutos para la formación de los complejos antígenos-anticuerpos. En la segunda etapa, unas anti-IgG humanas marcadas con PAL se incuban durante 5,3 minutos.

Los resultados son dados en índice en relación a un umbral de positividad situado a 135 RFV en el protocolo.

- entre los 255 sueros positivos ensayados, 246 son positivos y 9 son falsos negativos, lo que corresponde a una sensibilidad del 96,5%.
- entre los 298 sueros negativos ensayados, 284 son negativos y 14 son falsos positivos, lo que corresponde a una especificidad del 95,3%.

Referencias bibliográficas

5

10

20

25

- 1. Göttner G. et al., Int. J. Microbiol. 293, Supl. 37, 172-173 (2004)
- 2. Arnaud N. et al., Gene 1997; 199:149-156.
- 3. Bretz A.G., K. Ryffel, P. Hutter, E. Dayer y O. Péter. Specificities and sensitivities of four monoclonal antibodies for typing of *Borrelia burgdorferi* sensu lato isolates. Clin. Diag. Lab. Immunol. 2001; 8: 376-384.
 - 4. Ryffel K., Péter O., Rutti B. and E. Dayer. Scored antibody reactivity by immunoblot suggests organotropism of *Borrelia burgdorferi* sensu stricto, *B. garinii*, *B. afzelii* and *B. valaisiana* in human.J. Clin. Microbiol. 1999; 37:4086-92

LISTADO DE SECUENCIAS

- <110> bioMérieux
- 35 <120> Proteínas utilizadas para el diagnóstico de una borreliosis de Lyme
 - <130> Lyme DbpA-OspC PCT
 - <160>43
 - <170> PatentIn version 3.3
 - <210> 1
- 40 <211> 149
 - <212> PRT
 - <213> Borrelia sp.
 - <400> 1

Ser Leu Thr Gly Lys Ala Arg Leu Glu Ser Ser Val Lys Asp Ile Thr 1 5 10 15

Asn Glu Ile Glu Lys Ala Ile Lys Glu Ala Glu Asp Ala Gly Val Lys 20 25 30

Thr Asp Ala Phe Thr Glu Thr Gln Thr Gly Gly Lys Val Ala Gly Pro 35 40 45

Lys Ile Arg Ala Ala Lys Ile Arg Val Ala Asp Leu Thr Ile Lys Phe 50 55 60

Leu Glu Ala Thr Glu Glu Glu Thr Ile Thr Phe Lys Glu Asn Gly Ala 65 70 80

Gly Glu Asp Glu Phe Ser Gly Ile Tyr Asp Leu Ile Leu Asn Ala Ala 85 90 95

Lys Ala Val Glu Lys Ile Gly Met Lys Asp Met Thr Lys Thr Val Glu 100 105 110

Glu Ala Ala Lys Glu Asn Pro Lys Thr Thr Ala Asn Gly Ile Ile Glu 115 120 125

Ile Val Lys Val Met Lys Ala Lys Val Glu Asn Ile Lys Glu Lys Gln 130 135 140

Thr Lys Asn Gln Lys 145

<210> 2

<211> 211

<212> PRT

5 <213> Borrelia sp.

<400> 2

	Lys 1	Lys	Asn	Thr	Leu 5	Ser	Ala	Ile	Leu	Met 10	Thr	Leu	Phe	Leu	Phe 15	Ile
	Ser	Cys	Asn	Asn 20	Ser	Gly	Lys	Gly	Gly 25	Asp	Ser	Ala	Ser	Thr 30	Asn	Pro
	Ala	Asp	G1u 35	Ser	Ala	Lys	Gly	Pro 40	Asn	Leu	Thr	Glu	Ile 45	Ser	Lys	Lys
	Ile	Thr 50	Asp	Ser	Asn	Ala	Phe 55	Val	Leu	Ala	Val	Lys 60	Glu	Val	Glu	Thr
	Leu 65	Val	Leu	Ser	Ile	Asp 70	Glu	Leu	Ala	Lys	Lys 75	Ala	Ile	Gly	Gln	Lys 80
	Ile	Asp	Asn	Asn	Asn 85	Gly	Leu	Ala	Ala	Leu 90	Asn	Asn	Gln	Asn	Gly 95	Ser
	Leu	Leu	Ala	Gly 100	Ala	Tyr	Ala	Ile	Ser 105	Thr	Leu	Ile	Thr	Glu 110	Lys	Leu
	Ser	Lys	Leu 115	Lys	Asn	Leu	Glu	Glu 120	Leu	Lys	Thr	Glu	Ile 125	Ala	Lys	Ala
	Lys	Lys 130	Cys	Ser	Glu	Glu	Phe 135	Thr	Asn	Lys	Leu	Lys 140	Ser	Gly	His	Ala
	Asp 145	Leu	Gly	Lys	Gln	Asp 150	Ala	Thr	Asp	Asp	His 155	Ala	Lys	Ala	Ala	Ile 160
	Leu	Lys	Thr	His	Ala 165	Thr	Thr	Asp	Lys	Gly 170	Ala	Lys	Glu	Phe	Lys 175	Asp
	Leu	Phe	Glu	Ser 180	Val	Glu	Gly	Leu	Leu 185	Lys	Ala	Ala	Gln	Val 190	Ala	Leu
	Thr	Asn	Ser 195	Val	Lys	Glu	Leu	Thr 200	Ser	Pro	Val	Val	Ala 205	Glu	Ser	Pro
	Lys	Lys 210	Pro													
<210> 3																
<211> 164																
<212> PRT																
<213> Borrelia s	sp.															

Thr Gly Ala Thr Lys Ile Arg Leu Glu Arg Ser Ala Lys Asp Ile Thr

<400> 3

5

	1				5					10					15	
	Asp	Glu	Ile	Asp 20	Ala	Ile	Lys	Lys	Asp 25	Ala	Ala	Leu	Lys	Gly 30	Val	Asn
	Phe	Asp	Ala 35	Phe	Lys	Asp	Lys	Lys 40	Thr	Gly	Ser	Gly	Val 45	Ser	Glu	Asn
	Pro	Phe 50	Ile	Leu	Glu	Ala	Lys 55	Val	Arg	Ala	Thr	Thr 60	Val	Ala	Glu	Lys
	Phe 65	Val	Ile	Ala	Ile	Gl u 70	Glu	Glu	Ala	Thr	Lys 75	Leu	Lys	Glu	Thr	Gly 80
	Ser	Ser	Gly	Glu	Phe 85	Ser	Ala	Met	Tyr	Asp 90	Leu	Met	Phe	Glu	Val 95	Ser
	Lys	Pro	Leu	Gln 100	Lys	Leu	Gly	Ile	Gln 105	Glu	Met	Thr	Lys	Thr 110	Val	Ser
	Asp	Ala	Ala 115	Glu	Glu	Asn	Pro	Pro 120	Thr	Thr	Ala	Gln	Gly 125	Val	Leu	Glu
	Ile	Ala 130	Lys	Lys	Met	Arg	Glu 135	Lys	Leu	Gln	Arg	Val 140	His	Thr	Lys	Asn
	Tyr 145	Cys	Thr	Leu	Lys	Lys 150	Lys	Glu	Asn	Ser	Thr 155		Thr	Asp	Glu	Lys 160
	Cys	Lys	Asn	Asn												
<210> 4																
<211> 185																
<212> PRT																
<213> Borrelia s	sp.															
<400> 4																
	Asn 1	Thr	Ser	Ala	Asn 5	Ser	Ala	Asp	Glu	Ser 10	Val	Lys	Gly	Pro	Asn 15	Leu
	Thr	Glu	Ile	Ser 20	Lys	Lys	Ile	Thr	Asp 25	Ser	Asn	Ala	Val	Leu 30	Leu	Ala
	Val	Lys	Glu 35	Val	Glu	Ala	Leu	Leu 40	Ser	Ser	Ile	Asp	Glu 45	Ile	Ala	Ala
	Lys	Ala 50	Ile	Gly	Lys	Lys	Ile 55	His	Gln	Asn	Asn	Gly 60	Leu	Asp	Thr	Glu

5

	Asn 65	Asn	His	Asn	Gly	Ser 70	Leu	Leu	Ala	Gly	Ala 75	Tyr	Ala	Ile	Ser	Th 80
	Leu	Ile	Lys	Gln	Lys 85	Leu	Asp	Gly	Leu	Lys 90	Asn	Glu	Gly	Leu	Lys 95	Gl
	Lys	Ile	Asp	Ala 100	Ala	Lys	Lys	Cys	Ser 105	Glu	Thr	Phe	Thr	Asn 110	Lys	Le
	Lys	Glu	Lys 115	His	Thr	Asp	Ser	Phe 120	Gly	Lys	Glu	Gly	Val 125	Thr	Asp	Al
	Asp	Ala 130	Lys	Glu	Ala	Ile	Leu 135	Lys	Thr	Asn	Gly	Thr 140	Lys	Thr	Lys	Gl
	Ala 145	Glu	Glu	Leu	Gly	Lys 150	Leu	Phe	Glu	Ser	Val 155	Glu	Val	Leu	Ser	L у 16
	Ala	Ala	Lys	Glu	Met 165	Leu	Ala	Asn	Ser	Val 170	Lys	Glu	Leu	Thr	Ser 175	Pr
	Val	Val	Ala	Glu 180	Ser	Pro	Lys	Lys	Pro 185							
<210> 5																
<211> 162																
<212> PRT																
<213> Borrelia s	sp.															
<400> 5																
	Thr 1	Gly	Glu	Thr	Lys 5	Ile	Arg	Leu	Glu	Ser 10	Ser	Ala	Gln	Glu	Ile 15	Ly
	Asp	Glu	Ile	Asn 20	Lys	Ile	Lys	Ala	Asn 25	Ala	Lys	Lys	Glu	Gly 30	Val	Ly
	Phe	Glu	Ala 35	Phe	Thr	Asp	Lys	Gln 40	Thr	Gly	Ser	Lys	Val 45	Ser	Glu	Ly
	Pro	Glu 50	Phe	Ile	Leu	Lys	Ala 55	Lys	Ile	Lys	Ala	Ile 60	Gln	Val	Ala	Gl
	Lys 65	Phe	Val	Lys	Ala	Ile 70	Lys	Glu	Glu	Ala	G1u 75	Lys	Leu	Lys	Lys	Se 80
	Gly	Ser	Ser	Gly	Ala 85	Phe	Ser	Ala	Met	Tyr 90	Asp	Leu	Met	Leu	Asp 95	Va

5

Ser Lys Pro Leu Glu Glu Ile Gly Ile Gln Lys Met Thr Gly Thr Val

100 105 110

Thr Lys Glu Ala Glu Lys Thr Pro Pro Thr Thr Ala Glu Gly Ile Leu 115 120 125

Ala Ile Ala Gln Ala Met Glu Glu Lys Leu Asn Asn Val Asn Lys Lys 130 135 140

Gln Gln Asp Ala Leu Lys Asn Leu Glu Glu Lys Ala Asn Thr Ala Ala 145 150 155 160

Thr Thr

<210>6

<211> 154

<212> PRT

5 <213> Borrelia sp.

<400>6

Ser Gly Thr Gly Lys Ala Arg Leu Glu Ser Ser Val Lys Asp Ile Thr $1 \hspace{1cm} 5 \hspace{1cm} 15 \hspace{1cm} 15 \hspace{1cm} 15 \hspace{1cm}$

Asp Glu Ile Asp Lys Ala Ile Lys Glu Ala Ile Ala Asp Gly Val Lys 20 25 30

Leu Asn Glu Leu Glu Glu Asn Lys Thr Gly Ala Lys Lys Gly Gly Pro 35 40 40

Gln Ile Arg Asp Ala Lys Ile Arg Val Ile Asn Leu Ser Val Lys Phe 50 60

Leu Lys Glu Ile Glu Glu Glu Ala Asn Ile Leu Lys Asp Asn Val Gly 65 70 75 80

Met Asn Lys Val Asp Lys Asp Gln Leu Leu Lys Asp Met Tyr Asp Leu 85 90 95

Met Leu Asn Ala Ala Gly Ser Leu Gln Lys Leu Gly Leu Gln Glu Met 100 . 105 Leu Gly Leu Gln Het 110

Ile Lys Thr Val Thr Gln Ala Ala Glu Lys Thr Pro Pro Thr Thr Val

Glu Gly Ile Leu Met Ile Ala Asn Thr Ile Glu Asp Lys Leu Lys Lys 130 140

Ile Lys Gly Lys Gln Glu Thr Asn Lys Lys

<210> 7

<211> 176

10 <212> PRT

<400> 7

Asp Glu Ser Ala Lys Gly Pro Asn Leu Thr Val Ile Ser Lys Lys Ile 1 5 10 15

Thr Asp Ser Asn Ala Phe Leu Leu Ala Val Lys Glu Val Glu Ala Leu 20 25 30

Leu Ser Ser Ile Asp Glu Leu Ser Lys Ala Ile Gly Lys Lys Ile Lys 35 40 45

Asn Asp Gly Thr Leu Asp Asn Glu Ala Asn Arg Asn Glu Ser Leu Ile 50 55 60

Ala Gly Ala Tyr Glu Ile Ser Lys Leu Ile Thr Gln Lys Leu Ser Val 65 70 75 80

Leu Asn Ser Glu Glu Leu Lys Glu Lys Ile Lys Glu Ala Lys Asp Cys 85 90 95

Ser Glu Lys Phe Thr Thr Lys Leu Lys Asp Ser His Ala Glu Leu Gly 100 105 110

Ile Gln Ser Val Gln Asp Asp Asn Ala Lys Lys Ala Ile Leu Lys Thr 115 120 125

His Gly Thr Lys Asp Lys Gly Ala Lys Glu Leu Glu Glu Leu Phe Lys 130 135 140

Ser Leu Glu Ser Leu Ser Lys Ala Ala Gln Ala Ala Leu Thr Asn Ser 145 150 155 160

Val Lys Glu Leu Thr Asn Pro Val Val Ala Glu Ser Pro Lys Lys Pro 165 170 175

<210> 8

5 <211> 361

<212> PRT

<213> Borrelia sp.

<400>8

Met Ser Leu Thr Gly Lys Ala Arg Leu Glu Ser Ser Val Lys Asp Ile 1 5 10 15

Thr Asn Glu Ile Glu Lys Ala Ile Lys Glu Ala Glu Asp Ala Gly Val 20 25 30

- Lys Thr Asp Ala Phe Thr Glu Thr Gln Thr Gly Gly Lys Val Ala Gly 35 40 45
- Pro Lys Ile Arg Ala Ala Lys Ile Arg Val Ala Asp Leu Thr Ile Lys 50 55 60
- Phe Leu Glu Ala Thr Glu Glu Glu Thr Ile Thr Phe Lys Glu Asn Gly 65 70 75 80
- Ala Gly Glu Asp Glu Phe Ser Gly Ile Tyr Asp Leu Ile Leu Asn Ala 85 90 95
- Ala Lys Ala Val Glu Lys Ile Gly Met Lys Asp Met Thr Lys Thr Val 100 105 110
- Glu Glu Ala Ala Lys Glu Asn Pro Lys Thr Thr Ala Asn Gly Ile Ile 115 120 125
- Glu Ile Val Lys Val Met Lys Ala Lys Val Glu Asn Ile Lys Glu Lys 130 140
- Gln Thr Lys Asn Gln Lys Lys Lys Asn Thr Leu Ser Ala Ile Leu Met 145 150 155 160
- Thr Leu Phe Leu Phe Ile Ser Cys Asn Asn Ser Gly Lys Gly Gly Asp 165 170 175
- Ser Ala Ser Thr Asn Pro Ala Asp Glu Ser Ala Lys Gly Pro Asn Leu 180 185 190
- Thr Glu Ile Ser Lys Lys Ile Thr Asp Ser Asn Ala Phe Val Leu Ala 195 200 205
- Val Lys Glu Val Glu Thr Leu Val Leu Ser Ile Asp Glu Leu Ala Lys
- Lys Ala Ile Gly Gln Lys Ile Asp Asn Asn Gly Leu Ala Ala Leu 225 230 235 240
- Asn Asn Gln Asn Gly Ser Leu Leu Ala Gly Ala Tyr Ala Ile Ser Thr 245 250 255
- Leu Ile Thr Glu Lys Leu Ser Lys Leu Lys Asn Leu Glu Glu Leu Lys 260 265 270
- Thr Glu Ile Ala Lys Ala Lys Lys Cys Ser Glu Glu Phe Thr Asn Lys 275 280 285

Leu Lys Ser Gly His Ala Asp Leu Gly Lys Gln Asp Ala Thr Asp Asp 290 295 300

His Ala Lys Ala Ala Ile Leu Lys Thr His Ala Thr Thr Asp Lys Gly 305 310 315 320

Ala Lys Glu Phe Lys Asp Leu Phe Glu Ser Val Glu Gly Leu Leu Lys 325 330 330

Ala Ala Gln Val Ala Leu Thr Asn Ser Val Lys Glu Leu Thr Ser Pro 340 345 350

Val Val Ala Glu Ser Pro Lys Lys Pro 355 360

<210>9

<211> 370

<212> PRT

5 <213> Borrelia sp.

<400>9

Met Arg Gly Ser His His His His His Ser Leu Thr Gly Lys Ala 1 5 10 15

Arg Leu Glu Ser Ser Val Lys Asp Ile Thr Asn Glu Ile Glu Lys Ala 20 25 30

Ile Lys Glu Ala Glu Asp Ala Gly Val Lys Thr Asp Ala Phe Thr Glu 35 40

Thr Gln Thr Gly Gly Lys Val Ala Gly Pro Lys Ile Arg Ala Ala Lys
50 60

Ile Arg Val Ala Asp Leu Thr Ile Lys Phe Leu Glu Ala Thr Glu Glu 65 70 75 80

Glu Thr Ile Thr Phe Lys Glu Asn Gly Ala Gly Glu Asp Glu Phe Ser 85 90 95

Gly Ile Tyr Asp Leu Ile Leu Asn Ala Ala Lys Ala Val Glu Lys Ile 100 105 110

Gly Met Lys Asp Met Thr Lys Thr Val Glu Glu Ala Ala Lys Glu Asn 115 120 125

Pro Lys Thr Thr Ala Asn Gly Ile Ile Glu Ile Val Lys Val Met Lys 130 135 140

Ala Lys Val Glu Asn Ile Lys Glu Lys Gln Thr Lys Asn Gln Lys Lys

	145					150					155					160
	Lys	Asn	Thr	Leu	Ser 165	Ala	Ile	Leu	Met	Thr 170	Leu	Phe	Leu	Phe	Ile 175	Ser
	Cys	Asn	Asn	Ser 180	Gly	Lys	Gly	Gly	Asp 185	Ser	Ala	Ser	Thr	Asn 190	Pro	Ala
	Asp	Glu	Ser 195	Ala	Lys	Gly	Pro	Asn 200	Leu	Thr	Glu	Ile	Ser 205	Lys	Lys	Ile
	Thr	Asp 210	Ser	Asn	Ala	Phe	Val 215	Leu	Ala	Val	Lys	Glu 220	Val	Glu	Thr	Leu
	Val 225	Leu	Ser	Ile	Asp	G1u 230	Leu	Ala	Lys	Lys	Ala 235	Ile	Gly	Gln	Lys	Ile 240
	Asp	Asn	Asn	Asn	Gly 245	Leu	Ala	Ala	Leu	Asn 250	Asn	Gln	Asn	Gly	Ser 255	Leu
	Leu	Ala	Gly	Ala 260	Tyr	Ala	Ile	Ser	Thr 265	Leu	Ile	Thr	Gl u	Lys 270	Leu	Ser
	Lys	Leu	Lys 275	Asn	Leu	Glu	Glu	Leu 280	Lys	Thr	Glu	Ile	Ala 285	Lys	Ala	Lys
	Lys	Cys 290	Ser	Glu	Glu	Phe	Thr 295	Asn	Lys	Leu	Lys	Ser 300	Gly	His	Ala	Asp
	Leu 305	Gly	Lys	Gln	Asp	Ala 310	Thr	Asp	Asp	His	Ala 315	Lys	Ala	Ala	Ile	Leu 320
	Lys	Thr	His	Ala	Thr 325	Thr	Asp	Lys	Gly	Ala 330	Lys	Glu	Phe	Lys	Asp 335	Leu
	Phe	Glu	Ser	Val 340	Glu	Gly	Leu	Leu	Lys 345	Ala	Ala	Gln	Val	Ala 350	Leu	Thr
	Asn	Ser	Val 355	Lys	Glu	Leu	Thr	Ser 360	Pro	Val	Val	Ala	G1u 365	Ser	Pro	Lys
	Lys	Pro 370														
<210> 10																
<211> 350																
<212> PRT																
<213> Borrelia s	sp.															

<400> 10

Met 1	Thr	GIÀ	Ala	Thr 5	Lys	ITe	Arg	Leu	GIU 10	Arg	Ser	AIa	ьys	15	TTE
Thr	Asp	Gl u	Ile 20	Asp	Ala	Ile	Lys	Lys 25	Asp	Ala	Ala	Leu	Lys 30	Gly	Val
Asn	Phe	Asp 35	Ala	Phe	Lys	Asp	Lys 40	Lys	Thr	Gly	Ser	Gly 45	Val	Ser	Glu
Asn	Pro 50	Phe	Ile	Leu	Glu	Ala 55	Lys	Val	Arg	Ala	Thr 60	Thr	Val	Ala	Glu
65					70					75			Lys		80
				85					90				Phe	95	
	_		100			•	-	105					Lys 110		
		115					120					125	Gly		
	130		-	-		135		_			140		His		
145	-	_			150	-	_			155			Thr		160
		_		165					170				Asp	175	
-	-		180					185	_	-			190 Ser		
		195				-	200					205	Gln		
_	210		,		_	215		_	_	_	220		Ala		
225		•			230				-	235				-	240

Tyr Ala Ile Ser Thr Leu Ile Lys Gln Lys Leu Asp Gly Leu Lys Asn 245 250 250

Glu Gly Leu Lys Glu Lys Ile Asp Ala Ala Lys Lys Cys Ser Glu Thr 265 260 Phe Thr Asn Lys Leu Lys Glu Lys His Thr Asp Ser Phe Gly Lys Glu Gly Val Thr Asp Ala Asp Ala Lys Glu Ala Ile Leu Lys Thr Asn Gly Thr Lys Thr Lys Gly Ala Glu Glu Leu Gly Lys Leu Phe Glu Ser Val 310 315 Glu Val Leu Ser Lys Ala Ala Lys Glu Met Leu Ala Asn Ser Val Lys 330 Glu Leu Thr Ser Pro Val Val Ala Glu Ser Pro Lys Lys Pro 345 <213> Borrelia sp. Met Arg Gly Ser His His His His His Thr Gly Ala Thr Lys Ile Arg Leu Glu Arg Ser Ala Lys Asp Ile Thr Asp Glu Ile Asp Ala Ile Lys Lys Asp Ala Ala Leu Lys Gly Val Asn Phe Asp Ala Phe Lys Asp Lys Lys Thr Gly Ser Gly Val Ser Glu Asn Pro Phe Ile Leu Glu Ala 55 Lys Val Arg Ala Thr Thr Val Ala Glu Lys Phe Val Ile Ala Ile Glu Glu Glu Ala Thr Lys Leu Lys Glu Thr Gly Ser Ser Gly Glu Phe Ser Ala Met Tyr Asp Leu Met Phe Glu Val Ser Lys Pro Leu Gln Lys Leu

<210> 11 <211> 359 <212> PRT

<400> 11

5

Gly Ile Gln Glu Met Thr Lys Thr Val Ser Asp Ala Ala Glu Glu Asn 120

Pro Pro Thr Thr Ala Gln Gly Val Leu Glu Ile Ala Lys Lys Met Arg

135

Glu 145	Lys	Leu	Gln	Arg	Val 150	His	Thr	Lys	Asn	Tyr 155	Cys	Thr	Leu	Lys	Ly. 16
Lys	Glu	Asn	Ser	Thr 165	Phe	Thr	Asp	Glu	Lys 170	Cys	Lys	Asn	Asn	Asn 175	Th
Ser	Ala	Asn	Ser 180	Ala	Asp	Glu	Ser	Val 185	Lys	Gly	Pro	Asn	Leu 190	Thr	Gl
Ile	Ser	Lys 195	Lys	Ile	Thr	Asp	Ser 200	Asn	Ala	Val	Leu	Le u 205	Ala	Val	Lý
	210		Ala			215			_		220			-	
225	_	_	Lys		230					235					24
			Ser	245					250					255	
-		_	Leu 260				-	265		_		_	270	_	
-		275	Lys	-	_		280					285		_	
	290		Asp			295			•		300				
305			Lys		310			_		315		_			320
		,	Leu	325					330					335	
-			340 Pro					345					350	-	
	7-4	355		-,,	-,,										

<210> 12

<211> 493

<212> PRT

5 <213> Borrelia sp.

<400> 12

Met 1	Thr	Gly	Glu	Thr 5	Lys	Ile	Arg	Leu	Glu 10	Ser	Ser	Ala	Gln	Glu 15	Ile
Lys	Asp	Glu	Ile 20	Asn	Lys	Ile	Lys	Ala 25	Asn	Ala	Lys	Lys	Glu 30	Gly	Val
Lys	Phe	Glu 35	Ala	Phe	Thr	Asp	Lys 40	Gln	Thr	Gly	Ser	Lys 45	Val	Ser	Gl u
Lys	Pro 50	Glu	Phe	Ile	Leu	Lys 55	Ala	Lys	Ile	Lys	Ala 60	Ile	Gln	Val	Ala
G1u 65	Lys	Phe	Val	Lys	Ala 70	Ile	Lys	Glu	Glu	Ala 75	Glu	Lys	Leu	Lys	Lys 80
Ser	Gly	Ser	Ser	Gly 85	Ala	Phe	Ser	Ala	Met 90	Tyr	Asp	Leu	Met	Leu 95	Asp
Val	Ser	Lys	Pro 100	Leu	Glu	Glu	Ile	Gly 105	Ile	Gln	Lys	Met	Thr 110	Gly	Thr
Val	Thr	Lys 115	Gl u	Ala	Glu	Lys	Thr 120	Pro	Pro	Thr	Thr	Ala 125	Gľu	Gly	Ile
Leu	Ala 130	Ile	Ala	Gln	Ala	Met 135	Glu	Glu	Lys	Leu	Asn 140	Asn	Val	Asn	Lys
Lys 145	Gln	Gln	Asp	Ala	Leu 150	Lys	Asn	Leu	Glu	Glu 155	Lys	Ala	Asn	Thr	Al a 160
Ala	Thr	Thr	Ser	Gly 165	Thr	Gly	Lys	Ala	Arg 170	Leu	Glu	Ser	Ser	Val 175	Lys
Asp	Ile	Thr	Asp 180	Glu	Ile	Asp	Lys	Ala 185	Ile	Lys	Glu	Ala	Ile 190	Ala	Asp
Gly	Val	Lys 195	Leu	Asn	Glu	Leu	Glu 200	Gl u	Asn	Lys	Thr	Gly 205	Ala	Lys	Lys
Gly	Gly 210	Pro	Gln	Ile	Arg	Asp 215	Ala	Lys	Ile	Arg	Val 220	Ile	Asn	Leu	Ser
Val 225	Lys	Phe	Leu	Lys	Glu 230	Ile	Glu	Gl u	Glu	Ala 235	Asn	Ile	Leu	Lys	Asp 240
Asn	Val	Gly	Met	Asn 245	Lys	Val	Asp	Lys	Asp 250	Gln	Leu	Leu	Lys	Asp 255	Met

Tyr Asp Leu Met Leu Asn Ala Ala Gly Ser Leu Gln Lys Leu Gly Leu

				260					265					270		
	Gln	Glu	Met 275	Ile	Lys	Thr	Val	Thr 280	Gln	Ala	Ala	Glu	Lys 285	Thr	Pro	Pro
	Thr	Thr 290	Val	Glu	Gly	Ile	Leu 295	Met	Ile	Ala	Asn	Thr 300	Ile	Glu	Asp	Lys
	Leu 305	Lys	Lys	Ile	Lys	Gly 310	Lys	Gln	Glu	Thr	Asn 315	Lys	Lys	Asp	Glu	Ser 320
	Ala	Lys	Gly	Pro	Asn 325	Leu	Thr	Val	Ile	Ser 330	Lys	Lys	Ile	Thr	Asp 335	Ser
	Asn	Ala	Phe	Leu 340	Leu	Ala	Val	Lys	Glu 345	Val	Glu	Ala	Leu	Leu 350	Ser	Ser
	Ile	Asp	Glu 355	Leu	Ser	Lys	Ala	Ile 360	Gly	Lys	Lys	Ile	Lys 365	Asn	Asp	Gly
	Thr	Leu 370	Asp	Asn	Glu	Ala	Asn 375	Arg	Asn	Glu	Ser	Leu 380	Ile	Ala	Glÿ	Ala
	Tyr 385	Glu	Ile	Ser	Lys	Leu 390	Ile	Thr	Gln	Lys	Leu 395	Ser	Val	Leu	Asn	Ser 400
	Glu	Glu	Leu	Lys	Glu 405	Lys	Ile	Lys	Glu	Ala 41 0	Lys	Asp	Cys	Ser	Glu 415	Lys
	Phe	Thr	Thr	Lys 420	Leu	Lys	Asp	Ser	His 425	Ala	Glu	Leu	Gly	Ile 430	Gln	Ser
	Val	Gln	Asp 435	Asp	Asn	Ala	Lys	Lys 440	Ala	Ile	Leu	Lys	Thr 445	His	Gly	Thr
	Lys	Asp 450	Lys	Gly	Ala	Lys	G1u 455	Leu	Glu	Glu	Leu	Phe 460	Lys	Ser	Leu	Glu
	Ser 465	Leu	Ser	Lys	Ala	Ala 470	Gln	Ala	Ala	Leu	Thr 475	Asn	Ser	Val	Lys	Glu 480
	Leu	Thr	Asn	Pro	Val 485	Val	Ala	Glu	Ser	Pro 490	Lys	Lys	Pro			
<210> 13																
<211> 502																
<212> PRT																
<213> Borrelia s	sp.															

<400> 13

Met 1	Arg	Gly	Ser	His 5	His	His	His	His	His 10	Thr	Gly	Glu	Thr	Lys 15	Ile
Arg	Leu	Glu	Ser 20	Ser	Ala	Gln	Glu	Ile 25	Lys	Asp	Glu	Ile	Asn 30	Lys	Ile
Lys	Ala	Asn 35	Ala	Lys	Lys	Glu	Gly 40	Val	Lys	Phe	Glu	Ala 45	Phe	Thr	Asp
Lys	Gln 50	Thr	Gly	Ser	Lys	Val 55	Ser	Glu	Lys	Pro	Glu 60	Phe	Ile	Leu	Lys
Ala 65	Lys	Ile	Lys	Ala	I le 70	Gln	Val	Ala	Glu	Lys 75	Phe	Val	Lys	Ala	Ile 80
Lys	Glu	Glu	Ala	G1u 85	Lys	Leu	Lys	Lys	Ser 90	Gly	Ser	Ser	Gly	Ala 95	Phe
Ser	Ala	Met	туг 100	Asp	Leu	Met	Leu	Asp 105	Val	Ser	Lys	Pro	Leu 110	Glu	G1u
Ile	Gly	Ile 115	Gln	Lys	Met	Thr	Gly 120	Thr	Val	Thr	Lys	Glu 125	Ala	Glu	Lys
Thr	Pro 130	Pro	Thr	Thr	Ala	Glu 135	_	Ile	Leu	Ala	Ile 140	Ala	Gln	Ala	Met
Glu 145	Glu	Lys	Leu	Asn	Asn 150	Val	Asn	Lys	Lys	Gln 155	Gln	Asp	Ala	Leu	Lys 160
Asn	Leu	Glu	Glu	Lys 165	Ala	Asn	Thr	Ala	Ala 170	Thr	Thr	Ser	Gly	Thr 175	Gly
Lys	Ala	Arg	Leu 180	Glu	Ser	Ser	Val	Lys 185	Asp	Ile	Thr	Asp	Glu 190	Ile	Asp
Lys	Ala	Ile 195	Lys	Glu	Ala	Ile	Ala 200	Asp	Gly	Val	Lys	Leu 205	Asn	Glu	Leu
Gl u	Glu 210	Asn	Lys	Thr	Gly	Ala 215	Lys	Lys	Gly	Gly	Pro 220	Gln	Ile	Arg	Asp
Ala 225	Lys	Ile	Arg	Val	Ile 230	Asn	Leu	Ser	Val	Lys 235	Phe	Leu	Lys	Glu	Ile 240
Glu	Glu	Glu	Ala	Asn 245	Ile	Leu	Lys	Asp	Asn 250	Val	Gly	Met	Asn	Lys 255	Val

Asp	Lys	Asp	Gln 260	Leu	Leu	Lys	Asp	Met 265	Tyr	Asp	Leu	Met	Leu 270	Asn	Ala
Ala	Gly	Ser 275	Leu	Gln	Lys	Leu	Gly 280	Leu	Gln	Glu	Met	11e 285	Lys	Thr	Val
Thr	Gln 290	Ala	Ala	Glu	Lys	Thr 295	Pro	Pro	Thr	Thr	Val 300	Glu	Gly	Ile	Let
Met 305	Ile	Ala	Asn	Thr	11e 310	Glu	Asp	Lys	Leu	Lys 315	Lys	Ile	Lys	Gly	Lys 320
Gln	Glu	Thr	Asn	Lys 325	Lys	Asp	Glu	Ser	Ala 330	Lys	Gly	Pro	Asn	Leu 335	Thi
Val	Ile	Ser	Lys 340	Lys	Ile	Thr	Asp	Ser 345	Asn	Ala	Phe	Leu	Leu 350	Ala	Val
Lys	Glu	Val 355	Gl u	Ala	Leu	Leu	Ser 360	Ser	Ile	Asp	Glu	Leu 365	Ser	Lys	Ala
Ile	Gly 370	Lys	Lys	Ile	Lys	Asn 375	Asp	Gly	Thr	Leu	Asp 380	Asn	Glu	Ala	Ası
Arg 385	Asn	Glu	Ser	Léu	Ile 390	Ala	Gly	Ala	Tyr	Glu 395	Ile	Ser	Lys	Leu	11e 400
Thr	Gln	Lys	Leu	Ser 405	Val	Leu	Asn	Ser	Glu 410	Glu	Leu	Lys	Glu	Lys 415	Ile
Lys	Gl u	Ala	Lys 420	-	Cys	Ser	Glu	Lys 425	Phe	Thr	Thr	Lys	Leu 430	Lys	Asp
Ser	His	Ala 435	Glu	Leu	Gly	Ile	Gln 440	Ser	Val	Gln	Asp	Asp 445	Asn	Ala	Lys
Lys	Ala 450	Ile	Leu	Lys	Thr	His 455	Gly	Thr	Lys	Asp	Lys 460	Gly	Ala	Lys	G1u
Leu 465	Glu	Glu	Leu	Phe	Lys 470	Ser	Leu	Glu	Ser	Leu 475	Ser	Lys	Ala	Ala	G1r 480
Ala	Ala	Leu	Thr	Asn 485	Ser	Val	Lys	Glu	Leu 490	Thr	Asn	Pro	Val	Val 495	Ala
Glu	Ser	Pro	Lys 500	Lys	Pro										

<210> 14

<211> 506

<212> PRT

5 <213> Borrelia sp.

<400> 14

	Met 1	Arg	Gly	Ser	His 5	His	His	His	His	His 10	Thr	Gly	Glu	Thr	Lys 15	Ile
2	Arg	Leu	Glu	Ser 20	Ser	Ala	Gln	Glu	11e 25	Lys	Asp	Glu	Ile	Asn 30	Lys	Ile
1	Lys	Ala	Asn 35	Ala	Lys	Lys	Glu	Gly 40	Val	Lys	Phe	Glu	Ala 45	Phe	Thr	Asp
1	Ĺys	Gln 50	Thr	Gly	Ser	Lys	Val 55	Ser	Glu	Lys	Pro	Glu 60	Phe	Ile	Leu	Lys
	Ala 65	Lys	Ile	Lys	Ala	11e 70	Gln	Val	Ala	Glu	Lys 75	Phe	Val	Lys	Ala	Ile 80
1	Lys	Glu	Glu	Ala	Glu 85	Lys	Leu	Lys	Lys	Ser 90	Gly	Ser	Ser	Gly	Ala 95	Phe
5	Ser	Ala	Met	Tyr 100	Asp	Leu	Met	Leu	Asp 105	Val	Ser	Lys	Pro	Leu 110	Glu	Glu
]	Ile	Gly	Ile 115	Gln	Lys	Met	Thr	Gly 120	Thr	Val	Thr	Lys	Glu 125	Ala	Glu	Lys
7	Chr	Pro 130	Pro	Thr	Thr	Ala	Glu 135	Gly	Ile	Leu	Ala	Ile 140	Ala	Gln	Ala	Met
	31u 145	Glu	Lys	Leu	Asn	Asn 150	Val	Asn	Lys	Lys	Gln 155	Gln	Asp	Ala	Leu	Lys 160
7	Asn	Leu	Glu	Glu	Lys 165	Ala	Asn	Thr	Ala	Ala 170	Thr	Thr	Ser	Gly	Thr 175	Gly
I	Lys	Ala	Arg	Leu 180	Glu	Ser	Ser	Val	Lys 185	Asp	Ile	Thr	Asp	Glu 190	Ile	Asp
1	Lys	Ala	Ile 195	Lys	Glu	Ala	Ile	Ala 200	Asp	Gly	Val	Lys	Leu 205	Asn	Glu	Leu
C	Glu	Glu 210	Asn	Lys	Thr	Gly	Ala 215	Lys	Lys	Gly	Gly	Pro 220	Gln	Ile	Arg	Asp
	Ala 225	Lys	Ile	Arg	Val	Ile 230	Asn	Leu	Ser	Val	Lys 235	Phe	Leu	Lys	Glu	Ile 240

Glu	Glu	Glu	Ala	Asn 245	Ile	Leu	Lys	Asp	Asn 250	Val	Gly	Met	Asn	Lys 255	Val
Asp	Lys	Asp	Gln 260	Leu	Leu	Lys	Asp	Met 265	Tyr	Asp	Leu	Met	Leu 270	Asn	Ala
Ala	Gly	Ser 275	Leu	Gln	Lys	Leu	Gly 280	Leu	Gln	G1u	Met	Ile 285	Lys	Thr	Val
Thr	Gln 290	Ala	Ala	Glu	Lys	Thr 295	Pro	Pro	Thr	Thr	Val 300	G1u	Gly	Ile	Leu
Met 305	Ile	Ala	Asn	Thr	Ile 310	Glu	Asp	Lys	Leu	Lys 315	Lys	Ile	Lys	Gly	Lys 320
Gln	Glu	Thr	Asn	Lys 325	Lys	Gly	Ser	Gly	Gly 330	Asp	Glu	Ser	Ala	Lys 335	Gly
Pro	Asn	Leu	Thr 340	Val	Ile	Ser	Lys	Lys 345	Ile	Thr	Asp	Ser	Asn 350	Ala	Phe
Leu	Leu	Ala 355	Val	Lys	Glu	Val	Glu 360	Ala	Leu	Leu	Ser	Ser 365	Ile	Asp	Glu
Leu	Ser 370	Lys	Ala	Ile	Gly	Lys 375	Lys	Ile	Lys	Asn	Asp 380	Gly	Thr	Leu	Asp
Asn 385	Glu	Ala	Asn	Arg	Asn 390	Glu	Ser	Leu	Ile	Ala 395	Gly	Ala	Tyr	Glu	11e 400
Ser	Lys	Leu	Ile	Thr 405	Gln	Lys	Leu	Ser	Val 410	Leu	Asn	Ser	Glu	Glu 415	Leu
Lys	Gl u	Lys	Ile 420	Lys	Glu	Ala	Lys	Asp 425	Cys	Ser	Glu	Lys	Phe 430	Thr	Thr
Lys	Leu	Lys 435	Asp	Ser	His	Ala	Glu 440	Leu	Gly	Ile	Gln	Ser 445	Val	Gln	Asp
Asp	Asn 450	Ala	Lys	Lys	Ala	Ile 455	Leu	Lys	Thr	His	Gly 460	Thr	Lys	Asp	Lys
Gly 465	Ala	Lys	Glu	Leu	G1u 470	Glu	Leu	Phe	Lys	Ser 475	Leu	Glu	Ser	Leu	Ser 480
_			Gln Ala	485					490		Lys	Glu	Leu	Thr 495	Asn
		_	500			_		50							

<210> 15

<211> 1086

5 <212> ADN

<213> Borrelia sp.

<400> 15

atgagcctga	ccggcaaagc	gcgtctggaa	agcagcgtga	aagatattac	caacgaaatt	60
gaaaaagcga	ttaaagaagc	ggaagatgcg	ggcgtgaaaa	ccgatgcgtt	taccgaaacc	120
cagaccggcg	gcaaagtggc	gggcccgaaa	attcgtgcgg	cgaaaattcg	tgtggcggat	180
ctgaccatta	aatttctgga	agcgaccgaa	gaagaaacca	ttacctttaa	agaaaatggc	240
gcgggcgaag	atgaatttag	cggcatttat	gatctgattc	tgaacgcggc	gaaagcggtg	300
gaaaaaattg	gcatgaaaga	tatgaccaaa	accgtggaag	aagcggcgaa	agaaaatccg	360
aaaaccaccg	cgaacggtat	tattgaaatt	gtgaaagtga	tgaaagcgaa	agtggaaaat	420
attaaagaaa	aacagaccaa	aaaccagaaa	aaaaaaaaca	ccctgagcgc	gattctgatg	480
accctgtttc	tgtttattag	ctgcaacaac	agcggcaaag	gcggcgatag	cgcgagcacc	540
aacccggcgg	atgaaagcgc	gaaaggcccg	aacctgaccg	aaattagcaa	aaaaatcacc	600
gatagcaacg	cgtttgtgct	ggcggtgaaa	gaagtggaaa	ccctggttct	gagcattgat	660
gaactggcga	aaaaagcgat	tggccagáaa	atcgataaca	acaacggcct	ggcggcgctg	720
aacaaccaga	acggcagcct	gctggcgggt	gcgtatgcga	ttagcaccct	gattaccgaa	780
aaactgagca	aactgaaaaa	cctggaagaa	ctgaaaaccg	aaatcgcgaa	agcgaaaaaa	840
tgcagcgaag	aatttaccaa	caaactgaaa	agcggccatg	cggatctggg	caaacaggat	900
gcgaccgatg	atcatgcgaa	agcggcgatt	ctgaaaaccc	atgcgaccac	cgataaaggc	960
gcgaaagaat	ttaaagacct	gttcgaaagc	gtggaaggcc	tgctgaaagc	ggcgcaggtg	1020
gcgctgacca	acagcgtgaa	agaactgacc	agcccggtgg	ttgcggaaag	cccgaaaaaa	1080
ccgtaa						1086

<210> 16

<211> 1113

5 <212> ADN

<213> Borrelia sp.

<400> 16

atgagggat cccatcatca tcatcatca agcctgaccg gcaaagcgcg tctggaaagc 60
agcgtgaaag atattaccaa cgaaattgaa aaagcgatta aagaagcgga agatgcgggc 120
gtgaaaaccg atgcgtttac cgaaacccag accggcggca aagtggcggg cccgaaaatt 180
cgtgcggcga aaattcgtgt ggcggatctg accattaaat ttctggaagc gaccgaagaa 240
gaaaccatta cctttaaaga aaatggcgcg ggcgaagatg aatttagcgg catttatgat 300

ctgattctga acgcggcgaa agcggtggaa aaaattggca tgaaagatat gaccaaaacc 360 gtggaagaag cggcgaaaga aaatccgaaa accaccgcga acggtattat tgaaattgtg 420 480 aaagtgatga aagcgaaagt ggaaaatatt aaagaaaaac agaccaaaaa ccagaaaaaa aaaaacaccc tgaqcgcgat tctgatgacc ctgtttctgt ttattagctg caacaacagc 540 ggcaaaggcg gcgatagcgc gagcaccaac ccggcggatg aaagcgcgaa aggcccgaac 600 660 ctgaccgaaa ttagcaaaaa aatcaccgat agcaacgcgt ttgtgctggc ggtgaaagaa 720 gtggaaaccc tggttctgag cattgatgaa ctggcgaaaa aagcgattgg ccagaaaatc 780 gataacaaca acggcctggc ggcgctgaac aaccagaacg gcagcctgct ggcgggtgcg tatgcgatta gcaccctgat taccgaaaaa ctgagcaaac tgaaaaacct ggaagaactg 840 aaaaccgaaa tcgcgaaagc gaaaaaatgc agcgaagaat ttaccaacaa actgaaaagc 900 960 ggccatgcgg atctgggcaa acaggatgcg accgatgatc atgcgaaagc ggcgattctg aaaacccatg cgaccaccga taaaggcgcg aaagaattta aagacctgtt cgaaagcgtg 1020 1080 gaaggcctgc tgaaagcggc gcaggtggcg ctgaccaaca gcgtgaaaga actgaccagc ccggtggttg cggaaagccc gaaaaaaccg taa 1113

<210> 17

<211> 1053

<212> ADN

<213> Borrelia sp.

<400> 17

5

60 atgaccggcg cgaccaaaat ccgcctggaa cgcagcgcga aagatatcac agatgaaatc gatgcgatca agaaagacgc ggcgctgaaa ggcgtcaact ttgatgcatt taaagataaa 120 aagaccgggt ctggagttag cgagaatcca tttattctgg aagcgaaagt tcgtgctacg 180 acggtggcag aaaaatttgt gattgcgatt gaagaagaag caacgaaact gaaagaaacc 240 ggcagcagtg gcgaatttag tgcgatgtat gacctgatgt ttgaggtctc taaaccgctg 300 cagaaactgg ggattcaaga aatgaccaag acggtatctg atgcagcgga agaaaacccg 360 cctacgacgg cgcaaggcqt cctggaaatt gccaagaaaa tgcgcgaaaa actgcaacgc 420 gttcatacca aaaattattg cactctgaag aagaaagaga atagcacttt tacggatgaa 480 aaatgtaaaa ataataacac cagcgcgaac agcgcggatg aaagcgtgaa aggcccgaac 540 600 ctgaccgaaa ttagcaaaaa aatcaccgat agcaacgcgg tgctgctggc ggtgaaagaa gtggaagcgc tgctgagcag cattgatgaa attgcggcga aagcgattgg caaaaaaatc 660 catcagaaca acggcctgga taccgaaaac aaccataacg gcagcctgct ggcgggtgcg 720 780 tatgcgatta gcaccctgat taaacagaaa ctggatggcc tgaaaaacga aggcttaaaa 840 gaaaaaattg atgcggcgaa aaaatgcagc gaaaccttca ccaacaaact gaaagaaaaa cataccgata gcttcggtaa agaaggcgtg accgacgcgg atgcgaaaga agcgattctg 900

aaaaccaacg gcaccaaaac caaaggcgcg gaagaactgg gcaaactgtt tgaaagcgtg

5

10

960

gaagttetga geaaagegge caaagaaatg etggegaaca gegtgaaaga actgaecage 1020 ccggtggtgg cagaatctcc gaaaaagccc taa 1053 <210> 18 <211> 1080 <212> ADN <213> Borrelia sp. <400> 18 atgaggggat cccatcatca tcatcatcac accggcgcga ccaaaatccg cctggaacgc 60 agegegaaag atateacaga tgaaategat gegateaaga aagaegegge getgaaagge 120 qtcaactttg atgcatttaa agataaaaag accgggtctg gagttagcga gaatccattt 180 attetggaag egaaagtteg tgetacgaeg gtggeagaaa aatttgtgat tgegattgaa 240 300 gaagaagcaa cgaaactgaa agaaaccggc agcagtggcg aatttagtgc gatgtatgac 360 ctgatgtttg aggtctctaa accgctgcag aaactgggga ttcaagaaat gaccaagacg qtatctqatq caqcqqaaqa aaacccqcct acqacqqcqc aagqcqtcct ggaaattqcc 420 aagaaaatgc gcgaaaaact gcaacgcgtt cataccaaaa attattgcac tctgaagaag 480 540 aaagagaata gcacttttac ggatgaaaaa tgtaaaaata ataacaccag cgcgaacagc 600 gcggatgaaa gcgtgaaagg cccgaacctg accgaaatta gcaaaaaaat caccgatagc 660 aacgcggtgc tgctggcggt gaaagaagtg gaagcgctgc tgagcagcat tgatgaaatt gcggcgaaag cgattggcaa aaaaatccat cagaacaacg gcctggatac cgaaaacaac 720 780 cataacggca gcctgctggc gggtgcgtat gcgattagca ccctgattaa acagaaactg gatggcctga aaaacgaagg cttaaaagaa aaaattgatg cggcgaaaaa atgcagcgaa 840 accttcacca acaaactgaa agaaaaacat accgatagct tcggtaaaga aggcgtgacc 900 gacgcggatg cgaaagaagc gattctgaaa accaacggca ccaaaaccaa aggcgcggaa 960 gaactgggca aactgtttga aagcgtggaa gttctgagca aagcggccaa agaaatgctg 1020 1080 gcgaacagcg tgaaagaact gaccagcccg gtggtggcag aatctccgaa aaagccctaa <210> 19 <211> 1482 <212> ADN <213> Borrelia sp. <400> 19 atgactggtg aaacgaaaat tcgtctggaa tcatccgctc aggagattaa agacgaaatc 60 aacaaaatta aagcaaacgc caagaaagaa ggcgtgaagt ttgaagcgtt taccgataaa 120 cagaccggca gcaaagtttc agaaaaaccg gagtttattc tgaaagccaa aattaaagcg 180 atccaggttg cggaaaaatt cgtgaaagcg attaaagaag aagccgaaaa actgaaaaaa 240 tctggttcga gcggcgcatt ttccgcaatg tatgatctga tgctggatgt aagcaaaccg 300

ctggaagaga	ttggcattca	gaaaatgacc	ggcactgtca	caaaggaagc	ggaaaaaaca	360
ccgccaacca	ctgcagaagg	gattctggcg	atcgcccagg	cgatggaaga	gaaactgaac	420
aacgttaata	aaaaacagca	ggatgcactg	aaaaacctgg	aagagaaggc	gaacaccgcg	480
gcgactacgt	cagggaccgg	taaagcgcgt	ctggaaagct	cggtaaaaga	tatcacagac	540
gaaattgaca	aagccatcaa	agaagccatt	gcagacggcg	ttaaactgaa	tgaactggaa	600
gaaaataaaa	ccggtgcgaa	aaaaggtggc	ccgcagattc	gcgatgcgaa	aatccgtgtg	660
atcaacctga	gcgttaaatt	cctgaaagaa	atcgaggagg	aagcaaacat	cctgaaggat	720
aatgttggca	tgaacaaggt	agataaagat	cagctgctga	aagacatgta	cgacctgatg	780
ctgaacgcgg	ctggcagtct	gcagaaactg	ggtctgcagg	aaatgatcaa	aacggttacc	840
caagctgcgg	aaaaaacccc	accgaccacg	gttgaaggca	ttctgatgat	tgcaaacacc	900
attgaagaca	aactgaagaa	aatcaaaggc	aaacaggaaa	caaacaaaaa	agatgaaagc	960
gcaaaaggcc	cgaatctgac	cgtcatttct	aagaaaatta	ccgattcaaa	cgcgtttctg	1020
ctggccgtga	aagaggttga	agccctgctg	tcctcgattg	atgaactgag	caaagctatc	1080
ggaaagaaaa	ttaaaaatga	tgggacgctg	gataacgagg	caaatcgcaa	tgaaagcctg	1140
attgcaggcg	catatgaaat	cagtaaactg	attacacaga	aactgagtgt	cctgaacagc	1200
gaagaactga	aagaaaaaat	caaagaagcc	aaagactgtt	cggaaaagtt	tactaccaaa	1260
ctgaaagact	cgcatgctga	actgggtatt	cagtcagtgc	aagatgataa	tgcgaaaaaa	1320
gcaattctga	aaacgcacgg	gacgaaagat	aaaggtgcca	aagagctgga	agaactgttt	1380
aaaagcctgg	aatcgctgag	taaagccgca	caggccgcgc	tgaccaatag	cgtgaaggaa	1440
ctgactaatc	cggttgtagc	agaatctccg	aaaaagccgt	aa		1482

<210> 20

<211> 1509

<212> ADN

<213> Borrelia sp.

<400> 20

5

atgaggggat cccatcatca ccaccatcat actggtgaaa cgaaaattcg tctggaatca 60 tccgctcagg agattaaaga cgaaatcaac aaaattaaag caaacgccaa gaaagaaggc 120 gtgaagtttg aagcgtttac cgataaacag accggcagca aagtttcaga aaaaccggag 180 tttattctga aagccaaaat taaagcgatc caggttgcgg aaaaattcgt gaaagcgatt 240 aaagaagaag ccgaaaaact gaaaaaatct ggttcgagcg gcgcattttc cgcaatgtat 300 gatctgatgc tggatgtaag caaaccgctg gaagagattg gcattcagaa aatgaccggc 360 actgtcacaa aggaagcgga aaaaacaccg ccaaccactg cagaagggat tctggcgatc 420 gcccaggcga tggaagagaa actgaacaac gttaataaaa aacagcagga tgcactgaaa 480 aacctggaag agaaggcgaa caccgcggcg actacgtcag ggaccggtaa agcgcgtctg 540

gaaagctcgg	taaaagatat	cacagacgaa	attgacaaag	ccatcaaaga	agccattgca	600
gacggcgtta	aactgaatga	actggaagaa	aataaaaccg	gtgcgaaaaa	aggtggcccg	660
cagattcgcg	atgcgaaaat	ccgtgtgatc	aacctgagcg	ttaaattcct	gaaagaaatc	720
gaggaggaag	caaacatcct	gaaggataat	gttggcatga	acaaggtaga	taaagatcag	780
ctgctgaaag	acatgtacga	cctgatgctg	aacgcggctg	gcagtctgca	gaaactgggt	840
ctgcaggaaa	tgatcaaaac	ggttacccaa	gctgcggaaa	aaaccccacc	gaccacggtt	900
gaaggcattc	tgatgattgc	aaacaccatt	gaagacaaac	tgaagaaaat	caaaggcaaa	960
caggaaacaa	acaaaaaaga	tgaaagcgca	aaaggcccga	atctgaccgt	catttctaag	1020
aaaattaccg	attcaaacgc	gtttctgctg	gccgtgaaag	aggttgaagc	cctgctgtcc	1080
tcgattgatg	aactgagcaa	agctatcgga	aagaaaatta	aaaatgatgg	gacgctggat	1140
aacgaggcaa	atcgcaatga	aagcctgatt	gcaggcgcat	atgaaatcag	taaactgatt	1200
acacagaaac	tgagtgtcct	gaacagcgaa	gaactgaaag	aaaaaatcaa	agaagccaaa	1260
gactgttcgg	aaaagtttac	taccaaactg	aaagactcgc	atgctgaact	gggtattcag	1320
tcagtgcaag	atgataatgc	gaaaaaagca	attctgaaaa	cgcacgggac	gaaagataaa	1380
ggtgccaaag	agctggaaga	actgtttaaa	agcctggaat	cgctgagtaa	agccgcacag	1440
gccgcgctga	ccaatagcgt	gaaggaactg	actaatccgg	ttgtagcaga	atctccgaaa	1500
aagccgtaa						1509

<210> 21

<211> 1521

<212> ADN

5 <213> Borrelia sp.

<400> 21

atgaggggat cccatcatca ccaccatcat actggtgaaa cgaaaattcg tctggaatca 60 tccgctcagg agattaaaga cgaaatcaac aaaattaaag caaacgccaa gaaagaaggc 120 gtgaagtttg aagcgtttac cgataaacag accggcagca aagtttcaga aaaaccggag 180 240 tttattctga aagccaaaat taaagcgatc caggttgcgg aaaaattcgt gaaagcgatt aaagaagaag ccgaaaaact gaaaaaatct ggttcgagcg gcgcattttc cgcaatgtat 300 gatctgatgc tggatgtaag caaaccgctg gaagagattg gcattcagaa aatgaccggc 360 actgtcacaa aggaagcgga aaaaacaccg ccaaccactg cagaagggat tctggcgatc 420 gcccaggcga tggaagagaa actgaacaac gttaataaaa aacagcagga tgcactgaaa 480 aacctggaag agaaggcgaa caccgcggcg actacgtcag ggaccggtaa agcgcgtctg 540 gaaagctcgg taaaagatat cacagacgaa attgacaaag ccatcaaaga agccattgca 600 gacggcgtta aactgaatga actggaagaa aataaaaccg gtgcgaaaaa aggtggcccg 660 cagattegeg atgegaaaat eegtgtgate aacetgageg ttaaatteet gaaagaaate 720

```
gaggaggaag caaacatcct gaaggataat gttggcatga acaaggtaga taaagatcag
                                                                     780
                                                                     840
ctgctgaaag acatgtacga cctgatgctg aacgcggctg gcagtctgca gaaactgggt
                                                                     900
ctgcaggaaa tgatcaaaac ggttacccaa gctgcggaaa aaaccccacc gaccacggtt
                                                                     960
gaaggcattc tgatgattgc aaacaccatt gaagacaaac tgaagaaaat caaaggcaaa
caggaaacaa acaaaaagg ttccgggggt gatgaaagcg caaaaggccc gaatctgacc
                                                                    1020
gtcatttcta agaaaattac cgattcaaac gcgtttctgc tggccgtgaa agaggttgaa
                                                                    1080
                                                                    1140
gccctgctgt cctcgattga tgaactgagc aaagctatcg gaaagaaaat taaaaatgat
gggacgctgg ataacgaggc aaatcgcaat gaaagcctga ttgcaggcgc atatgaaatc
                                                                    1200
agtaaactga ttacacagaa actgagtgtc ctgaacagcg aagaactgaa agaaaaaatc
                                                                    1260
                                                                    1320
aaagaagcca aagactgttc ggaaaagttt actaccaaac tgaaagactc gcatgctgaa
                                                                    1380
ctgggtattc agtcagtgca agatgataat gcgaaaaaag caattctgaa aacgcacggg
acgaaagata aaggtgccaa agagctggaa gaactgttta aaagcctgga atcgctgagt
                                                                    1440
aaagccgcac aggccgcgct gaccaatagc gtgaaggaac tgactaatcc ggttgtagca
                                                                    1500
                                                                    1521
gaatctccga aaaagccgta a
```

<210> 22

<211> 6

<212> PRT

5 <213> Artificial

<220>

<223> Tag

<400> 22

His His His His His His

10 <210> 23

<211> 18

<212> ADN

<213> Artificial

<220>

15 <223> Tag

<400> 23

catcatcatc atcatcat 18

<210> 24

<211> 18

20 <212> ADN

<213> Artificial

<220>

<223> Tag

	<400> 24
	catcatcatc atcatcac 18
	<210> 25
	<211> 18
5	<212> ADN
	<213> Artificial
	<220>
	<223> Tag
	<400> 25
10	catcatcacc accatcat 18
	<210> 26
	<211> 4
	<212> PRT
	<213> Artificial
15	<220>
	<223> aa+
	<400> 26
	Met Arg Gly Ser 1
	<210> 27
20	<211> 12
	<212> ADN
	<213> Artificial
	<220>
	<223> aa+
25	<400> 27
	atgaggggat cc 12
	<210> 28
	<211> 4
	<212> PRT
30	<213> Artificial
	<220>
	<223> enlazador
	<400> 28
	Gly Ser Gly Gly 1
0.5	
35	<210> 29

<212> ADN

<213> Artificial

<220>

<223> enlazador

5 <400> 29

ggttccgggg gt 12

<210> 30

<211> 274

<212> PRT

10 <213> Borrelia sp.

<400> 30

Lys 1	Asn	Asn	Val	Gly 5	Gly	Asp	Asp	Lys	Lys 10	Asp	Thr	Ala	Ala	Ser 15	Ile
Phe	Tyr	Gln	Ser 20	Ile	Ile	Asn	Leu	Gly 25	Asn	Gly	Phe	Ile	G1u 30	Val	Ph€
Asn	Ala	Phe 35	Ser	Gly	Leu	Val	Ala 40	Asp	Ala	Phe	Ser	Lys 45	Ala	Asp	Pro
Lys	Lys 50	Ser	Asp	Val	Lys	Thr 55	Tyr	Phe	Asp	Ser	Ile 60	Thr	Lys	Thr	Lev
Lýs 65	Asp	Thr	Lys	Thr	Lys 70	Leu	Glu	Asp	Ile	Ser 75	Lys	Gl u	Lys	Thr	Gly 80
Gly	Glu	Lya	Thr	Pro 85	Ala	Val	Glu	G1y	Ile 90	Ala	Glu	Val	Val	Lys 95	Thr
Val	Gly	Glu	Trp 100	Leu	Asp	Gly	Leu	Ile 105	Lys	Ala	Ala	Glu	Gly 110	Gly	Gly
Lys	Ala	Ala 115	Asp	Gly	Gly	Gly	Ser 120	Asp	Lys	Ile	Gly	As n 125	Val	Ala	Ala
Gly	Gly 130	Gly	Ala	Gly	Ala	Asp 135	Lys	Glu	Ser	Val	Asn 140	Gly	Ile	Ala	Gly
Ala 145	Ile	Lys	Gly	Ile	Val 150	Glu	Ala	Ala	Lys	Lys 155	Val	Glu	Gly	Val	Lys 160
Phe	Ala	Pro	Lys	Ala 165	Ala	Ala	Asp	Ala	Ala 170	Ala	Ala	Asp	Gly	Asn 175	Lys
Lys	Ala	Gly	Lys 180	Leu	Phe	Gly	Thr	Ala 185	Ala	Gly	Ala	Asp	Ala 190	Gly	Asp
Val	Lys	Asp 195	Ala	Ala	Ala	Ala	Val 200	Gly	Ala	Val	Ser	Gly 205	Gl u	Gln	Ile
Leu	Asn 210	Ala	Ile	Val	Thr	Ala 215	Ala	Gly	Gln	Ala	Gly 220	Gln	Ala	Gly	Lys
Lys 225	Ala	Asp	Glu	Ala	Lys 230	Asn	Ala	Ile	Glu	Ala 235	Ala	Ile	Gly	Ala	Ala 240
Gly	Asp	Ala	Asp	Phe 245	Gly	Asp	Asp	Ile	Lys 250	Lys	Lys	Asn	Asp	Gln 255	Ile
Ala	Ala	Ala	Leu 260	Val	Leu	Arg	Gly	Val 265	Ala	Lys	Asp	Gly	Lys 270	Phe	Ala
G1.,	n1-														

<210> 31

<211> 280

-21	2	PR1	г
< /	//	$-\kappa$	

<213> Borrelia sp.

<400> 31

Lys Asn Ser Ala Gly Asp Ile Ser Asn Lys Ser Asp Glu Asn Asp Pro 1 5 10

Thr Thr Leu Phe Tyr Gln Ser Ile Ile Lys Leu Gly Asn Gly Phe Leu 20 25 30

Glu Val Phe Thr Ser Phe Gly Gly Met Val Ala Asp Ala Phe Gly Ala 35 40

Lys Trp Glu Ala Lys Lys Ser Thr Ile Lys Thr Tyr Phe Asp Thr Met 50 60

Ser Gln Lys Leu Glu Glu Thr Lys Lys Gly Leu Glu Lys Leu Ala Asn 65 70 75 80

Asn Gly Glu Glu Ser Glu Ser Glu Asn Lys Ile Gly Asp Ala Val Ala 85 90 95

Ser Thr Ile Lys Glu Val Gly Glu Trp Leu Thr Glu Met Ala Thr Ala 100 105 110

Ala Gly Gly Ala Ala Lys Val Ala Asp Ser Gly Gly Asp Glu Ile Gly 115 120 125

Lys Val Glu Asn Ala Gly Ala Asn Ala Asn Lys Gly Asp Lys Thr Ser 130 140

Val Asn Gly Ile Ala Lys Gly Ile Lys Ala Ile Val Gly Val Ala Lys 145 150 155 160

Lys Ala Gly Val Lys Trp Glu Pro Ala Ala Ala Ala Glu Ala Gly Asp 165 170 175

	Ala	Asn	Gly	Asn 180	Lys	Asn	Ala	Gly	Lys 185	Leu	Phe	Ala	Thr	Gly 190	Gly	G1:
	Gly	Asp	Ala 195	Ala	Ala	Gly	Lys	Glu 200	Ala	Ala	Leu	Ala	Val 205	Ser	Gly	Va.
	Ser	Gly 210	Asp	Gln	Ile	Leu	Asn 215	Ala	Ile	Val	Thr	Asp 220	Ala	Glu	Gly	As
	Lys 225	Asn	Gly	Val	Ala	Thr 230	Ala	Asn	Ala	Thr	Asn 235	Ser	Ile	Asp	Ala	A1:
	Ile	Gly.	Ala	Asp	Gly 245	Asp	Asn	Gly	Ala	Ser 250	Gly	Phe	Asp	Ala	Met 255	Ly
	Lys	Lys	Asn	Asp 260	Lys	Ile	Ala	Ala	Ala 265	Ile	Val	Leu	Arg	Gly 270	Met	Ala
	Lys	Asp	Gly 2 75	Lys	Phe	Ala	Val	Lys 280								
s	sp.															
	Lys 1	Asn	Asn	Ala	Glu 5	Leu	Ala	Glu	Ala	Glu 10	Ala	Lys	Asn	Gln	Ser 15	Ala
	Lys	Asp	Phe	Tyr 20	His	Ala	Ile	Ile	Lys 25	Leu	Gly	Tyr	Gly	Phe 30	Val	As _]
	Val	Dh.	3	_	_		~ 1	_	17-1	a	3	77- 7	Dh.	m	T	
		Pne	asn 35	Ala	Ile	GTÀ	GTÀ	Leu 40	Val	ser	Asp	Val	45	TYE	гÀЗ	Al
	Asp	Pro 50	35					40					45		_	
	_	Pro	35 Lys	Lys	Ser	Asp	Val 55	40 Lys	Asn	Tyr	Phe	Asp 60	45 Ser	Ile	Ala	Se

<210> 32 <211> 284 <212> PRT

<213> Borrelia

<400> 32

5

Gly Glu Trp Ile Lys Glu Met His Lys Ala Val Glu Asp Thr Ala Lys 100 105 110

	Ala	Gly	Gly 115	Glu	Gly	Gly	Ser	Glu 120	Ser	Ile	Ala	Asn	Val 125	Ala	Ala	Gly
	Gly	Gly 130	Gly	Asn	Asp	Gly	Ala 135	Gly	Ala	Lys	Ala	Asp 140	Val	Asn	Ser	Val
	Thr 145	Gly	Ile	Ala	Lys	Gly 150	Met	Lys	Ala	Ile	Val 155	Asp	Ala	Ala	Gly	Lys 160
	Ala	Gly	Val	Glu	Leu 165	Lys	Pro	Ala	Ala	Ala 170	Gly	Gly	Ala	Ala	Ala 175	Asn
	Asp	Ala	G1y	Lys 180	Leu	Phe	Ala	Ser	Gly 185	Ala	Asn	Ala	Asn	Ala 190	Ala	Ala
	Asn	Ala	Asp 195	Asp	Ala	Glu	Gly	Ala 200	Ala	Glu	Ala	Ala	Gly 205	Lys	Ala	Val
		Ala 210			_	-	215			-		220		-		
	225	Ala				230	-				235					240
		Ala			245				_	250		_			255	
		Gly		260		-		_	265				Ala	11e 270	Val	Leu
	Arg	Gly	275	Ala	гÀз	ser	СТĀ	Lуs 280	Pne	Ala	Asn	GIu				
Sį	0.															
	Lys 1	Asn	Asn	Ala	Val 5	Gly	Lys	Gly	Asn	Asp 10	Asp	Lys	Asp	Ser	Val 15	Lys

<210> 33 <211> 279 <212> PRT

<213> Borrelia

<400> 33

5

Thr Phe Tyr Glu Ser Ile Ile Asn Leu Gly Asn Gly Phe Ile Asp Val

Phe Asn Ala Phe Ser Gly Leu Val Ala Asp Thr Phe Phe Lys Ser Asp

Pro Lys Lys Ser Asp Val Lys Thr Tyr Phe Glu Ser Ile Ser Ser Thr 50 60

Leu 65	Lys	Ala	Thr	Lys	Gly 70	Lys	Leu	Asp	Glu	Leu 75	Val	Ser	Ala	Lys	Ь 80
Gly	Glu	Gly	Gly	Ser 85	Val	Lys	Ala	Ser	Val 90	Glu	Ser	Ala	Val	Asp 95	G1
Val	Ser	Lys	Trp 100	Leu	Glu	Glu	Met	Ile 105	Lys	Ala	Ala	Glu	Glu 110	Ala	Al
Lys	Val	Gly 115	Gly	Thr	Gly	Gly	Asp 120	Gly	Lys	Ile	Gly	Asp 125	Ser	Ala	Al
Asn	His 130	Gly	Ala	Lys	Ala	Asp 135	Lys	Asp	Ser	Val	Lys 140	Gly	Ile	Ala	Ly
Gly 145	Ile	Lys	Gly	Ile	Val 150	Asp	Ala	Ala	Gly	Lys 155	Ala	Leu	Gly	Glu	Ly 16
Gly	Ala	Leu	Lys	Asp 165	Val	Lys	Ala	Ala	Ala 170	Asp	Asp	Glu	Ala	Asn 175	Al
Asp	Ala	Gly	Lys 180	Leu	Phe	Ala	Gly	Asn 185	Ala	Asn	Ala	Ala	Val 190	Gly	Al
Ala	Ala	Asp 195	Ile	Ala	Lys	Ala	Ala 200	Gly	Ala	Val	Thr	Ala 205	Val	Ser	G1
Glu	Gln 210	Ile	Leu	Lys	Ala	11e 215	Val	Glu	Ala	Ala	Gly 220	Asp	Pro	Ala	As
225		_	-	-	Ala 230				-	235					24
	-		-	245	Asp		-		250		_	-		255	-
Lys	Ser	Asp	Lys 260	Ile	Ala	Ala	Ala	Ile 265	Val	Leu	Arg	Gly	Val 270	Ala	Ly

Asp Gly Lys Phe Ala Val Lys 275

<210> 34

<211> 279

<212> PRT

5 <213> Borrelia sp.

<400> 34

1				10					15	
Ser Val Ile 6	Gln Leu 20	Gly Asn	Gly Ph 25	e Leu	Asp	Val	Phe	Thr 30	Ser	Phe
Gly Gly Leu V 35	Val Ala	Glu Ala	Phe G1 40	y Phe	Lys	Ser	Asp 45	Pro	Lys	Lys
Ser Asp Val I 50	Lys Thr	Tyr Phe 55	Thr Th	r Val	Ala	Ala 60	Lys	Leu	Glu	Lys
Thr Lys Thr A	_	Asn Ser 70	Leu Pr	o Lys	G1u 75	Lys	Ser	Asp	Ile	Ser 80
Ser Thr Thr G	Gly Lys 1 85	Pro Asp	Ser Th	r Gly 90	Ser	Val	Gly	Thr	Ala 95	Val
Glu Gly Ala I	lle Lys 100	Gl u V al	Ser Gl		Leu	Asp	Lys	Leu 110	Val	Lys
Ala Val Lys T	Thr Ala	Glu Gly	Ala Se 120	r Ser	Gly	Thr	Ala 125	Ala	Ile	Gly
Glu Val Val A 130	Ala Asp	Ala As p 135	Ala Al	a Lys	Val	Ala 140	Asp	Lys	Ala	Ser
Val Lys Gly I 145		Lys Gly 150	Ile Ly	s Glu	Ile 155	Val	Glu	Ala	Ala	Gly 160
Gly Ser Glu I	Lys Leu 1 165	Lys Ala	Val Al	a Ala 170	Ala	Lys	Gly	Glu	Asn 175	Asn
Lys Gly Ala 6 1	Gly Lys : 180	Leu Phe	Gly Ly 18		Gly	Ala	Ala	Ala 190	His	Gly
Asp Ser Glu A 195	Ala Ala :	Ser Lys	Ala Al 200	a Gly	Ala	Val	Ser 205	Ala	Val	Ser
Gly Glu Gln I 210	(le Leu	Ser Ala 215	Ile Va	l Thr	Ala	Ala 220	Asp	Ala	Ala	Glu
Gln Asp Gly I 225		Pro Glu 230	Glu Al	a Lys	Asn 235	Pro	Ile	Ala	Ala	Ala 240
Ile Gly Asp I	Lys Asp (245	Gly Gly	Ala Gl	u Phe 250	Gly	Gln	Asp	Glu	Met 255	Lys
Lys Asp Asp G	In Ile	Ala Ala	Ala Il	e Ala	Leu	Arg	Gly	Met	Ala	Lys
	260			265					270	

Asp Gly Lys Phe Ala Val Lys 275

<210> 35

<211> 25

<212> PRT

<213> Borrelia sp. <400> 35 Met Lys Lys Asp Asp Gln Ile Ala Ala Ala Ile Ala Leu Arg Gly Met Ala Lys Asp Gly Lys Phe Ala Val Lys 20 25 <210> 36 5 <211> 17 <212> PRT <213> Borrelia sp. <400> 36 Ile Val Ala Ala Ile Val Leu Arg Gly Val Ala Lys Ser Gly Lys Phe Ala 10 <210> 37 <211> 25 <212> PRT <213> Borrelia sp. <400> 37 Met Lys Lys Asp Asp Gln Ile Ala Ala Ala Met Val Leu Arg Gly Met Ala Lys Asp Gly Gln Phe Ala Leu Lys 20 25 15 <210> 38 <211> 348 <212> PRT <213> Borrelia sp. 20 <400> 38 Lys Asn Asn Val Gly Gly Asp Asp Lys Lys Asp Thr Ala Ala Ser Ile Phe Tyr Gln Ser Ile Ile Asn Leu Gly Asn Gly Phe Ile Glu Val Phe 20 25 30

- Asn Ala Phe Ser Gly Leu Val Ala Asp Ala Phe Ser Lys Ala Asp Pro 35 40 45
- Lys Ser Asp Val Lys Thr Tyr Phe Asp Ser Ile Thr Lys Thr Leu 50 55
- Lys Asp Thr Lys Thr Lys Leu Glu Asp Ile Ser Lys Glu Lys Thr Gly 65 70 75 80
- Gly Glu Lys Thr Pro Ala Val Glu Gly Ile Ala Glu Val Val Lys Thr 85 90 95
- Val Gly Glu Trp Leu Asp Gly Leu Ile Lys Ala Ala Glu Gly Gly 100 105 110
- Lys Ala Ala Asp Gly Gly Gly Ser Asp Lys Ile Gly Asn Val Ala Ala 115 120 125
- Gly Gly Gly Ala Gly Ala Asp Lys Glu Ser Val Asn Gly Ile Ala Gly 130 140
- Ala Ile Lys Gly Ile Val Glu Ala Ala Lys Lys Val Glu Gly Val Lys 145 150 155 160
- Phe Ala Pro Lys Ala Ala Ala Asp Ala Ala Ala Ala Asp Gly Asn Lys 165 170 175
- Lys Ala Gly Lys Leu Phe Gly Thr Ala Ala Gly Ala Asp Ala Gly Asp 180 185 190
- Val Lys Asp Ala Ala Ala Val Gly Ala Val Ser Gly Glu Gln Ile 195 200 205
- Leu Asn Ala Ile Val Thr Ala Ala Gly Gln Ala Gly Gln Ala Gly Lys
- Lys Ala Asp Glu Ala Lys Asn Ala Ile Glu Ala Ala Ile Gly Ala Ala 225 230 235 240
- Gly Asp Ala Asp Phe Gly Asp Asp Ile Lys Lys Lys Asn Asp Gln Ile 245 250 255
- Ala Ala Ala Leu Val Leu Arg Gly Val Ala Lys Asp Gly Lys Phe Ala 260 265 270
- Gly Ala Met Lys Lys Asp Asp Gln Ile Ala Ala Ala Ile Ala Leu Arg 275 280 285

	Gly	Met 290	Ala	Lys	Asp	Gly	Lys 295	Phe	Ala	Val	Lys	Asp 300	Gly	Glu	Lys	Glu
	Lys 305	Ala	Ile	Val	Ala	Ala 310	Ile	Val	Leu	Arg	Gly 315	Val	Ala	Lys,	Ser	Gly 320
	Lys	Phe	Ala	Met	Lys 325	Lys	Asp	Asp	Gln	Ile 330	Ala	Ala	Ala	Met	Val 335	Leu
	Arg	Gly	Met	Ala 340	Lys	Asp	Gly	Gln	Phe 345	Ala	Leu	Lys				
<210> 39																
<211> 358																
<212> PRT																
<213> Borrelia s	sp.															
<400> 39																
	Met 1	Arg	Gly	Ser	His 5	His	His	His	His	His 10	Lys	Asn	Asn	Val	Gly 15	Gly
	Asp	Asp	Lys	Lys 20	Asp	Thr	Ala	Ala	Šer 25	Ile	Phe	Tyr	Gln	Ser 30	Ile	Ile
	Asn	Leu	G1y 35	Asn	Gly	Phe	Ile	Glu 40	Val	Phe	Asn	Ala	Phe 45	Ser	Gly	Leu
	Val	Ala 50	Asp	Ala	Phe	Ser	Lys 55	Ala	Asp	Pro	Lys	Lys 60	Ser	Asp	Val	Lys
	Thr 65	Tyr	Phe	Asp	Ser	Ile 70	Thr	Lys	Thr	Leu	Lys 75	Asp	Thr	Lys	Thr	Lys 80
	Leu	Glu	Asp		Ser 85	Lys	Glu	Lys		Gly 90	Gly	Glu	Lys	Thr	Pro 95	Ala
	Val	Glu	Gly	Ile 100	Ala	Glu	Val	Val	Lys 105	Thr	Val	Gly	Glu	Trp 110	Leu	Asp
	Gly	Leu	Ile 115	Lys	Ala	Ala	Glu	Gly 120	Gly	Gly	Lys	Ala	Ala 125	Asp	Gly	Gly
	Gly	Ser 130	Asp	Lys	Ile	Gly	Asn 135	Val	Ala	Ala	Gly	Gly 140	Gly	Ala	Gly	Ala
	Asp	_	Glu	Ser	Val	Asn	Gly	Ile	Ala	Gly	Ala 155	Ile	Lys	Gly	Ile	Val

Glu Ala Ala Lys Lys Val Glu Gly Val Lys Phe Ala Pro Lys Ala Ala

						165					170					175		
		Ala	Asp	Ala	Ala 180	Ala	Ala	Asp	Gly	Asn 185	Lys	Lys	Ala	Gly	Lys 190	Leu	Phe	
		Gly	Thr	Ala 195	Ala	Gly	Ala	Asp	Ala 200	Gly	Asp	Val	Lys	Asp 205	Ala	Ala	Ala	
		Ala	Val 210	Gly	Ala	Val	Ser	Gly 215	Gl u	Gln	Ile	Leu	Asn 220	Ala	Ile	Val	Thr	
		Ala 225	Ala	Gly	Gln	Ala	Gly 230	Gln	Ala	Gly	Lys	Lys 235	Ala	Asp	Glu	Ala	Lys 240	
		Asn	Ala	Ile	Glu	Ala 245	Ala	Ile	Gly	Ala	Ala 250	Gly	Asp	Ala	Asp	Phe 255	Gly	
		Asp	Asp	Ile	Lys 260	Lys	Lys	Asn	Asp	Gln 265	Ile	Ala	Ala	Ala	Leu 270	Val	Leu	
		Arg	Gly	Val 275	Ala	Lys	Asp	Gly	Lys 280	Phe	Alā	Gly	Ala	Met 285	Ľys	Lys	Asp	
		Asp	Gln 290	Ile	Ala	Ala	Ala	Ile 295	Ala	Leu	Arg	Gly	Met 300	Ala	Lys	Asp	Gly	
		Lys 305	Phe	Ala	Val	Lys	Asp 310	Gly	Glu	Lys	Glu	Lys 315	Ala	Ile	Val	Ala	Ala 320	
		Ile	Val	Leu	Arg	Gly 325	Val	Ala	Lys	Ser	Gly 330	Lys	Phe	Ala	Met	Lys 335	Lys	
		Asp	Asp	Gln	Ile 340	Ala	Ala	Ala	Met	Val 345	Leu	Arg	Gly	Met	Ala 350	Lys	Asp	
		Gly	Gln	Phe 355	Ala	Leu	Lys											
<210> 40																		
<211> 107	77																	
<212> AD	N																	
<213> Boi	rrelia s	p.																
<400> 40																		
	atga	gggg	at c	ccac	cacc	a cc	atca	tcat	aaa	aata	atg	tcgg	cggc	ga t	gaca	aaaa	a	60
	gata	ctgo	gg c	cago	atct	t ct	acca	gtct	att	atta	acc	tggg	taac	gg g	ttca	ttga	a	120

5

gtgtttaatg ccttttccgg gctggtggcc gacgcgttta gcaaagcaga tccgaaaaaa

tcagatgtca aaacttactt cgattcgatc acgaaaacac tgaaagatac caaaactaag

180

ctggaagata	ttagcaaaga	aaaaacgggc	ggcgaaaaaa	cgccagccgt	tgaaggtatc	300
gccgaagtcg	tgaaaaccgt	gggagagtgg	ctggatggcc	tgattaaagc	ggcggaaggg	360
ggcggcaaag	cggcggatgg	tggcggttcg	gacaaaattg	ggaatgtcgc	tgcaggcggc	420
ggcgcgggcg	ccgacaagga	aagtgtgaat	ggaatcgcag	gtgccattaa	aggtatcgtg	480
gaagctgcaa	aaaaggtgga	aggtgtgaaa	ttcgccccga	aagctgcggc	ggatgcagcc	540
gccgctgatg	gtaacaaaaa	agcaggcaaa	ctgtttggta	ccgcggcggg	cgcagacgcg	600
ggagacgtga	aagatgcagc	cgctgcggta	ggggccgtga	gcggtgaaca	gattctgaat	660
gcgattgtta	cggcggcggg	ccaggcaggc	caggcgggga	aaaaagctga	tgaagcaaaa	720
aatgcgattg	aagctgccat	tggtgcggct	ggcgatgcgg	attttggtga	cgacattaaa	780
aagaaaaacg	atcaaattgc	ggcggcgctg	gttctgcgcg	gagttgctaa	agacggcaaa	840
tttgccggcg	ctatgaagaa	agacgaccaa	atcgcggcag	ccattgcgct	gcgcggcatg	900
gcgaaagacg	gcaaatttgc	ggtgaaagat	ggcgaaaaag	aaaaagcgat	tgtggcggcg	960
atcgttctgc	gcggtgttgc	gaaaagcggt	aaattcgcga	tgaaaaaaga	tgatcagatc	1020
gccgcagcga	tggttctgcg	tggtatggcc	aaagatggtc	agtttgccct	gaaataa	1077

<210>41

<211> 357

<212> PRT

5 <213> Borrelia sp.

<400> 41

Met Gly His His His His His His His Lys Asn Asn Val Gly Gly 1 5 10 15

Asp Asp Lys Lys Asp Thr Ala Ala Ser Ile Phe Tyr Gln Ser Ile Ile 20 25 30

As nLeu Gly As nGly Phe Ile Glu Val Phe As nAla Phe Ser Gly Leu 35 40 45

Val Ala Asp Ala Phe Ser Lys Ala Asp Pro Lys Lys Ser Asp Val Lys 50 60

Thr Tyr Phe Asp Ser Ile Thr Lys Thr Leu Lys Asp Thr Lys Thr Lys 65 70 75 80

Leu Glu Asp Ile Ser Lys Glu Lys Thr Gly Glu Lys Thr Pro Ala 85 90 95

Val Glu Gly Ile Ala Glu Val Val Lys Thr Val Gly Glu Trp Leu Asp 100 105 110

Gly Leu Ile Lys Ala Ala Glu Gly Gly Lys Ala Ala Asp Gly Gly

			115					120					125			
	Gly	Ser 130	Asp	Lys	Ile	Gly	Asn 135	Val	Ala	Ala	Gly	Gly 140	Gly	Ala	Gly	Ala
	Asp 145	Lys	Glu	Ser	Val	Asn 150	Gly	Ile	Ala	Gly	Ala 155	Ile	Lys	Gly	Ile	Val 160
	Glu	Ala	Ala	Lys	Lys 165	Val	Glu	Gly	Val	Lys 170	Phe	Ala	Pro	Lys	Ala 175	Ala
	Ala	Asp	Ala	Ala 180	Ala	Ala	Asp	Gly	Asn 185	Lys	Lys	Ala	Gly	Lys 190	Leú	Phe
	Gly	Thr	Ala 195	Ala	Gly	Ala	Asp	Ala 200	Gly	Asp	Val	Lys	Asp 205	Ala	Ala	Ala
	Ala	Val 210	Gly	Ala	Val	Ser	Gly 215	Gl u	Gln	Ile	Leu	Asn 220	Ala	Ile	Val	Thr
	Ala 225	Gly	Gln	Ala	Gly	G1n 230	Ala	Gly	Lys	Lys	Ala 235	Asp	G1u	Ala	Lys	Asn 240
	Ala	Ile	Glu	Ala	Ala 245	Ile	Gly	Ala	Ala	Gly 250	Asp	Ala	Asp	Phe	G1y 255	Asp
	Asp	Ile	Lys	Lys 260	Lys	Asn	Asp	Gln	Ile 265	Ala	Ala	Ala	Leu	Val 270	Leu	Arg
	Gly	Val	Ala 275	Lys	Asp	Gly	Lys	Phe 280	Ala	Gly	Ala	Met	Lys 285	Lys	Asp	Asp
	Gln	Ile 290	Ala	Ala	Ala	Ile	Ala 295	Leu	Arg	Gly	Met	Ala 300	Lys	Asp	Gly	Lys
	Phe 305	Ala	Val	Lys	Asp	Gly 310	Glu	Lys	Glu	Lys	Ala 315	Ile	Val	Ala	Ala	Ile 320
	Val	Leu	Arg	Gly	Val 325	Ala	Lys	Ser	Gly	Lys 330	Phe	Ala	Met	Lys	Lys 335	Asp
	Asp	Gln	Ile	Ala 340	Ala	Ala	Met	Val	Leu 345	Arg	Gly	Met	Ala	Lys 350	Asp	Gly
	Gln	Phe	Ala 355	Leu	Lys											
<210> 42																
<211> 1074																
<212> ADN																
<213> Borrelia s	sp.															

<400> 42

```
atgggccatc atcatcatca tcatcatcat aaaaacaacg tgggcggcga tgataaaaaa
                                                                      60
gataccgcgg cgagcatttt ttatcagagc attattaacc tgggcaacgg ctttattgaa
                                                                     120
gtgtttaacg cgtttagcgg cctggtggcg gatgcgttta gcaaagcgga tccgaaaaaa
                                                                     180
agcgatgtga aaacctattt tgatagcatt accaaaaccc tgaaagatac caaaaccaaa
                                                                     240
ctggaagata ttagcaaaga aaaaaccggc ggcgaaaaaa ccccggcggt ggaaggcatt
                                                                     300
gcggaagtgg tgaaaaccgt gggcgaatgg ctggatggcc tgattaaagc ggcggaaggc
                                                                     360
ggcggcaaag cggcggatgg cggcggcagc gataaaattg gcaacgtggc ggcgggcggc
                                                                     420
                                                                     480
ggcgcgggcg cggataaaga aagcgtgaac ggcattgcgg gcgcgattaa aggcattgtg
gaagcggcga aaaaagtgga aggcgtgaaa tttgcgccga aagcggcggc ggatgcggcg
                                                                     540
gcggcggatg gcaacaaaaa agcgggcaaa ctgtttggca ccgcggcggg cgcggatgcg
                                                                     600
ggcgatgtga aagatgcggc ggcggcggtg ggcgcggtga gcggcgaaca gattctgaac
                                                                     660
gcgattgtga ccgcgggcca ggcgggccag gcgggcaaaa aagcggatga agcgaaaaac
                                                                     720
gcgattgaag cggcgattgg cgcggcgggc gatgcggatt ttggcgatga tattaaaaaa
                                                                     780
                                                                     840
aaaaacgatc agattgcggc ggcgctggtg ctgcgcggcg tggcgaaaga tggcaaattt
                                                                     900
gcgggcgcga tgaaaaaaga tgatcagatt gcggcggcga ttgcgctgcg cggcatggcg
aaagatggca aatttgcggt gaaagatggc gaaaaagaaa aagcgattgt ggcggcgatt
                                                                     960
gtgctgcgcg gcgtggcgaa aagcggcaaa tttgcgatga aaaaagatga tcagattgcg
                                                                    1020
gcggcgatgg tgctgcgcgg catggcgaaa gatggccagt ttgcgctgaa ataa
                                                                    1074
```

<210> 43

<211> 7

<212> PRT

5 <213> Borrelia sp.

<400> 43

Asp Gly Glu Lys Glu Lys Ala 1 5

REIVINDICACIONES

1. Proteína quimérica de fusión DbpA-OspC de Borrelia, seleccionada del grupo que consiste en:

5

25

30

35

- (a) una proteína cuya secuencia en aminoácidos comprende en su extremo N-terminal, la secuencia SEC ID nº 1 y en su extremo C-terminal, la secuencia SEC ID nº 2 o una variante de dicha proteína cuya secuencia en aminoácidos comprende una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 1 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 2, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia:
- (b) una proteína cuya secuencia de aminoácidos comprende en su extremo N-terminal la secuencia SEC ID nº 3 y en su extremo C-terminal la secuencia SEC ID nº 4 o una variante de dicha proteína cuya secuencia de aminoácidos comprende una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 3 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 4, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;
- (c) una proteína cuya secuencia de aminoácidos comprende en su extremo N-terminal la secuencia SEC ID nº 5 y en su extremo C-terminal la secuencia SEC ID nº 7 o una variante de dicha proteína cuya secuencia de aminoácidos comprende una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 5 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 7, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;
 - (d) una proteína que comprende en su extremo N-terminal la secuencia SEC ID nº 6 y en su extremo C-terminal la secuencia SEC ID nº 7 o una variante de dicha proteína cuya secuencia de aminoácidos comprende una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 6 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 7, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-borrelia;
 - (e) una proteína que comprende en su extremo N-terminal la secuencia SEC ID nº 5, la secuencia SEC ID nº 6 y en su extremo C-terminal la secuencia SEC ID nº 7 o una variante de dicha proteína cuya secuencia de aminoácidos comprende una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 5, una secuencia que presenta al menos el 40% de identidad con la SEC ID nº 6 y una secuencia que presenta al menos el 50% de identidad con la SEC ID nº 7, con la condición de que dicha variante sea capaz de formar un complejo inmunológico con unos anticuerpos producidos tras una infección por Borrelia o que dicha variante sea capaz de inducir a la producción de anticuerpos anti-Borrelia;
 - (f) una proteína cuya secuencia de aminoácidos comprende una secuencia seleccionada entre las SEC ID nºs 8, 9, 10, 11, 12, 13 y 14.
 - 2. Ácido nucleico que codifica para una proteína tal como se ha definido en la reivindicación 1.
 - 3. Casete de expresión que es funcional en una célula derivada de un organismo procariota o eucariota, que permite la expresión de un ácido nucleico tal como se ha definido en la reivindicación 2, colocada bajo el control de los elementos necesarios para su expresión.
- 40 4. Vector que comprende un casete de expresión, tal como se define en la reivindicación 3.
 - 5. Procedimiento para el diagnóstico *in vitro* de una Borreliosis de Lyme en una muestra biológica, según el cual se pone en contacto la muestra biológica con al menos una proteína tal como se define en la reivindicación 1, y se determina si hay formación de un complejo inmunológico entre dicha proteína y unos anticuerpos de la muestra biológica.
- 45 6. Procedimiento según la reivindicación 5, en el que los anticuerpos de la muestra biológica son unas IgG y/o unas IgM.
 - 7. Procedimiento según la reivindicación 6, en el que la formación del complejo inmunológico se determina por adición de al menos una anti-inmunoglobulina humana marcada por cualquier marcador apropiado.
 - 8. Procedimiento según cualquiera de las reivindicaciones 5 a 7, en el que la proteína está inmovilizada sobre un soporte sólido.
 - 9. Equipo para el diagnóstico *in vitro* de una Borreliosis de Lyme que comprende al menos una proteína tal como se define en la reivindicación 1.
 - 10. Equipo según la reivindicación 9, que comprende al menos una anti-inmunoglobulina humana marcada por

cualquier marcador apropiado.

11. Composición vaccínea que comprende al menos una proteína tal como se ha definido en la reivindicación 1 y un vehículo farmacéuticamente aceptable.