

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 517 690

51 Int. Cl.:

C07D 401/12	(2006.01) CO7D 239/91	(2006.01)
A61K 31/5377	(2006.01) CO7D 417/14	(2006.01)
C07D 405/12	(2006.01) A61K 31/497	(2006.01)
A61K 31/4375	(2006.01) CO7D 401/14	(2006.01)
A61P 3/10	(2006.01) C07D 453/02	(2006.01)
C07D 413/12	(2006.01) A61K 31/506	(2006.01)
A61K 31/439	(2006.01) CO7D 403/12	(2006.01)
A61P 5/50	(2006.01) A61K 31/517	(2006.01)
C07D 417/12	(2006.01) CO7D 403/14	(2006.01)
A61K 31/4709	(2006.01)	

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 29.09.2009 E 09817056 (6) (97) Fecha y número de publicación de la concesión europea: 30.07.2014 EP 2344475
- (54) Título: Quinazolinona, quinolona y análogos relacionados como moduladores de sirtuina
- (30) Prioridad:

29.09.2008 US 194576 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 03.11.2014

(73) Titular/es:

GLAXOSMITHKLINE LLC (100.0%) Corporation Service Company, 2711 Centreville Road, Suite 400 Wilmington, Delaware 19808, US

(72) Inventor/es:

VU, CHI, B.; OALMANN, CHRISTOPHER; PERNI, ROBERT, B. y WHITE, BRIAN

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

S 2 517 690 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Quinazolinona, quinolona y análogos relacionados como moduladores de sirtuina

Antecedentes de la invención

5

10

15

30

35

40

45

La familia de reguladores de información silenciada (SIR) de genes representa un grupo altamente conservado de genes presentes en los genomas de organismos desde arqueobacterias hasta eucariotas. Las proteínas codificadas por SIR participan en diversos procesos de regulación del silenciamiento génico para la reparación del ADN. Las proteínas codificadas por miembros de la familia de genes SIR muestran alta conservación de secuencia en un dominio central de 250 aminoácidos. Un gen bien caracterizado en esta familia es el gen Sir2 en S. cerevisiae, que participa en silenciar los loci HM que contienen información que especifica el tipo de apareamiento en levadura, el efecto de posición del telómero y el envejecimiento celular. La proteína Sir2 de levadura pertenece a una familia de histona desacetilasas. El homólogo de Sir2, CobB, en Salmonella tyfimurium, funciona como una ADP-ribosil transferasa dependiente de NAD (nicotinamida adenina dinucleótido).

La proteína Sir2 es un desacetilasa de clase III que utiliza NAD como co-substrato. A diferencia de otras desacetilasas, muchas de las cuales están involucradas en el silenciamiento génico, Sir2 es insensible a los inhibidores de histona desacetilasas I y II similares a tricostatinas A (TSA).

La desacetilación de acetil-lisina por Sir2 está estrechamente unida a la hidrólisis de NAD, produciendo nicotinamida y un compuesto acetil-ADP ribosa novedoso. La actividad desacetilasa dependiente de NAD de Sir2 es esencial para sus funciones. lo que puede conectar su función biológica con el metabolismo celular en levadura. Los homólogos de Sir2 en mamíferos tienen actividad de histona desacetilasa dependiente de NAD.

Estudios bioquímicos demostraron que Sir2 puede desacetilar fácilmente las colas aminoterminales de las histonas H3 y H4, dando como resultado la formación de 1-O-acetil-ADP-ribosa y nicotinamida. Cepas con copias adicionales de SIR2 muestran mayor silenciamiento de ADNr y una duración de la vida 30% más larga. Se ha demostrado recientemente que copias adicionales del homólogo de SIR2 en *C. elegans*, sir-2.1, y el gen dSir2 de *D. melanogaster* prolongan en gran medida la duración de la vida en esos organismos. Esto implica que la vía reguladora dependiente de SIR2 para el envejecimiento surgió tempranamente en el proceso evolutivo y ha estado bien conservada. Hoy en día, se cree que los genes Sir2 han evolucionado para mejorar la salud y resistencia al estrés de los organismos para aumentar sus posibilidades de sobrevivir a la adversidad.

En los seres humanos, hay siete genes similares a Sir2 (SIRT1-SIRT7) que comparten el dominio catalítico conservado de Sir2. SIRT1 es una proteína nuclear con el más alto grado de similitud de secuencia con Sir2. SIRT1 regula múltiples objetivos celulares por desacetilación incluyendo el supresor de tumores p53, el factor de señalización celular NF-κB, y el factor de transcripción FOXO.

SIRT3 es un homólogo de SIRT1 que está conservado en procariotas y eucariotas. La proteína SIRT3 es dirigida a las crestas mitocondriales por un único dominio situado en el N-terminal. SIRT3 tiene actividad desacetilasa de proteínas dependientes de NAD+ y se expresa ubicuamente, particularmente en los tejidos metabólicamente activos. Durante la transferencia a las mitocondrias, se cree que SIRT3 es escindida en una forma activa, más pequeña, por una peptidasa procesadora de la matriz mitocondrial (MPP, por sus siglas en inglés).

Desde hace más de 70 años se sabe que la restricción calórica mejora la salud y alarga la vida de los mamíferos. La duración de la vida de la levadura, como la de los metazoos, también se alarga por intervenciones que se asemejan a la restricción calórica, tal como bajo aporte de glucosa. El descubrimiento de que tanto la levadura como las moscas que carecen del gen SIR2 no viven más tiempo bajo restricción calórica proporciona evidencia de que los genes SIR2 median en los efectos beneficiosos para la salud de una dieta hipocalórica. Además, las mutaciones que disminuyen la actividad de la vía dependiente de AMPc (adenosina 3',5'-monofosfato) sensible a la glucosa en levadura (la vía del PKA, por sus siglas en inglés) alargan la duración de la vida en las células de tipo salvaje pero no en cepas sir2 mutantes, demostrando que SIR2 va a ser probablemente un componente clave corriente abajo de la vía de la restricción calórica.

Los documentos WO2008011476 y WO2005002555 describen quinolina y compuestos policíclicos para modular la actividad de sirtuina.

Compendio de la invención

Se proporcionan en este documento nuevos compuestos moduladores de sirtuina y métodos de uso de los mismos.

50 En un aspecto, la invención proporciona compuestos moduladores de sirtuina de las fórmulas estructurales (II) a (IIc) como se describen a detalle a continuación.

En otro aspecto, la invención proporciona composiciones que comprenden compuestos moduladores de sirtuina. En ciertas realizaciones, los compuestos moduladores de sirtuina que aumentan el nivel y/o la actividad de una proteína sirtuina se pueden utilizar para diversas aplicaciones terapéuticas incluyendo, por ejemplo, aumentar la duración de

la vida de una célula y tratar y/o prevenir una amplia gama de enfermedades y trastornos incluyendo, por ejemplo, enfermedades o trastornos relacionados con el envejecimiento o el estrés, diabetes, obesidad, enfermedades neurodegenerativas, neuropatía inducida por quimioterapia, neuropatía asociada con un evento isquémico, enfermedades y/o trastornos oculares, enfermedades cardiovasculares, trastornos de coagulación de sangre, inflamación, y/o enrojecimiento, etc. Los compuestos moduladores de sirtuina que aumentan el nivel y/o la actividad de una proteína sirtuina también pueden utilizarse para tratar una enfermedad o trastorno en un sujeto que puede beneficiarse de mayor actividad mitocondrial, para mejorar el rendimiento muscular, para aumentar los niveles de ATP musculares o para tratar o prevenir daños en el tejido muscular relacionados con hipoxia o isquemia. En otras realizaciones, los compuestos moduladores de sirtuina que disminuyen el nivel y/o la actividad de una proteína sirtuina se pueden utilizar para diversas aplicaciones terapéuticas incluyendo, por ejemplo, aumento de la sensibilidad celular al estrés, aumento de apoptosis, tratamiento de cáncer, estimulación del apetito, y/o estimulación de ganancia de peso, etc. Como se describe además más abajo, los métodos comprenden administrar a un sujeto con necesidad de ello una cantidad farmacéuticamente eficaz de un compuesto modulador de sirtuina.

En ciertos aspectos, los compuestos moduladores de sirtuina se pueden administrar en solitario o en combinación con otros compuestos, incluidos otros compuestos moduladores de sirtuina u otros agentes terapéuticos.

Descripción detallada de la invención

1. Definiciones

10

15

20

25

45

50

55

Como se utiliza en el presente, los siguientes términos y frases tendrán el significado que se indica a continuación. A menos que se defina lo contrario, todos los términos técnicos y científicos utilizados aquí tienen el mismo significado que generalmente entiende el experto en la técnica.

El término "agente" se usa aquí para designar un compuesto químico, una mezcla de compuestos químicos, una macromolécula biológica (como un ácido nucleico, un anticuerpo, una proteína o porción de la misma, por ejemplo, un péptido) o un extracto elaborado de materiales biológicos tales como bacterias, plantas, hongos, o células animales (especialmente mamíferos) o tejidos. La actividad de dichos agentes puede hacerlos adecuados como un "agente terapéutico" que es una sustancia (o sustancias) activa biológicamente, fisiológicamente, o farmacológicamente que actúa localmente o sistémicamente en un sujeto.

El término "biodisponible" cuando se refiere a un compuesto se reconoce en la técnica y se refiere a una forma de un compuesto que le permite, o una porción de la cantidad de compuesto administrada, a ser absorbida por, incorporada a, o de otra forma fisiológicamente disponible a un sujeto o paciente a quien se administra.

"Porción biológicamente activa de una sirtuina" se refiere a una porción de una proteína sirtuina que tiene una actividad biológica, como la capacidad de desacetilarse. Porciones biológicamente activas de un sirtuina pueden incluir el dominio central de las sirtuinas. Porciones biológicamente activas de SIRT1 que tienen No. de acceso a GenBank NP_036370 que abarcan el dominio de unión NAD+ y el dominio de unión a substrato, por ejemplo, pueden incluir sin limitación, aminoácidos 62-293 de No. de acceso a GenBank NP_036370, que están codificados por nucleótidos 237 a 932 de No. de acceso a GenBank NM_012238. Por lo tanto, esta región se denomina a veces el dominio de núcleo. Otras porciones biológicamente activas de SIRT1, también conocidos a veces como dominios de núcleo, incluyen alrededor de aminoácidos 261 a 447 con No. de acceso a GenBank NP_036370, que se codifican por nucleótidos 834 a 1394 de No. de acceso a GenBank NM_012238; alrededor de aminoácidos 242 a 493 de No. de acceso a GenBank NP_036370, que se codifican por nucleótidos 777 a 1532 de No. de acceso a GenBank NM_012238; o alrededor de aminoácidos 254 a 495 de No. de acceso a GenBank NP_036370, que se codifican por nucleótidos 813 a 1538 de No. de acceso a GenBank NM_012238.

El término "animales de compañía" se refiere a los gatos y perros. Como se utiliza en el presente documento, el término "perro(s)" designa a cualquier miembro de la especie Canis familiaris, de los que hay un gran número de razas diferentes. El término "gato(s)" se refiere a un animal felino como gatos domésticos y otros miembros de la familia Felidae, género Felis.

"Diabetes" se refiere a alto nivel de azúcar en la sangre o cetoacidosis, así como anomalías metabólicas generales crónicas derivadas de un estado alto de azúcar en sangre prolongado o una disminución en la tolerancia a la glucosa. "Diabetes" abarca las formas tipo I y tipo II (Diabetes Mellitus no dependiente de insulina o NIDDM) de la enfermedad. Los factores de riesgo para la diabetes incluyen los siguientes: cintura de más de 101.6 centímetros para hombres o 88.9 centímetros para las mujeres, la presión arterial de 130/85 mmHg o superior, los triglicéridos por encima de 150 mg/dl, glucosa en la sangre en ayunas superior a 100 mg/dl o lipoproteína de alta densidad de menos de 40 mg/dl en hombres o 50 mg/dl en las mujeres.

El término "ED $_{50}$ " se refiere a la medida reconocida en la técnica de dosis eficaz. En ciertas realizaciones, ED $_{50}$ significa la dosis de un fármaco que produce el 50% de su máxima respuesta o efecto, o alternativamente, la dosis que produce una respuesta predeterminada en el 50% de los sujetos de prueba o preparaciones. El término "LD $_{50}$ " se refiere a la medida reconocida en la técnica de dosis letal. En ciertas realizaciones, LD $_{50}$ significa la dosis de un fármaco que es letal en 50% de los sujetos de prueba. El término "índice terapéutico" es un término reconocido en la técnica que se refiere al índice terapéutico de un fármaco, definido como LD $_{50}$ /ED $_{50}$.

El término "hiperinsulinemia" se refiere a un estado en una persona en la que el nivel de insulina en la sangre es superior al normal.

El término "resistencia a la insulina" se refiere a un estado en el que una cantidad normal de insulina produce una respuesta biológica subnormal respecto a la respuesta biológica en un sujeto que no tiene resistencia a la insulina.

Un "trastorno de resistencia a insulina", como se describe en este documento, se refiere a cualquier enfermedad o condición que es causada por o contribuida por resistencia a la insulina. Ejemplos incluyen: diabetes, obesidad, síndrome metabólico, síndromes de resistencia a la insulina, síndrome X, resistencia a la insulina, presión sanguínea alta, hipertensión, colesterol alto en sangre, dislipidemia, hiperlipidemia, enfermedad ateroesclerótica incluido el accidente cerebrovascular, enfermedad coronaria arterial o infarto al miocardio, hiperglucemia, hiperinsulinemia y/o hiperproinsulinemia, intolerancia a la glucosa, retraso de liberación de insulina, complicaciones diabéticas, incluyendo la enfermedad cardíaca coronaria, angina de pecho, insuficiencia cardíaca congestiva, apoplejía, funciones cognitivas en demencia, retinopatía, neuropatía periférica, nefropatía, glomerulonefritis, glomeruloesclerosis, síndrome nefrótico, nefroesclerosis hipertensiva algunos tipos de cáncer (tal como endometrial, mama, próstata y colon), complicaciones del embarazo, mala salud reproductiva femenina (como irregularidades menstruales, infertilidad, ovulación irregular, síndrome de ovario poliquístico (PCOS, por sus siglas en inglés)), lipodistrofia, trastornos relacionados con colesterol, como cálculos biliares, colecistitis y colelitiasis, gota, apnea obstructiva del sueño y problemas respiratorios, osteoartritis, y pérdida ósea, por ejemplo, osteoporosis en particular.

El término "animales de granja" se refiere a cuadrúpedos domesticados, que incluye los que se crían para carne y subproductos diferentes, por ejemplo, un animal bovino incluyendo vacas y otros miembros del género Bos, un animal porcino incluyendo cerdos de granja y otros miembros del género Sus, un animal ovino incluyendo ovejas y otros miembros del género Ovis, cabras de granja y otros miembros del género Capra; cuadrúpedos de granja que se crían para tareas especializadas, tal como el uso como bestia de carga, por ejemplo, un animal equino incluyendo caballos de granja y otros miembros de la familia de équidos, género Equus.

El término "mamífero" se conoce en la técnica, y mamíferos ilustrativos son los seres humanos, primates, animales de ganado (incluyendo bovinos, porcinos, etc.), animales de compañía (por ejemplo, caninos, felinos, etc.) y roedores (por ejemplo, ratones y ratas).

Individuos "obesos" o personas que sufren de obesidad generalmente son personas con un índice de masa corporal (BMI, por sus siglas en inglés) de al menos 25 o más. La obesidad puede o no estar asociada con resistencia a la insulina.

Los términos "administración parenteral" y "administrado por vía parenteral" se reconocen en la técnica y se refiere a modos de administración diferentes de la administración enteral y tópica, generalmente por inyección e incluye, sin limitación, vía intravenosa, intramuscular, intraarterial, intratecal, intracapsular, intraorbital, intracardíaca, intradérmica, intraperitoneal, transtraqueal, subcutánea, subcuticular, intra-articular, subcapsular, subaracnoidea, intraespinal e intrasternal e infusión.

Un "paciente", "sujeto", "persona" u "húesped" se refiere a un humano o un animal no humano.

20

25

40

45

50

55

El término "portador farmacéuticamente aceptable" es reconocido en la técnica y se refiere a un material farmacéuticamente aceptable, composición o vehículo, tales como un relleno sólido o líquido, diluyente, excipiente, solvente o material de encapsulación, involucrado en llevar o transportar cualquier composición en cuestión o componente de la misma. Cada portador debe ser "aceptable" en el sentido de ser compatible con la composición en cuestión y sus componentes y no perjudicial para el paciente. Algunos ejemplos de materiales que pueden servir como portadores farmacéuticamente aceptables incluyen: (1) azúcares, tales como la lactosa, glucosa y sacarosa; (2) almidones, tales como el almidón de maíz y fécula; (3) celulosa y sus derivados, tales como carboximetilcelulosa de sodio, etil celulosa y acetato de celulosa; (4) tragacanto en polvo; (5) malta; (6) gelatina; (7) talco; (8) excipientes, tales como la manteca de cacao y ceras de supositorios; (9) aceites, tales como aceite de cacahuete, aceite de semilla de algodón, aceite de cártamo, aceite de ajonjolí, aceite de oliva, aceite de maíz y aceite de soya; (10) glicoles, tales como propilenglicol; (11) polioles, tales como la glicerina, sorbitol, manitol y polietilenglicol; (12) ésteres, tales como oleato de etilo y laurato de etilo; (13) agar; (14) agentes reguladores de pH, tales como hidróxido de magnesio e hidróxido de aluminio; (15) ácido algínico; (16) agua sin pirógenos; (17) solución salina isotónica; (18) solución de Ringer; (19) alcohol etílico; (20) soluciones reguladoras de pH de fosfato; y (21) otras sustancias compatibles no tóxicas empleadas en formulaciones farmacéuticas.

El término "prevenir" se reconoce en la técnica, y cuando se utiliza con relación a una condición tal como una reaparición local (por ejemplo, dolor), una enfermedad tal como cáncer, un síndrome complejo tal como deficiencia cardíaca o cualquier otra condición médica, se entiende bien en la técnica, e incluye la administración de una composición que reduce la frecuencia de, o retarda el inicio de, síntomas de una condición médica en un sujeto con relación al sujeto que no recibe la composición. De este modo, prevenir el cáncer incluye, por ejemplo, reducir el número de crecimientos cancerosos detectables en una población de pacientes que reciben un tratamiento profiláctico en relación con una población de control sin tratar, y/o retardar la aparición de crecimientos cancerosos detectables en una población tratada contra una población de control no tratada, por ejemplo, por medio de una

cantidad estadística y/o clínicamente importante. La prevención de una infección incluye, por ejemplo, reducir el número de diagnósticos de la infección en una población tratada contra una población de control sin tratar, y/o retardar el inicio de síntomas de la infección en una población tratada contra una población de control sin tratar. La prevención del dolor incluye, por ejemplo, reducir la magnitud de, o retardar alternativamente, sensaciones de dolor experimentadas por sujetos en una población tratada contra una población de control sin tratar.

5

10

15

20

25

30

35

40

45

50

55

60

El término tratamiento "profiláctico" o "terapéutico" se reconoce en la técnica y se refiere a la administración de un fármaco a un húesped. Si se administra antes de las manifestaciones clínicas de la condición no deseada (por ejemplo, enfermedad u otro estado no deseado del animal húesped) entonces el tratamiento es profiláctico, es decir, protege el húesped contra el desarrollo de la condición no deseada, mientras que si se administra después de la manifestación de la condición no deseada, el tratamiento es terapéutico (es decir, se destina para disminuir, mejorar o mantener la condición no deseada existente o efectos secundarios derivados de la misma).

El término "libre de pirógenos", con referencia a una composición, se refiere a una composición que no contiene un pirógeno en una cantidad que da lugar a un efecto negativo (por ejemplo, irritación, fiebre, inflamación, diarrea, dificultad respiratoria, choque endotóxico, etc.) en un sujeto al cual se administra la composición. Por ejemplo, el término pretende abarcar composiciones que son libres de, o sustancialmente libres de, una endotoxina como, por ejemplo, un lipopolisacárido (LPS, por sus siglas en inglés).

"Duración de la vida replicativa" de una célula se refiere al número de células hijas producidas por una "célula madre" individual. "Envejecimiento cronológico" o "duración de la vida cronológica" por otra parte, se refiere al periodo de tiempo en que una población de células no divididas sigue siendo viable cuando se priva de nutrientes. "Aumento de la duración de la vida de una célula" o "prolongación de la duración de la vida de una célula" tal como se aplica a células u organismos, se refiere al aumento del número de células hijas producidas por una célula; aumento de la capacidad de células u organismos para afrentar tensiones y combatir daños, por ejemplo, a ADN, proteínas; y/o aumento de la capacidad de células u organismos para sobrevivir y existir en un estado de vida por más tiempo bajo una condición particular, por ejemplo, estrés (por ejemplo, choque térmico, tensión osmótica, radiación alta de energía, estrés inducido químicamente, daño en el ADN, nivel de sal inadecuado, nivel de nitrógeno inadecuado, nivel de nutrientes inadecuado). La duración de la vida puede aumentarse por al menos aproximadamente 10%, 20%, 30%, 40%, 50%, 60% o entre 20% y 70%, 30% y 60%, 40% y 60% o más utilizando métodos descritos en este documento.

"Compuesto activante de sirtuina" se refiere a un compuesto que aumenta el nivel de una proteína sirtuina y/o aumenta al menos una actividad de una proteína sirtuina. En una realización ilustrativa, un compuesto activante de sirtuina puede aumentar al menos una actividad biológica de una proteína sirtuina por al menos aproximadamente 10%, 25%, 50%, 75%, 100% o más. Actividades biológicas ilustrativas de proteínas de sirtuina incluyen desacetilación, por ejemplo, de histonas y p53; prolongación de la duración de la vida; aumento de la estabilidad genómica; transcripción de silenciamiento; y control de la segregación de proteínas oxidadas entre las células madre y células hija.

"Proteína sirtuina" se refiere a un miembro de la familia de proteínas sirtuina desacetilasa o preferentemente a la familia sir2, que incluye Sir2 de levadura (No. de acceso a GenBank P53685), Sir-2.1 de *C. elegans* (No. de acceso a GenBank NP_501912), y SIRT1 humano (No. de acceso a GenBank NM_012238 y NP_036370 (o AF083106)) y proteínas SIRT2 (No. de acceso a GenBank NM_012237, NM_030593, NP_036369, NP_085096, y AF083107). Otros miembros de la familia son los cuatro genes tipo Sir2 de levadura adicionales denominados "genes *HST*" (homólogos de dos Sir) HST1, HST2, HST3 y HST4, y los otros cinco homólogos humanos hSIRT3, hSIRT4, hSIRT5, hSIRT6 y hSIRT7 (Brachmann et al. (1995) Genes Dev. 9:2888 and Frye et al. (1999) BBRC 260:273). Sirtuinas preferidas son aquellas que comparten más similitudes con SIRT1, es decir, hSIRT1, y/o Sir2 que con SIRT2, como aquellos miembros que tienen al menos parte de la secuencia N-terminal presente en SIRT1 y ausente en SIRT2 como SIRT3 la tiene.

"Proteína SIRT1" se refiere a un miembro de la familia sir2 de sirtuina desacetilasas. En una realización, una proteína SIRT1 incluye levadura Sir2 (No. de acceso a GenBank P53685), C. elegans Sir-2.1 (No. de acceso a GenBank NP_501912), SIRT1 humana (No. de acceso a GenBank NM_012238 o NP_036370 (o AF083106)), y equivalentes y sus fragmentos. En otra realización, una proteína SIRT1 incluye un polipéptido que comprende una secuencia que consta de o que consiste esencialmente de, la secuencia de aminoácidos estipulados en No. de acceso a GenBank NP_036370, NP_501912, NP_085096, NP_036369, o P53685. Proteínas SIRT1 incluyen polipéptidos que comprende todos o una porción de la secuencia de aminoácidos establecida en No. de acceso a GenBank NP_036370, NP_501912, NP_085096, NP_036369 o P53685; la secuencia de aminoácidos establecida en No. de acceso a GenBank NP_036370, NP_501912, NP_085096, NP_036369 o P53685 con 1 a aproximadamente 2, 3, 5, 7, 10, 15, 20, 30, 50, 75 o más sustituciones de aminoácidos conservadores; una secuencia de aminoácidos que es al menos el 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98% o 99% idéntica a No. de acceso a GenBank NP_036370, NP_501912, NP_085096, NP_036369 o P53685 y fragmentos funcionales de los mismos. Polipéptidos de la invención también incluyen homólogos (por ejemplo, ortólogos y parálogos), variantes o fragmentos, de No. de acceso a GenBank NP_036370, NP_501912, NP_085096, NP_036369 o P53685.

Como se utiliza en el presente documento "proteína SIRT2", "proteína SIRT3", "proteína SIRT4", "proteína SIRT5",

"proteína SIRT6" y "proteína SIRT7" se refieren a otras proteínas sirtuina desacetilasa mamíferas, por ejemplo, humanas que son homólogas a la proteína SIRT1, particularmente en el dominio catalítico conservado de aproximadamente 275 aminoácidos. Por ejemplo, "proteína SIRT3" se refiere a un miembro de la familia de proteína sirtuina desacetilasa que es homóloga a la proteína SIRT1. En una realización, una proteína SIRT3 incluye SIRT3 humana (No. de acceso a GenBank AAH01042, NP_036371 o NP_001017524) y proteínas SIRT3 de ratón (No. de acceso a GenBank NP 071878) y equivalentes y sus fragmentos. En otra realización, una proteína SIRT3 incluye un polipéptido que comprende una secuencia que consta de o que consiste esencialmente de, la secuencia de aminoácidos estipulados en Nos. de acceso a GenBank AAH01042, NP 036371, NP 001017524, o NP 071878. Las proteínas SIRT3 incluyen polipéptidos que comprenden todas o una porción de la secuencia de aminoácidos establecida en el No. de acceso a GenBank AAH01042, NP_036371, NP_001017524, o NP_071878; la secuencia de aminoácidos establecida en Nos. de acceso a GenBank AAH01042, NP 036371, NP 001017524, o NP 071878 con 1 a aproximadamente 2, 3, 5, 7, 10, 15, 20, 30, 50, 75 o más sustituciones de aminoácidos conservadores; una secuencia de aminoácidos que es al menos 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, o 99% idéntica al Nos. de acceso a GenBank AAH01042, NP 036371, NP 001017524, o NP 071878, y sus fragmentos funcionales. Polipéptidos de la invención también incluyen homólogos (por ejemplo, ortólogos y parálogos), variantes o fragmentos, de No. de acceso a GenBank AAH01042, NP 036371, NP 001017524 o NP 071878. En una realización, una proteína de SIRT3 incluye un fragmento de proteína SIRT3 que se produce por la ruptura con una peptidasa de procesamiento de matriz mitocondrial (MPP, por sus siglas en inglés) y/o una peptidasa intermedia mitocondrial (MIP, por sus siglas en inglés).

Los términos "administración sistémica", "administrado sistémicamente", "administración periférica" y "administrado periféricamente" se reconocen en la técnica y se refieren a la administración de una composición en cuestión, terapéutica o de otro material distinto directamente en el sistema nervioso central, que entra al sistema del paciente y, por lo tanto, está sujeto a metabolismo y otros procesos similares.

El término "agente terapéutico" es reconocido en la técnica y se refiere a cualquier porción química que es una sustancia activa biológicamente, fisiológicamente, o farmacológicamente que actúa localmente o sistémicamente en un sujeto. El término también significa cualquier sustancia destinada para uso en el diagnóstico, cura, mitigación, tratamiento o prevención de enfermedad o en la mejora del desarrollo físico o mental deseable y/o condiciones en un animal o humano.

El término "efecto terapéutico" es reconocido en la técnica y se refiere a un efecto local o sistémico en animales, especialmente mamíferos y más particularmente humanos ocasionados por una sustancia farmacológicamente activa. La frase "cantidad terapéuticamente eficaz" significa la cantidad de dicha sustancia que produce algún efecto local o sistémico deseado en una relación razonable de riesgos/beneficios aplicable a cualquier tratamiento. La cantidad terapéuticamente eficaz de dicha sustancia variará dependiendo del sujeto y condición de la enfermedad tratada, el peso y la edad del sujeto, la gravedad de la condición de enfermedad, la forma de administración y lo similar, que fácilmente se puede determinar por el experto en la técnica. Por ejemplo, ciertas composiciones descritas pueden administrarse en una cantidad suficiente para producir un efecto deseado en una relación razonable de riesgos/beneficios aplicable a dicho tratamiento.

"Tratamiento" de una afección o enfermedad se refiere a la curación, así como mejorar al menos un síntoma de la afección o enfermedad.

40 El término "deterioro de la visión" se refiere a la visión disminuida, que a menudo sólo es parcialmente reversible o irreversible en el tratamiento (por ejemplo, cirugía). Deterioro de la visión particularmente grave se denomina "ceguera" o "pérdida de la visión", que se refiere a una pérdida completa de la visión, visión peor que 20/200 que no puede mejorarse con lentes correctivas, o un campo visual de menos de 20 grados de diámetro (radio 10 grados).

2. Moduladores de sirtuina

En un aspecto, la invención proporciona nuevos compuestos moduladores de sirtuina para tratar y/o prevenir una amplia gama de enfermedades o trastornos que incluyen, por ejemplo, enfermedades o trastornos relacionados con el envejecimiento o estrés, diabetes, obesidad, enfermedades neurodegenerativas, enfermedades y trastornos oculares, enfermedad cardiovascular, trastornos de coagulación, inflamación, cáncer, y/o enrojecimiento, etc. Los compuestos moduladores de sirtuina que aumentan el nivel y/o la actividad de una proteína sirtuina también se puede usar para tratar una enfermedad o trastorno en un sujeto que se beneficiaría de mayor actividad mitrocondrial, para mejorar el rendimiento muscular, para incrementar los niveles de músculo ATP, o para tratar o prevenir daños en el tejido muscular asociado con hipoxia o isquemia. Otros compuestos descritos en este documento pueden ser adecuados para uso en una composición farmacéutica y/o uno o más métodos descritos aquí.

55

10

15

Los compuestos de la invención se representan por la fórmula estructural (II):

$$Z^{2}$$
 X^{1}
 X^{1

o una sal del mismo en donde:

5

10

15

20

25

30

35

40

cada uno de Z¹, Z², y Z³ se selecciona independientemente de N y C(R⁹), en donde:

no más de uno de Z^1 , Z^2 y Z^3 es N;

cada uno de R^9 se selecciona independientemente de hidrógeno, halo, -C=N, alquilo $C_1\text{-}C_2$ sustituido con fluoro, -O-alquilo (C $_1\text{-}C_2$) sustituido con fluoro, -S-alquilo(C $_1\text{-}C_2$) sustituido con fluoro, alquilo C $_1\text{-}C_4$, -S-alquilo(C $_1\text{-}C_4$), cicloalquilo C $_3\text{-}C_7$, -alquilo(C $_1\text{-}C_2$)-N(R 13)(R 13), -O-CH $_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$, -O-alquilo(C $_1\text{-}C_3$)N(R 13)(R 13), y -N(R 13)(R 13); y

W¹ se selecciona de -NH- o -N=, y

W²(R¹⁴) se selecciona de –N(R¹⁴)- y –C(R¹⁴)=, seleccionado de manera que

cuando W^1 es-NH-, $W^2(R^{14})$ es $-C(R^{14})$ = y $-C(R^{14})$ representa un segundo enlace entre W^2 y $C(R^{12})$;

cuando W^1 es -N=, $W^2(R^{14})$ es $-N(R^{14})$ - y - representa un segundo enlace entre W^1 y $C(R^{12})$;

 R^{11} se selecciona de un carbociclo y un heterociclo, en donde R^{11} está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente de halo, $-C\equiv N$, alquilo C_1-C_4 , =O, cicloalquilo C_3-C_7 , alquilo C_1-C_4 sustituido con fluoro, $-O-R^{13}$, $-S-R^{13}$, $-(alquilo C_1-C_4)-N(R^{13})(R^{13})$, $-N(R^{13})(R^{13})$, $-O-(alquilo C_1-C_4)-N(R^{13})(R^{13})$, $-(alquilo C_1-C_4)-O-(alquilo C_1-C_4)-N(R^{13})(R^{13})$, $-C(O)-N(R^{13})(R^{13})$, $-(alquilo C_1-C_4)-C(O)-N(R^{13})(R^{13})$, y cunado $-(alquilo C_1-C_4)-C(O)-N(R^{13})$, y cunado $-(alquilo C_1-C_4)-C(O)-N($

cada R^{13} se selecciona independientemente de hidrógeno y alquilo C_1 - C_4 ; o dos R^{13} se toman junto con el átomo de nitrógeno al cual se unen para formar un heterociclo saturado de 4 a 8 miembros que comprende opcionalmente un heteroátomo adicional seleccionado de NH, S, S(=O), S(=O)₂, y O, en donde

cuando R¹³ es alquilo, el alquilo está opcionalmente sustituido con uno o más sustituyentes seleccionados de -OH, fluoro, -NH₂, -NH(alquilo C₁-C₄), -N(alquilo C₁-C₄)₂, -NH(CH₂CH₂OCH₃), y -N(CH₂CH₂OCH₃)₂ y

cuando dos R^{13} se toman junto con el átomo de nitrógeno al cual se unen para formar un heterociclo saturado de 4 a 8 miembros, el heterociclo saturado está opcionalmente sustituidoen cualquier átomo de carbono con -OH, alquilo C_1 - C_4 , fluoro, -NH $_2$, -NH(alquilo C_1 - C_4), -N(alquilo C_1 - C_4) $_2$, -NH(CH $_2$ CH $_2$ OCH $_3$), o -N(CH $_2$ CH $_2$ OCH $_3$) $_2$, y opcionalmente está sustituido en cualquier átomo de nitrógeno sustituible con alquilo C_1 - C_4 , alquilo C_1 - C_4 sustituido con fluoro, o -(CH $_2$) $_2$ -O-CH $_3$;

 R^{12} se selecciona de un carbociclo y un heterociclo diferente del tetrazolilo, en donde R^{12} está opcionalmente sustituido con uno o más sustituyentes seleccionados independientemente de halo, $-C\equiv N$, alquilo C_1-C_4 , cicloalquilo C_3-C_7 , alquilo C_1-C_2 sustituido con fluoro, $-O-R^{13}$, $-S-R^{13}$, $-S(O)-R^{13}$, $-S(O)_2-R^{13}$, $-(alquilo\ C_1-C_4)-N(R^{13})(R^{13})$, $-N(R^{13})(R^{13})$, $-N(R^{13})(R^{13})$, $-O-(alquilo\ C_1-C_4)-N(R^{13})(R^{13})$, $-(alquilo\ C_1-C_4)-N(R^{13})(R^{13})$, $-O-(alquilo\ C_1-C_4)$, $-O-(alquilo\ C_1-C_4)-N(R^{13})(R^{13})$, $-O-(alquilo\ C_1-C_4)$, -O-(alqui

 $R^{14} \text{ se selecciona de hidrógeno, alquilo } C_1-C_4, \text{ alquilo } C_1-C_4 \text{ sustituido con fluoro, alquilo} C_1-C_4-N(R^{13})(R^{13}), \text{ alquilo } C_1-C_4-C(O)-N(R^{13})(R^{13}), \text{ alquilo } C_1-C_4-O-R^{13}, \text{ y alquilo } C_1-C_4-NR^{13}-C(O)R^{13}; \text{ y}$

† representa en donde X¹ se une a R¹¹; y

5

cada R¹⁵ y R¹⁶ se selecciona independientemente de hidrógeno, alquilo C₁-C₄, -CF₃ y (alquilo C₁-C₃)-CF₃.

10 En ciertas realizaciones, los compuestos de la fórmula estructural (II) se representan por una o más de las siguientes características:

el compuesto de la fórmula estructural (II) se representa por la fórmula estructural (III), (IV) o (V):

$$R^{9}$$
 R^{9}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

 X^1 se selecciona de -NH-C(O)-†, y -C(O)-NH-†;

R¹¹ se selecciona de:

 $R^{11} \ \ \text{est\'a} \ \ \text{opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente de halo, alquilo C_1-C_4, -(alquilo C_1-C_4)-N(R^{13})(R^{13}), =O, -N(R^{13})(R^{13}), y -O-R^{13};}$

R¹¹ se selecciona de:

$$\begin{vmatrix} -\langle 1 \rangle & -\langle 1 \rangle$$

R11 se selecciona de:

R¹² se selecciona de:

R12 está opcionalmente sustituido con uno o más grupos seleccionados independientemente de halo, alquilo C1-C4, -(alquilo C1-C4)-N(R13)(R13), alquilo C1-C2 sustituido con fluoro, -O-R13, -SO2-R13, -N(R13)(R13), y -O-(alquilo C1-C4)-N(R13)(R13);

R12 se selecciona de:

R¹² se selecciona de

5 R¹² se selecciona de un carbociclo y un heterociclo que tienen 1 a 3 heteroátomos;

R¹² se selecciona de un carbociclo y un heterociclo que tienen 0 a 3 nitrógenos;

R¹² se une al resto de la molécula a través de un átomo de carbono anular;

R¹² está opcionalmente sustituido con uno o dos sustituyentes;

cuando R¹² es fenilo, R¹² está sustituido con al menos un sustituyente;

10 $W^2(R^{14})$ es $-N(R^{14})$ -, y R^{14} se selecciona de hidrógeno y alquilo de $-(C_1-C_4)$;

 $W^2(R^{14})$ es $-C(R^{14})$ - y R^{14} es hidrógeno;

cada uno de Z¹, Z², y Z³ es C(R⁹); y

cada uno de Z¹, Z², y Z³ es -CH=.

Compuestos de la invención también se pueden utilizar en los métodos descritos en este documento.

Los compuestos y sus sales descritos aquí también incluyen sus hidratos correspondientes (por ejemplo, hemihidrato, monohidrato, dihidrato, trihidrato, tetrahidrato) y solvatos. Solventes adecuados para la preparación de solvatos e hidratos se pueden seleccionar generalmente por el experto en la técnica.

Los compuestos y sus sales pueden estar presentes en forma cristalina o amorfa (incluyendo co-cristalina y polimorfo).

Los compuestos moduladores de sirtuina de la invención ventajosamente modulan el nivel y/o la actividad de una proteína sirtuina, particularmente la actividad de desacetilasa de la proteína sirtuina.

Por separado o además de las propiedades anteriores, ciertos compuestos moduladores de sirtuina de la invención no tienen sustancialmente una o más de las siguientes actividades: inhibición de PI3-quinasa, inhibición de aldorreductasa, inhibición de la tirosina quinasa, transactivación de tirosina quinasa EGFR, dilatación coronaria, o actividad espasmolítica, en concentraciones del compuesto que son eficaces para modular la actividad de desacetilación de una proteína sirtuina (por ejemplo, como un SIRT1 y/o una proteína SIRT3).

5

10

15

20

25

35

45

Carbocíclico incluye anillos monocíclicos de 5-7 miembros y anillos bicíclicos de 8-12 miembros en donde los anillos monocíclicos o bicíclicos se seleccionan de saturado, insaturado y aromático. Un carbociclo está opcionalmente sustituido con uno o más sustituyentes como halo, $-C\equiv N$, alquilo C_1-C_3 , alquilo C_1-C_2 fluoro-sustituido, -O-alquilo(C_1-C_2) fluoro-sustituido, -O-alquilo(C_1-C_3), -S-alquilo(C_1-C_3), -S-alquilo(C_1-C_3) fluoro-sustituido, hidroxilo, amino, -NH-alquilo(C_1-C_3) y -N-alquilo(C_1-C_3). Carbociclos ilustrativos incluyen ciclopentilo, ciclohexilo, adamantilo, fenilo y naftilo.

Heterocíclicos incluyen anillos monocíclicos de 4-7 miembros y anillos bicíclicos de 8-12 miembros que comprenden uno o más heteroátomos seleccionados de, por ejemplo, átomos de N, O y S. En ciertas realizaciones, el grupo heterocíclico se selecciona de saturado, insaturado o aromático. Un heterocíclo está opcionalmente sustituido con uno o más sustituyentes como halo, -C \equiv N, alquilo C_1 - C_3 , alquilo C_1 - C_2 fluoro-sustituido, -O-alquilo(C_1 - C_3), -S-alquilo(C_1 - C_3), -S-alquilo(C_1 - C_3), -S-alquilo(C_1 - C_3).

Anillos monocíclicos que incluyen arilo o heteroarilo de 5-7 miembros, cicloalquilo de 3-7 miembros, y heterocicliclo no aromático de 5-7 miembros. Los anillos monocíclicos están sustituidos opcionalmente con uno o más sustituyentes tales como halo, ciano, alcoxi inferior, alquilo inferior, hidroxilo, amino alquilamino inferior y dialquilamino inferior. Grupos monocíclicos ilustrativos incluyen heterociclos o carbociclos sustituidos o no sustituidos tales como tiazolilo, oxazolilo, oxazinilo, tiazinilo, ditianilo, dioxanilo, isoxazolilo, isotiazolilo, triazolilo, furanilo, tetrahidrofuranilo, dihidrofuranilo, piranilo, tetrazolilo, pirazolilo, pirazinilo, piridazinilo, imidazolilo, piridinilo, pirrolilo, dihidropirrolilo, pirrolidinilo, piperidinilo, piperazinilo, pirimidinilo, morfolinilo, tetrahidrotiofenilo, tiofenilo, ciclohexilo, ciclopentilo, ciclopropilo, ciclobutilo, cicloheptanilo, azetidinilo, oxetanilo, thiiranilo, oxiranilo, aziridinilo, y tiomorfolinilo.

Grupos (arilo) aromáticos incluyen grupos aromáticos carbocíclicos como fenilo, naftilo y antracilo y grupos heteroarilo como imidazolilo, tienilo, furilo, piridilo, pirimidilo, pirazolilo, pirazolilo, pirazolilo, pirazolilo, pirazolilo, tiazolilo, oxazolilo y tetrazolilo.

Grupos aromáticos también incluyen sistemas de anillo aromático policíclico fusionado en donde un anillo aromático carbocíclico o anillo heteroarilo está fusionado a uno o más anillos heteroarilo. Ejemplos incluyen benzotienilo, benzofurilo, indolilo, quinolinilo, benzotiazol, benzoxazol, bencimidazol, quinolinilo, isoquinolinilo e isoindolilo.

Azabiciclo se refiere a una molécula bicíclica que contiene un átomo de nitrógeno en la estructura del anillo. Los dos anillos del biciclo se pueden fusionar, en dos átomos manualmente unidos, ej., indol, a través de una secuencia de átomos, ej., azabiciclo[2.2.1]heptano, o en un solo átomo, ej., espirociclo.

Azabiciclo con puente se refiere a una molécula bicíclica que contiene un átomo de nitrógeno y dos anillos fusionados en donde la fusión se produce a través de una secuencia de átomos, es decir, átomos de cabeza de puente. Compuestos biciclo con puente incluyen al menos un puente de uno o más átomos que conectan dos átomos de cabeza de puente.

Fluoro-sustituido incluye desde un sustituyente fluoro hasta una per-fluoro-sustitución. Ejemplos de alquilo C₁-C₂ fluoro-sustituido incluyen -CFH₂, CF₂H, -CF₃, -CH₂CH₂F, -CH₂CHF₂, -CHFCH₃, y -CF₂CHF₂. Alquilo C₁-C₂ perfluoro-sustituido, por ejemplo, incluye CF₃, y -CF₂CF₃.

Combinaciones de sustituyentes y variables previstas por esta invención son sólo aquellas que resultan en la formación de compuestos estables. Como se utiliza en el presente documento, el término "estable" se refiere a compuestos que poseen suficiente estabilidad para permitir la fabricación y que mantienen la integridad del compuesto durante un período suficiente de tiempo para ser útil para los fines detallados en este documento.

Los compuestos descritos aquí también incluyen variantes parcialmente y totalmente deuteradas. En ciertas realizaciones, las variantes deuteradas se pueden usar para estudios de cinética. El experto en la técnica puede seleccionar los sitios en los que tales átomos de deuterio están presentes.

También se incluyen en la invención presente sales, particularmente sales farmacéuticamente aceptables, de los compuestos moduladores de sirtuina descritos aquí. Los compuestos de la invención presente que poseen un grupo suficientemente ácido, suficientemente básico, o ambos grupos funcionales, pueden reaccionar con cualquiera de una serie de bases inorgánicas y ácidos inorgánicos y orgánicos, para formar una sal. Como alternativa, compuestos que se cargan inherentemente, tales como aquellos con un nitrógeno cuaternario, pueden formar una sal con un contraión apropiado (por ejemplo, un haluro como bromuro, cloruro o fluoruro, especialmente bromuro).

Ácidos comúnmente empleados para formar sales de adición de ácido son ácidos inorgánicos tal como el ácido

clorhídrico, ácido bromhídrico, ácido yodhídrico, ácido sulfúrico, ácido fosfórico y lo similar, y ácidos orgánicos tales como ácido p-toluenosulfónico, ácido metanosulfónico, ácido oxálico, ácido p-bromofenil-sulfónico, ácido carbónico, ácido succínico, ácido cítrico, ácido benzoico, ácido acético, y similares. Ejemplos de tales sales incluyen el sulfato, pirosulfato, bisulfato, sulfito, bisulfito, fosfato, monohidrogenfosfato, dihidrogenfosfato, metafosfato, pirofosfato, cloruro, bromuro, yoduro, acetato, propionato, decanoato, caprilato, acrilato, formiato, isobutirato, caproato, heptanoato, propiolato, oxalato, malonato, succinato, suberato, sebacato, fumarato, maleato, butina-1,4-dioato, hexina-1,6-dioato, benzoato, clorobenzoato, metilbenzoato, dinitrobenzoato, hidroxibenzoato, metoxibenzoato, ftalato, sulfonato, xilenosulfonato, fenilacetato, fenilpropionato, fenilbutirato, citrato, lactato, gamma-hidroxibutirato, glicolato, tartrato, metanosulfonato, propanosulfonato, naftaleno-1-sulfonato, naftaleno-2-sulfonato, mandelato y lo similar

Sales de adición de base incluyen las derivadas de bases inorgánicas, como amonio o hidróxidos de metales alcalinos o alcalinotérreos, carbonatos, bicarbonatos y similares. Tales bases útiles en la preparación de las sales de esta invención incluyen hidróxido de sodio, hidróxido de potasio, hidróxido de amonio, carbonato de potasio y similares.

15 Según otra realización, la presente invención proporciona métodos para producir los compuestos moduladores de sirtuina definidos anteriormente. Los compuestos se pueden sintetizar utilizando técnicas convencionales. Ventajosamente, estos compuestos son convenientemente sintetizados a partir de materias primas disponibles fácilmente.

10

25

30

35

40

45

50

55

60

Las transformaciones de química sintética y metodologías útiles en la síntesis de los compuestos moduladores de sirtuina que se describen en la presente son conocidas en la técnica e incluyen, por ejemplo, las que se describen en R. Larock, *Comprehensive Organic Transformations* (1989); T. W. Greene y P. G. M. Wuts, *Protective Groups in Organic Synthesis*, 2a Ed. (1991); L. Fieser y M. Fieser, *Fieser and Fieser's Reagents for Organic Synthesis* (1994); y L. Paquette, ed., *Encyclopedia of Reagents for Organic Synthesis* (1995).

En una realización ilustrativa, un compuesto modulador de sirtuina puede atravesar la membrana citoplásmica de una célula. Por ejemplo, un compuesto puede tener una permeabilidad celular de por lo menos aproximadamente 20%, 50%, 75%, 80%, 90% o 95%.

Los compuestos moduladores de sirtuina que se describen en la presente también pueden tener una o más de las siguientes características: el compuesto puede ser esencialmente no tóxico a una célula o sujeto; el compuesto modulador de sirtuina puede ser una molécula orgánica o una pequeña molécula de 2000 amu o menos 1000 amu o menos; un compuesto puede tener una vida media en condiciones atmosféricas normales de al menos aproximadamente 30 días, 60 días, 120 días, seis meses o un año; el compuesto puede tener una vida media en solución de al menos aproximadamente 30 días, 60 días, 120 días, seis meses o un año; un compuesto modulador de sirtuina puede ser más estable en solución que el resveratrol por al menos un factor de alrededor del 50%, 2 veces, 5 veces, 10 veces, 30 veces, 50 veces o 100 veces; un compuesto modulador de sirtuina puede promover la desacetilación del factor de reparación de ADN Ku70; un compuesto modulador de sirtuina puede promover la desacetilación de RelA/p65; un compuesto puede aumentar las tasas de rotación general y mejorar la sensibilidad de las células a apoptosis inducida por TNF.

En ciertas realizaciones, un compuesto modulador de sirtuina no tiene ninguna considerable capacidad de inhibir una clase I de histona desacetilasa (HDACs), una clase II HDAC o HDACs I y II, en concentraciones (por ejemplo, *in vivo*) eficaces para modular la actividad de desacetilasa de la sirtuina. Por ejemplo, en realizaciones preferidas el compuesto modulador de sirtuina es un compuesto activante de sirtuina y se elige por tener una EC₅₀ para activar la actividad de sirtuina deacetilasa que es al menos 5 veces menor que la EC₅₀ para la inhibición de una HDAC I y/o HDAC II, y aún más preferentemente por lo menos 10 veces, 100 veces o incluso 1000 veces menos. Métodos de ensayo de actividad de HDAC I y/o de HDAC II se conoce bien en la técnica y kits para realizar estas determinaciones se pueden adquirir comercialmente. Véase por ejemplo, Bio Vision, Inc. (Mountain View, CA; world wide web en biovision.com) y Thomas Scientific (Swedesboro, NJ; world wide web en tomassci.com).

En ciertas realizaciones, un compuesto modulador de sirtuina no tiene alguna capacidad sustancial para modular homólogos de sirtuina. En una realización, un activador de una proteína humana sirtuina no puede tener cualquier capacidad sustancial para activar una proteína sirtuina de eucariotas inferiores, especialmente levadura o patógenos humanos, en concentraciones (por ejemplo, *in vivo*) eficaces para activar la actividad de desacetilasa de sirtuina humana. Por ejemplo, un compuesto activante de sirtuina puede elegirse de manera que tenga una EC_{50} para activar una sirtuina humana, como SIRT1 y/o SIRT3, la actividad desacetilasa que es por lo menos 5 veces menor que la EC_{50} para la actividad de una sirtuina de levadura, como Sir2 (como Candida, S. cerevisiae, etc.), y todavía más preferiblemente por lo menos 10 veces, 100 veces o incluso 1000 veces menos. En otra realización, un inhibidor de una proteína sirtuina de eucariotas inferiores, especialmente levadura o patógenos humanos, carece de cualquier capacidad sustancial de inhibir una proteína sirtuina de los seres humanos en concentraciones (por ejemplo, *in vivo*) eficaces para inhibir la actividad de desacetilasa de una proteína sirtuina de un eucariota inferior. Por ejemplo, se puede elegir un compuesto inhibidor de sirtuina que tenga una IC_{50} para inhibir una sirtuina humana, como SIRT1 y/o SIRT3, actividad desacetilasa que es por lo menos 5 veces menos que la IC_{50} para inhibir una sirtuina de levadura, como Sir2 (como Candida, S. cerevisiae, etc.), y todavía más preferiblemente por lo menos 10

veces, 100 veces o incluso 1000 veces menos.

5

10

25

30

35

40

50

55

En ciertas realizaciones, un compuesto modulador de sirtuina puede tener la capacidad de modular uno o varios homólogos de proteína sirtuina, como, por ejemplo, uno o más de SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 o SIRT7 de humano. En una realización, un compuesto modulador de sirtuina tiene la capacidad para modular una proteína de SIRT1 y una proteína SIRT3.

En otras realizaciones, un modulador de SIRT1 no tiene alguna capacidad sustancial para modular otros homólogos de proteína sirtuina, tales como, por ejemplo, una o más de las SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 o SIRT7 de humano, en concentraciones (por ejemplo, *in vivo*) eficaces para modular la actividad de desacetilasa de SIRT1 humana. Por ejemplo, se puede elegir un compuesto modulador de sirtuina que tenga una ED_{50} para modular la actividad de desacetilasa de SIRT1 humana que es por lo menos 5 veces menor que la ED_{50} para modular una o más de SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, o SIRT7 de humano, y todavía más preferiblemente por lo menos 10 veces, 100 veces o incluso 1000 veces menos. En una realización, un modulador de SIRT1 no tiene ninguna capacidad sustancial para modular una proteína de SIRT3.

En otras realizaciones, un modulador de SIRT3 no tiene ninguna capacidad sustancial para modular otros homólogos de proteína sirtuina, tales como, por ejemplo, una o más de SIRT1, SIRT2, SIRT4, SIRT5, SIRT6 o SIRT7 humana, en las concentraciones (por ejemplo, *in vivo*) eficaces para modular la actividad de desacetilasa de SIRT3 humana. Por ejemplo, se puede elegir un compuesto modulador de sirtuina que tenga una ED50 para modular la actividad de desacetilasa de SIRT3 humana que es por lo menos 5 veces menos que la ED50 para modular una o más de SIRT1, SIRT2, SIRT4, SIRT5, SIRT6, o SIRT7 humanas, y todavía más preferiblemente por lo menos 10 veces, 100 veces o incluso 1000 veces menos. En una realización, un modulador de SIRT3 no tiene ninguna capacidad sustancial para modular una proteína de SIRT1.

En ciertas realizaciones, un compuesto modulador de sirtuina puede tener una afinidad de enlace para una proteína sirtuina de aproximadamente 10⁻⁹M, 10⁻¹⁰M, 10⁻¹¹M, 10⁻¹²M o menos. Un compuesto modulador de sirtuina puede reducir (activador) o aumentar (inhibidor) la Km aparente de una proteína sirtuina para su sustrato o NAD+ (u otro co-factor) por un factor de al menos aproximadamente 2, 3, 4, 5, 10, 20, 30, 50 o 100. En ciertas realizaciones, valores Km se determinan mediante el ensayo de espectrometría de masas que se describe en este documento. Compuestos de activación preferidos reducen la Km de una sirtuina para su sustrato o co-factor a un grado mayor al causado por resveratrol en una concentración similar o reducen la Km de un sirtuina para su sustrato o co-factor similar al causado por el resveratrol en una concentración inferior. Un compuesto modulador de sirtuina puede aumentar la Vmax de una proteína sirtuina por un factor de al menos aproximadamente 2, 3, 4, 5, 10, 20, 30, 50 o 100. Un compuesto modulador de sirtuina puede tener una ED50 para modulación de la actividad de desacetilasa de una proteína de SIRT1 y/o SIRT3 de menos de aproximadamente 1 nM, menos de 10 nM, menos de aproximadamente 100 nM, menos de 1 aproximadamente 1 µM, menos de aproximadamente 10 µM, menos de aproximadamente 100 µM, o de aproximadamente1-10 nM, de aproximadamente 10-100 nM, de aproximadamente 0.1-1 μM, de aproximadamente 1-10 μM o de aproximadamente 10-100 μM. Un compuesto modulador de sirtulina puede modular la actividad de desacetilasa de una proteína SIRT1 y/o SIRT3 por un factor de al menos aproximadamente 5, 10, 20, 30, 50 o 100, medido en un ensayo celular o en un ensyo basado en células. Un compuesto activante de sirtuina puede causar al menos aproximadamente 10%, 30%, 50%, 80%, 2 veces, 5 veces, 10 veces, 50 veces o 100 veces mayor inducción de la actividad de desacetilasa de una proteína sirtuina respecto a la misma concentración de resveratrol. Un compuesto modulador de sirtuina puede tener una ED50 para modular SIRT5 que es por lo menos aproximadamente 10 veces, 20 veces, 30 veces, 50 veces mayor que aquella para la modulación de SIRT1 o SIRT3.

3. Usos ilustrativos

En ciertos aspectos, la invención proporciona métodos para modular el nivel y/o la actividad de una proteína sirtuina y métodos de utilización de los mismos.

En ciertas realizaciones, la invención proporciona métodos de uso de compuestos moduladores de sirtuina donde los compuestos moduladores de sirtuina activan una proteína sirtuina, por ejemplo, aumentar el nivel y/o la actividad de una proteína sirtuina. Los compuestos moduladores de sirtuina que aumentan el nivel y/o la actividad e una proteína sirtuina pueden ser útiles para diversas aplicaciones terapéuticas que incluyen, por ejemplo, aumento de la duración de la vida de una célula, y el tratamiento y/o prevención de una gran variedad de enfermedades y trastornos que incluyen, por ejemplo, enfermedades o trastornos relacionados con el envejecimiento o el estrés, diabetes, obesidad, enfermedades neurodegenerativas, enfermedad cardiovascular, trastornos de la coagulación de la sangre, inflamación, cáncer, y/o enrojecimiento, etc. Los métodos comprenden administrar a un sujeto que tenga necesidad de la misma una cantidad farmacéuticamente eficaz de un compuesto modulador de sirtuina, ej., un compuesto activante de sirtuina.

Sin querer apegarse a una teoría, se cree que los activadores de la presente invención pueden interactuar con una sirtuina en la misma ubicación dentro de la proteína sirtuina (ej., sitio activo o sitio que afecta la Km o Vmax del sitio activo). Se cree que esta es la razón por la cual ciertas clases de activadores de sirtuina e inhibidores pueden tener gran similitud estructural sustancial.

En ciertas realizaciones, los compuestos moduladores de sirtuina descritos aquí pueden tomarse en solitario o en combinación con otros compuestos. En una realización, una mezcla de dos o más compuestos moduladores de sirtuina se puede administrar a un sujeto que lo necesita. En una realización, un compuesto modulador de sirtuina que aumenta el nivel y/o la actividad de una proteína sirtuina puede administrarse con uno o más de los siguientes compuestos: resveratrol, buteina, fisetina, piceatannol, o quercetina. En una realización ilustrativa, un compuesto modulador de sirtuina que aumenta el nivel y/o la actividad de una proteína sirtuina se puede administrar en combinación con ácido nicotínico. En otra realización, un compuesto modulador de sirtuina que disminuye el nivel y/o la actividad de una proteína sirtuina puede administrarse con uno o más de los siguientes compuestos: nicotinamida (NAM), suramina; NF023 (un antagonista de la proteína G); NF279 (un antagonista del receptor purinérgico); Trolox (ácido 6-hidroxi-2,5,7,8,tetrametilcroman-2-carboxílico); (-)-epigalocatequina (hidroxi en sitios 3,5,7,3',4', 5'); (-)-epigalocatequina galato (sitios hidroxi 5,7,3',4',5' y galato éster en 3); cloruro de cianidina (cloruro de 3,5,7,3',4'-pentahidroxiflavilio); cloruro de delfinidina (cloruro de (3,5,7,3',4',5'-hexahidroxiflavilio); miricetina (cannabiscetina; 3,5,7,3',4',5'-hexahidroxiflavona); 3,7,3',4',5'-pentahidroxiflavona; gosipetina (3,5,7,8,3',4'hexahidroxiflavona), sirtinol; y esplitomicina. En otra realización, se pueden administrar uno o más compuestos moduladores de sirtuina con uno o más agentes terapéuticos para el tratamiento o prevención de varias enfermedades, incluyendo, por ejemplo, cáncer, diabetes, enfermedades neurodegenerativas, enfermedad cardiovascular, coaquiación de la sangre, inflamación, enrojecimiento, obesidad, envejecimiento, estrés, etc. En varias realizaciones, terapias combinadas con un compuesto e modulación de sirtuina pueden referirse a (1) composiciones farmacéuticas que comprenden uno o más compuestos moduladores de sirtuina en combinación con uno o más agentes terapéutico (por ej., uno o más agentes terapéuticos descritos en la presente); y (2) la coadministración de uno o más compuestos moduladores de sirtuina con uno o más agentes terapéuticos, en donde el compuesto modulador de sirtuina y el agente terapéutico no han sido formulados en las mismas composiciones (pero pueden estar presentes dentro del mismo kit o paquete, como un paquete de ampolla u otro paquete multicámara; contenedores conectados, sellados separadamente (ej., bolsas de papel de aluminio) que puedan ser separados por el usuario; o un kit en donde el/los compuesto(s) de modulación de sirtuina y el/los agente(s) terapéutico(s) están en recipientes separados). Cuando se utilizan formulaciones separadas, el compuesto modulador de sirtuina puede administrarse en la misma, intermitente, escalonada, antes que, después que, o combinaciones de los mismos, con la administración de otro agente terapéutico.

10

15

20

25

30

35

40

45

50

55

60

En ciertas realizaciones, métodos para reducir, prevenir o tratar enfermedades o trastornos con un compuesto modulador de sirtuina pueden comprender también aumentar el nivel de proteína de un sirtuina, tales como la SIRT1 humana, SIRT2 y/o SIRT3 o sus homólogos. Aumento de los niveles de proteína puede lograrse mediante la introducción en una celda de una o más copias de un ácido nucleico que codifica una sirtuina. Por ejemplo, puede aumentar el nivel de sirtuina en células de mamífero introduciendo en las células de mamífero un ácido nucleico que codifica la sirtuina, por ejemplo, aumentando el nivel de SIRT1 mediante la introducción de un ácido nucleico que codifica la secuencia de aminoácidos establecida en No. de acceso a GenBank NP_036370 y/o aumentando el nivel de SIRT3 mediante la introducción de un ácido nucleico que codifica la secuencia de aminoácidos establecida en No. de acceso a GenBank AAH01042.

Un ácido nucleico que se introduce en una célula para aumentar el nivel de proteína de una sirtuina puede codificar una proteína que es al menos aproximadamente 80%, 85%, 90%, 95%, 98%, 99% idéntica a la secuencia de una sirtuina, por ejemplo, proteína SIRT1 y/o SIRT3. Por ejemplo, el ácido nucleico que codifica la proteína puede ser por lo menos 80%, 85%, 90%, 95%, 98% o 99% igual a un ácido nucleico que codifica una SIRT1 (por ejemplo, No. de acceso a GenBank NM_012238) y/o proteína SIRT3 (por ejemplo, No. de acceso a GenBank BC001042). El ácido nucleico también puede ser un ácido nucleico que hibridiza, preferiblemente bajo condiciones estrictas de hibridación, un ácido nucleico que codifica una sirtuina tipo silvestre, por ejemplo, proteína SIRT1 y/o SIRT3. Condiciones de hibridación estrictas pueden incluir hibridación y un lavado en 0.2 x SSC a 65°C. Cuando se utiliza un ácido nucleico que codifica una proteína que es diferente de una proteína sirtuina tipo salvaie, como una proteína que es un fragmento de un sirtuina tipo salvaje, la proteína preferentemente es biológicamente activa, por ejemplo, es capaz de desacetilación. Sólo es necesario expresar en una célula una porción de la sirtuina que es biológicamente activa. Por ejemplo, una proteína que difiere de SIRT1 tipo salvaje que tiene No. de acceso a GenBank NP 036370, preferiblemente contiene la estructura de núcleo de la misma. La estructura de núcleo a veces se refiere a los aminoácidos 62-293 de No. de acceso a GenBank NP_036370, que se codifica por nucleótidos 237 a 932 de No. de acceso a GenBank NM 012238, que abarca el enlace a NAD así como los dominios de enlace de sustrato. El dominio central de SIRT1 puede referirse a aproximadamente aminoácidos 261 a 447 de No. de acceso a GenBank NP_036370, que se codifican por nucleótidos 834 a 1394 de No. de acceso a GenBank NM 012238; para aproximadamente aminoácidos 242 a 493 de No. de acceso a GenBank NP 036370, que están codificados por nucleótidos 777 a 1532 de No. de acceso a GenBank NM 012238; o aproximadamente aminoácidos 254 a 495 de No. de acceso a GenBank NP_036370, que están codificados por nucleótidos 813 a 1538 de No. de acceso a GenBank NM 012238. Si una proteína conserva una función biológica, por ejemplo, capacidades de desacetilación, puede determinarse de acuerdo con los métodos conocidos en la técnica.

En ciertas realizaciones, métodos para reducir, prevenir o tratar enfermedades o trastornos con un compuesto modulador de sirtuina pueden comprender también reducir el nivel de proteína de un sirtuina, tales como SIRT1, SIRT2 y/o SIRT3 de humano, o sus homólogos. Disminución de un nivel de proteína sirtuina puede lograrse con métodos conocidos en la técnica. Por ejemplo, un ARNsi, un ácido nucleico anti-sentido o una ribozima dirigida a la

sirtuina puede expresarse en la célula. También puede utilizarse un mutante dominante de sirtuina negativo, por ejemplo, un mutante que no es capaz de desacetilarse. Por ejemplo, mutante H363Y de SIRT1, descrito, por ejemplo, en Luo et al. (2001) Cell 107:137 se puede utilizar. Como alternativa, se pueden utilizar agentes que inhiben la transcripción.

Métodos de modulación de los niveles de proteína sirtuina también incluyen métodos de modulación de la transcripción de genes que codifican las sirtuinas, métodos para estabilizar/desestabilizar el ARNm correspondiente y otros métodos conocidos en la técnica.

Envejecimiento/estrés

20

25

30

35

40

45

50

55

En una realización, la invención proporciona un método para alargar la duración de la vida de una célula, ampliar la capacidad proliferativa de una célula, disminuir el envejecimiento de una célula, promover la supervivencia de una célula, retrasando la senescencia celular en una célula, imitar los efectos de la restricción calórica, aumentar la resistencia de una célula al estrés, o prevenir la apoptosis de una célula, poniendo en contacto la célula con un compuesto modulador de sirtuina de la invención que aumenta el nivel y/o la actividad de una proteína sirtuina. En una realización ilustrativa, los métodos comprenden poner en contacto la célula con un compuesto activante de sirtuina.

Los métodos descritos en este documento puede utilizarse para aumentar la cantidad de tiempo que las células, particularmente células primarias (es decir, células obtenidas de un organismo, por ejemplo, un ser humano), pueden mantenerse vivos en un cultivo celular. Las células madre embrionarias (ES) y células pluripotentes y células diferenciadas de ahí, también pueden tratarse con un compuesto modulador de sirtuina que aumenta el nivel y/o la actividad de una proteína sirtuina para mantener las células, o descendientes, en cultivo durante períodos más largos de tiempo. Estas células también pueden ser utilizadas para trasplantes en un sujeto, por ejemplo, después de modificación ex vivo.

En una realización, células que pretenden conservarse durante largos períodos de tiempo pueden tratarse con un compuesto modulador de sirtuina que aumenta el nivel y/o la actividad de una proteína sirtuina. Las células pueden estar en suspensión (por ejemplo, células de la sangre, suero, medio de crecimiento biológico, etc.) o en tejidos u órganos. Por ejemplo, sangre procedente de una persona a efectos de transfusión puede tratarse con un compuesto modulador de sirtuina que aumenta el nivel y/o la actividad de una proteína sirtuina para preservar las células de sangre durante períodos más largos de tiempo. Además, sangre que se utiliza para fines forenses puede también conservarse con un compuesto modulador de sirtuina que aumenta el nivel y/o la actividad de una proteína sirtuina. Otras células que pueden tratarse para extender su vida útil o protegerse contra apoptosis incluyen células para el consumo, por ejemplo, las células de los mamíferos no humanos (como la carne) o células vegetales (tales como vegetales).

Compuestos moduladores de sirtuina que aumentan el nivel y/o la actividad de una proteína de sirtulina también pueden aplicarse durante el desarrollo y fases de crecimiento en los mamíferos, plantas, insectos o microorganismos, para, por ejemplo, modificar, retardar o acelerar el proceso de desarrollo y/o crecimiento.

En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar células útiles para trasplante o terapia celular, que incluyen por ejemplo, injertos de tejido sólido, trasplantes de órganos, suspensiones celulares, células madre, células de médula ósea, etc. Las células o tejido pueden ser un autoinjerto, un aloinjerto, un sininjerto o un xenoinjerto. Las células o tejidos se pueden tratar con el compuesto modulador de sirtuina antes de la administración/implante, concurrentemente con administración/implante, y/o post administración/implante en un sujeto. Las células o tejidos se pueden tratar antes de la remoción de las células del individuo donador, ex vivo después de la remoción de las células o tejido del individuo donador, o post implantación en el recipiente. Por ejemplo, el donador o individuo recipiente se puede tratar sistémicamente con un compuesto modulador de sirtuina o puede tener un subconjunto de células/tejido tratados localmente con un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina. En ciertas realizaciones, las células o tejidos (o individuos donador/recipiente) se pueden tratar adicionalmente con otro agente terapéutico útil para prolongar la supervivencia de injerto, tal como, por ejemplo, un agente inmunosupresor, una quitocina, un factor angiogénico, etc.

En aún otras realizaciones, las células se pueden tratar con un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina *in vivo*, por ejemplo, para incrementar su periodo de vida o prevenir apóptosis. Por ejemplo, la piel se puede proteger de envejecimiento (por ejemplo, desarrollando arrugas, pérdida de elasticidad, etc.) al tratar la piel o células epiteliales con un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina. En una realización ilustrativa, la piel hace contacto con una composición farmacéutica o cosmética que comprende un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina. Aflicciones de la piel ilustrativas o condiciones de la piel que se pueden tratar de acuerdo con los métodos descritos aquí incluyen trastornos o enfermedades asociadas con o causadas por inflamación, daño solar o envejecimiento natural. Por ejemplo, las composiciones encuentran utilidad en la prevención o tratamiento de dermatitis de contacto (que incluyen dermatitis de contacto irritante y dermatitis de contacto alérgico), dermatitis atópica (también conocida como eczema alérgico), queratosis actínica, trastornos de

queratinización (que incluyen eczema), enfermedades de epidermolisis bullosa (que incluye pénfigo), dermatitis exfoliativa, dermatitis seborreica, eritemas (que incluyen eritema multiforme y eritema nodoso), daño causado por el sol u otras fuentes de luz, lupus eritematoso discoide, dermatomiositis, soriasis, cáncer de la piel y efectos de envejecimiento natural. En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para el tratamiento de heridas y/o quemaduras para promover curación, que incluyen, por ejemplo, quemaduras de primero, segundo y tercer grado y/o quemaduras térmicas, químicas o eléctricas. Las formulaciones se pueden administrar tópicamente, a la piel o tejido mucosal.

Formulaciones tópicas que comprenden uno o más compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden usar como composiciones preventivas, por ejemplo quimiopreventivas. Cuando se usan en un método quimiopreventivo, la piel susceptible se trata antes de cualquier condición visible en un individuo particular.

Compuestos moduladores de sirtuina se pueden suministrar localmente o sistémicamente a un sujeto. En una realización, un compuesto modulador de sirtuina se suministra localmente a un tejido u órgano de un sujeto mediante inyección, formulación tópica, etc.

En otra realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede usar para tratar o prevenir una enfermedad o condición inducida o exacerbada por envejecimiento celular en un sujeto; métodos para disminuir la velocidad de envejecimiento de un sujeto, por ejemplo, después del comienzo del envejecimiento; métodos para alargar la duración de la vida de un sujeto; métodos para tratar o prevenir una enfermedad o condición relacionada con el periodo de vida; métodos para tratar o prevenir una enfermedad o condición relacionada con la capacidad proliferativa de células; y métodos para tratar o prevenir una enfermedad o condición que resulta de daño o muerte celular. En ciertas realizaciones, el método no actúa al disminuir la velocidad de ocurrencia de enfermedades que acortan el periodo de vida de un sujeto. En ciertas realizaciones, un método no actúa al reducir la letalidad causada por una enfermedad, tal como cáncer.

En aún otra realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede administrar a un sujeto a fin de incrementar generalmente el periodo de vida de sus células y protege sus células contra tensión y/o contra apóptosis. Se cree que el tratamiento de un sujeto con un compuesto descrito aquí es similar a someter al sujeto a hormesis, es decir, tensión ligera que es benéfica para organismos y puede extender su periodo de vida.

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar a un sujeto para prevenir el envejecimiento y consecuencias o enfermedades relacionadas con envejecimiento, tal como apoplejía, enfermedad cardiaca, deficiencia cardiaca, artritis, presión sanguínea alta, y enfermedad de Alzheimer. Otras condiciones que se pueden tratar incluyen trastornos oculares, por ejemplo asociadas con el envejecimiento del ojo, tal como cataratas, glaucoma, y degeneración macular. Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden administrar a sujetos para el tratamiento de enfermedades, por ejemplo, enfermedades crónicas, asociadas con muerte celular, a fin de proteger las células de la muerte celular. Enfermedades ilustrativas incluyen aquellas asociadas con muerte celular neural, disfunción neuronal, o muerte o disfunción celular muscular, tal como enfermedad de Parkinson, enfermedad de Alzheimer, esclerosis múltiple, esclerosis lateral amiotrófica, y distrofia muscular; SIDA; hepatitis fulminante, enfermedades relacionadas a la degeneración del cerebro, tal como enfermedad Creutzfeld-Jakob, retinitis pigmentosa y degerenación cerebelar; mielodisplasia tal como anemia aplástica; enfermedades isquémicas tal como infarto al miocardio y apoplejía; enfermedades hepáticas tal como hepatitis alcohólica, hepatitis B y hepatitis C; enfermedades de articulaciones tales como osteoartritis; aterosclerosis; alopecia: daño a la piel debido a luz UV; liquen esclerosos; atrofia de la piel; cataratas; y rechazo de injerto. Muerte celular también es causada por cirugía, terapia de fármaco, exposición química o exposición a radiación.

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden administrar a un sujeto que padece de una enfermedad aguda, por ejemplo, daño a un órgano o tejido, por ejemplo, un sujeto que padece de apoplejía o infarto al miocardio o un sujeto que padece de lesión en la medula espinal. Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden usar para reparar un hígado de alcohólico.

50 Enfermedad cardiovascular

10

30

35

40

55

Un método para tratar y/o prevenir una enfermedad cardiovascular comprende la administración a un sujeto en su necesidad de un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina.

Enfermedades cardiovasculares que se pueden tratar o prevenir usando compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina incluyen cardiomiopatía o miocarditis, tal como cardiomiopatía idiopática, cardiomiopatía metabólica, cardiomiopatía alcoholica, cardiomiopatía inducida por fármaco, cardiomiopatía isquémica, y cariomiopatia hipertensiva. También trastornos tratables o prevenibles que usan compuestos y métodos descritos aquí son trastornos ateromatosos de vasos sanguíneos principales (enfermedad macrovascular) tal como la aorta, las arterias coronarias, las arterias carótidas, las arterias

cerebrovasculares, las arterias renales las arterias iliacas, las arterias femorales, y las arterias popliteales. Otras enfermedades vasculares que se pueden tratar o prevenir incluyen aquellas relacionadas con agregación de plaquetas, los arteriales retinales, los arteriales glomerulares, vasa vasorum, arteriales cardiacos, y lechos capilares asociados con el ojo, el riñón, el corazón, y el sistema nervioso central y periférico. Los compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden usar para incrementar los niveles de HDL en plasma de un individuo.

Aún otros trastornos que se pueden tratar con compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina incluyen restenosis, por ejemplo siguiendo la intervención coronaria, y trastornos que relacionan un nivel anormal de colesterol de alta densidad y baja densidad.

En una realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede administrar como parte de una combinación terapéutica con otro agente cardiovascular. En una realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede administrar como parte de una combinación terapéutica con un agente anti-arritmia. En otra realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se pueden administrar como parte de una combinación terapéutica con otro agente cardiovascular.

Muerte celular/cáncer

5

20

25

30

35

40

45

50

55

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteina de sirtuina se pueden administrar a sujetos que recientemente han recibido o son probables a recibir una dosis de radiación o toxina. En una realización, la dosis de radiación o toxina se recibe como parte de un procedimiento médico o relacionado con trabajo, por ejemplo, administrada como una medida profiláctica. En otra realización, la radiación o exposición a toxina se recibe no intencionalmente. En dicho caso, el compuesto es preferiblemente administrado tan pronto como sea posible después de la exposición para inhibir apóptosis y el desarrollo consecutivo del síndrome de radiación aguda.

Compuestos moduladores de sirtuina también se pueden usar para tratar y/o prevenir cáncer. realizaciones, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar y/o prevenir cáncer. La restricción de calorías se ha relacionado con una reducción en la incidencia de trastornos relacionados con la edad que incluyen cáncer. En consecuencia, un incremento en el nivel y/o la actividad de una proteína sirtuina puede ser útil para tratar y/o prevenir la incidencia de trastornos relacionados con la edad, tal como, por ejemplo, cáncer. Canceres ilustrativos que se pueden tratar usando un compuesto modulador de sirtuina son aquellos del cerebro y riñón; canceres dependientes de hormonas que incluyen canceres de mama, próstata, testicular, y ovárico; linfomas y leucemias. En canceres asociados con tumores sólidos, un compuesto de modulación se puede administrar directamente en el tumor. Cáncer de células sanguíneas, por ejemplo leucemia, se puede tratar al administrar un compuesto de modulación en la corriente sanguínea o en la médula ósea. Crecimiento celular benigno, por ejemplo, verrugas, también se pueden tratar. Otras enfermedades que se pueden tratar incluyen enfermedades autoinmunes, por ejemplo, lupus eritematoso sistémico, escleroderma, y artritis, en que las células autoinmunes se deben remover. Infecciones virales tal como herpes, VIH, adenovirus, y trastornos maligno y benigno asociados con HTLV-1 también se pueden tratar mediante la administración de compuesto modulador de sirtuina. De manera alternativa las células se pueden obtener de un sujeto, tratado ex vivo para remover ciertas células no deseables, por ejemplo células de cáncer, y se administran nuevamente al mismo o diferente sujeto.

Agentes quimioterapéuticos se pueden co-administrar con compuesto modulador descritos aquí como que tienen actividad anticancerígeno, por ejemplo, compuestos que inducen apóptosis, compuestos que reducen periodo de vida o compuestos que presentan las células sensibles al estrés. Agentes quimioterapéuticos también se pueden usar por si mismos con un compuesto modulador de sirtuina descrito aquí como que induce muerte celular o reduce el periodo de vida o incrementa la sensibilidad al estrés y/o en combinación con otros agentes quimioterapéuticos. Además, los quimioterapéuticos convencionales, los compuestos moduladores de sirtuina descritos aquí también se pueden usar con ARN antisentido, ARNi u otros polinucleótidos para inhibir la expresión de los componentes celulares que contribuyen a proliferación celular no deseada.

Terapias de combinación que comprenden compuestos moduladores de sirtuina y un agente quimioterapéutico convencional pueden ser ventajosas sobre técnicas de combinación conocidas en la técnica debido a que la combinación permite que el agente quimioterapéutico convencional ejerza un efecto mayor en dosificación inferior. En una realización preferida, la dosis eficaz (ED_{50}) para un agente quimioterapéutico, o combinación de agentes quimioterapéuticos convencionales, cuando se usan en combinación con un compuesto modulador de sirtuina es al menos 2 veces menor que ED_{50} para el agente quimioterapéutico solo, y aun más preferiblemente en 5 veces, 10 veces o aún 25 veces menos. Inversamente, el índice terapéutico (IT) para dicho agente quimioterapéutico o combinación de dicho agente quimioterapéutico cuando se usa en combinación con un compuesto modulador de sirtuina descrito aquí pueden ser al menos 2 veces mayor que el TI para el régimen quimioterapéutico convencional solo, y aún más preferiblemente en 5 veces, 10 veces o aún 25 veces mayor.

Enfermedades/trastornos neuronales

10

15

20

25

30

50

En ciertos aspectos, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar pacientes que padecen de enfermedades neurodegenerativas, y lesión traumática o mecánica para el sistema nervioso central (CNS), médula espinal o sistema nervioso periférico (PNS). La enfermedad neurodegenerativa usualmente involucra reducciones en la masa y volumen del cerebro humano, que puede ser debido a la atrofia y/o muerte de células cerebrales, que son más profundas que aquellas en una persona saludable que son atribuibles a envejecimiento. Enfermedades neurodegenerativas pueden involucrar gradualmente, después de un largo periodo de función cerebral normal, debido a la degeneración progresiva (por ejemplo, disfunción y muerte celular de nervio) de regiones cerebrales específicas. De manera alternativa, enfermedades neurodenegenerativas pueden tener un comienzo rápido, tal como aquellas asociadas con trauma o toxinas. El comienzo actual de la degeneración cerebral puede preceder la expresión clínica por muchos años. Ejemplos de enfermedades neurodegenerativas incluyen pero no se limitan a, enfermedad de Alzheimer (AD), enfermedad de Parkinson (PD), enfermedad de Huntington (HD), esclerosis lateral amiotrófica (ALS; enfermedad de Lou Gehrig), enfermedad del cuerpo de Lewy difusa, corea-acantocitosis, esclerosis lateral primaria, enfermedades oculares (neuritis ocular), neuropatías inducidas por quimioterapia (por ejemplo, de vincristina, paclitaxel, bortezomib), neuropatías inducidas por diabetes y ataxia de Friedreich. Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar estos trastornos y otros como se describe posteriormente.

AD es un trastorno de CNS que resulta en la pérdida de memoria, comportamiento inusual, cambios de personalidad, y una disminución en capacidades de pensamiento. Estas pérdidas están relacionadas con la muerte de tipos específicos de células cerebrales y el rompimiento de conexiones y su red de soporte (por ejemplo, células gliales) entre estas. Los síntomas tempranos incluyen pérdida de memoria reciente, juicio incorrecto, y cambios en personalidad. PD es un trastorno de CNS que resulta en movimientos corporales no controlados, rigidez, temblor, y disquinesia, y se asocia con la muerte de células cerebrales en un área de cerebro que produce dopamina. ALS (enfermedad de neurona motora) es un trastorno de CNS que ataca a las neuronas motoras, componente del CNS que conecta el cerebro a los músculos esqueléticos.

HD en otra enfermedad neurodegenerativa que causa movimientos no controlados, pérdida de facultades intelectuales, y disturbios emocionales. Enfermedad de Tay-Sachs y enfermedad de Sandhoff son enfermedades de almacenamiento de glicolípido donde glangliosida GM2 y sustratos de glicolípidos relacionados para β -hexosaminidasa se acumulan en el sistema nervioso y accionan neurodegeneración aguda.

Es bien conocido que la apóptosis juega una función en patogénesis de SIDA en el sistema inmune. Sin embargo, VIH-1 también induce enfermedad neurológica, que se puede tratar con compuestos moduladores de sirtuina de la invención

La pérdida neuronal también es un aspecto saliente de enfermedades de prion, tal como enfermedad de Creutzfeldt-Jakob en humano, BSE en ganado (enfermedad de la vaca loca), enfermedad de prurito lumbar en ovejas y cabras, y encefalopatía espongiforme felina (FSE) en gatos. Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina pueden ser útiles para tratar o prevenir pérdida neuronal debida a estas enfermedades anteriores.

En otra realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede usar para tratar o prevenir cualquier enfermedad o trastorno que involucra axonopatía. Axonopatia distal es un tipo de neuropatía periférica que resulta de algunos trastornos metabólicos o tóxicos de neuronas del sistema nervioso periférico (PNS). Es la respuesta más común de los nervios a las alteraciones metabólicas o tóxicas, y como tal se pueden causar por enfermedades metabólicas tal como diabetes, deficiencia renal, síndromes de deficiencia tal como malnutrición y alcoholismo, o los efectos de toxinas o fármacos. Aquellos con axonopatías distales usualmente se presentan con alteraciones sensori-motoras simétricas con distribución en guante y calcetín. Reflejos del tendón profundo y funciones del sistema nervioso autonómico (ANS) también se pierden o disminuyen en áreas afectadas.

Neuropatías diabéticas son trastornos neuropáticos que se asocian con diabetes mellitus. Condiciones relativamente comunes que pueden ser asociadas con neuropatía diabética incluyen parálisis del tercer nervio; mononeuropatía; mononeuritis múltiple; amiotrofia diabética; una polineuropatía dolorosa; neuropatía autonómica; y neuropatía toracoabdominal.

Neuropatía periférica es el término médico para daño a nervios del sistema nervioso periférico, que se puede causar ya sea por enfermedades del nervio o de efectos secundarios de afecciones sistémicas. Causas principales de neuropatía periférica incluyen ataques, deficiencias nutricionales, y VIH, aunque diabetes es la causa más probable.

En una realización ilustrativa, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede usar para tratar o prevenir esclerosis múltiple (MS), que incluye MS por recaída y MS monosintomática, y otras condiciones de desmielinación, tal como, por ejemplo, polineuropatía de desmielinación inflamatoria crónica (CIDP), o síntomas asociados con esto.

En aún otra realización, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede usar para tratar trauma para los nervios, que incluyen, trauma debido a enfermedad, lesión (que incluye intervención quirúrgica), o trauma ambiental (por ejemplo, neurotoxinas, alcoholismo, etc.).

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también pueden ser útiles para prevenir, tratar y aliviar síntomas de varios trastornos PNS. El término "neuropatía periférica" incluye un amplio intervalo de trastornos en que los nervios externos del cerebro y médula espinal – nervios periféricos – se han dañado. Neuropatía periférica también se puede referir a una neuritis periférica, o si muchos nervios se involucran, los términos polineuropatía o polineuritis se pueden usar.

Las enfermedades del PNS tratables con compuestos moduladores de sirtuina que aumentan el nivel y/o la actividad de una proteína sirtuina incluyen: diabetes, lepra, enfermedad de Charcot-Marie-Tooth, síndrome de Guillain-Barré y neuropatías de plexo braquial (enfermedades de cervical y primeras raíces torácicas, troncos nerviosos, cordones, y componentes del nervio periférico del plexo braquial.

En otra realización, un compuesto activante de sirtuina se puede usar para tratar o prevenir una enfermedad de poliglutamina. Enfermedades de poliglutamina ilustrativas incluyen atrofia muscular espinobulbar (enfermedad de Kennedy), enfermedad de Huntington (HD), atrofia dentatorubral-palidoluisiana (síndrome de Haw River), ataxia espinocerebelar tipo 1, ataxia espinocerebelar tipo 2, ataxia espinocerebelar tipo 3 (enfermedad de Machado-Josef), ataxia espinocerebelar tipo 6, ataxia espinocerebelar tipo 7, y ataxia espinocerebelar tipo 17.

Se describe aquí un método para tratar una célula del sistema nervioso central para prevenir daño en respuesta a una disminución en flujo sanguíneo a la célula. Usualmente la severidad del daño que se puede prevenir dependerá en gran parte del grado de reducción en flujo sanguíneo a la célula y la duración de la reducción. En una realización, muerte celular apoptótica o necrótica se puede prevenir. En aun una realización adicional, daño isquémico-mediado, tal como edema citotóxico o anoxemia de tejido del sistema nervioso central, se pueden prevenir. En cada realización la célula del sistema nervioso central puede ser una célula espinal o una célula cerebral.

Se describe aquí la administración de un compuesto activante de sirtuina a un sujeto para tratar una condición isquémica del sistema nervioso central. Un número de condiciones isquémicas del sistema nervioso central se pueden tratar por compuestos de activación de sirtuina descritos aquí. En una realización, la condición isquémica es una apoplejía que resulta en cualquier tipo de daño del sistema nervioso central isquémico, tal como muerte celular apoptótica o necrótica, edema citóxica o anoxia del tejido del sistema nervioso central. La apoplejía puede impactar cualquier área del cerebro o ser causada por cualquier etiología comúnmente conocida para resultar en la ocurrencia de una apoplejía. En una alternativa de esta realización, la apoplejía es una apoplejía contenida cerebral. En otra alternativa de esta realización, la apoplejía cereberal. En aún otra realización, la apoplejía es una apoplejía embólica. En aún otra alternativa, la apoplejía puede ser una apoplejía hemorrágica. En una realización adicional, la apoplejía es una apoplejía trombótica.

Un compuesto activante de sirtuina se puede administrar para reducir el tamaño de infarto del núcleo isquémico tras una condición isquémica del sistema nervioso central. Además, un compuesto activante de sirtuina también se puede administrar benéficamente para reducir el tamaño de la penumbra isquémica o zona transicional seguido por una condición isquémica del sistema nervioso central.

En una realización, un régimen de combinación de fármacos puede incluir fármacos o compuestos para el tratamiento o prevención de trastornos neurodegenerativos o condiciones secundarias asociadas con estas condiciones. De esta manera, un régimen de combinación de fármacos puede incluir uno o más activadores de sirtuina y uno o más agentes anti-neurodegenerativos.

Trastornos de coagulación sanguínea

5

15

20

40

55

En otros aspectos, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar o prevenir trastornos de coagulación sanguínea (o trastornos hemostáticos). Como se usa de manera intercambiable aquí, los términos "hemostasis", "coagulación sanguínea" y "coagulación sanguínea" y "coagulación sanguínea" y "coagulación y coagulación. Coagulación sanguínea ayuda en mantener la integridad de circulación de mamífero después de la lesión, inflamación, enfermedad, defecto congénito, disfunción u otra fractura. Además, la formación de coágulos sanguíneos no solamente limita el sangrado en caso de una lesión (hemostasis), sino puede conducir a daño de órgano serio y muerte en el contexto de enfermedades ateroscleróticas mediante la oclusión de una arteria o vena importante. La trombosis es de esta manera formación de coágulo sanguíneo en el tiempo y lugar indebido.

Se describen aquí tratamientos anticoagulantes y antitrombóticos que ayudan en la inhibición de la formación de coágulos sanguíneos a fin de prevenir o tratar trastornos de coagulación sanguínea, tal como infarto al miocardio, apoplejía, pérdida de un miembro mediante enfermedad de arteria periférica o embolismo pulmonar.

Como se usa de manera intercambiable aquí, "que modula o modulación de hemostasis" y "que regula o regulación de hemostasis" incluye la inducción (por ejemplo, estimulación o incremento) de hemostasis, así como la inhibición

(por ejemplo, reducción o disminución) de hemostasis.

En un aspecto, la invención proporciona un método para reducir o inhibidor hemostasis en un sujeto al administrar un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina. Las composiciones y métodos descritos aquí son útiles para el tratamiento o prevención de trastornos trombóticos. Como se usa aquí, el término "trastorno trombótico" incluye cualquier trastorno o condición caracterizado por coagulación excesiva o no deseada o actividad hemostática, o un estado hipercoagulable. Trastornos trombóticos incluyen enfermedades o trastornos que involucran adhesión de plaqueta y formación de trombo, y puede manifestar como una propensión incrementada para formar trombosis, por ejemplo, un número incrementado de trombosis, trombosis en una edad temprana, una tendencia familiar hacia trombosis, y trombosis en sitios inusuales.

10 En otra realización, un régimen de combinación de fármacos puede incluir fármacos o compuestos para el tratamiento o prevención de trastornos de coagulación sanguínea o condiciones secundarias asociadas con estas condiciones. De esta manera, un régimen de combinación de fármaco puede incluir uno o más compuestos moduladores de sirtuina que incrementa el nivel y/o la actividad de proteína sirtuina y uno o más agentes anticoagulación o anti-trombosis.

15 Control de peso

5

20

En otro aspecto, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar o prevenir la ganancia de peso u obesidad en un sujeto. Por ejemplo, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar, por ejemplo, para tratar o prevenir obesidad hereditaria, obesidad dietética, obesidad relacionada con hormonas, obesidad relacionada con la administración de medicación, para reducir en peso del sujeto, o para reducir o prevenir la ganancia de peso en un sujeto. Un sujeto en necesidad de dicho tratamiento puede ser un sujeto que es obeso, que probablemente llega a ser obeso, con sobrepeso, o que probablemente llega al sobrepeso. Sujetos quienes lleguen a ser probablemente obesos o con sobrepeso se pueden identificar, por ejemplo, basados en historia familiar, genéticas, dieta, nivel de actividad, ingesta de medicación, o varias combinaciones de las mismas.

En aún otras realizaciones, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar a sujetos que sufren de diversas otras enfermedades y condiciones que se pueden tratar o prevenir al promover pérdida de peso en el sujeto. Dichas enfermedades incluyen, por ejemplo, presión sanguínea alta, hipertensión, colesterol sanguíneo alto, dislipidemia, diabetes tipo 2, resistencia a la insulina, intolerancia a la glucosa, hiperinsulinemia, enfermedad cardiaca coronaria, angina de pecho, deficiencia cardiaca congestiva, apoplejía, cálculos biliares, colecistitis y colelitiasis, gota, osteoartritis, apnea de sueño obstructiva y problemas respiratorios, algunos tipos de cáncer (tal como endometrial, mama, próstata, y colon), complicaciones de embarazo, salud reproductiva de mujeres pobre (tal como irregularidades menstruales, infertilidad, ovulación irregular), problemas de control de vejiga (tal como incontinencia por estrés); nefrolitiasis de ácido úrico; trastornos sicológicos (tal como depresión, trastornos alimenticios, imagen corporal distorsionada, y baja autoestima).

Finalmente, pacientes con SIDA pueden desarrollar lipodistrofia o resistencia a la insulina en respuesta a terapias de combinación para SIDA.

En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para inhibir adipogenesis o diferenciación de célula grasa, ya sea *in vitro* o *in vivo*. Dichos métodos se pueden usar para tratar o prevenir obesidad.

En otras realizaciones, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para reducir el apetito y/o incrementar la saciedad, con lo cual causan pérdida de peso o evita la ganancia de peso. Un sujeto en necesidad de dichos tratamiento puede ser un sujeto que tiene sobrepeso, es obeso o un sujeto que probablemente llegue a tener sobrepeso o es obeso. El método puede comprender la administración diaria o, cada día, o una vez a la semana, una dosis, por ejemplo, en la forma de una píldora, a un sujeto. La dosis puede ser una "dosis de reducción de apetito".

En una realización ilustrativa, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar como una terapia de combinación para tratar o prevenir ganancia de peso u obesidad. Por ejemplo, uno o más compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar en combinación con uno o más agentes anti-obesidad.

En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar para reducir la ganancia de peso inducida por fármaco. Por ejemplo, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede administrar como una terapia de combinación con medicaciones que pueden estimular el apetito o causar ganancia de peso, en particular, ganancia de peso debido a factores diferentes de retención de agua.

55 Trastornos metabólicos/Diabetes

En otro aspecto, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar o prevenir un trastorno metabólico, tal como resistencia a la insulina, un estado

pre-diabético, diabetes tipo II, y/o sus complicaciones. La administración de compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina pueden incrementar la sensibilidad a la insulina y/o disminuir los niveles de insulina en un sujeto. Un sujeto en necesidad de dicho tratamiento puede ser un sujeto que tiene resistencia a la insulina u otro síntoma precursor de diabetes tipo II, que tiene diabetes tipo II, o que probablemente desarrolla cualquiera de estas condiciones. Por ejemplo, el sujeto puede ser u sujeto que tiene resistencia a la insulina, por ejemplo, que tiene altos niveles de circulación de insulina y/o condiciones asociadas, tal como hiperlipidemia, dislipogénesis, hipercolesterolemia, tolerancia a la glucosa dañada, nivel de azúcar en glucosa sanguínea alto, otras manifestaciones de síndrome X, hipertensión, aterosclerosis y lipodistrofia.

En una realización ilustrativa, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar como una terapia de combinación para tratar o prevenir un trastorno metabólico. Por ejemplo, uno o más compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar en combinación con uno o más agentes anti-diabéticos.

Enfermedades inflamatorias

- En otros aspectos, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar o prevenir una enfermedad o trastorno asociado con inflamación. Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar antes del comienzo de, en, o después de la iniciación de inflamación. Cuando se usa profilácticamente, los compuestos preferiblemente se proporcionan en avance de cualquier respuesta inflamatoria o síntoma. La administración de los compuestos puede prevenir o atenuar las respuestas o síntomas inflamatorios.
- 20 En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de proteína sirtuina se pueden usar para tratar o prevenir alergias y condiciones respiratorias, que incluyen asma, bronquitis, fibrosis pulmonar, rinitis alérgica, toxicidad de oxigeno, enfisema, bronquitis crónica, síndrome diestrés respiratorio agudo, y cualquier enfermedad pulmonar obstructiva crónica (COPD). Los compuestos se pueden usar para tratar infección de hepatitis crónica, que incluye hepatitis B y hepatitis C.
- De manera adicional, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para tratar enfermedades autoinmunes, y/o inflamación asociada con enfermedades autoinmunes, tal como artritis, que incluyen artritis reumatoide, artritis psoriática y espondilitis anquilosante, así como enfermedades autoinmunes de órgano-tejido (por ejemplo, síndrome de Raynaud), colitis ulcerativa, enfermedad de Crohn, mucositis oral, escleroderma, miastenia grave, rechazo de transplante, choque de endotoxina, sepsis, soriasis, eczema, dermatitis, esclerosis múltiple, tiroiditis autoinmune, uveítis, lupus eritematoso sistémico, enfermedad de Addison, enfermedad poliglandular autoinmune (también conocido como síndrome poliglandular autoinmune), y enfermedad de Grave.
 - En ciertas realizaciones, uno o más compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de proteína sirtuina se pueden tomar en solitario o en combinación con otros compuestos útiles para tratar o prevenir inflamación.

Enrojecimiento

35

40

En otro aspecto, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para reducir la incidencia o severidad de enrojecimiento y/o sofocos que son síntomas de un trastorno. Por ejemplo, el método objeto incluye el uso de compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina, solo o en combinación con otros agentes, para reducir la incidencia o severidad de enrojecimiento y/o sofocos en pacientes con cáncer. En otras realizaciones, el método se proporciona para el uso de compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina para reducir la incidencia o severidad de enrojecimiento y/o sofocos en mujeres menopausicas y postmenopausicas.

En otro aspecto, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína 45 sirtuina se pueden usar como una terapia para reducir la incidencia o severidad de enrojecimiento y/o sofocos que son efectos secundarios de otra terapia de fármaco, por ejemplo, enrojecimiento inducido por fármaco. En ciertas realizaciones, un método para tratar y/o prevenir enrojecimiento inducido por fármaco comprende administrar a un paciente en su necesidad una formulación que comprende al menos un enrojecimiento que induce a enrojecimiento y al menos un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina. En 50 otras realizaciones, un método para tratar enrojecimiento inducido por fármaco comprende administrar de manera separada uno o más compuestos que inducen enrojecimiento y uno o más compuestos moduladores de sirtuina, por ejemplo, en donde el compuesto modulador de sirtuina y el agente que induce enrojecimiento no se han formulado en las mismas composiciones. Cuando se usan formulaciones separadas, el compuesto modulador de sirtuina se 55 puede administrar (1) en la misma como administración del agente de inducción de enrojecimiento, (2) de manera intermitente con el agente de inducción de enrojecimiento, (3) escalonar en relación con la administración del agente de inducción de enrojecimiento, (4) antes de la administración del agente de inducción de enrojecimiento, (5) consecutivo a la administración del agente de inducción de enrojecimiento, y (6) varias de sus combinaciones.

Agentes de inducción de enrojecimiento ilustrativos incluyen, por ejemplo, niacina, raloxifeno, antidepresivos, antisicóticos, quimioterapéuticos, bloqueadores de canal de calcio y antibióticos.

En una realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para reducir efectos secundarios de enrojecimiento de un vasodilatador o un agente antilipémico (que incluyen agentes anticolesterémicos y agentes lipotrópicos). En una realización ilustrativa, un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede usar para reducir enrojecimiento asociado con la administración de niacina.

Se describe aquí un método para tratar y/o prevenir hiperlipidemia con efectos secundarios de enrojecimiento reducidos. En otra realización representativa, el método involucra el uso de compuestos moduladores de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina para reducir efectos secundarios de enrojecimiento de raloxifeno. En otra realización representativa, el método involucra el uso de compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina para reducir los efectos secundarios de enrojecimiento de antidepresivos o agente anti-psicótico. Por ejemplo, compuestos moduladores de sirtuina que incrementan el nivel de y/o actividad de una proteína sirtuina se pueden usar junto (administrado separadamente o juntos) con un inhibidor de recaptación de serotonina, o un antagonista del receptor 5HT2.

En ciertas realizaciones, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar como parte de un tratamiento con un inhibidor de recaptación de serotonina (SRI) para reducir enrojecimiento. En aún otra realización representativa, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para reducir efectos secundarios de enrojecimiento de agentes quimioterapéuticos, tal como ciclofosfamida y tamoxifeno.

En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para reducir efectos secundarios de enrojecimiento de bloqueadores de canal de calcio, tal como amlodipina.

En otra realización, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para reducir los efectos secundarios de enrojecimiento de antibióticos. Por ejemplo, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar en combinación con levofloxacina.

Trastornos oculares

5

10

15

20

30

35

40

45

50

Un método para inhibir, reducir o de otra manera tratar el deterioro de visión comprende administrar a un paciente una dosificación terapéutica de modulador de sirtuina seleccionado de un compuesto descrito aquí, o su sal farmacéuticamente aceptable, profármaco o su derivado metabólico.

En ciertos aspectos de la invención, el deterioro de visión es causado por daño al nervio óptico o sistema nervioso central. En realizaciones particulares, daño al nervio óptico es causado por alta presión intraocular, tal como que se crea por glaucoma. En otras realizaciones particulares, daño del nervio óptico es causado por hinchazón del nervio, que es frecuentemente asociado con una infección o una respuesta inmune (por ejemplo, autoinmune) tal como en neuritis óptica.

En ciertos aspectos de la invención, el deterioro de visión es causado por daño retinal. En realizaciones particulares, daño retinal es causado por disturbios en el flujo sanguíneo hacia el ojo (por ejemplo, arteriosclerosis, vasculitis). En realizaciones particulares, daño retinal es causado por interrupción de la mácula (por ejemplo, degeneración macular exudativa o no exudativa).

Enfermedades retinales ilustrativas incluyen degeneración macular relacionada con la edad exudativa, degeneración macular relacionada con la edad no exudativa, prótesis electrónica retinal y degeneración macular relacionada con la edad de transplante de RPE, epiteliopatia pigmentaria placoide multifocal aguda, necrosis retinal aguda, enfermedad de Best, oclusión de arteria retinal ramificada, oclusión de vena retinal ramificada, retinopatías autoinmunes relacionadas y asociadas con cáncer, oclusión de arteria retinal central, oclusión de vena retinal central, corioretinopatía serosa central, enfermedad de Eales, membrana epimacular, degeneración de redes cristalina, macroaneurisma, edema macular diabético, edema macular de Irving-Gass, hueco macular, membranas neovasculares subretinales, neuroretinitis subaguda unilateral difusa, edema macular cistoide no pseudofáquico, síndrome de histoplasmosis ocular presumido, desprendimiento retinal exudativo, desprendimiento retinal postoperatorio, desprendimiento retinal proliferativo, desprendimiento retinal regmatogenoso, desprendimiento retinal traccional, retinitis pigmentosa, retinitis CMV, retinoblastoma, retinopatía de premadurez, retinopatía de Birdshot, retinopatía de fondo, retinopatía diabetica proliferativa, retinopatía hemoglobinopatias, retinopatía de Purtscher, retinopatía de Valsalva, retinosquisis juvenil, retinosquisis senil, síndrome de Terson y síndromes de punto blanco.

Otras enfermedades ilustrativas incluyen infecciones bacterianas oculares (por ejemplo, conjuntivitis, queratitis, tuberculosis, sífilis, gonorrea), infecciones virales (por ejemplo, virus del herpes simple ocular, virus de la varicela zóster, retinitis de citomegalovirus, virus de inmunodeficiencia humana (VIH)), así como necrosis retinal externa

progresiva secundaria a VIH u otras enfermedades oculares asociadas con inmunodeficiencia y asociadas con VIH. Además, enfermedades oculares incluyen infecciones fúngicas (por ejemplo, coroiditis Candida, histoplasmosis), protozoosis (por ejemplo, toxoplasmosis) y otras tales como toxocariasis ocular y sarcoidosis.

Un método para inhibir, reducir o tratar deterioro de visión en un sujeto que experimenta el tratamiento con un fármaco quimioterapéutico (por ejemplo, un fármaco neurotóxico, un fármaco que aumenta la presión intraocular tal como un esteroide), comprende administrar al sujeto en necesidad de dicho tratamiento una dosificación terapéutica de un modulador de sirtuina descrito aquí.

Un método para inhibir, reducir o tratar deterioro de visión en un sujeto que experimenta cirugía, que incluye cirugías oculares u otras realizadas en la posición boca abajo tal como cirugía de médula espinal, comprende administrar al sujeto en necesidad de dicho tratamiento de una dosificación terapéutica de un modulador de sirtuina descrito aquí. Cirugías oculares incluyen cataratas, iridotomia y reemplazo de lentes.

Un tratamiento, incluyendo tratamiento de inhibición y tratamiento profiláctico, de enfermedades oculares relacionadas con la edad incluyen cataratas, ojo seco, degeneración macular relacionada con la edad (AMD) daño retinal y lo similar, comprende administrar al sujeto en necesidad de dicho tratamiento de una dosificación terapéutica de un modulador de sirtuina descrito aquí.

La prevención o el tratamiento de daño al ojo causado por estrés, insulto químico o radiación, comprende administrar al sujeto en necesidad de dicho tratamiento de una dosificación terapéutica de un modulador de sirtuina descrito aquí. La radiación o daño electromagnético al ojo puede incluir que es causado por CRT o exposición a luz solar o UV.

20 En una realización, un régimen de combinación de fármacos puede incluir fármacos o compuestos para el tratamiento o prevención de trastornos oculares o condiciones secundarias asociadas con estas condiciones. De esta manera, un régimen de combinación de fármacos puede incluir uno o más activadores de sirtuina y uno o más agentes terapéuticos para el tratamiento de un trastorno ocular.

En una realización, un modulador de sirtuina se puede administrar junto con una terapia para reducir presión intraocular. En otra realización, un modulador de sirtuina se puede administrar junto con una terapia para tratar y/o prevenir glaucoma. En aún otra realización, un modulador de sirtuina se puede administrar junto con una terapia para tratar y/o prevenir neuritis óptica. En una realización, un modulador de sirtuina se puede administrar junto con una terapia para tratar y/o prevenir retinopatía de CMV. En otra realización, un modulador de sirtuina se puede administrar junto con una terapia para tratar y/o prevenir esclerosis múltiple.

30 Enfermedades y trastornos asociados con mitocondria

10

15

35

40

45

50

55

Se describen aquí métodos para tratar enfermedades o trastornos que pueden beneficiarse de una actividad mitocondrial incrementada. Los métodos involucran la administración a un sujeto con necesidad de ello de una cantidad terapéuticamente eficaz de un compuesto activante de sirtuina. Actividad mitocondrial incrementada se refiere a actividad incrementada de la mitocondria mientras se mantiene los números completos de mitocondria (por ejemplo, masa mitocondrial), que incrementa los números de mitocondria con lo cual se incrementa la actividad mitocondrial (por ejemplo, mediante estimulación de biogénesis mitocondrial), o sus combinaciones. En ciertas realizaciones, enfermedades y trastornos que pueden beneficiar de actividad mitocondrial incrementada incluyen enfermedades o trastornos asociados con disfunción mitocondrial.

En ciertas realizaciones, métodos para tratar enfermedades o trastornos que pueden beneficiarse de actividad mitocondrial incrementada pueden comprender identificar a un sujeto que sufre de una disfunción mitocondrial. Métodos para diagnosticar una disfunción mitocondrial puede involucrar genética molecular, análisis patológicos y/o bioquímica. Enfermedades y trastornos asociados con disfunción mitocondrial incluye enfermedades y trastornos en cuyos déficits en actividad de cadena respiratoria mitocondrial contribuye al desarrollo de patofisiología de dichas enfermedades o trastornos en un mamífero. Enfermedades y trastornos que se pueden beneficiar de actividad mitocondrial incrementada generalmente incluyen por ejemplo, enfermedades en que lesión oxidativa mediada por radical libre conduce a degeneración de tejido, enfermedades en las cuales las células experimentan no apropiadamente apóptosis, y enfermedades en que las células fallan al experimentar apóptosis.

En ciertas realizaciones, métodos para tratar una enfermedad o trastorno que se puede beneficiar de actividad mitocondrial incrementada implican la administración a un sujeto en su necesidad de uno o más compuestos de activación de sirtuina en combinación con otro agente terapéutico tal como, por ejemplo, un agente útil para tratar disfunción mitocondrial o un agente útil para reducir un síntoma asociado con una enfermedad o trastorno que involucra disfunción mitocondrial.

Métodos para tratar enfermedades o trastornos que se pueden beneficiar de actividad mitocondrial incrementada comprenden administrar a un sujeto una cantidad terapéuticamente eficaz de un compuesto activante de sirtuina. Las enfermedades o los trastornos ilustrativos incluyen, por ejemplo, trastornos neuromusculares (por ejemplo, ataxia de Friedreich, distrofia muscular, esclerosis múltiple, etc.), trastornos de inestabilidad neuronal (por ejemplo, trastornos de ataques, migraña, etc.), retardo de desarrollo, trastornos neurodegenerativos (por ejemplo,

enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrópica, etc.), isquemia, acidosis tubular renal, neurodegeneración relacionada con la edad y disminución cognitiva, fatiga por quimioterapia, menopausia inducida por quimioterapia o relacionada con la edad o irregularidades de ciclo menstrual u ovulación, miopatías mitocondriales, daño mitocondrial (por ejemplo, acumulación de calcio, excitotoxicidad, exposición a óxido nítrico, hipoxia, etc.), y desregulación mitocondrial.

Distrofia muscular se refiere a una familia de enfermedades que involucran deterioro de estructura neuromuscular y función, frecuentemente resultando en atrofia del músculo esquelético y disfunción miocardial, tal como distrofia muscular Duchenne. En ciertas realizaciones, compuestos de activación de sirtuina se pueden usar para reducir la velocidad de disminución en capacidades funcionales musculares y para mejorar el estatus funcional muscular en pacientes con distrofia muscular.

En ciertas realizaciones, compuestos moduladores de sirtuina pueden ser útiles para el tratamiento de miopatías mitocondriales. Miopatías mitocondriales varían de ligera, debilidad lentamente progresiva de músculos extraoculares a severa, miopatías infantiles fatales y encefalopatías de sistema múltiple. Algunos síndromes se han definido, con algunos traslapados entre estos. Síndromes establecidos que afectan el músculo incluyen oftalmología externa progresiva, síndrome de Kearns-Sayre (con oftalmoplegia, retinopatía pigmentaria, defectos de conducción cardiaca, ataxia cerebelar, y sordera sensorineural), el síndrome MELAS (encefalomiopatia mitocondrial, acidosis láctica, y episodios tipo apoplejía), el síndrome de MERFF (epilepsia mioclónica y fibras rojas rasgadas), debilidad de distribución miembro-cintura y miopatía infantil (benigna o severa y fatal).

En ciertas realizaciones, compuestos activantes de sirtuina pueden ser útiles para el tratamiento de pacientes que sufren de daño tóxico a mitocondria, tal como, daño tóxico debido a la acumulación de calcio, excitotoxicidad, exposición a óxido nítrico, daño tóxico inducido por fármaco, o hipoxia.

En ciertas realizaciones, compuestos activantes de sirtuina pueden ser útiles para el tratamiento de enfermedades o trastornos asociados con desregulación mitocondrial.

Rendimiento muscular

5

10

15

20

35

40

45

50

Métodos para incrementar el rendimiento muscular comprenden administrar una cantidad terapéuticamente eficaz de un compuesto activante de sirtuina. Por ejemplo, compuestos de activación de sirtuina pueden ser útiles para mejorar resistencia física (por ejemplo, capacidad de desempeñar una tarea física tal como ejercicio, trabajo físico, actividades deportivas, etc.), inhibir o retardar fatigas físicas, incrementar niveles de oxígeno en la sangre, incrementar la energía en individuos saludables, incrementar la capacidad y resistencia al trabajo, reducir la fatiga muscular, reducir el estrés, incrementar la función cardiaca y cardiovascular, mejorar la capacidad sexual, incrementar los niveles de ATP del músculo, y/o reducir el ácido láctico en la sangre. En ciertas realizaciones, los métodos que involucran la administración de una cantidad de compuesto activante de sirtuina que incrementan la actividad mitocondrial, incrementan la biogénesis mitocondrial, y/o incrementan la masa mitocondrial.

El rendimiento deportivo se refiere a la capacidad de los músculos del atleta para realizar cuando participan en actividades deportivas. Rendimiento deportivo incrementado, fuerza, velocidad y resistencia se miden por un incremento en fuerza de contracción muscular, incremento en amplitud de contracción muscular, acortamiento del tiempo de reacción del músculo entre la estimulación y contracción. Atleta se refiere a un individuo que participa en deportes en cualquier nivel y que buscan lograr un nivel mejorado de fuerza, velocidad y resistencia en su rendimiento, tal como, por ejemplo, físico culturistas, ciclistas, corredores de larga distancia, corredores de corta distancia, etc. El rendimiento deportivo mejorado se manifiesta por la habilidad de superar la fatiga muscular, la habilidad de mantener la actividad por periodos más largos y tener un entrenamiento más efectivo.

En los gimnasios para aumentar el rendimiento muscular del atleta, es deseable crear condiciones que permitan la competencia o entrenamiento en niveles más altos de resistencia por un periodo prolongado de tiempo.

Se contempla que los métodos descritos aquí también serán efectivos en el tratamiento de condiciones patológicas relacionadas con el músculo, que incluyen sarcopenia aguda, por ejemplo, atrofia muscular y/o caquexia asociada con quemaduras, cama de relajación, inmovilización de un miembro, o cirugía torácica mayor, abdominal y/o ortopédica.

En ciertas realizaciones, la invención proporciona composiciones dietéticas novedosas que comprenden moduladores de sirtuina, un método para su preparación, y un método para usar las composiciones para el mejoramiento de rendimiento deportivo. En consecuencia, se proporcionan composiciones terapéuticas, alimentos y bebidas que tienen acciones de mejorar resistencia física y/o inhibir fatigas físicas para aquellas personas involucradas en ejercicios definidos ampliamente que incluyen deportes que requieren resistencia y trabajos que requieren esfuerzos musculares repetidos. Dichas composiciones dietéticas pueden comprenden electrolitos adicionales, cafeína, vitaminas, carbohidratos, etc.

55 Otros usos

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden

usar para tratar o prevenir infecciones virales (tal como infecciones por influenza, herpes o virus del papiloma) o como agentes anti-fúngicos. En ciertas realizaciones, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden administrar como parte de una combinación de terapia de fármaco con otro agente terapéutico para el tratamiento de enfermedades virales. En otra realización, compuestos moduladores de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede administrar como parte de una combinación de terapia de fármaco con otro agente anti-fúngico.

Sujetos que se pueden tratar como se describe aquí incluyen eucariotes, tal como mamíferos, por ejemplo humanos, ovinos, bovinos, equinos, porcinos, caninos, felinos, primates no humanos, ratones, y ratas. Células que se pueden tratar incluyen células eucarióticas, por ejemplo, de un sujeto descrito anteriormente, o células de plantas, células de levaduras y células procarióticas, por ejemplo células bacterianas. Por ejemplo, compuestos moduladores se pueden administrar a animales de granja para mejorar su capacidad de soportar condiciones agrícolas más duraderas.

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden usar para incrementar el periodo de vida, resistencia a la tensión y resistencia a apóptosis en plantas. En una realización, un compuesto se aplica a plantas, por ejemplo, en bases periódicas, o a hongos. En otra realización, las plantas se modifican generalmente para producir un compuesto. En otra realización, las plantas y frutos se tratan con un compuesto antes de la selección y envío para incrementar la resistencia a daño durante el envío. Las semillas de plantas también pueden hacer contacto con compuestos descritos aquí, por ejemplo, para preservarlos.

En otras realizaciones, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden usar para modular el periodo de vida en células de levadura. Las situaciones en las cuales puede ser deseable alargar la duración de la vida de células de levadura incluyen cualquier procedimiento en el cual se usa levadura, por ejemplo, al producir cerveza, yogurt y artículos horneados, por ejemplo, pan. El uso de levadura que tiene un periodo de vida extendido puede resultar en usar menos levadura o en que la levadura puede ser activa por periodos de tiempo más largos. La levadura u otras células de mamífero usadas para producir de manera recombinante proteínas también se pueden tratar como se describe aquí.

Compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden usar para incrementar el periodo de vida, resistencia a la tensión y resistencia a apóptosis en insectos. En esta realización, los compuestos se pueden aplicar a insectos útiles, por ejemplo abejas y otros insectos que se involucran en polinización de plantas. En una realización específica, un compuesto se puede aplicar a abejas que involucran en la producción de miel. Generalmente, los métodos descritos aquí se pueden aplicar a cualquier organismo, por ejemplo, eucariotas, que puede tener importancia comercial. Por ejemplo, se pueden aplicar a peces (acuacultura) y aves (por ejemplo, gallinas y aves de corral).

Dosis más altas de compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina también se pueden usar como un pesticida al interferir con la regulación de genes silenciados y la regulación de apóptosis durante le desarrollo. En esta realización, un compuesto se puede aplicar a plantas usando un método conocido en la técnica que asegura que el compuesto es bio-disponible para larvas de insectos, y no para plantas.

Al menos en vista del enlace entre la reproducción y longevidad, compuestos moduladores de sirtuina que incrementan el nivel y/o la actividad de una proteína sirtuina se pueden aplicar para afectar la reproducción de organismos tal como insectos, animales y microorganismos.

40 4. Ensayos

10

15

30

35

45

50

55

Aún otros métodos contemplados aquí incluyen métodos de cribado para identificar compuestos o agentes que modulan sirtuinas. Un agente puede ser un ácido nucleico, tal como un aptámero. Se pueden conducir ensayos en un formato basado en célula o libre de célula. Por ejemplo, un ensayo puede comprender incubar (o poner en contacto) una sirtuina con un agente de prueba bajo condiciones en que una sirtuina puede ser modulada por un agente conocido para modular la sirtuina, y monitorear o determinar el nivel de modulación de la sirtuina en la presencia del agente de prueba en relación con la ausencia del agente de prueba. El nivel de modulación de una sirtuina se puede determinar al determinar su capacidad de desacetilar a sustrato. Sustratos ilustrativos son péptidos acetilados que se pueden obtener de BIOMOL (Plymout Meeting, PA). Sustratos preferidos incluyen péptidos de p53, tal como aquellos que comprenden un K382 acetilado. Un sustrato preferido particularmente es el flúor de Lys-SIRT1 (BIOMOL), es decir, el péptido acetilado Arg-His-Lys-Lys. Otros sustratos son péptidos de histonas humanas H3 y H4 o un aminoácido acetilado. Sustratos pueden ser fluorogénicos. La sirtuina puede ser SIRT1, Sir2, SIRT3, o una porción del mismo. Por ejemplo, SIRT1 recombinante se puede obtener de BIOMOL. La reacción se puede conducir por aproximadamente 30 minutos y se detiene, por ejemplo, con nicotinamida. El ensayo de actividad fluorescente HDAC/kit de descubrimiento de fármaco (AK-500, BIOMOL, Research Laboratories) se puede usar para determinar el nivel de acetilación. Ensayos similares se describen en Bitterman et al. (2002) J. Biol. Chem. 277:45099. El nivel de modulación de la sirtuina en un ensayo se puede comparar al nivel de modulación de la sirtuina en la presencia de uno o más (de manera separada o simultánea) compuestos descritos aquí, que pueden servir como controles positivos o negativos. Sirtuinas para el uso en ensayos pueden ser proteínas de sirtuina de longitud completa o sus porciones. Ya que se ha mostrado aquí que compuestos de activación parecen interactuar con el N-término de SIRT1, las proteínas para el uso en los ensayos incluyen porciones N-terminales de sirtuinas, por ejemplo, aproximadamente 1-176 o 1-255 aminoácidos de SIRT1; aproximadamente 1-174 o 1-252 amino y un ácidos de Sir2.

En una realización, un ensayo de cribado comprende (i) poner en contacto una sirtuina con un agente de prueba y un sustrato acetilado bajo condiciones apropiadas para la sirtuina para desacetilar el sustrato en la ausencia del agente de prueba; y (ii) determinar el nivel de acetilación del sustrato, en donde un nivel inferior de acetilación del sustrato en la presencia del agente de prueba en relación a la ausencia del agente de prueba indica que el agente de prueba estimula la desacetilación por la sirtuina, con lo cual un nivel más alto de acetilación del sustrato en la presencia del agente de prueba en relación con la ausencia del agente de prueba indica que el agente de prueba inhibe la desacetilación por la sirtuina.

Métodos para identificar un agente que modula, por ejemplo estimula, sirtuinas in vivo pueden comprender (i) poner en contacto una célula con un agente de prueba y un sustrato que es capaz de entrar en una célula en la presencia de un inhibidor de HDAC clase I y clase II bajo condiciones apropiadas para la sirtuina para desacetilar el sustrato en la ausencia del agente de prueba; y (ii) determinar el nivel de acetilación del sustrato, en donde el nivel inferior de acetilación del sustrato en la presencia de un agente de prueba en relación con la ausencia del agente de prueba indica que el agente de prueba estimula la desacetilación por la sirtuina, con lo cual un nivel más alto de acetilación del sustrato en la presencia del agente de prueba en relación con la ausencia del agente de prueba indica que el agente de prueba inhibe la desacetilación por la sirtuina. Un sustrato preferido es un péptido acetilado, que también es preferiblemente fluorogénico, como de describe adicionalmente aquí. El método además puede comprender lisado de las células para determinar el nivel de acetilación del sustrato. Los sustratos se pueden añadir a células en una concentración que varía de de aproximadamente 1µM a aproximadamente 10mM, preferiblemente de aproximadamente 10µM a aproximadamente 1mM, aún más preferiblemente de aproximadamente 100µM a 1mM, tal como aproximadamente 200μM. Un sustrato preferido es una lisina acetilada, por ejemplo, ε-acetil lisina (Flúor de Lys, FdL) o flúor de Lys-SIRT1. Un inhibidor preferido de HDAC clase I y clase II es tricostatina A (TSA) que se puede usar en concentraciones que varían de aproximadamente 0.01 a 100μM, preferiblemente de aproximadamente 0.1 a 10µM, tal como 1µM. La incubación de células con el compuesto de prueba y el sustrato se puede conducir por aproximadamente 10 minutos a 5 horas, preferiblemente por aproximadamente 1-3 horas. Ya que TSA inhibe todos los HDAC de clase I y clase II, y que ciertos sustratos, por ejemplo, flúor de Lys, es un sustrato pobre para SIRT2 y aún menos un sustrato para SIRT3-7, dicho ensayo se puede usar para identificar los moduladores de SIRT1 in vivo.

5. Composiciones farmacéuticas

5

10

15

20

25

30

35

50

55

60

Los compuestos moduladores de sirtuina descritos en la presente pueden formularse de manera convencional usando uno o más portadores o excipientes fisiológicamente o farmacéuticamente aceptables . Por ejemplo, los compuestos moduladores de sirtuina y sus sales y solvatos farmacéuticamente aceptables se pueden formular por administración mediante, por ejemplo, inyección (por ejemplo, SubQ, IM, IP), inhalación o insuflación (ya sea a través de la boca o la nariz) u administración oral, bucal, sublingual, transdérmica, nasal, parenteral o rectal. En una realización, un compuesto modulador de sirtuina se puede administrar de manera local, en el sitio donde las células objetivo están presentes, es decir, en un tejido, órgano, o fluido específico (por ejemplo, sangre, fluido cerebroespinal, etc.).

Compuestos moduladores de sirtuina se pueden formular por diversas modos de administración, que incluyen administración sistémica y tópica o localizada. Técnicas y formulaciones generalmente se pueden encontrar en Remington's farmaceutical Sciences, Meade Publishing Co., Easton, PA. Para administración parenteral, se prefiere la inyección, que incluye intramuscular, intravenosa, intraperitoneal y subcutánea. Para inyección, los compuestos se pueden formular en soluciones líquidas, preferiblemente en reguladores de pH compatibles fisiológicamente tal como solución de Hank o solución de Ringer. Además, los compuestos se pueden formular en forma sólida y se redisuelven o suspenden inmediatamente antes del uso. Las formas liofilizadas también se incluyen.

Para administración oral, las composiciones farmacéuticas pueden tomar la forma de, por ejemplo, tabletas, pastillas, o cápsulas preparadas por medios convencionales con excipientes farmacéuticamente aceptables tal como agentes de unión (por ejemplo, almidón de maíz pregelatinizado, polivinilpirrolidona o hidroxipropil metilcelulosa), sustancias de relleno (por ejemplo, lactosa, celulosa microcristalina o fosfato ácido de calcio); lubricantes (por ejemplo, estearato de magnesio, talco o sílice); desintegrantes (por ejemplo, almidón de papa o glicolato de almidón de sodio); o agentes humectantes (por ejemplo, lauril sulfato de sodio). Las tabletas se pueden recubrir por métodos bien conocidos en la técnica. Preparaciones líquidas para administración oral pueden tomar la forma de, por ejemplo, soluciones, jarabes o suspensiones, o pueden estar presentes como un producto seco para la constitución con agua u otro vehículo adecuado antes del uso. Dichas preparaciones líquidas se pueden preparar por medios convencionales con aditivos farmacéuticamente aceptables tal como agentes de suspensión (por ejemplo, jarabe de sorbitol, derivados de celulosa o grasas comestibles hidrogenadas); agentes de emulsionamiento (por ejemplo, lecitina o acacia); vehículos no acuosos (por ejemplo, aceite de almendras, ésteres aceitosos, alcohol etílico o aceites vegetales fraccionados); y conservadores (por ejemplo, metil o propil-p-hidroxibenzoatos o ácido sórbico). Las preparaciones también pueden contener sales reguladoras de pH, agentes saborizantes, colorantes y edulcorantes como sea apropiado. Las preparaciones para administración oral se pueden formular de manera

adecuada para proporcionar la liberación controlada del compuesto activo.

5

30

35

40

45

50

55

Para administración mediante inhalación (por ejemplo, suministro pulmonar), compuestos moduladores de sirtuina se pueden suministrar de manera conveniente en la forma de una presentación de rociado en aerosol de paquetes presurizados o un nebulizador, con el uso de un propelente adecuado, por ejemplo, diclorodifluorometano, triclorofluorometano, diclorotetrafluoroetano, dióxido de carbono u otro gas adecuado. En el caso de un aerosol presurizado la unidad de dosificación se puede determinar al proporcionar una válvula para suministrar una cantidad dosificada. Las cápsulas y cartuchos de por ejemplo, gelatina, para el uso en un inhalador o insuflador se pueden formular conteniendo una mezcla en polvo del compuesto y una base en polvo adecuado tal como lactosa o almidón.

Compuestos moduladores de sirtuina se pueden formular para administración parenteral mediante inyección, por ejemplo, inyección de bolo o infusión continua. Las formulaciones para inyección se pueden presentar en forma de dosificación unitaria, por ejemplo, en ampollas o en contenedores de dosis múltiples, con un conservador añadido. Las composiciones pueden tomar dichas formas como suspensiones, soluciones o emulsiones en vehículos aceitosos o acuosos, y pueden contener agentes formuladores tal como agentes de suspensión, estabilización y/o dispersión. De manera alternativa, el ingrediente activo puede estar en forma de polvo para constitución con un vehículo adecuado, por ejemplo, agua estéril libre de pirógeno, antes del uso.

Compuestos moduladores de sirtuina también se pueden formular en composiciones rectales tal como supositorios o enemas de retención, por ejemplo, que contienen bases de supositorio convencionales tal como mantequilla de cacao u otros glicéridos.

Además de las formulaciones descritas previamente, compuestos moduladores de sirtuina también se pueden formular como una preparación de depósito. Dichas formulaciones de larga activación se pueden administrar mediante implantación (por ejemplo de manera subcutánea o intramuscular) o mediante inyección intramuscular. De esta manera, por ejemplo, compuestos moduladores de sirtuina se pueden formular con materiales poliméricos o hidrófobos (por ejemplo como una emulsión en un aceite aceptable) o resinas de intercambio iónico, o como derivados solubles con moderación, por ejemplo, como una sal soluble con moderación. Fórmula de liberación controlada también incluye parches.

En ciertas realizaciones, los compuestos descritos aquí se pueden formular para suministrar al sistema nervioso central (CNS) (revisado en Begley, farmacology & Therapeutics 104: 29-45 (2004)). Enfoque convencionales para el suministro de fármaco al CNS incluyen: estrategias neuroquirúrgicas (por ejemplo, inyección intracerebral o infusión intracerebroventricular); manipulación molecular del agente (por ejemplo, producción de una proteína de fusión quimérica que comprende un péptido de transporte que tiene una afinidad para una molécula de superficie celular endotelial en combinación con un agente que es por si mismo capaz de cruzar BBB) en un intento de explotar una de las trayectorias de transporte endógenas de BBB; estrategias farmacológicas designadas para incrementar la solubilidad del lípido de un agente (por ejemplo, conjugación de agentes solubles en agua a lípido o portadores de colesterol); y la interrupción transitoria de la integridad de BBB mediante interrupción hiperosmótica (que resulta de la infusión de una solución de manitol en la arteria carótida o el uso de un agente activo biológicamente tal como un péptido de angiotensina).

Liposomas son un sistema de suministro de fármaco que es fácilmente inyectable. En consecuencia, en el método de invención los compuestos activos también se pueden administrar en la forma de un sistema de suministro de liposoma. Los liposomas son bien conocidos por el experto en la técnica. Liposomas se pueden formar de diversas fosfolípidos, tal como colesterol, estearilamina de fosfatidilcolinas. Los liposomas que son usables para el método de la invención incluyen todos los tipos de liposomas que incluyen, pero no se limitan a, vesículas unilaminares pequeñas, vesículas unilaminares grandes y vesículas multilaminares.

Otra manera de producir una formulación, particularmente una solución, de un modulador de sirtuina tal como resveratrol o su derivado, es a través del uso de ciclodextrina. Por ciclodextrina se entiende α -, β -, o γ -ciclodextrina. Ciclodextrinas se describen en detalle en Pitha et al., Patente de E.U.A. No. 4,727,064, que se incorpora aquí para referencia. Ciclodextrinas son oligómeros cíclicos de glucosa; estos compuestos forman complejos de incursión con cualquier fármaco cuya molécula puede ajustar en las cavidades que buscan lipófilo de la molécula de ciclodextrina.

Formas de dosificación de disgregación o disolución rápida son útiles para la rápida absorción, particularmente absorción bucal y sublingual, de agentes activos farmacéuticamente. Formas de dosificación de fundido rápido son benéficas para pacientes, tal como pacientes pedriáticos y de edad avanzada, quienes tienen dificultad en tragar formas de dosificación sólidas que son usuales, tal como comprimidos y tabletas. De manera adicional, formas de dosificación de fundido rápido salvan inconvenientes asociados con, por ejemplo, formas de dosificación masticables, en donde la longitud de tiempo de un agente activo queda en una boca del paciente juega una función importante en determinar la cantidad de ocultar el sabor y el grado al cual un paciente puede oponerse a la contextura arenosa de la garganta del agente activo.

Composiciones farmacéuticas (que incluyen preparaciones cosméticas) pueden comprender de aproximadamente 0.00001 a 100% tal como de 0.001 a 10% o de 0.1% a 5% en peso de uno o más compuestos moduladores de sirtuina descritos aquí.. En otras realizaciones, la composición farmacéutica comprende: (i) 0.05 a 100 mg de los

compuestos de la invención, o su sal farmacéuticamente aceptables, y (ii) 0.1 a 2 gramos de uno o más excipientes farmacéuticamente aceptables.

En una realización, un compuesto modulador de sirtuina descrito aquí, se incorpora en una formulación tópica que contiene un portador tópico que es generalmente adecuado para administración de fármaco tópica y que comprende cualquier material conocido en la técnica. El portador tópico se puede seleccionar de modo que proporciona la composición en la forma deseada, por ejemplo, como un ungüento, loción, crema, microemulsión, gel aceite, solución, o lo similar, y se pueden comprender de un material de ya sea origen natural o sintético. Es preferible que el portador seleccionado no afecte adversamente el agente activo u otros componentes de formulación tópica. Ejemplos de portadores tópicos adecuados para el uso aquí incluyen agua, alcoholes y otros solventes orgánicos no tóxicos, glicerina, aceite mineral, silicona, jalea de petróleo, lanolina, ácidos grasos, aceite vegetales, parabenos, ceras. y lo similar.

Formulaciones pueden ser ungüentos incoloros, inoloros, lociones, cremas, microemulsiones o geles.

5

10

15

25

40

Compuestos moduladores de sirtuina se pueden incorporar en ungüentos, que generalmente son preparaciones semi-sólidas que usualmente se basan en petrolato u otros derivados de petróleo. La base de ungüento específica a ser usada, como será apreciado por aquellos de experiencia ordinaria en la técnica, es una que proporcionará para suministro de fármaco óptimo, y, preferiblemente, proporcionará para otras características deseadas también, por ejemplo, emoliencia o lo similar. Como con otros portadores o vehículos, una base de ungüento debe ser inerte, estable, no irritante y no sensible.

Compuestos moduladores de sirtuina se pueden incorporar en lociones, que generalmente son preparaciones a ser aplicadas a la superficie de la piel sin fricción, y son usualmente preparaciones líquidas o semilíquidas en que las partículas sólidas, que incluyen el agente activo, están presentes en una base de agua o alcohol. Lociones son usualmente suspensiones de sólidos, y pueden comprender una emulsión aceitosa líquida del tipo aceite en agua.

Compuestos moduladores de sirtuina se pueden incorporar en cremas, que generalmente son emulsiones líquidas viscosas o semisólidas, ya sea aceite en agua o agua en aceite. Bases de crema son lavables en agua, y contienen una fase aceitosa, un emulsionante y una fase acuosa. La fase aceitosa generalmente está comprendida de petrolato y un alcohol graso tal como alcohol cetílico o estearílico; la fase acuosa usualmente, aunque no necesariamente, excede la fase aceitosa en volumen, y generalmente contiene un humectante. El emulsionante en una formulación de crema, como se explica en Remington's, supra, es generalmente un agente tensoactivo no iónico, aniónico, catiónico o anfótero.

30 Compuestos moduladores de sirtuina se pueden incorporar en microemulsiones, que generalmente son termodinámicamente estables, dispersiones claras isotrópicamente de dos líquidos inmiscibles, tal como aceite y agua, estabilizados por una película interfacial de moléculas de agente tensoactivo (Encyclopedia of farmaceutical Technology (New York: Marcel Dekker, 1992), volumen 9).

Compuestos moduladores de sirtuina se pueden incorporar en formulaciones de gel, que generalmente son sistemas semisólidos que consisten de suspensiones hechas de partículas inorgánicas pequeñas (sistemas de dos fases) o moléculas orgánicas grandes distribuidas de manera sustancial uniformemente a través de un portador líquido (geles de fase sencilla). Aunque geles comúnmente emplean líquido portador acuoso, alcoholes y aceites se pueden usar como el líquido portador también.

Otros agentes activos también se pueden incluir en formulaciones, por ejemplo, otros agentes anti-inflamatorios, analgésicos, agentes anti-microbianos, agentes anti-fúngicos, antibióticos, vitaminas, antioxidantes, y agentes bloqueadores de sol comúnmente encontrados en formulaciones de pantalla solar que incluyen, pero no se limitan a, antranilatos, benzofenonas (particularmente benzofenona-3), derivados de canfor, cinamatos (por ejemplo, metoxicinamato de octilo), dibenzoil metanos (por ejemplo, butil metoxidibenzoil metano), ácido p-aminobenzóico (PABA) y sus derivados, y salicilatos (por ejemplo, salicilato de octilo).

En ciertas formulaciones tópicas, el agente activo está presente en una cantidad en el intervalo de aproximadamente 25% en peso a 75% en peso de la formulación, preferiblemente en el intervalo de aproximadamente 0,25% en peso a 30% en peso de la formulación, más preferiblemente en el intervalo de aproximadamente 0,5% en peso a 15% en peso de la formulación, y más preferiblemente en el intervalo de aproximadamente 1,0% en peso a 10% en peso de la formulación.

Condiciones del ojo se pueden tratar o prevenir mediante, por ejemplo, inyección sistémica, tópica, intraocular de un compuesto modulador de sirtuina, o por la inserción de un dispositivo de liberación sostenida, que libera un compuesto modulador de sirtuina. Un compuesto modulador de sirtuina que incrementa el nivel y/o la actividad de una proteína sirtuina se puede suministrar en un vehículo oftálmico farmacéuticamente aceptable, tal que el compuesto de mantiene en contacto con la superficie ocular por un periodo de tiempo suficiente para permitir que el compuesto penetre a las regiones corneales e internas de los ojos, como por ejemplo la cámara anterior, cámara posterior, cuerpo vítreo, humor acuoso, humor vítreo, córnea, iris/ciliar, lentes, coroide/retina y esclerótica. El vehículo oftálmico farmacéuticamente- aceptable puede, por ejemplo, ser un ungüento, aceite vegetal o un material de encapsulación. De manera alternativa, los compuestos de la invención se pueden inyectar directamente en el

humor vítreo y acuoso. En una alternativa adicional, los compuestos se pueden administrar sistémicamente, tal como por infusión o inyección intravenosa, para el tratamiento del ojo.

Compuestos moduladores de sirtuina descritos aquí se pueden almacenar en ambiente libre de oxígeno. Por ejemplo, resveratrol o su análogo se pueden preparar en una cápsula hermética al aire para administración oral, tal como Capsugel de Pfizer, Inc.

Células, por ejemplo, tratadas ex vivo con un compuesto modulador de sirtuina, se pueden administrar de acuerdo con métodos para la administración de un injerto a un sujeto, que se pueden acompañar, por ejemplo por la administración de un fármaco inmunosupresor, por ejemplo, ciclosporina A. Para principios generales en formulación medicinal, el lector es referido a Cell Therapy: Stem Cell Transplantation, Gene Therapy, and Cellular Immunotherapy, por G. Morstyn & W. Sheridan eds, Cambridge University Press, 1996; y Hematopoietic Stem Cell Therapy, E. D. Ball, J. Lister & P. Law, Churchill Livingstone, 2000.

La toxicidad y eficacia terapéutica de compuestos moduladores de sirtuina se puede determinar por procedimientos farmacéuticos estándar en cultivos celulares en animales experimentales. La LD_{50} es la dosis letal para 50% de la población. La ED_{50} es la dosis terapéuticamente eficaz en 50% de la población. La relación de dosis entre efectos tóxicos y terapéuticos (LD_{50}/ED_{50}) es el índice terapéutico. Compuestos moduladores de sirtuina que exhiben índices terapéuticos grandes son preferidos. Mientras compuestos moduladores de sirtuina que exhiben efectos secundarios tóxicos se pueden usar, se debe tener cuidado para diseñar el sistema de suministro que dirige dichos compuestos al sitio del tejido afectado a fin de minimizar el daño potencial a células no infectadas y, con lo cual, reduce efectos secundarios.

Los datos obtenidos de los ensayos de cultivo celular y estudios animales se pueden usar en la formulación de un intervalo de dosificación para el uso en humanos. La dosificación de dichos compuestos puede caer dentro del intervalo de concentraciones de circulación que incluyen la ED₅₀ con poca o sin toxicidad. La dosificación puede variar dentro de su intervalo dependiendo de la forma de dosificación empleada y la ruta de administración utilizada. Para cualquier compuesto, la dosis terapéuticamente eficaz se puede estimar inicialmente a partir de ensayos de cultivo celular. Una dosis se puede formular en modelos de animales para lograr un intervalo de concentración de plasma de circulación que incluye la IC₅₀ (es decir, la concentración del compuesto de prueba que logra una inhibición media-máxima de los síntomas) como se determina en el cultivo celular. Dicha información se puede usar para determinar más exactamente dosis útiles en humanos. Niveles en plasma se pueden medir, por ejemplo, por cromatografía líquida de alto rendimiento.

30 6. Kits

35

40

45

50

55

5

10

15

También se proporcionan aquí kits, por ejemplo, kits para propósitos terapéuticos o kits para la modulación del periodo de vida de células o apóptosis de modulación. Un kit puede comprender uno o más compuestos moduladores de sirtuina, por ejemplo, en dosis pre-medidas. Un kit puede opcionalmente comprender dispositivos para poner en contacto células con los compuestos e instrucciones para el uso. Los dispositivos incluyen jeringas, stents y otros dispositivos para introducir un compuesto modulador de sirtuina en un sujeto (por ejemplo, el vaso sanguíneo de un sujeto) o aplicarlo a la piel de un sujeto.

En aún otra realización, la invención proporciona una composición de materia que comprende un modulador de sirtuina de esta invención y otro agente terapéutico (uno mismo usado en terapias de combinación y composiciones de combinación) en formas de dosificación separadas, pero asociadas uno con otro. El término "asociado uno con otro" como se usa aquí significa que las formas de dosificación separadas se empacan juntas o de otra manera se unen una con otra tal que es fácilmente aparente que las formas de dosificación separadas se destinan a ser vendidas y administradas como parte del mismo régimen. El agente y el modulador de sirtuina son preferiblemente empacados juntos en un empaque de ampolla u otro empaque de cámara múltiple, o como contenedores sellados de manera separada, conectados (tal como bolsas de plástico metalizado o lo similar) que se pueden separar por el usuario (por ejemplo, por desgarrar en líneas marcadas entre los dos contenedores).

En aún otra realización, la invención proporciona un kit que comprende en envases separados, a) un modulador de sirtuina de esta invención; y b) otro agente terapéutico tal como aquellos descritos en cualquier parte en la especificación.

La práctica de los métodos presentes emplearán, a menos que se indique de otra manera, técnicas convencionales de biología celular, cultivo celular, biología molecular, biología transgénica, microbiología, ADN recombinante, e inmunología, que están dentro de la experiencia de la técnica. Dichas técnicas se explican completamente en la literatura. Véase, por ejemplo, Molecular Cloning A Laboratory Manual, 2a Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, volúmenes I y II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. Patente de E.U.A. No: 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N. Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987,

Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 y 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volúmenes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1986).

5 Ejemplos

Habiéndose descrito la invención de un modo general, será más fácilmente entenderla por referencia a los siguientes ejemplos que se incluyen meramente para propósitos de ilustración de ciertos aspectos y realizaciones de la presente invención, y no se destinan a limitar la invención en cualquier manera.

Ejemplo 1

15

10 Síntesis de N-(3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroguinazolin-8-il)picolinamida (compuesto 239)

Etapa 1. Preparación de 8-nitro-2-(3-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-4-ona (3):

Cloruro de 3-(trifluorometil)benzoílo 2 (4.5 mL, 30.2 mmoles) se agregó a una suspensión de ácido 2-amino-3-nitrobenzoico 1 (5.0 g, 27.5 mmoles) en piridina (65 mL). La mezcla de reacción se agitó a temperatura ambiente por 12 h luego se vertió en H_2O enfriada con hielo (300 mL). El precipitado resultante se recogió por filtración, lavado con H_2O y se secó a vacío para dar 3 (5 g, 51% de rendimiento) como un sólido amarillo que se utilizó sin purificación adicional.

Etapa 2. Preparación de 3-metil-8-nitro-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona (4):

$$CF_3$$
 CF_3
 CF_3

Una solución de metilamina (6.3 ml, 12.5 mmoles) en THF se añadió a una suspensión de 8-nitro-2-(3-(trifluorometil)fenil)-4H-benzo [d][1,3]oxazin-4-ona 3 (1.5 g, 4.2 mmoles) en AcOH (18 ml). La mezcla de reacción se calentó bajo reflujo suave por 12 h luego se enfrió a temperatura ambiente. Los volátiles se removieron *in vacuo* y el residuo se extrajo en EtOAc, se lavó con NaHCO₃ saturado acuoso, salmuera, se secó (MgSO₄) y se concentró. El residuo se purificó por MPLC, eluyendo con pentano/ EtOAc (0-75%) para dar 4 (1.3 g, 89% de rendimiento) como un sólido amarillo.

Etapa 3. Preparación de 8-amino-3-metil-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona (5):

$$CF_3$$
 NO_2
 NO_2
 NH_2
 NO_2
 NO_2

Pd/C 10 % p (100 mg) se agregó a una solución desgasificada de 3-metil-8-nitro-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona 4 (1.3 g, 3.7 mmoles) en THF (35 mL). La mezcla se hidrogenó bajo presión de balón por 12 h. El catalizador se separó por filtración y el solvente se evaporó. El residuo se purificó por MPLC, eluyendo con pentano/ EtOAc (0-50 %) para dar 5 (1.1 g, 90 % de rendimiento) como un sólido amarillo.

5 Etapa 4. Preparación de N-(3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-il)picolinamida (compuesto 239):

Una mezcla de 8-amino-3-metil-2-(3- trifluorometil)fenil)quinazolin-4(3H)-ona 5 (106 mg, 0.33 mmoles), ácido 2-piridincarboxílico 6 (84 mg, 0.68 mmoles), HATU (263 mg, 0.69 moles) y DIPEA (208 mg) en DMF se calentaron a 55°C durante 2.5 horas y después se vierten en H_2O . El precipitado resultante se recogió por filtración, lavado con H_2O , luego Et_2O para dar el compuesto 239 como un sólido amarillo (130 mg, 93% de rendimiento).

MS (ESI) calc. para C₂₂H₁₅F₃N₄O₂:424.11; encontrado: 425 [M+H].

Ejemplo 2

Síntesis de N-(3-metil-4-oxo-2-fenil-3,4-dihidroquinazolin-8-il)piridin-3-sulfonamida (compuesto 361)

15

20

10

Clorhidrato de piridina-3-sulfonil cloruro 7 (280 mg, 1.3 mmoles) se agregó a una solución de 8-amino-3-metil-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona 5 (100 mg, 0.313 mmoles) en piridina (5 mL). La mezcla de reacción se calentó a 80°C por 12 h. La piridina se separó *in vacuo*. El residuo se captó en CH₂Cl₂, se lavó con NaHCO₃ acuoso saturado, se secó (MgSO₄) y se concentró. El residuo crudo se purificó mediante MPLC eluyendo con CH₂Cl₂/MeOH (0-10%) seguido por recristalización a partir de CH₃CN para dar el compuesto 361 (77 mg, 53 % de rendimiento).

MS (ESI) calculado para C₂₁H₁₅F₃N₄O₃S: 460.08; encontrado: 461 [M+H].

Síntesis de N-(4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-il)picolinamida (compuesto 231)

Etapa 1. Preparación de 8-nitro-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona (8):

$$CF_3$$
 NO_2
 NO_2

- 8-nitro-2-(3-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-4-ona 3 (150 mg, 0.45 mmoles) se agregó a una solución de amoniaco (5.0 mL, 10 mmoles) en IPA. La mezcla de reacción se calentó bajo reflujo suave por 12 h luego se enfrió a temperatura ambiente. La mezcla de reacción se vertió en H₂O y el precipitado resultante se recogió por filtración y enjuagada con H₂O y se secó al vacío. El residuo crudo se recristalizó a partir de EtOAc para dar 8 (91 mg, 62% de rendimiento) como un sólido amarillo.
- 10 Etapa 2. Preparación de 8-amino-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona (9):

El compuesto 9 fue preparado por un procedimiento similar al descrito para 8-amino-3-metil-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona 5 con 99% de rendimiento.

Etapa 3. Preparación de N-(4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-il)picolinamida (compuesto 231):

Una mezcla de 8-amino-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona 9 (125 mg, 0.41 mmoles), ácido pirazin-2-carboxílico 10 (102 mg, 0.82 mmoles), HATU (342 mg, 0.90 mmoles) y DIPEA (214 μ l, 1.2 mmoles) en DMAC (5 mL) se calentaron a 70°C por 12 h luego se vertieron en H $_2$ O. El precipitado se recogió por filtración, se enjuagó con H $_2$ O luego se recristalizó a partir de EtOH para dar el compuesto 231 (144 mg, 86 % de rendimiento) como un sólido blanco.

MS (ESI) calculado para $C_{20}H_{12}F_3N_5O_2$: 411.09; encontrado: 412 [M+H].

15

5

Síntesis de N-(2-(2,4-dimetiltiazol-5-il)- 3-metil-4-oxo-3,4-dihidroquinazolin-8-il)pirazin-2-carboxamida (compuesto 287)

Etapa 1. Preparación de 2-amino-3-nitrobenzoato de metilo (11):

Ácido 2-amino-3-nitrobenzoico 2 1 (5 g, 27.4 mmoles) se disolvió en metanol (100 ml) y se agregó H_2SO_4 concentrado. La mezcla se calentó a 100°C por 12 h, se concentró a sequedad y se suspendió en H_2O (50 mL). La mezcla se extrajo con CH_2Cl_2 (50 mL), se secó (MgSO₄) y se concentró. El residuo crudo se purificó mediante cromatografía instantánea para dar 11 (5.1 g, 95% de rendimiento).

10 Etapa 2. Preparación de 2-(bis-(terc-butoxicarbonil)amino)-3-nitrobenzoato de metilo (12):

 $(Boc)_2O$ (5 g, 23 mmoles) se añadió a una solución de 2-amino-3-nitrobenzoato de metilo 11 (4.5 g, 23 mmoles) y DMAP (5 g, 46 mmoles) en THF. La mezcla de reacción se agitó a temperatura ambiente durante 6 horas, se concentró y purificó mediante cromatografía instantánea para dar 12 (6.4 g, 70 % de rendimiento).

15 Etapa 3. Preparación de 3-amino-2-(bis(terc-butoxicarbonil)amino)benzoato de metilo (13):

Níquel de Raney (1g) se agregó a una solución de 2-(bis-(terc-butoxicarbonil)amino)-3-nitrobenzoato de metilo 12 (6 g, 27.5 mmoles) en THF. La mezcla de reacción se hidrogenó bajo presión de balón por 4 h. El catalizador se separó mediante filtración y el solvente se evaporó para dar 13 (4.4 g, 80 % de rendimiento).

Etapa 4. Preparación de 2-(bis-(terc-butoxicarbonil)amino)-3-(pirazin-2-carboxamido)benzoato de metilo (14):

Una solución de 3-amino-2-(bis(terc-butoxicarbonil)amino)benzoato de metilo 13 (3.8 g, 10.4 mmoles), ácido pirazin-2-carboxílico 10 (1.54 g, 12.5 mmoles), HATU (7.9 g, 20.8 mmoles) y DIPEA (2.68 g, 20.8 mmoles) en DMF se calentó a 50° C durante 12 h. La mezcla de reacción se vertió en H_2 O y el precipitado resultante se recogió por filtración y se secó al vacío. El residuo crudo se purificó mediante cromatografía instantánea para dar 14 (2.87 g, 58 % de rendimiento).

Etapa 5 Preparación de 2-amino-3-(pirazin-2-carboxamido)benzoato de metilo (15):

5

15

HCl gaseoso se burbujeó a través de una solución de 2-(bis-(terc-butoxicarbonil)amino)-3-(pirazin-2-carboxamido)benzoato de metilo 14 (2.8 g, 5.9 mmoles) en MeOH (50 ml) durante 2 h. Los volátiles fueron retirados al vacío y se añadió H₂O (20 ml). El pH se ajustó a 7 con NaOH acuoso y el precipitado resultante se recogió por filtración, lavado con H₂O y se secó a vacío para dar 15 (1.37 g, 85% de rendimiento).

Etapa 6. Preparación de ácido 2-amino-3-(pirazin-2-carboxamido)benzoico (16):

Una mezcla de NaOH acuoso (20 mL, 88.2 mmoles) y 2-amino-3-(pirazina-2-carboxamido)benzoato de metilo 15 (1.2 g, 4.41mmoles) en THF (20 mL) se agitó a temperatura ambiente durante 4 h . Los volátiles se evaporaron y se ajusta el pH a 4 con HCl acuoso. El precipitado resultante se recogió por filtración, lavado con H_2O y se secó a vacío para dar 16 (750 mg, 66 % de rendimiento).

Etapa 7. Preparación de N-(2-(2,4-dimetiltiazol-5-il)-4-oxo-4H-benzo[d][1,3]oxazin-8-il)pirazin-2-carboxamida (18):

Cloruro de 2,4-dimetiltiazol-5-carbonilo 17 (104 mg, 0.58 mmoles) se agregó a una suspensión de ácido 2-amino-3-(pirazin-2-carboxamido)benzoico 16 (100 mg, 0.39 mmoles) en piridina (5 mL). La mezcla de reacción se agitó a temperatura ambiente por 12 h luego se vertió en H_2O enfriada con hielo (30 mL). El precipitado resultante se recogió por filtración, lavado con H_2O y se secó a vacío para dar 18 (110 mg, 81 % de rendimiento).

Etapa 8: Preparación de N-(2-(2,4-dimetiltiazol-5-il)-3-metil-4-oxo-3,4-dihidroquinazolin-8-il)pirazin-2-carboxamida (compuesto 287):

N-(2-(2,4-dimetiltiazol-5-il)-4-oxo-4H-benzo[d][1,3]oxazin-8-il)pirazin-2-carboxamida 18 (100 mg,0.26 mmoles) se disolvió en una solución al 30% en peso de CH3NH2 en metanol (10 mL). La mezcla de reacción se calentó a 80°C por 12 h. El precipitado resultante se recogió por filtración y se lavó con DME para dar el compuesto 287 (32 mg, 31% de rendimiento).

MS (ESI) calculado para $C_{19}H_{16}F_3N_6O_2S$: 392.11; encontrado: 393 [M+H].

15 Ejemplo 5

20

Síntesis de N-(3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-il)-5-oxopirrolidin-2-carboxamida (compuesto 339):

Cloruro de tionilo (83 mg, 0.7 mmoles) se agregó a una solución de ácido 5-oxopirrolidin-2-carboxílico 19 (65 mg, 0.5 mmoles) en THF (5 mL) a 0°C. DMF (1 gota) se agregó y se permitió a la solución entibiarse a temperatura ambiente por 3 h luego se enfrió a 0°C. Una solución de 8-amino-3-metil-2-(3-(trifluorometil)fenil)quinazolin-4(3H)-ona 5 (65 mg, 0.2 mmoles) y trietilamina (145 mg, 1.44 mmoles) en THF (1 mL) se agregó y la mezcla de reacción se dejó

entibiar a temperatura ambiente y se agitó por 12 h. La mezcla de reacción se concentró hasta sequedad y el residuo crudo se purificó por TLC preparativa para dar el compuesto 339.

MS (ESI) calculado para C₂₁H₁₇F₃N₄O₃: 430.1; encontrado: 431 [M+H].

Eiemplo 6

5 Síntesis de 3-metil-4-oxo-N-(piridin-2-il)-2-(2-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 212):

Etapa 1. Preparación de 2-amino-3-(piridin-2-ilcarbamoil)benzoato de metilo (22):

Una solución de ácido 2-amino-3-(metoxicarbonil)benzoico 20 (1 g, 5.1 mmoles), 2-aminopiridina 21 (723 mg, 7.7 mmoles), HOBT (1.39 g, 10.3 mmoles), EDCI (1.9 g, 10.3 mmoles) y DMAP (1.25 g, 10.3 mmoles) en DMF (40 mL) se agitó a 70° C durante 12 h. La mezcla de reacción se vertió en H_2 O. El precipitado resultante se recogió por filtración, lavado con H_2 O y se secó a vacío para dar 22 (0.9 g, 58 % de rendimiento).

Etapa 2. Preparación de ácido 2-amino-3-(piridin-2-ilcarbamoil)benzoico (22):

LiOH·H2O (1.8 g, 42.8 mmoles) se agregó a una solución de 2-amino-3-(piridin-2-ilcarbamoil)benzoato de 22 (2.9 g, 10.7 mmoles) en THF (30 mL) y H_2O (30 mL). La mezcla de reacción se calentó a 60° por 5 h. El THF se separó al vacío y se añadió H_2O (10 mL). El pH se ajustó a 4 con HCl acuoso y el precipitado resultante se recogió por filtración, lavado con H_2O y se secó a vacío para dar 23 (2.1 g, 76 % de rendimiento).

Etapa 3. Preparación de 4-oxo-N-(piridin-2-il)-2-(2-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-8-carboxamida (25):

Cloruro de 2-(trifluorometil)benzoílo 24 (180 mg, 0.88 mmoles) se agregó a una suspensión de ácido 2-amino-3-(piridin-2-ilcarbamoil)benzoico 23 (150 mg, 0.58 mmoles) en piridina (8 mL). La mezcla de reacción se agitó a temperatura ambiente por 12 h luego se vertió en H_2O enfriada por hielo. El precipitado resultante se recogió por filtración, se lavó con H_2O y se secó bajo vacío para dar 25 (90 mg, 3.8% de rendimiento) como un sólido blanco.

Etapa 4. Preparación de 3-metil-4-oxo-N-(piridin-2-il)-2-(2-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 212):

Una solución de metilamina al 30% en peso (7 ml) en MeOH y 4-oxo-N-(piridina-2-il)-2-(2-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-8-carboxamida 25 (90 mg, 0.22 mmoles) se calentó a reflujo suave durante 1 hora después se enfrió a temperatura ambiente. El precipitado resultante se recogió por filtración, lavado con H₂O y se secó bajo vacío para dar el compuesto 212 (20 mg, 22 % de rendimiento) como un sólido blanco.

MS (ESI) calculado para C₂₂H₁₅F₃N₄O₂: 424.11; encontrado: 425 [M+H].

15

5

Síntesis de 3-metil-4-oxo-N-(piridin-2-il)-2-(4-(pirrolidin-1-ilmetil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 275):

Etapa 1. Preparación de 2-(4-bromofenil)-4-oxo-N-(piridin-2-il)-4H-benzo[d][1,3]oxazin-8-carboxamida (27):

bromofenil)-4-oxo-N-(piridin-2-il)-4H-benzo[d][1,3]oxazin-8-carboxamida 27 fue elaborada por un procedimiento similar al descrito para 4-oxo-N-(piridin-2-il)-2-(2-(trifluorometil)fenil)-4H-benzo[d]1,3]oxazin-8-carboxamida con 91% de rendimiento.

2-(4-

Etapa 2. Preparación de 2-(4-bromofenil)-3-metil-4-oxo-N-(piridin-2-il)-3,4-dihidroquinazolin-8-carboxamida (28):

El compuesto 28 se preparó mediante un procedimiento similar al descrito para 3-metil-4-oxo-N-(piridin-2-il)-2-(2-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 212) con 76% de rendimiento.

Etapa 3. Preparación de 3-metil-4-oxo-N-(piridin-2-il)-2-(4-(pirrolidin-1-ilmetil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 275):

THF/H $_2$ O desgasificado (4 mL, 10:01) se añadió a un frasco para microondas con 2-(4-bromofenil)-3-metil-4-oxo-N-(piridin-2-il)-3,4-dihidroquinazolin-8-carboxamida 28 (100 mg, 0.23 mmoles), Cs $_2$ CO $_3$ (224 mg, 0.69 mmoles), Pd(OAc) $_2$ (1.5 mg, 0.007 mmoles), XPHOS (65 mg, 0.014 mmoles) y 1-trifluoroboratometilpirrolidina potasio (48 mg, 0.25 mmoles). La mezcla de reacción se calentó a 150°C en un reactor de microondas por 30 min., se vertió en H $_2$ O y se extrajo con EtOAc. Los compuestos orgánicos combinados se lavaron con salmuera, se secaron, concentraron

20

15

y el residuo crudo se purificó por MPLC, eluyendo con $CH_2Cl_2/MeOH$ (0-10%) para dar el compuesto 275 (63 mg, 63% de rendimiento).

MS (ESI) calculado para C₂₆H₂₅N₅O₂: 439.20; encontrado: 440 [M+H].

Eiemplo 8

5 Síntesis de N-(3,4-dimetoxifenil)-3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 220):

Un frasco para microondas fue cargado con anhídrido isatoico-ácido 2-carboxílico 29 (Clark et al. J. Med. Chem. 1995, 38, 1593-04) (115 mg, 0.555 mmoles), 3,4-dimetoxianilina 30 (102 mg, 0.666 mmoles) y piridina (2.0 ml). La mezcla de reacción se calentó a 200°C en un microondas durante 2 h. Al enfriarse, se agregó cloruro de 3-(trifluorometil)benzoilo 2 (120 ml, 0.800 mmoles) y el frasco se calentó a 100°C durante 1 hora. Después de enfriar, una solución de metilamina (1.0 m, 2.0 mmoles) en MeOH fue agregada y la reacción se calentó a 100°C por un período adicional de 1 h. Los volátiles se removieron *in vacuo* y el residuo crudo se purificó por MPLC para dar el compuesto 220 (69 mg, 26% de rendimiento).

MS (ESI) calculado para $C_{25}H_{20}F_3N_3O_4$: 483.14; encontrado: 484 [M+H].

Ejemplo 9

Síntesis de 3-metil-4-oxo-N-(6-(pirrolidin-1-il)piridin-2-il)-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto 350):

Etapa 1. Preparación de ácido 2-amino-3-(metilcarbamoil)benzoico (31):

20

10

NaOH acuoso (23.4 mL, 46.8 mmoles) se añadió a una solución de clorhidrato de metilamina (3.52 g, 53.7 mmoles) en H_2O (37 mL). Ácido 2,4-dioxo-2,4-dihidro-1H-benzo[d][1,3]oxazin-8-carboxílico 29 (3.23 g, 15.6 mmoles) se agregó en porciones. Después de completar la adición, la solución se agitó a temperatura ambiente durante 1.5 h. HCl 6M se añadió hasta que el pH = 3. El precipitado resultante se recogió por filtración, lavado con H_2O y se secó para dar 31 (2.60 g, 86 % de rendimiento).

Etapa 2. Preparación de ácido 3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxílico (33):

Metabisulfito de sodio (3.56 g, 18.7 mmoles) se agregó a una solución de ácido 2-amino-3-(metilcarbamoil)benzoico 31 (2.80 g, 14.4 mmoles) y 3-(trifluorometil)benzaldehído 32 (2.51 g, 14.4 mmoles) en DMAC (45 mL). La mezcla de reacción se agitó a 100 C por 21 h. H₂O (150 mL) se añadió y el precipitado resultante se recogió por filtración, lavado con H₂O y se secó para dar 33 (4.31 g, 84 % de rendimiento).

Etapa 3. Preparación de cloruro de 3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carbonilo (34):

5

Una solución de cloruro de tionilo (10 ml) y ácido 3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxílico 33 (1.00 g, 2.87 mmoles) se calentó a reflujo durante 1 h. Después de enfriar a temperatura ambiente, todos los volátiles se removieron al vacío, para dar 34 (1.05 g, 100% de rendimiento) como un sólido blanco.

Etapa 4. Preparación de 3-metil-4-oxo-N-(6-(pirrolidin-1-il)piridin-2-il)-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carboxamida (compuesto):

$$CI$$
 CF_3
 CF_3
 CF_3
 CF_3
 $COmpuesto 350$

Trietilamina (100 μL) y 6-pirolidin-1-ilpiridin-2-amina 35 (0.136 mmoles) se añadieron a una solución de cloruro de 3-metil-4-oxo-2-(3-(trifluorometil)fenil)-3,4-dihidroquinazolin-8-carbonilo 34 (50 mg, 0.136 mmoles) en dioxano (1 mL). La reacción se agitó a 70°C por 2 días, después de lo cual se añadió HCl 1N (4 mL). El precipitado resultante se recogió por filtración, lavado con 5 mL H₂O, 5 mL pentano y secado bajo vacío para dar el compuesto 350 (40 mg, 56% de rendimiento).

20 MS (ESI) calculado para C₂₆H₂₂F₃N₅O₂: 493.17; encontrado: 494 [M+H].

20

25

Síntesis de N-(4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-8-il)pirazin-2-carboxamida (compuesto 409):

Etapa 1. Preparación de 8-nitro-4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-3-carboxilato de etilo (36):

$$CF_3$$
 CF_3
 CO_2Et
 CF_3
 CF_3

- Una solución de diisopropilamina (7.00 mL, 50.0 mmoles) en THF (100 mL) se enfrió a -78°C y se agregó n-BuLi (20.0 mL, 2.5 M en hexanos, 50.0 mmoles). Después de agitar durante 20 minutos a -78°C, se añadió acetato de etilo (5.72 ml, 58.6 mmoles). La solución se agitó a -78°C por 10 min, se entibió a 0°C y se agitó por 10 min, luegos e enfrió de vuelta a -78°C. Una solución de 8-nitro-2-(3-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-4-ona 3 (9.85 g, 29.3 mmoles) en THF (100 mL) se agregó en el transcurso de 5 min a la mezcla de LDA/EtOAc. La reacción se agitó a -78° C durante 1 h, después se entibió a temperatura ambiente durante 2 h. NaOH 1H (50 ml) se añadió a continuación, y la reacción se agitó vigorosamente durante la noche. Se agregó salmuera (50 mL) y se separó la capa orgánica. La capa acuosa se extrajo con acetato de etilo (2 x 100 ml), y las capas orgánicas combinadas se secaron con MgSO4 y se concentraron a presión reducida. El material restante se purificó por MPLC (con un gradiente de 20% a 50% EtOAc en pentano) para dar 36 (5.00 g, 42% de rendimiento).
- 15 Etapa 2. Preparación de 8-nitro-2-(3-(trifluorometil)fenil)guinolin-4(1H)-ona (37):

Un frasco para microondas fue cargado con 8-nitro-4-oxo-2-(3-(trifluorometil) fenil)-1,4-dihidroquinolin-3-carboxilato 36 (1.0 g, 2.46 mmoles), dioxano (8 mL) y HCl 1N (4 ml). La mezcla de reacción se calentó a 190°C en el microondas durante 50 minutos. Los volátiles se evaporaron y el residuo se secó a vacío para dar 37 (707 mg, el 86% de rendimiento).

Etapa 3. Preparación de acetato de 8-nitro-2-(3-(trifluorometil)fenil)quinolin-4-ilo (38):

Una solución de 8-nitro-2-(3-(trifluorometil)fenil)quinolin-4 (1H)-ona 37 (707 mg, 2.11 mmoles), trietilamina (1 ml) y Ac_2O (0.7 ml) en CH_2Cl_2 (10 mL) se agitó a temperatura ambiente durante 16 h. $NaHCO_3$ acuso saturado (10 mL) fue agregado y la reacción se extrajo con CH_2Cl_2 . Las capas orgánicas combinadas se secaron (MgSO₄) y se concentraron para dar 38.

Etapa 4. Preparación de acetato de 8-amino-2-(3-(trifluorometil)fenil)quinolin-4-ilo (39):

$$OAC$$
 OAC
 OAC

Pd/C (300 mg) se añadió a una solución de acetato de 8-nitro-2-(3-(trifluorometil)fenil)quinolin-4-ilo 38 (2.11 mmoles) en acetato de etilo (10 mL). El gas hidrógeno se burbujeó en la reacción durante 10 minutos, y luego la reacción se agitó bajo 1 atm. de hidrógeno durante 16 h. El catalizador se separó por filtración a través de 10 g de sílice. Los solventes se removieron *in vacuo* para dar 39 (400 mg, 55 % de rendimiento para ambas etapas).

Etapa 5. Preparación de acetato de 8-(pirazin-2-carboxamido)-2-(3-(trifluorometil)fenil)quinolin-4-ilo (41):

Cloruro de pirazin-2-carbonilo 40 (100 mg) se agregó a una solución de acetato de 8-amino-2-(3-(trifluorometil)fenil)quinolin-4-ilo 39 (50 mg, 0.145 mmoles) y trietilamina (0.20 mL) en diclorometano (3 mL). La mezcla de reacción se agitó a 40°C por 16 h. La mezcla de reacción se vertió en NaHCO₃ diluido (10 mL) y se extrajo con 3 x 30 mL de diclorometano. Las capas orgánicas combinadas se secaron (MgSO4) y el solvente se separó *in vacuo*. El residuo crudo se purificó mediante MPLC (97:3 diclorometano:metanol) para dar 41 (33 mg, 50 % de rendimiento).

15 Etapa 6. Preparación de de N-(4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-8-il)pirazin-2-carboxamida (compuesto 409):

Una solución de acetato de 8-(pirazin-2-carboxamido)-2-(3-(trifluorometil)fenil)quinolin-4-ilo 41 (33 mg, 0.073 mmoles) en THF (2 ml) y NaOH 1N (0.5 ml) se calentó a 60°C durante 48 h. La mezcla de reacción se enfrió a temperatura ambiente y HCl 1N (5 ml) se añadió. El precipitado resultante se recogió por filtración, lavado con 3 mL H_2O y se secó bajo vacío para dar el compuesto 409 (21 mg, 70% de rendimiento).

MS (ESI) calculado para C₂₁H₁₃F₃N₄O₂: 410.10; encontrado: 411 [M+H].

10

15

20

25

Síntesis de 4-oxo-N-(piridin-2-il)-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-8-carboxamida (compuesto 401):

Etapa 1. Preparación de 4-oxo-2-(3-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-8-carboxilato de metilo (42):

$$CO_2H$$
 CO_2Me
 CO_2Me

- A una solución de ácido 2-amino-3-(metoxicarbonil)benzoico 20 (1.16 g, 5.94 mmoles) en piridina (10 mL) se agregó cloruro de 3-trifluorometilbenzoílo 2 (0.90 mL, 5.94 mmoles). La reacción se agitó por 16 h, se vertió en NaHCO₃ saturado acuoso (50 mL), se extrajo con diclorometano (3 x 50 mL) y las capas orgánicas combinadas se secaron (MgSO₄) y se concentraron. Se agregó tolueno (10 mL) y la solución se concentró *in vacuo*. El residuo crudo se purificó por MPLC eluyendo con pentano/EtOAc (10-50%) para dar 42 (1.45 g, 70% de rendimiento).
- 10 Etapa 2. Preparación de 8-metil 4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-3,8-dicarboxilato (43):

$$CF_3$$
 CO_2Me
 $CO_$

n-BuLi (4.4 ml, 2.5 M en hexanos, 11.0 mmoles) se añadió a una solución de diisopropilamina (1.57 ml, 11.2 mmoles) en THF (30 mL) a -78°C. Después de agitar durante 20 minutos, se añadió EtOAc (1.09 ml, 11.2 mmoles). La solución se agitó a -78°C por 10 min, se entibió a 0°C, se agitó por 10 min, luego se volvió a enfriar a -78°C. Una solución de 4-oxo-2-(3-(trifluorometil)fenil)-4H-benzo[d][1,3]oxazin-8-carboxilato 42 (2.00 g, 5.72 mmoles) en THF (50 mL) se añadió en el transcurso de 5 min a la mezcla de reacción y se agitó a -78°C durante 1 h. La mezcla de reacción luego se dejó entibiar a temperatura ambiente en el transcurso de 2 h. MeOH (50 mL) se agregó seguido de NaOMe sólido (1.62 g, 30 mmoles) y la reacción se agitó vigorosamente por 12 h a temperatura ambiente. La solución se concentró a 20 mL de volumen total *in vacuo*, se añadió H₂O (100 mL) y la mezcla se extrajo con acetato de etilo (2 x 100 mL). Las capas orgánicas combinadas se secaron (MgSO₄) y se concentraron *in vacuo*. El residuo crudo se purificó por MPLC eluyendo con pentano/EtOAc (10-50%) para dar 43 (950 mg, 39 % de rendimiento).

Etapa 3. Preparación de ácido 4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-8-carboxílico (44):

$$CO_2Et$$
 CO_2Me
 CO_2H
 CO

Un frasco para microondas de 20 mL se cargó con 8-metil-4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-3,8-dicarboxilato de 3-etilo 43 (820 mg, 1.96 mmoles), dioxano (8 mL) y HCl 1N (4 mL). La mezcla de reacción se calentó en un reactor de microondas a 200°C durante 25 min luego se concentró a sequedad *in vacuo* para dar 44 (585 mg, 90% de rendimiento).

Etapa 4. Preparación de 4-oxo-N-(piridin-2-il)-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-8-carboxamida (compuesto 401):

$$CF_3$$
 + CF_3 + CF_3 + CF_3 Compuesto 401

Una mezcla de ácido 4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidroquinolin-8-carboxílico 44 (250 mg, 0.750 mmoles), HATU (570 mg, 1.5 mmoles), 2-aminopiridina 21 (141 mg, 1.5 mmoles) y diisopropiletilamina (392 μl, 2.25 mmoles) en DMAC (5 mL) se calentó a 75°C durante 16 h. La mezcla de reacción se vertió en H₂O (25 ml) y el precipitado se recogió por filtración.

El residuo crudo se purificó mediante MPLC compuesto 401 (102 mg, 33% de rendimiento).

MS (ESI) calculado para C₂₂H₁₄F₃N₃O₂: 409.10; encontrado: 410 [M+H].

10 Ejemplo 12

5

20

25

Síntesis de 4-oxo-N-(tiazol-2-il)-2-(3-(trifluorometil)fenil)-1,4-dihidro-1,6-naftiridin-8-carboxamida (compuesto 449):

Etapa 1. Preparación de ácido 4-amino-5-bromonicotínico (46):

Un tubo sellado se cargó con ácido 4-aminonicotínico 45 (8.00 g, 57.9 mmoles), ácido acético (75 mL) y agua (75 ml). La reacción se calentó a 75°C y se agitó vigorosamente hasta que quedó homogénea. Después de enfriar a 50°C, se añadió bromo (10.0 mL, 195 mmoles) y la agitación continuó por 16 h. Al enfriarse a 0°C, el precipitado anaranjado resultante se recogió por filtración, lavado con H₂O y se secó bajo vacío para dar 46 (10.5 g, 84% de rendimiento).

Etapa 2. Preparación de 8-bromo-2-(3-(trifluorometil)fenil)-4H-pirido[4,3-d][1,3]oxazin-4-ona (47):

$$N_{\text{Br}}^{\text{CO}_2\text{H}}$$
 + CI^{CF_3} $N_{\text{Br}}^{\text{CF}_3}$ $N_{\text{Br}}^{\text{CF}_3}$

Una mezcla de ácido 5-bromo-4-aminonicotínico 46 (10.5 g, 48.4 mmoles) y piridina (60 mL) se calentó a 60° C hasta que quedó homogéneo. Se añadió cloruro de 3-(trifluorometil)benzoílo 2 (8.0 mL, 53.0 mmoles) y la agitación continuó por 2 h. H_2O (200 mL) se agregó y la mezcla se enfrió a 0° C. El precipitado amarillo resultante se recogió por filtración, lavado con H_2O (100 mL) luego pentano (100 mL) y se secó bajo vacío para dar 47 (8.50 g, 47% de rendimiento).

Etapa 3. Preparación de 8-bromo-4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidro-1,6-naftiridin-3-carboxilato de etilo (48):

$$CF_3$$
 CF_3
 CF_3
 CF_3
 CF_3

Una mezcla de THF (15 ml) y diisopropilamina (1.40 ml, 10.0 mmoles) se enfrió a -78°C, y se agregó n-BuLi (4.0 mL, 2.5 M en hexanos, 10.0 mmoles). Después de agitar a -78°C durante 20 min, se añadió acetato de etilo (1.0 L, 10.2 mmoles) y se continuó agitando durante 5 minutos. Se añadió 8-bromo-2-(3-(trifluorometil)fenil)-4H-pirido[4,3-d] [1,3]oxazin-4-ona 47 (990 mg, 2.67 mmoles). Después de 1 h, la mezcla de reacción se calentó poco a poco a la temperatura ambiente. NaOH 1N (15 mL) se agregó y la mezcla de reacción se agitó por 24 h. La mezcla se vertió en salmuera (50 mL), se extrajo con acetato de etilo (2 x 50 mL), se secó (MgSO₄) y se concentraron al vacío. El sólido resultante se purificó mediante MPLC para dar 48 (910 mg, 77% de rendimiento).

10 Etapa 4. Preparación de ácido 4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidro-1,6-naftiridin-8-carboxílico (49):

Una mezcla de 8-bromo-4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidro-1,6-naftiridin-3-carboxilato de 3-etilo 48 (910 mg, 2.06 mmoles), acetato de paladio (22.4 mg, 0.100 mmoles), XPhos (48.8 mg, 0.102 mmoles), cianuro de cobre (I) (450 mg, 5.02 mmoles) y carbonato de sodio (636 mg, 6.00 mmoles) en DMF (7.0 mL) se calentó a 120°C durante 16 h. Después de enfriar a temperatura ambiente, la mezcla se vertió en metanol (100 ml), se filtró a través de celite y se concentró *in vacuo*. El residuo crudo se disolvió en dioxano (10 mL) y HCl 1N (5 mL). La mezcla de reacción se agitó a 190°C por 50 min en un reactor de microondas. Los volátiles se removieron *in vacuo* y el residuo se redisolvió en metanol (10 mL) y NaOH 1N (5 mL). Esta solución se calentó en un reactor de microondas a 160°C durante 1.5 horas, tras lo cual se agregó HCl 6N (5 ml). El precipitado resultante se recogió por filtración, lavado con H₂O y se secó a vacío para dar 49 (400 mg, 58% de rendimiento).

Etapa 5

15

20

Preparación de 4-oxo-N-(tiazol-2-il)-2-(3-(trifluorometil)fenil)-1,4-dihidro-1,6-naftiridin-8-carboxamida (Compuesto 449)

Se calentó a 70°C durante 1 h una mezcla de ácido 4-oxo-2-(3-(trifluorometil)fenil)-1,4-dihidro-1,6-naftiridin-8-carboxílico 49 (100 mg, 0.299 mmoles) y carbonildiimidazol (100 mg, 0.617 mmoles) en dioxano (2 ml). Se añadió 2-aminotiazol 50 (120 mg, 1.20 mmoles) y se agitó la reacción a 70°C durante 16 h. Después de enfriar a temperatura ambiente, se le añadió 1N HCl (5 ml) y se recogió por filtración el precipitado resultante, se enjuagó con H₂O (5 ml) y se purificó con HPLC preparativa para dar el compuesto 449 como la sal trifluoroacetato (4.0 mg, 2.5% de rendimiento).

Se sintetizaron compuestos adicionales de la invención de manera similar haciendo reaccionar el ácido carboxílico apropiado con una amina apropiada. Se muestra a continuación la síntesis de varios intermedios de amina y ácido carboxílico, presentes en los compuestos de esta invención, en los ejemplos 13 a 51.

Ejemplo 13

5 Síntesis de cloruro de 2-(difluorometil)benzoílo (54)

Etapa 1

Preparación de 2-(difluorometil)benzoato de metilo (52)

Se calentó a reflujo durante 12 horas una solución de 2-formilbenzoato de metilo 51 (10 g, 61 mmoles) y trifluoruro de bis(2-metoxietil)amino-azufre (40.4 g, 183 mmoles) en CH₂Cl₂. Se enfrió la mezcla de reacción a temperatura ambiente, se concentró y se repartió entre EtOAc (500 ml)/H₂O (300 ml). Se añadió NaHCO₃ para ajustar el pH a 8. Se separó la fase orgánica, se lava con salmuera, se seca y se concentra. Se purificó el residuo mediante cromatografía instantánea para dar el 52 (7 g, 62% de rendimiento)

Etapa 2

15 Preparación de ácido 2-(difluorometil)benzoico (53)

F
$$CO_2Me$$
 CO_2H CO_2H

Se calentó a reflujo una mezcla de 2-(difluorometil)benzoato de metilo 52 (7 g, 38 mmoles) y NaOH ac. al 10% (100 ml) en MeOH (50 ml) durante 30 min. Se ajustó el pH a 4 mediante la adición de HCl 3N. Se recogió el sólido resultante por filtración, se enjuagó con H_2O y se secó para dar el 53 (6 g, 93% de rendimiento).

20 Etapa 3

25

Preparación de cloruro de 2-(difluorometil)benzoílo (54)

Se calentó a reflujo una solución de ácido 2-(difluorometil)benzoico 53 (1.8 g, 10 mmoles) de cloruro de tionilo (25 ml) durante 3 h. Se concentró la mezcla de reacción y se secó al vacío para dar el 54. Se usó este material para la siguiente etapa sin purificación adicional.

Síntesis de cloruro de 3-(difluorometil)benzoílo (56)

Se preparó el compuesto 56 mediante un procedimiento similar al referido para el cloruro de 2-(difluorometil)benzoílo 54 con rendimiento del 32%.

Ejemplo 15

5

10

15

Síntesis de ácido 6-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)picolínico (59)

Se añadió Solketal 58 (23,5 g, 178 mmoles) a una suspensión de NaH (7.1 g, 178 mmoles, 60% en peso de la dispersión en aceite mineral) en THF (400 ml) enfriada a 0°C. Se agitó la mezcla de reacción a temperatura ambiente durante 1 h y se añadió ácido bromopicolínico 57 (12 g, 59.4 mmoles). Se calentó a reflujo la mezcla de reacción durante 1.5 h. Después de enfriar a temperatura ambiente, se añadió H₂O (50 ml) y se ajustó el pH a 3 mediante la adición de HCl 3N. Se vertió la mezcla en una salmuera y se extrajo con EtOAc. Se secaron (Na₂SO₄) y concentraron los extractos orgánicos combinados. Se recristalizó el producto crudo a partir de pentano/EtOAc para da el 59 (10 g, 66% de rendimiento). Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Ejemplo 16

20 Síntesis de ácido 2-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)nicotínico (61)

Se preparó el compuesto 61 mediante un procedimiento similar al referido para el ácido 6-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)picolínico 59 con un rendimiento del 23%. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/ HCl 3n (4:1) a reflujo durante 12 h.

Síntesis de ácido 6-(morfolinometil)picolínico (65)

Etapa 1

Preparación de 4-((6-bromopiridin-2-il)metil)morfolina (64)

Se añadió NaBH(OAc)₃ (68.5 g, 0.323 moles) a una solución de 6-bromopicolinaldehído 62 (40 g, 0.22 moles) y morfolina 63 (20.9 g, 0.24 moles) en 1,2-dicloroetano (500 ml). Se agitó la mezcla a temperatura ambiente durante 16 h. Se añadió NaHCO₃ saturado (500 ml) y se extrajo la mezcla con AcOEt, se lavó con salmuera, se secó (Na₂SO₄) y se concentró in vacuo. Se purificó el residuo mediante cromatografía instantánea en gel de sílice eluyendo con éter de petróleo: acetato de etilo (10:1) para dar el 64 (38 g, 68% de rendimiento).

Etapa 2

5

10

15

25

Preparación de ácido 6-(morfolinometil)picolínico (65)

Se le añadió n-BuLi (56 ml, 0.140 moles) en THF a una solución de 4-((6-bromopiridin-2-il)metil)morfolina 64 (30 g, 0.12 moles) en THF (500 ml) a -78°C. Se agitó la mezcla durante 30 minutos y el se burbujeó CO₂ (gas) a través de la mezcla de reacción durante 30 minutos. Se removieron los productos volátiles in vacuo y se extrajo el residuo con CH₂Cl₂/MeOH (1:1). Se evaporó el solvente y se lavó el residuo con CH₂Cl₂ para dar el 65 (11.0 g, 42% de rendimiento).

Ejemplo 18

20 Síntesis de ácido 6-(pirrolidin-1-ilmetil)picolínico (70)

Etapa 1

Preparación de 6-(clorometil)picolinato de metilo (67)

Se le añadió SOCl2 (57 g, 0.48 moles) a una solución de 6-(hidroximetil)picolinato de metilo 66 (40.0 g, 0.239 moles) (Chem. Eur. J. 2006, 12, 6393-6402) en diclorometano (500 ml) a temperatura ambiente. Se agitó la mezcla a 40°C durante 1 h y se añadió. K2CO3 ac. sat. para ajustar el pH a 9. Se extrajo la mezcla con CH₂Cl₂ y se lavaron con

salmuera los compuestos orgánicos combinados, se secaron (Na_2SO_4), y se concentraron in vacuo para dar el 67 (45 g).

Etapa 2

Preparación de 6-(pirrolidin-1-ilmetil)picolinato de metilo (69)

Se le añadió K2CO3 (66 g, 0.48 moles) a una solución de 6-(clorometil)picolinato de metilo 67 (45.0 g) y pirrolidina 68 (34 g, 0.48 moles) en DMF (300 ml). Se calentó la mezcla de reacción a 80°C durante 12 h. Se añadió H_2O (300 ml) y se extrajo la mezcla con AcOEt. Se lavaron con salmuera las capas orgánicas combinadas, se secaron (Na_2SO_4) y se concentraron in vacuo para dar el 69 (36 g).

10 Etapa 3

5

Preparación de ácido 6-(pirrolidin-1-ilmetil)picolínico (70)

Se agitó una mezcla de 6-(pirrolidin-1-ilmetil)picolinato de metilo 69 (36 g) y NaOH (40 g, 1.0 moles) en etanol/H₂O (320 ml) a 75°C durante 16 h. Se ajustó el pH a 7 con HCl 3N y se extrajo con AcOEt. Se concentró la capa acuosa hasta secar y se extrajo con diclorometano/metanol (v:v = 3.1). Se secó la capa orgánica para dar el 70 (27 g, 55% de rendimiento).

Ejemplo 19

Síntesis de N-metil-prolina (72)

20 Se preparó el compuesto 72 mediante un procedimiento similar al referido para en J. Org. Chem. 2003, 66, 2652.

Síntesis de ácido 1-metil-5-oxopirrolidin-2-carboxílico (73)

Se preparó el compuesto 73 mediante un procedimiento similar al referido en J. Heterocyclic. Chem. 1991, 28, 1143.

5 Ejemplo 21

Síntesis de 3-(morfolinometil)anilina (74)

Se preparó el compuesto 74 mediante un procedimiento similar al referido para en J. Org. Chem. 1990, 33(1), 327-36.

10 Ejemplo 22

Síntesis de 6-(pirrolidin-1-ilmetil)piridin-2-amina (81)

Etapa 1

Preparación de 6-aminopicolinato de etilo (76)

$$H_2N$$
 N CO_2H H_2N N CO_2Et 76

A una solución de ácido 2-amino-6-piridincarboxílico 75 (6.0 g, 43.5 mmoles) en etanol (150 ml) se le añadió cloruro de tionilo (12.0 g, 101 mmoles) a 0°C. Se agitó a reflujo la mezcla de reacción resultante durante 12 h. Después de enfriar a temperatura ambiente, se concentró la mezcla de reacción bajo presión reducida. Se añadió una solución acuosa saturada de Na₂CO₃ hasta que el pH de la solución alcanzó 9. La mezcla se concentra bajo presión reducida y diclorometano (150 ml) se añade al residuo resultante. La mezcla se agita vigorosamente a temperatura ambiente durante 30 minutos y después se filtra. Se concentró el filtrado bajo presión reducida para producir el 76 (5.5 g, 76% de rendimiento).

Etapa 2

Preparación de 6-(terc-butoxicarbonilamino)picolinato de etilo (77)

A una solución de 6 aminopicolinato de etilo 76 (5.5 g, 33 mmoles) en T-BuOH (120 ml) y acetona (40 ml) se le añadió 4 dimetilaminopiridina (0.08 g, 0.66 mmoles) y bicarbonato de di- terc-butilo (10.8 g, 49.5 mmoles). Se agitó la mezcla de reacción a temperatura ambiente durante 18 h. Se removió el solvente mediante concentración bajo presión reducida y se añadió una mezcla de hexano/diclorometano (180 ml, 3:1). Se enfrió la mezcla resultante a - 20°C durante 2 h. Se recogieron por filtración los sólidos resultantes y secaron para producir 77 (11.0 g, 91% de rendimiento).

10 Etapa 3

5

15

Preparación de 6-(hidroximetil)piridin-2-ilcarbamato de terc-butilo (78)

A una solución agitada de 6-(bis(terc-butoxicarbonilo)amino)picolinato de etilo 77 (11.0 g, 33 mmoles) en THF (120 ml) en atmósfera de nitrógeno se le añadió LiAlH $_4$ (3.80 g, 100 mmoles) en THF (60 ml) durante un período de 30 min a 0°C. Se agitó la mezcla de reacción a 0°C durante 6 h y se detuvo cuidadosamente mediante la adición de H_2O (2.0 ml) y solución al 10% de NaOH (4.0 ml) a 0°C. Se filtró la mezcla de reacción y se secó (Na $_2SO_4$) el filtrado y se concentró bajo presión reducida. Se purificó por cromatografía el residuo resultante (1:1 éter de petróleo:acetato de etilo) para dar el 78 (3.0 g, 41% de rendimiento).

Etapa 4

20 Preparación de metansulfonato de (6-(terc-butoxicarbonilamino)piridin-2-il)metilo (79)

A una solución de 6-(hidroximetil)piridin-2-ilcarbamato de terc-butilo 78 (3.0 g, 13.4 mmoles) y diisopropiletilamina (5.0 g, 40 mmoles) en acetonitrilo (30 ml) se le añadió cloruro de metansulfonilo (2.0 g, 17.4 mmoles) durante un período de 30 min a 0° C y se agitó la mezcla durante 2 h a temperatura ambiente. Se detuvo la reacción mediante la adición de NaHCO $_{3}$ acuoso saturado y se extrajo con acetato de etilo (3 x 60 ml). Se lavaron con salmuera las capas orgánicas combinadas, se secaron (Na $_{2}$ SO $_{4}$) y se concentraron bajo presión reducida para producir el compuesto crudo 79.

Etapa 5

Preparación de 6-(pirrolidin-1-ilmetil)piridina-2-ilcarbamato de terc-butilo (80)

30

Se agitó a temperatura ambiente durante 12 h una mezcla de metansulfonato de (6-(terc-butoxicarbonilamin)piridin-2-il)metilo 79 (1.30 g, 3.2 mmoles), pirrolidina 68 (0.46 g, 6.4 mmoles) y K_2CO_3 (1.30 g, 9.6 mmoles) en acetonitrilo (15 ml). Se añadió NaHCO $_3$ acuoso saturado y se concentró la mezcla bajo presión reducida. La capa acuosa resultante se extrae con EtOAc. Se secaron (Na_2SO_4) las capas orgánicas combinadas y se concentraron bajo presión reducida para producir el 80 (0.75 g, 62% de rendimiento).

Etapa 6

5

10

Preparación de 6-(pirrolidin-1-ilmetil)piridin-2-amina (81)

A una solución de 6-(pirrolidin-1-ilmetil)piridina-2-ilcarbamato de terc-butilo 80 (750 mg, 2.71 mmoles) en diclorometano (10 ml) se le añadió ácido trifluoroacético (4.0 ml) a temperatura ambiente. Se agitó la mezcla de reacción resultante a temperatura ambiente durante 6 h y se concentró luego bajo presión reducida. Se añadió le Na₂CO₃ acuoso saturado al residuo resultante hasta que el pH de la solución llegó a 9. La mezcla después se extrae con acetato de etilo (3 x 25 ml). Se secaron con Na₂SO₄ las capas orgánicas combinadas y se concentraron bajo presión reducida para producir el 81 (440 mg, 92 % de rendimiento).

15 Ejemplo 23

Síntesis de 6-(morfolinometil)piridin-2-amina (82)

82

Se preparó el compuesto 82 mediante un método similar al referido para la 6-(pirrolidin-1-ilmetil)piridina-2-amina 81.

Eiemplo 24

20 Síntesis de (R)-6-((3-fluoropirrolidin-1-il)metil)piridin-2-amina (83)

Se preparó el compuesto 83 mediante un método similar al referido para la 6-(pirrolidin-1-ilmetil)piridina-2-amina 81.

Ejemplo 25

25

Síntesis de (S)-6-((3-fluoropirrolidin-1-il)metil)piridin-2-amina (84)

84

Se preparó el compuesto 84 mediante un método similar al referido para la 6-(pirrolidin-1-ilmetil)piridina-2-amina 81.

Síntesis de 6-(piperazin-1-ilmetil)piridin-2-amina (85)

Se preparó el compuesto 85 mediante un método similar al referido para la 6-(pirrolidin-1-ilmetil)piridina-2-amina 81.

5 Ejemplo 27

Síntesis de 4-((6-aminopiridin-2-il)metil)piperazin-1-carboxilato de terc-butilo (86)

A una solución de 6-(piperazinil-1-ilmetil)piridina-2-amina 85 en THF se le añadió carbonato de di-terc-butilo (1 eq) y 4-(dimetil)aminopiridina (catalizador). Se agitó la mezcla de reacción a temperatura ambiente durante 18 h. Se concentró luego bajo presión reducida. Se añadió pentano y se recogió por filtración el sólido resultante y se secó para producir el 86. Se podría remover el grupo protector Boc después de acoplar con el ácido carboxílico apropiado mediante el tratamiento con TFA/CH₂Cl₂ durante 12 h.

Ejemplo 28

Síntesis de trifluoroacetato de 4-(morfolinometil)tiazol-2-amina (91)

15 Etapa 1

10

Preparación de 2-(terc-butoxicarbonilamino)tiazol-4-carboxilato de etilo (88)

Se recogió 2-aminotiazol-4-carboxilato de etilo 87 (10.0 g, 58.1 mmoles) en 150 ml de THF anhidro junto con carbonato de di-terc-butilo (12.67 g, 58.1 mmoles) y 4-(dimetil)aminopiridina (DMAP) (10 mg, 0.082 mmoles). Se agitó la mezcla de reacción a 50°C durante 4 h y luego a temperatura ambiente durante 18 h. Se concentró luego bajo presión reducida para obtener un aceite espeso. Se añadió pentano y se recogieron los materiales cristalinos resultantes se mediante filtración y se secaron para producir el 88 (10.5 g, 66% de rendimiento).

Ftana 2

20

25

Preparación de 4-(hidroximetil)tiazol-2-ilcarbamato de terc-butilo (89)

Se disolvió 2-(terc-butoxicarbonilamino)tiazol-4-carboxilato de etilo 88 (10.5 g, 38.6 mmoles) en 300 ml de THF anhidro y se enfrió en baño de hielo seco y acetonitrilo. Se añadió luego una solución de Super hydrideTM 1M en

THF (85 ml), durante un período de 10 minutos. Se agitó la mezcla de reacción resultante a -45°C durante 2 h. Se añadió luego otra porción de Super HydirdeTM 1M en THF (35 ml) y se agitó la mezcla de reacción durante 2 h a -45°C. Se detuvo la reacción a -45°C mediante la adición de 50 ml de salmuera. En calentamiento a temperatura ambiente, la mezcla de reacción se concentra bajo presión reducida. La mezcla resultante se extrae con EtOAc. Se lavaron con salmuera las capas orgánicas combinadas, se secaron con Na₂SO₄ y se concentraron bajo presión reducida. Se purificó el residuo resultante mediante cromatografía para dar el 89 (6.39 g, 72% de rendimiento)

Etapa 3

5

Preparación de 4-(morfolinometil)tiazol-2-ilcarbamato de terc-butilo (90)

Se recogió 4-(hidroximetil)-2-tiazol ilcarbamato de terc-butilo 89 (2.00 g, 8.68 mmoles) en 25 ml de CH₂Cl₂ junto con Et₃N (1.82 ml, 13.05 mmoles) y se enfrió a 0°C. Se añadió luego cloruro de metanosulfonilo (0.85 ml, 10.88 mmoles) y se agitó la mezcla de reacción resultante a 0°C durante 60 min. Se añadió morfolina 63 (3.0 ml, 35 mmoles) y se agitó la mezcla de reacción a temperatura ambiente durante 18 h. Se concentró la mezcla de reacción bajo presión reducida. Se recogió el residuo resultante en EtOAc y se lavó con NaHCO₃ acuosa diluida, salmuera, se secó con Na2SO4 y se concentró bajo presión reducida. Este material se purifica al filtrar a través de una columna corta de gel de sílice. Se concentró el filtrado para dar el 90 (1.88 g, 69% de rendimiento).

Etapa 4

Preparación de trifluoroacetato de 4-(morfolinometil)tiazol-2-amina (91)

20 Se trató 4-(morfolinometil)tiazol-2-ilcarbamato de Terc-butilo 90 (1.88 g, 6.28 mmoles) con 20 ml de ácido trifluoroacético de 25% en CH₂Cl₂ durante 18 h a temperatura ambiente. Después de que se había removido todo el solvente mediante la concentración y el secado al alto vacío, se trató el residuo resultante con una mezcla de pentano/EtOAc para producir el 91 (1.96 g, 100% de rendimiento) como un sólido blanco.

Ejemplo 29

25 Síntesis de trifluoroacetato de 4-(pirrolidin-1-ilmetil)tiazol-2-amina (92)

Se preparó el compuesto 92 mediante un procedimiento similar al referido para el trifluoroacetato de 4-(morfolinometil)tiazol-2-amina 91.

Síntesis de trifluoroacetato de 5-(morfolinometil)tiazol-2-amina (93)

Se preparó el compuesto 93 mediante un procedimiento similar al referido para el trifluoroacetato de 4-(morfolinometil)tiazol-2-amina 91.

Ejemplo 31

5

Síntesis de trifluoroacetato de 5-(pirrolidin-1-ilmetil)tiazol-2-amina (94)

10 Se preparó el compuesto 94 mediante un procedimiento similar al referido para el trifluoroacetato de 4- (morfolinometil)tiazol-2-amina 91.

Ejemplo 32

Síntesis de trifluoroacetato de 4-(piperazin-1-ilmetil)tiazol-2-amina (95)

15

Se preparó el compuesto 95 mediante un procedimiento similar al referido para el trifluoroacetato de 4-(morfolinometil)tiazol-2-amina 91.

Ejemplo 33

Síntesis de 4-((2-aminotiazol-4-il)metil)piperazina-1-carboxilato de terc-butilo (96)

20

Se preparó el compuesto 96 4-((6-aminopiridin-2-il)metil)piperazin-1-carboxilato de terc-butilo 86. Se podría remover el grupo protector Boc después de acoplar con el ácido carboxílico apropiado mediante el tratamiento con TFA/CH₂Cl₂ durante 12 h.

Síntesis de 2-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)pirimidin-4-amina (98)

A una solución de solketal 58 (34.4 g, 260 mmoles) en THF (150 ml) se le añadió NaH (10.4 g, 260 mmoles) a temperatura ambiente y se agitó la mezcla durante 1 h. Se añadió luego 2-cloro-4-aminopirimidina 97 (15,0 g, 115 mmoles) y se agitó la mezcla a 70°C durante 48 h. Se concentró la mezcla de reacción y se purificó el residuo crudo mediante cromatografía instantánea (diclorometano:metanol = 15:1-10:1) para dar el 98 (18.2 g, 70% de rendimiento) de un aceite. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

10 Ejemplo 35

5

15

20

Síntesis de ácido 6-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)picolínico (99)

Se preparó el compuesto 99 mediante un método similar al referido para la 2-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)pirimidin-4-amina 98. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Ejemplo 36

Síntesis de (S)-6-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)-2-aminopiridina (100)

Se preparó el compuesto 100 mediante un método similar al referido para la 2-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)pirimidin-4-amina 98. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Ejemplo 37

Síntesis de (R)-6-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)-2-aminopiridina (101)

Se preparó el compuesto 101 mediante un método similar al referido para la 2-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)pirimidin-4-amina 98. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Ejemplo 38

5 Síntesis de (R)-3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina (105)

Etapa 1

Preparación de (R)-2,2-dimetil-4-((3-nitrofenoxi)metil)-1,3-dioxolano (104)

Se calentó una mezcla de 3-nitrofenol 102 (2.00 g, 14.4 mmoles), carbonato de potasio (4.96 g, 35.9 mmoles) y (S)-4-(clorometil)-2,2-dimetil-1,3-dioxolano 103 (2.55 ml , 18.7 mmoles) en DMF (20 ml) en un reactor de microondas a 160°C durante 4 h. Se vertió en H2O la mezcla de reacción crud y se extrajo con diclorometano (3 x 15 ml). Se secaron las capas orgánicas combinadas (Na₂SO₄) y se concentraron bajo presión reducida. Se purificó el residuo crudo mediante cromatografía con acetato de etilo:pentano para obtener (R)-2,2-dimetil-4-((3-nitrofenoxi) metil)-1,3-dioxolano 104 (1.90 g, 52% de rendimiento), como un aceite de color ámbar.

15 Etapa 2

Preparación de (R)-3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina (105)

Se calentó a reflujo una mezcla de polvo de Fe (2.38 g, 42.5 mmoles), NH4Cl (2.27 g, 42.5 mmoles) y (R)-2,2-dimetil-4-((3-nitrofenoxi) metil)-1,3-dioxolano 104 (1.80 g, 7.09 mmoles) en isopropanol (30 ml)/H2O (10 ml) durante 18 h. Se filtró el material crudo a través de una almohadilla de Celite y se concentró el filtrado bajo presión reducida. La capa acuosa resultante se extrajo con diclorometano (3 x 15 ml). Se secaron con Na₂SO₄ las capas orgánicas combinadas y se concentraron bajo presión reducida para producir el 105 (1.25 g, 76 % de rendimiento). Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

25 Ejemplo 39

20

30

Síntesis de 3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina (106)

Se preparó el compuesto 106 mediante un método similar al referido para la (R)-3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina 105. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Síntesis de (S)-3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina (107)

Se preparó el compuesto 107 mediante un método similar al referido para la (R)-3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina 105. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Ejemplo 41

Síntesis de 4-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina (108)

Se preparó el compuesto 108 mediante un método similar al referido para la (R)-3-((2,2-dimetil-1,3-dioxolan-4-il)metoxi)anilina 105. Se podría remover el grupo protector de acetonida después de acoplar con la anilina apropiada mediante el tratamiento con EtOH/HCl 3N (4:1) a reflujo durante 12 h.

Ejemplo 42

Síntesis de 2-(pirrolidin-1-il)piridin-4-amina (110)

Se calentó una mezcla de 2-cloro-4-aminopiridina 109 (2.29 g, 17.8 mmoles) y pirrolidina 68 (5.0 ml) a 200°C en un reactor de microondas durante 10 minutos. Después de enfriar a temperatura ambiente, se filtró el sólido y se lavó con diclorometano (10 ml x 3). Se disolvió la torta de filtro en K2CO3 acuoso y se extrajo con CH_2Cl_2 (40 ml x 3). Se secaron sobre Na_2SO_4 las capas orgánicas combinadas y se concentraron bajo presión reducida para obtener el 110 (2.30 g, 79 % de rendimiento).

Ejemplo 43

Síntesis de 2-morfolinopiridin-4-amina (111)

111

Se preparó el compuesto 111 mediante un método similar al referido para la 2-(pirrolidin-1-il)piridin-4-amina 110.

25

15

Síntesis de 6-morfolinopiridin-2-amina (112)

Se preparó el compuesto 112 mediante un método similar al referido para la 2-(pirrolidin-1-il)piridin-4-amina 110.

5 Ejemplo 45

Síntesis de 6-(pirrolidin-1-il)piridin-2-amina (35)

Se preparó el compuesto 35 mediante un método similar al referido para la 2-(pirrolidin-1-il)piridin-4-amina 110.

Ejemplo 46

10 Síntesis de (S)-5-((3-fluoropirrolidin-1-il)metil)piridin-2-amina (120)

Ftana 1

Preparación de 6-aminonicotinato de etilo (114)

$$H_2N$$
 CO_2H
 H_2N
 CO_2Et
 CO_2Et

A una solución de ácido 2-amino-5-piridinecarboxílico 113 (150 g, 1.09 moles) en etanol (2 l) se le añadió cloruro de tionilo (259 g, 2.18 moles) a 0°C. Se calentó la mezcla a reflujo durante 12 h. Se removió el solvente bajo presión reducida. Se añadió Na₂CO₃ para ajustar el pH a 9 y se recogió por filtración el sólido resultante, se enjuagó con H₂O y se secó para dar el 114 (160 g, 88 % de rendimiento).

Etapa 2

20

25

Preparación de 6-(bis(terc-butoxicarbonil)amino)nicotinato de etilo (115)

$$H_2N$$
 O_2Et
 O_2Et
 O_2Et
 O_2Et

A una solución de 6-aminonicotinato de etilo 114 (160 g, 963 mmoles) en t-BuOH (1.7 l) y acetona (560 ml) se le añadió DMAP (2.38 g, 19.1 mmoles) y bicarbonato de di-t-butilo (420 g, 1.92 mmoles). Se agitó la mezcla a temperatura ambiente durante una noche. Se removió el solvente y se añadió hexano/diclorometano (2.5 l, 3:1). Se enfrió la mezcla a -20°C durante 2 h. Se recogió el sólido por filtración y se secó in vacuo para dar el 115 (300 g, 85% de rendimiento).

Etapa 3

Preparación de 5-(hidroximetil)piridin-2-ilcarbamato de terc-butilo (116)

$$(Boc)_2N$$
 N
 CO_2Et
 CH_2OH
 CO_2Et
 CO_2Et
 CO_2Et

A una solución agitada de 6-(bis(terc-butoxicarbonil)amino)nicotinato de etilo 115 (300 g, 819 mmoles) en THF (1.2 l) se le añadió LiAlH₄ (57.6 g, 1.51 moles) en THF (3 l) en un período de 30 minutos a 0°C. Se agitó la mezcla de reacción durante 6 horas, y se añadió H₂O (30.0 ml) y solución al 10% de NaOH (60.0 ml). Se eliminaron los sólidos por filtración y se secó (Na₂SO₄) el filtrado y se concentró. Se purificó el residuo crudo mediante cromatografía instantánea (CH₂Cl₂; MeOH = 40: 1) par dar el 116 (85.0 g, 46% de rendimiento).

Etapa 4

5

15

10 Preparación de 5-(clorometil)piridin-2-ilcarbamato de terc-butilo (117)

A una solución de 5-(hidroximetil)piridina-2-ilcarbamato de terc-butilo 116 (85.0 g, 379 mmoles) y diisopropiletilamina (296 g, 2.27 moles) en THF (850 ml) se le añadió cloruro de metansulfonilo (130 g, 1.14 moles) durante un período de 30 minutos a 0°C. Se agitó la mezcla durante 12 horas a temperatura ambiente, se lavó luego con H_2O (2 x 100 ml) y se secó sobre Na_2SO_4 . Se concentró la mezcla y se purificó el residuo crudo mediante cromatografía instantánea (éter de petróleo:acetato de etilo = 10:1) para dar el 117 (30 g, 63% de rendimiento).

Etapa 5

Preparación de 5-((3-fluoropirrolidin-1-il)metil)piridin-2-ilcarbamato de (S)-terc-butilo (119)

Se agitó una mezcla de 5-(clorometil)piridina-2-ilcarbamato de terc-butilo 117 (9.5 g, 39.1 mmoles), (S)-3-fluoropirrolidina 118 (4.19 g, 47.0 mmoles), carbonato de potasio (16.2 g, 117 mmoles) y yoduro de sodio (0.586 g, 3.91 mmoles) en DMF (150 ml) a 60°C durante 2 h. Se filtró la mezcla de reacción y se concentró el filtrado in vacuo. Se añadió H₂O (250 ml) y se recogió por filtración el sólido resultante, se enjuagó con H₂O y se secó para dar el 119 (7.00 g, 61 % de rendimiento).

25 Etapa 6

30

Preparación de (S)-5-((3-fluoropirrolidin-1-il)metil)piridin-2-amina (120)

A una solución de 5-((3-fluoropirrolidin-1-il)metil)piridin-2-ilcarbamato de (S)-terc-butilo 119 (7.00 g, 23.7 mmol) en diclorometano (70 ml) se le añadió TFA (15.5 g, 142 mmoles). Se agitó la mezcla durante 12 h a temperatura ambiente. Se removió el solvente in vacuo y se añadió Na₂CO₃ ac. sat. Se extrajo la mezcla con diclorometano, se secó (MgSO₄) y se concentró para dar el 120 (4.50 g, 97% de rendimiento).

Síntesis de 5-(morfolinometil)piridin-3-amina (121)

Se preparó el compuesto 121 mediante un método similar al referido para la (S)-5-((3-fluoropirrolidin-1-il)metil)piridin-2-amina 120.

Ejemplo 48

5

Síntesis de 6-(morfolinometil)piridin-3-amina (122)

Se preparó el compuesto 122 mediante un método similar al referido para la (S)-5-((3-fluoropirrolidin-1-il)metil)piridin-10 2-amina 120.

Ejemplo 49

Síntesis de 2-(morfolinometil)pirimidin-4-amina (127)

Etapa 1

Preparación de 2-diclorhidrato de cloroacetimidamida (124)

NC CI
$$\longrightarrow$$
 H₂N C

Se le añadió 2-cloroacetonitrilo 123 (300 g, 4.0 moles) a una solución de sodio (10.0 g, 0.43 moles) en metanol (1000 ml), manteniendo la temperatura por debajo de 20° C. Se agitó la mezcla a temperatura ambiente durante 2 h. Se añadió NH₄Cl (234 g, 4.37 moles) en 5 lotes y se continuó la agitación durante otras 2 h. Se removió el solvente para dar el 124 (525 g, 79% de rendimiento), el cual se utilizó directamente para siguiente etapa sin purificación adicional.

Etapa 2

15

20

25

Preparación de 2-(clorometil)pirimidin-4-amina (126)

Se calentó a reflujo durante 30 minutos una solución de dihidrocloruro de 2-cloroacetimidamida 124 (250.0 g, 1.51 moles), 2-cloroacrilonitrilo 125 (171 g, 1.95 moles) y trietilamina (490 g, 4.8 moles) en etanol anhidro (600 ml). Se removió el solvente in vacuo y se purificó el residuo mediante cromatografía instantánea (diclorometano:metanol = 30:1) para dar el 126 (39.0 g, 18% de rendimiento).

Etapa 3

Preparación de 2-(morfolinometil)pirimidin-4-amina (127)

Se calentó a reflujo durante 16 h una solución de 2-(clorometil)pirimidin-4-amina 126 (30.0 g, 209 mmoles), morfolina 63 (23.7 g, 272 mmoles) y trietilamina (42.3 g, 418 mmoles) en etanol anhidro (250 ml). Se removió el solvente in vacuo y se añadió metanol (400 ml), H₂O (100 ml) y bicarbonato de sodio (25.0 g). Se continuó la agitación por 30 min. Se concentró la mezcla y se purificó mediante cromatografía instantánea (diclorometano:metanol:trietilamina = 100:8:0.5) para dar el 127 (25.0 g, 62% de rendimiento).

Ejemplo 50

5

10 Síntesis de 4-((4-aminopirimidin-2-il)metil)piperazin-1-carboxilato de terc-butilo (128)

128

Se preparó el compuesto 128 mediante un método similar al referido para la 2-(morfolinometil)pirimidin-4-amina 127. Se podría remover el grupo protector Boc después de acoplar con el ácido carboxílico apropiado mediante el tratamiento con TFA/CH₂Cl₂ durante 12 h.

15 Ejemplo 51

Síntesis de 2-(pirrolidin-1-ilmetil)pirimidin-4-amina (129)

129

Se preparó el compuesto 129 mediante un método similar al referido para la 2-(morfolinometil)pirimidin-4-amina 127.

Ejemplo 52

20 Actividad biológica

25

30

Un ensayo basado en espectrometría de masa se usa para identificar moduladores de actividad de SIRT1. El ensayo basado en espectrometría de masa utiliza un péptido que tiene 20 residuos de aminoácido como sigue: Ac-EE-K(biotina)-GQSTSSHSK(Ac)NIeSTEG-K(5TMR)-EE-NH2 (SEQ ID NO: 1) en donde K(Ac) es un residuo de lisina acetilada y NIe es una norleucina. El péptido se etiqueta con 5TMR fluoroforo (excitación 540 nm/emisión 580 nm) en el C-término. La secuencia del sustrato de péptido se basa en p53 con varias modificaciones. Además, el residuo de metionina naturalmente presente en la secuencia se reemplaza con la norleucina debido a que la metionina puede ser susceptible a oxidación durante la síntesis y purificación.

El ensayo de espectrometría de masa se conduce como sigue: Se incubó 0.5 μM de sustrato de péptido y se incubó 120 μM de □NAD+ con 10 nM de SIRT1 durante 25 minutos a 25°C en un regulador de reacción (50 mM de Trisacetato, pH 8, 137 mM de NaCl, 2.7 mM de KCl, 1 mM de MgCl2, 5 mM de DTT, 0.05% de BSA). Compuesto de prueba se pueden añadir a la reacción como se describe anteriormente. El gen SirT1 se clona en un vector que contiene promotor T7 y se transforma en BL21(DE3). Después de 25 minutos de incubación con SIRT1, se añadió 10 μl de ácido fórmico al 10% para detener la reacción. Las reacciones se sellan y se congelan para análisis de

ES 2 517 690 T3

espectrometría de masa tardío. La determinación de la masa del péptido de sustrato permite para la determinación precisa del grado de acetilación (es decir, material de inicio) como se compara al péptido desacetilado (producto).

Se conduce un control para inhibición de actividad de sirtuina mediante la adición de 1 µl de 500 mM de nicotinamida como control negativo al comienzo de la reacción (por ejemplo, permite la determinación de inhibición máxima de sirtuina). Se conduce un control para la activación de actividad de sirtuina usando 10 nM de proteína de sirtuina, con 11 de DMSO en lugar del compuesto, para determinar la cantidad de desacetilación del sustrato en un punto de tiempo dado dentro del intervalo lineal del ensayo. Este punto de tiempo es el mismo como el que se usa para los compuestos de prueba y, dentro del intervalo lineal, el punto final representa un cambio en velocidad.

5

Para el ensayo anterior, la proteína SIRT1 se expresa y se purifica como sigue. El gen SirT1 se clona en un promotor T7 que contiene el vector y se transforma en BL21 (DE3). Se expresó la proteína mediante la inducción con 1 mM de IPTG como una proteína de fusión His-tag N-terminal en 18°C toda la noche y se recolectó en 30,000 x g. Células se lisan con lisozima en regulador de pH de lisis (50 mM Tris-HCI, 2 mM Tris[2-carboxietil]fosfina (TCEP), 10 m de ZnCl2, 200 mM de NaCl) y además se trata con sonicación durante 10 minutos para lisis completa. Se purificó la proteína sobre una columna Ni-NTA (Amersham) y se mezclan fracciones que contienen proteína pura, se concentran y se corren sobre una columna de exclusión molecular (Sefadex S200 26/60 global). Se recogió el pico que contenía proteína soluble y se pasó por una columna de intercambio iónico (MonoQ). Gradiente de elución (200 mM – 500 mM de NaCl) produce proteína pura. Se concentró esta proteína y se dializó contra un regulador de pH de diálisis (20 mM de Tris-HCl, 2 mM de TCEP) toda la noche. Se dividió en alícuotas la proteína y se congeló a -80°C hasta su uso adicional.

20 Los compuestos de modulación de sirtuina que activan SIRT1 se identificaron mediante el análisis descrito anteriormente y se muestran a continuación en los cuadros 1 y 2. Los valores de EC1.5 para los compuestos de activación están representados por A (EC1.5 <1.0 μM), B (EC1.5 1-25 μM), C (EC1.5 >25 μM). El porcentaje de activación múltiple máxima está representado por A (activación múltiple > 200%) o B (activación múltiplo < 200%).

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
200	447	O N O N S	В	В
201	431	O N F F F F F F F F F F F F F F F F F F	А	В
202	426	O N F F F F F F F F F F F F F F F F F F	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
203	447	O P F F F S	С	В
204	442		Α	Α
205	431	O N F F F S	В	В
206	425		А	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
207	441		А	А
208	425		С	В
209	442		В	А
210	357		В	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
211	441		С	В
212	425		В	А
213	441	F F F O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	В	А
214	349		С	В
215	435		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
216	442		С	В
217	442		В	А
218	411	O N H F F F F F F F F F F F F F F F F F F	А	Α
219	426	O N N N N	А	А
220	484	O N F F F F O O O O O O O O O O O O O O	А	Α

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
221	435	O=S- O=S- O=S- O=S- O=S- O=S- O=S- O=S-	В	А
222	435		В	А
223	358		С	В
224	335		С	В
225	364		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
226	378		В	В
227	361		С	В
228	361		В	В
229	431	O N F F F F F F F F F F F F F F F F F F	В	В
230	429	O N N O N H O N N	A	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
231	412	O N F F F F F F F F F F F F F F F F F F	С	В
232	440	O N F F F F F F F F F F F F F F F F F F	А	А
233	454	O N F F F F F F F F F F F F F F F F F F	А	А
234	468	O N F F F F F F F F F F F F F F F F F F	А	А
235	509		В	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
236	428	O N H F F F F F F F F F F F F F F F F F F	В	А
237	425	O N F F F F F F F F F F F F F F F F F F	В	В
238	428	O N N N N N	В	А
239	425	O N F F F F F F F F F F F F F F F F F F	Α	А
240	425	O N F F F F F F F F F F F F F F F F F F	В	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
241	426	0 Z H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	С	В
242	391		В	В
243	391		В	В
244	391		С	В
245	426		А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
246	428	O N N N N	А	А
247	428	O N H N N N	В	В
248	428	O N H N N H	А	А
249	426	O N F F F F F F F F F F F F F F F F F F	А	А
250	415	O N F F F F F F F F F F F F F F F F F F	С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
251	426	O N H F F	В	В
252	442		С	В
253	382		С	В
254	382		С	В
255	358		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
256	358		С	В
257	359		С	В
258	359		С	В
259	359		С	В
260	359		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
261	361		С	В
262	361		С	В
263	361		С	В
264	361		С	В
265	425	O N N F F F	В	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
266	425	O N F F F F F F F F F F F F F F F F F F	В	А
267	454	F F F F F F F F F F F F F F F F F F F	А	А
268	428	O N N N-N	С	В
269	439	O N N N N N N N N N N N N N N N N N N N	В	В
270	453	O N F F F F F F F F F F F F F F F F F F	С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
271	467	O N F F F F	В	В
272	508	O N F F	В	В
273	514	0	А	A
274	442	O F F F F F F F F F F F F F F F F F F F	А	A

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
275	440		С	В
276	440		В	В
277	359		С	В
278	359		В	В
279	359		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
280	360		С	В
281	360		С	В
282	360		С	В
283	365		С	В
284	379		В	Α

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
285	362		В	В
286	514	O P F F F O O O	А	А
287	393		В	А
288	362		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
289	362		С	В
290	362		С	В
291	362		С	В
292	362		С	В
293	510		А	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
294	460		А	A
295	442		С	В
296	445		В	В
297	488		А	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
298	459	O N S S	А	A
299	432	O F F F F S N S N S N S N S N S N S N S N	В	A
300	524	O N O N O N O N O N O N O N O N O N O N	В	A
301	524	O F F F F O O O O O O O O O O O O O O O	В	A

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
302	523	O N F F F F F F F F F F F F F F F F F F	А	А
303	426	O N N N N N N N N N N N N N N N N N N N	В	А
304	510	O F F F F F F F F F F F F F F F F F F F	А	А
305	429	O N F F F F F F F F F F F F F F F F F F	В	А
306	453	O P F F F	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
307	525		В	А
308	530		В	А
309	530		Α	А
310	408	O Z H E E	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
311	394	O N F F F N N H N N N N N N N N N N N N N	С	В
312	424	O F F O N H N N N N N N N N N N N N N N N N N	А	А
313	410	O H O F F O N H O	Α	А
314	408		Α	А
315	424	O N N O N H N F	А	Α

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
316	410		С	В
317	412	$ \begin{vmatrix} z & 0 \\ z & z \\ 1 & z \\ -z & -z -z & -z \\ -z$	Α	Α
318	428	F F F O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Α	Α
319	393		С	В
320	427		A	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
321	411		В	А
322	407		В	А
323	407	O N N N N N N N N N N N N N N N N N N N	С	В
324	393		Α	Α
325	409		С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
326	423		A	А
327	423		В	А
328	409		В	А
329	394		A	А
330	509		А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
331	431	O N F F F F F F F F F F F F F F F F F F	В	В
332	524	O N F F F F F F F F F F F F F F F F F F	А	А
333	508	O N F F F F F F F F F F F F F F F F F F	А	А
334	515	O N N O N H O O O	В	А
335	515	O F F F F O O O	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	% Múltiplo Act.
336	511		Α	A
337	493	O N F F F F F F F F F F F F F F F F F F	С	В
338	523	O N F F F F F F F F F F F F F F F F F F	А	А
339	431	O N F F F F O	С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
340	445	O N F F F F O	С	В
341	510		А	Α
342	494	O N H N N H N N N N N N N N N N N N N N	А	А
343	445	O N F F F F	С	В

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
344	524		А	А
345	526		А	А
346	526		Α	А
347	524		Α	А

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
348	523	O N N N N N N N N N N N N N N N N N N N	А	А
349	494	O N F F F F N N N N N N N N N N N N N N	А	A
350	494	O N F F F F F F F F F F F F F F F F F F	В	В
351	508	O N N N N N N N N N N N N N N N N N N N	А	Α

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
352	526	O N N N N N N N N N N N N N N N N N N N	Α	Α
353	515	O N N N N O O	А	А
354	516		Α	A
355	516		Α	A

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
356	515		А	A
357	514		А	А
358	514	O N S N S N S N S N S N S N S N S N S N	В	А
359	509		В	A

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
360	514	O N N O O O	А	А
361	461		С	В
362	461		С	В
363	514	O N O O O	А	А

ES 2 517 690 T3

Comp. No.	[M+H]+	Estructura	EC1.5 µM	% Múltiplo Act.
364	507	O N F F F F F F F F F F F F F F F F F F	В	А
365	445	O N F F F F F F F F F F F F F F F F F F	В	А
366	529	O N N N N N N N N N N N N N N N N N N N	Α	A

En ciertas realizaciones, el compuesto de esta invención se selecciona de cualquiera de los compuestos 201, 202, 204, 206, 207, 218, 219, 220, 230, 232, 233, 234, 239, 245, 246, 248, 249, 267, 273, 274, 286, 293, 294, 297, 298, 302, 304, 306, 309, 310, 312, 313, 314, 315, 317, 318, 320, 324, 326, 329, 330, 332, 333, 335, 336, 338, 341, 342, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 357, 360, 363, y 366 del cuadro 1. En un aspecto, el compuesto se selecciona cualquiera de los compuestos 201, 202, 204, 218, 220, 230, 239, 245, 248, 249, 274, 286, 293, 309, 310, 312, 313, 314, 315, 317, 318, 329, 330, 332, 333, 335, 336, 341, 344, 345, 346, 349, 352, 354, 355, 357 y 360.

TABLA 2

Compuestos en los cuales W¹ es N y W² es C

10

Comp. No.	[M+H]+	Estructura	EC1.5 µM	%Múltiplo Act.
400	445	O Z-H S Z	А	A
401	410	0 Z = N Z =	А	А
402	410	O Z-H O Z	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
403	411	0 X-H 0 Z-H	Α	A
404	416	O F F F F F S	А	А
405	416	O F F F F S S S	Α	А
406	414	O F F F F F F F F F F F F F F F F F F F	Α	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
407	427	0 Z-Z O Z-H O Z-H	Α	A
408	410	O N-H N N N N N N N N N N N N N N N N N N	A	A
409	411		Α	A
410	427	Z-Z Z — — — — — — — — — — — — — — — — —	Α	A

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
411	416	O N-H S N	А	А
412	417		В	А
413	417	E F F P P P P P P P P P P P P P P P P P	В	В
414	442	F F F P P P P P P P P P P P P P P P P P	В	A
415	411	0 Z-H 0 Z=Z	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
416	416		А	А
417	411		Α	А
418	411	0 Z-H	А	А
419	410	O	А	А
420	413	O F F F F F F F F F F F F F F F F F F F	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
421	411	$ \begin{array}{c} z \\ z \\ z \\ \end{array} $ $ \begin{array}{c} T - z \\ \end{array} $ $ \begin{array}{c} T - z \\ \end{array} $	В	Α
422	440		А	А
423	471	0	Α	А
424	428		Α	A

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
425	495		А	А
426	382		А	А
427	416	O Z-H S	А	А
428	414	O N-H N S N S	А	А
429	432	F F F S S S S S S S S S S S S S S S S S	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
430	432	F F F S S S	A	А
431	398	F-F N-H O S	Α	А
432	393	F F Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Α	А
433	382	O CI N S S	А	А
434	377		А	В

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
435	398	O F F F N S N S	В	А
436	414	O F F O N S S	А	А
437	410	0	А	A
438	392	O F F F N O N O N O N O N O N O N O N O	В	А
439	426	O F F F F F F F F F F F F F F F F F F F	А	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
440	408	F	В	А
441	376		В	Α
442	427	0	А	А
443	408	0 F F P P P P P P P P P P P P P P P P P	А	А
444	416	O P S	Α	А

Comp. No.	[M+H]+	Estructura	EC1.5 μΜ	%Múltiplo Act.
445	411		А	А
446	382	O Z-H	В	А
447	377	O Z-H	А	А
448	509	0	А	А
449	417	O N-H O N S	А	А

ES 2 517 690 T3

En ciertas realizaciones, el compuesto de esta invención se selecciona de cualquiera de los compuestos 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 415, 416, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 439, 442, 443, 444, 445, 447, 448, y 449 del cuadro 2. En un aspecto, el compuesto de esta invención se selecciona de cualquiera de los compuestos 400, 401, 402, 403, 404, 405, 406, 408, 409, 410, 415, 417, 418, 420, 423, 424, 425, 428, 431, 432, 434, 442, 443, 445 y 448.

Equivalentes

5

10

La presente invención provee entre otras cosas compuestos de activación de sirtuina y métodos de uso de los mismos. Mientras realizaciones específicas de la invención objeto se han discutido, la especificación anterior es ilustrativa y no restrictiva. Muchas variaciones de la invención llegan a ser aparentes para aquellos de experiencia en la técnica en revisión de esta especificación. El alcance completo de la invención se debe determinar para referencia a las reivindicaciones, junto con su alcance completo de equivalentes, y la especificación, junto con dichas variaciones.

REIVINDICACIONES

1.- Un compuesto que tiene una estructura de la fórmula estructural (II):

$$Z^{2}$$
 Z^{3}
 W^{2}
 Z^{14}
 Z^{1}
 $Z^{$

o una sal del mismo, en donde:

5 cada uno de Z^1 , Z^2 y Z^3 se selecciona independientemente de N y $C(R^9)$, en donde:

no más de uno de Z¹, Z² y Z³ es N;

cada R^9 se selecciona independientemente de hidrógeno, halo, $-C\equiv N$, alquilo C_1-C_2 sustituido con fluoro, -O-alquilo C_1-C_2 sustituido con fluoro, -S-alquilo C_1-C_2 -sustituido con fluoro, alquilo C_1-C_4 , -S-alquilo C_1-C_4 , cicloalquilo C_3-C_7 , alquil(C_1-C_2)- $N(R^{13})(R^{13})$, -O- C_1-C_2 0, -O-alquil($-C_1-C_2$ 0)--O-alquil($-C_1-C_3$ 0)-alquil($-C_1-C_3$ 0)-alquil($-C_1-C_3$ 0)-

10 ---- representa un enlace opcional,

20

25

30

35

40

W¹ se selecciona de -NH- o -N=, v

 W^2R^{14} se selecciona de $-NR^{14}$ - y $-CR^{14}$ =, de tal manera que cuando $W^2(R^{14})$ es $-C(R^{14})$ =, W^2 está unido a $C(R^{12})$ a través de un doble enlace, en donde

cuando W1 es -NH-, W2(R14) es -CR14=; y

15 cuando W^1 es -N= unido a $C(R^{12})$ a través de un doble enlace, $W^{2}(R^{14})$ es $-NR^{14}$ -;

 R^{11} se selecciona de un carbociclo y un heterociclo, en donde R^{11} está opcionalmente sustituido con uno a dos sustituyentes independientemente seleccionados de halo, -C=N, alquilo C_1 -C4, =O, cicloalquilo C_3 -C7, alquilo C_1 -C4 sustituido con fluoro, -O- R^{13} , -S- R^{13} , alquil(C_1 -C4)-N(R^{13})(R^{13}), -N(R^{13})(R^{13}), -O-alquil(R^{13})(R^{13}), alquil(R^{13}), -O-alquil(R^{13})(R^{13}), -C(O)-N(R^{13})(R^{13}) y alquil(R^{13}), y cuando R^{11} es fenilo, R^{11} también está opcionalmente sustituido con 3,4-metilenodioxi, 3,4-metilenodioxi sustituido con fluoro, 3,4-etilenodioxi sustituido con fluoro, O-(heterociclo saturado) sustituido con fluoro, O-(heterociclo saturado) sustituido con alquilo R^{11} 0-C4, en donde

cada R^{13} se selecciona independientemente de hidrógeno y alquilo C_1 - C_4 ; o dos R^{13} se toman junto con el átomo de nitrógeno al cual están unidos para formar un heterociclo saturado de 4 a 8 miembros, que comprende opcionalmente un heteroátomo adicional seleccionado de $N(R^{13})$, S, S(=0), S(=0)2 y S0, en donde:

cuando R^{13} es alquilo, el alquilo está opcionalmente sustituido con uno o más sustituyentes seleccionados de -OH, fluoro, -NH₂, -NH-alquilo C₁-C₄, -N-(alquilo C₁-C₄)₂, -NH(CH₂CH₂OCH₃) y -N(CH₂CH₂OCH₃)₂, o

cuando dos R_{13} se toman junto con el átomo de nitrógeno al cual están unidos para formar un heterociclo saturado de 4 a 8 miembros, el heterociclo saturado está opcionalmente sustituido en cualquier átomo de carbono con -OH, alquilo C_1 - C_4 , fluoro, -NH₂, -NH-alquilo C_1 - C_4 , -N(alquilo C_1 - C_4)₂, -NH($CH_2CH_2OCH_3$) o -N($CH_2CH_2OCH_3$)₂, y opcionalmente sustituido en cualquier átomo de nitrógeno sustituible con alquilo C_1 - C_4 , alquilo C_1 - C_4 sustituido con fluoro, o -(CH_2)₂-C- CH_3 ;

 R^{12} se selecciona de un carbociclo y un heterociclo diferente de tetrazolilo, en donde R^{12} está opcionalmente sustituido con uno o más sustituyentes seleccionados independientemente de halo, $-C\equiv N$, alquilo C_1-C_4 , cicloalquilo C_3-C_7 , alquilo C_1-C_2 sustituido con fluoro, $-O-R^{13}$, $-S-R^{13}$, $-S(O)-R^{13}$, $-S(O)_2-R^{13}$, alquil $(C_1-C_4)-N(R^{13})(R^{13})$, $-N(R^{13})(R^{13})$, -O-alquil $-(C_1-C_4)-N(R^{13})(R^{13})$, -O-alquil $-(C_1-C_4)-N(R^{13})(R^{13})$, -O-alquil $-(C_1-C_4)-N(R^{13})(R^{13})$, -O-fenilo, fenilo, y un segundo heterociclo, y cuando $-R^{12}$ es fenilo, $-R^{12}$ también está opcionalmente sustituido con $-R^{12}$ también está opcionalmente sustituido con fluoro, -O--(heterociclo saturado), en donde cualquier porción fenilo, segundo heterociclo o heterociclo saturado de un sustituyente de -C-cy sustituido con fluoro, -C-cy sustituido con fluoro, -C-alquilo -C-cy sustituido con fluoro, -C-alquilo -C-cy sustituido con fluoro, -C-cy sustituido cy sust

 $R^{14} \ \ \text{se selecciona de hidrógeno, alquilo} \ \ C_1 - C_4, \ \ \text{alquilo} \ \ \ C_1 - C_4 \ \ \text{sustituido} \ \ \text{con fluoro, alquil}(C_1 - C_4) - N(R^{13})(R^{13}), \ \ \text{alquil}(C_1 - C_4) - O - R^{13} \ \ \text{y alquil}(C_1 - C_4) - NR^{13} - C(O)R^{13};$

10 † representa dónde X¹ está unido a R¹¹; y

 $cada\ R^{15}\ y\ R^{16}\ se\ seleccionan\ independientemente\ de\ hidrógeno,\ alquilo\ C_1-C_4,\ -CF_3\ y\ alquil(C_1-C_3)-CF_3,$

en donde:

5

"carbociclo" es un anillo monocíclico de 5 a 7 miembros o anillo bicíclico de 8-12 miembros en donde el anillo monocíclico o bicíclico se selecciona de saturado, insaturado y aromático; y

- "heterociclo" es un anillo monocíclico de 4 a 7 miembros o anillo bicíclico de 8-12 miembros que comprende uno o más heteroçátomos seleccionados de átomos de N, O, y S, y seleccionado de saturado, insaturado o aromático.
 - 2.- El compuesto según la reivindicación 1, en donde el compuesto tiene la fórmula estructural:

$$R^9$$
 R^{14}
 R^{12}
 R^{12}
 R^{14}
 R^{12}
 R^{14}
 R^{12}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{17}
 R^{18}
 R^{19}
 R^{1

- 3.- El compuesto según la reivindicación 1 ó 2, en donde X¹ se selecciona de -NH-C(O)-† y -C(O)-NH-†.
- 20 4.- El compuesto según cualquiera de las reivindicaciones 1 a 3, en donde R¹¹ se selecciona de:

en donde R^{11} está opcionalmente sustituido con uno o dos sustituyentes seleccionados independientemente de halo, alquilo C_1 - C_4 , alquil(C_1 - C_4)- $N(R^{13})(R^{13})$, =O, - $N(R^{13})(R^{13})$, y -O- R^{13} .

5.- El compuesto según la reivindicación 4, en donde R¹¹ se selecciona de:

7.- El compuesto según cualquiera de las reivindicaciones 1-6, en donde R^{12} se selecciona de:

en donde R^{12} está opcionalmente sustituido con uno o dos grupos independientemente seleccionados de halo, alquilo C_1 - C_4 , alquil- $(C_1$ - $C_4)$ - $N(R^{13})(R^{13})$, alquilo C_1 - C_2 sustituido con fluoro, -O- R^{13} , -SO₂- R^{13} , -N(R^{13})(R^{13}), y -O-alquilo C_1 - C_4)- $N(R^{13})(R^{13})$.

9.- El compuesto según la reivindicación 8, en donde R¹² se selecciona de

- 10.- El compuesto según cualquiera de las reivindicaciones 1 a 9, en donde W^2R^{14} es -NR¹⁴ y R¹⁴ se selecciona de hidrógeno y alquilo C₁-C₄.
- 5 11.- El compuesto según cualquiera de las reivindicaciones 1 a 9, en donde W²R¹⁴ es -CR¹⁴ y R¹⁴ es hidrógeno.
 - 12.- El compuesto según la reivindicación 1, seleccionado de uno cualquiera de los compuestos de la tabla:

(Comp. nº	Estructura	Comp. nº	Estructura
	201	O N H F F F F F	349	F F F F F F F F F F F F F F F F F F F
	202	O N H F F F P P P P P P P P P P P P P P P P	351	FF N N N N N N N
	204	O Z F F F F	352	F F F F F F F F F F F F F F F F F F F

206	F. F. F.	353	FFF P N N N N N N N N N N N N N N N N N
207		354	
218	P F F F	355	FFF
219	P F F F P P P P P P P P P P P P P P P P	356	FFF N N N N N N N N N N N N N N N N N N

220	FFF N N N N N N N N N N N N N N N N N N	357	F F F N S S
230	O P F F F F F F F F F F F F F F F F F F	360	PFF N N O O
232		363	FF F O O O O O O O O O O O O O O O O O
233		366	F F F S

234	P F F F F F F F F F F F F F F F F F F F	400	F F F S N N N N N N N N N N N N N N N N
239		401	
245		402	FFF Z-H
246	ON H N H N H	403	F F F F F F F F F F F F F F F F F F F
248	P F F F F F F F F F F F F F F F F F F F	404	FF F S S S S S S S S S S S S S S S S S

<u> </u>			
249	P F F F F F F F F F F F F F F F F F F F	405	F F F S
267		406	FFF Z-H
273		407	2-T 2-T 0 2-Z 1
274	F F F	408	P F F

286	FFF N	409	FFF N-H
293	F F F S	410	F F F
294	O N N N N N N N N N N N N N N N N N N N	411	F F F
297	FFF S S S	415	F F F

298	F F F S	416	F F F F S N
302	FFF 2 2 2 2 2 2 3	417	
304		418	F F F
306	F F F	419	F F F N H

309	F F F S	420	F F F F N N N N N N N N N N N N N N N N
310	P F F	422	FFF P Z-H
312	F F F P P P P P P P P P P P P P P P P P	423	
313	P F F N H N N H N N N N N N N N N N N N N	424	P F F F F F F F F F F F F F F F F F F F

314		425	F F F S S S S S S S S S S S S S S S S S
315		426	
317		427	P F F F N S
318		428	N S
320	FF F S S S S S S S S S S S S S S S S S	429	S NS

324		430	FFF FF N-H N-H N-H
326		. 431	F F S S S S S S S S S S S S S S S S S S
329		432	
330		433	CI NH NH NH NH NH
332	P F F F S	434	

333	P F F N N N N N N N N N N N N N N N N N	436	F F S
335	FF N N N N N N N N N N N N N N N N N N	437	F Z-H
336	P F F P P P P P P P P P P P P P P P P P	. 439	Z-Z- T-Z- H-R-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-
338	O N H O N H	442	F F F

341		443	P P P P P P P P P P P P P P P P P P P
342		444	F F F N N N N N N N N N N N N N N N N N
344	FFF N N N N N	445	O Z-H
345	F F F	447	CI N N N N N N N N N N N N N N N N N N N

346	F F F	448	F F F S S S S S S S S S S S S S S S S S
347	F F F N N N N N N N N N N N N N N N N N	.449	PFF PNS
348	FF F		·

^{13.} Una composición farmacéutica libre de pirógenos, que comprende un portador o diluyente farmacéuticamente aceptable y un compuesto como el que se reclama en cualquiera de las reivindicaciones 1-12, o una sal farmacéuticamente aceptable del mismo.

^{14.-} Un compuesto de una cualquiera de las reivindicaciones 1-12 para uso en el tratamiento de un sujeto que padece o es susceptible a la resistencia a la insulina, síndrome metabólico, diabetes o complicaciones de la misma, o para aumentar la sensibilidad a la insulina en un sujeto.