

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 513 790

51 Int. Cl.:

C07C 69/84 (2006.01) **C11B 9/00** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 22.07.2005 E 05760959 (6)
 (97) Fecha y número de publicación de la concesión europea: 03.09.2014 EP 1771407

(54) Título: Salicilato de 4-hepten-2-ilo y su utilización como ingrediente de fragancia

(30) Prioridad:

23.07.2004 GB 0416428

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.10.2014

(73) Titular/es:

GIVAUDAN SA (100.0%) CHEMIN DE LA PARFUMERIE 5 1214 VERNIER, CH

(72) Inventor/es:

KAISER, ROMAN

74) Agente/Representante:

DURÁN MOYA, Carlos

DESCRIPCIÓN

Salicilato de 4-hepten-2-ilo y su utilización como ingrediente de fragancia

10

15

20

25

30

45

50

55

60

65

5 La presente invención se refiere a salicilato de 4-hepten-2-ilo, a un procedimiento de producción del mismo y a una composición de fragancia que lo comprende.

En la bibliografía se conocen múltiples ésteres de salicilato, algunos de los cuales se utilizan en la industria de las fragancias. Sin embargo, en dicha industria existe una demanda constante de nuevos compuestos que potencien o mejoren las notas de olor, o bien que proporcionen nuevas notas de olor. En particular, existe una demanda constante de notas florales potentes y de larga duración.

Un éster de salicilato ampliamente utilizado, por ejemplo, es el salicilato de cis-3-hexenilo (salicilato de (Z)-3-hexen-1-ilo). Se ha identificado en la esencia absoluta de clavel y, según se ha descrito, posee una nota de olor dulce, vegetal y balsámica.

Sorprendentemente, los presentes inventores han descubierto que la sustitución del salicilato de cis-3-hexenilo con un grupo metilo en la posición alfa con respecto al grupo éster, con la que se obtiene salicilato de 4-hepten-2-ilo, tiene solo una ligera influencia en el valor umbral de olor, mientras que se da un deterioro enorme de dicho valor umbral si el salicilato de cis-3-hexenilo se sustituye con un grupo metilo en posición beta con respecto al éster, obteniéndose salicilato de 4-hepten-2-ilo, muy útil como sustituto del compuesto no sustituido. La nueva molécula, tal como se explica en el presente documento, tiene un gran valor para la industria de las fragancias debido a sus características olfativas y su valor umbral de olor muy bajo, así como por su capacidad para dispersarse muy rápidamente en un determinado espacio, combinado con un efecto persistente.

Tal como se utiliza en el presente documento, la expresión "valor umbral de olor" se refiere a la concentración mínima de un vapor en el aire que se puede detectar mediante el olfato. En términos generales, puede decirse que un compuesto con un valor umbral de olor bajo es más potente que un compuesto con un valor umbral de olor alto, y por consiguiente permite utilizar una concentración muy baja en una composición de fragancia para lograr un efecto olfativo.

Por consiguiente, en un aspecto, la presente invención se refiere a la utilización de salicilato de (Z)-4-hepten-2-ilo como ingrediente de fragancia.

El salicilato de 4-hepten-2-ilo comprende un centro quiral, y como tal puede existir como mezcla de estereoisómeros o se puede refinar como formas isoméricamente puras. La separación de los estereoisómeros hace aumentar la complejidad de la preparación y purificación de estos compuestos, por lo que resulta preferente utilizarlos como mezclas de sus estereoisómeros por razones meramente económicas. Sin embargo, si se desea preparar estereoisómeros individuales, se pueden obtener mediante métodos conocidos en la técnica, por ejemplo, HPLC y CG preparativas, o por síntesis estereoselectiva.

El isómero más deseable es el salicilato de (Z)-4-hepten-2-ilo, que se caracteriza por una nota floral y vegetal muy fresca, que recuerda a aspectos de ciertas especies de lirio y frangipani. Los dos enantiómeros tienen características olfativas parecidas, mientras que el umbral de olor del isómero Z es aproximadamente 10 veces menor que el del isómero E, y por consiguiente resulta preferente.

Teniendo en cuenta las propiedades olfativas del salicilato de (Z)-4-hepten-2-ilo, como isómero individual o combinado con el isómero E, se puede utilizar para crear un muy amplio espectro de fragancias en combinación con el amplio espectro de ingredientes de fragancia conocidos, que se pueden seleccionar de entre la extensa gama de productos naturales y moléculas sintéticas disponibles en la actualidad, tales como aceites esenciales, alcoholes, aldehídos y cetonas, éteres y acetales, ésteres y lactonas, macrociclos y heterociclos. En este sentido, en composiciones de fragancia que presentan las así denominadas notas de flores blancas, contribuye o potencia, respectivamente, los aspectos característicos de las especies de lirio y frangipani, y hace que la composición sea más fresca y chispeante; en fragancias aromáticas florales picantes puede proporcionar una agradable nota de claveles silvestres y de nuevo conferir un frescor chispeante; añadido a una fragancia rica en iononas de tipo violeta y fresia, de nuevo hace que toda la composición sea muy chispeante y refrescante, y potencia una nota vegetal floral única. En términos generales, se puede afirmar que el salicilato de (Z)-4-hepten-2-ilo es un potente odorizante con un valor umbral de olor significativamente bajo y, por consiguiente, se pueden obtener efectos incluso para dosificaciones del 0,05% en peso con respecto a la composición de fragancia. Por otro lado, dicho odorizante se caracteriza por una capacidad de integración muy alta y se puede utilizar en concentraciones mayores del 50% en peso.

El compuesto según la presente invención se puede utilizar en aplicaciones de fragancia, tales como perfumes, productos del hogar, productos para el lavado de la ropa, productos para el cuidado corporal y cosméticos, simplemente mezclando directamente una composición de fragancia, que comprende el compuesto con la aplicación de fragancia, o bien, en una etapa anterior, el compuesto se puede encapsular con un material de encapsulamiento,

por ejemplo polímeros, cápsulas, microcápsulas y nanocápsulas, liposomas, formadores de película, adsorbentes, tales como carbono o zeolitas, oligosacáridos cíclicos y mezclas de los mismos, o se pueden enlazar químicamente a substratos, que se adaptan a efectos de liberar la molécula de fragancia tras la aplicación de un estímulo externo, tal como luz, enzimas, o similares, y a continuación mezclarse con la aplicación.

5

10

15

20

De este modo, la presente invención da a conocer, además, un procedimiento para preparar una aplicación de fragancia, que comprende la incorporación a la misma de salicilato de (Z)-4-hepten-2-ilo como ingrediente de fragancia, o bien mezclando directamente dicho compuesto con la aplicación, o bien mezclando una composición de fragancia que comprende el compuesto, que a continuación se puede mezclar con una aplicación de fragancia, mediante técnicas y métodos convencionales. Mediante la adición de una cantidad olfatoria eficaz de un compuesto según la presente invención se mejoran, potencian o modifican las notas de olor de una aplicación de fragancia.

Así, la presente invención da a conocer, además, un procedimiento para mejorar, potenciar o modificar una aplicación de fragancia mediante la adición a la misma de una cantidad olfativa eficaz de salicilato de (Z)-4-hepten-2-ilo.

Tal como se utiliza en el presente documento, la expresión "aplicación de fragancia" se refiere a cualquier producto, tal como fragancias finas, por ejemplo un perfume o una colonia; productos del hogar, por ejemplo detergentes para lavaplatos o limpieza de superficies; productos para el lavado de la ropa, por ejemplo suavizantes, blanqueantes, detergentes; productos para el cuidado corporal, por ejemplo champús, geles de ducha; y cosméticos, por ejemplo desodorantes, cremas eliminadoras de vello, que comprenden un odorizante. Esta lista de productos se indica a título ilustrativo y no debe considerarse limitante en ningún sentido.

La siguiente lista comprende ejemplos de moléculas odorizantes conocidas y extractos odorizantes naturales que se pueden combinar con salicilato de (Z)-4-hepten-2-ilo:

- aceites y extractos esenciales, por ejemplo, aceite de lavanda, aceite de enebro, esencia absoluta de musgo de roble, aceite de geranio, esencia absoluta de jazmín, aceite de pachulí, aceite de rosa, aceite de sándalo, aceite de limón o aceite de ylang ylang.

30

- alcoholes, por ejemplo citronelol, Ebanol®, eugenol, geraniol, Super Muguet, linalol, alcohol feniletílico, nerolidol, 3-hexenol, Sandalore®, terpinol o Timberol®.
- aldehídos y cetonas, por ejemplo Azurone™, α-amilcinamaldehído, Georgywood, hidroxicitronelal, Iso E Super,
 Isoraldeine, Hedione®, maltol, metil cedril cetona, metilionona, beta-ionona, dihidrofarnesal o vainillina.
 - éteres y acetales, por ejemplo, Ambrox®, geranil metil éter, óxido de rosa o Spirambrene®.
- ésteres y lactonas, por ejemplo, acetato de bencilo, acetato de cedrilo, γ-decalactona, Helvetolide®, γ- undecalactona o acetato de vetivenilo.
 - macrociclos, por ejemplo, ambrettolide, brasilato de etileno, Exaltolide® o Cosmone™.
 - heterociclos, por ejemplo, isobutilquinolina.

45

50

El compuesto según la presente invención se puede preparar por transesterificación de 4-heptin-2-ol con salicilato de metilo, obteniéndose salicilato de 4-heptin-2-ilo. La hidrogenación selectiva del salicilato de 4-heptin-2-ilo da lugar al salicilato de (Z)-4-hepten-2-ilo. El isómero E está disponible en rendimientos más altos por hidrogenación de 4-heptin-2-ol con hidruro de litio y aluminio en dietilenglicol dimetil éter, obteniéndose (E)-4-hepten-2-ol, y su posterior transesterificación con salicilato de metilo. El compuesto de partida, 4-heptin-2-ol, se puede preparar según el procedimiento descrito por J. Flahaut y otros, Helvetica Chimica Acta 61, 2275 (1978).

A continuación, la presente invención se describe haciendo referencia a los siguientes ejemplos no limitantes.

55 Ejemplo 1: Salicilato de 4-hepten-2-ilo

a) salicilato de 4-heptin-2-ilo

Se calientan 4-heptin-2-ol (22 g; 0,2 mol) y salicilato de metilo (30 g; 0,2 mol) con agitación y atmósfera de nitrógeno a 120°C. Se añade isopropóxido de titanio (IV) (0,5 g; 0,02 mol) con una jeringa en una sola porción y la reacción se calienta a vacío reducido (600 mbar) a 150°C mientras se elimina el metanol por destilación. Tras 24 h (75% de conversión), el contenido del matraz se enfría a 25°C. Se aplica alto vacío (0,1 Torr = 0,133 mbar) y la masa de reacción se somete a destilación de corto recorrido, obteniéndose primero 5 g de 4-heptin-2-ol (23%), y luego, a 118°C/0,1 Torr (0,133 mbar), 35 g de salicilato de 4-heptin-2-ilo (75%).

65

 1 H-RMN (400 MHz, CDCl₃) : δ 1,10 (t, J=7,5 Hz, 3H), 1,46 (d, J=6,3 Hz, 3H), 2,14 (qt, J=7,5, 2,5 Hz, 2H), 2,52 (ddt, J=16,4, 6,8, 2,5 Hz, 1H), 2,59 (ddt, J=16,4, 5,3, 2,5 Hz, 1 H), 5,24 (dqd, J=6,8, 6,3, 5,3 Hz, 1 H), 6,88 (ddd, J=8,2, 7,1, 1,0 Hz, 1 H), 6,97 (dd, J=8,3, 1,0 Hz, 1H), 7,45 (ddd, J=8,3, 7,1, 1,8 Hz, 1H), 7,86 (dd, J=8,2, 1,8 Hz, 1H), 10,79 (s, 1 H) ppm.

5

35

45

IR: 1671, 1613, 1585, 1485, 1366, 1299, 1250, 1212, 1158, 1138, 1088, 1050, 1033,756, 700.

EM: $232(M^+,9)$, 138(13), 121(100), 120(36), 94(23), 93(22), 79(37), 67(33), 65(28), 55(19), 39(21).

- 10 Descripción del olor: aroma de flores blancas que recuerda a ciertas especies de lirios
 - b) Salicilato de (Z)-4-hepten-2-ilo
- Se agita salicilato de 4-heptin-2-ilo (24,6 g; 0,1 mol) disuelto en 30 ml de etanol absoluto sobre paladio en sulfato de bario (0,4 g; 0,02 mol) y en atmósfera de hidrógeno durante 3 horas. La filtración sobre celite y la evaporación del etanol a presión reducida da lugar a 26,2 g de producto bruto, que se destila en una columna de Vigreux, obteniéndose 23,5 g (96%) de un aceite ligeramente amarillento a 98°C/0,1 Torr (0,133 mbar). La redestilación en las mismas condiciones da lugar a 21,6 g (88%) de salicilato de (Z)-4-hepten-2-ilo incoloro.
- ¹H-RMN (400 MHz, CDCl₃): δ 0,97 (t, J=7,5 Hz, 3H), 1,37 (d, J=6,3 Hz, 3H), 2,08 (qnd, J=7,5, 1,3 Hz, 2H), 2,40 (m, 1H), 2,51 (m, 1 H), 5,20 (sx, J=6,3 Hz, 1 H), 5,37 (dtt, J=10,9, 7,3, 1,5 Hz, 1 H), 5,53 (dtt, J=10,9, 7,3, 1,5 Hz, 1 H), 6,87 (ddd, J=8,1, 7,3, 1,3 Hz, 1H), 6,97 (dd, J=8,3, 1,3 Hz, 1 H), 7,44 (ddd, J=8,3, 7,3, 1,8 Hz, 1 H), 7,83 (dd, J=8,1, 1,8 Hz, 1 H), 10,9 (s, 1 H) ppm.
- 25 IR: 1669, 1613, 1586, 1485, 1366, 1299, 1249, 1212, 1157, 1089, 1047, 755, 700 cm⁻¹. EM: 234(M⁺, 3), 138(17), 121(52), 120(28), 97(22), 96(44), 81(39), 65(23), 55(100), 41(22).

Descripción del olor: nota floral y vegetal crujiente que recuerda a aspectos de ciertas especies de lirios y frangipani.

30 Ejemplo 2: Salicilato de (Z)-2-metil-3-hexen-1-ilo.

Se preparó salicilato de (Z)-2-metil-3-hexen-1-ilo a partir de (Z)-2-metil-3-hexen-1-ol, cuya síntesis se ha descrito en otros textos (Russian Journal of Organic Chemistry, 1992, 28, 220-225) y salicilato de metilo, tal como se ha descrito en el ejemplo 1a) anterior. De este modo, a partir de (Z)-2-metil-3-hexen-1-ol (5,9 g, 0,05 mol) y salicilato de metilo (7,6 g, 0,05 mol) se obtuvieron, tras la destilación a 108-112°C/0,3 mbar, 7,5 g de salicilato de (Z)-2-metil-3-hexen-1-ilo (64%).

¹H-RMN (400 MHz, CDCl₃): δ 0,97 (t, J=7,6 Hz, 3H), 1,08 (d, J=6,8 Hz, 3H), 2,07-2,12 (m, 2H), 2,99 (qtd, J=6,8, 6,8, 0,8 Hz, 1H), 4,11-4,21 (m, 2H), 5,18 (dd, J=10,8, 1,2 Hz, 1 H), 5,47 (dd, J=10,8, 0,8 Hz, 1 H), 6,86 (ddd, J=8,0, 7,2, 1,2 Hz, 1 H), 6,97 (dd, J=8,8, 1,2 Hz, 1H), 7,44 (ddd, J=8,8, 7,2, 2,0 Hz, 1H), 7,83 (dd, J=8,0, 2,0 Hz, 1H), 10,78 (s, 1 H) ppm.

IR: 2964, 1671, 1614, 1485, 1465, 1298, 1258, 1210, 1156, 1087, 963, 754, 699 cm $^{-1}$. EM: 234(M $^{+}$,2), 138(16), 121(52), 9(37), 81(31), 65(21), 55(100), 39(16).

Descripción del olor: floral, vegetal, acuoso

Ejemplo 3: 2-hidroxi-3-metilbenzoato de (Z)-3-hexen-1-ilo

- Se preparó 2-hidroxi-3-metilbenzoato de (Z)-3-hexen-1-ilo a partir de (Z)-hex-3-en-1-ol y o-cresotinato de metilo comercialmente disponibles, tal como se ha descrito en el ejemplo 1a) anterior. De este modo, a partir de (Z)-hex-3-en-1-ol (20,0 g, 0,2 mol) y o-cresotinato de metilo (33,2 g, 0,2 mol) se obtuvieron tras la destilación a 108°C/0,2 mbar, 37,2 g de 2-hidroxi-3-metilbenzoato de (Z)-3-hexen-1-ilo (79%).
- 1 H-RMN (400 MHz, CDCl₃): δ 0,98 (t, J=7,2 Hz, 3H), 2,09 (qi, J=7,2 Hz, 2H), 2,26 (s, 3H), 2,52 (q, J=6,8 Hz, 2H), 4,32 (t, J=6,8, 2H), 5,36-5,39 (m, 1 H), 5,52-5,60 (m, 1H), 6,76 (t, J=7,6 Hz, 1H), 7,29 (d, J=7,6 Hz, 1 H), 7,68 (d, J=7,6 Hz, 1 H), 11,04 (s, 1H) ppm.
- IR: 2963, 1667, 1614, 1390, 1327, 1288, 1246, 1170, 1150, 1083, 1010, 753, 728 cm⁻¹. EM: 234(M⁺,9), 216(1), 152(38), 134(100), 106(31), 82(20), 77(27), 67(21), 55(59), 41(28).

Descripción del olor: floral, balsámico, ligeramente vegetal y acuoso

Ejemplo 4: Determinación de los valores de umbral de olor en CG

Según procedimientos estándar conocidos por los expertos en la materia, los valores umbral para los compuestos volátiles de perfumería son determinados por un grupo de evaluadores entrenados con la ayuda de un cromatógrafo de gases equipado con una salida de inhalación. La concentración más baja detectada a través del olfato por cada miembro del grupo de evaluadores se registra como valor umbral individual, expresado en ng (cantidad absoluta de compuesto suministrada a la salida de inhalación).

A modo de comparación, también se evaluaron el salicilato de (Z)-2-metil-3-hexen-1-ilo y el 2-hidroxi-3-metilbenzoato de (Z)-3-hexen-1-ilo. El objetivo era demostrar el considerable efecto ejercido por la posición de un sustituyente. Se midió el valor umbral de olor de los compuestos individuales en condiciones idénticas. Los resultados se indican a continuación.

Compuesto	media geométrica del valor umbral de olor [ng]
Salicilato de (Z)-4-hepten-2-ilo	0,77
Salicilato de (Z)-3-hexen-1-ilo (ej. comparativo)	0,92
Salicilato de (Z)-2-metil-3-hexen-1-ilo (ej. comparativo)	10
2-hidroxi-3-metilbenzoato de (Z)-3-hexen-1-ilo (ej. comparativo)	201

Tal como puede observarse en los resultados anteriores, aunque los compuestos están estrechamente relacionados desde el punto de vista estructural, los valores de umbral de olor son bastante diferentes. En consecuencia, no era predecible que el compuesto según la presente invención fuera similar al salicilato de (Z)-3-hexen-1-ilo.

Ejemplo 5: Composición de fragancia con carácter fresco de flores blancas

20

5

	Partes	en peso 1/1.000
Ocimeno (3,7-dimetil-1,2,6-octatrieno)		4
Aceite de limón italiano		8
Acetato de cis-3-hexenilo 10% DPG		5
cis-3-hexenol 10% DPG		5
Butirato de cis-3-hexenilo 10% DPG		4
Linalol sint. (3,7-dimetil-1,6-octadien-3-ol)		100
Farneseno (3,7,11-trimetil-1,3,6,10-dodecatetraeno)		15
Salicilato de metilo		3
Alcohol bencílico		30
Jasmona (3-metil-2-(2-pentenil)-2-ciclopenten-1-ona)		3
beta-ionona		5
2-metilbutirato de feniletilo		5
Dihidrofarnesal		20
Nerolidol (3,7,11-trimetil-1,6,10-dodecatrienol-3)		35
Farnesol		40
Benzoato de cis-3-hexenilo		40
Indol		7
Benzoato de bencilo		150
Salicilato de bencilo		300
Antranilato de metilo		1
cis-3-hexenoato de cis-3-hexenilo 10% DPG		10
Gardenol		8
Dihidro-beta-ionona		1
Hediona (dihidrojasmonato de metilo)		30
Anapear ((E)-4,7-octadienoato de metilo) 10% DPG		5
Damascenona 1% DPG		1
Acetato de miraldilo		50
Dipropilenglicol (DPG)		115
	Total	1.000

La adición de 100 partes de salicilato de (Z)-4-hepten-2-ilo hace que la composición anterior sea mucho más chispeante y exuberante y se desarrolla mucho más una nota deseable de especies de frangipani y lirio.

25 <u>Ejemplo 6: Composición de fragancia de carácter picante de flores blancas</u>

	Partes en peso 1/1.000
Acetato de cis-3-hexenilo	1
cis-3-hexenol	1
Decanal	1
Acetato de linalilo sint.	5

Acetato de bornilo levo		5
Salicilato de metilo		2
Rodinol puro		5
Alcohol bencílico		20
Alcohol feniletílico		70
Sandalore (5-(2,2,3-trimetil-3-ciclopentenil)-3-metilpentan-2-ol)		5
Dihidrofarnesal		40
Nerolidol (3,7,11-trimetil-1,6,10-dodecatrienol-3-ol)		30
Vetinal		5
Salicilato de amilo		10
Alcohol cinámico		35
Isoeugenol		30
Benzoato de cis-3-hexenilo		5
Indol		5
Vainillina		5
Benzoato de bencilo		100
Benzoato de feniletilo		80
Salicilato de bencilo		200
cis-3-hexenoato de cis-3-hexenilo 10% DPG		3
Linalol		80
Ocimeno		3
Benzoato de metilo		3
Benzoato de cis-3-hexenilo		35
Dipropilenglicol (DPG)		216
	Total	1.000

La adición de 100 partes de salicilato de (Z)-4-hepten-2-ilo hace que la composición anterior sea mucho más chispeante, ligera y fresca. Además, ayuda a desarrollar una nota muy atractiva de clavel silvestre y refuerza mucho, en términos generales, la deseada nota picante de flores blancas.

Ejemplo 7: Composición de fragancia con carácter de violeta y fresia

5

	F	artes en peso 1/1.000
Dihidro-beta-ionona		65
alfa-ionona		10
beta-ionona		200
Acetato de miraldilo		150
Rodinol puro		30
Citral		3
trans-2-dodecenal 10% DPG		3
Acetato de cis-3-hexenilo 10% DPG		4
Dodecanal 10% DPG		3
Dihidrofarnesal		60
alfa-terpinol		60
Linalol sint.		100
Farnesol		45
Hidroxicitronelal		70
Dipropilenglicol (DPG)		197
	Total	1.000

La adición de 60 partes de salicilato de (Z)-4-hepten-2-ilo al acorde de fragancia anterior hace que la composición sea exuberante, chispeante y floral refrescante con un delicado tono vegetal-afrutado.

REIVINDICACIONES

- 1. Salicilato de (Z)-4-hepten-2-ilo.
- 5 2. Composición de fragancia que comprende salicilato de (Z)-4-hepten-2-ilo.
 - 3. Utilización de salicilato de (Z)-4-hepten-2-ilo como ingrediente de fragancia.
- 4. Procedimiento de fabricación de una aplicación de fragancia, que comprende la etapa de incorporación de una cantidad eficaz de salicilato de (Z)-4-hepten-2-ilo en una aplicación de fragancia.