

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 522 551

51 Int. Cl.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 24.06.2011 E 11736433 (1)
 (97) Fecha y número de publicación de la concesión europea: 30.07.2014 EP 2585616

(54) Título: Dispositivo para determinar o estudiar el estado de estimulación de las defensas naturales

(30) Prioridad:

24.06.2010 FR 1055042

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.11.2014

de plantas o partes de plantas

(73) Titular/es:

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) (100.0%) 147 rue de I Université 75007 Paris, FR

(72) Inventor/es:

BRISSET, MARIE-NOËLLE y DUGE DE BERNONVILLE, THOMAS

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Dispositivo para determinar o estudiar el estado de estimulación de las defensas naturales de plantas o partes de plantas.

Campo de la invención

La presente invención se refiere al campo de los dispositivos para determinar y/o estudiar el estado de estimulación de las defensas naturales de plantas.

Más precisamente, la presente invención se refiere a un dispositivo que comprende unos medios para determinar el nivel o perfil de expresión de una combinación determinada de genes dianas endógenos en las plantas o partes de plantas, de manera que se identifique la presencia, el nivel y/o la intensidad de la estimulación de las defensas naturales de dichas plantas o partes de plantas.

Técnica anterior

Las plantas están expuestas a múltiples agresiones, abarcando dichas agresiones los eventos que consisten en estrés denominados "abióticos" (sequedad, temperatura extrema, radiación ultravioleta, etc.) y estrés denominados "bióticos" (virus, bacterias, hongos, plagas, etc.).

Es conocido que las plantas poseen una pluralidad de mecanismos endógenos que son capaces de ofrecer una defensa eficaz contra un amplio panel de estrés de este tipo.

En el caso de estrés bióticos, se pueden desarrollar tres niveles de mecanismos de defensa de manera espacio-25 temporal a partir del punto de infección o de infestación, y contribuir a frenar la propagación de la enfermedad.

En el sitio de penetración del patógeno, las células en contacto con el agente patógeno pueden autodestruirse y retrasar así su desarrollo; este primer fenómeno de defensa se conoce con la denominación de reacción de hipersensibilidad (HR).

A partir del sitio de infección, se pueden transmitir unas señales de alerta a las células vecinas, lo que crea una zona local de resistencia adquirida, en la que se acumulan numerosos compuestos de defensa; este segundo nivel de defensa asegura una resistencia adquirida local (LAR).

Las señales también se pueden transmitir a la planta entera, lo que induce un tercer nivel de defensa: la resistencia adquirida sistémica (SAR).

Unos fenómenos o vías fisiológicas bien caracterizados de los mecanismos de defensa inducibles por los agentes 40 patógenos, implicados en los niveles de defensa LAR y SAR son, por ejemplo:

- (i) la producción de compuestos anti-microbianos, tales como las proteínas relativas a los patógenos (habitualmente denominadas "proteínas PR" o "PRP") y las fitoalexinas,
- (ii) el refuerzo de las paredes celulares (depósito de calosa, lignificación, reticulación de proteínas), y
 - (iii) la producción de ciertas hormonas de plantas, en particular el ácido salicílico (SA), el ácido jasmónico (JA) y el etileno (ET), desempeñando dichas hormonas un papel importante en la señalización de los mecanismos de defensa inducidos por los estrés.

Además de estas reacciones de defensa inducidas por el estrés, la inducción de la SAR confiere, a la planta, la capacidad de resistir a ataques ulteriores, incluso en localizaciones lejanas con respecto al primer sitio de infección o de infestación en dicha planta.

- Puede ocurrir que los mecanismos de defensas no estén activados de manera completa, sino que los teiidos solamente estén "sensibilizados". Una expresión más rápida y reforzada de los mecanismos de defensa se activa sólo después de la exposición de la planta a un estrés ulterior. Este fenómeno se denomina habitualmente "priming" o "potencialización".
- Este conocimiento profundo de los mecanismos de defensa de las plantas ha permitido el desarrollo y la utilización de productos fitosanitarios, que no actúan ya directamente sobre la causa del estrés, sino que presentan la propiedad de actuar indirectamente por la activación y la estimulación de los mecanismos de defensa natural.
- Unos productos de este tipo con un efecto estimulador de las defensas naturales (también denominados "estimuladores de las defensas naturales" o bajo el acrónimo "SDN") pueden ser clasificados según dos familias principales:

2

10

5

15

20

30

35

45

50

55

60

- (i) los compuestos denominados "estimuladores directos" que conllevan, una vez aplicados sobre la planta, una activación completa de las reacciones de defensa, haya presencia o no de patógenos, y
- (ii) los compuestos denominados "potencializadores" que activan, después de la aplicación sobre la planta, únicamente el fenómeno de "potencialización" antes citado (activándose las reacciones de defensa sólo tras un ataque por un agente patógeno o un estrés).
- La mayoría de estos productos SDN son también conocidos bajo la denominación de "elicitores" (o "elicitor") o también de "inductores de resistencia".

5

20

30

50

- Se han llevado a cabo numerosos estudios sobre estos mecanismos de defensa, y los productos con efecto estimulador de las defensas naturales, a partir de especies modelos, en particular a partir de *Arabidopsis thaliana*.
- Se precisa no obstante que en la actualidad no existe ningún marco reglamentario específico que rija las condiciones de comercialización y de utilización de los productos SDN.
 - Así, para beneficiarse de una autorización de comercialización (AMM), dichos productos SDN pueden entrar (i) tal cual, en la categoría de los insumos fitofarmacéuticos, o (ii) en mezcla con moléculas fertilizantes, en la categoría de los insumos fertilizantes.
 - Hasta la fecha, se han emitido muy pocas AMM para insumos fitofarmacéuticos para productos SDN.
- En lo que se refiere más específicamente al conocimiento de los efectos de estos insumos sobre las plantas, la estimulación de las defensas naturales se estudia generalmente sólo a una escala celular, por ejemplo sobre suspensiones celulares o sobre órganos independientes.
 - Según le consta a la solicitante, generalmente no está demostrado un efecto de estimulación de las defensas naturales a nivel molecular sobre las plantas enteras.
 - Por el contrario, se conoce una gran diversidad de productos homologados como insumos fitofarmacéuticos o como insumos fertilizantes, que serían susceptibles de ejercer también una acción de estimulación de las defensas naturales de plantas, aunque dicha actividad adicional no se haya demostrado o identificado.
- 35 Algunos productos también podrían tener un efecto inhibidor de las defensas naturales de las plantas.
 - La situación expuesta anteriormente para las plantas en general, se encuentra en particular para las plantas de la familia de las *Rosaceae*, que incluye diversas especies frutales.
- Existe por lo tanto la necesidad de la puesta a disposición de los profesionales de un dispositivo o herramienta polivalente que permita identificar, de manera simple y rápida, el estado de la estimulación de las defensas naturales de plantas o de partes de plantas, en particular de la familia de las *Rosaceae*.
- Este dispositivo o herramienta polivalente tendría también ventajosamente como objetivo permitir el cribado de las sustancias por sus propiedades de estimulación de las defensas naturales de las plantas, incluyendo de plantas que pertenecen a la familia de las *Rosaceae*.
 - Un dispositivo o herramienta de este tipo debería ofrecer en particular la posibilidad de realizar una discriminación entre (i) los productos SDN que activan efectivamente las defensas de las plantas, y (ii) los productos que están desprovistos de dicho efecto.
 - Este dispositivo o herramienta permitiría así realizar el cribado de nuevos productos SDN y efectuar unos estudios diversos sobre los SDN, por ejemplo estudios que pretenden determinar el o los mecanismos de acción y/o la o las vías moleculares implicadas en el efecto de estimulación de las defensas de una planta por un producto SDN particular, mediante una combinación particular de productos SDN, o también por una combinación entre uno o varios productos SDN con uno o varios insumos susceptibles de presentar una acción antagonista sobre la estimulación de las defensas.
- El documento WO 2009/041805 A1 (2 de abril de 2009) describe la identificación de genes de factores de transcripción cuya expresión es inducida o reprimida en raíces de Arabidopsis durante la estimulación de las defensas naturales (priming) en presencia o bien de una bacteria WCS417r, o bien de ácido beta-aminobutírico (BABA), así como la utilización de un juego seleccionado de 37 factores de transcripción como marcadores de la estimulación de las defensas naturales.

Resumen de la invención

5

10

15

20

25

30

45

50

55

65

La presente invención se refiere a un dispositivo para determinar o estudiar el estado de estimulación de las defensas naturales de plantas o partes de plantas, dispositivo que comprende unos medios de determinación del nivel de expresión en ARNm expresado por una combinación de genes diana en una muestra de plantas o partes de plantas, comprendiendo dichos medios de determinación:

- (a) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15;
- (b) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: PAL, CHS, DFR, ANS, PPO;
- (c) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: HMGR, FPPS, Far;
 - (d) un medio de determinación del nivel de expresión en ARNm del gen diana CSL;
- (e) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes siguientes: APOX, GST, POX;
 - (f) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: CalS, Pect, CAD;
- (g) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: EDS1, WRKY;
 - (h) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: LOX2, JAR;
 - (i) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: ACCO, EIN3.
- En algunos modos de realización, dicho dispositivo comprende los medios de determinación del nivel de expresión en ARNm de la combinación de los genes diana siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15, PAL, CHS, DFR, ANS, PPO, HMGR, FPPS, Far, CSL, APOX, GST, POX, CalS, Pect, CAD, EDS1, WRKY, LOX2, JAR, ACCO, EIN3.
- En algunos modos de realización, dichos medios de determinación del nivel de expresión en ARNm de un gen diana 40 se seleccionan de entre los fragmentos de ácido nucleico capaces de hibridarse de manera específica a los ARNm expresados por dicho gen diana o a los ADNc correspondientes, o a fragmentos de dichos ARNm o dichos ADNc.
 - En algunos modos de realización, los fragmentos de ácido nucleico capaces de hibridarse de manera específica a los ARNm expresados por dicho gen diana o a los ADNc correspondientes consisten en unos cebadores, siendo dichos cebadores seleccionados preferentemente de entre las secuencias siguientes SEC ID nº 32 a 87.

La presente invención se refiere asimismo a un procedimiento para identificar un perfil de expresión en ARNm de una combinación de genes diana que permite determinar, o por lo menos evaluar, un estado de estimulación de las defensas naturales de plantas o de partes de plantas, procedimiento que comprende las etapas siguientes:

- (i) determinar el perfil de expresión en ARNm de una combinación de genes diana por medio del dispositivo antes citado, en un conjunto de plantas o de partes de plantas, cuyo estado de estimulación de sus defensas naturales es conocido, y después
- (ii) determinar un perfil de expresión en ARNm de dicha combinación de genes diana que corresponde a un estado determinado de estimulación de las defensas naturales de dichas plantas o partes de plantas, partiendo de los datos procedentes de la etapa (i).

La invención se refiere asimismo a un procedimiento para determinar o evaluar el estado de estimulación de las defensas naturales de una planta o de una parte de planta, que comprende las etapas siguientes:

- (i) extraer una muestra a partir de dicha planta o de dicha parte de planta,
- (ii) determinar el perfil de expresión en ARNm de una combinación de genes diana en dicha muestra extraída en la etapa (i), por medio del dispositivo antes citado,

- (iii) comparar el perfil de expresión en ARNm obtenido en la etapa (ii) con un perfil de expresión de referencia,
- (iv) determinar o evaluar el estado de estimulación de las defensas naturales de dicha planta o de dicha parte de planta, a partir de dicho perfil de expresión en ARNm obtenido durante la etapa (ii).

La presente invención se refiere asimismo a un procedimiento para seleccionar una sustancia que tiene la propiedad de modular el estado de estimulación de las defensas naturales de una planta o de una parte de planta, que comprende las etapas siguientes:

- (i) poner en contacto dicha planta o dicha parte de planta con la sustancia a ensayar,
- (ii) determinar el perfil de expresión en ARNm de una combinación de genes diana en una muestra extraída a partir de dicha planta o de dicha parte de planta tras la etapa (i), mediante el dispositivo antes citado,
- 15 (iii) comparar el perfil de expresión en ARNm obtenido en la etapa (ii) con un perfil de expresión en ARNm de referencia, para determinar o evaluar el estado de estimulación de las defensas naturales en dicha muestra,
 - (iv) seleccionar positivamente dicha sustancia si la comparación en la etapa (iii) muestra que dicha sustancia ensayada en la etapa (i) modula el estado de estimulación de las defensas naturales de dicha planta o de dicha parte de planta.

La presente invención se refiere asimismo a un procedimiento para seleccionar una planta que presenta un estado de estimulación de las defensas naturales susceptible de conferirles una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés, que comprende las etapas siguientes:

- (i) aplicar dicho o dichos estrés a una planta o a una parte de planta,
- (ii) determinar el perfil de expresión en ARNm de una combinación de genes diana en una muestra extraída a partir de la planta o de dicha parte de planta, por medio del dispositivo antes citado,
- (iii) comparar el perfil de expresión en ARNm obtenido en la etapa (ii) con un perfil de expresión de referencia, para determinar o evaluar el estado de estimulación de las defensas naturales en dicha muestra,
- (iv) seleccionar positivamente dicha planta o dicha parte de planta si la comparación de la etapa (iii) muestra que dicha planta o dicha parte de planta posee un estado de estimulación de las defensas naturales susceptible de conferirles una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés.

Descripción detallada de la invención

5

10

20

25

30

- Los inventores han identificado un conjunto específico de genes diana, cuyo nivel o perfil de expresión constituye un medio simple y eficaz para determinar y/o estudiar el estado de estimulación de las defensas naturales de plantas, ventajosamente de las plantas de la familia de las *Rosaceae*.
- En efecto, los inventores han puesto en evidencia que el análisis de la expresión de una combinación específica de genes diana permite determinar el estado de estimulación de las defensas naturales de plantas que son (i) expuestas a un producto SDN, (ii) expuestas a una fuente o a un evento de estrés biótico, (iii) expuestas a una fuente o a un evento de estrés abiótico, o bien (iv) a una combinación de dos o tres de las exposiciones antes citadas.
- Estos resultados han permitido que los inventores desarrollen un dispositivo, ventajosamente un dispositivo que comprende unos medios para la determinación, ventajosamente *in vitro*, del nivel o perfil de expresión de una combinación determinada de genes diana (ventajosamente por análisis transcriptómico dirigido o por análisis proteómico dirigido), en una muestra que procede de una planta, incluyendo una muestra que procede de una parte de planta, incluyendo de una planta de la familia de las *Rosaceae*.
 - Los inventores han demostrado que la determinación *in vitro* del nivel o perfil de expresión de esta combinación determinada de genes diana permite el estudio y/o la determinación del estado de estimulación de las defensas naturales de la planta de la que procede dicha muestra.
- 60 La presente invención tiene así por objeto un nuevo dispositivo o una nueva herramienta de búsqueda, ventajosamente un dispositivo de biología molecular, para la caracterización de una muestra biológica, por determinación del nivel de expresión de una combinación específica de genes diana.
- Más precisamente, la presente invención se refiere a un dispositivo para determinar y/o estudiar el estado de estimulación de las defensas naturales de plantas, dispositivo que comprende unos medios para determinar el nivel o perfil de expresión de una combinación de genes diana en una muestra de planta o de parte de planta,

comprendiendo dichos medios de determinación:

5

10

25

35

50

55

60

65

- (a) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15;
- (b) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: PAL, CHS, DFR, ANS, PPO;
- (c) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: HMGR, FPPS, Far;
 - (d) un medio de determinación del nivel de expresión del gen diana CSL;
- (e) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes siguientes: APOX, GST, POX;
 - (f) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: CalS, Pect, CAD;
- 20 (g) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: EDS1, WRKY;
 - (h) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: LOX2, JAR;
 - (i) un medio de determinación del nivel de expresión de por lo menos un gen diana seleccionado de entre los genes diana siguientes: ACCO, EIN3.
- A pesar del número limitado y determinado de genes diana analizados, los inventores han demostrado que el dispositivo según la invención constituye una herramienta particularmente polivalente y potente, que permite el estudio y/o la determinación del estado de estimulación de las defensas naturales de las plantas (i) expuestas a uno o varios compuestos o a una o varias composiciones estimuladores de defensas naturales y/o (ii) expuestas a una gran variedad de estrés, lo que abarca tanto unos estrés bióticos como unos estrés abióticos, y/o (iii) expuestas a una combinación de las exposiciones antes citadas (i) y (ii).
 - El dispositivo según la invención presenta el interés de aportar unos resultados simples, rápidos y eficazmente interpretables, sobre el estado de estimulación de las defensas naturales de una planta.
- El dispositivo según la invención permite en particular estudiar y/o identificar unos compuestos candidatos, susceptibles de consistir en unos estimuladores de las defensas naturales de las plantas y capaz de inducir un mecanismo de reacción de las plantas frente a una agresión por organismos dañinos y/o un mecanismo de reacción de defensa frente a estrés abióticos naturales.
- Según un modo de realización preferido, el dispositivo según la invención comprende los medios de determinación del nivel de expresión de los genes siguientes:
 - (i) para el grupo (a), un medio de determinación del nivel de expresión de uno por lo menos de los genes siguientes: PR-1, PR-2, PR-4 o PR-8, un medio de determinación del nivel de expresión del gen PR-5, un medio de determinación del nivel de expresión del gen PR-14 y un medio de determinación del nivel de expresión del gen PR-15, y/o
 - (ii) para el grupo (b), un medio de determinación del nivel de expresión del gen PAL, un medio de determinación del nivel de expresión de uno por lo menos de los genes siguientes: CHS, DFR o ANS, y un medio de determinación del nivel de expresión del gen PPO, y/o
 - (iii) para el grupo (c), un medio de determinación del nivel de expresión de por lo menos uno de los genes siguientes: HMGR y Far, y un medio de determinación del nivel de expresión del gen FFPS, y/o
 - (iv) para el grupo (e), un medio de determinación del nivel de expresión del gen APOX y un medio de determinación del nivel de expresión de por lo menos uno de los genes siguientes: GST y POX.

Según un modo de realización más preferido, este dispositivo comprende los medios de determinación del nivel de expresión de la combinación de los genes diana siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15, PAL, CHS, DFR, ANS, PPO, HMGR, FPPS, Far, CSL, APOX, GST, POX, CalS, Pect, CAD, EDS1, WRKY, LOX2, JAR, ACCO, EIN3.

Los medios de determinación del nivel de expresión de un gen diana se seleccionan ventajosamente de entre los fragmentos de ácido nucleico capaces de hibridarse de manera específica a los ARNm expresados por dicho gen diana o a los ADNc correspondientes, o a unos fragmentos de dichos ARNm o dichos ADNc.

- 5 En los modos de realización anteriores, los fragmentos de ácido nucleico antes citados consisten ventajosamente en cebadores nucleotídicos que se hibridan específicamente con los ARNm, los ADNc o unos fragmentos de éstos, derivados de cada uno de los genes diana de interés.
- En algunos modos de realización, los cebadores nucleotídicos correspondientes están ventajosamente adaptados a 10 la determinación del nivel de expresión de los genes diana mediante un método de PCR cuantitativa.

Los cebadores nucleotídicos se seleccionan ventajosamente de entre las secuencias siguientes SEC ID nº 32 a 87. La utilización de estos cebadores, en la disposición según la invención, se ilustra en los ejemplos.

- 15 Según un modo particular de realización, los fragmentos de ácido nucleico o dichos anticuerpos son inmovilizados sobre un soporte.
 - En los modos de realización del dispositivo en los que los medios de determinación del nivel de expresión de un gen diana consisten en unos ácidos nucleicos, dicho dispositivo consiste así ventajosamente en un chip de ADN, que puede ser designado también bajo la denominación de "chip de baja densidad cuantitativa" o "qPFD" (debido al número limitado de genes diana).

La presente invención se refiere asimismo a unos procedimientos que utilizan el dispositivo según la invención y que se presentarán en detalle en la descripción, a saber:

- un procedimiento para identificar un perfil de expresión de una combinación de genes diana (también designado "firma" o "firma de expresión") que permite determinar, o por lo menos evaluar, un estado de estimulación de las defensas naturales de plantas;
- un procedimiento para determinar o evaluar el estado de estimulación de las defensas naturales de plantas o de una parte de tales plantas;
 - un procedimiento para seleccionar una sustancia que tiene la propiedad de modular el estado de estimulación de las defensas naturales de una planta de semillero o de una parte de planta de semillero:
 - un procedimiento para seleccionar una planta o una parte de planta, que presenta un estado de estimulación de las defensas naturales susceptible de conferirles una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés.
- 40 Cada uno de estos dispositivos está muy particularmente adaptado para una utilización sobre plantas o partes de plantas que pertenecen a la familia de las Rosaceae.
- Tal como se da a conocer a continuación, la presente invención proporciona por lo tanto un nuevo dispositivo o herramienta para determinar y/o estudiar el estado de estimulación de las defensas naturales de plantas, que utiliza 45 para ello la determinación del perfil de expresión y/o la detección del perfil de expresión y/o la cuantificación del nivel de expresión de una combinación de genes diana en una muestra de planta o de parte de planta.
- Los inventores han identificado así un conjunto de genes diana contenidos en el genoma de la planta que constituyen unos marcadores biológicos aptos para servir de indicadores en el estudio y/o la determinación de la 50 presencia y/o del nivel y/o de la intensidad del estado de estimulación de las defensas naturales de una planta o de una parte de planta.
- Los inventores han demostrado que el dispositivo según la invención permite, con un número limitado y determinado de marcadores, determinar y/o estudiar el efecto de un compuesto o de una composición de interés y/o de un estrés 55 biótico y/o de un estrés abiótico, sobre el estado de estimulación de las defensas naturales de plantas o partes de plantas tratadas.
 - Parece que este dispositivo según la invención es particularmente interesante para el estudio de las plantas o de partes de plantas del género Rosaceae o Rosaceas, como se ilustra en los ejemplos.
 - Después de definir ciertos términos, la presente invención da a conocer los genes diana específicamente seleccionados para el estudio y/o la determinación del estado de estimulación de las defensas naturales de las plantas o partes de plantas, y después describe el dispositivo según la invención con los medios para medir y/o determinar el nivel o perfil de expresión de dichos genes diana respectivos.
 - Un dispositivo de este tipo presenta numerosas aplicaciones que se desarrollarán también a continuación, en

7

20

25

30

35

60

particular (i) la selección y el estudio de compuestos o de composiciones que son aptos para modificar el estado de estimulación de las defensas naturales de plantas o de partes de plantas y/o (ii) la selección de plantas o de partes de plantas que presentan o que son aptas para presentar un estado particular de estimulación de las defensas naturales, por ejemplo tras la aplicación de un compuesto o de una composición de interés y/o de un estrés biótico y/o de un estrés abiótico.

Definición

20

25

30

35

40

45

50

55

60

65

Por "planta" se entiende cualquier organismo pluricelular que pertenece al sub-reino de las *Tracheobionta*, que comprende los pteridófitos y los espertomafitos. Por "espermatofitos" se entiende un organismo que pertenece a los gimnospermas o preferentemente a los angiospermas. Entre los angiospermas, se entienden las monocotiledóneas o también las dicotiledóneas y preferentemente los eudicotiledóneas. Por "dicotiledóneas" se entienden las sub-clases siguientes: *Asteridae, Caryophyllidae, Dilleniidae, Hamamelidae, Hamamelididae, Magnoliidae* o *Rosidae.* Por "*Rosidea*", se entienden las especies: *Apiales, Celastrales, Cornales, Euphorbiales, Fabales, Geraniales, Haloragales, Linales, Myrtales, Podostemales, Polygalales, Proteales, Rafflesiales, Rhamnales, Rhizophorales, Rosales, Santatales, Sapindales.* En las especies de las *Rosidea,* se seleccionará preferentemente una planta de la familia de las *Rosaceae*, incluyendo los manzanos.

Por "muestra" se entiende una muestra biológica que contiene el material biológico que permite detectar la expresión de la combinación de genes diana.

El material biológico puede comprender en particular unas proteínas y/o unos ácidos nucleicos tales como, en particular, los ácidos desoxirribonucleicos (ADN) o los ácidos ribonucleicos (ARN). Este material biológico comprende el material específico de los genes diana, tal como en particular los ARNm transcritos por los genes diana o las proteínas procedentes de estos ARNm, pero puede también comprender un material no específico de los genes diana, tales como en particular los ARNm transcritos por los genes diferentes de los genes diana o las proteínas procedentes de estos ARNm. Según un modo de realización de la invención, el material biológico comprende unos ARN, y aún más preferentemente unos ARN totales; los ARN totales comprenden los ARN de transferencia, los ARN mensajeros (ARNm), tales como los ARNm transcritos por los genes diana pero también transcritos por cualquier otro gen, y los ARN ribosomales.

Las muestras biológicas abarcan unos fragmentos de tejidos extraídos de la planta, así como los productos resultantes de la extracción o la purificación de los ácidos nucleicos (ADN, ARNm) o de las proteínas contenidas en dichos fragmentos de tejidos, así como algunos productos de transformación de las sustancias contenidas en dichos fragmentos de tejido o en dichos productos de transformación, por ejemplo los ácidos nucleicos de tipo ADNc obtenidos por transcripción inversa de los ácidos nucleicos de tipo ARNm.

Por "parte de planta" se entiende el fragmento de una planta que contiene por lo menos una célula de planta, por ejemplo un órgano de la planta (tal como una hoja, una yema, una flor, una raíz, un fruto, una semilla o parte de éstos) o un tejido de la planta (tal como un meristemo).

Por "estrés medioambientales" se designa el conjunto de los factores exteriores a una planta susceptible de afectar al metabolismo normal de esta planta e inducir en ella una reacción de adaptación y/o de defensa. Los estrés medioambientales pueden proceder de seres vivos (se trata de estrés biótico), o de otros factores (se habla entonces de estrés abiótico).

Los estrés bióticos agrupan en particular el conjunto de los agentes patógenos microbianos, tales como los agentes patógenos fúngicos, bacterianos, virales o de plagas, y las infecciones o infestaciones de las cuales son responsables.

Los estrés abióticos agrupan el conjunto de los estrés de naturaleza física o química, y en particular los estrés oxidativos o climáticos; se trata en particular de estrés hídricos, como la falta de agua, o estrés térmicos como el frío o el calor. Los estrés oxidativos agrupan el conjunto de los estrés que llevan al aumento de la concentración de agentes oxidantes en una planta o una parte de planta.

Por "estado de estimulación de defensas naturales" se entiende el desarrollo de un conjunto de modificaciones biológicas que confieren a esta planta (i) una resistencia inmediata, en particular LAR o SAR, y/o (ii) una presensibilización de tipo potencialización gracias a la cual se vuelve capaz de reaccionar más eficazmente a un estrés ulterior, biótico o abiótico.

El "estado de estimulación de defensas naturales" se refiere también al estatus, actividad o no actividad, de las diferentes vías moleculares implicadas en los mecanismos de defensas naturales.

Por "estado de estimulación de defensas naturales" se entiende también la resistencia al estrés, es decir diferentes niveles de tolerancia al estrés, a saber una facultad de las plantas para hacer frente a los estrés bióticos y/o estrés abióticos. La resistencia al estrés puede ser clasificada según diferentes niveles: - sensibilidad, - tolerancia media a

una o varias agresiones bióticas o abióticas, y - tolerancia elevada o resistencia total a una o varias agresiones bióticas o abióticas.

Por "estado de estimulación de defensas naturales" se entiende en particular la capacidad de una planta para resistir a las enfermedades, es decir diferentes niveles de resistencia y/o de tolerancia de una planta a las enfermedades, incluyendo la sensibilidad, la resistencia media y la resistencia elevada o una resistencia total a uno o varios agentes patógenos. Puede corresponder a una modificación de los síntomas inducidos por unos agentes patógenos de la enfermedad (tales como la frecuencia y/o el tamaño de las lesiones, etc.), así como la extensión de la colonización de los tejidos por el agente patógeno o el porcentaje de infección, con respecto a los observados en las plantas control sensibles y cultivadas con unas enfermedades idénticas. La resistencia a la enfermedad puede también ser ilustrada por un crecimiento más elevado y/o un rendimiento de las plantas resistentes en comparación con las plantas sensibles cuando se cultivan bajo la presión de la enfermedad.

5

10

30

35

40

55

60

- Las expresiones "estado de estimulación de las defensas naturales activado", "estado de estimulación de las defensas naturales inducido", "mejora de la resistencia al estrés", "resistencia incrementada a la enfermedad" y "reacción de defensa reforzada" se refieren en particular a cualquier aumento significativo de la resistencia al estrés o de la resistencia a las enfermedades de una planta o de tejidos vegetales, con respecto a un control apropiado tal como una planta no sometida a un producto SDN o a este mismo estrés o a esta misma enfermedad.
- Por "estado de estimulación de las defensas naturales activado", "estado de estimulación de las defensas naturales inducido", se refiere también a cualquier activación/inducción de las vías moleculares implicadas en los mecanismos de defensas naturales en una planta o parte de planta sometida a un producto SDN o a un estrés, con respecto a un control apropiado tal como una planta no sometida a este mismo producto SDN o a este mismo estrés.
- Por ejemplo, por "estado de estimulación de defensas naturales" se entiende en particular un estado "resistente" o "sensible" a *E. amylovora* responsable del fuego bacteriano.
 - Por "determinación y/o estudio del estado de estimulación de las defensas naturales" se entiende tanto (i) la determinación y/o el estudio de la existencia o de la ausencia de dicha estimulación de las defensas naturales, como (ii) la determinación y/o el estudio del nivel y/o de la intensidad de esta estimulación de las defensas naturales.
 - Por "nivel de expresión de una combinación de genes diana" o "perfil de expresión de una combinación de genes diana" se entiende cualquier parámetro o marcador biológico detectable, medible y/o cuantificable, en la planta o parte de la planta estudiada, que corresponde, directa o indirectamente, al nivel de expresión de cada uno de los genes seleccionados.
 - Los términos "nivel de expresión" incluyen la ausencia y/o la presencia y/o un valor representativo de la cantidad de ARN mensajeros ("ARNm" o "mRNA") transcritos a partir del ADN genómico que corresponde a los genes diana seleccionados.
 - Por "sobreexpresión" o "activación" de un gen, se entiende un nivel cuantitativo de expresión del marcador de dicho gen que está multiplicado por lo menos por 3 con respecto a un nivel cuantitativo de la referencia, más preferentemente 4x, 5x, 10x, 20x, 30x o más.
- Por "sobreexpresión" o "inactivación" o "represión" de un gen, se entiende un nivel cuantitativo de expresión del marcador de dicho gen que está dividido por lo menos por 3 con respecto a un nivel cuantitativo de la referencia, preferentemente por lo menos 4x, 5x, 10x, 20x, 30x o más, incluso no detectable.
- Un nivel de expresión "constante" de un gen corresponde a un nivel cuantitativo de expresión del marcador de dicho gen que está comprendido en un campo delimitado por una división por 3 y una multiplicación por 3 de dicho nivel cuantitativo, con respecto al nivel cuantitativo de la referencia.
 - El nivel de expresión de los marcadores puede ser "relativo", es decir que la variación de nivel de expresión de uno o varios genes se compara con respecto al nivel de expresión de otras muestras, después de la "normalización" de los niveles de expresión utilizando por ejemplo unos genes control.
 - El múltiplo de modulación de expresión de cada uno de los genes diana, en sobreexpresión o en sub-expresión, se puede medir utilizando por ejemplo unos medios de determinación de tipo PCR cuantitativa, ventajosamente en tiempo real, como se ilustra mediante los ejemplos.
 - Los resultados se pueden obtener según el método de ΔΔCt (Delta Delta CT) que proporciona las expresiones relativas de los genes de defensa en una muestra dada con respecto a la muestra denominada "calibrador" (por ejemplo una muestra de una planta o parte de planta no tratada, o también por ejemplo una muestra de una planta o parte de planta tratada), expresiones normalizadas por la media geométrica de los genes de referencia de estas muestras (Vandesompele *et al.*, Genome Biol. 3(7): research0034.1-0034.11, 2002; Livak y Schmittgen, Methods 25:402-408, 2001).

El nivel de expresión de los marcadores puede también ser "absoluto" es decir que los niveles de expresión de los marcadores se refieren a la cantidad absoluta de dichos marcadores (ARNm) en una muestra.

5 Según la invención, un "perfil de expresión" o una "firma de expresión" consiste en una representación del conjunto de los valores de niveles de expresión de cada uno de los genes diana ensayados, para la combinación de genes diana ensayados.

Combinación de genes diana utilizados en el dispositivo según la invención

El dispositivo según la invención comprende unos medios para determinar y/o estudiar el nivel de expresión de una combinación establecida de genes diana, o dicho de otra manera "un conjunto de genes diana".

Esta combinación según la invención se compone de nueve grupos de genes diana (a) a (i) siguientes:

15

25

30

40

45

10

- (a) por lo menos un gen diana seleccionado de entre los genes que codifican unas PR-proteínas: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15;
- (b) por lo menos un gen diana seleccionado de entre los genes que codifican unas enzimas de la vía de los fenilpropanoides: PAL, CHS, DFR, ANS, PPO;
 - (c) por lo menos un gen diana seleccionado de entre los genes que codifican unas enzimas de la vía de los isoprenoides: HMGR, FPPS, Far;
 - (d) un gen diana CSL, que codifica para una enzima del catabolismo de la cisteína;
 - (e) por lo menos un gen diana seleccionado de entre los genes que codifican para unas enzimas antioxidantes: APOX, GST, POX;
 - (f) por lo menos un gen diana seleccionado de entre los genes que codifican unas enzimas implicadas en las modificaciones de pared: CalS, Pect, CAD;
 - (g) por lo menos un gen diana seleccionado de entre los genes implicados en la vía de señalización del ácido salicílico: EDS1, WRKY;

(h) por lo menos i

- (h) por lo menos un gen diana seleccionado de entre los genes implicados en la vía de señalización del ácido jasmónico: LOX2, JAR,
- (i) por lo menos un gen diana seleccionado de entre los genes diana implicados en la vía de señalización el etileno: ACCO, EIN3.

En la práctica, la sobreexpresión en una muestra ensayada de por lo menos uno de los genes diana, y más preferentemente de una combinación de dichos genes diana en por lo menos dos de dichos grupos (a) a (i), con respecto a una muestra no tratada, permite identificar las plantas o partes de plantas que presentan un estado de estimulación de las defensas naturales activado o inducido.

Estos genes diana seleccionados se presentan más en detalle en la tabla 1 siguiente.

Tabla 1: lista de los genes diana según la invención

SEC ID nº	Nombre del gen	Unigen manzano (NCBI)	Función del gen	N° de registro del manzano ADNc (NCBI)
1	PR-1	Modelo 3966	Proteína 1 relacionada con la patogénesis Proteína PR	AF507974
2	PR-2	Modelo 2984	Proteína 2 relacionada con la patogénesis (glucanasas) Proteína PR	AF494404
3	PR-4	Modelo 2382	Proteína 4 relacionada con la patogénesis (de tipo hevein) Proteína PR	CN877594
4	PR-5	Modelo 999	Proteína 5 relacionada con la patogénesis (de tipo taumatina, osmotina)	DR998561

SEC ID nº	Nombre del gen	Unigen manzano (NCBI)	Función del gen	N°de registro del manzano ADNc (NCBI)
			Proteína PR	
5	PR-8	Modelo 3935	Proteína 8 relacionada con la patogénesis (quitinasa de clase III) Proteína PR	DQ318214
6	PR-14	Modelo 12217	Proteína 14 relacionada con la patogénesis (proteína de transferencia lipídica) Proteína PR	CV656658
7	PR-15	-	Proteína 15 proteína de transferencia lipídica (oxalato oxidasa) Proteína PR	GO500607
8	PAL	Modelo 2983	Fenilalanina amonio-liasa Vía de los fenilpropanoides	AF494403
9	CHS	Modelo 6113	Chalcona sintasa Vía de los fenilpropanoides	AF494401
10	DFR	Modelo 13736	Dihidroflavonol reductasa Vía de los fenilpropanoides	AF494390
11	ANS	Modelo 2932	Antocianidina sintasa Vía de los fenilpropanoides	DQ156905
12	PPO	Modelo 2905	Polifenol oxidasa Vía de los fenilpropanoides	L29450
13	HMGR	Modelo 2960	Hidroximetil glutarato-CoA reductasa Vía de los isoprenoides	AY043490
14	FPPS	Modelo 2964	Farnesil pirofosfato sintasa Vía de los isoprenoides	AY083165
15	Far	Modelo 3011	(E,E)-alfa-farneseno sintasa Vía de los isoprenoides	EB111255
16	CSL	Modelo 12560	C-S-liasa Catabolismo de la cisteína	AY347795
17	APOX	Modelo 1891	Ascorbato peroxidasa Sistema antioxidante	CN928974
18	GST	Modelo 12372	Glutatión S-transferasa Sistema antioxidante	FE969955
19	POX	Modelo 11566	Peroxidasa Sistema antioxidante	CN913385
20	CalS	Modelo 12945	Calosa sintasa Modificación parietal	CN496203
21	Pect	Modelo 15511	Pectina-metilesterasa Modificación parietal	CV628630
22	CAD	Modelo 2625	Cinamil alcohol deshidrogenasa Modificación parietal	AF053084
23	EDS1	Modelo 1759	Proteína de de resistencia a la enfermedad EDS1 Señalización del ácido salicílico	CN949066
24	WRKY	-	factor 30 de transcripción WRKY Señalización del ácido salicílico	AY347836
25	LOX2	Modelo 10456	Lipoxigenasa AtLOX2 Señalización del ácido jasmónico	CN941066
26	JAR	Modelo 2326	Resistente al jasmonato 1 Señalización del ácido jasmónico	CN879199
27	ACCO	Modelo 3241	1-aminociclopropeno-1- carboxilato oxidasa Señalización del etileno	AB086888

SEC ID nº	Nombre del gen	Unigen manzano (NCBI)	Función del gen	N°de registro del manzano ADNc (NCBI)		
28	EIN3	Modelo 12601	PROTEÍNA 1 DE TIPO F-BOX EIN3	CV082047		
			Señalización del etileno			
29	TuA	Modelo 3499	Tubulin alpha-1 chain	CO065788		
29	TuA	Wodelo 3499	Gen de referencia	CO003700		
20	Actina	Modelo 701	Actina 7	CV151413		
30	Acuna	Modelo 701	Gen de referencia	CV151413		
31	31 GAPDH Modelo 1683		Gllceraldehído-3-fosfato deshidrogenasa	CN494000		
			Gen de referencia			

Entre estos genes, se pueden distinguir unos genes cuya función es conocida pero que nunca se han puesto en relación con los mecanismos de defensas naturales en las Rosáceas, por ejemplo el gen CSL.

- Los genes TuA, Actina y GAPDH constituyen unos genes marcadores cuyo nivel de expresión es independiente del estado de estimulación de las defensas naturales. Estos genes son citados en la presente memoria únicamente a título de ejemplo. Dichos genes "reporteros" permiten corregir el nivel de expresión determinado para cada uno de los genes diana.
- En la presente descripción, las denominaciones empleadas para designar cada uno de los genes diana corresponden a una denominación internacional reconocida, que se encuentran en particular en las bases de datos de secuencias de genes y de secuencias de proteínas, por ejemplo las bases UniGene propuestas por el National Center for Biotechnology Information (NCBI, Bethesda, MD, USA). Para ello, se refiere preferentemente a la base de datos UniGene *Malus domestica*.

- Los genes diana en cuestión son también definidos respectivamente por las secuencias editables a partir de los números de registro Unigene especificados en la tabla 1.
- Los genes diana según la invención designan también las "variantes" o "unigenes" o alelos que corresponden a estas secuencias.
 - Las variantes incluyen las secuencias, o genes, homólogas u ortólogas encontradas preferentemente en los géneros o las variedades de Rosáceas diferentes de *Malus domestica*.
- Más generalmente, las variantes incluyen ventajosamente también las secuencias, o genes, homólogas u ortólogas que se encuentran en cualquier otra planta, preferentemente en cualquier organismo perteneciente al sub-reino de las *Tracheobionta*, más preferentemente perteneciente a los espermatofitos, más preferentemente a los angiospermas, más preferentemente a las dicotiledóneas y más preferentemente a *Rosidea*.
- El término "ortólogo" u "homólogo" para una secuencia, un gen o una proteína, se refiere en la presente memoria a la secuencia, al gen o a la proteína, homóloga que se encuentra en otra especie, que presenta la misma función que la secuencia, el gen o la proteína de interés, pero (generalmente) que ha divergido en secuencia en cuanto las especies que comprenden dichos genes han divergido (los genes han evolucionado a partir de un gen ancestral común por especiación). Dichas secuencias o genes ortólogos pueden así ser identificados en otras especies vegetales mediante una técnica de comparación de secuencias (por ejemplo basadas en el porcentaje de identidad de secuencias sobre la secuencia entera o sobre dominios específicos) y/o de análisis funcional.
 - Dichas secuencias ortólogas se han identificado por ejemplo en otros géneros de la familia de las Rosáceas.
- La tabla 2A siguiente precisa el número de registro en la base de datos GenBank propuesta por el National Center for Biotechnology Information (NCBI, Bethesda, MD, USA), de cada una de las secuencias ortólogas identificadas.

Tabla 2A: Secuencias ortólogas para los genes diana según la invención

n°	Nombre del gen	Ortólogo en las	Ortólogo en los	Ortólogo en los	Ortólogo en las
- 11	Nombre dei gen	Fragaria	Prunus	Pyrus	Rosa
-1	PR-1		DN556381		
'	FK-I	DV440399	GE653251	AF195235	EC586767
2	PR-2	EX682264	DN554095	AJ504892	EC587362
3	PR-4	EX657003	CB823353	-	-
1	PR-5	DY668082			
4	C-71	EX674853	GE653177	FK939207	BI977710

n°	Nombre del gen	Ortólogo en las Fragaria	Ortólogo en los Prunus	Ortólogo en los <i>Pyrus</i>	Ortólogo en las Rosa	
_			CV051978	,		
5	PR-8	DY672350	CV052812	AJ504863	BI977412	
6	PR-14	DY673738	AM290861	AF195216	EC589716	
7	PR-15	DY673400	GR410635	-	EC586210	
		CO817421	Citirous		20000210	
8	PAL	EX684393	CV046544	_	_	
		Al795154	CB820023			
9	CHS	DY667960	FE969272	FK939234	CF349759	
		DY672493	CV046853		0.0.0.00	
10	DFR	EX661062	CB819555	DB999982	_	
11	ANS	CX661854	BU039495	FK939239	BI977949	
		DY667415				
12	PPO	EX674603	CV045870	AJ504916	_	
		DY669718	AM290185	7.000.0.0		
13	HMGR	EX659154	FC861452	_	BQ106200	
		DY669331	. 0001.102		24.00200	
14	FPPS	EX660570	DY644308	_	BQ104581	
15	Far	DY675841	DY646265	-	CF349900	
		2.0.00	AJ533335		0.0.000	
16	CSL	CO817796	BU047350	_	_	
		CX661243	CV045878		EC586214	
17	APOX	CX661894	GE653243	GR957944	BI978785	
		DV438230	02000210	011007011	Dier er ee	
18	GST	DV438954	CB820780	DB999954	EC587514	
		DY676157	DW341091	2200001	20001011	
19	POX	DY670759	GR410510	DC993457	EC586635	
20	CalS	EX687641	DY633833	DC993380	BQ104579	
21	Pect	DY666714	BU044880	-	BQ104257	
22	CAD	CX662236	EE488909	DV440820	CF349542	
		07.002200	DY652698	2 7 1 10020	3. 5 100 IZ	
23	EDS1	DY673255	FC866180	_	CF349463	
24	WRKY	EX687984	AJ873733	_	-	
25	LOX2	DY674691	BU046906	-	CF349741	
26	JAR	DY667416	FC864077	-	-	
		CX662198	. 5551077			
27	ACCO	EX670124	AJ833064	DB999960	EC588379	
28	EIN3	DY666956	EE488205	-	-	
		DY671340	33-33		BQ106089	
29	TuA	DY674254	BU042671	_	BQ105408	
	.	DY668010	DY650839		BQ104395	
30	Actina	EX688327	CV044868	_	BI977396	
	0.155	DY667270	DW357797		BI978153	
31	GAPDH	DY667095	DW350728	_	BQ104075	

De la misma manera, el dispositivo según la invención podría ser utilizado para el estudio de plantas de la familia de las *Vitaceae* (vid), en particular unas especies del género *Vitis*, y en particular *Vitis vinifera*.

A título indicativo, unas secuencias ortólogas, que corresponden a los genes diana, se han identificado por ejemplo en *Vitis vinifera*.

La tabla 2B siguiente precisa el número de registro en la base de datos GenBank propuesta por el National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) o en la base de datos propuesta por el Genoscope (Evry, Francia), de cada una de las secuencias ortólogas identificadas.

Tabla 2B

Nombro dal gan	Ortólogo en <i>Vitis vinifera</i> (Vid)							
Nombre del gen	n°de registro EST (NCBI)	n°de registro gen (genoscop e)						
PR-1	EE253686.1	GSVIVT01037005001						
PR-2	GO652966.1	GSVIVT01033538001						
PR-4	FG984977.1	GSVIVT01036279001						

Nombre del gen	Ortólogo en \	Vitis vinifera (Vid)
Nombre dei gen	n°de registro EST (NCBI)	n°de registro gen (genoscop e)
PR-5	EC925003.1	GSVIVT01019840001
PR-8	EC965083.1	GIDVvT00013094001
PR-14	DT021081.1	GIDVvT00010281001
PR-15	EC968706.1	GSVIVT01031082001
PAL	CN006882.1	GSVIVT01025703001
ANS	CF209704.1	GSVIVT01019892001
CHS	EV241635.1	GSVIVT01032968001
DFR	EE082741.1	GSVIVT01009743001
PPO	CF215866.1	GIDVVT00029382001
HMGR	EC937417.1	GSVIVT01013435001
FPPS	EC962139.1	GSVIVT01014738001
Far	DT009302.1	GSVIVT01000402001
Alli	FC061753.1	GSVIVT01001413001
APOX	CF211522.1	GSVIVT01015626001
GST	EE099033.1	GSVIVT01027961001
POX	DT007525.1	GSVIVT01009107001
CAD	CF511159.1	GSVIVT01025239001
CalS	EE095949.1	GSVIVT01025362001
Pect	EE076956.1	GSVIVT01011699001
EDS1		GSVIVT01007860001
WRKY		GSVIVT01028718001
LOX2	EE107237.1	GSVIVT01025339001
JAR	EC983478.1	GSVIVT01027057001
ACCO	CF511696.1	GSVIVT01006065001
EIN3	CF214803.1	GSVIVT01015548001

Los genes diana según la invención son también definidos por las secuencias SEC ID nº 1 a 28, que corresponden a sus ADNc respectivos, o por las variantes de dichas secuencias según la definición anterior.

5 Las secuencias correspondientes también se pueden consultar en la base de datos GenBank (NCBI), mediante unos números de registro precisados en la tabla 1.

Para la noción de "variante" se puede hacer referencia a las definiciones desarrolladas anteriormente.

10 Los genes diana según la invención son también designados por las proteínas que codifican, respectivamente.

Las secuencias peptídicas que corresponden a los genes diana se precisan por ejemplo en la base de datos UniGene *Malus domestica*, y pueden ser obtenidas por medio de los números de registro precisados en la tabla 1.

Según un modo de realización preferido, el dispositivo según la invención comprende unos medios para determinar y/o estudiar el nivel de expresión de por lo menos dos genes en cada uno de los grupos (a), (b), (c), (e), (f), (g), (h) y (i) antes citados.

Este modo de realización preferido ofrece en particular las ventajas siguientes:

- si los genes diana de un mismo grupo están co-regulados (es sobre todo el caso de los genes de las vías de señalización, que son frecuentemente activados de manera transitoria), pueden tener una expresión secuencial, y el hecho de seleccionar uno sólo aumenta el riesgo de concluir que hay una ausencia de modulación de esta vía (si las extracciones no se efectúan en el momento correcto para un gen dado);
 - si los genes diana de un mismo grupo no están co-regulados (este es particularmente el caso de las proteínas PR, así como de las enzimas de la vía de los fenilpropanoides, para el gen PPO por un lado, PAL por otro, y por último el grupo CHS, DFR y ANS), se vuelve entonces arbitrario para seleccionar sólo uno;
- permite seguir las expresiones de varios genes diana en cada grupo, la redundancia de información sobre el nivel de expresión de más de un gen diana que pertenece a un grupo dado aumenta más la fiabilidad de los resultados.

Más precisamente, entre los genes diana anteriores, el dispositivo según la invención permite ventajosamente el estudio y/o el análisis de la expresión de una por lo menos de las combinaciones siguientes de genes:

- para el grupo (a), uno por lo menos de los genes siguientes: PR-1, PR-2, PR-4 o PR-8, combinado con uno

14

por lo menos de los genes siguientes PR-5, PR-14 o PR-15;

- para el grupo (b), el gen PAL, y por lo menos uno de los genes siguientes: CHS, DFR o ANS, y el gen PPO,
- para el grupo (c), por lo menos uno de los genes siguientes: HMGR y/o Far, y el gen FPPS,
- para el grupo (e), el gen APOX y por lo menos uno de los genes siguientes: GST y/o POX.

Según un modo de realización preferido, la combinación de genes diana estudiada en el dispositivo según la invención es la siguiente: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15, PAL, CHS, DFR, ANS, PPO, HMGR, FPPS, Far, CSL, APOX, GST, POX, CalS, Pect, CAD, EDS1, WRKY, LOX2, JAR, ACCO y EIN3.

Dispositivo según la invención, y medios para determinar y/o estudiar el nivel de expresión de una combinación de genes diana según la invención

Características generales del dispositivo según la invención

La presente invención abarca el dispositivo o la herramienta, ventajosamente en forma de un estuche o de un "kit" para determinar y/o estudiar el estado de estimulación de las defensas naturales en una muestra de plantas o de partes de plantas, en particular de plantas de *Rosaceae* y más en particular de manzanos.

Dichos dispositivos de detección y de cuantificación se basan en la preparación de una mezcla de reacción destinada a contener los marcadores biológicos de interés y los reactivos específicos apropiados, en condiciones adaptadas y durante un tiempo suficiente para permitir que el marcador y su reactivo específico interactúen y se enlacen, y formen así un complejo que puede ser retirado y/o detectado en dicha mezcla de reacción.

El dispositivo según la invención contiene para eso unos medios adecuados para detectar cualquier marcador biológico detectable, medible y/o cuantificable, en la planta o parte de planta estudiada, que corresponde, directa o indirectamente, al nivel de expresión de cada uno de los genes seleccionados.

Según un modo de realización preferido, los ácidos nucleicos (por ejemplo ARNm o ADNc) constituyen los marcadores de expresión de cada uno de los genes diana de interés.

El método de detección del dispositivo de acuerdo con la invención se basa entonces ventajosamente en la detección de ARNm, de ADNc en la muestra.

Los medios de detección comprenden así ventajosamente unos reactivos o ligandos, o agentes o compuestos, o composiciones que comprenden, o que consisten en, un conjunto de reactivos específicos, siendo cada uno de ellos capaz de unirse específicamente con un marcador biológico de interés, ventajosamente de tipo ácido nucleico, que es representativo del nivel de expresión de uno de los genes diana.

Los reactivos adecuados para unirse con unos marcadores de tipo ácido nucleico, en particular un ARNm o un ADNc, incluyen los ácidos nucleicos de secuencias complementarias.

Por ejemplo, unos reactivos adaptados para detectar/cuantificar unos ácidos nucleicos marcadores pueden incluir (i) unos oligonucleótidos (marcados o no marcados) fijados a un soporte, (ii) unos oligonucleótidos marcados no fijados con un soporte, (iii) un par de cebadores para una técnica PCR o similar.

El estuche o el kit según la invención contiene también cualquier compuesto adicional apropiado, útil para la realización de la invención.

Por ejemplo, el dispositivo puede contener unos fluidos o unos medios para la hibridación de ácidos nucleicos complementarios.

De manera general, los dispositivos en cuestión comprenden por ejemplo varios reactivos específicos que son capaces de detectar la expresión de los genes diana según la invención, que pueden ser asociados con unas muestras control, unas placas de microtitulación, unos tubos Eppendorf, un manual de empleo, etc.

Los elementos constitutivos del dispositivo según la invención se presentan más en detalle a continuación.

Medios para determinar el nivel de expresión de los genes diana en el dispositivo según la invención

El dispositivo según la invención comprende por lo tanto unos medios para cuantificar y/o determinar la expresión de los genes diana antes citados.

Así, se puede emplear en la presente memoria cualquier medio para detectar y/o cuantificar un ácido nucleico en

15

6

60

65

5

15

20

25

30

una muestra biológica.

5

10

15

20

30

35

45

50

En este caso, los medios de determinación del nivel o del perfil de expresión de cada gen diana se seleccionan ventajosamente de ente los fragmentos de ácido nucleico, seleccionados de entre aquellos capaces de hibridarse de manera específica a los ARNm expresados por cada uno de los genes diana, o a los ADNc correspondientes, o a fragmentos de dichos ARNm o de dichos ADNc.

En la práctica, la cuantificación del nivel de expresión de cada gen diana comprende las etapas siguientes:

- (a) la preparación de una muestra de ácidos nucleicos (ARNm y/o ADNc), a partir de una planta o de una parte de planta, y
 - (b) la hibridación de los ARNm/ADNc de la muestra preparada, con unos medios de determinación que comprenden uno o varios reactivos de referencia (polinucleótidos de tipo sonda(s) o cebador(es) en particular) contenidos en el dispositivo según la invención.

La muestra de ácidos nucleicos se puede obtener a partir de una parte de la planta (por ejemplo una hoja, raíces, etc.), o de la planta entera (por ejemplo semillas o plantas de semillero), o de una pluralidad de plantas o de partes de plantas, tal como un lote de plantas o de hojas.

Así, en una primera fase, se extraen unas partes de plantas, y eventualmente se ponen en común, antes de las etapas de aislamiento de la muestra de ácidos nucleicos, o de las etapas de detección.

La muestra de ácidos nucleicos se extrae preferentemente de las células, por ejemplo utilizando unos métodos estándares de extracción de los ácidos nucleicos.

Unos extractos en bruto o unas muestras de tejidos en estado bruto, como por ejemplo los tejidos vegetales homogeneizados, pueden también ser utilizados como muestra de ácidos nucleicos, en la que los marcadores transcritos son detectados y/o cuantificados.

A partir de la muestra preparada, el dispositivo según la invención permite cuantificar el nivel de expresión en ARNm (o de los ADNc correspondientes), que corresponden a los genes diana antes citados.

Según un modo preferido de realización, el dispositivo según la invención está adaptado para estudiar la expresión de genes diana en base a marcadores de tipo nucleicos.

En este caso, el dispositivo se puede realizar en forma de un chip de ADN, designado también mediante las denominaciones de chip de genes o biochip, o por los términos "DNA chip", "DNA-microarray" o "biochip".

40 La muestra de ácidos nucleicos es preferentemente una muestra de ARNm o de ARN total o de ADNc.

Los ADNc pueden ser, de manera opcional, amplificados por la utilización de cualquier método basado en las reacciones de polimerización en cadena, antes de la hibridación con el o los polinucleótidos de referencia; de manera alternativa, estos ADNc no son amplificados.

Para la evaluación del nivel de transcripción de los genes diana en cuestión, los medios de determinación pueden basarse por ejemplo en (i) los métodos de amplificación del tipo PCR cuantitativa, preferentemente el método de RT-PCR cuantitativa, o (ii) los métodos de hibridación de ácidos nucleicos, por ejemplo en forma de chips de ADN o "hybridation microarray".

La PCR cuantitativa (qPCR o QPCR) se puede realizar mediante unas técnicas y equipamientos convencionales, bien conocidos por el experto en la materia, descritas por ejemplo en S.A. Bustin (Ed.), *et al.*, A-Z of Quantitative PCR, IUL Biotechnology series, n°5, 2005.

- Un método posible es la PCR cuantitativa con transcripción inversa o RT-qPCR (véanse Czechowski *et al.*, 2004, Plant J. 38, 366-379; Czechowski *et al.* 2005, Plant Physiol. 139, 5-17; Vandesompele *et al.*, 2002, Genome Biol. 3(7):research0034.1-0034.11).
- Esta técnica de medición permite la detección de un nivel relativo o absoluto de expresión del ARNm de los genes diana en la muestra.

Un dispositivo de este tipo que emplea una técnica de qPCR se describe más en detalle a continuación, y se presenta una aplicación práctica en los ejemplos.

De manera alternativa, la determinación se obtiene clásicamente por la puesta en contacto de la muestra de ácidos nucleicos con un soporte en el que se fijan una pluralidad de polinucleótidos que comprenden unas secuencias

complementarias (por ejemplo por lo menos 7, 10, 15, 20, 25, 30, 40, 50, 100, 500 o más residuos o bases nucleotídicas) a la secuencia de cada uno de los ácidos nucleicos o polinucleótidos marcadores.

Estos polinucleótidos fijados comprenden una secuencia que posee una especificidad de hibridación en condiciones determinadas para formar un complejo de hibridación con el marcador nucleico de un gen diana.

Según la presenta invención, el marcador específico del gen diana puede ser (i) una secuencia nucleotídica comprendida en un ARN mensajero procedente del gen diana (se habla entonces de ARNm específico del gen diana), (ii) una secuencia nucleotídica comprendida en un ADN complementario obtenido por transcripción inversa de dicho ARN mensajero (se habla entonces de ADNc específico del gen diana), o también (iii) una secuencia nucleotídica comprendida en un ARN complementario obtenido por transcripción de dicho ADNc, tal como se ha descrito anteriormente (se hablará entonces de ARNc específico del gen diana).

10

30

45

50

55

Aunque los diferentes polinucleótidos marcadores fijados son detectables independientemente sobre un mismo soporte (por ejemplo por la utilización de diferentes cromóforos o fluoróforos, o fijados en diferentes posiciones seleccionadas de dicho soporte), los niveles de expresión de una pluralidad de marcadores pueden ser estudiados simultáneamente sobre este soporte único.

Unos métodos apropiados para la detección y la cuantificación por biochips de polinucleótidos fijados están descritos en el estado de la técnica y pueden por ejemplo ser encontrados en: Applications of DNA Microarrays in Biology. R.B. Stoughton (2005), Annu. Rev. Biochem. 74:53-82, o en David Bowtell and Joseph Sambrook, DNA Microarrays: A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, 2003 ISBN 0-870969-625-7.

Para construir dicho chip de ADN fijado, se enlazan unas moléculas de ácido nucleico a un soporte sólido en sitios conocidos o "direcciones".

Las moléculas de ácido nucleico fijadas son complementarias de las secuencias nucleotídicas según la invención, y en particular de las secuencias SEC ID nº 1 a 28, y se conoce el emplazamiento de cada ácido nucleico sobre el chip.

Estos chips con polinucleótidos fijados pueden, por ejemplo, ser realizados utilizando unos métodos (i) de depósito de sondas pre-sintetizadas, (ii) de síntesis *in situ* o (iii) de fotolitografía.

Los métodos para generar unos polinucleotídicos marcados y para la hibridación de estos chips de ADN son bien conocidos en la técnica anterior (véanse por ejemplo los documentos US 2002/0144307, y Ausubel *et al.*, Eds. (1994) Current Protocols in Molecular Biology, Current Protocols (Greene Publishing Associates, Inc, y John Wiley & Sons, Inc, New York, 1994 Supplement)).

En el dispositivo según la invención, la hibridación entre dos ácidos nucleicos está ventajosamente realizada en condiciones de hibridación rigurosas.

El nivel de expresión, obtenido por la aplicación del dispositivo según la invención, se puede expresar con una unidad arbitraria que refleja la cantidad de ARN mensajero transcrito para cada gen de interés, tal como la intensidad de una señal radioactiva o fluorescente emitida por el material ADNc generado por un análisis PCR del contenido en ARN mensajero de la muestra estudiada, que incluye unas técnicas de análisis PCR en tiempo real del ARN mensajero contenido en la muestra.

Aún de manera alternativa, este valor de la expresión de los genes se puede expresar como una unidad arbitraria corregida por el nivel de expresión de uno o varios genes de referencia denominados "reporteros") que no están modificados en la muestra por el estado de estimulación de las defensas naturales.

En este último caso, el valor de la expresión de cada gen diana se puede expresar como la diferencia (deltaCT) entre (i) la cantidad de un ARNm que forma un marcador biológico y (ii) la cantidad de un ARNm no marcador, presente en la muestra seleccionada por ejemplo entre los genes que corresponden a la tubulina, la actina, la GAPDH o la ubiquitina.

Para ello, se puede hacer referencia también a los documentos siguientes: Livak et al. (2001, Methods 25:402-408) o Vandesompele et al. (2002, Genome Biol. 3(7): research0034.1-0034.11).

A continuación se detallan dos dispositivos preferidos, sin que ello constituya una limitación en las técnicas susceptibles de ser empleadas para el dispositivo según la invención.

Cuantificación biológica de transcritos marcadores, por amplificación de ácidos nucleicos.

65 El dispositivo según la invención comprende ventajosamente unos medios para determinar el nivel de expresión de la combinación antes citada de genes diana, por amplificación de ácidos nucleicos transcritos (ARNm o ADNc) en el

ámbito de una técnica denominada de PCR cuantitativa.

La reacción de polimerización en cadena (PCR o "Polymerase Chain Reaction") es un método altamente eficaz para dicha cuantificación de ácidos nucleicos que constituyen los marcadores biológicos.

5

Para realizar dichas amplificaciones de ácidos nucleicos en un objetivo de cuantificación de los marcadores biológicos de interés, los medios de determinación según la invención comprenden un conjunto de pares de cebadores, siendo cada par de cebadores adecuado para fijarse y amplificar específicamente con una diana ARNm o con una diana ADNc.

10

Según esta técnica, los ARN totales son extraídos y purificados, y los ARN mensajeros contenidos en el extracto son ventajosamente convertidos en una primera fase en ADN complementarios (ADNc), con la ayuda de una transcriptasa inversa.

- Un par de cebadores capaz de hibridarse específicamente con cada uno de los ácidos nucleicos marcadores puede ser diseñado mediante cualquier método apropiado, conocido en la técnica.
 - Los dos cebadores se seleccionan respectivamente en las cadenas sentido y antisentido, con el fin de permitir la amplificación de un fragmento de ADN.

20

Unos pares de cebadores degenerados o específicos para la amplificación de los ácidos nucleicos SEC ID nº 1 a 28 (o de una parte o de una variante de estas secuencias) pueden ser sintetizados a partir de dichas secuencias, o variantes de dichas secuencias.

25

- Ventajosamente, los cebadores sentido y antisentido comprenden por lo menos 15 nucleótidos y presentan una identidad de por lo menos el 80%, preferentemente el 90% y aún más preferentemente el 95%, y más preferentemente el 100%, con la secuencia de los genes diana, o con su secuencia complementaria, o con los ADNc antes citados.
- 30 Unos ejemplos de tales cebadores específicos de cada una de las secuencias SEC ID nº 1 a 28 son designados por las secuencias SEC ID nº 32 a 87 (tabla 3 en la parte Ejemplo).
 - Además, unos ejemplos de cebadores específicos de los genes de referencia SEC ID nº 29 a 31 son designados por las secuencias SEC ID nº 88 a 93 (tabla 3).

35

Los medios de determinación comprenden también unas polimerasas, preferentemente la Taq polimerasa, pero puede ser cualquier otra enzima que presenta una actividad polimerasa y utilizable en las condiciones de realización de la PCR.

do la r

Durante la reacción de amplificación, se detecta el producto de reacción, designado también bajo la denominación de amplímero o amplicón.

La cantidad de ARNm transcrito para cada gen diana se mide mediante unos medios que permiten la aplicación del método denominado de PCR cuantitativa o QPCR.

45

- La PCR cuantitativa permite la cuantificación de una cantidad inicial de ADN, ADNc o ARN en la muestra preparada.
- Para ello, se basa en la detección de un compuesto fluorescente reportero, cuya intensidad de señal aumenta cuando el producto de la PCR se acumula con cada ciclo de amplificación.

50

Los medios de determinación comprenden así unos compuestos fluorescentes reporteros, es decir unos compuestos que se enlazan al ADN bicatenario (por ejemplo en el caso de una técnica SYBR Green I) o unas sondas específicas (por ejemplo en el caso de una técnica TaqMan[®], de una técnica HybProbes (FRET) o hibridación de 2 sondas, de una técnica Molecular Beacons o balizas moleculares, y de una técnica Scorpion o cebadores Escorpio).

55

Para aplicar esta técnica PCR en el ámbito de la presente invención, se puede hacer referencia a las revisiones generales sobre las técnicas PCR y a las instrucciones de los fabricantes y distribuidores de reactivos y de termocicladores, y en particular a la noticia explicativa titulada "Quantitation of DNA/RNA Using Real-Time PCR Détection" publicada por Perkin Elmer Applied Biosystems (1999) y al PCR Protocols (Académie Press New-York 1989).

- Se pueden emplear también las informaciones desarrolladas en particular en los documentos siguientes: Livak et al. (2001, Methods 25:402-408) y Vandesompele et al. (2002, Genome Biol. 3(7):research0034.1-0034.11).
- Una de las ventajas del método de detección por QPCR es que el análisis de los productos de PCR se lleva a cabo directamente durante los ciclos de PCR, por la lectura de la fluorescencia obtenida durante los ciclos. Por lo tanto,

no es necesario trabajar con los productos de PCR, que constituyen un riesgo de contaminación para los análisis ulteriores. Esta detección tiene lugar ventajosamente en plena fase exponencial de PCR y no en el punto final; este principio de detección es por lo tanto más sensible y más específico.

Además, la cuantificación del número de dianas iniciales en la reacción es muy fiable y reproducible. La detección del producto de PCR se realiza durante los ciclos PCR.

Un modo de realización particular para la cuantificación de dichos marcadores biológicos, en base a un dispositivo que utiliza una técnica de cuantificación por amplificación, se da a conocer en los ejemplos siguientes.

Planta o parte de planta estudiada mediante el dispositivo según la invención

10

15

40

45

55

El dispositivo según la invención se muestra en particular interesante para el estudio de plantas, o de partes de plantas, que pertenecen a la familia de las *Rosaceae* o Rosáceas.

Este dispositivo será en particular interesante para estudiar unas plantas, o partes de plantas, seleccionadas de entre una de las sub-familias siguientes: las *Amygdaloideae* (familia del melocotón), las *Maloideae* (familia del manzano), las *Rosoideae* (familia del rosal) y las *Spiraeoideae* (familia de la espírea).

- Más precisamente aún, el dispositivo según la invención será interesante para estudiar unas plantas, o partes de plantas, seleccionadas de entre uno de los géneros siguientes: Acaena, Adenostoma, Agrimonia, Alchemilla, Amelanchier, Aphanes, Aremonia, Aria, Aruncus, Bencomia, Brachycaulos, Cercocarpus, Chaenomeles, Chamaebatia, Chamaebatiaria, Chamaemeles, Chamaemespilus, Chamaerhodos, Cliffortia, Coleogyne, Coluria, Cormus, Cotoneaster, Cowania, Crataegus, Cydonia, Dalibarda, Dichotomanthes, Docynia, Docyniopsis, Dryas, Duchesnea, Eriobotrya, Eriolobus, Exochorda, Fallugia, Filipendula, Fragaria, Geum, Gillenia, Guamatela, Hagenia, Hesperomeles, Heteromeles, Holodiscus, Horkelia, Horkeliella, Ivesia, Kageneckia, Kelseya, Kerria, Leucosidea, Lindleya, Luetkea, Lyonothamnus, Maddenia, Malacomeles, Malus, Margyricarpus, Mespilus, Neillia, Neviusia, Nuttalia, Oemleria, Orthurus, Osteomeles, Pentactina, Peraphyllum, Petrophytum, Photinia, Physocarpus, Polylepis, Potanina, Potentilla, Poterium, Prinsepia, Prunus, Pseudocydonia, Purshia, Pyracantha, Pyrus, Quillaja, Rhaphiolepis, Rhodotypos, Rosa, Rubus, Sanguisorba, Sarcopoterium, Sibbaldia, Sibiraea, Sorbaria, Sorbus, Spenceria, Spiraea, Spiraeanthus, Stephanandra, Taihangia, Tetraglochin, Torminalis, Vauquelinia, Waldsteinia, Xerospiraea.
- Preferentemente, el dispositivo según la invención está adaptado para estudiar unas plantas, o partes de plantas, que pertenecen a una de las especies siguientes: *Prunus armeniaca, Prunus dulcis, Prunus avium, Cydonia oblonga, Rosa canina, Fragaria, Rubus idaeus, Rubus fruticosus agg, Mespilus germanica, Prunus persica, Rubus chamaemorus, Pyrus communis, Malus domestica, Prunus domestica.*

Aún más preferentemente, el dispositivo está destinado al estudio del manzano, o Malus domestica.

En este caso, el presente dispositivo se puede emplear para todas las variedades de manzano, y en particular las variedades siguientes: Golden Delicious, MM106 y Evereste.

Método que utiliza el dispositivo según la invención

De manera general, el dispositivo según la invención se puede emplear para el estudio del estado de estimulación de las defensas naturales en una planta o una parte de la planta (o una pluralidad de plantas o de partes de plantas).

En la práctica, el perfil de expresión de una pluralidad de muestras de ácidos nucleicos, que proceden de varias plantas y/o partes de plantas, se determina por medio de un dispositivo o de una serie de dispositivos según la invención.

Este comportamiento permite tener en cuenta unas eventuales variaciones en la expresión de los genes entre las plantas y/o partes de plantas, y así obtener unos resultados fiables.

Paralelamente, se estudian y se analizan ventajosamente unas muestras control con los dispositivos según la invención.

Por ejemplo, las muestras de control (o las muestras de referencia) se pueden obtener a partir de plantas o de partes de plantas cuyo estado de estimulación de las defensas naturales es conocido.

Así, las muestras de control pueden proceder de plantas o de partes de plantas que son no tratadas y no estresadas, o que son sometidas previamente a un compuesto estimulador de las defensas naturales y/o un estrés.

Después, con el fin de determinar el estado de estimulación de las defensas naturales de vegetales de interés (que tienen un estado de estimulación de las defensas naturales desconocido), las muestras obtenidas a partir de estas

plantas o partes de plantas se compararán con unas muestras que proceden de plantas o partes de plantas cuyo estado de estimulación de las defensas naturales es conocido.

Así, se pueden analizar varias muestras por medio del dispositivo según la invención, tales como unas muestras de ácidos nucleicos que proceden (i) de plantas o partes de plantas cuyo estado de estimulación de las defensas naturales es conocido, (ii) de plantas o partes de plantas cuyo estado de estimulación de las defensas naturales es desconocido, (iii) de plantas o partes de plantas sometidas previamente a por lo menos un estrés biótico y/o abiótico o (iv) de plantas o partes de plantas sometidas previamente a por lo menos un producto para verificar o buscar un efecto estimulador de las defensas naturales.

El dispositivo según la invención puede así ser utilizado en un conjunto de procedimiento, algunos de los cuales se presentan en detalle a continuación.

Procedimiento para identificar un perfil de expresión de una combinación de genes dianas

5

10

15

25

30

35

40

50

55

65

Una primera aplicación del dispositivo según la invención es la identificación de perfiles de expresión de la combinación antes citada de genes diana, también designados "firmas" que permitirían determinar, o por lo menos evaluar, el estado de estimulación de las defensas naturales de plantas.

- 20 El procedimiento para identificar un perfil de expresión de una combinación de genes diana comprende las etapas siguientes:
 - (i) determinar el perfil de expresión de una combinación de genes diana por medio del dispositivo según la invención, sobre un conjunto de plantas, o partes de plantas, que pertenece ventajosamente a la familia de las *Rosaceae* cuyo estado de estimulación de las defensas naturales es conocido, y después
 - (ii) determinar un perfil de expresión de interés de dicha combinación de genes diana que corresponde a un estado determinado de estimulación de las defensas naturales de dichas plantas o partes de plantas, que parte de los datos procedentes de la etapa (i).

Por medio del dispositivo según la invención y durante la etapa (i), se obtiene por lo menos un valor cuantitativo de expresión para cada uno de los marcadores biológicos utilizados.

La obtención de varios valores cuantitativos, para cada marcador biológico utilizado, permite un pronóstico más preciso del estado de estimulación de las defensas naturales.

Estas cuantificaciones se utilizan en unas muestras de plantas o de partes de plantas cuyo estado de estimulación de las defensas naturales es conocido, seleccionadas ventajosamente de entre:

- las muestras de plantas o de partes de plantas no sometidas a un estrés y/o a un producto estimulador de las defensas naturales; o
- las muestras de plantas o de partes de plantas sometidas a un estrés; o
- las muestras de plantas o de partes de plantas sometidas a un producto estimulador de las defensas naturales.

Por ejemplo, para obtener unas muestras representativas de un estrés biótico, se puede pulverizar peróxido de hidrógeno sobre las plantas o partes de plantas.

Para obtener unos controles negativos, se puede pulverizar agua osmotizada sobre las plantas o partes de plantas.

Para obtener unas muestras representativas de una protección frente al fuego bacteriano, se puede aplicar Bion[®] sobre las plantas o partes de plantas.

La etapa (ii) consiste en comparar los valores cuantitativos obtenidos en la etapa (i) para cada marcador biológico.

Los valores de expresión de referencia para cada uno de los genes diana pueden así ser determinados.

60 Constituyen juntas "un perfil de referencia" que es pertinente para distinguir y/o identificar y/o determinar una modificación del estado de estimulación de las defensas naturales.

Cada perfil de referencia determinado para dicha combinación de marcadores biológicos está así correlacionado con un estado de estimulación de las defensas naturales.

Según un modo de realización ventajoso, los perfiles de referencia, para la combinación de marcadores biológicos

según la invención, pueden ser predeterminados por la realización de un procedimiento que comprende las etapas siguientes:

- a) proporcionar por lo menos una colección de muestras de plantas o de partes de plantas, cuyo estado de estimulación de las defensas naturales está determinado;
- b) cuantificar por medio del dispositivo según la invención, para cada muestra proporcionada en la etapa a), el nivel de expresión de dichos marcadores biológicos, por el cual se obtiene una serie de valores cuantitativos para los marcadores biológicos de dicha colección de muestra;
- c) determinar, a partir de dicha serie de valores de cuantificación obtenidos al final de la etapa b), una correlación entre un perfil determinado de expresión de dichos marcadores biológicos y un estado específico de estimulación de las defensas naturales.
- Algunos perfiles de expresión interesantes, obtenidos por medio del dispositivo según la invención, están presentes en los ejemplos.

Procedimiento para determinar o evaluar el estado de estimulación de las defensas naturales

5

10

25

40

65

20 El dispositivo según la invención tiene también el interés de poder ser utilizado en el ámbito de un procedimiento para el análisis del estado de estimulación de las defensas naturales de una planta o parte de planta.

El procedimiento para determinar o evaluar el estado de estimulación de las defensas naturales de una planta comprende las etapas siguientes:

- (i) extraer una muestra a partir de la planta o a partir de dicha parte de planta, que pertenece ventajosamente a la familia de las Rosaceae, que ha sufrido eventualmente cualquier tratamiento de interés (por ejemplo estrés o estimulador de las defensas naturales),
- 30 (ii) determinar el perfil de expresión de una combinación de genes diana en dicha muestra extraída en la etapa (i), por medio del dispositivo según la invención,
 - (iii) comparar el perfil de expresión obtenido en la etapa (ii) con un perfil de expresión de referencia.
- 35 (iv) determinar o evaluar el estado de estimulación de las defensas naturales de dicha planta o de dicha parte de planta, a partir de dicho perfil de expresión obtenido durante la etapa (ii).

El perfil de expresión obtenido en la etapa (ii), por medio del dispositivo según la invención, se compara con un perfil de expresión de referencia que corresponde a los valores observados para unas muestras de plantas o de partes de plantas seleccionadas ventajosamente de entre:

- las muestras de plantas o de partes de plantas no sometidas a un estrés o un estimulador de las defensas naturales; o
- 45 las muestras de plantas o de partes de plantas sometidas a un estrés (por ejemplo *E. amylovora*); o
 - las muestras de plantas o de partes de plantas sometidas a un estimulador de las defensas naturales (por ejemplo Bion[®]).
- 50 En particular, la sobreexpresión de por lo menos un gen diana, y más preferentemente de una combinación de genes diana, en una muestra estudiada, en comparación con muestras de plantas o de partes de plantas no sometidas a un estrés o a un estimulador de las defensas naturales, permite identificar las plantas o partes de plantas que presentan un estado de estimulación de las defensas naturales activado o inducido.
- Asimismo, la expresión constante de por lo menos un gen diana, y más preferentemente de una combinación de genes diana, en una muestra estudiada, en comparación con muestras de plantas o de partes de plantas sometidas a un estrés o a un estimulador de las defensas naturales, permite identificar las plantas o partes de plantas que presentan un estado de estimulación de las defensas naturales activado o inducido.
- 60 Procedimiento para seleccionar una sustancia que tiene la propiedad de modular el estado de estimulación de las defensas naturales

Existe la necesidad de nuevos agentes estimuladores de defensas naturales, y de métodos fiables y fáciles para el cribado de un gran número de compuestos biológicos o químicos, o de composiciones, para su utilización como agentes estimuladores de defensas naturales.

Existe también la necesidad de verificar la actividad biológica de compuestos o de composiciones presentados como estimuladores de defensas naturales.

El dispositivo según la invención constituye una herramienta particularmente interesante para identificar dichos compuestos biológicos o químicos, o dichas composiciones que contienen estos compuestos biológicos o químicos, que sean capaces de estimular las defensas naturales de una planta o parte de la planta, que pertenece ventajosamente a la familia de las *Rosaceae*.

5

15

20

25

30

45

50

60

La herramienta según la invención permite en particular cribar cualquier compuesto activo o composición activa, biológica o química, empleada en el campo de la agricultura, preferentemente la arboricultura y más preferentemente en el campo de las *Maloideae*.

La identificación de dicho efecto suplementario permitiría evitar los tratamientos redundantes (en particular por la aplicación de dos compuestos que activan los mismos mecanismos de defensas) y limitar las interacciones negativas (algunos productos SDN tienen unos efectos antagonistas frente a las vías moleculares que regulan).

El procedimiento de realización del dispositivo según la invención comprende ventajosamente las etapas siguientes:

- (i) la puesta en contacto, con una planta o parte de la planta (que pertenece ventajosamente a la familia de las Rosaceae), de uno o varios compuestos biológicos o químicos, o de composiciones que comprenden uno o varios compuestos biológicos o químicos,
- (ii) la determinación del perfil de expresión de la combinación de genes diana en una muestra extraída a partir de dicha planta tratada o de dicha parte de planta tratada tras la etapa (i), por medio del dispositivo según la invención,
- (iii) la comparación del perfil de expresión obtenido en la etapa (ii) con un perfil de expresión de referencia, para determinar o evaluar el estado de estimulación de las defensas naturales en dicha muestra,
- (iv) la selección positiva de dicha sustancia, si la comparación en la etapa (iii) muestra que dicha sustancia ensayada en la etapa (i) modula el estado de estimulación de las defensas naturales de dicha planta de semillero o de dicha parte de planta de semillero.
- En la etapa (i), cualquier compuesto biológico o químico, o cualquier composición que comprende uno o varios compuestos biológicos o químicos, pueden ser puestos en contacto con las plantas o partes de plantas.
 - Por lo menos dos compuestos y/o composiciones diferentes pueden ser puestos en contacto simultánea o sucesivamente, con las plantas o partes de plantas.
- 40 Preferentemente, cada compuesto o composición se pone en contacto físico con una o varias plantas individuales.
 - Este contacto puede ser realizado también por diferentes medios, tales como la pulverización, el cepillado, la aplicación de soluciones o de sólidos en o sobre la tierra, en la fase gaseosa que rodea las plantas o partes de plantas, por inmersión, etc.
 - Los compuestos o composiciones ensayados pueden ser sólidos, líquidos, semisólidos o gaseosos.
 - Los compuestos o composiciones ensayados pueden ser sintetizados artificialmente o naturales, como las proteínas, fragmentos de proteínas, compuestos orgánicos volátiles, plantas o animales o extractos de microorganismo, los metabolitos, los azúcares, las grasas y aceites, los microorganismos como los virus, bacterias, hongos, etc.
 - El compuesto o la composición biológica comprenden también, o está constituido por, uno o varios microorganismos, o uno o varios extractos de plantas.
- El perfil de expresión obtenido en la etapa (ii), por medio del dispositivo según la invención, se compara según un método descrito anteriormente, es decir por ejemplo con un perfil de expresión de referencia que corresponde a los valores observados para muestras de plantas o de partes de plantas seleccionados ventajosamente de entre:
 - las muestras de plantas o de partes de plantas no sometidas a un estrés o un a estimulador de las defensas naturales; o
 - las muestras de plantas o de partes de plantas sometidas a un estrés (por ejemplo E. amylovora); o
- las muestras de plantas o de partes de plantas sometidas a un estimulador de las defensas naturales (por ejemplo Bion[®]).

En particular, la sobreexpresión de por lo menos un gen diana, y más preferentemente de una combinación de genes diana, en una muestra estudiada, en comparación de muestras de plantas o de partes de plantas no sometidas a un estrés o a un estimulador de las defensas naturales, permite identificar las plantas o partes de plantas que presentan un estado de estimulación de las defensas naturales debido a la acción del compuesto ensayado o de la composición ensayada.

Por ejemplo, la sobreexpresión de la combinación de genes dianas PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, HMGR, Far, CSL, POX, Pect, EDS1 y WRKY permite seleccionar una sustancia que tiene la propiedad de generar un estado de estimulación de las defensas naturales de una planta o de una parte de planta que pertenece a la familia de las *Rosaceae*, que asegura una protección frente a un estrés biótico.

Preferentemente, este perfil de expresión permite la selección de una sustancia que tiene la propiedad de generar un estado de estimulación de las defensas naturales de una planta o de una parte de planta que pertenece a la familia de las *Rosaceae* que asegura una protección frente a *Erwinia amylovora*.

En particular, esta sobreepxresión para cada uno de los genes diana antes citados consiste en un nivel de sobreexpresión relativa (ventajosamente con respecto a un tratamiento con agua) superior a 3 (o log₂ (expresión relativa)>1,58).

Asimismo, la expresión constante de por lo menos un gen diana, y más preferentemente de una combinación de genes diana, en una muestra estudiada, en comparación con muestras de plantas o de partes de plantas sometidas a un estimulador de las defensas naturales, permite identificar las plantas o partes de plantas que presentan un estado de estimulación de las defensas naturales debido a la acción del compuesto ensayado o a la composición ensayada.

La planta o parte de planta tratada puede ser sometida eventualmente simultáneamente a un estrés abiótico (medioambiental) con el fin de estudiar el efecto de condiciones de cultivo estresantes sobre la eficacia de los estimuladores de defensas naturales.

30 La herramienta según la invención puede permitir seleccionar y distinguir unos compuestos estimuladores directos y unos compuestos potencializadores.

Para ello, se puede estudiar por ejemplo el cambio del perfil de expresión de los genes diana tras la aplicación de un estrés biótico, con o sin aplicación previa de un compuesto o de una composición de interés.

La sobreexpresión de una combinación de genes diana en una muestra después de la aplicación de un estrés biótico, en comparación con muestras de plantas o de partes de plantas no sometidas a tal estrés biótico, permite identificar los compuestos potencializadores (o por lo menos susceptibles de tener dicho efecto potencializador).

40 Procedimiento para seleccionar una planta o una parte de planta

La presente invención se refiere también a la identificación y a la selección de plantas que pertenecen ventajosamente a la familia de las *Rosaceae*, que presenta un estado particular de estimulación de las defensas naturales, ya sea este estado obtenido:

- (a) naturalmente (por crecimiento o utilización de las variaciones naturales) o artificialmente (induciendo unas variaciones, por ejemplo por transgénesis de las plantas o de las partes de plantas, o por mutagénesis utilizando uno o varios agentes mutagénesis); y/o
- (b) tras la aplicación de un compuesto o de una composición estimuladora de las defensas naturales; y/o
- (c) tras la aplicación de uno o varios estrés biótico(s) y/o abiótico(s).

En efecto, el dispositivo según la invención constituye una herramienta interesante para seleccionar una planta, que pertenece preferentemente a la familia de las *Rosaceae*, que presenta un estado de estimulación de las defensas naturales susceptibles de conferirles una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés.

Un método para seleccionar una planta o parte de la planta que tiene un estado de estimulación de las defensas naturales mejorado (y por lo tanto con resistencia reforzada a los estrés bióticos y/o abióticos) puede comprender las etapas siguientes:

- (i) aplicar el o los estrés, y/o el o los estimuladores de defensas naturales, a una planta o una parte de planta, que pertenece ventajosamente a la familia de las *Rosaceae*,
- (ii) determinar el perfil de expresión de una combinación de genes diana en una muestra extraída a partir de

65

10

15

25

35

45

dicha planta o de dicha parte de planta, por medio del dispositivo según la invención,

- (iii) comparar el perfil de expresión obtenido en la etapa (ii) con un perfil de expresión de referencia, para determinar o evaluar el estado de estimulación de las defensas naturales en dicha muestra,
- (iv) seleccionar positivamente dicha planta si la comparación con la etapa (iii) muestra que dicha planta o dicha parte de planta posee un estado de estimulación de las defensas naturales susceptible de conferirles una resistencia mejorada a por lo menos un estrés biótico u/o abiótico de interés.
- La planta o parte de la planta seleccionada en la etapa (iv) comprende ventajosamente un estado particular de estimulación de las defensas naturales en presencia de agentes estimuladores de las defensas naturales y/o de estrés biótico y/o de estrés abiótico.
- El perfil de expresión obtenido en la etapa (ii), por medio del dispositivo según la invención, se compara según un método descrito anteriormente, es decir por ejemplo con un perfil de expresión de referencia que corresponde a los valores observados para unas muestras de plantas o de partes de plantas seleccionados ventajosamente de entre:
 - las muestras de plantas o de partes de plantas no sometidas a un estrés o a un estimulador de las defensas naturales;
 - las muestras de plantas o de partes de plantas sometidas a un estimulador de las defensas naturales; o
 - las muestras de plantas o de partes de plantas sometidas a un estrés.
- La sobreexpresión de por lo menos un gen diana, y más preferentemente de una combinación de genes diana, en una muestra estudiada, en comparación con muestras de plantas o de partes de plantas sometidas a un estrés o a un estimulador de las defensas naturales, permite identificar las plantas o partes de plantas que presentan un estado de estimulación de las defensas naturales susceptible de presentar una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés.
 - El dispositivo según la invención permite así cribar los genotipos para su reactividad a los productos SDN.

Secuencias

5

20

30

40

45

50

65

35 SEC ID nº 1 a 31: secuencias de los ADNc procedentes de los genes diana y de los genes de referencias;

SEC ID nº 32 a 93: secuencias de cebadores PCR para la amplificación de las secuencias SEC ID nº 1 a 31.

Figuras

Figura 1: Eficacia de protección de 10 SDN candidatos contra *E. amylovora* sobre siembra de manzano. El agua y la plantomicina (Plantom.) se utilizan como controles negativos y positivos respectivamente.

RC: regulador de crecimiento; Eclairciss: aclaradores; Representación diagramas de cajas, indicando estos últimos los intervalos de confianza de las medianas (P=0,05); Por lo menos seis repeticiones biológicas de 10 siembras de 2 experimentos independientes.

Figura 2: A) Modulación de la expresión de los 28 genes de la herramienta en unas hojas de 4 variedades de manzano (retoños injertados) 3 días después del tratamiento con Bion o con agua. Diferencias de expresión con respecto a una extracción efectuada el D0 sobre unas plantas no tratadas de cada genotipo. Una repetición biológica. B) Eficacia media de protección frente al fuego bacteriano efectuada en paralelo (n=12).

Ejemplo

55 <u>Material</u>:

Dispositivo según la invención

Placa de microtitulación de 96 pocillos lista para su empleo, que contiene los pares de cebadores SEC ID nº 32 a 93 para (i) los 28 genes diana SEC ID nº 1 a 28 y (ii) los 3 genes de referencia SEC ID nº 29 a 31, (repartidos en tres pocillos por cada par) en forma deshidratada (evaporación durante una noche a 60°C) y en cantidad suficiente para alcanzar las concentraciones finales óptimas detalladas en la tabla 3 siguiente.

Tabla 3: Cebadores y concentraciones óptimas para la técnica PCR

Nombre del gen	Cebadores	SEC ID	Tamaño amplicón (pb)	Concentración óptima (nm)

Nombre del gen	Cebadores	SEC ID	Tamaño amplicón (pb)	Concentración óptima (nm)
	PR1-di	32		. , ,
PR-1	PR1-re	33	167	200
PR-2	PR2-di	34	152	400
FR-Z	PR2-re	35	152	400
PR-4	PR4-di	36	123	200
FN-4	PR4-re	37	123	200
PR-5	PR5-di	38	100	600
111-5	PR5-re	39	100	000
PR-8	PR8-di	40	173	200
110	PR8-re	41	170	200
PR-14	PR14-di	42	192	200
	PR14-re	43	102	200
PR-15	PR15-di	44	132	200
	PR15-re	45		
PAL	PAL-di	46	133	200
	PAL-re	47		
CHS	CHS-di	48	234	100
	CHS-re	49		
DFR	DFR-di	50	239	200
	DFR-re	51		
ANS	ANS-di	52	298	200
	ANS-re	53		
PPO	PPO-di	54	124	200
	PPO-re	<u>55</u>		
HMGR	HMGR-di	<u>56</u>	206	400
	HMGR-re	57		
FPPS	FPPS-di	58	255	200
	FPPS-re	59 60		
Far	Far-di	61	161	200
	Far-re CSL-di	62		
CSL		63	134	200
	CSL-re			
APOX	APX-di APX-re	64 65	185	200
	GST-di	66		
GST	GST-til GST-re	67	185	200
	POX-di	68		
POX	POX-re	69	197	100
	CalS-di	70		
CalS	CalS-re	71	176	200
	Pect-di	72		
Pect	Pect-re	73	173	300
	CAD-di	74		
CAD	CAD-re	75	85	200
	EDS1-di	76		
EDS1	EDS1-di	77	269	200
	WRKY-di	78		
WRKY	WRKY-re	79	171	200
	LOX2-di	80		
LOX2	LOX2-re	81	199	100
	JAR-di	82		
JAR	JAR-re	83	118	200
	ACCO-di	84		
ACCO	ACCO-re	85	193	200
	EIN3-di	86		
EIN3	EIN3-re	87	212	400
	TuA-di	88		
TuA	TuA-re	89	118	300
Δ .:	Actin-di	90	4.10	466
Actin	Actin-re	91	140	100
CARRI	GAPDH-di	92	400	200
GAPDH	GAPDH-re	93	103	300
			ı	

Ensayo 1 - Expresión relativa de los genes de defensa en unas hojas de manzanos sometidas a diferentes tratamientos

5 Protocolo:

10

20

25

30

35

40

45

La expresión de los 28 genes diana se siguió (i) en unas hojas de plántulas de manzano (obtenidas por polinización libre de la variedad Golden Delicious, véase Brisset et al. Eur. J. Plant Pathol 106, 529-536, 2000) sometidas a tratamientos de tipo SDN y a diversos estrés abióticos, así como (ii) en unas hojas de retoños injertados de dos genotipos de manzano, Evereste y MM106 (véase Venisse et al. Molecular Plant-Microbe Interactions 15, 1204-1212, 2002), después de la infección por Erwinia amylovora, agente del fuego bacteriano.

El protocolo aplicado comprende las etapas 1 a 7 siguientes:

15 1) tratamiento de las plantas de semillero por pulverización, riego o infiltración del producto (o de agua osmotizada para los controles negativos).

Los diversos tratamientos se aplicaron de la siguiente manera:

- Baba (a.i. 95% ácido DL-ß-amino-n-butírico, Sigma ref A-2004) aplicado por riego de una solución 10 mM (5 ml por maceta de 150 ml),
- Bion® (a.i. 50% acibenzolar-S-metilo, Syngenta) aplicado por pulverización hasta escurrido de una solución a 0,4 g/l,
- Rhodofix[®] (a.i. 1% ácido α-naftilacético, Nufarm SAS) aplicado por pulverización hasta escurrido de una solución a 1,5 g/l,
- Régalis® (a.i. 10% prohexadion-calcio, BASF Agro, BASF Agro) aplicado por pulverización hasta escurrido de una solución a 2,5 g/l,
- PRM® 12 RP (a.i. 11,3% etefón, Bayer CropScience) aplicado por pulverización hasta escurrido de una solución a 3 ml/l.
- MeJA (a.i. 95% metilo jasmonato, Aldrich ref. 39,270-7) aplicado por riego de una solución 10 mM (5 ml por maceta de 150 ml),
- deshidratación aplicada por detención del riego,
- PEG (a.i. polietilenglicol 6000, Merck ref. 807491) aplicado por imbibición hasta saturación de la tierra (2 veces 3 mn) con la ayuda de una solución al 36%,
 - Paraquat (a.i. paraquat dicloruro x-hidrato PESTANAL®, Fluka ref. 36541) aplicado por pulverización hasta escurrido de una solución 100 µM,
 - H₂O₂ (a.i. 30% peróxido de hidrógeno) aplicado por pulverización hasta escurrido de una solución a 10 ml/l,
 - E. amvlovora aplicado por infiltración de una suspensión de la cepa CFBP1430 añadida a 10⁷ cfu/ml.
 - 2) Pulverización opcional de peróxido de hidrógeno 24h después de la etapa 1), para imitar el ataque por un patógeno (lo que permite diferenciar los estimuladores directos y los potencializadores).
 - 3) Extracciones de tejidos 24h, 48h y 72h después del tratamiento.
 - 4) Congelación inmediata de los tejidos en el nitrógeno líquido y conservación a -80°C.
 - 5) Extracción de ARN, transcripción inversa, verificación de ausencia de ADN genómico según Venisse et al. (Molecular Plant-Microbe Interactions 15, 1204-1212, 2002).
 - 6) Amplificación por PCR cuantitativa de cada extracto preparando la mezcla siguiente: 5 µg de ADNc, X µl de mezcla qPCR según las instrucciones del proveedor, y csp 2500 μl de agua ultrapura, distribuyéndolo a razón de 25 µl por pocillos de la placa de 96 pocillos listo para su empleo, y efectuando la amplificación según un programa qPCR de 40 ciclos.
 - 7) Explotación de los resultados según el método del AACt que proporciona las expresiones relativas de los

26

50

55

60

genes de defensa en una muestra dada con respecto a una muestra no tratada denominada "calibrador", expresiones normalizadas por la media geométrica de los genes de referencia de estas muestras (Vandesompele *et al.*, Genome Biol. 3(7): research0034.1-0034.11, 2002; Livak y Schmittgen, Methods 25:402-408, 2001).

5

Los resultados de expresión de los 28 genes diana están detallados en las tablas 4, 5 y 6 siguientes, que consisten en una matriz de las expresiones relativas con respecto a unos controles de "agua" (extraídos en los mismos tiempos) transformados en log de base 2 (J=día, h=hora).

10 Esto

Estos resultados se distribuyen en tres tablas, únicamente en aras de la presentación.

Resultados

a)

a) los productos Bion, Rhodofix y Régalis muestran una activación bastante similar de la combinación de los genes siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, HMGR, Far, CSL, POX, Pect, EDS1 y WRKY, con niveles de sobreexpresión relativa (con respecto al agua) frecuentemente superiores a 3 (o log₂ (expresión relativa)>1,58, tablas 4 a 6).

20

Estos tres productos aseguran por otra parte una protección significativa y reproducible frente al fuego bacteriano.

Es interesante señalar que entre estos 3 productos, sólo el Bion (análogo del ácido salicílico) está homologado como SDN (en unas especies diferentes del manzano).

25

Los inventores han mostrado ya su eficacia de protección frente al fuego bacteriano, pero también frente a la sarna del manzano y el pulgón ceniciento, protección correlacionada con la acumulación de algunas proteínas de defensas (Brisset *et al.*, 2000 y 2005).

El Rhodofix (análogo de auxina) es un aclarador utilizado en los huertos de manzano para aligerar la carga en frutos.

30

Según los presentes ensayos, este producto tendría asimismo unos efectos de estimulación de defensa, lo cual nunca se ha descrito.

35

En cuanto al Régalis (inhibidor de giberelinas por inhibición de dioxigenasas), éste se utiliza también en los huertos de manzano como reductor de crecimiento de los brotes.

Los inventores han demostrado ya su capacidad de protección frente al fuego bacteriano, que podía estar relacionada con la reducción de crecimiento (Brisset *et al.*, 2005).

40

Los análisis de expresión de genes muestran que tiene asimismo la capacidad de inducir unas defensas, en particular de tipo proteínas PR, lo cual, una vez más, no se ha descrito jamás.

45

b) los dos productos MeJA y PRM 12 muestran por su lado una activación bastante similar de una combinación de genes de defensa: PR-14, PAL, CHS, DFR, CSL, Pect, ACCO y EIN3 con unos niveles de sobreexpresión relativa con respecto al agua frecuentemente superiores a 3 (o log₂(expresión relativa)>1,58, tablas 4 a 6).

A nivel de protección, estos dos productos muestran una eficacia muy variable según los ensayos, pero, en el mejor de los casos, no alcanza jamás la eficacia de los productos Bion, Rhodofix y Régalis.

50

Se señala que PRM 12 (análogo del etileno) es asimismo un aclarador utilizado en los huertos de manzano.

A la vista de los presentes resultados, el Rhodofix se debería de preferir al PRM 12 por su doble función de aclarador y de estimulador de defensas.

55

c) el Baba aplicado en las condiciones experimentales (riego) en el marco de la presente memoria muestra poco efecto sobre las modulaciones de genes y ningún efecto de protección frente al fuego bacteriano.

60

Por lo tanto, representa un control negativo en los experimentos. Valida asimismo la utilización de H2O2 en el modo de realización. En efecto, el Baba se conoce como potencializador y no como estimulador directo, siendo su acción sobre las defensas revelada sólo después del estrés provocado por un agente patógeno.

65

En este modo de realización, la acción de este último está estimulada por la aplicación de H2O2. Los resultados muestran bien que este tratamiento suplementario activa la expresión de algunos genes (POX, Pect por ejemplo) que no son activados por el único tratamiento Baba.

Este fenómeno no obstante no se observa claramente para los otros estimuladores, que parecen por lo tanto ser más bien unos estimuladores directos.

- d) Visto en su conjunto, los resultados obtenidos con los 6 productos tipo SDN parecen indicar que la sobreexpresión de los genes PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, HMGR, Far, CSL, POX, Pect, EDS1 y WRKY (ventajosamente con niveles de expresión relativa, con respecto al agua, superiores a 3) permite asegurar una protección significativa frente al fuego bacteriano en condiciones controladas.
- Sin embargo, la sobreexpresión de los genes PR-14, PAL, CHS, DFR, CSL, Pect, ACCO y EIN3 (con niveles de expresión relativa con respecto al agua ventajosamente superiores a 3) no permite asegurar esta protección.

5

10

15

25

- e) los estrés abióticos se han aplicado para responder a dos preguntas: i) ¿se pueden tener unos artefactos sobre la expresión de los genes de defensa si los experimentos de productos tipo SDN se desarrollan en condiciones medioambientales más difíciles para las plantas? (es decir observar unas activaciones de genes que se deben a las condiciones estresantes y no a los SDN) y ii) ¿unas condiciones medioambientales estresantes impiden la reacción de las plantas a los SDN? (lo cual tendría entonces un impacto para el éxito de los tratamientos en huertos).
- Los resultados actuales responden en parte a la primera pregunta. Los estrés hídricos (deshidratación), osmóticos (PEG) y poco oxidantes (H₂O₂ que sirven también de control para los ensayos de potencialización) modulan sólo débilmente las expresiones de los genes diana. Sólo un fuerte estrés oxidante (paraquat = herbicida que provoca la producción de ion superóxido) activa fuertemente algunos genes pero en su conjunto, las activaciones son más débiles que las obtenidas con el Bion por ejemplo.
 - f) las respuestas de los genes a una infección por *E. amylovora* muestran que esta bacteria modula en el conjunto los mismos genes diana que los tratamientos Bion, Rhodofix o Régalis, pero frecuentemente con una amplitud más baja, en particular para los genes de proteínas PR.
- Como la bacteria reprime en gran medida los genes de las vías del ácido jasmónico y de los fenilpropanoides, se podría esperar que los productos que provocan el efecto inverso de tipo MeJA o PRM 12 sean eficaces en términos de protección, lo cual no es el caso en nuestras condiciones experimentales.
- Los resultados en su conjunto muestran, al contrario, que los productos que aseguran una protección significativa activan la misma combinación de genes que la bacteria en sí (PR-1, PR-2, PR-4, PR-5, PR-8 PR-14 HMGR Far, CSL, POX, Pect EDS1 y WRKY).

Tabla 4

40 Expresión relativa de los genes de defensa en unas hojas de manzanos sometidas a diferentes tratamientos (SDN potenciales, estrés abióticos, infección por *E. amylovora*)

Tratami	entos	Tiempo de extracción	PR-1	PR-2	PR-4	PR-5	PR-8	PR-14	PR-15	PAL	ANS
		D2	1,85	3,04	3,00	2,75	0,02	-0,29	1,84	0,42	1,28
	-H ₂ O ₂	D2	-0,70	0,24	-0,71	0,92	0,10	-2,34	-0,53	0,27	1,53
	-I I ₂ O ₂	D3	0,01	0,20	<i>-2,4</i> 5	-0,26	-0,37	-3,35	0,04	0,20	-1,09
Baba		D3	2,08	-1,69	-0,57	0,86	-0,52	3,90	1,82	0,29	-0,10
Daba		D2	5,93	8,90	6,58	2,84	3,33	6,56	084	029	1,41
	+H ₂ O ₂	D2	0,08	-0,98	0,16	0,40	0,39	-2,63	0,71	0,55	2,12
	TI 12O2	D3	2,71	4,26	-2,18	1,91	1,39	-0,53	1,46	-0,84	0,19
		D3	1,77	-2,32	-0,86	1,34	-1,00	1,17	2,06	-0,12	1,25
		D2	8,37	6,89	8,61	5,77	6,07	3,31	1,88	-0,14	1,51
	-H ₂ O ₂	D2	3,20	9,64	7,17	1,02	3,50	3,75	1,61	1,11	0,21
	-1 1202	D3	5.99	7,99	5,43	4,46	2,23	4,09	-1,98	-1,29	-1,56
Bion		D3	2,14	1.61	8,07	3,88	1,62	049	4,96	-0,15	0,14
БЮП		D2	8,53	11,96	10,25	6,52	5,57	2,22	4,09	-0,25	-0,15
	+H ₂ O ₂	D2	3,87	6,36	5,10	2,43	3,25	2,95	1,72	1,91	1,50
	TI 12O2	D3	7,66	13,12	6,37	4,11	2,74	5,01	1,33	-2,25	-4,05
		D3	5,35	7,07	8,03	5,68	3,62	4,52	3,60	0,83	0,14
	-H ₂ O ₂	D2	2,61	9,34	6,87	1,75	3,16	5,43	0,98	1,78	2,40
Rhodofix	-1 12O2	D3	5,99	7,56	9,06	3,15	3,56	6,59	2,93	0,32	0,77
KIIOGOIIX	+H ₂ O ₂	D2	3,87	6,85	7,42	2,72	3,19	4,49	4,83	1,15	149
	TI 12U2	D3	6,47	6,19	8,82	3,13	3,74	4,29	3,15	0,14	1,29
Régalis	-H-O-	D2	4,76	3,80	3,25	2,42	4,07	7,55	2,77	0,22	1,31
iveyalis	-H ₂ O ₂	D2	2,08	5,91	3,45	-0,84	2,29	3,31	1,12	1,36	0,77

Tratam	ientos	Tiempo de extracción	PR-1	PR-2	PR-4	PR-5	PR-8	PR-14	PR-15	PAL	ANS
		D3	3,62	4,38	3,09	0,96	1,36	079	-0.08	0,64	-0,05
		D3	4,11	3,84	3,80	122	1,91	6,20	1,37	0,58	2,70
		D2	4,02	11,09	8,82	4,24	4,07	5,07	063	0,81	2,37
	ш.О.	D2	1,85	1,57	6,39	-1,92	2,72	4,80	6,12	2,69	1,92
	+H ₂ O ₂	D3	4,00	8,88	2,56	1,46	1,00	4,66	3,73	-0,51	-1,58
		D3	1,99	0,07	2,72	1,66	-0,39	2,50	0,54	0,12	0,06
	-H ₂ O ₂	D2	0,34	2,00	0,96	0,61	0,37	0,16	0,30	0,41	0,19
PRM12	-1 12O2	D3	1,13	-1,11	5,13	-0,73	2,56	5,92	5,40	4,10	4,49
FRIVITZ	+H ₂ O ₂	D2	2,41	1,94	0,14	-0,17	0,91	1,90	2,46	1,38	3,45
	+1 12O2	D3	1,89	-2,70	0,21	1,64	-0,30	5,05	3,13	-0,33	2,86
	-H ₂ O ₂	D2	1,56	4,03	2,68	-0,59	1,85	3,45	-0,19	3,17	2,31
MeJA	-I I ₂ O ₂	D3	2,35	3,69	2,63	1.49	1.00	5,09	1.21	1,66	1,58
IVIESA	+H ₂ O ₂	D2	0,40	3,89	1,25	-2,09	1,41	-0,64	3,20	3,36	3,29
	+1 12O2	D3	2,84	0,66	2,84	-1,22	1.51	3,66	2,77	2,01	1,44
		D2	-2,01	-1,80	-4,15	0,57	0,39	-2,11	1,82	-2,26	0,60
Deshidra	ntación	D4	-0,91	-1,65	-4,21	0,00	0,00	-0,56	0,00	-0,12	0,00
Desilidia	alacion	D7	1,12	-1,28	-4,36	1,20	0,70	2,71	3,01	-1,54	-1,25
		D10	0,47	-1,06	-3,33	2,49	2,15	3,09	2,66	-2,12	-1,24
		D1	2,56	4,72	3,01	0,00	0,00	1,46	0,00	0,41	0,00
		D2	4,07	0,29	1,00	-3,97	-1,15	6,49	-0,87	0,20	1,02
		D2	-2,07	-2,05	-5,05	1,44	0,15	3,82	1,10	-4,43	-1-86
PE	G	D3	1,07	0,69	3,92	-11.1	1,75	5,87	-6,54	0,68	3,82
		D4	-1,32	-1,24	1,64	-0,20	1,60	5,33	1,83	-0,64	0,02
		D7	0,92	-2,37	0,03	-1,07	1,52	8,06	1,51	-2,10	0,21
		D10	0.16	-1.62	2,30	-1.38	1,63	5,71	1,61	-2,72	-1.37
		D1	0,55	4,09	7,10	0,00	0,00	2,61	0,00	1,99	0,00
Parac	quat	D2	3,00	5,88	6,93	-3,05	5,12	6,04	4,77	2,56	-2,09
		D3	0,54	2,53	6,63	-8,56	5,36	1,28	-0,34	0,66	-0,78
		D2	2,44	4,75	2,53	3,02	0,83	-1,92	-0,20	1,91	-0,58
H ₂ C	٦-	D2	-2,09	3,92	4,27	-0,64	0,79	-1,17	1,35	0,91	0,82
1120	J 2	D3	0,66	2,36	-2,25	0,41	0,38	0,70	-0,82	-0,87	-2,02
		D3	4,31	3,38	6,36	4,37	2,00	3,18	1,32	-0,06	0,17
		6h	4,82	7,68	6,71	1,45	5,90	4,20	6,54	1,49	-2,33
E. amy	lovora	6h	1,56	1,28	4,30	5,49	6,86	3,90	4,82	0,87	0,61
L. alliyi	ιονυια	24h	5,24	3,14	5,19	1,98	5,04	3,90	9,64	0,44	-0,82
		24h	4,18	-0,65	2,91	-0,65	3,82	2,00	9,00	-0,63	-2,17

Tabla 5

Expresión relativa de los genes de defensa en unas hojas de manzanos sometidas a diferentes tratamientos (SDN, estrés abióticos, infección por *E. amylovora*)

Tratami	entos	Tiempo de extracción	CHS	DFR	PPO	HMGR	FPPS	Far	CSL	APOX	GST
		D2	0,27	0,64	-0,06	1,22	-0,02	0,85	-0,37	0,02	0,05
	-H ₂ O ₂	D2	0,29	093	-1,07	-0,67	-0,41	0,28	0,38	2,14	-0,34
	-n ₂ O ₂	D3	0,19	-002	0,54	1,95	0,46	0,81	0,55	-1,18	0,51
Baba		D3	0,31	072	1,24	-0,52	0,56	-1,03	1,34	0,11	-0,14
Бара		D2	-0,50	-0,28	-2,03	2,50	0,60	1,91	1,50	1,49	0,14
	+H ₂ O ₂	D2	1,18	1,17	-1,09	-1,67	-0,79	-1,50	0,36	1,76	-0,71
	+1 12O2	D3	-0,47	0,42	-0,67	1,98	1,46	1,25	-0,34	1,20	0,88
		D3	0,12	073	1,87	-0,09	-0,08	-0,31	0,56	2,41	-0,27
		D2	-0,36	-0,09	1,78	3,27	-1,44	4,65	4,37	1,49	0,64
	-H ₂ O ₂	D2	1,50	2,12	5,84	2,30	1,01	2,22	4,44	0,11	1,81
	-1 12O2	D3	-1,36	-0,49	1,65	4,30	1,59	3,82	4,71	-0,34	1,24
Bion		D3	-0,95	-0,13	4,27	1,21	0.74	2,13	4,05	1,09	0,36
Dion		D2	-0,87	1,18	-0,39	5,25	1,78	4,75	5,08	1,98	0,93
	+H ₂ O ₂	D2	1,57	1,44	2,22	1,04	0,26	3,69	2,97	-0,06	0,68
	TI 12 O 2	D3	-1,81	0,16	2,35	6,40	2,38	3,03	6,33	-0,37	2,08
		D3	0,03	1.38	3,84	2,82	1,75	2,30	3,97	2,74	1,14
	-H ₂ O ₂	D2	1,79	2,28	1,63	0,93	-0,45	1,98	2,99	-1,09	1,76
Rhodofix	-1 12 U 2	D3	0,60	1,89	3,86	1,57	0,54	2,53	4,13	-1 04	1,59
	+H ₂ O ₂	D2	1,71	1,74	1,84	0,13	-021	1,64	2,93	0,34	1,58

Régalis	Tratami	entos	Tiempo de extracción	CHS	DFR	PPO	HMGR	FPPS	Far	CSL	APOX	GST
Régalis			D3	0,50	1.68	3,01	1,52	0,55	1,71	4,55	-0,20	1,18
Régalis D3 022 0,67 0,57 2,90 1,42 1,79 1,90 -0,73 2,73 Régalis D2 0,14 0,67 -1,85 3,50 1,10 2,43 1,63 1,34 1,4 H2O2 2,88 3,35 4,53 -0,92 0,59 3,11 0,79 2,2 D3 0,85 2,57 -0,43 3,49 2,97 2,62 2,12 -069 1,7 D3 0,18 0,51 1,47 -0,29 0,09 -0,42 1,18 -3,31 -0,0 1,1 -0,42 1,18 -3,31 -0,0 0,0 0,23 0,48 -0,18 0,59 0,53 0,5 0,53 0,0 <t< td=""><td></td><td></td><td>D2</td><td>0,16</td><td>0,63</td><td>-0,16</td><td>1,72</td><td>0,11</td><td>2,12</td><td>0,35</td><td>1,25</td><td>1,09</td></t<>			D2	0,16	0,63	-0,16	1,72	0,11	2,12	0,35	1,25	1,09
Régalis D3		ЦΛ	D2	1,83	2,13	0,41	-0,04	-022	0,76	1,87	0,39	1 56
H2O2		-⊓ ₂ U ₂	D3	022	0,67	0,57	2,90	1,42	1,79	1,90	-0,73	2,28
HH ₂ O ₂ D2	Dámalia		D3	0,83	2,32	1,15	0,31	0,14	-0,20	2,15	-1,34	1,52
PRM12	Regalls		D2	0,14	0,67	-1,85	3,50	1,10	2,43	1,63	1,63	1,48
PRM12		0	D2	2,88	3,35	4,53	-0,92	0,22	0,59	3,11	0,79	2,14
PRM12		+n ₂ U ₂	D3	0,85	2,57	-0,43	3,49	2,97	2,62	2,12	-069	1,77
PRM12			D3	0,18	0,51	1,47	-0,29	0,09	-0,42	1,18	-3,31	-0,46
PRM12		ЦΛ	D2	0,08	0,23	1,59	0,23	0,46	-0,18	0,59	0,53	0,48
HH ₂ O ₂ D3 D3 D2 D4 D4 D5 D5 D5 D5 D6 D7 D7 D8 D7 D8	DDM40	-H ₂ U ₂	D3	3,78	4,60	5,67	1,41	0,62	0,57	4,12	1,15	1,88
MeJA -H ₂ O ₂ D2 2,97 2,92 1,28 1,49 0,00 2,34 2,29 3,00 1,87 0,44 -H ₂ O ₂ D3 1,22 1,55 0,78 1,16 0,13 1,51 1,81 0,95 -0, 1,47 1,36 1,23 0,60 0,43 0,39 1,46 2,11 0,4 2,11 0	PRIVITZ		D2	1,96	1,98	-058	-1,17	1,18	-1,85	1,90	1,01	0,44
MeJA -H2O2 D3 1,22 1,55 0,78 1,16 0,13 1,51 1,81 0,95 -0,7 HH2O2 D2 3,73 3,43 0,80 -0,38 -0,07 0,74 2,26 1,87 0,0 D2 D3 1,47 1,36 1,23 0,60 0,43 0,39 1,46 2,11 0,4 D4 2,34 2,06 -0,69 1,55 -2,61 0,92 -0,86 0,00 -3, D7 1,45 2,08 -0,74 1,05 -2,61 0,92 -0,86 0,00 -3, D10 1,08 1,87 -0,14 1,28 -3,63 1,64 0,50 1,90 -1, D1 0,93 0,87 0,37 -1,18 -0,12 3,26 1,24 0,00 0, D2 -0,67 0,78 1,76 1,66 -2,51 1,06 -0,15 -1,37 -0, PEG D3		+H ₂ U ₂	D3	0,23	1,10	0,63	0,09	0,30	-1,62	1,42	-1,91	0,68
MeJA -rr ₂ O ₂ D3 1,22 1,55 0,78 1,16 0,13 1,51 1,81 0,95 -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,		11.0	D2	2,97	2,92	1,28	1,49	0,00	2,34	2,29	-3,00	1,00
H ₂ O ₂ D2 D3 1,47 1,36 1,23 0,60 0,43 0,39 1,46 2,11 0,4 1,40 1,20 D2 0,73 1,83 -1,22 0,38 -1,48 2,62 -0,41 -1,40 -2, 0,40 D7 1,45 2,08 -0,74 1,05 -2,61 0,92 -0,86 0,00 -3, D7 1,45 2,08 -0,74 1,05 -2,70 2,51 -0,10 0,54 -1, D10 1,08 1,87 -0,14 1,28 -3,63 1,64 0,50 1,90 -1, D1 0,93 0,87 0,73 -1,18 -0,12 3,26 1,24 0,00 0,2 0,05 1,12 0,35 -0,87 0,29 0,96 1,18 2,38 -0,0 D2 -0,67 0,78 1,76 1,66 -2,51 1,06 -0,15 -1,37 -0, D4 1,96 1,90 1,74 1,83 -2,02 -0,07 -4,15 0,18 0,75 0,68 -0, D10 1,09 1,00 1,09 1,00 1,22 0,45 -4,63 -2,01 1,65 -1,06 -0. D1 Paraquat D2 -1,49 -1,44 6,27 1,20 0,15 2,30 4,42 2,01 1,48 0,41 -0,41 -0,41 -0,41 -0,41 -0,41 -0,41 -0,41 -0,41 -0,41 -0,41 -1,41 -0,41 -1,41 -1,40 -2,41 -1,41 -1,40 -2,41 -1,41 -1,40 -2,41 -1,40	MolA	$-\Pi_2U_2$		1,22	1,55	0,78	1,16	0,13	1,51	1,81	0,95	-0,15
Deshidratación D2 D3 D4 D4 D5 D5 D6 D7 D7 D7 D7 D7 D7 D7 D7 D7	IVIEJA		D2	3,73	3,43	0,80	-0,38	-0,07	0,74	2,26	1,87	0,47
Deshidratación D4 D7		+H ₂ U ₂	D3	1,47	1,36	1,23	0,60	0,43	0,39	1,46	2,11	0,87
Deshidratación D4 D7			D2	0,73	1,83	-1,22	0,38	-1,48	2,62	-0,41	-1,40	-2,02
PEG D3	Doobidro	tasián	D4	2,34	2,06	-0,69	1,55	-2,61	0,92	-0,86		-3,05
PEG D3 0,64 2,42 -1,57 0,20 -0,79 1,45 2,23 1,31 -0, D7 1,74 1,83 -2,02 -0,07 -4,15 0,18 0,75 0,68 -0, D1 1,09 1,00 1,22 0,45 -4,63 -2,01 1,65 -1,06 -0. D1 -1,56 -0,74 0,67 2,85 1,02 2,76 2,29 0,00 1,48 0,30 -2,04 -2,04 -2,09 4,63 -0,24 -1,83 1,85 5,43 1,48 0,8 -1,40 -2 -1,33 0,80 -0,71 -0,07 -1,18 -0,97 -0,02 0,38 -0, -0,51 -0,33 0,80 -0,71 -0,07 -1,18 -0,97 -0,02 0,38 -0, -0,51 -0,33 0,30 -0,51 -0,07 -1,18 -0,97 -0,02 0,38 -0, -0,51 -0,73 -1,75 3,13 1,96 0,51 -0,38 -1,38 0,3	Desnidia	itacion	D7	1,45	2,08	-0,74	1,05	-2,70	2,51	-0,10	0,54	-1,37
PEG D3			D10	1,08	1,87	-0,14	1,28	-3,63	1,64	0,50	1,90	-1,55
PEG D3			D1	0,93	0,87	0,37	-1,18	-0,12	3,26	1,24	0,00	0,20
PEG D3 0,64 2,42 -1,57 0,20 -0,79 1,45 2,23 1,31 -0, D4 1,96 1,80 1,17 1,33 -3,95 -1,20 1,20 -0,35 -0, D7 1,74 1,83 -2,02 -0,07 -4,15 0,18 0,75 0,68 -0, D10 1,09 1,00 1,22 0,45 -4,63 -2,01 1,65 -1,06 -0. D1 -1,56 -0,74 0,67 2,85 1,02 2,76 2,29 0,00 1,9 Paraquat D2 -1,49 -1,14 6,27 1,20 0,15 2,30 4,42 2,01 1,4 D3 -2,04 -2,09 4,63 -0.24 -1,83 1,85 5,43 1.48 0,8 D2 0,35 0,50 -1,99 2,70 1,94 2,37 0,53 0,41 -0, H ₂ O ₂ D3 -0,51 <t< td=""><td></td><td></td><td>D2</td><td>0,05</td><td>1,12</td><td>0,35</td><td>-0,87</td><td>0,29</td><td>0,96</td><td>1,18</td><td>2,38</td><td>-0,01</td></t<>			D2	0,05	1,12	0,35	-0,87	0,29	0,96	1,18	2,38	-0,01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			D2	-0,67	0,78	1,76	1,66	-2,51	1,06	-0,15	-1,37	-0,73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PEC	G	D3	0,64	2,42	-1,57	0,20	-0,79	1,45	2,23	1,31	-0,39
D10 1,09 1,00 1,22 0,45 -4,63 -2,01 1,65 -1,06 -0. D1 -1,56 -0,74 0,67 2,85 1,02 2,76 2,29 0,00 1,9 Paraquat D2 -1,49 -1,14 6,27 1,20 0,15 2,30 4,42 2,01 1,8 D3 -2,04 -2,09 4,63 -0.24 -1,83 1,85 5,43 1.48 0,4 D2 0,35 0,50 -1,99 2,70 1,94 2,37 0,53 0,41 -0, H ₂ O ₂ D3 -0,51 -0,73 -1,75 3,13 1,96 0,51 -0,38 -1,38 0,3			D4	1,96	1,80	1,17	1,33	-3,95	-1,20	1,20	-0,35	-0,71
D10 1,09 1,00 1,22 0,45 -4,63 -2,01 1,65 -1,06 -0. D1 -1,56 -0,74 0,67 2,85 1,02 2,76 2,29 0,00 1,8 D2 -1,49 -1,14 6,27 1,20 0,15 2,30 4,42 2,01 1,8 D3 -2,04 -2,09 4,63 -0.24 -1,83 1,85 5,43 1.48 0,4 D2 0,35 0,50 -1,99 2,70 1,94 2,37 0,53 0,41 -0, H ₂ O ₂ D3 -0,51 -0,73 -1,75 3,13 1,96 0,51 -0,38 -1,38 0,3			D7	1,74	1,83	-2,02	-0,07	-4,15	0,18	0,75	0,68	-0,79
Paraquat D1			D10		1,00	1,22	0,45	-4,63	-2,01	1,65	-1,06	-0.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			D1	-1,56	-0,74	0,67	2,85	1,02	2,76		0,00	1,99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parag	luat	D2	-1,49	-1,14	6,27	1,20	0,15	2,30	4,42	2,01	1,83
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			D3	-2,04	-2,09	4,63	-0.24	-1,83	1,85	5,43	1.48	0,80
H ₂ O ₂ D3 -0,51 -0,73 -1,75 3,13 1,96 0,51 -0,38 -1,38 0,3			D2	0,35	0,50	-1,99	2,70	1,94	2,37	0,53	0,41	-0,81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		`	D2	1,33	0,80	-0,71	-0,07	-1,18	-0,97	-0,02	0,38	-0,02
	H ₂ C	J 2	D3		-0,73	-1,75	3,13		0,51	-0,38	-1,38	0,33
D3 -0,09 0,57 1,24 1,37 0,85 2,02 1,64 0,77 0,			D3	-0,09	0,57	1,24	1,37	0,85	2,02	1,64	0,77	0,40
			6h						6,13			4,10
6h -4,28 -4,32 6,18 2,86 2,64 4,46 3,90 0,61 2,50			6h	-4,28	-4,32	6,18	2,86	2,64	4,46	3,90	0,61	2,53
	∟ amyl	ovora										3,24
												3,43

Tabla 6

		J2	0,44	-0,45	0,19	-0,04	0,41	-1,51	0,37	-0,80	0,10	-0,09
	ЦΛ	J2	1,57	0,26	0,66	-1,38	0,08	-0,34	-0,61	0,56	-0,26	3,15
	-H ₂ O ₂	J3	-1,16	0,71	0,00	-0,73	0,16	-1,33	-0,69	-0,29	0,00	-0,65
Baba		J3	0,95	-0,30	0,35	1,66	-1,70	2,55	0,09	0,29	0,43	0,41
Daba		J2	2,20	-0,87	0,75	2,04	1,13	0,34	0,10	-0,44	1,14	0,60
	+H ₂ O ₂	J2	2,28	-0,16	0,44	-1,76	-0,69	-1,71	-0,41	-0,16	2,13	1,94
	+1 12O2	J3	1,41	-0,15	2,10	2,96	0,97	0,27	-0,62	1,52	0,64	1,69
		J3	3,22	-0,29	1,88	2,11	-0,58	-0,35	0,09	1,02	2,14	1,32
		J2	3,76	-0,36	1,31	2,63	3,21	1,67	-0,75	-1,13	1,28	-0,64
	-H ₂ O ₂	J2	2,77	0,56	-0,27	-0,32	3,65	4,54	-1,00	-1,32	2,24	2,03
	-1 12 O 2	J3	3,56	-0,30	0,49	1,61	3,26	2,22	-1,18	-0,57	1,36	0,05
Rion	Rion		0,99	2,50	4,79	0,00	-0,62	0,69	0,22			
БЮП		J2	4,75	-1,34	0,97	2,35	3,50	2,08	-1,78	-1,39	1,60	-0,09
	+H ₂ O ₂	J2	1,76	0,28	0,06	0,50	2,74	3,47	0,31	-0,32	3,40	2,22
	+I 12O2	J3	1,72	-1,08	0,94	1,89	4,09	1,77	-1,71	-1,46	1,78	-0,70
		J3	5,67	0,31	1,27	3,73	4,15	7,33	0,16	0.87	3,01	1,67
	-H ₂ O ₂	J2	3,68	009	0,44	1,68	2,49	0,38	0,39	-1,04	0,98	2,03
Rhodofix	-I 12O2	J3	6,80	-0,10	0,51	2,97	3,04	4,50	-009	-1,54	2,42	-0,13
KIIOUOIIX	+H ₂ O ₂	J2	4,84	0,15	090	-0,18	2,16	2,19	0,19	-0,60	2,68	1,42
	∓ 1 12 U 2	J3	5,52	-026	1,11	2,66	1,12	4,09	0,40	0,20	4,22	0,89

		J2	2,92	063	0,39	3,00	2,14	1,84	-059	-0,14	0,93	1,52
		J2	2,94	0,63	-0,46	0,30	1,43	0,52	-0,15	-0,10	1,81	1,56
	$-H_2O_2$	J3	1,50	0,82	0,19	1,63	3,43	-0,99	0,20	-0,66	0,66	-0,44
5, "		J3	5,21	0,78	-0,07	2,72	1,49	1,08	0,25	-0,38	1,52	-0,17
Régalis		J2	4,60	-054	0,17	3,65	1,40	-0,35	-1,07	-1,78	1,27	0,68
		J2	2,65	0,68	-0,72	-1,86	0,76	2,12	0,44	-0,64	2,81	0,91
	+H ₂ O ₂	J3	2,10	-0,31	0,58	0,44	2,50	-0,96	0,10	-0,27	0,85	-1,09
		J3	1,28	-0,04	0,51	1,12	0,01	-0,02	0,89	-3,59	3,40	0,66
	11.0	J2	0,56	0,67	0,78	0,29	0,34	-1,70	-0,39	-0,34	0,93	2,56
DDM40	$-H_2O_2$	J3	3,25	0,94	1,05	-0,90	-0,13	4,08	1,72	0,40	2,23	0,59
PRM12		J2	3,59	0,36	0,30	1,47	-0,50	-0,94	-0,24	-0,22	3,56	2,74
	+H ₂ O ₂	J3	2,52	0,00	1,24	4,88	-0,32	1,27	0,13	1,03	4,56	2,32
	ц О	J2	0,66	1,52	0,05	0,98	1,91	1,25	1,60	1,25	1,92	3,82
MeJA	$-H_2O_2$	J3	3,86	0,01	1,14	3,87	1,22	0,85	1,45	0,63	1,96	1,22
IVIEJA		J2	2,84	0,70	0,48	-2,02	-0,17	-0,06	1,51	0,73	3,48	2,54
	$+H_2O_2$	J3	4,29	0,35	1,48	2,16	0,98	3,46	1,99	1,61	2,28	1,80
		J2	-0,03	-0,89	0,23	-1,95	-0,07	-1,80	1,19	0,30	0,32	-1,87
Deshidra	otopión	J4	0,00	-0,87	0,00	0,00	0,44	-2,58	1,07	0,00	0,71	0,00
Desilidia	alacion	J7	1,54	-048	-0,53	2,56	0,13	0,63	1,85	-0,46	0,03	-1,23
		J10	2,44	-043	0,12	4,46	0,23	-0,39	2,06	0,04	1,74	091
		J1	0,00	0,59	0,00	0,00	0,24	-1,23	1,51	0,00	-1,96	0,00
		J2	-1,33	0,72	0,24	2,18	0,46	0,70	2,48	1,06	0,69	0,02
		J2	-1,07	-0,52	0,38	-1,23	-0,92	-0,10	2,19	-0,46	-0,56	-1,82
PE	G	J3	-3,29	-031	-089	-098	0,96	3,41	0,41	-1,00	0,51	-0,36
		J4	0,81	0,86	0,43	2,37	-1,62	-1,24	1,36	-1,43	-0,33	0,63
		J7	0,00	0,06	0,86	2,38	-0,54	-2,30	1,96	-019	-0,36	0,18
		J10	-2,50	0,58	-0,08	0,56	-2,40	-1,11	1,00	-1,66	1,16	-0,07
		J1	0,00	0,04	0,00	0,00	0,83	4,01	-0,58	0,00	-1,33	0,00
Parac	quat	J2	4,26	0,27	0,42	2,17	2,89	6,37	-0,54	-0,81	0,02	0,21
		J3	-0,53	-0,51	0,01	-2,82	2,28	2,76	-2,37	-2,46	0,41	-0,11
		J2	1,07	-1,64	1,67	-0,44	1,42	-0,04	0,18	1,09	0,89	1,44
ш.	`	J2	1,06	0,29	0,27	-1,62	-0,36	-0,12	-0,45	-0,27	1,36	1,53
H ₂ C	J ₂	J3	-0,26	-0,72	-0,10	0,71	0,19	-2,26	0,16	-0,56	0,30	-0,26
		J3	1,88	-0,54	0,93	1,65	2,08	4,02	0,42	0,43	0,84	0,41
		6h	2,76	1,95	1,31	-1,27	1,36	6,02	-4,60	-3,83	1,66	5,00
E amu	lovoro	6h	3,64	1,63	2,92	-0,60	2,03	8,29	-4,63	-0,19	1,37	6,02
E. amy	ovoid	24h	-0,79	1,81	0,09	-3,72	1,25	2,13	-3,50	-2,34	1,31	1,74
		24h	1,12	2,46	-0,42	-5,98	0,91	2,51	-2,57	-5,31	1,11	0,97

Ensayo 2 - Validación de la pertinencia de los genes seleccionados a partir de 10 SDN

Protocolo:

Los productos ensayados se enumeran en la tabla 7. Se trata de 10 candidatos SDN, así como un antibiótico (la Plantomicina).

Tabla 7

10

Productos ensayados	Materia activa	Concentración ensayada *	Observaciones
Aliette (BayerCropScience)	Fosetil-Al	6 g/l	Fungicida, SDN
Amid-Thin (Nufarm)	1-Naftalenoacetamida	0,6 g/l	Aclarador análogo a la auxina
Bion (Syngenta)	Acibenzolar-S-metilo	0,4 g/l	Análogo SA, SDN
lodus (Goëmar)	Laminarina	7,5 ml/l	SDN
Maxcel (Valent Biosciences)	6-benciladenina	7,5 ml/l	Aclarador análogo a la citoquinina
PRM12 (BaverCropScience)	Etefón	3 ml/l	Aclarador precursor de etileno
Régalis (BASF)	Prohexadiona-Ca	2,5 g/l	Regulador de crecimiento análogo ácido 2-oxoglutárico
Rhodofix (Nufarm)	∞-Naftil ácido acético	1,5 g/l	Aclarador análogo a la auxina
Stifénia (S.O.F.T.)	Extracto de semillas de fénugrec	10 g/l	SDN
V-Plaask (Plaaskem)	Derivados SA + fertilizador	10 ml/l	Fertilizador y SDN
Plantomicina	Estreptomicina	0,56 g/l	Antibiótico

- * Concentración en producto formulado
- * Para el análisis de defensas

15

20

30

35

45

55

60

- 5 Los ensayos se llevan a cabo en condiciones semicontroladas en invernadero (23°C día/17°C noche, iluminación natural, completamente neón), sobre plántulas de manzano (procedente de semillas de la variedad Gloden Delicious), en crecimiento activo, en las fases de 3 a 6 hojas.
- Las plantas son pulverizadas hasta el rechazo con los productos candidatos o con agua (control negativo) a D0, con pulverizador de aire comprimido.

La mitad de estas plantas se pulveriza con peróxido de hidrógeno (dilución a la 200ª de una solución al 30%) con pulverizador manual a D1 (D0 + 1 día) para simular un ataque de *Erwinia amylovora*, agente del fuego bacteriano (esto permite localizar un efecto potencializador de las defensas frente al estimulador directo, para los productos ensayados).

Unas extracciones de discos foliares (10 discos de 0,6 cm de diámetro sobre 5 hojas F1 agrupadas/extracción) se efectúan el D0 (plántulas no tratadas = calibrador), después el D1 (antes del tratamiento con peróxido de hidrógeno), y finalmente el día D2 (D0 + 2 días) y D3 (D0 + 3 días) sobre los lotes, o no, con peróxido de hidrógeno.

Los discos foliares son inmediatamente congelados en nitrógeno líquido y conservados a -80°C hasta la extracción de los ARN. Estos últimos son retrotranscritos en ADNc y los niveles de expresión de genes de defensa se siguen por qPCR (SYBR Green) con la ayuda de la herramienta según la invención.

25 Se han realizado tres ensayos biológicos para el conjunto de los productos.

Los niveles de expresión relativa son calculados con el método de ΔΔCt: se trata de expresiones relativas con respecto al calibrador (D0) o con respecto a los controles agua en cada tiempo de extracciones, normalizadas por la media geométrica de las expresiones relativas de 3 genes de referencia (TuA, actina, GAPDH). Estas expresiones relativas son transformadas en log₂ para dar el mismo peso a las inducciones y a las represiones de genes.

* Para el análisis del poder de protección

Estos mismos productos se ensayaron por su poder de protección frente al fuego bacteriano de la manera siguiente.

Los ensayos se realizan sobre el mismo tipo de material vegetal y en unas condiciones de invernadero idénticas a las anteriores.

Los productos son pulverizados con el mismo pulverizador que anteriormente, 4 días o 4 horas antes de la inoculación artificial por *E. amylovora* (parcelas de 3x10 plántulas por producto y por tiempo de tratamiento-inoculación).

El día de la inoculación, la hoja más joven desarrollada (F1) de cada plántula (que ya se haya tratado 4 días antes por los productos, o que esté a punto de recibir un tratamiento denominado "-4h") se daña con la ayuda de un escalpelo (2 cortes paralelos en el 1/3 inferior de la hoja, y perpendiculares a la nervadura principal).

Se realizan entonces los tratamientos "-4h".

Cuatro horas después del tratamiento, una suspensión bacteriana de la cepa CFBP1430 de *E. amylovora*, preparada en agua estéril a 10⁸ cfu/ml, se inocula por pulverización (con pulverizador a presión) sobre el conjunto de las plantas tratadas 4 días o 4 horas antes, y dañadas 4 horas antes.

La codificación de los síntomas, es decir la presencia de una necrosis que ha evolucionado sobre el tallo a partir de la hoja dañada, se realiza 3 semanas después de la inoculación. El porcentaje de plantas infectadas se calcula en cada parcela de 10 plantas y se refiere a la media de los porcentajes de infección obtenidos para las 3 parcelas control "agua" del mismo ensayo (infección relativa). Las distribuciones de los porcentajes de infección relativa obtenidos (intra e inter-experimentos) esetám representadas por unos diagramas de cajas de Tuckey: la mediana se representa mediante la línea ancha negra en el centro de la caja y la media por el cuadrado; los puntos representan los intervalos de confianza de la mediana (P=0,05).

Se han realizado por lo menos dos ensayos independientes sobre el conjunto de los productos.

Resultados:

10

20

30

40

* Análisis de las defensas

5 Los resultados de expresión media de los 28 genes diana están detallados en las tablas 8 y 9 siguientes; estos resultados están distribuidos en varias tablas, únicamente en aras de la presentación.

Los resultados de expresión de los genes procedentes de la herramienta según la invención (tabla 8 y 9) revelan 4 productos (Bion, Iodus, Régalis, Rhodofix) capaces de activar unas defensas de manera repetible sobre las 3 repeticiones biológicas independientes.

Las inducciones se refieren a un juego bastante próximo de genes en las hojas de manzano con, no obstante, algunas diferencias.

- a) Bion es el producto que activa más genes, de manera más intensa (algunos genes son regularmente expresados 2¹⁰ veces más en los tejidos tratados con Bion que en los tejidos control) y de manera muy reproducible. Los genes de la vía SA son particularmente inducidos, y esta fuerte inducción está correlacionada con una represión de los genes de la vía JA, lo que es coherente con el antagonismo vía SA/vía JA descrito en la bibliografía.
 - b) Iodus, Régalis y Rhodofix activan, de manera significativa, sólo una parte de los genes inducidos por el Bion, o de manera menos constante. Por ejemplo, PR1, PR5 o PPO son 3 genes fuertemente activados por el Bion y, nada o poco por estos 3 productos.
- c) Régalis muestra un efecto potencializador ya que las inducciones de genes se manifiestan sobre todo después del tratamiento con peróxido de hidrógeno (particularmente visible para el gen PECT).
 - d) los 3 otros productos que reivindican una acción SDN, a saber Aliette, Stifenia y V-Plaask, así como los 3 otros aclaradores, a saber Amid Thin, Maxcel y PRM12, o también el producto biocida Plantomicina, no provocan ninguna inducción reproducible y significativa.

* Análisis de la protección

Entre los 11 productos ensayados, sólo tres manifiestan una eficacia de protección frente al fuego bacteriano cuando son pulverizados 4 días antes de la inoculación (condiciones para revelar un efecto estimulador): se trata del Bion, de Régalis y de Rhodofix, que reducen significativamente los porcentajes de infección de las plántulas (figura 1A).

Los productos que no inducen ninguno de los genes de defensa presentes en la herramienta, así como lodus, que es capaz de inducir algunas defensas, no tienen eficacia de protección cuando se aplican 4 días antes de la inoculación.

Pulverizados algunas horas antes de la inoculación, Bion conserva una eficacia muy significativa; y Régalis presenta siempre una eficacia que sigue siendo asimismo significativa, a pesar de ser menos elevada (figura 1B).

45 Estas eficacias no alcanzan, sin embargo, la obtenida con la Plantomicina, biocida frente a E. amylovora.

Ningún otro producto disminuye, de manera significativa y reproducible, los porcentajes de infección de las plántulas.

* Conclusión

A la vista de estos resultados, la herramienta según la invención permite eliminar la mayoría de los productos candidatos SDN que se muestran sin potencial de protección de las plántulas de manzano frente al fuego bacteriano, es decir Aliette, Amid Thin, Maxcel, PRM12, Stifenia, V-Plaask.

55 Entre los 4 productos retenidos por el cribado (Bion, Iodus, Régalis, Rhodofix), sólo lodus no muestra finalmente ninguna eficacia de protección sobre las plántulas frente al fuego bacteriano.

La herramienta según la invención es por lo tanto útil para seleccionar los productos que tienen un potencial de protección (por lo menos frente al fuego bacteriano), y que merecen ser considerados para experimentación.

60

ω
α
亙
ď

Tratamiento	Plazo	PR1	PR2	PR4	PR5	PR8	PR14	PR15	PAL	ANS	CHS	DFR	PPO	HMGR	FPPS
Aliette	D1	-0,97	0,16	0,31	0,50	-0,28	0,10	2,13	0,37	60'0-	-0,01	-1,01	2,64	0,18	-0,40
	D2	-2,12	-2,17	0,92	-2,16	0,87	-0,20	0,46	-0,25	0,21	-0,03	0,22	-1,07	0,63	0,12
	D3	-0,55	0,49	0,48	0,26	-0,02	-1,27	-0,41	-1,17	-1,32	-1,55	-0,92	1,00	0,41	-0,18
	$D2 + H_2O_2$	-0,68	1,05	3,91	-0,94	3,17	0,81	0,00	-0,95	-0,75	-0,70	-0,43	-0,09	0,54	0,00
	$D3 + H_2O_2$	0,04	3,21	0,70	1,30	0,24	-0,01	0,53	-1,26	-1,58	-1,36	-1,06	1,64	0,44	-0,10
Amid Thin	7	0,81	0,80	0,86	-0,57	0,39	1,50	-0,39	60'0	0,23	0,23	0,45	1,05	0,52	-0,39
	D2	-0,13	-0,73	0,65	-0,81	0,40	-0,32	0,52	90'0	0,74	0,54	0,53	-0,45	-0,05	0,02
	D3	-0,58	0,44	-0,37	0,21	-0,15	0,33	0,04	-0,23	-0,05	-0,56	-0,23	0,95	0,20	0,59
	$D2 + H_2O_2$	0,37	2,33	3,22	-0,07	2,39	1,78	1,66	-0,16	-0,39	-0,19	-0,08	0,38	-0,17	0,45
	D3 + H ₂ O ₂	0,16	2,30	1,21	0,49	1,06	1,04	0,01	-1,17	-1,52	-1,73	-0,64	0,10	0,42	0,43
Bion	7	1,74	6,30	5,80	3,73	2,51	1,06	-0,62	-0,17	-1,79	-1,64	-1,51	1,19	2,18	0,93
	D2	3,47	8,78	9,62	4,12	4,82	3,99	-0,89	2,22	0,97	0,78	1,10	3,65	3,31	1,74
	D3	6,18	11,20	96'6	4,70	5,29	7,61	4,24	1,11	0,09	0,26	0,30	5,55	1,64	1,02
	$D2 + H_2O_2$	3,58	9,23	9,75	4,07	5,72	4,19	1,06	2,06	-0,17	-0,16	0,04	4,74	3,84	1,42
	$D3 + H_2O_2$	6,07	11,05	8,99	4,46	4,97	6,87	2,40	0,78	0,53	0,04	0,20	4,32	2,23	0,75
snpol	D1	1,67	6,04	6,91	1,24	3,37	4,09	1,90	0,20	-1,37	-1,03	-0,62	2,55	2,20	1,55
	D2	4,53	4,74	6,88	3,15	5,46	6,92	1,75	1,13	1,04	0,14	1,61	1,81	2,76	-0,02
	D3	3,30	3,22	4,64	1,56	2,43	1,26	0,08	-2,39	0,07	-0,42	-0,03	2,48	0,48	-0,25
	$D2 + H_2O_2$	3,93	4,28	6,98	3,35	5,28	98'9	1,51	0,11	0,86	-0,63	1,10	0,89	2,71	0,05
	D3 + H ₂ O ₂	3,54	3,31	4,74	2,02	2,65	1,76	0,44	0,69	0,53	-0,20	0,54	2,39	0,75	-0,19
Maxcel	7	0,45	-0,87	0,99	-0,20	0,10	0,77	-0,01	-0,01	0,20	-0,17	0,59	0,26	0,11	-0,59
	D2	-0,20	-1,11	0,18	-0,21	0,34	1,03	0,26	-0,31	0,65	0,07	0,55	-1,06	0,17	-0,06
	D3	0,75	-0,27	-0,01	0,08	-0,71	-2,12	1,00	-0,47	-1,14	-0,75	-0,21	0,61	0,04	0,43
	$D2 + H_2O_2$	0,77	1,23	2,92	-0,46	2,81	0,88	0,32	-0,29	0,44	-0,50	0,59	-1,08	0,05	-0,03
	$D3 + H_2O_2$	0,64	2,02	0,30	0,89	1,15	-0,49	-0,14	-0,42	-0,85	-0,77	-0,10	0,00	0,67	0,47
PRM12	7	-0,79	0,01	2,58	-0,61	0,92	1,82	-0,97	1,06	0,92	0,37	1,13	0,62	96'0	-0,70
	D2	00,0	-0,31	99'0	-1,59	0,74	-1,04	-0,64	-0,44	0,32	-0,04	00'0	-0,22	0,36	-0,10
	D3	-0,49	0,10	0,11	0,20	-0,76	-1,25	1,16	-0,60	-0,91	-0,80	-0,52	1,15	60,0-	-0,09
	$D2 + H_2O_2$	1,17	2,72	2,68	-0,41	2,77	1,47	1,75	-0,01	0,86	0,33	0,92	1,03	0,49	0,33
	$D3 + H_2O_2$	-0,35	2,21	0,64	0,49	0,68	-1,21	0,17	-1,18	-1,36	-1,48	-0,70	0,15	0,19	-0,14
Regalis	7	-0,24	0,79	3,93	-0,05	1,52	1,62	1,27	0,31	1,11	0,78	0,47	3,48	99'0	0,16
	D2	0,28	2,27	4,29	1,65	2,45	1,75	1,43	0,01	1,77	0,82	1,02	0,32	0,20	0,41
	D3		4,69	3,25	1,13	2,96	1,70	-0,04	0,63	1,54	0,97	1,04	0,38	0,64	0,17
	D2 + H ₂ O ₂		5,46	7,22	2,55	4,21	4,20	2,33	69'0	1,43	0,84	1,23	2,70	1,44	0,47
	D3 + H ₂ O ₂		6,25	6,17	2,94	4,20	3,20	1,13	1,29	1,52	1,25	1,78	2,35	1,08	0,45
Rhodofix	D1	1,46	4,99	6,65	0,83	3,69	6,53	0,88	0,39	0,00	0,15	0,64	2,77	1,89	0,76
	D2	1,27	6,82	7,40	3,26	4,33	4,18	-0,26	1,21	1,4	1,51	1,03	0,35	1,70	0,56
	D3	0,34	4,00	2,56	1,51	0,57	0,42	0,68	0,09	-0,17	-0,11	0,05	-0,12	-0,23	-0,08
	D2 + H ₂ O ₂	0,37	6,46	6,92	2,61	4,04	4,83	-0,44	-0,01	-0,10	90'0	0,01	0,48	1,25	0,36

_							0,02 0,01										
Ė							1,91										
DFR	0,82	-1,59	0,63	1,14	0,58	0,23	-1,04	-1,50	-0,96	0,04	-0,68	-0,20	-0,33	-0,78	0,64	-1,00	-0,65
CHS	-0,45	-1,00	0,68	0,64	0,03	-0,39	-0,99	-1,28	-0,25	0,07	-0,44	0,35	-1,44	-1,29	-1,03	-1,61	-0,80
ANS	-0,24	-1,13	0,88	0,30	0,71	-0,13	-1,42	-0,79	-1,00	-0,07	-0,63	0,52	-0,25	-0,61	0,27	-1,39	-0,63
PAL	-0,01	-1,12	0,31	0,39	0,53	-0,70	-0,48	-1,14	-0,17	-0,28	-0,88	0,24	-3,41	-0,20	-1,33	-0,79	-0,56
PR15	90'0	-1,84	1,19	1,19	0,97	-0,26	0,43	-0,94	1,93	0,37	0,58	0,83	1,02	0,23	2,54	1,05	-0,26
PR14	1,34	-0,75	1,12	1,84	2,16	0,11	0,35	0,18	0,14	1,80	-0,06	-0,05	2,37	-1,44	2,22	-1,88	1,32
PR8	2,71	-0,54	2,33	1,1	5,59	1,19	0,21	0,03	0,27	3,00	1,14	0,17	2,50	0,16	2,83	0,30	2,12
PR5	2,02	-0,46	3,09	0,11	2,55	-0,07	-0,19	-0,45	1,12	0,07	09'0	1,60	1,53	0,57	1,53	1,25	0,91
PR4	4,82	66'0-	1,56	0,47	4,01	0,00	1,51	-0,33	1,35	4,03	2,19	0,25	-0,98	0,38	1,39	0,24	3,89
PR2	4,95	0,14	1,28	0,24	1,72	-0,02	1,05	-1,16	2,59	2,96	3,31	-0,20	-0,15	-0,45	1,11	0,48	3,69
PR1	2,19	-0,80	0,72	0,61	1,32	1,31	1,23	-1,62	1,39	1,54	2,03	99'0-	0,76	0,40	0,37	1,43	0,85
Plazo	$D3 + H_2O_2$	D1	D2	D3	D2 + H ₂ O ₂	D3 + H ₂ O ₂	D1	D2	D3	D2 + H ₂ O ₂	D3 + H ₂ O ₂	D1	D2	D3	D2 + H ₂ O ₂	D3 + H ₂ O ₂	$D2 + H_2O_2$
Tratamiento		Stifenia					Plantomyc.					Vplaask					H ₂ O ₂

Tabla 9

Tratamiento	Plazo	PR1	PR2	PR4	PR5	PR8	PR14	PR15	PAL	ANS	CHS	DFR		HMGR	FPPS
Aliette	Plazo	FAR	CSF	APOX	GST	POX	CAD	CalS	PECT	EDS1	WRKY	LOX2		ACCO	EIN3
	7	-0,90	-0,16	-0,29	-0,23	66'0	0,02	-0,22	-0,32	60'0	-0,04	0,39		-0,23	-0,35
	D2	-1,62	-0,21	60,0	-0,06	-0,91	-0,12	90,0	-0,89	0,44	1,18	0,23		-0,08	20,0
	D3	0,78	-0,19	-0,29	0,16	-0,23	-0,05	-0,09	-0,24	-0,36	-1,39	0,05		-0,13	0,54
	$D2 + H_2O_2$	-1,25	0,23	0,12	0,73	2,39	90,0	0,24	0,61	1,20	0,51	0,21		0,44	0,45
Amid Thin	D3 + H ₂ O ₂	1,28	0,24	0,12	0,42	2,08	80'0	0,25	0,24	-0,21	-0,30	0,29	0,15	60'0-	69'0
	7	90'0	0,17	-0,40	0,51	0,91	0,31	-0,14	1,21	0,18	0,02	0,45		0,57	0,71
	D2	-0,54	0,16	-0,42	0,46	0,01	0,37	60'0	0,11	1,03	-0,33	0,38		0,44	0,59
	D3	-0,30	-0,14	-0,14	0,54	0,37	0,05	0,18	0,37	0,32	0,38	0,19		98'0	0,13
	$D2 + H_2O_2$	0,20	0,51	0,13	0,88	1,16	0,41	0,71	1,62	1,74	1,53	-0,09		0,89	0,35
Bion	D3 + H ₂ O ₂	96'0	-0,39	-0,47	0,44	0,77	-0,15	0,33	0,03	0,27	-0,45	-0,40		0,04	-0,27
	7	4,20	1,74	-0,06	2,35	1,66	0,51	-0,04	0,17	3,21	2,30	-0,67		0,89	0,52
	D2	3,26	5,50	0,42	2,08	3,27	0,14	-0,17	1,03	4,14	5,54	-0,36		1,26	1,02
	D3	2,54	7,15	0,62	1,86	3,47	0,38	0,49	2,26	4,09	4,99	-1,25		1,1	0,30
	$D2 + H_2O_2$	2,36	6,70	0,49	1,99	3,67	0,25	-0,18	1,10	4,65	5,61	-1,52		1,12	0,64
snpol	D3 + H ₂ O ₂	2,02	6,54	09'0	1,46	4,19	-0,02	0,16	2,07	4,22	5,04	-1,34		86'0	90'0-
	7	2,58	3,78	0,13	1,75	1,19	-0,43	-0,15	0,16	0,74	1,90	-0,34		0,91	0,03
	D2	2,45	4,08	0,36	2,07	0,94	0,65	0,50	4,70	3,14	2,68	0,68		2,52	1,14
	D3	2,23	2,33	99'0	0,98	2,57	0,84	0,78	1,97	2,63	2,16	0,33		2,94	0,82
	D2 + H ₂ O ₂	3,05	3,40	-0,08	1,90	1,46	-0,19	0,71	4,55	1,33	2,11	0,34		2,10	0,87

Tratamiento	Plazo	PR1	PR2	PR4	PR5	PR8	PR14	PR15	PAL	ANS	CHS	DFR	PPO	HMGR	FPPS
	D3 + H ₂ O ₂	1,32	3,15	-0,32	1,91	2,73	0,12	0,42	1,21	2,05	2,33	-0,25	0,37	1,23	0,11
Maxcel	7	-0,73	-0,17	-0,17	-0,23	-0,07	-0,46	-0,39	-0,23	0,11	-0,51	-0,20	-0,42	-0,19	0,10
	D2	-0,83	99'0	-0,60	0,56	-0,39	0,45	0,45	0,14	1,12	-0,11	0,29	0,00	0,52	0,93
	D3	0,15	-0,35	0,07	-0,04	0,01	-0,01	0,50	-0,19	0,22	-0,64	0,02	0,25	-0,02	-0,23
	D2 + H ₂ O ₂	-0,26	1,01	-0,07	0,79	1,34	0,51	0,11	0,12	2,25	1,34	-0,01	-0,18	0,54	0,95
	D3 + H ₂ O ₂	0,18	0,17	0,13	0,52	1,45	-0,13	0,36	0,45	1,17	0,50	0,21	0,21	0,44	0,52
PRM12	D1	0,48	-0,03	-0,70	0,22	-0,12	0,24	-0,23	0,80	0,20	-0,21	90'0	-0,90	0,40	1,61
	D2	-1,41	0,27	-0,66	0,47	-0,19	0,39	0,59	0,78	0,94	-0,36	0,02	-0,50	0,63	1,41
	D3	-0,43	0,02	-0,06	0,55	0,34	-0,03	0,70	0,73	-0,09	0,07	-0,38	-0,10	0,35	-0,05
	D2 + H ₂ O ₂	0,42	1,71	0,39	98'0	1,42	0,39	0,65	2,22	0,81	1,83	-0,03	0,10	1,1	1,72
	D3 + H ₂ O ₂	-0,40	-0,28	-0,27	0,27	0,73	-0,24	0,15	0,19	0,08	0,25	0,13	0,03	0,18	0,03
Regalis	D1	1,83	0,89	-0,07	1,26	98'0	0,40	-0,01	-0,44	0,77	2,10	-0,07	-0,40	0,31	0,31
	D2	2,15	1,87	-0,06	1,79	1,80	0,68	0,14	0,73	1,60	0,42	0,03	-0,14	99'0	90'0
	D3	2,06	1,16	0,24	1,45	2,91	0,43	0,10	0,73	1,99	1,66	0,13	-0,03	0,53	-0,10
	D2 + H ₂ O ₂	3,72	3,19	-0,08	2,61	3,32	0,41	0,21	2,30	2,78	2,14	-0,08	-0,13	1,25	0,48
	D3 + H ₂ O ₂	2,81	2,81	0,41	2,12	4,25	0,75	0,41	2,58	2,46	3,33	0,24	0,02	1,21	0,62
Rhodofix	D1	3,09	06'0	-0,27	2,34	-0,11	-0,01	0,81	2,72	2,76	1,47	80'0	69'0-	2,01	0,91
	D2	3,18	2,97	-0,57	2,02	98'0	0,73	1,24	3,50	4,17	0,84	0,86	-0,31	1,79	1,59
	D3	1,51	1,21	0,08	1,01	1,74	0,50	1,07	3,01	0,91	-0,58	0,62	0,39	0,79	0,81
	+	3,16	2,41	-0,55	1,77	1,14	0,21	0,73	2,89	3,61	0,45	60,0	-0,87	1,32	0,83
	D3 + H ₂ O ₂	1,32	2,97	-0,08	1,11	0,80	0,18	0,67	2,21	2,30	0,87	0,08	-0,57	0,98	-0,17
Stifenia	7	0,15	-0,85	-0,64	-0,32	-0,44	-0,42	-0,71	-1,08	-0,32	0,33	-0,48	-0,07	-0,12	-0,42
	D2	0,62	0,95	0,20	0,78	0,18	0,15	0,48	1,82	1,20	69'0	99'0	0,54	1,91	69'0
	D3	0,01	0,71	0,49	7,33	0,76	0,05	0,68	2,06	2,83	0,43	-0,16	1,47	5,54	0,88
	D2 + H ₂ O ₂	1,45	1,07	-0,71	0,84	0,65	0,48	0,31	3,30	1,94	1,14	-0,03	0,51	-0,33	1,06
	+	0,48	-0,29	0,08	7,24	0,89	0,05	0,40	1,93	2,78	0,65	-0,58	1,31	4,23	0,84
Plantomyc.	7	-0,03	-0,59	-0,02	-0,03	1,37	-0,09	-0,08	0,21	0,14	1,36	0,12	0,27	0,29	00,00
	D2	-1,10	-0,96	-0,68	-0,06	-0,72	-0,15	-0,07	-0,57	-0,02	-1,10	-0,24	-0,62	-0,15	0,20
	D3	0,53	0,65	0,39	-0,01	0,80	0,10	0,02	0,18	-0,14	1,00	-0,16	0,24	0,14	0,05
	D2 + H ₂ O ₂	0,28	1,46	-0,37	0,65	3,03	-0,04	-0,01	1,06	0,99	1,47	-0,01	-0,27	0,47	0,55
	D3 + H ₂ O ₂	0,49	0,61	-0,17	0,25	2,60	0,05	-0,05	0,69	0,29	0,11	0,00	-0,12	0,21	0,36
Vplaask	D1	-0,49	0,62	-0,06	-0,40	0,11	-0,55	-0,31	-0,40	-0,39	-0,53	-0,43	-0,12	0,42	-0,31
	D2	-0,42	-0,54	-0,18	1,32	0,32	0,58	0,54	3,05	0,81	1,01	0,03	0,38	1,60	1,12
	D3	0,26	0,49	-0,47	3,32	0,75	-0,02	0,74	-0,16	0,95	0,56	-0,21	0,46	1,95	98,0
	D2 + H ₂ O ₂	-0,44	99'0	-0,68	0,92	96'0	0,37	0,56	2,96	0,95	0,43	0,02	0,29	1,88	1,04
	D3 + H ₂ O ₂	0,23	0,25	-0,21	3,31	2,25	0,07	0,78	0,74	0,05	1,54	-0,04	0,85	2,89	0,75
H ₂ O ₂	D2+ H ₂ O ₂ D3 + H ₂ O ₃	1,07	2,28	-0,37	0,21	2,12	-0,32	-0,31	0,01	1,12 1,44	1,42	-0,39	-0,62	0,60	-0,20
	-	2, 1	10,-	2,0	6,0	- 0	2,0	,0,0	5,	1,1	1,7,1	0,00	2,2	0,0	0,0

Ensayo 3: Verificación de la fiabilidad de la herramienta sobre unas plantas sometidas a 3 condiciones de estrés: luminoso, térmico e hídrico

5 Protocolo:

*Estrés luminoso

Unas plántulas de Golden Delicious (similares a las del ensayo 2) se desplazan (D0) del invernadero de cría hacia diversos invernaderos, cámaras climáticas o armarios climáticos, que poseen unas iluminaciones cuantitativa y cualitativamente diferentes (Tabla 10) con un fotoperiodo de 16h día/8h noche en caso de iluminación artificial y un termoperiodo de 23°C día/17°C noche.

Tabla 10 - Condiciones de iluminación ensayadas

15

35

45

N° de condiciones	Lugar	Tipo de iluminación	Control de la temperatura	Humedad
Condición 1	Invernadero	Natural + neón	De apertura	Ambiente
Condición 2	Cámara	HPS + MH	Climatizador	Controlada
Condición 3	Cámara	MH	Climatizador	Ambiente
Condición 4	Cámara	HPIT	Climatizador	Controlada
Condición 5	Cámara	Neón	Climatizador	Controlada
Condición 6	Invernadero	Natural + HPS	Ventilador extractor	Ambiente
Condición 7	Invernadero	Natural + HPS	Ventilador extractor	Ambiente
Condición 8	Invernadero	Natural + neón	Ventilador extractor + "cooling"	Ambiente
Condición 9	Armario	Neón	Climatizador	Ambiente
Condición 10	Armario	Neón	Climatizador	Controlada

Sufren allí una aclimatación de 24h y después se pulverizan hasta el rechazo con un pulverizador manual con Bion (0,4 g/l) o agua (D1).

20 Se efectúan unas extracciones (metodología idéntica a la del ensayo 2) el D0 antes del desplazamiento (3 repeticiones de 10 discos), después el D1 antes del tratamiento (3 repeticiones de 10 discos) después los D3 y D4 sobre los lotes tratados (1 repetición de 10 discos/tratamiento/condición).

Las muestras son extraídas y analizadas con la ayuda de la herramienta según la invención, de manera idéntica a la del ensayo 2. Este experimento se realizó una vez.

* Estrés térmico

Se desplazan (D0) unas plántulas de Golden Delicious (similares a las del ensayo 2) desde el invernadero de cría hacia 2 armarios climáticos regulados con el mismo régimen de fotoperiodo (16h día/8h noche) pero con dos regímenes diferentes de termoperiodo (23°C día/17°C noche o 35°C día/17°C noche).

Sufren allí una aclimatación de 24h y después se pulverizan hasta el rechazo con un pulverizador manual con Bion (0,4 g/l) o agua (D1).

Se efectúan unas extracciones (metodología idéntica a la del ensayo 2) el D1 antes del tratamiento y después el D4 sobre los lotes tratados (1 repetición de 10 discos/tratamiento/condición de temperatura/fecha de extracción).

Las muestras son extraídas y analizadas con la ayuda de la herramienta según la invención, de manera idéntica a la del ensayo 2. Se realizaron dos repeticiones biológicas independientes.

* Estrés hídrico

Se disponen en un invernadero de experimentación (D-1) y dispuestos en 3 lotes, unas plántulas de Golden Delicious (similares a las del ensayo 2).

Un lote sufre inmediatamente dos riegos sucesivos con PEG6000 al 36% (inmersión, espera del resecado, y después nueva inmersión) (PEG el D-1).

Después de una aclimatación de 24h del conjunto de las plántulas, se trata un 2º lote también con PEG6000 de manera idéntica a la anterior (PEG el D0).

El conjunto de los lotes se pulveriza después hasta el rechazo con un pulverizador manual con una mitad de Bion (0,4 q/l) y la otra mitad agua.

Se efectúan unas extracciones (metodología idéntica a la del ensayo 2) el D0 sobre el lote no tratado con PEG y antes del tratamiento Bion o agua, después los D2 y D3 sobre el conjunto de los lotes (1 repetición de 10 discos/tratamiento/condición hídrica/fecha de extracción).

5

10

15

30

35

40

45

50

Las muestras son extraídas y analizadas con la ayuda de la herramienta según la invención, de manera idéntica a la del ensayo 2. Este experimento se realizó una vez.

Resultados:

* Estrés luminoso

Los resultados de expresión de los 28 genes diana se detallan a continuación en las tablas 11 y 12; estos resultados están repartidos en varias tablas, únicamente en aras de la presentación.

En estas tablas, las líneas corresponden respectivamente:

- "no tratada" = modulación observada 24h (D1) después del desplazamiento del invernadero de cría;
- 20 "agua" y "Bion" = modulación observada 48 y 72 horas después del tratamiento, es decir 3 y 4 días después del desplazamiento del invernadero de cría (D3 y D4), mediada, en las hojas de plántulas pulverizadas con Bion o con agua, respectivamente.
- La observación de los perfiles de inducción de las plántulas después de 24h de aclimatación en las diferentes condiciones de iluminación (tablas 11 y 12) muestra una correlación entre la potencia (y espectro) de la iluminación 25 complementaria e inducción de genes de la vía de los fenilpropanoides.
 - El análisis de los perfiles después del tratamiento de las plántulas con Bion, o con agua, revela que las condiciones de iluminación más estresantes no permiten demostrar un fuerte poder inductor del Bion en particular a nivel de las proteínas PR (Tabla 11), lo que no es el caso de las condiciones menos estresantes.

Algunos genes son, sin embargo, menos sensibles a las condiciones de iluminación que los que codifican ciertas proteínas PR o unas enzimas de la vía de los fenilpropanoides, y permiten demostrar el efecto estimulador del Bion en la mayoría de las condiciones: se trata de PR5, FAR y EDS1.

* Estrés térmico

Los resultados medios de expresión de los 28 genes diana están detallados en las tablas 13 y 14; estos resultados están repartidos en varias tablas, únicamente en aras de la presentación.

Para estas tablas, la leyenda es la siguiente: T normales = 23°C día/17°C noche; T normales y después estresantes después del tratamiento = 23℃ día/17℃ noche duran te 24h, después 35℃ día/17℃ noche; T estresantes = 35℃ día/17℃ noche; T estresantes y después normales de spués del tratamiento = 35℃ día/17℃ noche durante 24h después 23℃ día/17℃ noche.

Unas condiciones de estrés térmicos (35°C) son capaces de activar fuertemente algunos genes de la herramienta según la invención, en particular varias proteínas PR, en las plántulas control (tratadas con agua) cuando el estrés se mantiene a lo largo del experimento (4 días), o aplicado justo después de la pulverización del agua (tablas 13 y

Esta inducción está correlacionada con una fuerte represión de los genes de la vía de los fenilpropanoides (salvo PPO).

Estos efectos de inducción/represión son transitorios en cuanto se interrumpe el estrés, ya que no se vuelven a 55 observar las plántulas control estresadas 24h y devueltas a condiciones "normales".

La inducción de ciertas proteínas PR provocada por el estrés térmico aplicado hasta la fecha de la extracción oculta las capacidades del Bion para inducir las proteínas PR (tabla 13).

60 Sin embargo, otros genes de la herramienta permiten revelar el efecto del Bion, incluso en estas condiciones estresantes, como débilmente inducidos por el estrés térmico en sí (CSL, POX, WRKY).

Por último, un estrés térmico transitorio aplicado algunas horas antes del tratamiento con Bion no interrumpe la demostración del efecto inductor de este producto.

* Estrés hídrico

Los resultados de expresión de los 28 genes diana están detallados en las tablas 15 y 16; los resultados están repartidos en varias tablas, únicamente en aras de la presentación.

En las plántulas de manzano, el estrés hídrico tal como se ha aplicado (PEG) no induce en sí los genes de la herramienta (Tabla 15 y 16): no se observan claras diferencias entre los perfiles de expresión obtenidos en los 3 lotes de plantas, estresados o no, y pulverizadas con agua. Además, no parece perturbar el efecto inductor del Bion, que se revela en las 3 condiciones.

* Conclusión

Estos experimentos demuestran el interés de estudiar varios grupos de genes de defensas, incluso varios genes dentro de cada grupo, para revelar el efecto estimulador de un SDN candidato.

En efecto, unas condiciones medioambientales poco estresantes (fuerte iluminación y temperatura elevada) pueden inducir por sí mismas ciertos genes de defensa presentes en la herramienta según la invención y ocultar los efectos de los SDN.

Para una utilización óptima de la herramienta en un objetivo de cribado de productos candidatos, se aconseja sin embargo realizar los experimentos en condiciones de iluminación artificial moderada y en condiciones térmicas las más controladas posibles. Un estrés hídrico, en el límite de lo razonable por supuesto, no debería perturbar la utilización de la herramienta.

39

5

10

Tabla 11

		PR1	PR2	PR4	PR5	PR8	PR14	PR15	PAL	ANS	CHS	DFR	PPO	HMGR	FPPS
C1=Invernadero 1 de cría	No tratado	0,17	-0,11	-0,53	-0,59	0,28	-0,13	-0,49	0,04	0,07	-0,11	-0,17	-0,58	0,27	-0,12
CO_Company olimotion 1	No tratado	-0,62	-0,18	-1,14	-1,98	1,73	-1,02	-0,96	6,72	96'9	6,58	6,30	-1,08	-1,22	-2,25
	Agna	-1,00	-0,23	-2,57	1,46	2,22	-1,56	0,03	5,84	5,52	5,44	4,28	0,53	0,02	-1,91
	Bion	0,37	0,99	-0,53	5,11	3,70	-0,26	-0,13	2,90	5,78	5,42	4,33	0,18	0,92	-2,06
ر مونځښاه ميوسځي دي	No tratado	-0,20	0,40	-0,90	-0,32	2,30	-0,19	-0,24	5,48	5,27	5,18	4,75	0,11	99'0-	-0,96
CS=Carnara cilifiatica z	Agua	-0,44	3,52	-0,39	3,06	2,68	-1,02	-0,11	4,83	3,94	4,34	3,39	-0,59	0,19	90,0
(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Bion	0,38	1,95	-0,44	5,30	4,83	-1,07	-1,09	4,80	4,33	4,25	3,56	0,43	1,06	-0,99
Od-Company olimotion 3	No tratado	-0,30	0,10	-1,32	-0,80	0,16	-0,71	-0,40	2,67	5,18	5,04	4,13	-0,65	-0,74	-1,87
(iluminación patural i IDIT)	Agua	-0,21	-0,95	-1,15	2,06	1,72	-0,92	0,34	3,05	3,73	3,56	2,31	0,14	-0,25	-0,05
	Bion	2,98	5,12	4,90	6,7	6,05	0,30	2,61	3,73	3,16	3,57	2,36	3,02	1,91	0,37
OF Company of the A	No tratado	-0,47	0,19	-3,56	-0,47	96'0	-0,97	-0,20	3,99	4,55	4,10	4,04	-0,88	-1,14	-1,39
Co=Calliala Cilliatica 4	Agua	-0,66	-1,56	-1,39	2,19	1,12	-1,85	-0,02	3,88	4,87	4,37	3,25	0,22	-0,67	-1,23
	Bion	-0,38	3,73	0,97	6,49	4,67	-0,62	1,83	4,54	5,28	4,91	3,81	-0,05	0,33	-1,27
adioonimili) lo caobonatoral 30	No tratado	0,46	0,161	-1,65	0,05	2,03	-0,50	0,31	5,20	5,25	5,13	4,63	-0,42	99'0-	-1,59
Co=IIIVeIIIadelO Z (IIdiIIIIadolII	Agua	0,33	-0,35	-0,87	0,00	2,93	-0,72	0,24	6,13	5,93	5,62	4,65	1,30	-0,15	-1,21
Ilatulal + I II O)	Bion	3,23	7,90	6,36	6,13	6,24	1,70	-0,89	4,86	5,11	4,78	4,11	2,22	1,40	-1,16
opioonimili) 6 onobounoval-70	No tratado	-0,05	0,23	-1,10	-0,62	1,63	-0,13	0,33	3,44	1,65	2,50	0,15	-0,65	-0,16	-0,59
Of =IIIVelliadelo 3 (Iluliiiiadol)	Agua	-0,42	-1,23	-2,61	1,36	1,25	-0,57	0,48	3,42	3,43	3,51	2,34	0,21	-0,58	-0,85
Ilatulal + I II O)	Bion	1,62	6,48	5,54	7,45	6,08	1,66	1,60	4,55	4,48	3,98	3,72	2,72	1,68	-0,05
00-layorangora 4 (il. misosoióa	No tratado	0,23	0,50	-0,94	0,19	1,26	-0,30	0,55	0,89	0,03	0,22	-0,68	-0,01	-0,03	0,44
Defined + peóp)	Agua	0,23	0,38	-0,49	2,31	2,28	0,04	0,29	1,37	1,11	1,28	-0,22	0,08	0,58	0,75
ilatulai + ileolij	Bion	2,58	8,28	8,08	7,30	7,92	5,60	1,82	3,44	1,61	1,84	0,88	3,93	3,00	1,60
	No tratado	-1,55	-0,64	0,11	-0,55	1,34	0,24	0,14	2,66	3,14	3,04	3,40	-0,39	-0,04	-1,15
C9= Armario 1 (iluminación neón)	Agua	0,64	1,16	1,38	1,73	3,19	1,24'	1,75	2,79	3,26	2,88	3,56	0,81	1,10	-0,59
	Bion	2,32	7,42	8,21	4,16	5,30	5,81	2,07	1,83	1,91	1,82	2,29	3,27	2,41	0,05
C10_ Armario 2 (iluminación	No tratado	0,20	-0,41	-1,62	-0,72	0,72	2,85	0,03	2,38	3,27	2,78	3,62	-1,76	-0,50	-0,67
	Agua	2,25	5,52	1,79	3,62	3,70	6,49	-0,26	0,22	1,07	0,60	2,03	-1,49	0,75	-0,17
lleon)	Bion	2,84	8,57	6,78	4,63	5,43	5,37	-0,16	1,87	2,48	2,19	3,17	1,84	2,24	-0,25

Tabla 12

		FAR	CSF	APOX	GST	POX	CAD	CalS	PECT	EDS1	WRKY	LOX2	JAR	ACCO	EIN3
C1=Invernadero 1 de cría	No tratado	92'0	-0,27	0,18	-0,17	0,77	0,19	0,01	-0,18	-0,23	-0,22	20'0	-0,03	-0,05	0,03
CO C = 1 = 1 = 1 = 1 = 1	No tratado	-6,15	4,58	1,08	-2,55	0,80	0,39	-1,10	0,40	1,20	0,55	98'0	-0,02	-0,84	-0,58
Cz= Camara cimatica I (iluminoción DDS - MD)	Agna	-3,36	2,96	0,54	-2,89	1,08	0,03	-1,19	-1,05	0,47	90'0-	98'0-	-1,28	-1,90	-0,81
	Bion	-0,35	2,94	0,26	-2,84	2,09	0,17	-1,05	-0,12	3,08	-0,50	-1,44	-1,40	-1,38	-0,24
0.0000000000000000000000000000000000000	No tratado	-0,24	2,93	1,37	-1,31	1,30	0,58	-0,62	99'0	-0,35	-0,261	62'0	0,551	-0,17	0,65
Cs= Carnara cirriatica z /ilsipopiés MD)	Agua	1,75	2,11	99'0	-2,02	1,30	0,20	-1,13	-0,64	1,32	0,76	-0,45	0,49	-0,67	0,30
(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Bion	69 E	18.6	0.78	-1 77	1 92	0 0 0	-0.73	0.72	18.7	-0.12	90 0	0.46	06 0-	0 69

		FAR	CSL	APOX	GST	POX	CAD	CalS	PECT	EDS1	WRKY	LOX2	JAR	ACCO	EIN3
CA- Cámora olimática 3	No tratado	-1,46	2,30	1,59	-2,20	0,58	0,03	-0,80	-0,51	-1,04	-0,12	0,39	-0,14	-1,19	0,20
C4= Carrara climatica 3	Agua	0,41	2,21	0,85	-0,62	0,02	0,42	-0,35	-0,81	0,03	69'0-	-0,50	-0,14	0,18	0,08
(IIdiiiiiacioii Iiatdiai + mrii)	Bion	2,77	3,62	0,88	-0,37	2,03	0,70	-0,38	1,36	4,31	3,88	-0,65	-0,18	0,78	1,00
)	No tratado	-1,06	2,44	1,11	-2,03	1,83	0,29	-0,91	-0,60	-1,63	-0,53	0,17	-0,05	-0,69	-0,72
Commana cilmatica 4	Agua	0,93	1,88	0,85	2,64	1,31	-0,07	-1,16	-1,74	0,25	-1,08	-0,70	-0,39	-0,54	0,59
	Bion	3,38	2,84	1,14	-2,67	2,93	0,21	-0,98	-0,38	3,73	1,17	-0,64	-0,10	-0,70	-0,06
2):00:00:00:00:00:00:00:00:00:00:00:00:00	No tratado	0,34	2,96	1,01	-2,08	1,99	0,54	-0,87	-0,43	0,19	1,471	0,65	0,271	-0,70	-0,51
Co=Invertiguero z (iluminación	Agua	2,57	3,59	1,05	-2,46	2,45	0,33	0,82	-0,24	0,48	-0,21	0,68	0,14	-0,48	0,55
Ilatulal + IIPO)	Bion	5,30	4,54	0,91	-1,58	4,03	66,0	-1,12	1,60	4,35	4,24	0,37	-0,22	0,52	1,14
25 2 2 2 2 2 2 2 2 2	No tratado	-0,44	90'0-	0,75	-1,02	1,26	20'0	-0,38	-0,23	-0,10	0,91	98'0	0,49	-0,57	0,21
	Agua	1,78	1,04	0,88	2,07	1,54	0,04	-1,08	-1,02	96,0	0,29	-0,45	-0,31	-0,33	0,01
Ilatulal + IIPO)	Bion	2,67	4,22	1,42	-0,93	3,37	0,48	-0,54	1,25	4,44	1,78	0,11	0,55	0,31	96'0
2	No tratado	1,20	-0,37	0,95	0,04	0,70	0,23	0,27	0,33	-0,54	1,27	0,65	0,80	0,38	-0,32
Co=Invernadero 4 (numinación	Agua	0,38	1,52	0,45	-0,40	0,97	0,30	0,07	0,12	0,40	1,45	0,15	0,34	0,55	0,28
Ilatulal + IleOII)	Bion	4,83	5,99	06'0	1,52	5,50	0,63	0,33	2,42	5,40	5,02	-0,17	-0,13	2,06	2,01
	No tratado	-0,27	26'0	0,25	-1,86	-0,78	00'0	-0,72	-0,05	98'0	1,20	0,07	-0,50	-0,79	0,15
C9= Armario 1 (iluminación neón)	Agua	2,86	2,06	0,21	-1,14	2,36	0,22	-0,12	2,61	3,05	2,13	0,19	99'0-	-0,82	1,05
	Bion	5,22	3,67	0,77	0,07	3,36	0,03	-0,15	2,90	2,30	2,37	-0,08	-0,58	1,02	0,91
040 A :	No tratado	0,14	1,45	0,12	-0,57	-0,55	00'0	96'0-	1,36	0,32	-0,20	0,10	0,11	-0,05	0,73
C10= Amailo 2 (numinación)	Agua	3,59	0,52	0,13	-0,09	1,75	-0,02	-0,31	3,18	3,27	-1,10	-0,24	-0,26	-0,17	0,67
	Bion	5.00	2.53	0.32	0.43	4.22	98.0	-0.64	4.23	4.88	3.94	-0.16	-0.54	0.73	1.24

Tabla 13

		PR1	PR2	PR4	PR5	PR8	PR14	PR15	PAL	ANS	CHS	DFR	PPO	HMGR	FPPS
H	Agua	66'0	-1,03	-0,48	2,02	0,63	-1,46	0,77	-1,05	1,05	-1,03	-1,68	-0,4	0,91	-1,39
i normales	Bion	3,79	6,22	7,77	4,21	3,67	1,89	-0,57	-2,16	-1,35	1,64	-1,77	-0,76	1,63	-1,12
T normales y después	Agua	69'9	7,91	9,28	1,34	3,53	7,13	-0,01	-4,77	-4,96	-5,65	-4,77	0,13	1,36	0,77
estresantes	Bion	9,82	11,2	12,9	4,34	6,38	7,86	99'0	-3,71	-4,7	5,86	-5,39	2,82	4,36	1,18
00 to 00 to 0 to 0 to 0 to 0 to 0 to 0	Agua	7,02	7,46	9,57	2,04	4,78	4,79	4,62	-3,96	4,61	-5,04	-5,27	1,61	2,43	0,92
estresantes	Bion	6,55	11,3	14	3,71	2,96	9,23	4,65	-3,93	5,29	-6,17	-5,36	5,42	4,77	1,36
T° estresantes y	Agua	2,95	1,1	0,87	2,64	2,19	-0,27	-0,07	1,19	0,5	-1,01	1,08	1,54	1,48	1,14
después normales	Bion	6,46	8,67	9,55	4,9	5,36	4,57	0,12	1,95	-1,94	-2,48	-1,63	1,35	3,17	0,77

Tabla 14

		FAR	CSL	APOX	GST	POX	CAD	Cals	PECT	EDS1	WRKY	LOX2	JAR	ACCO	EIN3
	Agna	2,44	-0,24	-1,29	-1,05	-1,03	-0,25	-0,45	0,48	2,02	1,15	0,19	-1,04	9,0-	0,32
l normales	Bion	3,34	0,91	-0,97	-0,33	1,96	0,11	-0,54	1,22	2,96	0,93	0,16	-0,82	-0,24	0,14
T° normales y después	Agua	1,16	0,82	-1,45	2,4	0,97	0,43	1,12	3,49	2,56	1,03	1,35	1,03	1,69	1,94
estresantes	Bion	0,45	4,65	-1,18	1,89	5,54	0,4	1,05	2,04	4,79	5,48	99'0	0,63	1,29	0,98
T°estresantes	Agua	1.16	1.26	-1.23	2.28	1.96	99.0	0.65	2.77	2.46	1.51	0.49	0.45	1.16	1.29

abla 15

		PR1	PR2	PR4	PR5	PR8	PR14	PR15	PAL	ANS	SHO	DFR	PPO	HMGR	FPPS
100000000000000000000000000000000000000	Agua	-1,0	4,7	5,1	1,8	1,3	1,3	-0,3	1,3	1,8	1,8	2'0	-0,1	-0,1	0,2
Nego Hollia	Bion	2,8	10,3	12,0	5,2	2,0	2,0	-0,4	1,3	1,1	1,1	6,0	5,1	2,4	1,0
10000	Agua	0,1	1,5	2,2	1,8	1,6	3,5	0,5	6'0	1,5	1,7	1,1	0,2	0,2	-0,3
ם מ ב	Bion	7,2	10,8	11,0	6,2	4,6	7,3	0'0	1,3	1,4	1,6	1,4	2,7	1,9	0,5
טם ט טםם	Agua	1,8	4,0	7,9	0,8	2,2	1,0	6,0	1,0	2,1	1,6	2'0	1,9	0,2	0,0
ם מ ס	Bion		10,6	11,0	6,1	4,8	4,5	-1,0	6'0	1,5	1,3	1,3	2,6	1,9	0,1

Fabla 16

	FAR	FAR	CSF	APOX	GST	POX	CAD	CalS	PECT	EDS1	WRKY	LOX2		ACCO	EIN3
0:00	Agua	1,2	1,1	0,3	0,1	-1,2	-0,5	0,1	0,3	1,6	-0,3	-0,3	-0,2	0,2	-2,1
Riego Holfilai	Bion	4,0	5,5	0,1	1,6	2,0	-0,3	-0,2	1,5	4,7	5,9	-0,5		1,8	2'0-
DEC 2.04	Agua	3,0	1,8	0,4	0,4	6'0-	0,0	0,0	1,6	1,3	0,2	2'0		6'0	-1,4
ת מ ק	Bion	5,9	4,7	6'0	1,1	1,0	0,1	0,3	2,7	4,4	5,1	1,1		2,1	-0,4
0 0	Agua	2,8	1,7	9'0	0,4	-2,0	0,1	0,5	2'0	1,1	0,2	1,1		8,0	9'1-
ת מ ט	Bion	5.0	4.7	0.4	10	2.0	0.2	0.1	1.5	4.4	3.7	0.5		1.2	6.0-

Ensayo 4: Verificación de la capacidad de la herramienta para estudiar diversas variedades de manzano para su respuesta a los SDN

Método:

5

Este experimento se efectúa una vez sobre retoños jóvenes injertados, de 4 variedades en crecimiento activo: Braeburn, Gala, Granny Smith, MM106 criados, directamente en invernadero de experimentación.

* Para el análisis de las defensas

10

Los retoños son pulverizados hasta el rechazo con un pulverizador de aire comprimido con Bion (0,4 g/l) o agua (D0).

Se efectúan unas extracciones de la hojas F3 (3º nivel foliar, hojas jóvenes todavía no completamente desarrolladas) el D0 (antes del tratamiento) y el D3 sobre el conjunto de los lotes tratados (tres 1/2 limbos extraídos de tres hojas F3 (hojas jóvenes no totalmente desarrolladas) agrupados/extracción).

Las muestras son extraídas y analizadas con la ayuda de la herramienta de manera idéntica a la del ensayo 2.

20 * Para el análisis del poder de protección

Los retoños son pulverizados de la misma manera hasta el rechazo con un pulverizador de aire comprimido con Bion (0,4 g/l) o agua (D0).

- El D4, las 2 hojas más jóvenes desarrolladas (F1 y F2) de cada retoño son cortadas, a 2/3 y perpendicularmente a la nervadura principal, con la ayuda de tijeras previamente sumergidas en una suspensión bacteriana de *Erwinia amylovora* preparada en agua estéril a 10⁸ cfu/ml. Se han inoculado una docena de brotes en crecimiento activo por variedad y por tratamiento.
- 30 La anotación de los síntomas, es decir la presencia de una necrosis sobre la nervadura de las hojas inoculadas (marcado con 0,5), o que han alcanzado el pecíolo (marcado con 1), o que han evolucionado sobre el tallo (marcado con 1 + longitud de la necrosis sobre el tallo en cm), se realiza 3 semanas después de la inoculación. Se calcula la longitud media de la necrosis sobre los retoños pulverizados (μ_{agua}), y se estima la eficacia relativa de protección del Bion según la fórmula: 100 ((Lg_{Bion} x 100)/μ_{agua}).

35

Resultados:

El Bion provoca unas inducciones en las 4 variedades según un perfil cualitativo bastante similar (figura 2A).

40 Al nivel cuantitativo, no se observa una variedad que "responda" globalmente más fuertemente que otra. Las diferencias de niveles de inducción varían en amplitud según los genes.

En lo que se refiere a las eficacias de protección de estas 4 variedades por el Bion, frente al fuego bacteriano, se observan unas diferencias marcadas, siendo Granny Smith la variedad "que responde" mejor al Bion, y Gala, la que "responde" peor (figura 2B).

Conclusión:

La herramienta aplicada sobre las plántulas de Golden Delicious puede por lo tanto ser utilizada sobre otras variedades de manzano. Permite revelar la reactividad de las 4 otras variedades ensayadas en la presente memoria, Braebum, Gala, Granny Smith y MM106, a un tratamiento con Bion, reactividad confirmada por las protecciones observadas después de la inoculación artificial por *E. amylovora*.

Listado de secuencias

55

45

- <110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 6 INRA
- <120> Dispositivo para determinar o estudiar el estado de estimulación de las defensas naturales de plantas o partes de plantas

60

<130> W637FR

<160>93

1.007

65 <170> Patentln versión 3.3

5	<210> 1 <211> 304 <212> ADN <213> Malus (domestica					
	<400> 1						
	tacctcaatt	cccacaacgc	cgctcgagca	gcagtaggcg	ttggtccctt	gacgtgggat	60
	gacaatgtag	caggctatgc	acaaaactac	gccaaccaac	atgttggcga	ctgcaatctc	120
	gtgcactccg	gtgggccata	cggtgaaaac	cttgccatga	gcactggtga	catgtcggga	180
	gcagcggctg	tggacctgtg	ggtggcggag	aaagccgact	acagttatga	gtcgaactcg	240
	tgtgctgctg	gaaaggtgtg	tgggcattat	acacaggtgg	tttggcgtaa	ctcggctcgt	300
10	gtag						304
15	<210> 2 <211> 320 <212> ADN <213> Malus o	domestica					
	<400> 2						
	tatgctcttt	tcacagctcc	gtcagtttta	gtacaagatg	gccaacgtgg	ttatcgtaat	60
	cttttcgatg	ccattttgga	tgctgtttac	gctgcgcttg	acaaggtcgg	tggaggatct	120
	ttggaaattg	ttatatcgga	gagtggttgg	ccgacagctg	gtgggacggc	aacaacagtt	180
	gataatgcga	ggacatataa	ctcgaatttg	gttcaacatg	tgaagggagg	gactccaagg	240
	aagcctggaa	ggcccattga	aacttacatc	tttgccatgt	ttgatgagaa	tagaaagacc	300
	ccagagettg	agaaacattg					320
20	<210> 3 <211> 609 <212> ADN						
25	<213> Malus	domestica					
		domestica					
	<213> Malus (<400> 3	domestica agaacaacag	agatattgta	gattattgcc	tgcttgattc	ggaaaattac	60
	<213> Malus (<400> 3 aagcetteca				-		60 120
	<213> Malus (<400> 3 aagccttcca atatcacaac	agaacaacag	agatcacagc	aagctctgtg	ttgtttgttt	cgatcatgat	
	<213> Malus (<400> 3 aagcetteca atateacaac ctgtggtttg	agaacaacag atggccggga	agatcacagc cattgggaca	aagctctgtg aagtgcgacg	ttgtttgttt	cgatcatgat	120
	<213> Malus (<400> 3 aagccttcca atatcacaac ctgtggtttg cctctacaat	agaacaacag atggccggga gtcggcagtg	agatcacagc cattgggaca acaattacga	aagctctgtg aagtgcgacg cttgcgggca	ttgtttgttt aatgtgagag gtaagtgcct	cgatcatgat ccacatacca actgcgcaac	120 180
	<213> Malus (<400> 3 aagcetteca atateacaac ctgtggtttg cctetacaat atgggatgce	agaacaacag atggccggga gtcggcagtg ccacagcaaa	agatcacagc cattgggaca acaattacga tcgaatggcg	aagctctgtg aagtgcgacg cttgcgggca cagcaaatat	ttgtttgttt aatgtgagag gtaagtgcct ggatggactg	cgatcatgat ccacatacca actgcgcaac ccttttgcgg	120 180 240
	<213> Malus (<400> 3 aagcetteca atateacaae ctgtggtttg cetetacaat atgggatgee acetgetgge	agaacaacag atggccggga gtcggcagtg ccacagcaaa gataaatccc	agatcacagc cattgggaca acaattacga tcgaatggcg aagccgcatg	aagctctgtg aagtgcgacg cttgcgggca cagcaaatat cggaaggtgc	ttgtttgttt aatgtgagag gtaagtgcct ggatggactg ctcttggtga	cgatcatgat ccacatacca actgcgcaac ccttttgcgg caaacactcg	120 180 240 300
	<213> Malus (<400> 3 aagcetteca atateacaac ctgtggtttg cctctacaat atgggatgcc acctgctggc gactggagct	agaacaacag atggccggga gtcggcagtg ccacagcaaa gataaatccc cctactgggc	agatcacagc cattgggaca acaattacga tcgaatggcg aagccgcatg tgagaattgt	aagctctgtg aagtgcgacg cttgcgggca cagcaaatat cggaaggtgc tgatcagtgc	ttgtttgttt aatgtgagag gtaagtgcct ggatggactg ctcttggtga agcaacggag	cgatcatgat ccacatacca actgcgcaac ccttttgcgg caaacactcg gattggactt	120 180 240 300 360
	<213> Malus (<400> 3 aagcetteca atateacaac ctgtggtttg cctctacaat atgggatgcc acctgctggc gactggagct ggacgtgaat	agaacaacag atggccggga gtcggcagtg ccacagcaaa gataaatccc cctactgggc caagcaacgg	agatcacagc cattgggaca acaattacga tcgaatggcg aagccgcatg tgagaattgt aaattgacac	aagctctgtg aagtgcgacg cttgcgggca cagcaaatat cggaaggtgc tgatcagtgc cgacggcaat	ttgtttgttt aatgtgagag gtaagtgcct ggatggactg ctcttggtga agcaacggag ggttaccaac	cgatcatgat ccacatacca actgcgcaac ccttttgcgg caaacactcg gattggactt aaggccacct	120 180 240 300 360 420
	<213> Malus (<400> 3 aagcetteca atateacaae etgtggtttg cetetacaat atgggatgee acetgetgge gactggaget ggacgtgaat tategteaae	agaacaacag atggccggga gtcggcagtg ccacagcaaa gataaatccc cctactgggc caagcaacgg gtttttaacc	agatcacagc cattgggaca acaattacga tcgaatggcg aagccgcatg tgagaattgt aaattgacac tcgactgcgg	aagctctgtg aagtgcgacg cttgcgggca cagcaaatat cggaaggtgc tgatcagtgc cgacggcaat cgactaaagc	ttgtttgttt aatgtgagag gtaagtgcct ggatggactg ctcttggtga agcaacggag ggttaccaac ctgtaaacct	cgatcatgat ccacatacca actgcgcaac ccttttgcgg caaacactcg gattggactt aaggccacct taatttttc	120 180 240 300 360 420 480

5	<210> 4 <211> 583 <212> ADN <213> Malus 0	domestica					
	<400> 4						
	actacaaatt	ttggtaaagc	ttagctccca	caatgagcct	ccttaaaagc	ctcttagttt	60
	tetecatect	atgtgccatt	ctcttctttg	catcaaccaa	tgcagctcga	tttgacatcc	120
	aaaacaactg	tgcctacact	gtatgggcag	ctgctgtgcc	aggcggtggc	cgccagctcg	180
	gcaaaggcca	atcctgggcc	ttagatgtga	gtgctggtac	caaaggggct	cgcatttggg	240
	gccggacggg	atgcaacttc	gatggagcag	gacgtggcaa	atgccaaacg	ggtgattgtg	300
	ggggtgtcct	ccaatgccaa	ggctatggtc	aaccaccaaa	caccctagct	gaatatgccc	360
	ttaatcaatt	taacaacttg	gatttcattg	acatetetet	tgttgatggg	tttaatgtac	420
	ctatggaatt	tagtcccacg	tctggtgggt	gcactaggag	gattaggtgc	acggctgata	480
	ttaacgggca	gtgccctaac	caactgaggg	ctccaggagg	ctgcaacaac	ccttgcactg	540
10	tgttcaagac	tgatcaatat	tgttgcaatt	ctggaaattg	tgg		583
10	<210> 5 <211> 1011 <212> ADN <213> Malus o	domestica					
15	<400> 5						
	atggcatcca	aaacacaaac	cctagcccta	actctgtccc	tcttgatcct	catttcttca	60
	tgcaagtcct	cccaagccgc	cggaatcgcg	acgtattggg	gccaaaacgg	caacgaagga	120
	accctagcag	aagcttgcaa	ctcgggcaac	taccagtttg	ttaacatagc	tttcctctca	180
	acttttggaa	acaaccaagc	ccctgtccta	aacctcgccg	gccactgcaa	ccccgctagt	240
	ggtacttgca	cggggcagag	tgccgacatc	agaacctgcc	aatcaaaaaa	cataaaagtc	300
	ctcctctcga	ttggaggggc	caccgaaact	tactctctca	cttcagctga	tgaggcaagg	360
	caagttgctg	attacatctg	gaacaacttc	ctaggtggtc	agtcagattc	gcgcccgctt	420
	ggggacgcgg	ttttggacgg	cgtcgatttc	gacattgagt	tgggtggtac	gcagttctac	480
	gacgageteg	ccaggtcact	caaaggacac	aacggacagg	gaaaaacggt	ctatttagcc	540
	gcagctccac	aatgcccgtt	cccggatact	cacctagacg	gcgctatcca	aaccggttta	600
	tttgactacg	tttgggttca	gttctacaac	aaccccctag	cccaatgcca	gtatgcagac	660
	ggtaatgccg	acgctctttt	gagcagttgg	aaccgatggg	cctcggtttc	ggccacccag	720
	gtgttcatgg	ggttaccggc	agctcctgag	gccgctccga	geggeggatt	tattcctgct	780
	gacgctctca	agtcacaagt	tcttccaacg	attaagaatt	cgcccaagta	cggaggagtt	840
	atgctttgga	gcaggttcta	tgacaacggt	tatagtgcat	ccattaagga	cagcatctaa	900
	ttaacttctc	tgcctcaatg	gatgctacta	cttgtaataa	agtgtgttag	ggatgatggc	960

gcctcattcc tttccttatg aataaaacat gcatatgtat tttttggagg c

20

F	<210> 6 <211> 588 <212> ADN <213> Malus (domestica					
5	<400> 6						
	aacaaaggca	gctaaccatg	gccaggtttt	cggtcatcgt	ggcaatagtg	ttcttatttg	60
	tgatagetee	ttttgtcagt	aatgccacca	taacttgtgg	tgaagtggta	gcttggctca	120
	ctccatgcat	accctttgga	gtgtttggag	gcacagtgcc	tccagattgc	tgtaaaggca	180
	taaaagagct	gaatgctgca	caaaacacca	cgatggaccg	gagaattgct	tgtagttgca	240
	ttcaggaagg	agctgcagca	atccccggga	ttaattatga	ccggattaac	actcttggtg	300
	atgtctgtgg	ctctccttgt	ccttacaaag	tttacccctc	tacaaattgc	tctgcggtaa	360
	gctgaatcca	taggaggatt	ggagaatgga	gaataaagct	tccgagaaga	ctattcctcg	420
	aagccatata	gctagacaga	cctcttagtt	gtttaaatca	caatgctttt	gtggaactta	480
	ataatttgga	agggtcgaat	cgttctgtat	aaggattgta	cgtaatccat	taccatctat	540
	taataattaa	atgateceet	tttatacaaa	aaaaaaaaa	aaaaatgc		588
10	<210> 7 <211> 717 <212> ADN <213> Malus (domestica					
15	<400> 7						
	cgaattccgt	tgctgtcgca	cattaataca	agttttgagg	catcttaagt	taagtttaaa	60
	ccctaattag	ccatgaaagg	tgctcagttc	ctcgtatgca	ttgttgccat	cttggcattc	120
	gcaaceteee	ttgtctctgc	ctctgacccc	agteceetee	aggaettetg	cgttgcactt	180
	aatgacacca	aattaggggt	gtttgtgaac	gggaaatttt	gcaaggaccc	aaagcttgca	240
	tcagcaaatg	atttcttctt	ttatgggatt	caaattccaa	gaagcacaca	aaatccgttg	300
	ggttcaacgg	taacacctgc	taatgtggat	caaatagcag	gactaaacac	tctcggcata	360
	tecetagete	gcatagactt	tgcaccaaat	ggcctaaacc	ctccccacac	tcaccctcgc	420
	ggcacggaaa	teettttet	ccaggaaggt	acactctacg	ttgggttcgt	aacgtccaac	480
	ccagataatc	gtctattcac	caaggtgttg	aacaagggag	atgtgtttgt	gttcccagtt	540
	ggtcttattc	acttccaact	gaatgtggga	cataccagtg	ctgtcgccat	tgctggtctt	600
	agcagccaga	acccaggagt	catcaccata	gcaaatgcag	tgttcggcgc	caaccctccc	660
20	atcaatcccg	atgttctagc	caaggccttc	caagtcgatg	acaaactggt	ttcatat	717
25	<210> 8 <211> 301 <212> ADN <213> Malus (domestica					
20	<400> 8						

	gaggcatttg	gaggagaatt	gaggaacacc	gcaaagaaca	eggtgageea	agtegeaaag	80
	aggactttaa	caactggggt	aaatggggag	cttcacccct	caagattctg	cgagaaggat	120
	ctcctcaaag	ttgtcgatag	ggagtatgtt	tttgcctata	ttgatgagcc	ctgcagcgcc	180
	acttatccat	tgatgcaaaa	actgaggcaa	gtgcttgttg	agcatgcttt	gacaaatggc	240
	gagagtgaga	agaatgcaag	cacttcaatc	ttccaaaaaa	ttggagettt	cgaggaagag	300
	C						301
5	<210> 9 <211> 442 <212> ADN <213> Malus (domestica					
	<400> 9						
	atcacggcgg	tgaccttccg	tgggcctagt	gacacccacc	ttgacagtct	tgtgggtcaa	60
	gccttgtttg	gcgacggtgc	agcggccgtc	atcattggtg	ccgacccagt	gcccgaagtc	120
	gagaagccct	tgcttgaatt	ggtataggag	gcacaaacca	ttctcgctga	cagtgatggg	180
	gctatcgacg	gacatctccg	tgaagtaggg	cttacgtttc	accttttgaa	ggacgttccc	240
	gggcttattt	caaagaacat	cgaaaagagc	cttaacgagg	ccttcaagcc	tataggcatt	300
	tcggactgga	actcactctt	ctggattgca	cacccaggtg	gccctgctat	tctggaccaa	360
	gtagaggcca	agttggcgtt	gaagccggag	aaattagaag	cgacaaggca	agtgttgtca	420
10	gattacggca	acatgtcaag	tg				442
15	<210> 10 <211> 290 <212> ADN <213> Malus (domestica					
	<400> 10						
	accggttgga	tgtacttcgt	ctcctttact	ctagctgttc	aagctgcatg	gaaatatgcc	60
	aaagaaaaca	acattgattt	catcaccatt	atcccaactc	ttgtaattgg	gccatttctc	120
	atgccatcca	tgccaccaag	cctcatcact	ggactttcgc	cgattttaag	aaatgaatca	180
20	cattatggca	tcatcaagca	gggccagtat	gttcacttgg	acgacetetg	cctttctcac	240
	attcatctgt	acaagcatcc	aaaagccgag	ggccgttaca	tttgctcctc		290
	_	-	-		_		
25	<210> 11 <211> 1074 <212> ADN <213> Malus (domestica					
	<400> 11						

atggtgagct	ctgattcagt	gaattcaagg	gttgagacct	tggccggcag	tggaatctca	60
accatcccaa	aagagtacat	cagacctaaa	gatgagcttg	taaacattgg	tgacatcttc	120
gaacaagaga	agaacaacga	agggcctcaa	gttcccacca	tcgatttgaa	ggagatagag	180
tctgataacg	aaaaagtgag	agcaaaatgc	agggaggagt	tgaagaaggc	agctgtggac	240
tggggtgtta	tgcaccttgt	gaaccatggc	atctctgacg	agctcatgga	caaggtcagg	300
aaggccggta	aggccttctt	tgaccttccc	attgagctga	aggagaagta	tgccaatgac	360
caggcctctg	gtaagattca	aggctatgga	agcaagcttg	caaacaatgc	atctgggcag	420
cttgagtggg	aggactactt	cttccactgt	gtatacccag	aggacaagcg	tgacttgtct	480
atttggcctc	aaacacctgc	tgattacatt	gaggcaaccg	ccgagtatgc	taagcaactg	540
agggagctag	caaccaaggt	actgaaagtt	ctgtcacttg	gcttgggatt	ggatgaaggg	600
aggctggaga	aagaagttgg	tggacttgaa	gageteetet	tgcaaatgaa	aatcaactac	660
tacccaaaat	gccctcagcc	ggagcttgca	cttggtgttg	aagctcacac	tgacgtgagt	720
gcactcacct	tcatcctcca	caacatggtt	cctggcctgc	agcttttcta	tgaaggaaag	780
tgggtcactg	ccaagtgcgt	tccaaattcc	atcgtcatgc	acattgggga	cacacttgag	840
attttgagca	atgggaagta	caaaagtata	ctccacaggg	gcatggtgaa	caaggaaaag	900
gtgaggattt	catgggcagt	tttctgtgag	ccaccaaagg	agaagatcat	ccttaagcca	960
ctgccggaga	ccgtgtccga	ggaggagccg	gcaatgttcc	caccacgaac	ttttgctgag	1020
cacattcaac	acaagttgtt	caggaagagt	caaggggctt	toctccccaa	σtσa	1074

<210> 12

<211> 1993

5 <212> ADN

<213> Malus domestica

<400> 12

10

aaaccagaga gctaagccat gacgtetett teaecteegg tagteaceae eeceaeeggt 60 eecaaeeegg ceacaaaaee teteteeeee tteteteaaa acaaeteeea agttteeeta 120 eteaeaaage eeaagegtte etttgeaegt aaggteteat gcaaageeae aaacaatgae 180 eaaaatgate aageaeagte eaaactagae aggagaaatg tgettettgg tettggaggt 240 etataeeggeg tggegggtat gggeaeagae eegttegett ttgeeaagee tatageeeea 300 eeaagaegtat etaaatgtgg teetgeagae ttgeeaeagg gtgeagtgee eaceaaetge 360

tgcccgccgc	cttccacaaa	aatcattgac	tttaagctgc	ctgcccccgc	caaactccgc	420
atcaggccac	cggctcacgc	cgttgaccaa	gcctacaggg	acaaatacta	caaagcgatg	480
gagctcatga	aggccctacc	cgacgacgac	ccacgtagct	tcaagcaaca	ggcagccgtg	540
cattgcgctt	attgcgacgg	cgcctatgac	caagtcgggt	tcccagaact	cgagctccaa	600
atccacaact	catggctctt	cttcccgttc	caccgttact	acttgtactt	tttcgagaag	660
atcctaggca	aactcattaa	cgacccgaca	ttcgctttgc	cgttctggaa	ctgggactcg	720
ccagccggca	tgccactgcc	cgcaatttac	gctgatccaa	agtcccctct	ctacgacaag	780
ctccgatctg	ccaatcatca	gcccccgact	ctggtcgatc	tcgattacaa	cgggaccgag	840
gacaatgtgt	caaaggaaac	cacaatcaac	gccaatctca	aaatcatgta	caggcaaatg	900
gtgtccaatt	ccaagaatgc	taagttgttc	tttgggaacc	cgtacagggc	aggggacgag	960
cctgaccctg	gtggcggctc	catcgagggg	acaccacacg	cgccggttca	tttatggacc	1020
ggtgacaaca	cccagcccaa	ctttgaggac	atggggaatt	tttactccgc	tggtcgggac	1080
cccatatttt	ttgcacacca	ttcgaatgtc	gatcgaatgt	ggagtatttg	gaaaactctt	1140
ggaggtaaga	gaactgatct	tactgactcg	gactggttgg	actccggatt	cttgttttac	1200
aacgagaacg	cagagttagt	ccgagtcaag	gtcagggact	gcttggagac	caaaaatctt	1260
gggtatgtat	accaagatgt	ggacattcct	tggctcagct	ccaagccaac	accgcgaagg	1320
gcgaaagttg	cattgagcaa	agtagcgaag	aagctgggag	ttgcacacgc	agctgttgcg	1380
tcgtccagca	aggtggtggc	aggcactgag	ttcccgataa	gtctggggtc	gaagataagc	1440
acggtggtga	agagaccgaa	gcagaagaag	aggagcaaga	aggccaagga	ggatgaggag	1500
gagatattgg	tgattgaggg	aatcgagttt	gacagggacg	tggctgtgaa	gtttgatgtg	1560
tatgtgaatg	acgtcgatga	cttgccgagt	gggcctgaca	agacggagtt	tgccggaagc	1620
tttgtaagtg	tgccgcacag	ccacaagcac	aagaagaaga	tgaacactat	tttgaggtta	1680
gggttgacag	atttgttgga	ggaaattgag	gcggaggacg	atgacagcgt	ggtggtgact	1740
ttggtgccca	agttcggcgc	tgtcaagatt	ggtggtatca	agattgaatt	tgcttcttag	1800
ttagttatgt	caacccaggc	atcaagaatc	gtatgatcat	catcatgctt	ggatcgatca	1860
tgtgttgtaa	ttcttcaatt	tggtggtttt	gttccttttg	aatagtcaat	gttcgtgtac	1920
aaaataaaca	tgatgatgat	gtggtatttt	catcaccatg	aaatatgaat	taggaaatca	1980
cattttgttc	gtt					1993

<210> 13

<211> 1827

<212> ADN

<213> Malus domestica

<400> 13

atggacgtcc gaaggcgatc gacgatggat acacctgcca ccaaggccag aagtgggccg 60

atgaaggtga	aagtggtgga	ccacgagaac	gacgttggtg	tegtegggge	caaggcctcc	120
gacgccctgc	cgctgccgtt	gtacctgact	aacgccgtct	getteactet	cttcttctcc	180
gtcgtctact	tcctccttac	tcgttggcgc	gagaagatca	agacetegae	gccgctccac	240
gtcgtgaacc	tctccgagat	cgtcgcgata	ctcgcgttcg	tcgcctcctt	catctacttg	300
ctcggattct	togggatoga	tttcgtgcag	tcgctcattc	tccgccccag	caatgacgtc	360
tgggccgccg	acgatgacga	ggaggagcac	gagcgcttga	tattgaaaga	cgacgcgcgg	420
aaagtgccgt	gtggggccgg	actcgactgc	agcccaattc	cccaaattgc	ctctgttgct	480
gctgccgccc	ccaaagctgt	tgcacagaag	gtgtttgata	aagaggtagt	cctctccact	540
tcctgcgatt	tcaccgccca	gccgttgacg	gaggaagatg	aggaggtggt	caagtccgtg	600
gtggcgggaa	ccatcccttc	ctactctctg	gagtcaaagc	tcggagattg	caggagggcg	660
gcggctatca	ggcgcgaggc	gcttcagagg	atcacaggaa	agtctctggg	tggtctgcca	720
ttggaggggt	togattacga	gtcaattctg	ggtcagtgct	gcgagatgcc	agttgggtat	780
gttcagattc	cagttgggat	tgctgggcct	cttatgctcc	atggcagaga	gttttccgta	840
ccaatggcca	ccaccgaagg	ttgcttggtt	gccagcacca	accgtggctt	caaagctatc	900
aacttgtccg	geggageeae	cagtgtgttg	ctgagagatg	ggatgaccag	agcaccttgt	960
gtgaggttca	actctgctaa	gagagetgee	gagttgaagt	tctacttgga	agaacccaac	1020
aattatgaca	ccttgtccac	ggttttcaac	aggtcaagca	gattcggtag	gcttcagaca	1080
attaagtgtg	ccattgctgg	gaagaacttg	tacatgagat	tcacctgcag	caccggtgat	1140
gctatgggga	tgaacatggt	ctccaaaggt	gtgcaaaacg	tcttggattt	cctccagaac	1200
gacttccctg	acatggatgt	gattggaatt	tccggcaact	actgctctga	caagaagccc	1260
gctgcggtga	actggattga	aggccgcgga	aaatcggtgg	tctgtgaggc	tgtgatcaag	1320
ggtgatgtgg	tgcagaaggt	gttgaaaacc	aatgtggcgt	ccctgtgcga	gcttaacatg	1380
cttaagaacc	ttactgggtc	tgcaatggct	ggagccctcg	gtggattcaa	cgcacatgcc	1440
agcaacatcg	tctccgccat	ctacatcgct	accggccaag	acccagetea	gaatgtggag	1500
agttctcact	gcattaccat	gatggaaccc	atcaatgatg	gacaggacct	tcacgtgtct	1560
gtcaccatgc	cttcaattga	ggttggtact	gttggaggtg	ggacccaact	tgcatctcaa	1620
tcagcttgtc	tgaaccttct	tggagtgaag	ggtgctaaca	gggaggcacc	aggatcaaat	1680
gcaagattgt	tggccactgt	tgtggctggt	tctgttcttg	ctggagagct	ttctctcatg	1740
tctgctatct	cagctggaca	gcttatgaat	agtcacatga	aatactacag	atcaagcaaa	1800
gatgtctcag	ctgttgcatc	cgcttaa				1827

<210> 14 <211> 1401 <212> ADN

<213> Malus domestica

<400> 14

attttttcc	ctctgtacca	ttaagtcgtg	tcgtctatac	aaagcacatc	tetetecete	60
tetgtgagtc	tgtgagtatc	tggggagggc	tctgagatta	ccagtgtctg	tgtggtggcg	120
gattagattg	gcaaaactga	caatggcgga	tctcaagtca	aagtttctga	aggtgtactc	180
cgttctgaaa	teggagetgt	tggaagaccc	tgctttcgac	ttcaccaatg	actctcgcca	240
atgggttgag	cggatgctgg	actacaatgt	gcctggaggg	aagcttaatc	ggggattgtc	300
tgttattgac	agctatcagt	tgttgcaaca	aggaagggaa	ttaactgaag	atgaaatctt	360
cctggccagc	gctctcggtt	ggtgcatcga	atggcttcaa	gcatttttc	tggttcttga	·420
tgacatcatg	gatggctctc	acacacgtcg	tggtcagcct	tgctggttta	gattgcccaa	480
ggttggtatg	attgcagtaa	atgatggtgt	tgtgcttcga	aaccatatcc	caaggattct	540
cagaaagtac	ttcagagaaa	agccatatta	cgtggatctt	cttgatttgt	tcaatgaggt	600
ggaatttcaa	actgcctcag	gtcagatgat	agatttgatc	actactatcg	aaggagaaaa	660
agatctatcc	aaatactcat	tgtcaattca	ccgccgtatt	gttcagtaca	agactgccta	720
ttactcattt	tacctttccg	ttgcatgtgc	attgcttatg	tcaggtgagg	aactggaaaa	780
acatattgat	gtaaaaaaca	ttcttgttga	gatggggatc	tactttcaag	tacaggatga	840
ttatttggat	tgctttggtg	atccggaaac	gattggtaag	ataggaacag	atattgaaga	900
tttcaagtgc	tcttggttgg	tggtgaaagc	tttggaactc	tgcaatgagg	aacaaaagaa	960
agtactacat	gagaattatg	ggaaaccaga	cccagaaaat	gtggcaacag	taaaggccct	1020
ctacaaagaa	ctcgatattg	agggtgtatt	tgcggattat	gagagcaaaa	gctacaagaa	1080
actgacgagt	tggattgaag	ggcacccaag	caaagcggtg	caatcagtgt	tgaagtcctt	1140
cttgggcaag	atttacaaga	ggcagaaata	gaaatctcgg	atctggattc	agttcagccc	1200
ctcctatttg	tatttggtgc	atttgtaata	aaacatgcag	ttgcatttgg	tttgcgtcag	1260
tcagagtcag	gtttgcttca	cttagttata	agttgagtca	tcagtgttga	atgcagacag	1320
acaataagca	tccacgttaa	ttaatacaaa	gtttctcagt	ttccagttga	gaatattaaa	1380
aaaaaaaaa	aaaaaaaaa	a				1401
<210> 15 <211> 562 <212 > ADN <213> Malus o	domestica					

5

10

<400> 15

60 cagcattgca gctatcgaaa gcgacaatct cggcacaaga gacgatctct atggtactgc attacacttc aagatcctca ggcagcatgg ctataaagtt tcacaagata tatttggtag 120 180 attcatggat gaaaagggca cattagagaa ccaccatttc gcgcatttaa aaggaatgct 240 ggaacttttc gaggcctcaa acctgggttt cgaaggtgaa gatattttag atgaggcgaa

	agetteettg	acgctagete	tcagagatag	tggtcatatt	tgttatccag	acagtaacct	300
	ttccagggac	gtagttcatt	ccctggagct	tccatcacac	cggagagtgc	agtggtttga	360
	tgtcaaatgg	caaatcaacg	cctatgaaaa	agacatttgt	cgcgtgaacg	ccacgttact	420
	cgaattagca	aagcttaatt	tgaacgtaag	tgaggcccaa	ctgcaaaaaa	acttaaggga	480
	agcatgcagg	tggtgggcaa	atctgggctt	gggagacaac	ttgaaatttg	caagagatag	540
	actgggtgaa	tgttgctgat	gt				562
5	<210> 16 <211> 198 <212> ADN <213> Malus (domestica					
	<400> 16						
	ggatacgaca	ctatgaagaa	tcgctgggaa	aaattgacca	acaccctgtc	tgtttccaat	60
	cgcttttctc	tacagaaaat	tgaaccccaa	tattgcactt	actttcagaa	aattagagaa	120
	ccctcaccag	cttatgcgtg	ggtgaagtgc	gagagggaag	aagataaaga	ttgctacaaa	180
10	atactggaag	aagcaaaa					198
15	<210> 17 <211> 625 <212> ADN <213> Malus (domestica					
	<400> 17						
	ggatgccccc	gtgccaccac	cagaggccgt	cttcctgatg	ctaccaaggg	taatgaccat	60
	ttgagggatg	tcttttgcaa	gaccatgggc	ctcagcgaca	aggatattgt	tactctctcc	120
	ggtggtcaca	ccctgggaag	gtgccacaag	gagcgatctg	gatttgaagg	accttggact	180
	cccaaccccc	ttatctttga	caactcctac	ttcaaggtgc	ttcttggtgg	agaccaggaa	240
	ggtcttctaa	tgcttccaac	tgacaaggct	cttctggatg	accctgtctt	ccgccctctt	300
	gtggaaaaat	atgctgcgga	tgaagatgct	ttctttgctg	actatgctga	atctcacatg	360
	aagctctccg	agcttgggtt	tgctgaggcc	taagcagagc	tggagaacta	caagggatga	420
	agccgatgcc	tgtgcgcctt	gcttttgtat	ttttggatgc	ctcttggttg	tgaggttgta	480
	ggcagttggt	gcttttcttt	tttatctatc	agattttagg	aaagtgggac	ttctagttcg	540
	atttgaagaa	cgaatgtttt	taaactggat	ggaatgctgg	ttatcatcct	cgttgattaa	600
20	ataatactgt	aattttcaaa	aaaaa				625
25	<210> 18 <211> 650 <212> ADN <213> Malus o	domestica					
	<400> 18						
	ggctgccatc	aaggtccacg	gaaacgttat	ttcgaccgct	gcaatgcgag	tttttgctac	60

	tctctacgag	aaagacatcg	aattcgagct	tgttccaatc	gacatgagag	ctggtgaaca	120
	caaaaaggag	cccttcatat	ccctcaatcc	atttggtcaa	gttccagcat	tcgaagacgg	180
	agatcttaag	ctctttgaat	caagggcgat	tacacaatac	attgcccacg	agtatgctga	240
	caagggaacc	cctctagtga	tccgagactc	aaagaagatg	gcaattatat	cattgtggtc	300
	ggaggtggag	gcccaaaagt	tcgacccggc	ggccacaaaa	ctgacctatg	agctagctat	360
	aaagcctatg	tttaaaatga	ccacagacgc	ggcagttgtg	gaggaaaatg	aagccaagtt	420
	ggctgtggtt	cttgatgtat	atgagactcg	tctggctcag	tcgaaatact	tggcaggtga	480
	aagcttcact	ttggctgatc	ttcaccacct	ccccaccata	cattacttga	tgggaacaca	540
	atcgaagaag	ctgttcgaat	cccgcccccc	atgttctcgc	atgggtggcg	gatatcacag	600
	caaggccagc	ttggaacàaa	agtcgttgcc	cagcaaaagt	gaaaacaagt		650
5	<210> 19 <211> 503 <212> ADN <213> Malus o	domestica					
	<400> 19						
	cttcttcttc	tctctttgct	tcttagttat	attggttatc	agaaaccttg	ttagatatta	60
	gtcatgggtt	catatattac	tggttcatgc	actcccacaa	acactaaaat	ctcattgtca	120
	ttattattcc	ttcttgttgg	agtagcttct	gctcaattgt	cctctacttt	ctatggaaca	180
	tegtgteeta	atgccctgtc	caccataaaa	tcggcagtgg	actcagcggt	gtcgaaggaa	240
	gctcgcatgg	gagetteett	gcttcgtctt	catttccatg	attgctttgt	taatggatgt	300
	gatgcttcgg	ttctgctgga	tgacacagcc	aatttcacag	gagagaaaac	agcaggtgct	360
	aatgctaatt	ctttgagggg	atttgatgta	atcgatacaa	ttaaatctca	attggagag t	420
	ctctgcccca	aagtagtctc	ttgtgctgac	atcttaactg	ttgctgctag	ggactctatt	480
10	gttgcattgg	gtggacttac	cta				503
15	<210> 20 <211> 562 <212> ADN <213> Malus o	domestica					
20	<220> <221> misc_fe <222> (472)(<223> n es a,	472)					
	<400> 20						
	gatattatta	gctttgcgct	ttttcattta	ccagtatggg	ctagtctatc	accttaacat	60
	cacaaacaac	aaaagtttcc	tggtatatgg	tgtttcgtgg	ctcgtgatca	ttctagtttt	120
25	gtgtctgatg	aaggetgtgt	ctgctggaag	gcgacgatta	agtgcagact	atcagctttt	180

	gtttcgactg	gttaagggat	ttatatttat	tacattttta	gccatcttca	ttaccttaat	240
	agtggtccct	catatgacac	ttcgggatgt	tgtagtgtgc	attcttgcct	tcatgccaac	300
	gggatgggga	ttgcttttga	ttgcgcaagc	ttgtaagcca	ctaattaaac	gagcagggtt	360
	ttgggaatca	gttcaaacac	ttgctcgcgg	ttatgaaata	atcattggat	tgcttcttt	420
	taccccggtt	gcattcttgg	cttggtttcc	gtttgtttcc	gaattccaaa	cncgaatgct	480
	cttcaaccaa	gcattcagca	gaggtttaca	gatctcacgt	attcttggag	gacaaaagaa	540
	gggctctcac	tcctccaaca	aa				562
5	<210> 21 <211> 580 <212> ADN <213> Malus (domestica					
	<400> 21						
	gcttactaat	caacagacat	gccaaaatgg	tttcaaaaac	ctcaacattc	ctagttctca	60
	tttgcaatct	ttcccaaact	acgtcacgct	ctcaaccaac	ttgtccaaga	tgcttagcaa	120
	ctcactatca	atacacaagg	tctcaacttc	ttcatcagct	ctacatttta	gcaaacaagt	180
	tcgtggaaga	cgacggcgtt	tgctttcgga	tgatgggttc	ccagaatggg	tttcagccgc	240
	tgatcgaaag	ctgctacaat	cgataggtag	cggaccaaac	gctgatatgg	tagtagcaca	300
	agacgggtcc	gggaattaca	agtcaatttc	tgaagctgtg	gatgctgcgt	acaagctaca	360
	gggtggggcg	actaaaaggt	ttgtcataca	cgtgaaggca	ggagtttaca	gagaaaatat	420
	cgagattaag	aggacaatga	agaacatcat	gttcattgga	gatggtatcg	atgcaacgat	480
	tgtcacaggg	aataaaaatg	cccaagatgg	ttcaactaca	tatcgctctg	ccacatttgg	540
10	ggctaccgga	gatggcttta	ttgctcaaaa	cttgaaattc			580
15	<210> 22 <211> 1262 <212> ADN <213> Malus (domestica					
	<400> 22						
	ggcacgagga	gagagatgag	cagcggagca	gggaaggtcg	tgtgcgtcac	cggtgcgtct	60
	ggatacattg	cttcatggct	cgttaagctt	cttctccagc	gcggctacac	cgtcaaggcc	120
	tctattcgcg	acccaaatga	tccaactaag	acagagcacc	tgcatgcgct	tgatggagcc	180
	caagacagac	ttcaactttt	caaagcaaat	ctgttggaag	aaggttcttt	tgactctgct	240
	gttgagggtt	gtgaaggcgt	attccatact	gcatctccct	tttatcatga	tgtcacagac	300
	ccaaaggcag	aactacttga	acctgcggta	aaggggaccc	ttaatgttct	taattcgtgt	360
	gcgaaatcac	catcaatcaa	acgggtggtt	ttgacatctt	ctatagccgc	tgtagcatat	420
	aatggaaagc	ctcgaactcc	tgatgtagta	gttgatgaga	cttggtttac	agatccagat	480
20	gtttgtaagg	aatcaaagct	ttggtacgtg	ctttcaaaga	ctttggctga	agatgetgeg	540

tggaaatttg	taaaggagaa	gggtattgac	ttggttacaa	ttaaccccgc	aatggtgata	600				
ggtcctctgt	tacagecaac	tcttaataca	agtgctgcag	cagttttaaa	tgttattaag	660				
ggagctcgaa	cttttccaaa	tgcaagtttt	ggatggatta	acgttaaaga	tgttgccaat	720				
gcacatattc	aagcatttga	gaggcctacc	gctagtggca	gatattgttt	ggttgagaga	780				
gttgcccact	tctcagaagt	tgtgagaatt	ttacgtgagc	tgtaccctac	tttgcaactt	840				
ccagagaagt	gtgcagacga	caagcctttt	gtgccaacat	atcaggtgtc	caaggagaag	900				
gcgaagagct	tgggtgtcga	atttattcca	ctagatgtta	gcctcaagga	aacagttgaa	960				
agtctgaagg	aaaagggttt	tgtcaatttc	tgagtcattt	cagtacggtg	aagatgtttg	1020				
aagtaaattc	agtcgcggta	aaacatatta	tctgcttcca	gtttgtgttt	ccggttggtg	1080				
acttaaactc	cggtttccct	ttttcggttt	aagacttgct	gtccagcttg	ttgattccta	1140				
tagatcacca	ttgtgtgtgc	agaataaaga	agaaatgaac	cttttgaata	aaatcttgga	1200				
atcgtctgag	taaagtgcgc	tcatgcaact	ttatccccat	tgataaaaaa	aaaaaaaaa	1260				
aa						1262				
<220> <221> misc_fe <222> (585) <223> n es a,	<211> 637 <212> ADN <213> Malus domestica									
<400> 23										
aaaaagggaa	tgaaagcttg	gagagatgct	ggatataggg	gaggagacta	tcaagaaaag	60				
			ggatataggg cccaggtgaa	•		60 120				
ctgctctctt	gccttggagg	cacacaaatt		ccgtttcttg	tggagaactc					
ctgctctctt tgctgcagga	gccttggagg tcatcagatg	cacacaaatt ttgttatcag	cccaggtgaa	ccgtttcttg	tggagaactc ctgtggagag	120				
ctgctctctt tgctgcagga tttgttttct	gccttggagg tcatcagatg ggagaaagtg	cacacaaatt ttgttatcag attttggaga	cccaggtgaa ctttcctgca	ccgtttcttg ggaacttggt gatctcgaac	tggagaactc ctgtggagag tctttccttc	120 180				
ctgctctctt tgctgcagga tttgttttct cttgaaaagt	gccttggagg tcatcagatg ggagaaagtg gttgggaact	cacacaaatt ttgttatcag attttggaga atgatccagc	cccaggtgaa ctttcctgca agcaaaagtc	ccgtttcttg ggaacttggt gatctcgaac gagatagact	tggagaactc ctgtggagag tctttccttc ttgcaattgc	120 180 240				
ctgctctctt tgctgcagga tttgttttct cttgaaaagt aactatcaac	gccttggagg tcatcagatg ggagaaagtg gttgggaact caagcattcg	cacacaaatt ttgttatcag attttggaga atgatccagc ttgacaaagt	cccaggtgaa ctttcctgca agcaaaagtc aaagccagaa	ccgtttcttg ggaacttggt gatctcgaac gagatagact ttggacaatt	tggagaactc ctgtggagag tctttccttc ttgcaattgc cccagctgaa	120 180 240 300				
ctgctctctt tgctgcagga tttgttttct cttgaaaagt aactatcaac aatcaaggtg	gccttggagg tcatcagatg ggagaaagtg gttgggaact caagcattcg caagaggcca	cacacaaatt ttgttatcag attttggaga atgatccagc ttgacaaagt tcactgcaaa	cccaggtgaa ctttcctgca agcaaaagtc aaagccagaa taaacaaata	ccgtttcttg ggaacttggt gatctcgaac gagatagact ttggacaatt atatttaccg	tggagaactc ctgtggagag tctttccttc ttgcaattgc cccagctgaa gccactctac	120 180 240 300 360				

tcatgctctt aggagagaaa attggtctga atacttcata cattntgtca tgagatatga

cattgtccct cggattttgc ttgctcctct gtcatcc

<210> 24

15

5

10

<211> 342

<212> ADN <213> Malus domestica 20

<400> 24

60

caggtaactt cgttcctata tctcatgtgc tgctactgac aaatggagaa ctgcaatata

	cattgggagc	aaaagagtct	tgtaaatgag	ctagcacaag	ggagggatet	ggctaggcag	120
	ctacagatcc	atctcaacgt	tccatcttcc	tcttatggaa	cccgggaatt	gctggttcaa	180
	aagatcatac	tttcgtacga	aaaagcgctt	tccatgctga	actctagcag	ctcagcetca	240
	gaaggtgagc	aacaacagcc	cacaggtcat	gttgcaattc	gaatggttga	gtctccgccg	300
	cattcgctaa	atgaaagtcc	ccggagtgaa	gactccgacc	gc		342
5	<210> 25 <211> 648 <212> ADN <213> Malus o	domestica					
	<400> 25						
	ggaggcttgc	taaagctcat	gteettgeee	acgattctgg	ttatcatcag	cttgttagtc	60
	actggctacg	aacacattgt	gccacagaac	cctacataat	cgccacaaat	cggcaactga	120
	gtgtcatgca	cccaatctat	agattgttac	atccccattt	cagatacacc	atggagatta	180
	attctcttgc	tcgtgaatca	cttatcaatg	ccggtggtat	catcgaaacc	tcattttcgc	240
	ccaaaaagta	ctcccttgag	ctctgctctg	ttgcgtatgg	gaaggaatgg	cggtttgacc	300
	aagaggcact	cccagctgac	cttattagaa	ggggcatggc	tgttgaggac	ccaactgctc	360
	cacatgggct	aaggctaaca	attgaagatt	acccttttgc	caatgatgga	ctcctcttat	420
	gggatgctat	taaacaatgg	gtcactgact	atgtaaacca	ctactaccca	gactccagca	480
	ttgtccagac	tgatcaagag	ctccaagcat	ggtggacaga	aatcaaaaca	gttggccatg	540
	ctgacaaaaa	agatgagcca	tggtggccag	aactcaacac	tccggaagac	ctaatgggca	600
10	tcatcacaac	aatggtttgg	gtagcatctg	gtcatcatgc	agctgtca		648
15	<210> 26 <211> 630 <212> ADN <213> Malus o	domestica					
	<400> 26						
	tttttttt	ttagataaag	ttaaacttta	tttctgatcc	aaactcatga	ttttgacatg	60
	taacttatct	gatccggaag	aatttaaccc	tccatatccg	tttgccaaat	acaataatgt	120
	tgctaattag	catatgcagt	gctgtaaacc	cttttagtgg	tgcataaatt	gagaatgctc	180
	aagagcacct	tgttgctagt	gcacctaggg	gtcttgaatt	ggctcaatgc	cgatccattt	240
	cctatgaaat	attccaaaat	tttcttgaac	gttacattat	ccacaatccg	aagctctaga	300
	ggtccgatcg	aattacttcg	cctcgagaca	acgtaaccat	gatccacgaa	agatgcatcc	360
20	atttctctgc	aacattcacc	aagaaccctc	tcttcaactt	ctcctttgat	ctcccagtat	420
	attatgtagt	ggcctggttg	ggtcagcaca	tcagcatggc	ttgtgaagtc	aatcagttct	480
	gctttggact	tgctcaatag	ttgagaccct	ctctccacca	ccatttgaag	gtccttttca	540
	gtgttttcac	acaactctct	gcatttctgc	tctgcccacc	cactaaatca	cttgacacac	600
	ccacaccggc	aatggacctc	ctcctcctgg				630

<211> 1214 <212> ADN 5 <213> Malus domestica <220> <221> misc_feature <222> (999)..(999) 10 <223> n es a, c, g, o t <400> 27 ccaaacactt gtagagcgag agagagagag agagagaga agagagagaa aatggagaac 60 120 ttcccagtta tcaacttgga gagcctcaat ggtgagggaa gaaaagctac aatggaaaag atcaaagatg cctgtgagaa ctggggtttt tttgagctgg tgagtcatgg gattccaact 180 gagtttctgg acacagtgga gaggctgaca aaagagcact acaagcagtg tttggagcaa 240 aggttcaagg agctggtggc cagcaaaggc cttgagggtg ttcagacaga agtcaaagat 300 atggattggg aaagcacttt ccacttgcgc catcttcctc aatcgaacat ctctgaagta 360 420 ccagatctca aggatgagta caggaatgtg atgaaggagt ttgcattgaa attggaaaaa ttagcagagc agctgctgga cttgttgtgt gagaatcttg gactggaaca agggtacctt 480 aaqaaqqcat tttatqqaac aaaqqqacca acttttqqca ccaaqqtqaq caactaccct 540 ccatgtccca acccagacct gatcaagggt ctccgggccc acaccgatgc cggcggcctc 600 660 atcttgetet tecaggatga caaggteagt ggeeteeage teeteaagga eggagagtgg gttgatgtgc ctcccatgcg ccactccatt gttatcaatc ttggtgacca acttgaggtg 720 780 atcaccaacg gaaagtacaa gagtgtggaa cacagggtga ttgcccaaac agatggcacc agaatgtcaa tagcttcatt ctacaaccca ggcagtgatg cggtgatcta cccagcacca 840 accetagtgg agaaagaage agaggagaag aatcaagtgt accegaaate egtgttegaa 900 gactacatga agctctatgc tggggtcaag ttcgaggcca aggaaccaag atttgaagcc 960 atgaaagcag tggaaattaa ggccagtttt ggtttgggnc cagttataag tactgcttga 1020 gagtgattaa atacttttac tagaagctgt tggaaaaaaag ggttgtttgc ttaaaagtaa 1080 ttatgggtgt gtgaacgaaa tttttccttg aactagattt caaggtttta tttactatta 1140 atgtggaaac cgttgtagaa agtaaccaat gtgatcacta ctttattata tataatatga 1200 1214 cttcaagatt tgtt 15 <210> 28 <211> 616 <212> ADN <213> Malus domestica

<210> 27

20

<400> 28

	cacttcttga	gagcttggag	gaagggcttg	tcaaagtgaa	tcttaacgga	tgcttgaatt	60
	tgacagatga	agtcgttatg	gcgttggtta	ggctacatgg	ggaaacttta	gaagtactga	120
	atcttgatgg	ttgcagaaag	attactgatg	caagcttggc	gacaatcgca	aacaactgct	180
	tgtttcttcg	tgagctagat	gtgtcgaagt	gtgcgattac	agattctggc	cttgctgccc	240
	tttcttccgc	agatcagatc	aacttgcaag	tectetecat	ttctggctgt	tctgaaatct	300
	cacacaaaag	cctcccttcc	ctgaaaaaat	tgggccagac	cctggtgggg	ttgaatctcc	360
	aacattgtac	tgcactcagc	tacagatcaa	ttgagctact	tgtggagagc	ttgtggagat	420
	gcgatatctt	ggcctaataa	ggaatagaac	aatacgcgta	tatagcgaag	gagagaagca	480
	gatatgaagt	aggggtaaga	tcaagaaatc	asaagaattc	gggttagatt	cgtcagttcg	540
	tagatgttaa	gcactcacac	gggtatccac	gttcagcata	caacatttt	ggcccgttgg	600
	tagtggcctt	getggt					616
5	<210> 29 <211> 596 <212> ADN <213> Malus o	domestica					
	<400> 29						
	tgttcaatgc	tgttggtggt	ggtactggtt	ctggtttggg	gtccttgctc	ttagaacgct	60
	tgtcggtgga	ttatggaaag	aagtcaaagc	ttgggttcac	catctatcct	tctccgcagg	120
	tttcaacagc	agttgttgag	ccttataata	gtgttctctc	tactcatgcc	ctccttgaac	180
	acacagatgt	atctgtgctc	ttggacaatg	aagctatcta	tgatatttgc	aggagatece	240
	tagacatcga	gagaccaact	tacaccaatt	tgaatagact	gatatcacaa	gtcatatcct	300
	ccttgacaac	atcattgaga	tttgatggag	ccattaatgt	tgatgtgaca	gagttccaga	360
	caaaccttgt	tccatatccc	cgcatccatt	tcatgctttc	ctcatatgcc	cctgttatct	420
	cagctgctaa	ggcataccat	gagcagatct	caatccctga	gatcacaaat	gcagtttttg	480
	aaccctcaag	catgatggcc	aagtgtgatc	cccggcatgg	aaaatacatg	gcctgctgcc	540
10	taatgtacag	gggtgatgta	gttcccaaag	atgtcaatgc	tgctgttgca	actatc	596
15	<210> 30 <211> 703 <212> ADN <213> Malus of	domestica					
	<400> 30						
	accataacaa	atggcagata	cagaagacat	tcaacctctc	gtctgtgata	atggcactgg	60
20	aatggttaag	gctggatttg	ctggagatga	tgctccgagg	gctgttttcc	ccagtattgt	120

	tggtcgtcct	agacacacag	gtgttatggt	ggggatggga	cagaaggatg	cctatgttgg	180	
	ggatgaggcc	cagtcgaaaa	ggggtattct	cacattaaaa	taccccattg	aacacgggat	240	
	tgttagcaat	tgggatgaca	tggaaaagat	ctggcatcat	actttctaca	atgagetteg	300	
	tgtcgctcct	gaagaacatc	ctgtgcttct	tactgaagca	cctctgaatc	ctaaggccaa	360	
	cagggaaaag	atgactcaga	tcatgtttga	gaccttcaat	gtccctgcta	tgtatgttgc	420	
	cattcaagca	gttctctccc	tctatgctag	tgggcgtact	acaggtattg	tgcttgactc	480	
	tggtgatgga	gtcagtcaca	ctgttcccat	ctacgagggt	tatgcacttc	cacatgccat	540	
	cctccggctt	gaccttgctg	gacgagactt	aacagattcc	ttaatgaaga	tcctgactga	600	
	gagagggtat	acttttacta	ctactgctga	acggggaatt	gtgcgtgaca	ttaaagagaa	660	
	gcttgcctat	gtggcccttg	cttatgaaag	ggaatcggaa	tcg		703	
5	<210> 31 <211> 545 <212> ADN <213> Malus o	domestica						
	<400> 31							
	acaggttcgg	aattgttgag	ggtctcatga	ccacggtgca	ctccatcact	gccacccaaa	60	
	agactgttga	cggtccatca	atgaaggact	ggagaggtgg	acgtgcagct	tccttcaaca	120	
	tcattcctag	tagcactgga	gctgccaagg	ctgttggaaa	ggtgctccca	tctcttaatg	180	
	gaaaattgac	cggaatgtcc	ttccgtgtgc	ccactgttga	tgtttccgtt	gttgacctga	240	
	ctgtcaagct	tgagaaggct	gcaacctatg	aacagatcaa	ggccgctatc	aaggaggagt	300	
	ctgaaggcaa	gttgaagggt	atcttgggtt	acaccgaaga	tgatgtcgtg	tccaccgact	360	
	tcattggtga	cagcaggtca	agcatctttg	atgccaaggc	tggaattgca	ttgaatgaca	420	
	actttgtcaa	gcttgtctca	tggtacgaca	acgagtgggg	ttacagttcc	cgtgtggtag	480	
	acttgatcgt	gcacgtagca	tcgagtctct	agggtttta	ggttatggtt	tgggagttca	540	
10	caata						545	
15	<210> 32 <211> 22 <212> ADN <213> Secuer <220>							
	<223> cebado	or						
20	<400> 32							
	agcacacgag tt	cgactcat aa						22
25	<210> 33 <211> 20 <212> ADN <213> Secuer	ncia artificial						
30	<220> <223> cebado	or						
	<400> 33							

	cacaaaacta cgccaaccaa	20
5	<210> 34 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> cebador	
	<400> 34	
15	aattgttata tcggagagtg	20
	<210> 35 <211> 19 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador	
25	<400> 35	
25	tggcaaagat gtaagtttc	19
30	<210> 36 <211> 17 <212> ADN <213> Secuencia artificial	
25	<220> <223> cebador	
35	<400> 36	
	gaaggtgcct cttggtg	17
40	<210> 37 <211> 17 <212> ADN <213> Secuencia artificial	
45	<220> <223> cebador	
	<400> 37	
50	cgtcggtgtc aatttgg	17
55	<210> 38 <211> 18 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
60	<400> 38	
	aaaggggctc gcatttgg	18
65	<210> 39 <211> 19	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> cebador	
	<400> 39	
40	cttggcattg gaggacacc	19
10	<210> 40 <211> 22 <212> ADN <213> Secuencia artificial	
15	<220> <223> cebador	
20	<400> 40	
20	ccaagcccct gtcctaaacc tc	22
25	<210> 41 <211> 22 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador	
30	<400> 41	
	caacttgcct tgcctcatca gc	22
35	<210> 42 <211> 21 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador	
	<400> 42	
45	agtgttctta tttgtgatag c	21
	<210> 43 <211> 19 <212> ADN	
50	<213> Secuencia artificial	
	<220> <223> cebador	
55	<400> 43	
	caactacaag caattctcc	19
60	<210> 44 <211> 21 <212> ADN <213> Secuencia artificial	
65	<220> <223> cehador	
מים	CAASS CHOROLO	

	<400> 44	
_	gcctaaaccc tccccacact c	21
5	<210> 45 <211> 24 <212> ADN <213> Secuencia artificial	
10	<220> <223> cebador	
15	<400> 45	
10	catctccctt gttcaacacc ttgg	24
20	<210> 46 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> cebador	
20	<400> 46	
	ggateteete aaagttgteg	20
30	<210> 47 <211> 19 <212> ADN <213> Secuencia artificial	
35	<220> <223> cebador	
	<400> 47	
40	ctcactctcg ccatttgtc	19
45	<210> 48 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
50	<400> 48	
	attggtgccg acccagtgc	19
55	<210> 49 <211> 25 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador	
	<400> 49	
65	aatccagaag agtgagttcc agtcc	25

<210> 50 <211> 17 <212> ADN <213> Secuencia artificial	
<223> cebador <400> 50	
cggttggatg tacttcg	17
<210> 51 <211> 17 <212> ADN <213> Secuencia artificial	
<220> <223> cebador	
<400> 51	
tgtgagaaag gcagagg	17
<210> 52 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador	
<400> 52	
gcctcaagtt cccaccatcg	20
<210> 53 <211> 22 <212> ADN <213> Secuencia artificial	
<220> <223> cebador	
<400> 53	
gaagtagtcc tcccactcaa gc	22
<210> 54 <211> 17 <212> ADN <213> Secuencia artificial	
<220> <223> cebador	
<400> 54	
tgcccgccgc cttccac	17
<210> 55 <211> 25 <212> ADN <213> Secuencia artificial	
	211> 17 212> ADN 213> Secuencia artificial 220> 223- cebador 400> 50 cggttggatg tacttcg 210> 51 211> 17 212- ADN 223> cebador 400> 51 tgttgagaagag gcagagg 220> 223> cebador 400> 51 tgtgagaaag gcagagg 210> 52 211> 20 2123- Secuencia artificial 220> 221> 52 211> 20 212- ADN 213- Secuencia artificial 220> 223- cebador 400> 52 gcctcaagtt cccaccatcg 210- 53 211- 22 212- ADN 213- Secuencia artificial 220- 223- cebador 400- 53 gaatgagtot tcccactcaa gc 210- 54 211> 77 212- ADN 213- Secuencia artificial 220- 223- cebador 400- 53 gaatgagtot tcccactcaa gc 210- 54 211> 77 212- ADN 213- Secuencia artificial 220- 223- cebador 400- 54 tgcccgcgc cttccac 220- 55 221- ADN 220- 55 221- ADN 210- 55 211- 25 211- 25 211- 25 211- 25 211- 25 211- 25 211- 25 211- 25

	<220> <223> cebador	
	<400> 55	
5	gctccatcgc tttgtagtat ttgtc	25
10	<210> 56 <211> 18 <212> ADN <213> Secuencia artificial	
15	<220> <223> cebador	
10	<400> 56	
	aacaggtcaa gcagattc	18
20	<210> 57 <211> 18 <212> ADN <213> Secuencia artificial	
25	<220> <223> cebador	
	<400> 57	
30	ttgtcagagc agtagttg	18
35	<210> 58 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
40	<400> 58	
	tcttggttgg tggtgaaag	19
45	<210> 59 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador	
	<400> 59	
55	ctgcctcttg taaatcttgc	20
33	<210> 60 <211> 23 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador	
	<400> 60	
65		

	gatattttag atgaggcgaa agc	23
5	<210> 61 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador	
10	<400> 61	
	gcgttgattt gccatttgac	20
15	<210> 62 <211> 21 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador	
	<400> 62	
25	caccetgtet gtttccaatc g	21
30	<210> 63 <211> 25 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
35	<400> 63	
	agcaatcttt atcttcttcc ctctc	25
40	<210> 64 <211> 23 <212> ADN <213> Secuencia artificial	
45	<220> <223> cebador	
	<400> 64	
	gettecaact gacaaggete tte	23
50	<210> 65 <211> 18 <212> ADN <213> Secuencia artificial	
55	<220>	
	<223> cebador	
60	<400> 65	40
	cgcacaggca tcggcttc	18
	<210> 66 <211> 23	
65	<212> ΔDN	

	<213> Secuencia artificial	
5	<220> <223> cebador	
	<400> 66	
	gagccettca tateceteaa tee	23
10	<210> 67 <211> 18 <212> ADN <213> Secuencia artificial	
15	<220> <223> cebador	
	<400> 67	
20	geeteeacet eegaceae	18
25	<210> 68 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
30	<400> 68	
	tgtcattatt attecttett gttg	24
35	<210> 69 <211> 18 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador	
	<400> 69	
45	aaccgaagca tcacatcc	18
43	<210> 70 <211> 21 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador	
	<400> 70	
55	tgccttcatg ccaacgggat g	21
60	<210> 71 <211> 23 <212> ADN <213> Secuencia artificial	
65	<220> <223> cebador	

	<400> 71	
	cggaaacaaa cggaaaccaa gcc	23
5	<210> 72 <211> 18 <212> ADN <213> Secuencia artificial	
10	<220> <223> cebador	
	<400> 72	
15	ggagggaggg tcaactgg	18
20	<210> 73 <211> 22 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
25	<400> 73	
	caaacaactt ctctccacaa cc	22
30	<210> 74 <211> 22 <212> ADN <213> Secuencia artificial	
35	<220> <223> cebador	
	<400> 74	
40	ggagcccaag acagacttca ac	22
	<210> 75 <211> 21 <212> ADN <213> Secuencia artificial	
45	<220> <223> cebador	
50	<400> 75	
50	cgccttcaca accctcaaca g	21
55	<210> 76 <211> 24 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador	
60	<400> 76	
	tggagaaagt gattttggag aagc	24
65	<210> 77	

	<211> 22 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador	
	<400> 77	
10	agaaccagat tgtgacaaac gc	22
15	<210> 78 <211> 25 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
20	<400> 78	
	aatatacatt gggagcaaaa gagtc	25
25	<210> 79 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador	
	<400> 79	
35	agagttcagc atggaaagcg	20
	<210> 80 <211> 21 <212> ADN	
40	<213> Secuencia artificial <220> <223> cebador	
	<400> 80	
45	gttgcgtatg ggaaggaatg g	21
	<210> 81 <211> 26	
50	<212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
55	<400> 81	
	ggtagtagtg gtttacatag tcagtg	26
60	<210> 82 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220>	

	<223> cebador	
	<400> 82	
5	cgttcccttc tccacaatcc	20
10	<210> 83 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
15	<400> 83	
	gggttcttgg tgaatgttgc	20
20	<210> 84 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> cebador	
	<400> 84	
30	gttggtgctg ggtagatcac	20
	<210> 85 <211> 20 <212> ADN <213> Secuencia artificial	
35	<220> <223> cebador	
40	<400> 85	
	acggagagtg ggttgatgtg	20
45	<210> 86 <211> 19 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador	
	<400> 86	
	cgttatggcg ttggttagg	19
55	<210> 87 <211> 20 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador	
	<400> 87	
65	cagaaatgga gaggacttgc	20

5	<210> 88 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
10	<400> 88	
	gttcaatgct gttggtggtg	20
15	<210> 89 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador	
	<400> 89	
25	ctgcggagaa ggatagatgg	20
25	<210> 90 <211> 22 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador	
	<400> 90	
35	caacctctcg tctgtgataa tg	22
40	<210> 91 <211> 19 <212> ADN <213> Secuencia artificial	
45	<220> <223> cebador	
.0	<400> 91	
	gcatccttct gtaccatcc	19
50	<210> 92 <211> 19 <212> ADN <213> Secuencia artificial	
55	<220> <223> cebador	
	<400> 92	
60	gctgccaagg ctgttggaa	19
	<210> 93 <211> 22 <212> ADN	
65	<213> Secuencia artificial	

<220> <223> cebador 5 <400> 93

cagtcaggtc aacaacggaa ac 22

REIVINDICACIONES

- 1. Dispositivo para determinar o estudiar el estado de estimulación de las defensas naturales de plantas o partes de plantas, comprendiendo dicho dispositivo unos medios de determinación del nivel de expresión en ARNm expresado por una combinación de genes diana en una muestra de plantas o partes de plantas, comprendiendo dichos medios de determinación:
 - (a) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes dianas siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15;
 - (b) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: PAL, CHS, DFR, ANS, PPO;
 - (c) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: HMGR, FPPS, Far;
 - (d) un medio de determinación del nivel de expresión en ARNm del gen diana CSL;

5

10

15

20

30

40

45

50

55

- (e) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes siguientes: APOX, GST, POX;
 - (f) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: CalS, Pect, CAD;
- (g) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: EDS1, WRKY;
 - (h) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: LOX2, JAR;
 - (i) un medio de determinación del nivel de expresión en ARNm de por lo menos un gen diana seleccionado de entre los genes diana siguientes: ACCO, EIN3.
- 2. Dispositivo según la reivindicación 1, caracterizado por que comprende los medios de determinación del nivel de expresión en ARNm de los genes siguientes:
 - (i) para el grupo (a), un medio de determinación del nivel de expresión en ARNm de uno por lo menos de los genes siguientes: PR-1, PR-2, PR-4 y/o PR-8, un medio de determinación del nivel de expresión en ARNm del gen PR-5, un medio de determinación del nivel de expresión en ARNm del gen PR-14 y un medio de determinación del nivel de expresión en ARNm del gen PR-15,
 - (ii) para el grupo (b), un medio de determinación del nivel de expresión en ARNm del gen PAL, un medio de determinación del nivel de expresión en ARNm de uno por lo menos de los genes siguientes: CHS, DFR o ANS, y un medio de determinación del nivel de expresión en ARNm del gen PPO,
 - (iii) para el grupo (c), un medio de determinación del nivel de expresión en ARNm de por lo menos uno de los genes siguientes: HMGR y Far, y un medio de determinación del nivel de expresión en ARNm del gen FFPS,
 - (iv) para el grupo (e), un medio de determinación del nivel de expresión en ARNm del gen APOX y un medio de determinación del nivel de expresión en ARNm de uno por lo menos de los genes siguientes: GST y POX.
 - 3. Dispositivo según cualquiera de las reivindicaciones 1 o 2, caracterizado por que comprende los medios de determinación del nivel de expresión en ARNm de la combinación de los genes diana siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, PR-15, PAL, CHS, DFR, ANS, PPO, HMGR, FPPS, Far, CSL, APOX, GST, POX, CalS, Pect, CAD, EDS1, WRKY, LOX2, JAR, ACCO, EIN3.
 - 4. Dispositivo según cualquiera de las reivindicaciones 1 a 3, caracterizado por que dichos medios de determinación del nivel de expresión en ARNm de un gen diana se seleccionan de entre los fragmentos de ácido nucleico capaces de hibridarse de manera específica a los ARNm expresados por dicho gen diana o a los ADNc correspondientes, o a unos fragmentos de dichos ARNm o de dichos ADNc.
 - 5. Dispositivo según la reivindicación 4, caracterizado por que los fragmentos de ácido nucleico consisten en unos cebadores nucleotídicos que se hibridan específicamente con los ARNm, los ADNc o unos fragmentos de éstos.
- 6. Dispositivo según la reivindicación 5, caracterizado por que dichos cebadores nucleotídicos están adaptados para

la determinación del nivel de expresión en ARNm de los genes diana por un método de PCR cuantitativa.

- 7. Dispositivo según la reivindicación 6, caracterizado por que los cebadores se seleccionan de entre las secuencias siguientes, SEC ID nº 32 a 87.
- 8. Dispositivo según la reivindicación 4, caracterizado por que dichos fragmentos de ácido nucleico están inmovilizados sobre un soporte.
- 9. Dispositivo según la reivindicación 8, caracterizado por que consiste en un chip de ADN.
- 10. Procedimiento para identificar un perfil de expresión en ARNm de una combinación de genes diana que permite determinar, o por lo menos evaluar, un estado de estimulación de las defensas naturales de plantas o de partes de plantas, comprendiendo dicho procedimiento las etapas siguientes:
- (i) determinar el perfil de expresión en ARNm de una combinación de genes diana por medio del dispositivo según una de las reivindicaciones 1 a 9, en un conjunto de plantas o de partes de plantas, cuyo estado de estimulación de sus defensas naturales es conocido, y después
 - (ii) determinar un perfil de expresión en ARNm de dicha combinación de genes diana correspondiente a un estado determinado de estimulación de las defensas naturales de dichas plantas o partes de plantas, partiendo de los datos procedentes de la etapa (i).
- 11. Procedimiento para determinar o evaluar el estado de estimulación de las defensas naturales de una planta o de una parte de planta, que comprende las etapas siguientes:
 - (i) extraer una muestra a partir de dicha planta o de dicha parte de planta,
 - (ii) determinar el perfil de expresión en ARNm de una combinación de genes diana en dicha muestra extraída en la etapa (i), por medio del dispositivo según una de las reivindicaciones 1 a 9,
 - (iii) comparar el perfil de expresión en ARNm obtenido en la etapa (ii) con un perfil de expresión en ARNm de referencia,
 - (iv) determinar o evaluar el estado de estimulación de las defensas naturales de dicha planta o de dicha parte de planta, a partir de dicho perfil de expresión en ARNm obtenido durante la etapa (ii).
- 12. Procedimiento para seleccionar una sustancia que tiene la propiedad de modular el estado de estimulación de las defensas naturales de una planta o de una parte de planta, que comprende las etapas siguientes:
- 40 (i) poner en contacto dicha planta o dicha parte de planta con la sustancia a ensayar,
 - (ii) determinar el perfil de expresión en ARNm de una combinación de genes diana en una muestra extraída a partir de dicha planta o de dicha parte de planta tras la etapa (i), mediante el dispositivo según cualquiera de las reivindicaciones 1 a 9,
 - (iii) comparar el perfil de expresión en ARNm obtenido en la etapa (ii) con un perfil de expresión en ARNm de referencia, para determinar o evaluar el estado de estimulación de las defensas naturales en dicha muestra,
 - (iv) seleccionar positivamente dicha sustancia si la comparación en la etapa (iii) muestra que dicha sustancia ensayada en la etapa (i) modula el estado de estimulación de las defensas naturales de dicha planta o de dicha parte de planta.
 - 13. Procedimiento según la reivindicación 12, para seleccionar una sustancia que tiene la propiedad de generar un estado de estimulación de las defensas naturales de una planta o de una parte de planta que pertenece a la familia de las *Rosaceae*, que asegura una protección frente a un estrés biótico, caracterizado por que el perfil de expresión en ARNm de referencia en la etapa (iii) corresponde a los valores observados para unas muestras de plantas o de partes de plantas no sometidas a un estrés o un estimulador de las defensas naturales, y por que la etapa (iv) consiste en seleccionar positivamente dicha sustancia ensayada si el perfil de expresión en ARNm obtenido en la etapa (ii), y comparado en la etapa (iii), muestra una sobreexpresión en ARNm de la combinación de genes diana siguientes: PR-1, PR-2, PR-4, PR-5, PR-8, PR-14, HMGR, Far, CSL, POX, Pect, EDS1 y WRKY.
 - 14. Procedimiento para seleccionar una planta que presenta un estado de estimulación de las defensas naturales susceptible de conferirle una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés, que comprende las etapas siguientes:

65

5

10

15

20

25

30

35

45

50

55

(i) aplicar dicho o dichos estrés a una planta o una parte de planta,

- (ii) determinar el perfil de expresión en ARNm de una combinación de genes diana en una muestra extraída a partir de la planta o de dicha parte de planta, por medio del dispositivo según una de las reivindicaciones 1 a 9.
- (iii) comparar el perfil de expresión en ARNm obtenido en la etapa (ii) con un perfil de expresión en ARNm de referencia, para determinar o evaluar el estado de estimulación de las defensas naturales en dicha muestra,
- (iv) seleccionar positivamente dicha planta o dicha parte de planta si la comparación de la etapa (iii) muestra que dicha planta o dicha parte de planta posee un estado de estimulación de las defensas naturales susceptible de conferirles una resistencia mejorada a por lo menos un estrés biótico y/o abiótico de interés.
- 15. Procedimiento según cualquiera de las reivindicaciones 10 a 14, caracterizado por que la o las plantas pertenecen a la familia de las *Rosaceae*.

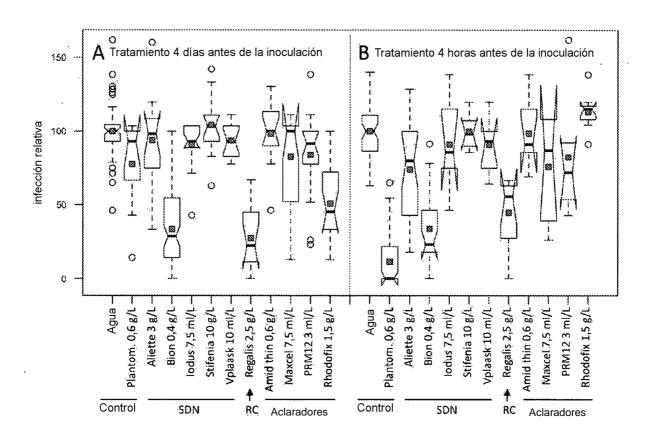
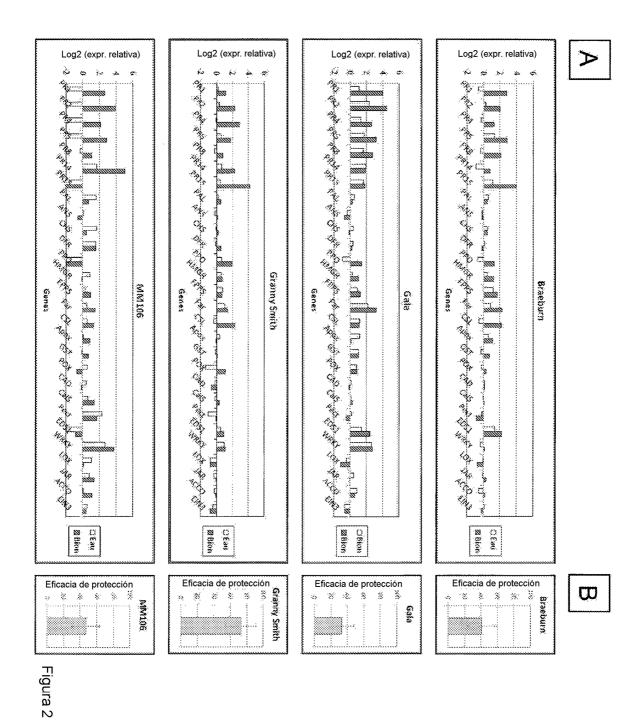



Figura 1

