

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 510 491

61 Int. CI.:

A61K 38/05 (2006.01) A61P 1/18 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 09.08.2006 E 06776693 (1)
 (97) Fecha y número de publicación de la concesión europea: 30.07.2014 EP 1919493

(54) Título: Empleo de trifluormetilcetonas específicas para la prevención y tratamiento de una pancreatitis

(30) Prioridad:

10.08.2005 DE 102005037791

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.10.2014

(73) Titular/es:

LERCH, MARKUS M. (50.0%) Friedrich-Ludwig-Jahn-Strasse 14 17489 Greifswald, DE y MAYERLE, JULIA (50.0%)

(72) Inventor/es:

LERCH, MARKUS M. y MAYERLE, JULIA

(74) Agente/Representante:

CARVAJAL Y URQUIJO, Isabel

ES 2 510 491 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Empleo de trifluormetilcetonas específicas para la prevención y tratamiento de una pancreatitis

La presente invención se refiere al empleo de trifluormetilcetonas específicas para la prevención y el tratamiento de una pancreatitis, y en especial de la pancreatitis crónica.

5 Tanto la pancreatitis crónica, como también la pancreatitis aguda, son enfermedades frecuentes del tracto gastrointestinal con un elevado significado socioeconómico.

Con una incidencia de 8,2 casos/100 000 habitantes y una prevalencia de 27,4 casos, la pancreatitis crónica es una de las enfermedades frecuentes del tracto gastrointestinal. La causa más frecuente de una pancreatitis crónica es el abuso de alcohol.

La pancreatitis hereditaria es una forma de pancreatitis crónica hereditaria por vía autosómica dominante, con una penetración fenotípica de hasta un 80 %. Esta es desencadenada sobre todo a través de una mutación en el gen PRSS1, que codifica para tripsinógeno catiónico (Withcomb et al., 1996). Está caracterizada por impulsos de pancreatitis retentivos, que comienzan en la mayor parte de los casos en una edad infantil temprana, por una anamnesis familiar positiva en la mayor parte de los casos, una distribución de género sensiblemente igual, así como por la ausencia de otros factores de riesgo asociados a la enfermedad.

La pancreatitis crónica es una inflamación del páncreas que se desarrolla por impulsos, no infecciosa. Esta puede ir acompañada de necrosis focal, infiltrados inflamatorios, fibrosis del parenquima, formación de cálculos en los conductos y la formación de pseudoquistes. En estadios avanzados se llega a una limitación de función global con función del páncreas exocrina y endocrina reducida hasta insuficiencia de páncreas exocrina y endocrina (Diabetes mellitus pancreopriva) (Ammann et al., 1984).

20

El síntoma principal de la pancreatitis crónica es un dolor abdominal en forma de cinturón, una pérdida de peso, unida a una esteatorrea, y la Diabetes mellitus. La diagnosis se plantea en general mediante procedimientos de tomografía, como el ultrasonido transabdominal y la ERCP, o mediante la investigación de la función del páncreas.

- La terapia de la pancreatitis crónica se limita al combate de síntomas en el caso de enfoques terapéuticos causales deficientes. Los objetivos de tratamiento de la pancreatitis crónica son la compensación de la insuficiencia pancreática exocrina, y con esta el tratamiento de síntomas de mala digestión, esteatorrea y pérdida de peso, el tratamiento del estado metabólico diabético, y una terapia del dolor adecuada.
- Para la terapia del dolor se recomiendan analgésicos de acción periférica, que se pueden combinar en la segunda etapa con neurolépticos o tramadolsulfato. La tercera etapa prevé la administración de opiáceos potentes de acción central. Para el tratamiento de la Diabetes mellitus pancreopriva se considerará prematuramente una terapia de insulina. En el caso de aparición de una pérdida de peso de más de un 10 % del peso corporal, una esteatorrea con deposiciones básicas de más de 15 g/día, molestias dispépticas con fuerte meteorismo o diarrea se da la indicación para la substitución con enzimas pancreáticas. La mayor parte de preparados enzimáticos contienen un extracto pulverizado de páncreas de cerdo con los componentes principales lipasa, amilasa, tripsina y quimotripsina. Los preparados se administran en forma de formulaciones de encapsulado microesférico. Aproximadamente un 30-60 % de los pacientes desarrollan complicaciones de su enfermedad, como estenosis del ducto hepatocolédico, requisitos de espacio inflamatorios, pseudoquistes pancreáticos o cálculos pancreáticos, que requieren una terapia por intervención u operación.
- En el caso de ERCP (ERCP: colangiopancreatografía endoscópica retrógrada) se trata de una representación de los conductos biliares y del sistema pancreático. Según tal ERCP, en un 3-6 % de los casos se desarrolla una pancreatitis. Esta complicación asociada a la investigación muestra una mortalidad de aproximadamente 1 por mil. Se pudo mostrar que un tratamiento profiláctico con un inhibidor de proteasa que inhibe tripsina, calicreína y plasmina, y se administró por infusión, pudo reducir el deterioro del páncreas, provocado por ERCP (Cavallini et al., 1996).
- 45 En el caso de pancreatitis crónica retentiva se trata de una forma de desarrollo recurrente, con episodios por impulsos, dolorosos e inflamatorios, de la pancreatitis aguda, o bien crónica. Pueden ser causantes: los factores desencadenantes de pancreatitis aguda o de pancreatitis crónica. El desarrollo a largo plazo y las complicaciones que se presentan habitualmente corresponden a la pancreatitis crónica en la mayor parte de los casos.
- En este contexto, la presente invención toma como base la tarea de poner a disposición compuestos que sean apropiados para la prevención (profilaxis) y tratamiento (terapia) de una pancreatitis, en especial de la pancreatitis crónica, de la pancreatitis post-ERCP y de la pancreatitis retentiva crónica. A tal efecto es decisiva una forma simple de administración, así como una reducción de los efectos secundarios.

Según la invención, la tarea se soluciona mediante el objeto de las reivindicaciones 1 a 8. Sorprendentemente se descubrió que son especialmente apropiadas peptidil-trifluormetilcetonas y sus solvatos para el tratamiento de la pancreatitis, en especial de la pancreatitis crónica, de la pancreatitis retentiva crónica, y de la pancreatitis post-ERCP. Como solvato se puede presentar, a modo de ejemplo, una forma hidratada. Esta puede existir, a modo de ejemplo, como diol geminal del grupo trifluorcetona. No obstante, los solvatos se pueden presentar igualmente en una forma que contiene moléculas de agua como parte del retículo cristalino.

Por consiguiente, la invención se refiere tanto al empleo de peptidil-trifluormetilcetonas o sus solvatos para la obtención de una composición farmacéutica para la prevención y el tratamiento de una pancreatitis.

La peptidil-trifluormetilcetona es el compuesto I, es decir, 1-[2-(4-metoxibenzamida)-3-metilbutiril]-N-[2-metil-1-(trifluoracetil)propil]pirrolidin-2-carboxamida de la fórmula

que se emplea para la obtención de una composición farmacéutica para la prevención el tratamiento de una pancreatitis.

En una forma especialmente preferente de la invención, la peptidil-trifluormetilcetona es el compuesto II

(en una forma de ejecución la pancreatitis no es aguda).

10

15

30

Pancreatitis, una pancreatitis inducida por ERCP o una pancreatitis crónica o crónica retentiva.

Se describen procedimientos de obtención para los compuestos según la invención en la solicitud internacional WO 95/21855, a las que se hace referencia expresamente en este caso. A modo de ejemplo en las páginas 8 - 16 de la WO 95/21855 se describen diversos procedimientos para la obtención del compuesto II.

El compuesto II es el denominado estereoisómero S,S,S del compuesto I, y según una forma de ejecución se presenta en una forma que contiene una fracción de un máximo de un 10 % de otros posibles estereoisómeros del compuesto I. En una forma de ejecución preferente, esta fracción asciende a lo sumo a un 5 %, y en una forma de ejecución especialmente preferente asciende a lo sumo a un 2 %.

Por la WO 95/21855 se sabe que el compuesto II se puede emplear para el tratamiento de enfermedades de las vías respiratorias.

Sorprendentemente, en el ámbito de la presente invención se verificó que los compuestos según la invención son apropiados también para un tratamiento profiláctico de la pancreatitis, en especial de la pancreatitis crónica, de la pancreatitis crónica retentiva y de la pancreatitis post-ERCP. De este modo, para el tratamiento de las enfermedades citadas anteriormente se dispone en primer lugar de productos activos que se pueden administrar por vía oral, y por lo tanto son apropiados de modo especial para una profilaxis.

Por lo tanto, en una forma de ejecución preferente se emplea el compuesto I, y en una forma de ejecución especialmente preferente se emplea el compuesto II para la obtención de una composición farmacéutica para el

ES 2 510 491 T3

tratamiento profiláctico de la pancreatitis crónica. En este caso, las composiciones farmacéuticas se pueden administrar mediante inyección intravenosa o por vía intraperitoneal. En una forma de ejecución preferente, las composiciones farmacéuticas son formuladas para la administración oral. La biodisponibilidad oral hace las composiciones farmacéuticas especialmente apropiadas para un tratamiento profiláctico duradero.

Para un tratamiento profiláctico de una pancreatitis crónica o de la pancreatitis crónica retentiva, las composiciones farmacéuticas contienen la correspondiente peptidil-trifluormetilcetona en una cantidad de aproximadamente 10 a 240 mg/kg de peso corporal, si la composición se administra diariamente.

La composición farmacéutica se puede administrar de manera duradera para un tratamiento profiláctico de una pancreatitis crónica, o de la pancreatitis crónica retentiva, administrándose la composición por vía oral tres veces al día, a modo de ejemplo por las mañanas, mediodías y tardes, en una forma de ejecución preferente. El período de vida media biológico del compuesto se sitúa entre 0,82 y 2 horas en rata, hamster y perro. La AUC intravenosa (biodisponibilidad medida como la proporción de administración intravenosa respecto a oral como área bajo la curva (AUC)) [ng*h/ml] se sitúa entre 1365 y 3179 ng*h/ml (biodisponibilidad medida como la proporción de administración intravenosa respecto a oral como área bajo la curva (AUC)). La biocompatibilidad oral se sitúa entre 355 y 1400 ng*h/ml. La biodisponibilidad porcentual se determinó con un 26-82 %. La aplicación oral de 10 mg/kg de peso corporal del compuesto Il conduce a un 84 % de inhibición de la elastasa neutrófila. Para la inhibición de un 50 % de la actividad enzimática se deben emplear 4,9 mg/kg de peso corporal en el caso de administración oral, por el contrario apenas 0,59 mg/kg de peso corporal en el caso de administración intravenosa.

En otra forma de ejecución, el compuesto I o el compuesto II se emplean para la obtención de una composición farmacéutica para el tratamiento profiláctico de una investigación ERCP, es decir, para la inhibición de una pancreatitis post-ERCP.

Para la inhibición de una pancreatitis inducida por ERCP se propusieron diversas cargas, como por ejemplo la administración profiláctica de aprotinina, glucagón, calcitonina, nifedipina o somatostatina, que, no obstante, no dieron buen resultado. Sorprendentemente, los compuestos según la invención son apropiados para un tratamiento profiláctico eficaz de una pancreatitis inducida por ERCP.

Las composiciones farmacéuticas se pueden administrar por infusión antes de una ERCP. En una forma de ejecución preferente, la composición farmacéutica se administra por vía oral antes de una ERCP. En este caso se puede variar la cantidad del correspondiente compuesto (preferentemente compuesto I o II) en un intervalo de 10 a 240 mg/kg de peso corporal. En una forma de ejecución preferente, la cantidad empleada asciende a 30 hasta 120 mg/kg de peso corporal. Se efectúa una administración única 30 minutos antes de la ERCP, ya sea como administración oral o como administración intravenosa, en una concentración 10 veces más reducida.

En otra forma preferente de ejecución de la invención, los empleos según la invención comprenden el empleo de un material soporte apropiado para fines farmacéuticos.

La invención se describe a continuación por medio de ejemplos y figuras. Los ejemplos están concebidos para la ilustración de la invención, pero no limitarán de ningún modo la misma.

Descripción de las figuras

25

30

40

50

La figura 1 muestra la acción inhibidora del compuesto II. La elastasa humana neutrófila, y en una medida algo menor también la elastasa pancreática, se inhibe mediante el compuesto II con una inhibición de un 50 % en el caso de 50 nM (elastasa neutrófila) y 1 µm (elastasa pancreática). Tripsina, mieloperoxidasa, catepsina B y L no son influidas significativamente por la incubación con el compuesto II. K_i elastasa neutrófila 6,7 nM, K_i elastasa pancreática 200 nM.

La figura 2 muestra la estructura de un experimento para investigar la capacidad del compuesto II y para reducir los daños locales y sistémicos durante una pancreatitis aguda.

La figura 3 muestra la valoración del edema pancreático: la figura 3A muestra el contenido en agua del páncreas.

La figura 3B muestra los resultados macroscópicos del páncreas tras estimulación de ceruleína supramáxima. Es llamativa la masa gelatinosa del páncreas (marcada con un círculo), que presenta un contenido en agua de un 90 %.

La figura 4 muestra la medida de la actividad de mieloperoxidasa (MPO) en tejido pancreático tras estimulación de ceruleína supramáxima. Después de cuatro y doce horas se muestra un aumento altamente significativo de la actividad enzimática (figura 4A). La actividad máxima se determinó después de doce horas. Las barras muestran los valores medios en actividad mU MPO/mg de proteína pancreática \pm SEM (SEM; desviación standard de la distribución de muestras: $\sigma_x = \sqrt{1/N} \sum (x_i-x)2$), de cinco animales por intervalo de tiempo. El análisis Western-Blot

ES 2 510 491 T3

muestra un ascenso permanente de la expresión de elastasa de leucocitos en el páncreas (figura 4B). El análisis ultraestructural del tejido pancreático de animales que se incubaron con ceruleína durante una hora muestra una transmigración de neutrófilos de vasos al espacio intersticial entre las células de acinos pancreáticos.

La figura 5 muestra registros de microscopía óptica del tejido pancreático (5A).

5 La cuantificación del número de vacuolas muestra una reducción altamente significativa de aproximadamente un 15 a un 25 %.

La figura 6 muestra la actividad de amilasa en suero.

La figura 7 muestra registros de microscopía óptica del tejido pulmonar (7B). La medida de la actividad de mieloperoxidasa (MPO) en el tejido pancreático tras estimulación de ceruleína supramáxima en los intervalos de tiempo indicados muestra, después de cuatro y doce horas, un aumento significativo de la actividad enzimática (7A). Las barras muestran valores medios en actividad mU MPO por mg de proteína pulmonar ± SEM de cinco animales en cada momento.

Ejemplos

Materiales empleados

- Se adquirió ceruleína de Pharmacia, Freiburg, Alemania. Se adquirió elastasa humana neutrófila de Calbiochem (San Diego, CA, USA). Este producto comercial se purifica a partir de suero humano mediante HPLC (concentración de proteína > 20 unidades/mg de proteína, actividad específica; en acetato sódico 50 nM, pH 5,5, y cloruro sódico 200 mM; pureza > 95 %). Se adquirió mieloperoxidasa humana de Calbiochem, y se purificó a partir de sangre con HPLC (1 mg/10 ml de concentración de proteína, 150 a 200 unidades/mg de proteína, actividad proteíca específica, an elevira sódico 100 mM, acetato sódico 50 mM, pureza > 05 %). Se adquirió electada de póperose de porteína,
- en cloruro sódico 100 mM, acetato sódico 50 mM, pureza > 95 %). Se adquirió elastasa de páncreas de cerdo de Calbiochem, y se purificó a partir de páncreas de cerdo. La actividad específica era 50 unidades/mg de proteína en tampón fosfatosódico 50 mM, pH 7,0. Se adquirió catepsina B de Calbiochem. Este producto comercial se purificó a partir de hígado humano con HPLC (1,136 mg/ml de concentración de proteína, 22 unidades/mg de proteína, actividad específica; en acetato sódico 20 mM (pH 5,0) y EDTA 1 mM; pureza > 95 %). Antes del empleo se activó
- catepsina B con ditiotreitol 1 mM (DTT) durante 30 minutos sobre hielo. Se adquirió catepsina L de Calbiochem y se preparó a partir de hígado humano con una concentración de 1584 mU/mg de proteína. Los substratos que se emplearon para el análisis eran [CBZ-lle-Pro-Arg]₂-rodamina 110 y [CBZ-Arg₂]-aminometil-cumarina (AMC) de muestras moleculares (Eugene, Oregon, USA), [CBZ-Arg₄]-aminometil-cumarina (AMC) de muestras moleculares, así como [CBZ-Phe-Arg]-rodamina 110 (R110) (Eugene Oregon USA). Todos los demás productos químicos en la
- máxima pureza se adquirieron de Sigma-Aldrich (Eppelheim, Alemania) o Merck (Darmstadt, Alemania), Amersham Pharmacia Biotech (Buckinghamshire, UK) o Bio-Rad (Hercules, California, USA).

Los animales se criaron en los laboratorios Charles-River-Breeding (Sulzbach, Alemania). Todos los experimentos animales se realizaron en coincidencia con las directrices de las prescripciones de empleo de animales y protección de animales.

35 Ejemplo 1

Análisis in vitro de la especificidad y capacidad de inhibidor

La actividad de la elastasa neutrófila, elastasa pancreática, de tripsina, catepsina L, catepsina B y mieloperoxidasa se determinó en ausencia y en presencia de diversas concentraciones de compuesto II (las concentraciones se situaban en el intervalo de 1 nM a 1 mM). La actividad de tripsina (10 mU), actividad de mieloperoxidasa (100 mU) y 40 la actividad de elastasa neutrófila (10 mU) se determinaron mediante el empleo de sustrato fluorógeno específico [CBZ-IIe-Pro-Arg]₂-rodamina 10 o [CBZ-Ala₄]-aminometil-cumarina (AMC) en tampón tris-HCl 100 mM (pH 8,0), que contenía CaCl₂ 5 mM, substrato 10 μM (concentración final) y tripsina bovina 10 mU en un volumen de 150 μI, a una longitud de onda de excitación de 485 nm y una longitud de onda de emisión de 530 nm, o una longitud de onda de excitación de 350 nm y una longitud de onda de emisión de 460 nm a 37°C. Las velocidades iniciales de hidrólisis de 45 substratos se midieron como unidades de fluorescencia arbitrarias por minuto. A continuación se determinó la actividad de catepsina B (100 mU) y la actividad de catepsina L (100 mU) en tampón acetato sódico 0,25 M (pH 5,0), que contenía EDTA 2 mM, DTT 1 mM, 10 μM de substrato específico CBZ-[Arg]₂-aminometil-cumarina o 10 μM de [CBZ-Phe-Arg]-rodamina 110 (concentración final) en un volumen final de 150 µl, a una longitud de onda de excitación de 350 nm y una longitud de onda de emisión de 460 nm o 485 nm y una longitud de onda de emisión de 50 530 nm a 37°C.

La disociación de los substratos se midió durante 60 minutos en un aparato de lectura de fluorescencia en microplacas (SPECTRAmax GEMINI, Molecular Devices, Sunnywell, California, USA), y se comparó con la actividad

inicial en ausencia del compuesto II. Los resultados se calcularon en porcentaje de la actividad enzimática de partida (Kukor et al., 2002).

Los resultados se representan en la figura 1. El compuesto II inhibe catepsina B y L, pero no mieloperoxidasa ni tripsina. La eficacia inhibidora del compuesto II para la inhibición de la elastasa humana neutrófila era cinco veces más elevada en comparación con la elastasa pancreática.

Ejemplo 2

Inducción de una pancreatitis aguda inducida por ceruleína

Se anestesiaron ratas Wistar macho (140 a 250 g) con pentobarbital (30 mg/kg). Se colocó una cánula en la vena yugular y se administró a los animales por infusión una concentración supramáxima de ceruleína (10 µg/kg por hora) durante cuatro y doce horas. Las ratas Wistar macho (250 a 300 g) recibieron una alimentación por sonda de compuesto II (con una concentración de 240 mg/kg por día) tres horas y una hora antes de la inducción de la pancreatitis por ceruleína durante cuatro y doce horas. Los animales que recibieron una disolución de sal común como infusión, y que se alimentaron con el compuesto II a través de una sonda, sirvieron como control. Cada grupo de tratamiento estaba constituido por cinco animales. Tras el desangrado bajo anestesia de éter se eliminó rápidamente el páncreas, se liberó de grasa, y los bloques de tejido se fijaron en un 5 % de paraformaldehído para la histología en cortes alojados en parafina. La mayor fracción de páncreas se congeló en nitrógeno líquido y se almacenó a -80°C para el análisis proteico posterior y para la detección de la actividad enzimática.

Para investigar la capacidad del compuesto II para la reducción de los daños locales y sistémicos como consecuencia de una pancreatitis se emplearon respectivamente grupos de cinco ratas Wistar macho de la siguiente manera: control 1 (disolución soporte), control 2 (compuesto II), concentración supramáxima de ceruleína (10 µg/kg por hora) durante cuatro y doce horas, cantidad supramáxima de ceruleína + alimentación oral de compuesto II con una concentración de 240 mg/kg por día, administrándose el compuesto II mediante nutrición por sonda por vía oral, respectivamente tres horas y una hora antes de la inducción de la pancreatitis de ceruleína, y estando disuelto en 100 µI de polietilenglicol 400. Los animales se mataron después de cuatro y doce horas, y se reunió tejido pancreático, suero y tejido pulmonar para los análisis subsiguientes (véase la figura 2).

Ejemplo 3

Efecto del compuesto II sobre la medida de edemas pancreáticos

Determinación del contenido en agua pancreático: el contenido en agua del páncreas se determinó mediante comparación del tejido recién obtenido (peso húmedo) con el peso de la misma muestra tras secado (peso seco).

Para garantizar un secado constante, el tejido se incubó a 160°C durante 24 horas, alcanzándose un peso constante. Los resultados se representaron como porcentaje de la diferencia entre el peso húmedo y el peso seco, dividida por el peso húmedo original.

Una administración del compuesto II en sí misma no condujo a una modificación significativa en el contenido en agua del páncreas. Los animales tratados como control 1 mostraban un contenido en agua de aproximadamente un 60 %, que no se diferenciaba significativamente del grupo que se alimentó por vía oral con el compuesto II (control 2).

La infusión de ceruleína indujo un edema pancreático, que se reflejó en un aumento del contenido en agua a hasta un 90 %. La aplicación oral del compuesto II mostró una reducción significativa en la formación de edemas, tanto después de cuatro horas, como también después de doce horas después del comienzo de la infusión de ceruleína (figura 3). La imagen derecha en la figura 3 muestra el resultado macroscópico en el abdomen de ratas tras la inducción de la pancreatitis edematosa.

Ejemplo 4

40

Determinación de la actividad de mieloperoxidasa en homogeneizados pancreáticos

Para la medida de la actividad de mieloperoxidasa (MPO) se descongeló el tejido y se homogeneizó sobre hielo en tampón fosfato potásico 20 mM (pH 7,4), y se centrifugó durante 10 minutos con 20 000 g a 4°C. El aglomerado se resuspendió en tampón fosfato potásico 50 mM (pH 6,0), que contenía un 0,5 % de bromuro de cetiltrimetilamonio. La suspensión se congeló cuatro veces y se descongeló de nuevo, se trató una vez con ondas sonoras durante 10 segundos en una etapa de rendimiento de un 30 %, y se centrifugó durante 10 minutos a 4°C con 20 000 g. La actividad de MPO se investigó tras mezcla de 50 µl de exceso en 200 µl de un tampón fosfato potásico 50 mM (pH 6,0), que contenía O-dianisina 0,53 mM y H₂O₂ 0,15 mU.

ES 2 510 491 T3

El aumento original de la absorción a 450 nm se midió a temperatura ambiente con un aparato de lectura Dynatech MR 5000 ELISA. Los resultados se representaron como unidades de MPO, oxidando una unidad H_2O_2 1 μ M por minuto por mg de proteína pancreática. Las barras muestran valores medios en actividad mU MPO/mg de proteína pancreática de cinco animales por indicación de tiempo (véase figura 4).

- Con la medida de la actividad de mieloperoxidasa se determinará el número de neutrófilos que penetran en el tejido pancreático. Una interacción directa del compuesto II con MPO se excluyó en ensayos in vitro, para asegurar que los valores reducidos de MPO se correlacionaran con una infiltración neutrófila reducida, no eran ocasionados por la inhibición de MPO. Los animales que se trataron con el compuesto II mostraban una reducción de más del 5 % de la actividad de MPO en el tejido pancreático.
- Ya que la actividad de MPO en el tejido pancreático constituye sólo una identificación indirecta de la presencia de neutrófilos, se llevaron a cabo igualmente experimentos de inmunoprecipitación para el transcurso temporal de la pancreatitis de ceruleína hasta 48 horas, y las muestras se analizaron respecto a la expresión de elastasa neutrófila por medio de Westernblot.

Inmunoprecipitación y prueba de confirmación

- 15 El tejido pancreático se homogeneizó en PBS refrigerado con hielo o tampón de lisis Triton X 100, que contenía inhibidores de proteasa (1 ml/mg de tejido), 10 μg/ml de aprotinina, 10 μg/ml de leupeptina, pirofosfato sódico 0,01 M, fluoruro sódico 0,1 M, peróxido de dihidrógeno 1 mM, fluoruro de L-fenil-metil-sulfuril PMSF 1 mM, y un 0,02 % de inhibidor de tripsina de habas de soja), con un homogeneizador de vidrio Dounce S Glas (Braun Melsungen), para Westernblots, y sin inhibidores para la detección de las actividades enzimáticas. La concentración de proteínas se determinó mediante un ensayo de Bradford modificado (Bio-Rad), y se emplearon en cada caso las mismas cantidades de proteína en experimentos sucesivos. Para una inmunoprecipitación se incubó previamente una mezcla de proteína A y G-sefarosa (Amersham Pharmacia Biotech) con anticuerpos en HEPES 20 mM pH 7,4.
- Los productos de lisis se purificaron previamente con suero no inmune de rata, se añadieron a los anticuerpos acoplados, y se incubaron durante una hora a 4°C en un disco giratorio. Los precipitados se lavaron con HNTG (HNTG: tampón HEPES-NaCI-tritón-glicerina) y se llevaron a ebullición durante cinco minutos en tampón de muestra SDS doble. La electroforesis en gel de SDS-poliacrilamida se llevó a cabo en un sistema tampón discontinuo, y los geles se transfirieron a membranas de nitrocelulosa (Highbond C, Amersham Pharmacia Biotech). Tras un bloqueo en gelatina NET 0,2 % (NET: tampón Tris-EDTA sódico) durante la noche se llevó a cabo el análisis de confirmación, seguido de una detección de quimioluminiscencia (Amersham Pharmacia Biotech), acoplándose peroxidasa de rábano picante en un anticuerpo oveja-anti-ratón IgG (Amersham Pharmacia) o cabra-anti-conejo IgG (Amersham Pharmacia Biotech).

La expresión de elastasa neutrófila mostró su máximo después de doce horas, pero ya después de una hora después del comienzo de la pancreatitis mostraba un aumento significativo. Igualmente después de una hora después del comienzo de la pancreatitis de ceruleína se pudo identificar la transmigración de neutrófilos desde pequeños vasos al espacio intersticial del páncreas, como se representó mediante la microscopía electrónica (véase la figura 4).

Para la microscopía electrónica se fijaron pequeños bloques (2 mm en diámetro) de tejido pancreático de páncreas de rata tras la infusión de ceruleína supramáxima, y de animales de control, en 2 % de formaldehído/2 % de glutaraldehído, se incrustaron en Epon y se emplearon cortes delgados contrastados con osmio, uranilo y plomo para la microscopía electrónica. Los cortes ultrafinos (60 nm) se obtuvieron con ayuda de un ultramicrotomo Leica. Las muestras se investigaron en un microscopio electrónico Philips 400, y se fotografiaron con un aumento de 30 000 veces.

Ejemplo 5

35

Efecto del compuesto II sobre daños morfológicos

La estimulación supramáxima con ceruleína condujo a un edema intersticial o a la formación de grandes vacuolas intracelulares en células acinares pancreáticas. La administración del compuesto II no condujo a ningún tipo de modificación morfológica, como las que se observaron en una pancreatitis aguda. La administración del compuesto II junto con ceruleína impidió el desarrollo del edema intersticial y de la vacuolización intracelular. Las vacuolas aún identificables eran mucho más reducidas, y el número de células inflamatorias infiltradas se redujo en gran medida.

La cuantificación del número de vacuolas en los diferentes grupos de tratamiento mostró una reducción altamente significativa a aproximadamente un 15 hasta un 25 % de vacuolas, que se encontraron en el caso de pancreatitis no tratada (véase la figura 5).

Ejemplo 6

Efecto del compuesto Il sobre la hiperamilesemia

Como resultado de un deterioro celular se puede identificar una actividad de amilasa acrecentada en el suero durante el desarrollo de la pancreatitis inducida por ceruleína, ya una hora después del comienzo de la pancreatitis. La medida de la destrucción de células acinares pancreáticas se correlaciona con la medida de la actividad de amilasa en el suero. Se mostró que mediante la administración oral de compuesto II se redujo significativamente la actividad de amilasa que se pudo identificar en el suero de animales después de cuatro y doce horas de pancreatitis (véase la figura 6).

Ejemplo 7

Efecto del compuesto II sobre la actividad de mieloperoxidasa en el pulmón durante una pancreatitis

- 10 La pancreatitis influye no solo sobre el páncreas, sino que también conduce a una respuesta inflamatoria sistémica que se refiere a otros órganos, como los riñones o el pulmón. Para investigar si el compuesto II juega un papel en la influencia de los efectos extrapancreáticos del desarrollo de la enfermedad, se investigó la actividad de mieloperoxidasa en tejidos pulmonares, para valorar la medida de la infiltración de leucocitos, así como las diferencias morfológicas en los pulmones de animales con pancreatitis y controles no tratados. Las diferencias 15 morfológicas en los tejidos pulmonares durante una pancreatitis inducida por ceruleína estaban constituidas por acumulaciones de líquido alveolar y un engrosamiento progresivo, hiperemia e infiltración neutrófila del tejido intraalveolar. Todos estos resultados se redujeron mediante la administración del compuesto II. El grupo de animales que se trató con el compuesto II mostraba una reducción significativa de la actividad de MPO, que se correlacionaba con un número reducido de neutrófilos que se infiltran en el tejido pulmonar. El efecto observado doce horas 20 después del desencadenamiento de la pancreatitis era mayor que después de cuatro horas. Esta observación coincide con el hecho de que la reacción de inflamación sistémica alcanza su punto máximo después de doce horas de desarrollo de una pancreatitis aguda. Estos datos muestran claramente que la inhibición de la elastasa neutrófila mediante un producto activo administrable por vía oral no solo reduce los daños locales pancreáticos, sino que influye del mismo modo sobre la reacción de inflamación sistémica durante la pancreatitis (véase la figura 7).
- 25 Bibliografía

Ammann RW, Akrovbiantz A, Largiader F, Schueler G. Course and outcome of chronic pancreatitis. Longitudinal study of a mixed medical surgical series of 245 patients. Gastroenterology 1984; 86:820-828.

Cavallini G, Tittobello A, Frulloni L, Masci E, Mariani A, Di Francesco V. Gabexate for the prevention of pancreatic damage related to endoscopic retrograde cholangiopancreatography. The New England J. of Med. 1996; 335(13): 919-923.

Dominguez-Munoz JE, Carballo F, Garcia MJ, de Diego JM, Rabago L, Simon. MA, de la Morena J. Clinical usefulness of polymorphonuclear elastase in predicting the severity of acute pancreatitis: results of a multicentre study. Br. J. Surg 1991; 78:1230-1234.

Geokas MC, Murphy R, McKenna RD. The role of elastase in acute pancreatitis. I. Intrapancreatic elastolytic activity in bile-induced acute pancreatitis in dogs. Arch. Pathol. 1968; 86:117-126.

Kukor Z, Mayerle J, Krüger B, Toth M, Steed P, Halangk W, Lerch MM, Sahin-Toth M. Presence of cathepsin B in the human pancreatic secretory pathway and ist role in trypsinogen activation during hereditary pancreatitis. J.Biol. Chem. 2002; 277:21389-21396.

Withcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK, Amann ST, Toskes PP, Liddle R, McGrath K, Uomo G, Post JC, Ehrlich GD. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat. Genet. 1996; 14:141-145.

REIVINDICACIONES

1.- Empleo de una peptidil-trifluormetilcetona o su solvato para la obtención de una composición farmacéutica para la prevención y el tratamiento de una pancreatitis, teniendo la peptidil-trifluormetilcetona la siguiente estructura:

5 2.- Empleo según la reivindicación 1, caracterizado porque la peptidil-trifluormetilcetona es el siguiente estereoisómero:

- 3.- Empleo según una de las reivindicaciones 1 o 2, caracterizado porque la pancreatitis es una pancreatitis crónica o crónica retentiva.
- 4.- Empleo según una de las reivindicaciones 1 o 2, caracterizado porque la pancreatitis es una pancreatitis post-ERCP.
 - 5.- Empleo según una de las reivindicaciones 1a 4, caracterizado porque la peptidil-trifluormetilcetona se administra por vía oral.
- 6.- Empleo según una de las reivindicaciones 1 a 5, caracterizado porque el empleo comprende la utilización de un material soporte apropiado desde el punto de vista farmacéutico.
 - 7.- Empleo según una de las reivindicaciones 1 a 6, caracterizado porque se efectúa para la prevención de una pancreatitis.
 - 8.- Empleo según una de las reivindicaciones 1 a 7, caracterizado porque se efectúa para la prevención de una pancreatitis post ERCP.
- 9.- Peptidil-trifluormetilcetona o solvato de la misma para empleo en la prevención y el tratamiento de una pancreatitis, teniendo la peptidil-trifluormetilcetona la siguiente estructura:

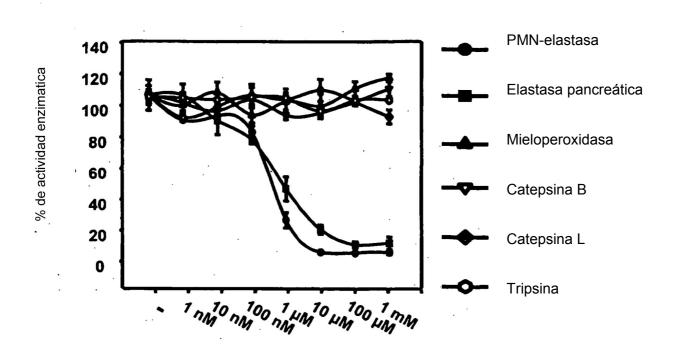


Fig. 1

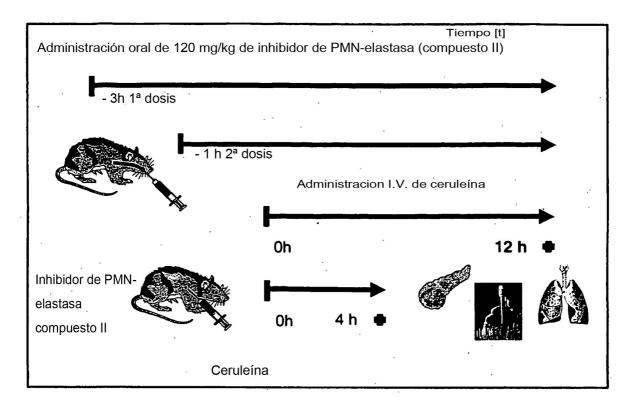


Fig. 2

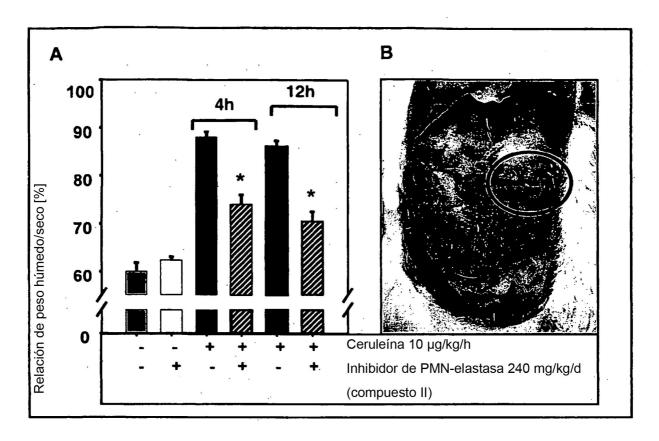


Fig. 3

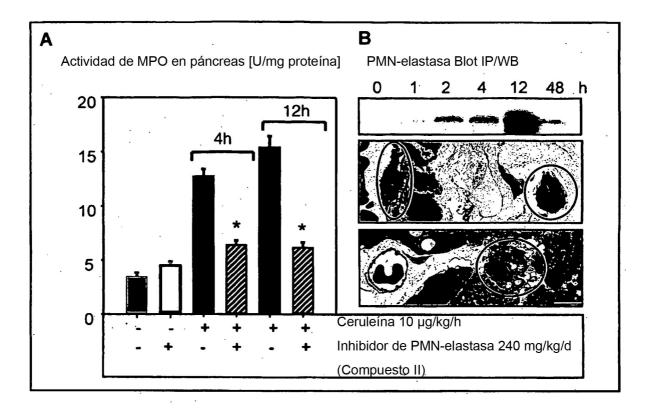


Fig. 4

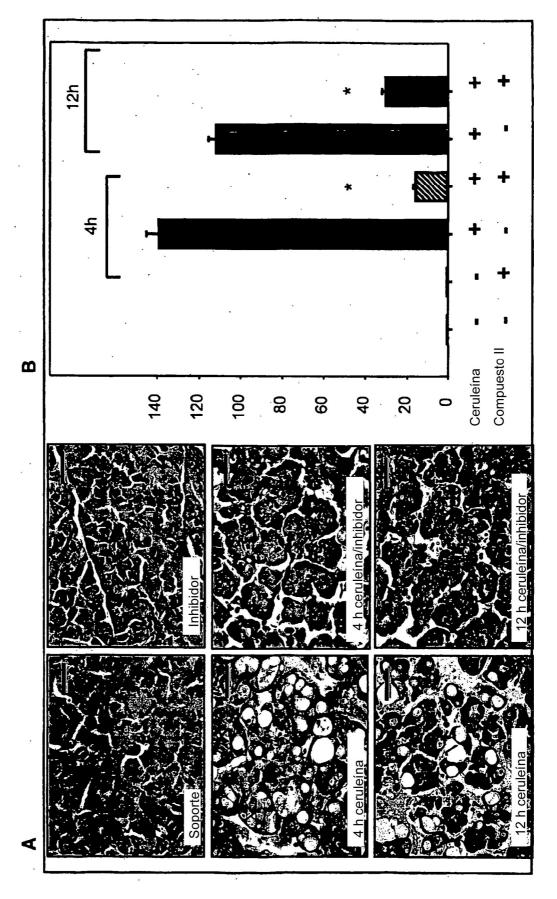


Fig. 5

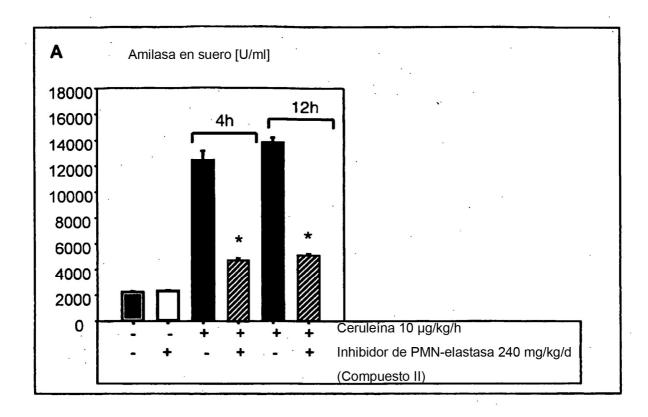


Fig. 6

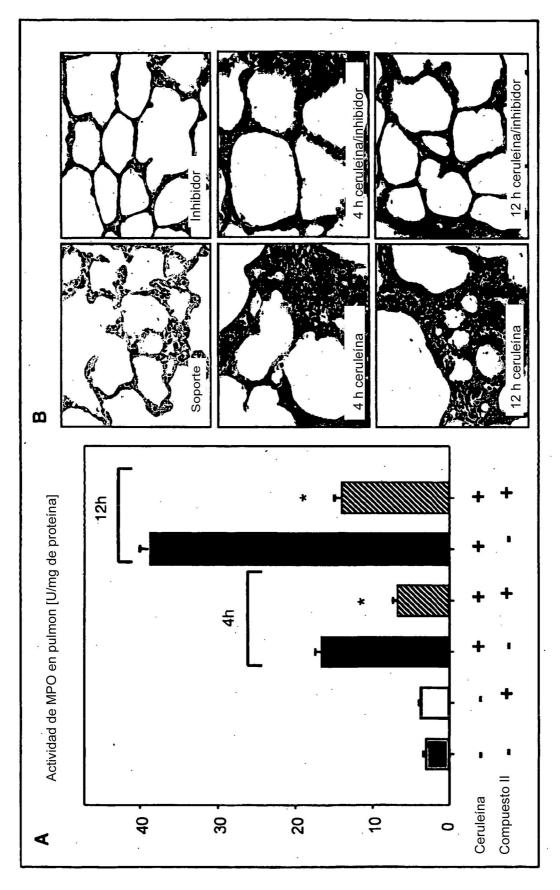


Fig. 7