

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 503 090

51 Int. Cl.:

C30B 11/00 (2006.01) C30B 29/06 (2006.01) C30B 28/06 (2006.01) C30B 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 30.11.2010 E 10784797 (2)
 (97) Fecha y número de publicación de la concesión europea: 18.06.2014 EP 2507416
- (54) Título: Dispositivo de guiado de ondas ultrasonoras adaptado a una utilización en un horno de solidificación dirigida de silicio
- (30) Prioridad:

30.11.2009 FR 0958524

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **06.10.2014**

(73) Titular/es:

COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (50.0%) 25, rue Leblanc, Bâtiment "Le Ponant D" 75015 Paris, FR y CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (50.0%)

(72) Inventor/es:

GARANDET, JEAN-PAUL; BOTTON, VALERY; CAMEL, DENIS y DREVET, BÉATRICE

(74) Agente/Representante:

LINAGE GONZÁLEZ, Rafael

DESCRIPCIÓN

Dispositivo de guiado de ondas ultrasonoras adaptado a una utilización en un horno de solidificación dirigida de silicio

Campo técnico

5

10

15

25

30

35

40

45

50

55

60

65

La invención se refiere a un dispositivo de guiado de ondas ultrasonoras que es susceptible de ser utilizado en un horno de cristalización de silicio según un procedimiento de solidificación dirigida.

Tal dispositivo de guiado puede entonces ser utilizado en un sistema de control del estado de avance de la cristalización de un baño de silicio fundido o en un sistema de agitación de un baño de silicio fundido.

Estado de la técnica anterior

El silicio es el substrato de base más utilizado para la producción de componentes electrónicos. En particular, el silicio es esencial para la producción de células fotovoltaicas.

El silicio que se utiliza para aplicaciones en microelectrónica o en la fabricación de células fotovoltaicas es elaborado en hileras que ponen en juego la solidificación de lingotes a partir de un baño líquido de silicio.

Los procedimientos de solidificación dirigida de silicio utilizados para obtener el silicio deben ser controlados de manera minuciosa con el fin de que los productos obtenidos sean reproducibles. Ahora bien, para ciertas aplicaciones y particularmente para las aplicaciones de las células fotovoltaicas en las que el crecimiento se hace en forma de lingotes multicristalinos de varias centenas de kilogramos, un control final del proceso de solidificación necesitaría la colocación de medios de diagnóstico in situ.

Por otra parte, la tendencia al aumento del tamaño de los lingotes cristalizados y a la utilización, como fuente de silicio, de materiales de silicio de menor pureza necesita agitar la fase líquida en la parte delantera del frente de solidificación.

En definitiva, los esfuerzos en términos de nivel de impurezas residuales en los materiales de silicio cristalizado para las aplicaciones en microelectrónica, y en particular para la realización de células fotovoltaicas, son muy severas, lo que limita fuertemente la gama de los materiales utilizables en el recinto de cristalización y excluye en particular la utilización de materiales metálicos.

Es conocido que la agitación y la verificación del estado de avance de cristalización en un procedimiento de solidificación dirigida pueden ser obtenidas utilizando ultrasonidos. En efecto, las técnicas ultrasonoras han sido estudiadas en relación con los procedimientos de solidificación a la vez como medios de diagnóstico y como medios de actuar en el régimen de convección.

En lo que se refiere a los medios de diagnóstico, el estado de avance de la cristalización se hace generalmente controlando la posición y la velocidad de la interfaz sólido-líquido. La interfaz sólido-líquido puede ser deducida de la medición del tiempo de vuelo de un eco ultrasonoro, emitido por un transductor encolado en la parte sólida del material cristalizado, que se refleja parcialmente en la interfaz sólido-líquido debido a una diferencia de impedancia mecánica entre las dos fases (véase el documento [1] referenciado al final de la descripción).

La precisión de esta técnica es satisfactoria (del orden de la decena de micrómetros), pero supone poder acceder a la fase sólida de la parte fría del material solidificado, lo que complica la concepción del dispositivo de medición, y que excluye los procedimientos que utilizan una fusión completa del material. Por otra parte, la necesidad de disponer de una cola que permite el acoplamiento entre el transductor y la fase sólida limita esta técnica a materiales que tienen una temperatura de fusión relativamente baja.

En referencia a la puesta en marcha de técnicas basadas en los ultrasonidos a alta temperatura como medios de convección, es interesante citar el estudio de las velocidades de flujo por velocímetro Doppler en aleaciones metálicas líquidas Pb-Bi y Cu-Sn (véase el documento [2]). Para tener en cuenta las limitaciones en temperatura de Curie de los transductores utilizados, y desviar la fuente piezoeléctrica fuera del recinto de fusión, los autores de este documento desarrollan un sistema de guiado de onda basado en un material de acero inoxidable. Las temperaturas investigadas no sobrepasan los 620°C, gama en la que el acero conviene muy bien. No obstante, el acero inoxidable no hace por trabajar a las temperaturas utilizadas para la solidificación de silicio e induciría de todas formas poluciones químicas inaceptables.

En esta misma gama de temperatura, se puede igualmente citar los trabajos de Kozhemyakin et al. sobre el crecimiento cristalino de aleaciones Ga-In-Sb (véase el documento [3]). Kozhemyakin et al. tratan sobre la segregación química en las aleaciones induciendo movimientos de convección en el fluido por medio de una vibración controlada del crisol. Una barra de vidrio de sílice, fijada en el fondo del crisol, se utiliza como guía de

ondas ultrasonoras. Si la sílice es aceptable en calidad de material en un horno de solidificación de silicio, la estabilidad de su forma vidriosa limita sus aplicaciones en calidad de guía de onda a temperaturas inferiores a 1200°C.

- La utilización de técnicas ultrasonoras a temperaturas superiores a 1400°C es muy rara en la literatura. Un estudio particularmente interesante para el propósito de la presente invención es el de Yoshimoto et al. (véase el documento [4]), ya que estos autores se interesan en la medición de la velocidad del sonido en el silicio líquido. Para transmitir la energía acústica en el recinto de alta temperatura, se utiliza una guía de onda de aluminio monocristalino. El aluminio presenta la ventaja de tener un buen comportamiento mecánico hasta 1700°C. Además, su limitada reactividad con el silicio líquido permite la realización de experiencias de corta duración en pequeñas muestras. No obstante, vista la larga duración de las experiencias de solidificación (del orden de la decena de horas), el aluminio induciría en el silicio poluciones de aluminio inaceptables para las aplicaciones apuntadas. Una guía de onda en cuarzo también se utiliza en la literatura (véase el documento [5]).
- En conclusión, los materiales de las guías de ondas propuestos en el estado de la técnica no convienen para una utilización para la transmisión y la recepción de la energía acústica de una onda ultrasonora en el entorno de alta temperatura de un horno adaptado a la solidificación de silicio.
- Los inventores se han fijado por tanto como objetivo concebir una guía de ondas ultrasonoras compatible con una utilización en un horno de solidificación dirigida de silicio.

Exposición de la invención

30

40

45

50

60

- Este objeto se logra gracias a un dispositivo de guiado de ondas ultrasonoras susceptible de ser utilizado en un recinto térmicamente aislante de un horno de cristalización de silicio y destinado a ser insertado parcialmente en el recinto de dicho horno por un orificio dispuesto en la pared del recinto, caracterizado porque comprende:
 - una guía de onda en sílice cristalina, que comprende una cara de entrada de una onda ultrasonora, una cara de salida de una onda ultrasonora y una superficie lateral que une la cara de entrada y la cara de salida,
 - una estructura de grafito o de carburo de silicio, que rodea al menos parcialmente la superficie lateral de la guía de onda,
- una capa intermedia pulverulenta de nitruro de silicio o de carburo de silicio, que recubre al menos las porciones de
 la superficie lateral de la guía de onda que son rodeadas por la estructura.
 - La guía de onda es un cuerpo lleno de sílice cristalina, preferentemente rectilíneo, que comprende una superficie lateral que une dos extremos (cara de entrada y cara de salida de una onda ultrasonora), y cuya sección recta puede ser indiferentemente circular, oblonga o poligonal (por ejemplo triangular, rectangular, cuadrada, hexagonal...), siendo entendido que las secciones cuadrada y circular son preferidas por razones de simplicidad.
 - La estructura, en cuanto a ella, va a venir a casar los contornos de la superficie lateral de la guía de onda. Puede tratarse por ejemplo de una funda o de un manguito. Es esta estructura la que va a permitir a la guía de onda conservar sus propiedades mecánicas, y en particular su forma, en el entorno de alta temperatura en el seno del recinto.
 - Se entiende por "capa pulverulenta" una capa que comprende partículas de tamaños comprendidos entre 0,1 y 5 micrómetros y espacios entre las partículas cuyo tamaño es cercano al de las partículas. Esta capa pulverulenta puede por ejemplo ser obtenida mediante sinterización parcial de partículas en la guía de onda.
 - En lo que precede y en lo que sigue, el término "tamaño", aplicado a partículas o a espacios, designa la dimensión característica de estas partículas o de estos espacios. La determinación del tamaño de las partículas y de los espacios puede por ejemplo ser obtenida por MEB (microscopio electrónico de barrido).
- Ventajosamente, la estructura recubre del 40 al 100% de la superficie lateral de la guía de onda, preferentemente del 60 al 80%. Por otra parte, la estructura puede estar llena o calada.
 - Preferentemente, la estructura está presente prioritariamente sobre la porción de la superficie lateral de la guía de onda que está situada en el interior del recinto.
 - La invención se refiere también a un sistema de control del estado de avance de la cristalización de un baño de silicio fundido realizada en un recinto térmicamente aislante de un horno de cristalización, que comprende una fuente de ultrasonidos y un detector de ultrasonidos, caracterizado porque:
- la fuente de ultrasonidos comprende n conjunto(s), siendo n un número entero superior o igual a 1, comprendiendo cada conjunto de la fuente un transductor, capaz de emitir una onda ultrasonora, unido a un dispositivo de guía de

onda según la invención, capaz de guiar la onda ultrasonora, producida por dicho transductor, hacia la interfaz vapor-líquido del baño de silicio líquido;

- el detector de ultrasonidos comprende al menos 2n conjuntos, comprendiendo cada conjunto del detector un
 dispositivo de guiado de onda según la invención unido a un transductor capaz de detectar una onda ultrasonora, siendo dicho dispositivo de guiado de onda capaz de guiar una onda ultrasonora hacia dicho transductor;
- estando colocados los n conjuntos de la fuente y los al menos 2n conjuntos del detector encima de la interfaz vaporlíquido en posiciones distintas tales que la onda ultrasonora producida por uno de los transductores de la fuente sea incidente en la interfaz vapor-líquido según un ángulo agudo con respecto a la normal en dicha interfaz y que dicha onda ultrasonora, reflejada por la interfaz vapor-líquido según este mismo ángulo agudo, sea detectada por uno de los transductores del detector, estando situados los transductores de la fuente y del detector en el exterior del recinto y atravesando los dispositivos de guiado de onda de la fuente y del detector la pared de dicho recinto.
- Preferentemente, el o los n dispositivos de guiado de onda de la fuente están dispuestos según una línea esencialmente paralela a la interfaz vapor-líquido del baño líquido o bien según una matriz cuya línea o líneas son esencialmente paralelas a la interfaz vapor-líquido.
- Igualmente, al menos los 2n dispositivos de guiado de onda de la fuente son dispuestos según una línea o según una matriz cuya línea o líneas son esencialmente paralelas a la interfaz vapor-líquido.
 - Ventajosamente, los dispositivos de guiado de onda del detector son dispuestos según una matriz (ixj), con i líneas y j columnas, i y j siendo números enteros superiores o iguales a 1 e ixj≥2.
- La invención se refiere igualmente a un sistema de agitación de un baño de silicio fundido en un recinto térmicamente aislante de un horno de cristalización, que comprende el menos un medio de agitación destinado a ser puesto en contacto con la superficie del baño de silicio fundido, caracterizado porque dicho medio de agitación comprende un dispositivo de guiado de ondas ultrasonoras según la invención.

30 Breve descripción de los dibujos

45

65

La invención se comprenderá mejor y otras ventajas y particularidades aparecerán con la lectura de la descripción que va a seguir, dada a título de ejemplo no limitativo, acompañada de las figuras adjuntas entre las que:

- la figura 1 representa una guía de onda utilizada en el dispositivo de guiado de onda según la invención;
 - la figura 2 representa, según una vista en corte longitudinal, el dispositivo de guiado de ondas ultrasonoras según un primer ejemplo de realización de la invención;
- la figura 3 representa, según una vista en corte longitudinal, el dispositivo de guiado de ondas ultrasonoras según un segundo ejemplo de realización de la invención;
 - la figura 4 representa una vista en corte vertical de un recinto térmicamente aislante de un horno de cristalización que comprende un sistema de control del estado de avance de la cristalización que utiliza un dispositivo de guiado de onda ultrasonora según la invención;
 - la figura 5 representa un detalle en plano grande de la figura 4;
- la figura 6 representa una vista en corte vertical de un recinto térmicamente aislante de un horno de cristalización que comprende un sistema de agitación que utiliza un dispositivo de guiado de onda ultrasonora según la invención;
 - la figura 7 representa un detalle en plano grande de la figura 6.
- Hay que señalar que los elementos constitutivos de las figuras, y particularmente la capa intermedia y la estructura, no están representados a escala. En la figura 1, la capa intermedia y la capa no están representadas.

Exposición detallada de modos de realización particulares

- Para transmitir y recibir una onda ultrasonora en el seno de un recinto térmicamente aislante de un horno adaptado a la solidificación de silicio, se utiliza según la invención un dispositivo 1 de guiado de onda que comprende una guía 2 de onda de sílice cristalina, por ejemplo una alma o un barrote.
 - Esta guía 2 de onda, como se representa en la figura 1, es un cuerpo lleno que comprende una cara 11 de entrada de una onda ultrasonora, un cara 12 de salida de una onda ultrasonora y una superficie lateral 10 que une las dos caras (figura 1).

La superficie lateral 10 de guiado de onda es rodeada por una estructura 3 y una capa intermedia pulverulenta 4 es dispuesta en la guía de onda al menos en las partes de la superficie lateral rodeada por la estructura (figuras 2 y 3).

La estructura puede ser llena (figura 2) o calada (figura 3) y puede recubrir todo (figura 2) o parte de la superficie lateral rodeada de la guía de onda (figura 3 y figura 5).

En la figura 5, que será descrita más adelante, solo la porción de la superficie lateral de la guía de onda destinada a estar en el interior del recinto aislante es recubierta por la estructura 3 de grafito o de carburo de silicio.

- La capa intermedia pulverulenta puede en cuanto a ella recubrir todo (figura 2 y figura 3) o parte (figura 5) de la superficie lateral de la guía de onda, estando esta capa intermedia sin embargo siempre presente entre la guía de onda y la estructura con el fin de evitar todo contacto entre la guía de onda y dicha estructura: la capa intermedia está presente en todas las interfaces entre la sílice cristalina y la estructura de grafito o de carburo de silicio.
- El dispositivo de guiado de ondas ultrasonoras así concebido permite entonces introducir los ultrasonidos de forma fiable y reproducible en el recinto de cristalización.

20

25

30

35

65

En la invención, la sílice cristalina que se utiliza es de cuarzo. Las propiedades mecánicas del cuarzo por encima de 1300°C son muy malas. No era por tanto del todo evidente a priori utilizarlo para la aplicación apuntada.

Es la estructura 3 de grafito o de carburo de silicio, que rodea la guía 2 de onda de sílice cristalina, que asegura la resistencia mecánica del dispositivo 1 de guiado de onda. El grafito y el carburo de silicio conservan muy buenas propiedades mecánicas a alta temperatura y son relativamente poco molestos para una utilización en un horno de solidificación de silicio, ya que ya están presentes en los hornos de crecimiento de silicio y no provocan por lo tanto contaminación suplementaria.

Además, la presencia de la capa intermedia pulverulenta entre la guía de onda y la estructura permite evitar o reducir las pérdidas de transmisión de la energía unidas a un acoplamiento acústico entre el grafito o el carburo de silicio y la sílice cristalina, cuyas impedancias acústicas están cerca.

Por otra parte, a nivel mecánico, la presencia de la capa intermedia permite evitar o reducir los esfuerzos debidos a la diferencia entre los coeficientes de dilatación del grafito o del carburo de silicio y de la sílice cristalina.

En definitiva, a nivel químico, la presencia de la capa intermedia permite evitar que se produzca una reducción de la sílice en la interfaz sílice-grafito o sílice-carburo de silicio con una liberación de monóxido de carbono.

La capa intermedia entre la sílice cristalina de la guía de onda y el grafito o el carburo de silicio puede por ejemplo ser depositada por pistola de pulverización o por inmersión, seguida de una sinterización parcial.

- La capa intermedia tiene un espesor comprendido entre 50 y 200 micrómetros; los granos de nitruro de silicio o de carburo de silicio que forman esta capa tienen un tamaño comprendido entre 0,1 y 5 micrómetros y los espacios entre los granos tienen un tamaño cercano al de los granos.
- El nitruro de silicio se utiliza clásicamente como revestimiento antiadherente en los crisoles destinados a contener silicio; su utilización en un entorno de horno de solidificación es por lo tanto completamente aceptable.
 - Por otra parte, siendo dada la presencia de cantidades importantes de grafito en los hornos de solidificación, el carburo de silicio también le es autorizado.
- Por su naturaleza pulverulenta, la capa intermedia posee una impedancia acústica débil. Permite así el desacoplamiento entre la sílice cristalina y el grafito o el carburo de silicio y, por lo tanto, la buena transmisión de la energía acústica. Siempre gracias a su naturaleza pulverulenta, esta capa intermedia permite igualmente acomodar los esfuerzos de dilatación diferencial. En definitiva, esta capa permite evitar un contacto entre la sílice y el grafito, lo que tiene por efecto reducir la oxidación del grafito.

Según un ejemplo de realización para una aplicación de detección, se utiliza un barrote de sílice cristalina (cuarzo), por ejemplo un barrote de 50 milímetros de largo y 10x10 mm² de sección recta.

Según un ejemplo de realización para una aplicación de agitación, se utilizan por ejemplo barrotes de 30 cm de largo y de 2x2 cm² de sección recta.

En los barrotes de los dos ejemplos anteriores, se deposita por inmersión una capa de nitruro de silicio de espesor 100 μm en el conjunto de la superficie del barrote de sílice. Después, se adapta una estructura de grafito que tiene un espesor comprendido generalmente entre 2 y 8 mm, por ejemplo de 5 mm, alrededor de cada uno de los barrotes. La forma de la estructura se adapta en función de la forma de la guía de onda. Por ejemplo, en el caso de una guía de onda de forma tubular (barrote), la estructura será un manguito de forma tubular que puede adaptarse a

los contornos de la guía de onda.

5

10

15

20

25

30

35

40

55

60

65

El dispositivo de guiado de onda según la invención puede ser utilizado en un recinto térmicamente aislante de un horno de cristalización para obtener la solidificación de un baño de silicio. Puede ser utilizado para efectuar la agitación del baño de silicio o bien incluso para verificar el estado de avance de la cristalización del baño de silicio.

Según un primer ejemplo de realización ilustrado en la figura 4, el dispositivo 1 de guiado de onda ultrasonora según la invención se utiliza en un sistema de control del estado de avance de la cristalización de un baño de silicio fundido.

Se considera un horno 100 de solidificación dirigida de tipo Heat Exchanger Method con calentamiento resistivo, adaptado al crecimiento de silicio para aplicaciones fotovoltaicas y que trabajan bajo barrido de argón.

El sistema de control comprende un emisor 14 de ultrasonidos y un receptor 15 de ultrasonidos. El objetivo es medir la posición y eventualmente la velocidad de la interfaz líquido-vapor 17 del baño de silicio detectando la posición de un foco ultrasonoro que se refleja en la interfaz líquido-vapor según un ángulo de incidencia agudo con respecto a la normal en la interfaz vapor-líquido, a saber un ángulo comprendido entre 40° y 70°, preferentemente entre 50° y 60°. Es igualmente posible deducir la posición de la interfaz líquido-sólido 18 a partir de la posición de la interfaz vapor-líquido multiplicándola por el coeficiente de variación de volumen en la solidificación del baño de silicio.

El emisor 14 de ultrasonidos comprende un transductor 16, por ejemplo un transductor LiNbO₃ a temperatura de Curie de 1150°C que funciona a 1 MHz, que está posicionado en un lado lateral exterior del recinto térmicamente aislante 110 del horno de cristalización y que está conectado a un dispositivo 1 de guiado de ondas ultrasonoras que atraviesan el espesor de la pared 120 del recinto 110. La guía de onda del dispositivo 1 de guiado de onda es por ejemplo un barrote que tiene una sección de 10x10 mm² y una longitud de 50 mm y está fijado al transductor 16 por un adhesivo de alta temperatura (no representado) (por ejemplo el adhesivo Ceramabond ® de Aremco). En este ejemplo de realización, solo la porción de la superficie lateral del barrote situada en el interior del recinto de cristalización (es decir, en un entorno de alta temperatura cuando el horno está en funcionamiento) está recubierta por una estructura (por ejemplo de grafito), estando una capa intermedia pulverulenta (por ejemplo de nitruro de silicio) interpuesta entre el barrote y la estructura (véase el detalle en la figura 5).

Después de la reflexión en la interfaz líquido-vapor 17, la señal ultrasonora es recibida en una cara de entrada de una de las guías de ondas de una matriz de dispositivos de guiado de ondas situada del otro lado del recinto (en la pared lateral opuesta a la que comprende la fuente de ultrasonidos). Esta matriz es aquí constituida por barrotes de 10x10 paralelepípedos de sección 1x1 mm² y de longitud 50 mm de sílice cristalina cuya parte de la porción de superficie lateral situada en el recinto está recubierta de una estructura que permite mantener la integridad mecánica de las guías de onda, estando una capa intermedia interpuesta entre la estructura y la superficie de las guías de onda (no representadas en la figura 4). Como para la fuente de ultrasonidos, las guías de ondas del detector atraviesan la pared 120 del recinto, sus caras de salida de onda son cada una fijadas en un transductor 16 situado en el exterior del recinto 110 y al menos una porción de su cara lateral está recubierta por una estructura, con una capa intermedia interpuesta en la interfaz entre las estructuras y las superficies de las guías de onda. Por ejemplo, la estructura es de grafito y la capa intermedia es de nitruro de silicio.

Según un segundo ejemplo de realización ilustrado en la figura 6, el dispositivo 1 de guiado de onda ultrasonora según la invención se utiliza en un sistema de agitación del baño de silicio fundido. El sistema de agitación comprende al menos un dispositivo 1 de guiado de onda según la invención en el cual un extremo de la guía de onda está posicionado en la superficie del baño de silicio y en el cual otro extremo de la guía de onda está fijado a un transductor 16.

50 En el ejemplo de la presente invención, se considera un horno 100 de solidificación dirigida de tipo Heat Exchanger o Bridgman-Stockbarger con calentamiento resistivo adaptado al crecimiento de silicio para aplicaciones fotovoltaicas y que trabajan bajo barrido de argón.

Las dimensiones del crisol 13 son de 20x20 cm² para la base y 20 cm para la altura.

El sistema de agitación del baño de silicio por ultrasonidos está aquí constituido por cuatro barrotes 2 de sílice cristalina (cuyos dos barrotes son representados en la figura 5) que son posicionados en las aristas paralelas de un paralelepípedo de base 10x10 cm² posicionado para que los cuatro barrotes afloren a la superficie del baño de silicio (véanse la figura 6 y la figura 7). Cuando se dice que los barrotes afloran a la superficie, los barrotes están de hecho en contacto con la superficie del baño, pero la superficie de contacto de los barrotes con la superficie del baño de líquido fundido se mantiene en su mínimo con el fin de limitar las interacciones químicas con el silicio.

Los cuatro barrotes tienen una base de 2x2 cm² y una altura de 30 cm para permitir deportar los transductores ultrasonoros 16 situados en el extremo superior de los barrotes, fuera del recinto de solidificación. En este ejemplo de realización, a cada barrote 2 de sílice cristalina está conectado un transductor LiNbO₃, que funciona con una frecuencia de 1 MHz, vía un adhesivo de alta temperatura (por ejemplo, un adhesivo Aremco Ceramabond ®). La

superficie de los barrotes presente en el interior del recinto está recubierta de una capa pulverulenta 3 de carburo de silicio y están totalmente recubiertas por una estructura 4 de protección de grafito. La estructura de protección puede por ejemplo ser una funda o un grano.

5 Bibliografía

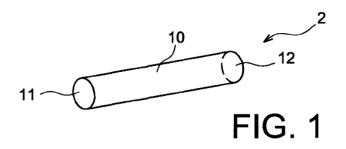
- [1] P. Dold, M. Heidler, A. Drevennann, G. Zimmermann, In Situ Observation of Growth Interfaces by Ultrasound, Journal of Crystal Growth, 256, (2003), 352-360.
- 10 [2] S. Eckert, G. Gerbeth, V.I. Menikov, Velocity Measurements at High Temperatures by Ultrasound Doppler Velocimetry Using an Acoustic Wave Guide, Experiments in Fluids, 35, (2003), 381-388.
 - [3] G.N. Kozhemyakin, L.V. Zolkina, M.A. Rom, *Influence of Ultrasound on Die Growth Striations and Electrophysical Properties of Gaxin1-xSb Single Crystals*, Solid-State Electronics, 51, (2007), 820-822.
 - [4] N. Yoshimoto, M. Ikeda, M. Yoshizawa, S. Kimura, Sound Velocity of Molten Silicon, Physica B 219&220, (1996), 623-625.
 - [5] Documento JP 2007110371 A, Kaijo KK, 26 de abril de 2007.

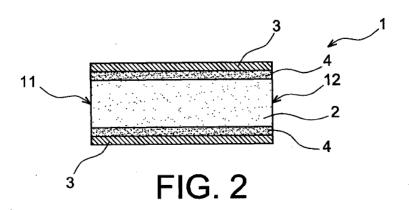
20

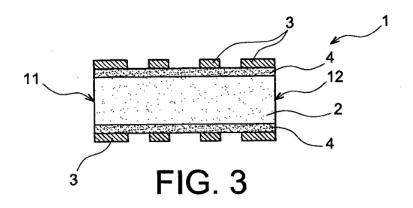
15

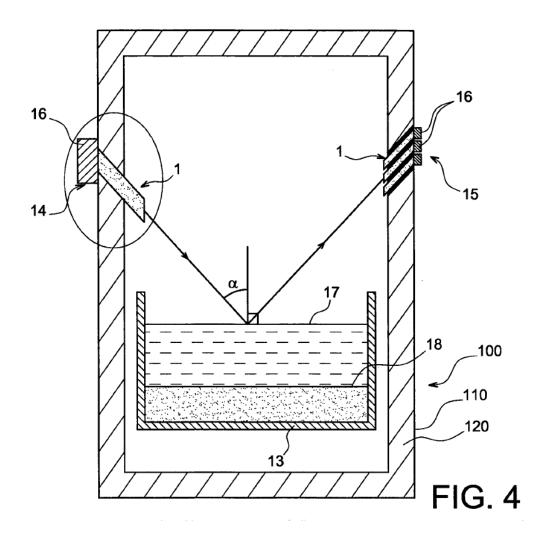
REIVINDICACIONES

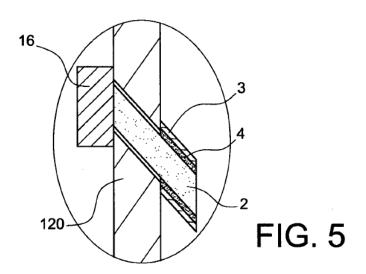
- 1.- Dispositivo (1) de guiado de ondas ultrasonoras susceptible de ser utilizado en un recinto (110) térmicamente aislante de un horno (100) de cristalización de silicio y destinado a ser insertado parcialmente en el recinto (110) de dicho horno por un orificio dispuesto en la pared (120) del recinto, caracterizado porque comprende:
- una guía (2) de onda de sílice cristalina, que comprende una cara de entrada de una onda ultrasonora, una cara de salida de una onda ultrasonora y una superficie lateral que une la cara de entrada y la cara de salida,
- una estructura (3) de grafito o de carburo de silicio, que rodea al menos parcialmente la superficie lateral de la guía de onda,
 - una capa intermedia pulverulenta (4) de nitruro de silicio o de carburo de silicio, que recubre al menos las porciones de la superficie lateral de la guía de onda que están rodeadas por la estructura (3).
 - 2.- Dispositivo de guiado de ondas ultrasonoras según la reivindicación 1, en el que la estructura recubre del 40 al 100% de la superficie lateral de la guía de onda, preferentemente del 60 al 80%.
- 3.- Sistema de control del estado de avance de la cristalización de un baño de silicio fundido realizada en un recinto
 (110) térmicamente aislante de un horno (100) de cristalización, que comprende una fuente (14) de ultrasonidos y un detector (15) de ultrasonidos, caracterizado porque:
 - la fuente (14) de ultrasonidos comprende n conjunto(s), siendo n un número entero superior o igual a 1, comprendiendo cada conjunto de la fuente un transductor (16), capaz de emitir una onda ultrasonora, unido a un dispositivo (1) de guía de onda según una cualquiera de las reivindicaciones 1 a 2, capaz de guiar la onda ultrasonora, producida por dicho transductor, hacia la interfaz vapor-líquido (17) del baño de silicio líquido;
 - el detector (15) de ultrasonidos comprende al menos 2n conjuntos, comprendiendo cada conjunto del detector un dispositivo (1) de guiado de onda según una cualquiera de las reivindicaciones 1 a 2 unido a un transductor (16) capaz de detectar una onda ultrasonora, siendo dicho dispositivo de guiado de onda capaz de guiar una onda ultrasonora hacia dicho transductor;
 - estando colocados los n conjuntos de la fuente y los al menos 2n conjuntos del detector encima de la interfaz vaporlíquido (17) en posiciones distintas tales que la onda ultrasonora producida por uno de los transductores de la fuente (14) sea incidente en la interfaz vapor-líquido según un ángulo agudo con respecto a la normal en dicha interfaz y que dicha onda ultrasonora, reflejada por la interfaz vapor-líquido (17) según este mismo ángulo agudo, sea detectada por uno de los transductores (16) del detector (15), estando situados el transductor de la fuente y del detector en el exterior del recinto y atravesando los dispositivos de guiado de onda de la fuente y del detector la pared de dicho recinto.
 - 4.- Sistema de agitación de un baño de silicio fundido en un recinto (110) térmicamente aislante de un horno (100) de cristalización, que comprende al menos un medio de agitación destinado a ser puesto en contacto con la superficie del baño de silicio fundido, caracterizado porque dicho medio de agitación comprende un dispositivo (1) de guiado de ondas ultrasonoras según una cualquiera de las reivindicaciones 1 a 2.


35


5


15


25


30

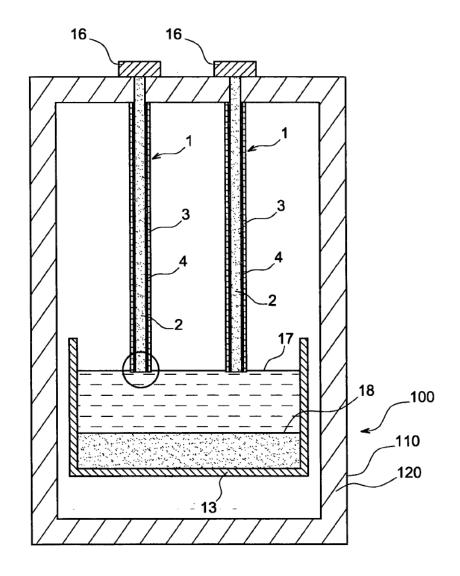
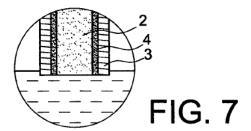



FIG. 6

