

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 523 640

51 Int. Cl.:

C07K 14/705 (2006.01) C07K 14/47 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 21.06.2007 E 07845250 (5)
 (97) Fecha y número de publicación de la concesión europea: 13.08.2014 EP 2044111

(54) Título: Direccionamiento del factor H del complemento para el tratamiento de enfermedades

(30) Prioridad:

21.06.2006 US 815748 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **28.11.2014**

(73) Titular/es:

MUSC FOUNDATION FOR RESEARCH DEVELOPMENT (50.0%) 19 Hagood Avenue, Suite 909 Charleston, SC 29403, US y THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE (50.0%)

(72) Inventor/es:

GILKESON, GARY; TOMLINSON, STEPHEN; HOLERS, V., MICHAEL Y ROHRER, BAERBEL

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Direccionamiento del factor H del complemento para el tratamiento de enfermedades

CAMPO TÉCNICO

5

10

15

20

25

30

35

40

45

50

55

Esta solicitud se refiere a composiciones y métodos para tratar enfermedades en las que está implicada la ruta alternativa del complemento. Específicamente, la solicitud se refiere a una molécula CR2-FH y sus usos para tratar enfermedades en las que está implicada la ruta alternativa del complemento.

DECLARACIÓN CON RESPECTO A LA INVESTIGACIÓN O DESARROLLO PATROCINADO POR EL GOBIERNO FEDERAL

Esta invención se llevó a cabo con el apoyo del gobierno bajo los números de Concesión (Contrato): Al47469, Al31105, y EY13520 adjudicados por el National Institutes of Health.

ANTECEDENTES

El complemento es el término colectivo para una serie de proteínas de la sangre, y es un mecanismo efector importante del sistema inmunitario. El complemento desempeña un papel importante en la patología de muchas enfermedades autoinmunitarias, inflamatorias, e isquémicas, y también es responsable de muchos estados mórbidos asociados con bioincompatibilidad. La activación inapropiada del complemento y su deposición en células hospedantes puede conducir a lisis celular de estructuras diana mediada por el complemento, así como a la destrucción tisular debido a la generación de mediadores poderosos de la inflamación.

El complemento se puede activar mediante una de las tres rutas, las rutas clásica, lectínica, y alternativa. La ruta clásica es activada a través de la unión de la proteína C1q del sistema de complemento a complejos de antígenoanticuerpo, pentraxinas, o células apoptóticas. Las pentraxinas incluyen proteína reactiva C y el componente P amiloide del suero. La ruta lectínica es iniciada por sacáridos microbianos vía la lectina que se une a manosa. La ruta alternativa es activada en superficies de patógenos que tienen características de cargas neutras o positivas y que no expresan o contienen inhibidores del complemento. Esto es debido al proceso denominado "ralentí" de C3 que se produce espontáneamente, que implica la interacción de C3 conformacionalmente alterado con el factor B, y da como resultado la fijación de C3b activo sobre patógenos u otras superficies. La ruta alternativa también se puede iniciar cuando ciertos anticuerpos bloquean mecanismos reguladores endógenos, mediante complejos inmunitarios que contienen IgA, o cuando se disminuye la expresión de proteínas reguladoras del complemento. Además, la ruta alternativa es activada por un mecanismo denominado el "bucle de amplificación" cuando C3b que se deposita sobre dianas vía la ruta clásica o lectínica se une entonces al factor B. Muller-Eberhard, 1988, Ann. Rev. Biochem. 57:321. Por ejemplo, Holers y colaboradores han mostrado que la ruta alternativa está amplificada en sitios de lesión local cuando se reclutan células inflamatorias tras la activación inicial del complemento. Girardi et al., J. Clin. Invest. 2003, 112:1644. La amplificación drástica del complemento a través de la ruta alternativa se produce entonces a través de un mecanismo que implica la generación adicional de células lesionadas que fijan el complemento, la síntesis local de componentes de la ruta alternativa, o más probablemente debido a que estas células inflamatorias infiltrantes que poseen C3 y properdina preformados incrementan enormemente la activación específicamente en ese sitio.

La activación de la ruta alternativa se inicia cuando el factor B circulante se une a C3 activado. Este complejo es escindido entonces por el factor D circulante para producir un fragmento enzimáticamente activo, C3bBb. C3bBb escinde C3 generando C3b, que conduce la inflamación y también amplifica adicionalmente el proceso de activación, generando un bucle de retroalimentación positivo. El factor H (FH) es un regulador (inhibidor) clave de la ruta alternativa del complemento. Funciona compitiendo con el factor B por la unión a C3b. La unión de C3b al factor H también conduce a la degradación de C3b por el factor I a la forma inactiva C3bi (también denominada iC3b), ejerciendo de ese modo una comprobación adicional sobre la activación del complemento. La concentración plasmática real del factor H es aproximadamente 500 µg/ml, proporcionando regulación del complemento en la fase fluida, pero su unión a las células es un fenómeno regulado que está potenciado por la presencia de una superficie cargada negativamente, así como C3b, C3bi, o C3d fijos. Jozsi et al., Histopathol (2004) 19:251-258.

Se ha demostrado que la disminución de la activación del complemento es eficaz en el tratamiento de varias indicaciones patológicas en modelos de animales y en estudios ex vivo, por ejemplo lupus eritematoso sistémico y glomerulonefritis (Y. Wang et al., Proc. Natl. Acad. Sci., 1996, 93: 8563-8568), artritis reumatoide (Y. Wang et al., Proc. Natl. Acad. Sci., 1995; 92: 8955-8959), derivación cardiopulmonar y hemodiálisis (C. S. Rinder. J. Clin. Invest., 1995; 96: 1564-1572), rechazo hiperagudo en transplante de órganos (T. J. Kroshus et al., Transplantation, 1995; 60: 1194-1202), infarto de miocardio (J. W. Homeister et al., J. Immunol., 1993; 150: 1055-1064; H. F. Weisman et al., Science, 1990; 249: 146-151), lesión por reperfusión (E. A. Amsterdam et al., Am. J. Physiol., 1995; 268: H448-H457), y síndrome disneico del adulto (R. Rabinovici et al., J. Immunol., 1992; 149: 1744-1750). Además, otras afecciones inflamatorias y enfermedades autoinmunitarias/del complejo inmunitario también están estrechamente asociadas con activación del complemento (B. P. Morgan. Eur. J. Clin. Invest., 1994; 24: 219-228), incluyendo lesión térmica, asma severo, choque anafiláctico, inflamación del intestino, urticaria, angioedema, vasculitis, esclerosis múltiple, miastenia grave, glomerulonefritis membranoproliferativa, y síndrome de Sjogren. Los inhibidores del

complemento y sus usos también se describen en el documento WO 04/045520 y en la patente U.S. nº 6.521.450.

BREVE SUMARIO DE LA INVENCIÓN

30

35

40

45

50

55

La invención en un aspecto proporciona una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, comprendiendo el fragmento del mismo al menos los primeros dos dominios de SCR N-terminales de CR2, y b) una porción FH que comprende un FH o un fragmento del mismo, comprendiendo el fragmento del mismo al menos los primeros cuatro dominios de SCR N-terminales de FH, en el que la porción CR2 de la molécula CR2-FH es capaz de unirse a un ligando de CR2, y en el que la porción FH de la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa.

En algunas realizaciones, se proporciona una molécula CR2-FH aislada. En algunas realizaciones, se proporciona una composición (tal como una composición farmacéutica) que comprende una molécula CR2-FH. En algunas realizaciones, la porción CR2 y la porción FH están directa o indirectamente fusionadas entre sí en forma de una proteína de fusión. En algunas realizaciones, la porción CR2 y la porción FH están enlazadas vía un reticulador químico. En algunas realizaciones, la porción CR2 y la porción FH no están enlazadas covalentemente.

En algunas realizaciones, se proporciona una proteína de fusión CR2-FH. En algunas realizaciones, la porción CR2 y la porción FH están directamente fusionadas (es decir, enlazadas) entre sí. En algunas realizaciones, la porción CR2 y la porción FH están enlazadas vía una secuencia ligadora de aminoácido. En algunas realizaciones, el término C de la porción CR2 está enlazado (directa o indirectamente) al término N de la porción FH. En algunas realizaciones, el término N de la porción CR2 está enlazado (directa o indirectamente) al término C de la porción FH.

En algunas realizaciones, la molécula CR2-FH comprende dos o más (tal como cualquiera de dos, tres, cuatro, cinco, o más) porciones CR2. Estas porciones CR2 pueden ser iguales o diferentes, por ejemplo en términos de secuencias de aminoácidos, estructuras, y/o funciones. Por ejemplo, en algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) dos o más porciones CR2 que comprenden un CR2 o un fragmento del mismo, y 2) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) dos o más porciones CR2 que comprenden un CR2 o un fragmento del mismo, y 2) una porción FH que comprende un FH o un fragmento del mismo, en el que la molécula CR2-FH es capaz de unirse a un ligando de CR2, y en el que la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa.

En algunas realizaciones, la molécula CR2-FH comprende dos o más (tal como cualquiera de dos, tres, cuatro, cinco, o más) porciones FH. Estas porciones FH pueden ser iguales o diferentes, por ejemplo en términos de secuencias de aminoácidos, estructuras, y/o funciones. Por ejemplo, en algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) una porción CR2 que comprende un CR2 o un fragmento del mismo, y 2) dos o más porciones FH que comprenden un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) una porción CR2 que comprende un CR2 o un fragmento del mismo, y 2) dos o más (tal como dos) porciones FH que comprenden un FH o un fragmento del mismo, en el que la molécula CR2-FH es capaz de unirse a un ligando de CR2, y en el que la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa.

En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) dos o más porciones CR2 que comprenden un CR2 o un fragmento del mismo, y 2) dos o más porciones FH que comprenden un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) dos o más porciones CR2 que comprenden un CR2 o un fragmento del mismo, y 2) dos o más (tal como dos) porciones FH que comprenden un FH o un fragmento del mismo, en el que la molécula CR2-FH es capaz de unirse a un ligando de CR2, y en el que la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa.

En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) CR2 de longitud completa; y 2) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) un fragmento de CR2, y 2) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) una porción CR2 que comprende al menos los primeros dos dominios de SCR N-terminales de CR2, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende: 1) una porción CR2 que comprende al menos los primeros cuatro dominios de SCR N-terminales de CR2, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH es capaz de unirse a un ligando de CR2 e inhibir la activación del complemento de la ruta alternativa. En algunas realizaciones, la molécula CR2-FH comprende dos o más porciones FH. En algunas realizaciones, la porción FH comprende un FH de longitud completa. En algunas realizaciones, la porción FH comprende un fragmento de FH. En algunas realizaciones, la porción FH comprende al menos los primeros cuatro dominios de SCR N-terminales de FH. En algunas realizaciones, la porción FH comprende al menos los primeros cinco dominios de SCR N-terminales de FH. En algunas realizaciones, la porción FH carece de un sitio de unión a heparina. En algunas realizaciones, la porción FH comprende un FH o un fragmento del mismo que tiene un polimorfismo que es protector frente a degeneración macular relacionada con la edad.

5

10

15

20

25

30

35

40

45

50

55

60

En algunas realizaciones, se proporciona una molécula CR2-FH (tal como una proteína de fusión CR2-FH) que comprende: a) una porción CR2 que comprende un sitio de unión a ligando que es cualquiera de (y en algunas realizaciones se selecciona del grupo que consiste en) (1) un sitio en la hebra B y el bucle B-C de SCR de CR2 que comprende el segmento G98-G99-Y100-KI01-I102-R103-G104-S105-T106-P107-Y108 con respecto a SEC ID NO: 1, (2) un sitio en la hebra B de SCR2 de CR2 que comprende la posición K119 con respecto a SEC ID NO: 1, (3) un segmento que comprende V149-F150-P151-L152 con respecto a SEC ID NO: 1, y (4) un segmento de SCR2 de CR2 que comprende T120-N121-F122 con respecto a SEC ID NO: 1; y (b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la molécula CR2-FH es capaz de unirse a un ligando de CR2 e inhibir la activación del complemento de la ruta alternativa. En algunas realizaciones, la porción CR2 comprende además secuencias requeridas para mantener la estructura tridimensional del sitio de unión a ligando. En algunas realizaciones, la molécula CR2-FH comprende dos o más porciones FH. En algunas realizaciones, la porción FH comprende un FH de longitud completa. En algunas realizaciones, la porción FH comprende un fragmento de FH. En algunas realizaciones, la porción FH comprende al menos los primeros cuatro dominios de SCR N-terminales de FH. En algunas realizaciones, la porción FH comprende al menos los primeros cinco dominios de SCR N-terminales de FH. En algunas realizaciones, la porción FH carece de un sitio de unión a heparina. En algunas realizaciones, la porción FH comprende un FH o un fragmento del mismo que tiene un polimorfismo que es protector frente a degeneración macular relacionada con la edad.

En algunas realizaciones, se proporciona una molécula CR2-FH (tal como una proteína de fusión CR2-FH) que comprende: a) una porción CR2 que comprende al menos los primeros dos dominios de SCR N-terminales de CR2. y b) una porción FH que comprende al menos los primeros cuatro dominios de SCR N-terminales de FH. En algunas realizaciones, la molécula CR2-FH es capaz de unirse a un ligando de CR2 e inhibir la activación del complemento de la ruta alternativa. En algunas realizaciones, la porción CR2 comprende al menos los primeros 3, 4, 5, 6, 7, o más dominios de SCR N-terminales de CR2. En algunas realizaciones, la porción FH comprende al menos los primeros 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, o más dominios de SCR N-terminales de FH. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende (y en algunas realizaciones consiste en o consiste esencialmente en); a) una porción CR2 que comprende los primeros cuatro dominios de SCR N-terminales de CR2. y b) una porción FH que comprende los primeros cinco dominios de SCR N-terminales de FH. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende (y en algunas realizaciones consiste en o consiste esencialmente en): a) una porción CR2 que comprende los primeros cuatro dominios de SCR N-terminales de CR2, y b) dos o más (tal como dos) porciones FH que comprende los primeros cinco dominios de SCR N-terminales de FH. En algunas realizaciones, la molécula CR2-FH comprende (y en algunas realizaciones consiste en o consiste esencialmente en): a) una porción CR2 que comprende los aminoácidos 23 a 271 de SEC ID NO: 1, y b) una porción FH que comprende los aminoácidos 21 a 320 de SEC ID NO: 2. En algunas realizaciones, la molécula CR2-FH comprende (y en algunas realizaciones consiste en o consiste esencialmente en): a) una porción CR2 que comprende los aminoácidos 23 a 271 de SEC ID NO: 1, y b) dos o más (tal como dos) porciones FH que comprenden los aminoácidos 21 a 320 de SEC ID NO: 2.

En algunas realizaciones, la CR2-FH es una proteína de fusión que tiene una secuencia de aminoácidos de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23. En algunas realizaciones, la molécula CR2-FH es una proteína de fusión que tiene la secuencia de aminoácidos que es al menos alrededor de cualquiera de 50%, 60%, 70%, 80%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a aquella de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23. En algunas realizaciones, la CR2-FH es una proteína de fusión que comprende al menos alrededor de 400, 450, 500, 550, o más aminoácidos contiguos de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23. En algunas realizaciones, la molécula CR2-FH es una proteína de fusión codificada por un polinucleótido que tiene una secuencia de ácido nucleico de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. En algunas realizaciones, la molécula CR2-FH es una proteína de fusión codificada por un polinucleótido que tiene una secuencia de ácido nucleico que es al menos alrededor de cualquiera de 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a aquella de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. También están englobados aquí los polinucleótidos que codifican una proteína de fusión CR2-FH descrita aquí. Por ejemplo, en algunas realizaciones, se proporciona un polinucleótido que codifica una proteína de fusión que comprende una porción CR2 que comprende CR2 o un fragmento del mismo, y una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, el polinucleótido también comprende una secuencia que codifica un péptido señal enlazada operablemente al extremo 5' de la secuencia que codifica la proteína de fusión CR2-FH. En algunas realizaciones, se usa una secuencia ligadora para enlazar la porción CR2 y la porción FH. En algunas realizaciones, el polinucleótido codifica una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23. En algunas realizaciones, el polinucleótido codifica una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a la secuencia de ácido nucleico de cualquiera de SEC ID NO: 3, SEC ID NO: 22, y SEC ID NO: 24. También se proporcionan vectores que comprenden un polinucleótido que codifica una proteína de fusión CR2-FH, células hospedantes que comprenden el polinucleótido, y métodos para producir una proteína de fusión CR2-FH que comprenden cultivar las células hospedantes en condiciones adecuadas para expresar la proteína de fusión y recuperar la proteína de fusión del cultivo de la célula hospedante.

En otro aspecto, se proporciona una composición farmacéutica que comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuada para la administración a un ser humano. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuada para la inyección intraocular. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuada para aplicación tópica al ojo. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuada para inyección intravenosa. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuada para inyección en las arterias (tales como arterias renales), hígado, o riñón.

5

10

15

20

25

30

35

40

45

50

55

60

En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH (tal como una proteína de fusión CR2) que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo, y un vehículo farmacéuticamente aceptable. En algunas realizaciones, la molécula CR2-FH es capaz de unirse a un ligando de CR2 e inhibir la activación del complemento de la ruta alternativa. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH que comprende: una molécula CR2-FH (tal como una proteína de fusión CR2-FH) que comprende: a) una porción CR2 que comprende al menos los primeros dos dominios de SCR N-terminales de CR2, y b) una porción FH que comprende al menos los primeros cuatro dominios de SCR N-terminales de FH, y un vehículo farmacéuticamente aceptable. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH (tal como una proteína de fusión CR2-FH) que comprende (y en algunas realizaciones consiste en o consiste esencialmente en): a) una porción CR2 que comprende los primeros cuatro dominios de SCR N-terminales de CR2, y b) una porción FH que comprende los primeros cinco dominios de SCR N-terminales de FH, y un vehículo farmacéuticamente aceptable. En algunas realizaciones, la composición farmacéutica comprende una molécula CR2-FH (tal como una proteína de fusión CR2-FH) que comprende (y en algunas realizaciones consiste en o consiste esencialmente en): a) una porción CR2 que comprende los aminoácidos 23 a 271 de SEC ID NO: 1, y b) una porción FH que comprende los aminoácidos 21 a 320 de SEC ID NO: 2, y un vehículo farmacéuticamente aceptable. En algunas realizaciones, la composición farmacéutica comprende una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos que es al menos alrededor de 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a aquella de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23, y un vehículo farmacéuticamente aceptable. En algunas realizaciones, la composición farmacéutica es adecuada para el suministro al ojo (por ejemplo mediante inyección intraocular o mediante suministró tópico al ojo). En algunas realizaciones, la composición farmacéutica es adecuada para inyección intravenosa. En algunas realizaciones, la composición farmacéutica es adecuada para inyección en las arterias (tales como arterias renales), hígado, o riñón. En algunas realizaciones, la composición es adecuada para administración intraocular, intravenosa, intraarterial, subcutánea, intratraqueal, o por inhalación.

En otro aspecto, la invención proporciona la composición para uso en un método para tratar en un individuo una enfermedad en la que está implicada la ruta alternativa del complemento, que comprende administrar al individuo una cantidad eficaz de una composición (tal como una composición farmacéutica) descrita aguí. En algunas realizaciones, el método comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, el método comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo, en el que la molécula CR2-FH es capaz de unirse a un ligando de CR2, y en el que la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa. En algunas realizaciones, la enfermedad a tratar es una enfermedad que implica inflamación local. En algunas realizaciones, la enfermedad a tratar es una enfermedad que está asociada con deficiencias del FH (incluyendo, por ejemplo, disminución en el nivel de FH, disminución en la actividad de FH, que carezca de FH de tipo salvaje o protector). En algunas realizaciones, la enfermedad a tratar no es una enfermedad que está asociada con deficiencias del FH. En algunas realizaciones, la enfermedad a tratar es una enfermedad asociada con drusas. En algunas realizaciones, la enfermedad a tratar no implica la ruta clásica del complemento.

En algunas realizaciones, se proporciona la composición para uso en un método para tratar degeneración macular (tal como degeneración macular relacionada con la edad o AMD) en un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la enfermedad a tratar es una forma seca de AMD. En algunas realizaciones, la enfermedad a tratar es una forma húmeda de AMD. En algunas realizaciones, la molécula CR2-FH se administra mediante administración intravenosa. En algunas realizaciones, la molécula CR2-FH se administra mediante inyección intraocular. En algunas realizaciones, la molécula CR2-FH se administra mediante administración tópica al ojo (por ejemplo en forma de colirios).

En algunas realizaciones, uno o más aspectos de AMD se tratan mediante las composiciones de la presente invención. Por ejemplo, en algunas realizaciones, se proporciona una composición para uso en un método para tratar (tal como reducir, retrasar, eliminar, o prevenir) la formación de drusas en el ojo de un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para tratar (tal como reducir, retrasar, eliminar, o prevenir) la inflamación en el ojo de un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para tratar (tal como reducir, retrasar, eliminar, o prevenir) la pérdida de células fotorreceptoras en un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para mejorar (incluyendo, por ejemplo, disminuir, retrasar, o bloquear la pérdida de) agudeza visual o campo visual en el ojo de un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para tratar neovascularización (tal como neovascularización coroidea o CNV), que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. También se contemplan tratamientos de otros aspectos de AMD.

10

15

20

25

30

35

40

45

50

55

60

Las composiciones descritas aquí también son útiles para el tratamiento de ciertas enfermedades renales. Por ejemplo, en algunas realizaciones, se proporciona la composición para uso en un método para tratar glomerulonefritis membranoproliferativa tipo II (MPGN II), que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para tratar síndrome hemolítico-urémico (HUS), que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para tratar nefritis lúpica, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo. FH que comprende un FH o un fragmento del mismo.

En algunas realizaciones, se proporciona la composición para uso en un método para tratar reperfusión isquémica (incluyendo, por ejemplo, reperfusión por isquemia renal y reperfusión por isquemia intestinal), que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo.

También se proporciona la composición para uso en métodos para tratar rechazo de transplante de órganos. Por ejemplo, en algunas realizaciones, se proporciona la composición para uso en un método para retrasar el comienzo de rechazo vascular agudo (tal como rechazo de transplante de corazón mediado por anticuerpos) en un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo.

En algunas realizaciones, se proporciona la composición para uso en un método para mejorar la supervivencia del transplante de órganos en un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona la composición para uso en un método para mejorar la supervivencia del transplante de órganos en un individuo, comprendiendo el método perfundir el órgano a transplantar a un individuo con una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona un método para mejorar la supervivencia de un donante de transplante de órganos, que comprende administrar al donante de transplante de órganos una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo.

En algunas realizaciones, se proporciona la composición para uso en un método para tratar artritis reumatoide, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH

ES 2 523 640 T3

que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo.

También se proporcionan formas de dosificación unitarias, kits, y artículos de fabricación que son útiles para los métodos descritos aquí.

Se ha de entender que una, algunas, o todas las propiedades de las diversas realizaciones descritas aquí se pueden 5 combinar para formar otras realizaciones de la presente invención.

BREVE DESCRIPCIÓN DE LAS FIGURAS

La Figura 1 proporciona diagramas esquemáticos de un plásmido de expresión de CR2-FH ejemplar y proteínas CR2-FH. Para el plásmido de expresión de CR2-FH, k se refiere a la secuencia de Kozak, 5 se refiere al péptido señal CD5, 1 se refiere a un ligador opcional, s se refiere a un codón de parada y la señal poliA. Para las proteínas CR2-FH (con o sin péptido señal), 5 se refiere al péptido señal CD5, 1 se refiere a un ligador opcional.

La Figura 2 proporciona la secuencia de aminoácidos de CR2 humano (SEC ID NO: 1) y la secuencia de aminoácidos de FH humano (SEC ID NO: 2).

La Figura 3 proporciona la secuencia de aminoácidos de una proteína de fusión CR2-FH humana ejemplar (SEC ID NO: 3) y una secuencia polinucleotídica ejemplar que codifica una proteína de fusión CR2-FH humana (SEC ID NO: 4).

Las Figuras 4-6 proporcionan secuencias de aminoácidos ejemplares de moléculas CR2-FH descritas aquí (SEC ID NOs: 5-10). "nnn" representa un ligador opcional.

La Figura 7 proporciona secuencias de aminoácidos ejemplares de péptidos de señalización descritos aquí 20 (SEC ID NOs: 11, 13, y 25) y secuencias polinucleotídicas ejemplares que codifican los péptidos de señalización (SEC ID NOs: 12, 14 y 26).

> La Figura 8 proporciona secuencia de aminoácidos de CR2 de ratón (SEC ID NO: 15) y secuencia de aminoácidos de FH de ratón (SEC ID NO: 16).

La Figura 9 proporciona secuencia de aminoácidos de una proteína de fusión CR2-FH de ratón ejemplar (SEC ID NO: 17) y una secuencia polinucleotídica ejemplar que codifica una CR2-FH de ratón más el péptido señal (SEC ID NO: 18).

La Figura 10 proporciona una secuencia de ADN ejemplar de CR2NLFHFH, una proteína de fusión CR2-FH de ratón que contiene una porción CR2 y dos porciones FH sin una secuencia ligadora (SEC ID NO: 19).

La Figura 11 proporciona una secuencia de ADN ejemplar de CR2LFHFH, una proteína de fusión CR2-FH de ratón que contiene una porción CR2 enlazada dos porciones FH vía una secuencia ligadora (SEC ID NO: 20).

La Figura 12A proporciona una representación gráfica de datos obtenidos en un ensayo del complemento con zymosán in vitro usando una proteína de fusión CR2-FH de ratón (CR2-fH) y el factor H solo (fH). La Figura 12B proporciona una representación gráfica de datos obtenidos en un ensayo del complemento con zymosán in vitro que usa los primeros cinco dominios de SCR de FH (FH 15) y los primeros cuatro dominios de CR2 (CR2).

La Figura 13 proporciona una representación gráfica de datos obtenidos en un ensayo del complemento con zymosán in vitro usando la proteína de fusión CR2-FH de ratón con un ligador (CR2LFH), proteína de fusión CR2-FH sin ligador (CR2NLFH), CR2-FH-FH con ligador (CR2LFHFH), y CR2-Crry.

Las Figuras 14A y 14B proporcionan representaciones gráficas de datos obtenidos en un modelo de animal de lesión por isquemia y reperfusión del intestino usando la proteína de fusión CR2-FH de ratón que tiene una porción FH (CR2-fH) o dos porciones FH (CR2-fHH).

La Figura 15A proporciona una representación gráfica de los efectos de CR2-fH sobre la función del riñón según se mide mediante nitrógeno de urea en suero (SUN). La Figura 15B proporciona una representación gráfica de los efectos de CR2-fH sobre la morfología renal. La Figura 15C y 15D proporcionan resultados de tinción inmunofluorescente de secciones de riñón de ratones de control (15C) y secciones de riñón de ratones tratados con CR2-fH (15D), incubadas con anticuerpo conjugado a FTIC contra C3 de ratón.

La Figura 16 proporciona resultados de respuesta retiniana de ondas a y b en ratones tratados con o sin CR2-fH.

Las Figuras 17A y 17B proporcionan tinción con isolectina b de lesiones de retina de ratón de control procedentes de ratón de control (17A) y ratón tratado con CR2-fH mediante inyección intravenosa (17B). La

7

15

10

25

30

35

40

45

50

Figura 17C muestra la cuantificación de los tamaños de las lesiones basándose en la tinción con isolectina b de las Figuras 17A y 17B.

Las Figuras 18A y 18B proporcionan tinción con isolectina b de lesiones de retina de ratón procedentes de ratón de control (18A) y ratón tratado con CR2-fH mediante inyección intraóptica (18B). La Figura 18C proporciona cuantificación de los tamaños de las lesiones basándose en la tinción con isolectina b de las Figuras 18A y 18B.

La Figura 19 proporciona una curva de supervivencia de receptor de transplante de corazón de ratón tratado con una única dosis de CR2-fH (CR2-fH), múltiples dosis de CR2-fH (CR2-fH (m)), y tampón de control (PBS).

La Figura 20 proporciona secuencia de aminoácidos de una proteína de fusión CR2-FH humana ejemplar (denominada CR2-fH o CR2fH humana) (SEC ID NO: 21) y una secuencia polinucleotídica ejemplar que codifica una CR2-fH humana más el péptido señal (SEC ID NO: 22). La secuencia que codifica el péptido señal está subrayada.

La Figura 21 proporciona una secuencia de aminoácidos ejemplar de una proteína de fusión CR2-FH humana que contiene dos porciones FH (denominada como CR2-FH2 humana o CR2fH2 humana) (SEC ID NO: 23) y una secuencia polinucleotídica ejemplar que codifica una CR2-FH2 humana más el péptido señal (SEC ID NO: 24). La secuencia que codifica el péptido señal está subrayada.

La Figura 22A muestra la inhibición de CR2fH y CR2fH2 humanas en la deposición de C3b específica de la ruta alternativa sobre partículas de zymosán. La Figura 22B muestra la inhibición de la lisis de eritrocitos, mediada por la ruta alternativa, por CR2fH humana y CR2fH2 humana.

La Figura 23 muestra los efectos de CR2-FH de ratón sobre la activación de C3 inducida por complejos inmunitarios de colágeno-anticuerpos anti-colágeno. El eje Y muestra los valores medios de OD.

La Figura 24 muestra la titulación de CR2-FH de ratón en tampón suficiente de calcio usando suero procedente de ratones genosuprimidos C4-/C4-. El eje Y muestra valores medios de OD.

25 DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

5

10

15

20

30

35

40

45

50

55

La presente invención proporciona una molécula CR2-FH, composiciones (tales como composiciones farmacéuticas) que comprenden una molécula CR2-FH, y su uso en métodos para tratar una enfermedad en la que está implicada la ruta alternativa del complemento, mediante la administración de la composición. La molécula CR2-FH comprende una porción CR2 y una porción FH. La porción CR2 es responsable del suministro dirigido de la molécula a los sitios de activación del complemento, y la porción FH es responsable de la inhibición específica de la activación del complemento de la ruta alternativa. Estudios preliminares han mostrado que una molécula CR2-FH, específicamente, una proteína de fusión CR2-FH que contiene los primeros cuatro dominios de SCR N-terminales de la proteína CR2, y los primeros cinco dominios de SCR N-terminales de la proteína del factor H, tiene actividad de direccionamiento y actividad inhibidora del complemento *in vitro*. Esta molécula es significativamente más eficaz que una molécula del factor H que carezca de la porción CR2, sugiriendo que el direccionamiento de FH a los sitios de activación del complemento será una herramienta terapéutica eficaz a la hora de tratar enfermedad en la que está implicada la ruta alternativa del complemento, tal como degeneración macular (por ejemplo degeneración macular relacionada con la edad). Esta observación es sorprendente debido a la concentración relativamente elevada de FH en el plasma y a la creencia mantenida durante mucho tiempo de que las células que están en contacto directo con plasma ya están completamente cubiertas con FH. Jozsi et al., Histopathol. (2004) 19:251-258.

En consecuencia, en un aspecto, se proporciona una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, comprendiendo el fragmento del mismo al menos los primeros dos dominios de SCR N-terminales de CR2, y b) una porción FH que comprende un FH o un fragmento del mismo, comprendiendo el fragmento del mismo al menos los primeros cuatro dominios de SCR N-terminales de FH, en el que la porción CR2 de la molécula CR2-FH es capaz de unirse a un ligando de CR2, y en el que la porción FH de la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa. En algunas realizaciones, se proporciona una molécula CR2-FH aislada. En algunas realizaciones, se proporciona una composición (tal como una composición farmacéutica) que comprende una molécula CR2-FH. Por ejemplo, en algunas realizaciones, se proporciona una composición farmacéutica que comprende una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuada para administración a un individuo sistémicamente (tal como inyección intravenosa), o localmente (tal como inyección intravenosa) invección en las arterias, incluyendo arterias renales).

En otro aspecto, se proporciona la composición de la invención para uso en un método para tratar una enfermedad en la que está implicada la ruta alternativa del complemento en un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. Las enfermedades adecuadas que se pueden tratar mediante composiciones de la presente invención incluyen, por ejemplo, degeneración macular (tal como degeneración macular relacionada con la edad), artritis

ES 2 523 640 T3

reumatoide, isquemia-reperfusión, rechazo de transplante de órganos, y enfermedades renales tales como MPGN II, HUS, y nefritis lúpica.

También se proporcionan formas de dosificación unitarias, kits, y artículos de fabricación que son útiles para los métodos descritos aquí.

5 La referencia general a "la composición" o "composiciones" incluye y es aplicable a composiciones de la invención.

Como se usa aquí, la forma singular "un", "una", y "el/la" incluye referencias plurales excepto que se indique de otro modo. Por ejemplo, "una" porción FH incluye una o más porciones FH.

La referencia a "alrededor de" un valor o parámetro incluye aquí (y describe) realizaciones que están dirigidas a ese valor o parámetro per se. Por ejemplo, la descripción que se refiere a "alrededor de X" incluye la descripción de "X".

10 Se entiende que aspectos y realizaciones de la invención descritos aquí incluyen "que consisten en" y/o "que consisten esencialmente en" aspectos y realizaciones.

Moléculas CR2-FH y composiciones que comprenden una molécula CR2-FH

25

30

35

40

45

50

55

Se proporcionan aquí moléculas CR2-FH y composiciones (tales como composiciones farmacéuticas) que comprenden una molécula CR2-FH.

"Molécula CR2-FH" usada aquí, se refiere a una molécula de origen no natural que comprende un CR2 o un fragmento del mismo (la "porción CR2") y un FH o un fragmento del mismo (la "porción FH"). La porción CR2 es capaz de unirse a uno o más ligandos naturales de CR2, y de este modo es responsable del suministro dirigido de la molécula a los sitios de activación del complemento. La porción FH es responsable de inhibir específicamente la activación del complemento de la ruta alternativa del complemento. La porción CR2 y la porción FH de la molécula CR2-FH se pueden enlazar juntas mediante cualesquiera métodos conocidos en la técnica, en tanto que se mantengan las funcionalidades deseadas de las dos porciones.

La molécula CR2-FH descrita aquí tiene así generalmente las funciones duales de unirse a un ligando de CR2 y de inhibir la activación del complemento de la ruta alternativa. "Ligando de CR2" se refiere a cualquier molécula que se une a una proteína CR2 de origen natural, que incluye, pero no se limita a, C3d, iC3b, C3dg, C3d, y fragmentos de C3b unidos a la célula que se unen a los dos dominios de SCR N-terminales de CR2. La molécula CR2-FH se puede unir, por ejemplo, a un ligando de CR2 con una afinidad de unión que es alrededor de cualquiera de 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, o 100% de la proteína CR2. La afinidad de unión se puede determinar mediante cualquier método conocido en la técnica, incluyendo, por ejemplo, resonancia de plasmones superficiales, valoración calorimétrica, ELISA, y citometría de flujo. En algunas realizaciones, la molécula CR2-FH tiene una o más de las siguientes propiedades de CR2: (1) unión a C3d, (2) unión a iC3b, (3) unión a C3dg, (4) unión a C3d, y (5) unión a fragmento o fragmentos unidos a la célula de C3b que se unen a los dos dominios de SCR N-terminales de CR2.

La molécula CR2-FH descrita aquí es generalmente capaz de inhibir la activación del complemento de la ruta alternativa. La molécula CR2-FH puede ser un inhibidor del complemento más potente que la proteína FH de origen natural. Por ejemplo, en algunas realizaciones, la molécula CR2-FH tiene una actividad inhibidora del complemento que es alrededor de cualquiera de 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, o más veces de la de la proteína FH. En algunas realizaciones, la molécula CR2-FH tiene una EC50 de menos de alrededor de cualquiera de 100 nM, 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM, o 10 nM. En algunas realizaciones, la molécula CR2-FH tiene una EC50 de alrededor de 5-60 nM, incluyendo, por ejemplo, cualquiera de 8-50 nM, 8-20 nM, 10-40 nM, y 20-30 nM. En algunas realizaciones, la molécula CR2-FH tiene actividad inhibidora del complemento que es alrededor de cualquiera de 50%, 60%, 70%, 80%, 90%, o 100% de la de la proteína FH.

La inhibición del complemento se puede evaluar basándose en cualesquiera métodos conocidos en la técnica, incluyendo, por ejemplo, ensayos con zymosán *in vitro*, ensayos para la lisis de eritrocitos, ensayos de activación de complejos inmunitarios, y ensayos de activación de manano. En algunas realizaciones, la CR2-FH tiene una o más de las siguientes propiedades de FH: (1) unión a proteína reactiva C (CRP), (2) unión a C3b, (3) unión a heparina, (4) unión a ácido siálico, (5) unión a superficies de células endoteliales, (6) unión al receptor de integrina celular, (7) unión a patógenos, (8) actividad de cofactor de C3b, (9) actividad de aceleración del decaimiento de C3b, y (10) inhibición de la ruta alternativa del complemento.

En algunas realizaciones, la molécula CR2-FH es una proteína de fusión. "Proteína de fusión", como se usa aquí, se refiere a dos o más péptidos, polipéptidos, o proteínas enlazados operablemente entre sí. En algunas realizaciones, la porción CR2 y la porción FH están directamente fusionadas entre sí. En algunas realizaciones, la porción CR2 y la porción FH están enlazadas mediante una secuencia ligadora de aminoácidos. Los ejemplos de secuencias ligadoras son conocidos en la técnica, e incluyen, por ejemplo, (Gly₄Ser), (Gly₄Ser)₂, (Gly₄Ser)₃, (Gly₃Ser)₄, (SerGly₄), (SerGly₄)₃, y (SerGly₄)₄. Las secuencias enlazantes también pueden comprender secuencias enlazantes "naturales" encontradas entre diferentes dominios de factores del complemento. Por ejemplo, se puede usar VSVFPLE, la secuencia enlazante entre los primeros dos dominios de repetición de consenso corta N-

terminales de CR2 humana. En algunas realizaciones, se usa la secuencia enlazante entre el cuarto y el quinto dominio de la repetición de consenso corta N-terminales de CR2 humano (EEIF). El orden de la porción CR2 y de la porción FH en la proteína de fusión puede variar. Por ejemplo, en algunas realizaciones, el término C de la porción CR2 se fusiona (directa o indirectamente) al término N de la porción FH de la molécula. En algunas realizaciones, el término N de la porción CR2 se fusiona (directa o indirectamente) al término C de la porción FH de la molécula.

En algunas realizaciones, la molécula CR2-FH es una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23. En algunas realizaciones, la molécula CR2-FH es una proteína de fusión que tiene una secuencia de aminoácidos que es al menos alrededor de 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a aquella de cualquiera de SEC ID NO: 3, SEC ID NO: 21, o SEC ID NO: 23. En algunas realizaciones, la molécula CR2-FH comprende al menos alrededor de 400, 450, 500, 550, o más aminoácidos contiguos de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23.

En algunas realizaciones, la molécula CR2-FH es una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos de cualquiera de SEC ID NOs: 5-10. En algunas realizaciones, la molécula CR2-FH es una proteína de fusión que tiene una secuencia de aminoácidos que es al menos alrededor de 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a aquella de cualquiera de SEC ID NOs: 5-10. En algunas realizaciones, la molécula CR2-FH comprende al menos alrededor de 400, 450, 500, 550, o más aminoácidos contiguos de cualquiera de SEC ID NOs:5-10.

En algunas realizaciones, la molécula CR2-FH está codificada por un polinucleótido que tiene una secuencia de ácido nucleico de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. En algunas realizaciones, la molécula CR2-FH está codificada por un polinucleótido que tiene una secuencia de ácido nucleico que es al menos alrededor de 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a aquella de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24.

En algunas realizaciones, la molécula CR2-FH comprende una porción CR2 y una porción FH enlazadas vía un reticulador químico. El enlazamiento de las dos porciones puede producirse en grupos reactivos situados en las dos porciones. Los grupos reactivos que se pueden seleccionar como dianas usando un reticulador incluyen aminas primarias, sulfhidrilos, carbonilos, hidratos de carbono, y ácidos carboxílicos, o grupos activos que se pueden añadir a proteínas. Los ejemplos de ligadores químicos son bien conocidos en la técnica, e incluyen, pero no se limita a, bismaleimidohexano, éster de maleimidobenzoil-N-hidroxisuccinimida, reticuladores de ésteres de NHS-maleimida tales como SPDP, carbodiimida, glutaraldehído, MBS; sulfo-MBS, SMPB, sulfo-SMPB, GMBS, sulfo-GMBS, EMCS, sulfo-EMCS, reticuladores de imidoésteres tales como DMA, DMP, DMS, DTBP, EDC y DTME.

En algunas realizaciones, la porción CR2 y la porción FH no están enlazadas covalentemente. Por ejemplo, las dos porciones se pueden unir juntas mediante dos proteínas formadoras de puente interactuantes (tales como biotina y estreptavidina), cada una enlazada a una porción CR2 o una porción FH.

En algunas realizaciones, la molécula CR2-FH comprende dos o más (iguales o diferentes) porciones CR2 descritas aquí. En algunas realizaciones, la molécula CR2-FH comprende dos o más (iguales o diferentes) porciones FH descritas aquí. Estas dos o más porciones CR2 (o FH) se pueden enlazar en tándem (tal como fusionar) entre sí. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende una porción CR2 y dos o más (tal como tres, cuatro, cinco, o más) porciones FH. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende una porción FH y dos o más (tal como tres, cuatro, cinco, o más) porciones CR2. En algunas realizaciones, la molécula CR2-FH (tal como una proteína de fusión CR2-FH) comprende dos o más porciones CR2 y dos o más porciones FH.

En algunas realizaciones, se proporciona una molécula CR2-FH aislada. En algunas realizaciones, las moléculas CR2-FH forman dímeros o multímeros.

La porción CR2 y la porción FH en la molécula pueden proceder de la misma especie (tal como un ser humano o ratón), o de diferentes especies.

Porción CR2

50

55

5

10

15

La porción CR2 descrita aquí comprende un CR2 o un fragmento del mismo. CR2 es una proteína transmembránica expresada predominantemente en células B maduras y células dendríticas foliculares. CR2 es un miembro de la familia de proteínas de unión a C3. Los ligandos naturales para CR2 incluyen, por ejemplo, iC3b, C3dg, y C3d, y fragmentos de ruptura unidos a la célula de C3b que se unen a los dos dominios de SCR N-terminales de CR2. La escisión de C3 da inicialmente como resultado la generación de C3b y la unión covalente de este C3b a la superficie celular activante. El fragmento C3b está implicado en la generación de complejos enzimáticos que amplifican la cascada del complemento. En la superficie celular, C3b se convierte rápidamente en iC3b inactivo, particularmente cuando se deposita sobre una superficie hospedante que contiene reguladores de la activación del complemento (es decir, la mayoría del tejido hospedante). Incluso en ausencia de reguladores del complemento unidos a la membrana, se forman niveles sustanciales de iC3b. iC3b se digiere subsiguientemente a los fragmentos unidos a la membrana C3dg y después C3d mediante proteasas del suero, pero este proceso es relativamente lento. De este

modo, los ligandos C3 para CR2 tienen una vida relativamente prolongada una vez que se generan, y estarán presentes en concentraciones elevadas en los sitios de activación del complemento. Por lo tanto, CR2 puede servir como un vehículo direccionador potente para llevar moléculas al sitio de activación del complemento.

CR2 contiene una porción extracelular que tiene 15 ó 16 unidades que se repiten, conocidas como repeticiones de consenso cortas (dominios de SCR). Los dominios de SCR tienen un marco típico de restos muy conservados que incluyen cuatro cisteínas, dos prolinas, un triptófano y varios otros restos de glicina e hidrófobos parcialmente conservados. SEC ID NO: 1 representa la secuencia de la proteína CR2 humana de longitud completa. Los aminoácidos 1-20 comprenden el péptido líder, los aminoácidos 23-82 comprenden SCR1, los aminoácidos 91-146 comprenden SCR2, los aminoácidos 154-210 comprenden SCR3, los aminoácidos 215-271 comprenden SCR4. El sitio activo (sitio de unión a C3d) está situado en SCR1-2 (los primeros dos dominios de SCR N-terminales). Estos dominios de SCR están separados por secuencias cortas de longitud variable que sirven como espaciadores. La secuencia de la proteína CR2 de ratón de longitud completa está representada aquí por SEC ID NO: 15. Los dominios de SCR1 y SCR2 de la proteína CR2 de ratón están situados en la secuencia de aminoácidos de CR2 de ratón en las posiciones 14-73 de SEC ID NO: 15 (SCR1) y en las posiciones 82-138 de SEC ID NO: 15 (SCR2). CR2 humano y de ratón son aproximadamente 66% idénticos a lo largo de las secuencias de aminoácidos de longitud completa representadas por SEC ID NO: 1 y SEC ID NO: 15, y aproximadamente 61% idénticas a lo largo de las regiones SCR1-SCR2 de SEC ID NO: 1 y SEC ID NO: 15. Tanto CR2 de ratón como humano se unen a C3 (en la región C3d). Se entiende que existen variaciones de especies y de razas para los péptidos, polipéptidos y proteínas descritos, y que el CR2 o un fragmento del mismo descrito aquí engloba todas las variaciones de especies y razas.

5

10

15

60

- La porción CR2 descrita aquí se refiere a un polipéptido que contiene parte o todo el sitio de unión a ligandos de la proteína CR2, e incluye, pero no se limita a, proteínas CR2 de longitud completa (tal como CR2 humano como se muestra en SEC ID NO: 1, o CR2 de ratón como se muestra en SEC ID NO: 15), proteínas CR2 solubles (tal como un fragmento CR2 que comprende el dominio extracelular de CR2), otros fragmentos biológicamente activos de CR2, un fragmento de CR2 que comprende SCR1 y SCR2, o cualquier homólogo de un CR2 de origen natural o fragmento del mismo, como se describe con detalle más abajo. En algunas realizaciones, la porción CR2 tiene una de las siguientes propiedades de CR2: (1) unión a C3d, (2) unión a iC3b, (3) unión a C3dg, (4) unión a C3d, y (5) unión fragmento o fragmentos unidos a la célula de C3b que se unen a los dos dominios de SCR N-terminales de CR2.
- En algunas realizaciones, la porción CR2 comprende los primeros dos dominios de SCR N-terminales de CR2. En algunas realizaciones, la porción CR2 comprende los primeros tres dominios de SCR N-terminales de CR2. En algunas realizaciones, la porción CR2 comprende los primeros cuatro dominios de SCR N-terminales de CR2. En algunas realizaciones, la porción CR2 comprende (y en algunas realizaciones consiste en o consiste esencialmente en) al menos los primeros dos dominios de SCR N-terminales de CR2, incluyendo, por ejemplo, al menos cualquiera de los primeros 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, o 16 dominios de SCR de CR2.
- 35 Un homólogo de una proteína CR2 o un fragmento de la misma incluye proteínas que difieren de un CR2 (o fragmento de CR2) de origen natural por cuanto al menos uno o unos pocos aminoácidos se han suprimido (por ejemplo, una versión truncada de la proteína, tal como un péptido o fragmento), insertado, invertido, sustituido y/o derivatizado (por ejemplo, mediante glicosilación, fosforilación, acetilación, miristoilación, prenilación, palmitación, amidación y/o adición de glucosilfosfatidil inositol). En algunas realizaciones, un homólogo de CR2 tiene una 40 secuencia de aminoácidos que es al menos alrededor de 70% idéntica a la secuencia de aminoácidos de un CR2 de origen natural (por ejemplo, SEC ID NO: 1, o SEC ID NO: 15), por ejemplo al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a la secuencia de aminoácidos de un CR2 de origen natural (por ejemplo, SEC ID NO: 1, o SEC ID NO: 15). Un homólogo de CR2 o un fragmento del mismo retiene preferiblemente la capacidad para unirse a un ligando de origen natural de CR2 (por ejemplo, C3d u otros fragmentos de C3 con 45 capacidad para unirse a CR2). Por ejemplo, el homólogo de CR2 (o fragmento del mismo) puede tener una afinidad de unión por C3d que es al menos alrededor de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% de la de CR2 (o un fragmento del
- En algunas realizaciones, la porción CR2 comprende al menos los primeros dos dominios de SCR N-terminales de un CR2 humano, tal como una porción CR2 que tiene una secuencia de aminoácidos que contiene al menos aminoácidos 23 a 146 del CR2 humano (SEC ID NO: 1). En algunas realizaciones, la porción CR2 comprende al menos los primeros dos dominios de SCR de CR2 humano que tienen una secuencia de aminoácidos que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% idéntica a los aminoácidos 23 a 146 del CR2 humano (SEC ID NO: 1).
 - En algunas realizaciones, la porción CR2 comprende al menos los primeros cuatro dominios de SCR N-terminales de un CR2 humano, tal como una porción CR2 que tiene una secuencia de aminoácidos que contiene al menos aminoácidos 23 a 271 del CR2 humano (SEC ID NO: 1). En algunas realizaciones, la porción CR2 comprende al menos los primeros cuatro dominios de SCR de CR2 humano que tienen una secuencia de aminoácidos que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%,

89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% idéntica a los aminoácidos 23 a 271 del CR2 humano (SEC ID NO: 1).

Una secuencia de aminoácidos que es al menos alrededor de, por ejemplo, 95% idéntica a una secuencia de referencia (tal como SEC ID NO: 1) quiere decir que la secuencia de aminoácidos es idéntica a la secuencia de referencia excepto que la secuencia de aminoácidos puede incluir hasta cinco alteraciones de punto por cada 100 aminoácidos de la secuencia de referencia. Estas hasta cinco alteraciones de punto pueden ser supresiones, sustituciones, adiciones, y pueden producirse en cualquier parte en la secuencia, interespaciadas individualmente entre aminoácidos en la secuencia de referencia o en uno o más grupos continuos en la secuencia de referencia.

En algunas realizaciones, la porción CR2 comprende parte o la totalidad de los sitios de unión a ligandos de la proteína CR2. En algunas realizaciones, la porción CR2 comprende además secuencias requeridas para mantener la estructura tridimensional del sitio de unión. Los sitios de unión a ligandos de CR2 se pueden determinar fácilmente basándose en las estructuras cristalinas de CR2, tales como las estructuras cristalinas de CR2 humano y de ratón descritas en la Publicación de Solicitud de Patente U.S. nº No. 2004/0005538. Por ejemplo, en algunas realizaciones, la porción CR2 comprende la hebra B y el bucle B-C de SCR de CR2. En algunas realizaciones, la porción CR2 comprende un sitio en la hebra B y el bucle B-C de SCR de CR2 que comprende el segmento G98-G99-Y100-K101-I102-R103-G104-S105-T106-P107-Y108 con respecto a SEC ID NO: 1. En algunas realizaciones, la porción CR2 comprende un sitio en la hebra B de SCR2 de CR2 que comprende la posición K119 con respecto a SEC ID NO: 1. En algunas realizaciones, la porción CR2 comprende un segmento que comprende V149-F150-P151-L152 con respecto a SEC ID NO: 1. En algunas realizaciones, la porción CR2 comprende un segmento de SCR2 de CR2 que comprende T120-N121-F122. En algunas realizaciones, la molécula CR2-FH tiene dos o más de estos sitios. Por ejemplo, en algunas realizaciones, la porción CR2 comprende una porción que comprende G98-G99-Y100-K101-I102-R103-G104-S105-T106-P107-Y108 y K119 con respecto a SEC ID NO: 1. También se contemplan otras combinaciones de estos sitios.

Porción del Factor H

5

10

15

20

30

35

40

45

50

55

25 La porción FH de la molécula CR2-FH descrita aquí comprende un FH o un fragmento del mismo.

El factor H del complemento (FH) es una glicoproteína plasmática de una sola cadena polipeptídica. La proteína está compuesta de 20 dominios de SCR repetitivos de aproximadamente 60 aminoácidos, dispuestos de una manera continua como una cadena de 20 perlas. El factor H se une a C3b, acelera el decaimiento de C3-convertasa de la ruta alternativa (C3Bb), y actúa como un cofactor para la inactivación proteolítica de C3b. En presencia del factor H, la proteolisis de C3b da como resultado la escisión de C3b. El factor H tiene al menos tres dominios de unión distintos para C3b, que están situados en SCR 1-4, SCR 5-8, y SCR 19-20. Cada sitio del factor H se une a una región distinta en la proteína C3b: los sitios N-terminales se unen a C3b nativa; el segundo sitio, situado en la región central del factor H, se une al fragmento de C3c, y el sitio situado en SCR19 y 20 se une a la región de C3d. Además, el factor H también contiene sitios de unión para heparina, que están situados en SCR 7, SCR 5-12, y SCR20 del factor H, y solapan con el del sitio de unión a C3b. Los análisis estructurales y funcionales han mostrado que los dominios para la actividad de FH inhibidora del complemento están situados en los primeros cuatro dominios de SCR N-terminales.

SEC ID NO: 2 representa la secuencia de la proteína FH humana de longitud completa. Los aminoácidos 1-18 corresponden al péptido líder, los aminoácidos 21-80 corresponden a SCR1, los aminoácidos 85-141 corresponden a SCR2, los aminoácidos 146-205 corresponden a SCR3, los aminoácidos 210-262 corresponden a SCR4, los aminoácidos 267-320 corresponden a SCR5. La secuencia de la proteína FH de ratón de longitud completa se representa aquí mediante SEC ID NO: 16. Los dominios SCR1 y SCR2 de la proteína FH de ratón están situados con la secuencia de aminoácidos de FH de ratón en las posiciones 21-27 de SEC ID NO: 16 (SCR1) y en las posiciones 82-138 de SEC ID NO: 16 (SCR2). FH humano y de ratón son aproximadamente 61% idénticos a lo largo de las secuencias de aminoácidos de longitud completa representadas por SEC ID NO: 2 y SEC ID NO: 16. Se entiende que existen variaciones de especies y de razas para los péptidos, polipéptidos, y proteínas descritos, y que el FH o un fragmento del mismo engloba todas las variaciones de especies y de razas.

La porción FH descrita aquí se refiere a cualquier porción de una proteína FH que tiene cierta o toda la actividad inhibidora del complemento de la proteína FH, e incluye, pero no se limita a, proteínas FH de longitud completa, fragmentos biológicamente activos de proteínas FH, un fragmento de FH que comprende SCR1-4, o cualquier homólogo de un FH de origen natural o fragmento del mismo, como se describe con detalle más abajo. En algunas realizaciones, la porción FH tiene una o más de las siguientes propiedades: (1) unión a proteína reactiva C (CRP), (2) unión a C3b, (3) unión a heparina, (4) unión a ácido siálico, (5) unión a superficies de células endoteliales, (6) unión a receptor de integrina celular, (7) unión a patógenos, (8) actividad de cofactor de C3b, (9) actividad de aceleración del decaimiento de C3b, y (10) inhibición de la ruta alternativa del complemento

En algunas realizaciones, la porción FH comprende los primeros cuatro dominios de SCR N-terminales de FH. En algunas realizaciones, el constructo comprende los primeros cinco dominios de SCR N-terminales de FH. En algunas realizaciones, el constructo comprende los primeros seis dominios de SCR N-terminales de FH. En algunas realizaciones, la porción FH comprende (y en algunas realizaciones consiste en o consiste esencialmente en) al

menos los primeros cuatro dominios de SCR N-terminales de FH, incluyendo, por ejemplo, al menos cualquiera de los primeros 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, o más dominios de SCR N-terminales de FH.

En algunas realizaciones, el FH es un FH de tipo salvaje. En algunas realizaciones, el FH es una variante protectora de FH.

En algunas realizaciones, la porción FH carece de un sitio de unión a heparina. Esto se puede lograr, por ejemplo, mediante mutación del sitio de unión a heparina en FH, o seleccionando fragmentos de FH que no contienen un sitio de unión a heparina. En algunas realizaciones, la porción FH comprende un FH o un fragmento del mismo que tiene a polimorfismo que es protector para degeneración macular relacionada con la edad. Hageman et al., Proc. Natl. Acad Sci. USA 102(20):7227. Un ejemplo de una molécula CR2-FH que comprende tal secuencia se proporciona en la Figura 4 (SEC ID NO: 6).

Un homólogo de una proteína FH o un fragmento de la misma incluye proteínas que difieren de un FH (o fragmento de FH) de origen natural por cuanto al menos uno o unos pocos, pero no se limita a uno o a unos pocos, aminoácidos se han suprimido (por ejemplo, una versión truncada de la proteína, tal como un péptido o fragmento), insertado, invertido, sustituido y/o derivatizado (por ejemplo, mediante glicosilación, fosforilación, acetilación, miristoilación, prenilación, palmitación, amidación y/o adición de glucosilfosfatidil inositol). Por ejemplo, un homólogo de FH puede tener una secuencia de aminoácidos que es al menos alrededor de 70% idéntica a la secuencia de aminoácidos de un FH de origen natural (por ejemplo, SEC ID NO: 2, o SEC ID NO: 16), por ejemplo al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a la secuencia de aminoácidos de un FH de origen natural (por ejemplo, SEC ID NO: 2, o SEC ID NO: 16). En algunas realizaciones, un homólogo de FH (o un fragmento del mismo) retiene toda la actividad de FH (o un fragmento del mismo) de inhibición del complemento. En algunas realizaciones, el homólogo de FH (o un fragmento del mismo) retiene al menos alrededor de 50%, por ejemplo, al menos alrededor de cualquiera de 60%, 70%, 80%, 90%, o 95% de la actividad de FH (o un fragmento del mismo) de inhibición del complemento.

En algunas realizaciones, la porción FH comprende al menos los primeros cuatro dominios de SCR N-terminales de un FH humano, tal como una porción FH que tiene una secuencia de aminoácidos que contiene al menos aminoácidos 21 a 262 del FH humano (SEC ID NO: 2). En algunas realizaciones, la porción FH comprende al menos los primeros cuatro dominios de SCR N-terminales de FH humano que tienen una secuencia de aminoácidos que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% idéntica a aminoácidos 21 a 262 del FH humano (SEC ID NO: 2).

En algunas realizaciones, la porción FH comprende al menos los primeros cinco dominios de SCR N-terminales de un FH humano, tal como una porción FH que tiene una secuencia de aminoácidos que contiene al menos aminoácidos 21 a 320 del FH humano (SEC ID NO: 2). En algunas realizaciones, la porción FH comprende al menos los primeros cinco dominios de SCR N-terminales de FH humano que tienen una secuencia de aminoácidos que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% idéntica a aminoácidos 21 a 320 del FH humano (SEC ID NO: 2).

En algunas realizaciones, la porción FH comprende una longitud completa o un fragmento de la molécula de proteína 1 similar al factor H (FHL-1), una proteína codificada por un transcrito alternativamente ayustado del gen del factor H. La FHL-1 madura contiene 431 aminoácidos. Los primeros 427 aminoácidos organizan siete dominios de SCR, y son idénticos a los dominios de SCR N-terminales de FH. Los restantes cuatro restos de aminoácidos Ser-Phe-Thr-Leu (SFTL) en el término C son específicos para FHL-1. FHL-1 se ha caracterizado funcionalmente, y se ha mostrado que tiene actividad reguladora del complemento del factor H. La expresión "porción FH" también engloba longitud completa o fragmentos de moléculas relacionadas con el factor H, incluyendo, pero sin limitarse a, proteínas codificadas por los genes FHR1, FHR2, FHR3, FHR4, FHR5. Estas proteínas relacionadas con el factor H se describen, por ejemplo, en de Cordoba et al., Molecular Immunology 2004, 41:355-367.

Variantes de moléculas CR2-FH

15

20

35

50

55

También están englobadas variantes de las moléculas CR2-FH (tales como las proteínas de fusión CR2-FH). Una variante de la molécula CR2-FH descrita aquí puede ser: (i) una en la que uno o más de los restos de aminoácidos de la porción CR2 y/o de la porción FH están sustituidos con un resto de aminoácido conservado o no conservado (preferiblemente un resto de aminoácido conservado), y tal resto de aminoácido sustituido puede ser o no uno codificado por el código genético; o (ii) una en la que uno o más de los restos de aminoácidos en la porción CR2 y/o la porción FH incluye un grupo sustituyente, o (iii) una en la que la molécula CR2-FH (tal como la proteína de fusión CR2-FH) se fusiona con otro compuesto, tal como un compuesto para incrementar la semivida de la molécula CR2-FH (por ejemplo, polietilenglicol), o (iv) una en la que aminoácidos adicionales se fusionan a la molécula CR2-FH (tal como la proteína de fusión CR2-FH), tal como una secuencia líder o secretora o una secuencia que se emplea para la purificación de la molécula CR2-FH (tal como la proteína de fusión CR2-FH), o (v) una en la que la molécula CR2-FH (tal como la proteína de fusión CR2-FH), o (v) una en la que la molécula CR2-FH (tal como la proteína de fusión CR2-FH) se fusiona con un polipéptido más grande, es decir, albúmina humana,

un anticuerpo o Fc, para una mayor duración del efecto. Se considera que tales variantes están dentro del alcance de los expertos en la técnica a partir de las enseñanzas aquí.

En algunas realizaciones, la variante de la molécula CR2-FH contiene sustituciones de aminoácidos conservativas (definidas posteriormente más abajo) realizadas en uno o más restos de aminoácidos predichos, preferiblemente no esenciales. Un resto de aminoácido "no esencial" es un resto que se puede alterar de la secuencia de tipo salvaje de una proteína sin alterar la actividad biológica, mientras que un resto de aminoácido "esencial" es necesario para la actividad biológica. Una "sustitución de aminoácidos conservativa" es aquella en la que el resto de aminoácido es sustituido por un resto de aminoácido que tiene una cadena lateral similar. Las familias de restos de aminoácidos que tienen cadenas laterales similares se han definido en la técnica. Estas familias incluyen aminoácidos con cadenas laterales básicas (por ejemplo, lisina, arginina, histidina), cadenas laterales ácidas (por ejemplo, ácido aspártico, ácido glutámico), cadenas laterales polares no cargadas (por ejemplo, glicina, asparagina, glutamina, serina, treonina, tirosina, cisteína), cadenas laterales no polares (por ejemplo, alanina, valina, leucina, isoleucina, prolina, fenilalanina, metionina, triptófano), cadenas laterales beta-ramificadas (por ejemplo, treonina, valina, isoleucina) y cadenas laterales aromáticas (por ejemplo, tirosina, fenilalanina, triptófano, histidina).

5

10

25

30

35

40

45

50

Se pueden introducir sustituciones de aminoácidos en las porciones CR2 o FH de la molécula CR2-FH para mejorar la funcionalidad de la molécula. Por ejemplo, se pueden introducir sustituciones de aminoácidos en las porciones CR2 de la molécula para incrementar la afinidad de unión de la porción CR2 a su ligando o ligandos, incrementar la especificidad de unión de la porción CR2 por su ligando o ligandos, mejorar el direccionamiento de la molécula CR2-FH hacia sitios deseados, incrementar la dimerización o multimerización de moléculas CR2-FH, y mejorar la farmacocinética de la molécula CR2-FH. De forma similar, se pueden introducir sustituciones de aminoácidos en la porción FH de la molécula para incrementar la funcionalidad de la molécula CR2-FH y mejorar la farmacocinética de la molécula CR2-FH.

En algunas realizaciones, la molécula CR2-FH (tal como la proteína de fusión CR2-FH) se fusiona con otro compuesto, tal como un compuesto para incrementar la semivida del polipéptido y/o para reducir la inmunogenicidad potencial del polipéptido (por ejemplo, polietilenglicol, "PEG"). El PEG se puede usar para impartir solubilidad en el agua, tamaño, velocidad lenta de aclaramiento renal, e inmunogenicidad reducida, a la proteína de fusión. Véase, por ejemplo, la patente U.S. nº 6.214.966. En el caso de PEGilaciones, la fusión de la molécula CR2-FH (tal como la proteína de fusión CR2-FH) a PEG se puede lograr por cualquier medio conocido por el experto en la técnica. Por ejemplo, la PEGilación se puede lograr introduciendo en primer lugar una mutación de cisteína en la proteína de fusión CR2-FH, seguido de la derivatización específica del sitio con PEG-maleimida. La cisteína se puede añadir al término C de la proteína de fusión CR2-FH. Véase, por ejemplo, Tsutsumi et al. (2000) Proc. Natl. Acad. Sci. USA 97(15):8548-8553. Otra modificación que se puede realizar a la molécula CR2-FH (tal como la proteína de fusión CR2-FH) implica biotinilación. En ciertos casos, puede ser útil tener a la molécula CR2-FH (tal como la proteína de fusión CR2-FH) biotinilada, de manera que pueda reaccionar fácilmente con estreptavidina. Los métodos para la biotinilación de proteínas son bien conocidos en la técnica. Adicionalmente, el sulfato de condroitina se puede enlazar con la molécula CR2-FH (tal como la proteína de fusión CR2-FH).

En algunas realizaciones, la molécula CR2-FH se fusiona a otra molécula de direccionamiento o resto de direccionamiento que incrementa adicionalmente la eficiencia de direccionamiento de la molécula CR2-FH. Por ejemplo, la molécula CR2-FH se puede fusionar a un ligando (tal como una secuencia de aminoácidos) que tiene la capacidad para unirse o de otro modo fijarse a una célula endotelial de un vaso sanguíneo (denominado como "ligando de aminoácido de direccionamiento endotelial vascular"). Los ligandos de direccionamiento endotelial vascular ejemplares incluyen, pero no se limitan a, VEGF, FGF, integrina, fibronectina, I-CAM, PDGF, o un anticuerpo contra una molécula expresada en la superficie de una célula endotelial vascular.

En algunas realizaciones, la molécula CR2-FH se conjuga (tal como se fusiona) a un ligando para moléculas de adhesión intercelular. Por ejemplo, la molécula CR2-FH se puede conjugar a uno o más restos de hidratos de carbono que se unen a una molécula de adhesión intercelular. El resto de hidrato de carbono facilita la localización de la molécula CR2-FH hacia el sitio de la lesión. El resto de hidrato de carbono se puede fijar a la molécula de CR2-FH por medio de un suceso extracelular tal como una fijación química o enzimática, o puede ser el resultado de un suceso de procesamiento intracelular logrado mediante la expresión de enzimas apropiadas. En algunas realizaciones, el resto de hidrato de carbono se une a una clase particular de moléculas de adhesión tales como integrinas o selectinas, incluyendo E-selectina, L-selectina, o P-selectina. En algunas realizaciones, el resto de hidrato de carbono comprende un hidrato de carbono enlazado a N, por ejemplo el tipo de complejo, incluyendo hidratos de carbono fucosilados y sialilados. En algunas realizaciones, el resto de hidrato de carbono está relacionado con el antígeno X de Lewis, por ejemplo el antígeno X de Lewis sialilado.

Para el tratamiento de enfermedades oculares tales como AMD, la CR2-FH se puede conjugar (tal como fusionar) a un anticuerpo que reconoce un neoepítopo de las drusas. También se pueden usar otras moléculas de direccionamiento, tales como péptido de direccionamiento pequeño. Otras modificaciones de la molécula CR2-FH incluyen, por ejemplo, glicosilación, acetilación, fosforilación, amidación, derivatización mediante grupos protectores/bloqueantes conocidos, y similares.

La molécula CR2-FH puede incluir la adición de un dominio inmunológicamente activo, tal como un epítopo de anticuerpo u otra etiqueta, para facilitar el direccionamiento o la purificación del polipéptido. Es bien conocido el uso de 6xHis y GST (glutationa S transferasa) como etiquetas. La inclusión de un sitio de escisión en o cerca de la unión de la fusión facilitará la eliminación del polipéptido extraño tras la purificación. Otras secuencias de aminoácidos que se pueden incluir en la molécula CR2-FH incluyen dominios funcionales, tales como sitios activos de enzimas tales como una hidrolasa, dominios de glicosilación, y señales de direccionamiento celular.

Las variantes de la molécula CR2-FH (tales como la proteína de fusión CR2-FH) incluyen polipéptidos que tienen una secuencia de aminoácidos suficientemente similar a la secuencia de aminoácidos de la molécula CR2-FH. La expresión "suficientemente similar" significa una primera secuencia de aminoácidos que contiene un número suficiente o mínimo de restos de aminoácidos idénticos o equivalentes con respecto a una segunda secuencia de aminoácidos, de manera que la primera y segunda secuencias de aminoácidos tienen un dominio estructural común y/o actividad funcional común. Por ejemplo, las secuencias de aminoácidos que contienen un dominio estructural común que es al menos alrededor de 45%, preferiblemente alrededor de 75% a 98%, idéntico se definen aquí como suficientemente similares. Las variantes incluyen variantes de proteínas de fusión codificadas por un polinucleótido que se hibrida a un polinucleótido de esta invención o un complemento del mismo en condiciones restrictivas. Tales variantes retienen generalmente la actividad funcional de las proteínas de fusión de esta invención. Para generar una población abigarrada de fragmentos para el cribado y selección subsiguiente, se pueden usar librerías de fragmentos de los polinucleótidos. Por ejemplo, una librería de fragmentos se puede generar tratando un fragmento de PCR bicatenario y un polinucleótido con una nucleasa en condiciones en las que se produce el corte sólo alrededor de una vez por molécula, desnaturalizando el ADN bicatenario, renaturalizando el ADN para formar ADN bicatenario que puede incluir pares sentido/antisentido de diferentes productos cortados, eliminando porciones monocatenarias de dúplex vueltos a formar mediante tratamiento con S1 nucleasa, y ligando la librería de fragmentos resultante en un vector de expresión. Mediante este método, se puede derivar una librería de expresión que codifica fragmentos N-terminales e internos de diversos tamaños de las proteínas de fusión de esta invención.

Las variantes incluyen proteínas de fusión que difieren en la secuencia de aminoácidos debido a mutagénesis. Además, también se pueden construir análogos biequivalentes de la molécula CR2-FH (tal como proteína de fusión) realizando diversas sustituciones en restos o secuencias en la posición CR2 y/o la posición FH.

En algunas realizaciones, la molécula CR2-FH, particularmente la proteína de fusión CR2-FH, se fusiona en su término N a un péptido señal. Tales péptidos señal son útiles para la secreción de la molécula CR2-FH. Los péptidos señal adecuados incluyen, por ejemplo, el péptido señal de la proteína CD5 (tal como el péptido señal de la proteína CD5 humana MPMGSLQPLATLYLLGMLVAS, SEC ID NO: 11). En algunas realizaciones, se usa el péptido señal de la proteína CR2. Por ejemplo, en algunas realizaciones, se usa el péptido señal de la proteína CR2 humana (MGAAGLLGVFLALVAPG, SEC ID NO: 13 o MGAAGLLGVFLALVAPGVLG, SEC ID NO: 25).

Preparación de moléculas CR2-FH

5

10

15

20

30

50

55

60

Las moléculas CR2-FH (o las dos porciones de las moléculas CR2-FH) descritas aquí se pueden obtener por métodos de síntesis química, mediante enlazamiento de un polinucleótido que codifica la porción CR2 y un polinucleótido que codifica la porción FH (con o sin una secuencia ligadora), e introduciendo la molécula polinucleotídica resultante en un vector para transfectar células hospedantes que son capaces de expresar la molécula. Se prefiere la síntesis química, especialmente la síntesis en fase sólida, para péptidos cortos o aquellos que contengan aminoácidos no naturales o no usuales, tales como D-Tyr, ornitina, y similares. Para polipéptidos más largos, se prefieren procedimientos recombinantes. La molécula CR2-FH se puede aislar *in vitro* mediante métodos de purificación de proteínas. La molécula CR2-FH también se puede proporcionar "in situ" mediante introducción en un sistema de terapia génica al teiido de interés, que entonces expresa la fusión CR2-FH.

Las técnicas de ADN recombinante para obtener una proteína de fusión CR2-FH implican, en forma simplificada, tomar un polinucleótido que codifica CR2-FH, insertarlo en un vector apropiado, insertar el vector en una célula hospedante apropiada, y recuperar o aislar la proteína de fusión producida de ese modo.

Se proporcionan aquí polinucleótidos que codifican una molécula CR2-FH (es decir, una proteína de fusión CR2-FH). Tal polinucleótido también se puede usar para el suministro y expresión de CR2-FH. Por ejemplo, en algunas realizaciones, se proporciona un polinucleótido que codifica una proteína de fusión que comprende una porción CR2 que comprende un CR2 o un fragmento del mismo y una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, el polinucleótido también comprende una secuencia que codifica un péptido señal enlazado operablemente al extremo 5' de la secuencia que codifica la proteína de fusión CR2-FH. Las secuencias nucleotídicas ejemplares de péptidos señal se proporcionan en la Figura 7 (SEC ID NO: 12, 14, y 26). En algunas realizaciones, se usa una secuencia ligadora para ligar la porción CR2 y la porción FH. En algunas realizaciones, el polinucleótido codifica una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos de SEC ID NO: 3. En algunas realizaciones, el polinucleótido codifica una proteína de fusión CR2-FH que tiene una secuencia de aminoácidos que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a la secuencia de aminoácidos de cualquiera de SEC ID NO: 3, SEC ID NO: 21, y SEC ID NO: 23. En algunas realizaciones, el polinucleótido codifica una molécula CR2-FH que comprende al menos alrededor de cualquiera de 400, 450, 500,

550, o más nucleótidos contiguos de cualquiera de de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. En algunas realizaciones, el polinucleótido comprende una secuencia de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. En algunas realizaciones, el polinucleótido comprende una secuencia que es al menos alrededor de cualquiera de 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, o 99% idéntica a la secuencia de ácido nucleico de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. En algunas realizaciones, el polinucleótido comprende al menos alrededor de cualquiera de 1200, 1300, 1400, 1500, 1600, o más nucleótidos contiguos de cualquiera de SEC ID NO: 4, SEC ID NO: 22, y SEC ID NO: 24. El polinucleótido puede incluir además una secuencia que codifica una secuencia señal secretora para segregar la proteína de fusión en un medio. El polinucleótido que codifica una secuencia señal secretora incluye, por ejemplo, un polinucleótido que codifica la secuencia señal de CD5, o una secuencia polinucleotídica que codifica la secuencia señal de CR2.

10

15

20

25

30

50

55

60

También se proporcionan vectores de expresión que comprenden a polinucleótido descrito aquí para la expresión de la proteína de fusión CR2-FH. El vector expresión se puede usar para dirigir la expresión de una proteína de fusión CR2-FH *in vitro* o *in vivo*. El vector puede incluir cualquier elemento para establecer una función convencional de un vector, por ejemplo, promotor, terminador, marcador de selección, y origen de replicación. El promotor puede ser constitutivo o regulable, y se selecciona de, por ejemplo, promotores de genes para galactocinasa (GAL1), uridililtransferasa (GAL7), epimerasa (GAL10), fosfoglicerato de cinasa (PGK), gliceraldehídos-3-fosfato deshidrogenasa (GPD), alcohol deshidrogenasa (ADH), y similares.

Muchos vectores de expresión son conocidos por aquellos de pericia en la técnica. Por ejemplo, E. coli se puede transformar usando pBR322, un plásmido derivado de una especie de E. coli (Mandel et al., J. Mol. Biol., 53:154(1970)). El plásmido pBR322 contiene genes para resistencia a ampicilina y a tetraciclina, y de este modo proporciona medios fáciles para la selección. Otros vectores incluyen características diferentes tales como promotores diferentes, que a menudo son importantes en la expresión. Por ejemplo, los plásmidos pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Suecia), pKK233-2 (Clontech, Palo Alto, Calif., USA), y pGEM1 (Promega Biotech, Madison, Wis., USA), están todos ellos comercialmente disponibles. Otros vectores que se pueden usar en la presente invención incluyen, pero no se limitan a, pET21a (Studier et al., Methods Enzymol., 185: 60-89 (1990)), pR1T5, y pR1T2T (Pharmacia Biotechnology), y pB0475 (Cunningham et al., Science, 243: 1330-1336 (1989); patente U.S. nº 5.580.723). Los vectores de expresión de mamíferos pueden contener elementos no transcritos, tal como un origen de replicación, promotor y potenciador, y secuencias no traducidas de 5' o 3', tales como sitios de unión al ribosoma, un sitio de poliadenilación, un sitio aceptor, y un donante de ayuste, y secuencias de terminación transcripcional. Los promotores para uso en vectores de expresión en mamíferos son habitualmente por ejemplo promotores víricos tales como polioma, adenovirus, HTLV, virus 40 del simio (SV 40), y citomegalovirus humano (CMV). Los vectores también se pueden construir usando técnicas estándar combinando los rasgos relevantes de los vectores descritos anteriormente.

También se proporcionan células hospedantes (tales como células aisladas, estirpes celulares transitorias, y estirpes celulares estables) para expresar una proteína de fusión CR2-FH. La célula hospedante puede ser procariota o eucariota. Las células hospedantes procariotas ejemplares incluyen E. coli K12 cepa 294 (ATCC No. 31446), E. coli B, E. coli X1776 (ATCC No. 31537), E. coli W3110 (F-, gamma-, prototrófica/ATCC nº 27325), bacilos tales como Bacillus subtilis, y otras enterobacteriáceas tales como Salmonella typhimurium o Serratia marcesans, y diversas especies de Pseudomonas. Una célula hospedante procariota adecuada es E. coli BL21 (Stratagene), que es deficiente en las proteasas OmpT y Lon, que pueden interferir con el aislamiento de proteínas recombinantes intactas, y útil con vectores conducidos por el promotor T7, tales como los vectores pET. Otra procariota adecuada es E. coli W3110 (ATCC nº 27325). Cuando son expresados por procariotas, los péptidos contienen típicamente una metionina N-terminal o una formil metionina, y no están glicosilados. En el caso de proteínas de fusión, la metionina N-terminal o de formil metionina reside en el término amino de la proteína de fusión o la secuencia señal de la proteína de fusión. Por supuesto, estos ejemplos pretenden ser ilustrativos en vez de limitantes.

Además de las procariotas, los microbios eucariotas tales como hongos filamentosos o levaduras son hospedantes de clonación o de expresión adecuados para vectores que codifican proteínas de fusión. Saccharomyces cerevisiae es un microorganismo hospedante eucariota inferior usado habitualmente. Otros incluven Schizosaccharomyces pombe (Beach y Nurse, Nature, 290: 140 (1981); documento EP 139.383 publicado el 2 de mayo de 1985); hospedantes de Kluyveromyces (patente U.S. nº 4.943.529; Fleer et al., Bio/Technology, 9:968-975 (1991)) tales como, por ejemplo, K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 (1983)), K. fragilis (ATCC 12.424), K. bulgaricus (ATCC nº 16.045), K. wickeramii (ATCC nº 24.178), K. waltii (ATCC nº 56.500), K. drosophilarum (ATCC nº 36.906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, y K. marxianus; yarrowia (documento EP 402.226); Pichia pastoris (documento EP 183.070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 (1988)); Candida; Trichoderma reesia (documento EP 244.234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 (1979)); Schwanniomyces tal como Schwanniomyces occidentalis (documento EP 394.538 publicado el 31 de octubre de 1990); y hongos filamentosos tales como, por ejemplo, Neurospora, Penicillium, Tolypocladium (documento WO 91/00357 publicado el 10 de enero de 1991), y hospedantes de Aspergillus tales como A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 (1983); Tilburn et al., Gene, 26:205-221 (1983); Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 (1984)) y A. niger (Kelly y Hynes, EMBO J., 4:475-479 (1985)). Las levaduras metilotrópicas son adecuadas aquí, e incluyen, pero no se limitan a, levadura capaz de crecer en metanol seleccionado de los géneros que consisten en Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, y Rhodotorula. En C. Anthony, The Biochemistry of Methylotrophs, 269 (1982) se puede encontrar una lista de especies específicas que son ejemplares de esta clase de levaduras. Las células hospedantes también incluyen células de insecto tales como Drosophila S2 y Spodoptera Sf9, así como células vegetales.

Los ejemplos de estirpes celulares hospedantes de mamíferos útiles incluyen, pero no se limitan a, estirpes celulares HeLa, de ovario de hámster chino (CHO), COS-7, células L, C127, 3T3, BHK, CHL-1, NSO, HEK293, WI38, BHK, C127 o MDCK. Otra estirpe celular de mamífero ejemplar es CHL-1. Cuando se usa CHL-1, se incluye higromicina como un marcador de selección eucariota. Las células CHL-1 derivan de células de melanoma RPMI 7032, una estirpe celular humana ya disponible. Las células adecuadas para uso en esta invención están comercialmente disponibles de la ATCC.

En algunas realizaciones, la célula hospedante es una célula hospedante no humana. En algunas realizaciones, la célula hospedante es una célula CHO. En algunas realizaciones, la célula hospedante es una célula 293.

Las moléculas CR2-FH se pueden aislar mediante una variedad de métodos conocidos en la técnica. En algunas realizaciones, cuando la molécula CR2-FH es una proteína de fusión segregada en el medio de crecimiento, la molécula se puede purificar directamente del medio. Si la proteína de fusión no es segregada, se aísla de lisados celulares. La destrucción celular se puede realizar mediante cualquier método convencional, incluyendo ciclo de congelación-descongelación, tratamiento con ultrasonidos, destrucción mecánica, o uso de agentes de lisis celular. Las moléculas CR2-FH se pueden obtener mediante diversos métodos. Estos incluyen, pero no se limitan a, cromatografía de inmunoafinidad, cromatografía de fase inversa, cromatografía de intercambio catiónico, cromatografía de intercambio aniónico, cromatografía de interacción hidrófoba, cromatografía de filtración en gel, y HPLC. Por ejemplo, la molécula CR2-FH se puede purificar mediante cromatografía de inmunoafinidad usando un anticuerpo que reconoce la porción CR2, o un anticuerpo que reconoce la porción FH, o ambos. En algunas realizaciones, un anticuerpo que reconoce los primeros dos dominios de SCR N-terminales de CR2 se usa para purificar la molécula CR2-FH. En algunas realizaciones, la molécula CR2-FH se purifica mediante cromatografía de intercambio iónico.

15

20

25

30

45

50

55

El péptido puede estar plegado apropiadamente o no cuando se expresa como una proteína de fusión. Estos factores determinan si la proteína de fusión se debe desnaturalizar y volver a plegar, y si es así, si estos procedimientos se emplean antes o después de la escisión. Cuando se necesita la desnaturalización y el replegamiento, típicamente el péptido se trata con un caotropo, tal como guanidina HCl, y después se trata con un tampón rédox, que contiene, por ejemplo, ditiotreitol o glutationa reducidos y oxidados en las relaciones apropiadas, pH, y temperatura, de manera que el péptido se vuelve a plegar a su estructura nativa.

Las moléculas CR2-FH descritas aquí pueden contener también una etiqueta (tal como una etiqueta escindible) para la purificación. Esta etiqueta se puede fusionar al término C o al término N de la porción CR2 o de la porción FH, y se puede usar para facilitar la purificación de la proteína.

En algunas realizaciones, la molécula CR2-FH se podría sintetizar de novo en todo o en parte, usando métodos químicos bien conocidos en la técnica. Por ejemplo, las secuencias de aminoácidos de los componentes se pueden sintetizar mediante técnicas de fase sólida, se pueden escindir de la resina, y se pueden purificar mediante cromatografía de líquidos de altas prestaciones preparativa, seguido del enlazamiento químico para formar un polipéptido deseado. La composición de los péptidos sintéticos se puede confinar mediante análisis de aminoácidos o secuenciación.

Las moléculas CR2-FH se pueden evaluar en busca de sus propiedades deseadas usando ensayos in vitro o in vivo. Por ejemplo. la unión de CR2-FH al ligando de CR2 se puede determinar mediante un método de resonancia de plasmones superficiales. A título de ejemplo, el análisis cinético de la interacción de la CR2-FH con C3dq-biotina se puede llevar a cabo usando medidas de resonancia de plasmones superficiales (SPR) realizadas en un instrumento BIAcore 3000 (Biacore AB, Uppsala, Suecia). C3dg-biotina humana se puede unir a la superficie de chips sensores de estreptavidina de BIAcore inyectando C3dg-biotina sobre la superficie de una celda de flujo del chip. La unión se puede evaluar a lo largo de un intervalo de concentraciones de CR2-FH. La asociación de la molécula CR2-FH con el ligando se puede monitorizar durante un cierto período de tiempo (tal como 120 segundos), después de lo cual se permite que el complejo se disocie en presencia de tampón solamente durante un período de tiempo adicional (tal como 120 segundos). La unión de los fragmentos de la proteína de fusión de CR2 a celdas de flujo con C3dg inmovilizado se puede corregir para la unión a celdas de flujo de control. Los datos de unión se pueden ajustar a un modelo de unión de Langmuir 1:1 usando el software BIAevaluation Version 3.1 (BIAcore), y se pueden evaluar para determinar el mejor ajuste. Los perfiles de disociación cinéticos obtenidos se pueden usar para calcular las constantes de asociación y de disociación (ka y kd) y las constantes de afinidad (KD) usando el programa BIAevaluation Version 3.1. Én la técnica se conocen otros métodos de ensayo para la unión de ligandos, y también se pueden usar.

El ensayo del complemento con zymosán in vitro se puede usar para determinar la actividad inhibidora del complemento de las moléculas CR2-FH. La lisis de eritrocitos de conejo mediante suero en Mg-EGTA es otra

medida de la actividad que se puede usar. La lisis en Mg-EGTA de eritrocitos humanos o de ovejas a los que se les ha eliminado el ácido siálico proporciona medidas adicionales de actividad.

Composiciones farmacéuticas

30

35

60

- También se proporcionan aquí composiciones farmacéuticas que comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable. Las composiciones farmacéuticas pueden ser adecuadas para una variedad de modos de administración descritos aquí, incluyendo por ejemplo la administración sistémica o localizada. Las composiciones farmacéuticas pueden estar en forma de colirios, disoluciones inyectables, o en una forma adecuada para la inhalación (ya sea a través de la boca o de la nariz) o administración oral. Las composiciones farmacéuticas descritas aquí se pueden envasar en dosis de una sola unidad, o en formas de múltiples dosis.
- En algunas realizaciones, las composiciones farmacéuticas comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuadas para administración a un ser humano. En algunas realizaciones, las composiciones farmacéuticas comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuadas para inyección intraocular. En algunas realizaciones, las composiciones farmacéuticas comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuadas para aplicación tópica al ojo. En algunas realizaciones, las composiciones farmacéuticas comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuadas para inyección intravenosa. En algunas realizaciones, las composiciones farmacéuticas comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuadas para inyección en las arterias (tales como arterias renales).
- Las composiciones se formulan generalmente como estériles, sustancialmente isotónicas, y en cumplimiento total con todas las normativas de Good Manufacturing Practice (GMP) de la Food y Drug Administration de los Estados Unidos de América. En algunas realizaciones, la composición está libre de patógenos. Para inyección, la composición farmacéutica puede estar en forma de disoluciones líquidas, por ejemplo en tampones fisiológicamente compatibles tales como disolución de Hank o disolución de Ringer. Además, la composición farmacéutica de CR2-FH puede estar en una forma sólida, y se puede redisolver o suspender inmediatamente antes del uso. También se incluyen composiciones liofilizadas.
 - Para administración oral, las composiciones farmacéuticas pueden tomar la forma de, por ejemplo, comprimidos o cápsulas preparados por medios convencionales con excipientes farmacéuticamente aceptables tales como agentes ligantes (por ejemplo, almidón de maíz pregelatinizado, polivinilpirrolidona o hidroxipropil metilcelulosa); cargas (por ejemplo, lactosa, celulosa microcristalina o hidrogenofosfato de calcio); lubricantes (por ejemplo, estearato de magnesio, talco o sílice); disgregantes (por ejemplo, almidón de patata o glicolato de almidón sódico); o agentes humectantes (por ejemplo, laurilsulfato de sodio). Las preparaciones líquidas para administración oral pueden tomar la forma de, por ejemplo, disoluciones, jarabes o suspensiones, o se pueden presentar como un producto seco para la constitución con agua u otro vehículo adecuado antes del uso. Tales preparaciones líquidas se pueden preparar por medios convencionales con aditivos farmacéuticamente aceptables tales como agentes de suspensión (por ejemplo, jarabe de sorbitol, derivados de celulosa o grasas comestibles hidrogenadas); agentes emulsionantes (por ejemplo, lecitina o goma arábiga); vehículos no acuosos (por ejemplo, aceite de almendras, ésteres oleosos, alcohol etílico o aceites vegetales fraccionados); y conservantes (por ejemplo, p-hidroxibenzoatos de metilo o de propilo, o ácido sórbico). Las preparaciones también pueden contener sales de tampones, agentes saborizantes, colorantes y edulcorantes, según sea apropiado.
- 40 La presente invención proporciona, en algunas realizaciones, composiciones que comprenden una molécula CR2-FH y un vehículo farmacéuticamente aceptable adecuadas para la administración al ojo. Tales vehículos farmacéuticos pueden ser líquidos estériles, tales como agua y aceite, incluyendo aquellos de origen del petróleo, animal, vegetal o sintético, tales como aceite de cacahuete, aceite de haba de soja, aceite mineral, y similares. Las disoluciones salinas y dextrosa acuosa, disoluciones de polietilenglicol (PEG) y de glicerol también se pueden emplear en vehículos líquidos, particularmente para disoluciones inyectables. Los excipientes farmacéuticos 45 adecuados incluyen almidón, glucosa, lactosa, sacarosa, gelatina, malta, arroz, estearato de sodio, monoestearato de glicerol, glicerol, propileno, aqua, y similares. La composición farmacéutica, si se desea, también puede contener cantidades menores de agentes humectantes o emulsionantes, o agentes tamponantes del pH. La molécula CR2-FH y otros componentes de la composición se pueden encerrar en polímeros o pegamentos de fibrina, para 50 proporcionar liberación controlada de la molécula. Estas composiciones pueden tomar la forma de disoluciones, suspensiones, emulsiones, ungüentos, geles, u otras composiciones sólidas o semisólidas, y similares. Las composiciones tienen típicamente un pH en el intervalo de 4,5 a 8,0. Las composiciones también se deben de formular para que tengan valores osmóticos que sean compatibles con el humor acuoso del ojo y tejidos oftálmicos. Tales valores osmóticos generalmente estarán en el intervalo de alrededor de 200 a alrededor de 400 miliosmoles 55 por kilogramo de agua ("mOsm/kg"), pero preferiblemente serán alrededor de 300 mOsm/kg.
 - En alguna realización, la composición se formula según procedimientos habituales como una composición farmacéutica adaptada para inyección intravenosa, intraperitoneal, o intravítrea. Típicamente, las composiciones para inyección son disoluciones en tampón acuoso isotónico estéril. Cuando sea necesario, la composición también puede incluir un agente solubilizante y un anestésico local tal como lidocaína, para aliviar el dolor en el sitio de la inyección. Generalmente, los ingredientes se suministran ya sea separadamente o mezclados juntos en forma de

dosificación unitaria, por ejemplo como un polvo liofilizado seco o un concentrado libre de agua en un recipiente herméticamente cerrado tal como una ampolla o saquito que indica la cantidad de agente activo. Cuando la composición se va a administrar mediante infusión, se puede dispensar con una botella de infusión que contiene agua o disolución salina estéril de grado farmacéutico. Cuando la composición se administra mediante inyección, se puede proporcionar una ampolla de agua estéril para inyección o disolución salina, de manera que los ingredientes se puedan mezclar antes de la administración.

Las composiciones pueden comprender además ingredientes adicionales, por ejemplo conservantes, tampones, agentes de tonicidad, antioxidantes y estabilizantes, agentes humectantes o aclarantes no iónicos, agentes que incrementan la viscosidad, y similares.

- Los conservantes adecuados para uso en una disolución incluyen policuaternium-1, cloruro de benzalconio, timerosal, clorobutanol, metilparabeno, propilparabeno, alcohol feniletílico, edetato disódico, ácido sórbico, cloruro de bencetonio, y similares. Típicamente (pero no necesariamente) tales conservantes se emplean en un nivel de 0,001% a 1,0% en peso.
- Los tampones adecuados incluyen ácido bórico, bicarbonato de sodio y de potasio, boratos de sodio y de potasio, carbonato de sodio y de potasio, acetato de sodio, bifosfato de sodio, y similares, en cantidades suficientes para mantener el pH entre alrededor de pH 6 y pH 8, y preferiblemente entre alrededor de pH 7 y pH 7,5.
 - Los agentes de tonicidad adecuados son dextrano 40, dextrano 70, dextrosa, glicerina, cloruro de potasio, propilenglicol, cloruro de sodio, y similares, de manera que el equivalente de cloruro de sodio de la disolución oftálmica está en el intervalo de 0,9 más o menos 0,2%.
- Los antioxidantes y estabilizantes adecuados incluyen bisulfito de sodio, metabisulfito de sodio, tiourea, y similares. Los agentes humectantes y aclarantes adecuados incluyen polisorbato 80, polisorbato 20, poloxámero 282, y tiloxapol. Los agentes que incrementan la viscosidad adecuados incluyen dextrano 40, dextrano 70, gelatina, glicerina, hidroxietilcelulosa, hidroximetilpropilcelulosa, lanolina, metilcelulosa, vaselina, polietilenglicol, alcohol polivinílico, polivinilpirrolidona, carboximetilcelulosa, y similares.
- El uso de agentes que potencian la viscosidad, para proporcionar composiciones tópicas con viscosidades mayores que la viscosidad de disoluciones acuosas simples, puede ser deseable para incrementar la absorción ocular de los compuestos activos por los tejidos diana, o para incrementar el tiempo de retención en el ojo. Tales agentes que proporcionan viscosidad incluyen, por ejemplo, alcohol polivinílico, polivinilpirrolidona, metilcelulosa, hidroxipropilmetilcelulosa, hidroxipropilmetilcelulosa, carboximetilcelulosa, hidroxipropilcelulosa, u otros agentes conocidos por los expertos en la técnica. Tales agentes se emplean típicamente a nivel de 0,01% a 2% en peso.
 - En algunas realizaciones, se proporciona una composición farmacéutica para el suministro de un nucleótido que codifica una molécula CR2-FH. La composición farmacéutica para terapia génica puede estar en un diluyente aceptable, o puede comprender una matriz de liberación lenta en la que está embebido el vehículo o compuesto de suministro génico. Como alternativa, cuando el sistema de suministro génico completo se puede producir intacto a partir de células recombinantes, por ejemplo vectores retrovíricos, la composición farmacéutica puede comprender una o más células que producen el sistema de suministro génico.
 - En marcos clínicos, un sistema de suministro génico para una terapéutica génica se puede introducir en un sujeto mediante cualquiera de un número de métodos. Por ejemplo, una composición farmacéutica del sistema de suministro génico se puede introducir sistémicamente, por ejemplo mediante inyección intravenosa, y la transducción específica de la proteína en las células diana se produce predominantemente a partir de la especificidad de la transfección proporcionada por el vehículo de suministro génico, de tipo celular o de tipo tisular debido a las secuencias reguladoras transcripcionales que controlan la expresión del gen receptor, o una combinación de los mismos. En otras realizaciones, el suministro inicial del gen recombinante es más limitado, estando la introducción en el animal bastante localizada. Por ejemplo, el vehículo de suministro génico se puede introducir mediante catéter, véase la patente U.S. 5.328.470, o mediante inyección estereotáctica, Chen et al. (1994), Proc. Natl. Acad. Sci., USA 91: 3054-3057. Un polinucleótido que codifica una molécula CR2-FH se puede suministrar en un constructo de terapia génica mediante electroporación usando técnicas descritas en Dev et al. (1994), Cancer Treat. Rev. 20:105-115.
 - En algunas realizaciones, se proporciona una composición farmacéutica para el suministro génico al ojo. Las disoluciones oftálmicas útiles para almacenar y/o suministrar vectores de expresión se han descrito, por ejemplo, en el documento WO 03077796A2.

Usos de moléculas CR2-FH y sus composiciones

35

40

45

50

55

Las moléculas CR2-FH descritas aquí pueden funcionar para inhibir específicamente *in vivo* la activación del complemento en la ruta alternativa del complemento y las manifestaciones inflamatorias que la acompañan, tal como el reclutamiento y activación de macrófagos, neutrófilos, plaquetas, y mastocitos, edema, daño tisular, y activación directa de células locales y endógenas. Por lo tanto, las composiciones que comprenden estas moléculas se pueden usar para el tratamiento de enfermedades o afecciones que están mediadas por la activación excesiva o no

controlada del sistema del complemento, particularmente enfermedades o afecciones mediadas por la activación excesiva o no controlada de la ruta alternativa del complemento. En algunas realizaciones, se proporcionan métodos para tratar enfermedades que implican un proceso de inflamación local. En algunas realizaciones, se proporcionan métodos para tratar enfermedades asociadas con deficiencias de FH (por ejemplo una disminución en el nivel de FH, disminución en la actividad de FH, o falta de FH de tipo salvaje o protector), incluyendo, por ejemplo, degeneración macular relacionada con la edad, glomerulonefritis membranoproliferativa, enfermedad proteinúrica, síndrome hemolítico-urémico, infección microbiana recurrente, isquemia-reperfusión (tal como isquemia reperfusión renal o isquemia reperfusión intestinal), rechazo de transplante de órganos, e inflamación crónica, tal como artritis reumatoide.

5

25

30

35

40

45

50

10 En algunas realizaciones, se proporciona un método para tratar una enfermedad en la que está implicada la ruta alternativa del complemento (tal como degeneración macular, por ejemplo AMD) en un individuo, que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona un método para inhibir la activación del complemento en un individuo que tiene una enfermedad en la que está implicada la ruta alternativa del 15 complemento (tal como degeneración macular, por ejemplo AMD), que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporciona un método para inhibir inflamación en un individuo que tiene una 20 enfermedad en la que está implicada la ruta alternativa (tal como degeneración macular, por ejemplo AMD), que comprende administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo.

"Tratando" o "tratar" una enfermedad se define como administrar una o más moléculas CR2-FH, con o sin otros agentes terapéuticos, a fin de paliar, mejorar, estabilizar, invertir, ralentizar, retrasar, prevenir, reducir, o eliminar la enfermedad o un síntoma de la enfermedad, o para retardar o detener la progresión de la enfermedad o un síntoma de la enfermedad. Una "cantidad eficaz" es una cantidad suficiente para tratar una enfermedad, como se define anteriormente.

Un "individuo" es un vertebrado, preferiblemente un mamífero, más preferiblemente un ser humano. Los mamíferos incluyen, pero no se limitan a, animales de granja, animales de deportes, mascotas, primates, ratones y ratas. En algunas realizaciones, el individuo es un ser humano. En algunas realizaciones, el individuo es un individuo distinto del ser humano. En algunas realizaciones, el individuo es un modelo de animal para el estudio de una enfermedad en la que está implicada la ruta alternativa del complemento. Los individuos susceptibles de tratamiento incluyen aquellos que actualmente son asintomáticos pero que están en riesgo de desarrollar un trastorno sintomático relacionado con degeneración macular en un momento posterior. Por ejemplo, los individuos humanos incluyen aquellos que tienen parientes que han experimentado tal enfermedad, y aquellos cuyo riesgo se determina mediante análisis de marcadores genéticos o bioquímicos, mediante métodos bioquímicos, o mediante otros ensayos tales como el ensayo de proliferación de células T. En algunas realizaciones, el individuo es un ser humano que tiene una mutación o polimorfismo en su gen FH que indica una mayor susceptibilidad de desarrollar una enfermedad en la que está implicada la ruta alternativa del complemento (tal como degeneración macular relacionada con la edad). En algunas realizaciones, el individuo tiene un haplotipo de FH de tipo salvaje o protector. En la Publicación de Patente U.S. nº 20070020647, que se incorpora aquí en su totalidad, se han descrito diferentes polimorfos de FH.

Las composiciones descritas aquí son particularmente útiles para tratar degeneración macular, tal como degeneración macular relacionada con la edad (AMD). AMD se caracteriza clínicamente por pérdida progresiva de visión central, que ocurre como resultado de daño a las células fotorreceptoras en un área de la retina denominada la mácula. AMD se ha clasificación ampliamente en dos estados clínicos: una forma húmeda y una forma seca, constituyendo la forma seca hasta el 80-90% de los casos totales. La forma seca se caracteriza clínicamente por la presencia de drusas maculares, que son depósitos localizados entre el epitelio pigmentario retiniano (RPE) y la membrana de Bruch, y mediante atrofia geográfica caracterizada por muerte celular de RPE con atrofia de fotorreceptores en demasía. La AMD húmeda, que da cuenta de aproximadamente el 90% de pérdida de visión grave, está asociada con neovascularización en el área de la mácula, y fuga de estos nuevos vasos. La acumulación de sangre y fluido puede provocar desprendimiento de retina, seguido de la degeneración rápida de fotorreceptores y pérdida de visión. Generalmente se acepta que la forma húmeda de AMD va precedida por y surge de la forma seca

El análisis de los contenidos de drusas en pacientes con AMD ha mostrado un gran número de proteínas inflamatorias, incluyendo proteínas amiloides, factores de coagulación, y un gran número de proteínas de la ruta del complemento. Una variación genética en el factor H del complemento eleva sustancialmente el riesgo de degeneración macular relacionada con la edad (AMD), sugiriendo que la activación incontrolada del complemento subyace a la patogénesis de AMD. Edward et al., Science 2005, 308:421; Haines et al., Science 2005, 308:419; Klein et al., Science 308:385-389; Hageman et al., Proc. Natl. Acad. Sci. USA 2005, 102:7227.

La presente invención proporciona métodos para tratar AMD (tal como las formas húmeda o seca de AMD) administrando una cantidad eficaz de una composición que comprende una molécula CR2-FH. En algunas realizaciones, la invención proporciona métodos para tratar o prevenir uno o más aspectos o síntomas de AMD, incluyendo, pero sin limitarse a, formación de drusas oculares, inflamación en el ojo o tejido ocular, pérdida de células fotorreceptoras, pérdida de visión (incluyendo por ejemplo agudeza visual y campo visual), neovascularización (tal como neovascularización coroidea o CNV), y desprendimiento retiniano. También están incluidos otros aspectos relacionados, tales como degeneración de fotorreceptores, degeneración de RPE, degeneración retiniana, degeneración coriorretiniana, degeneración de los conos, disfunción retiniana, daño retiniano en respuesta a exposición a la luz (tal como exposición constante a la luz), daño de la membrana de Bruch, pérdida de la función de RPE, pérdida de la integridad de la histoarquitectura de las células y/o matriz extracelular de la mácula normal, pérdida de función de las células en la mácula, distrofia de fotorreceptores, mucopolisacaridosis, distrofias de varillas-conos, distrofias de conos-varillas, uveítis anterior y posterior, y neuropatía diabética.

5

10

15

20

25

30

35

40

45

50

55

60

En algunas realizaciones, se proporcionan métodos para tratar degeneración macular (tal como degeneración macular relacionada con la edad o AMD) en un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, la enfermedad a tratar es una forma seca de AMD. En algunas realizaciones, la enfermedad a tratar es una forma húmeda de AMD.

En algunas realizaciones, se proporcionan métodos para tratar (tal como reducir, retrasar, eliminar, o prevenir) la formación de drusas en el ojo de un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar (tal como reducir, retrasar, eliminar, o prevenir) la inflamación en el ojo de un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar (tal como reducir, retrasar, eliminar, o prevenir) la pérdida de células fotorreceptoras en un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar (tal como reducir, retrasar, eliminar, o prevenir) la pérdida de células fotorreceptoras en un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar (tal como reducir, retrasar, eliminar, o prevenir) neovascularización asociada con AMD, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar (tal como reducir, retrasar, eliminar, o prevenir) desprendimiento retiniano asociado con AMD, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para mejorar (incluyendo, por ejemplo, disminuir, retrasar, o bloquear la pérdida de) agudeza visual o campo visual en el ojo de un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo.

Además de la degeneración macular, otras enfermedades oculares que se pueden tratar mediante los métodos de la presente invención incluyen, por ejemplo, retinitis pigmentosa, retinopatía diabética, y otras enfermedades oculares que implican un proceso inflamatorio local. En algunas realizaciones, la enfermedad ocular es retinopatía diabética. En algunas realizaciones, la enfermedad ocular es retinitis pigmentosa.

Los métodos descritos aquí también pueden ser útiles para el tratamiento de ciertas enfermedades renales. En algunas realizaciones, se proporcionan métodos para tratar glomerulonefritis membranoproliferativa tipo II (MPGN II). MPGN II es una nefropatía rara que conduce a proteinuria persistente, hematuria, y síndrome nefrítico. Se ha dado a conocer en varios casos la deficiencia y disfunción de FH en MPGN II. Por ejemplo, se han encontrado que mutaciones en FH en pacientes humanos con MPGN II. Los cerdos de la raza Yorkshire Noruega tienen defectos del FH que son heredados en un patrón recesivo. Estos animales desarrollan MPGN II y muestran depósitos masivos del complemento en los glomérulos renales, y mueren a una edad temprana debido a la insuficiencia renal. Además, se ha descrito un autoanticuerpo que reconoce FH en un paciente con MPGN II hipocomplementémica. El direccionamiento de FH hacia sitios de activación del complemento tendrá así efectos terapéuticos sobre un individuo que tenga MPGN II. En consecuencia, en algunas realizaciones, se proporcionan métodos para tratar MPGN II en un individuo, que comprenden administrar al individuo una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar

proteinuria asociada con MPGN II. En algunas realizaciones, se proporcionan métodos para tratar hematuria asociada con MPGN II. En algunas realizaciones, se proporciona un método para tratar síndrome nefrítico asociado con MPGN II.

En algunas realizaciones, se proporcionan métodos para tratar síndrome hemolítico-urémico (HUS). HUS es una enfermedad que consiste en anemia hemolítica microangiopática, trombocitopenia, e insuficiencia renal aguda, provocada por degradación continua de las plaquetas en la periferia y trombina plaquetaria en la microcirculación del riñón. Zipfel, Seminars in Thrombosis Hemostasis, 2001, 27(3):191-199. Ahora hay pruebas considerables de que la forma no diarreica de HUS (D-HUS) está asociada con alteraciones y mutaciones de FH. Además, se han dado a conocer autoanticuerpos contra FH en pacientes con HUS. El direccionamiento de FH hacia sitios de activación del complemento tendrá así efectos terapéuticos sobre un individuo que tenga HUS. En consecuencia, en algunas realizaciones, se proporcionan métodos para tratar HUS en un individuo, que comprenden administrar al individuo una cantidad eficaz de una composición que comprende una molécula CR2-FH que comprende: a) una porción CR2 que comprende un CR2 o un fragmento del mismo, y b) una porción FH que comprende un FH o un fragmento del mismo. En algunas realizaciones, se proporcionan métodos para tratar anemia hemolítica microangiopática asociada con HUS. En algunas realizaciones, se proporcionan métodos para tratar trombocitopenia asociada con HUS. En algunas realizaciones, se proporcionan métodos para tratar insuficiencia renal aguda asociada con HUS.

5

10

15

20

35

40

45

60

En algunas realizaciones, la enfermedad a tratar es lupus eritematoso sistémico, tal como nefritis lúpica. El lupus eritematoso sistémico (SLE) es la enfermedad autoinmunitaria prototípica que da como resultado implicación de múltiples órganos. Esta anti-autorrespuesta se caracteriza por autoanticuerpos dirigidos contra una variedad de componentes celulares nucleares y citoplásmicos. Estos autoanticuerpos se unen a sus antígenos respectivos, formando complejos inmunitarios que circulan y eventualmente se depositan en los tejidos. Esta deposición de los complejos inmunitarios provoca inflamación crónica y daño a los tejidos. Las rutas del complemento (incluyendo la ruta alternativa del complemento) están implicadas en la patología de SLE, y de este modo los métodos proporcionados aquí son útiles para tratar SLE (tal como nefritis lúpica).

En algunas realizaciones, la enfermedad a tratar es artritis reumatoide. La artritis reumatoide es una enfermedad crónica que puede mostrar una variedad de manifestaciones sistémicas. Esta enfermedad tiene una etiología desconocida, y muestra de forma característica una sinovitis inflamatoria persistente que implica habitualmente articulaciones periféricas en una distribución simétrica. La inflamación mediada por el complemento, que provoca destrucción de cartílago, erosiones óseas y, finalmente, deformidades de las articulaciones, es la característica más importante de esta enfermedad. Los métodos proporcionados aquí son de este modo útiles para el tratamiento de artritis reumatoide.

En algunas realizaciones, la enfermedad a tratar es isquemia reperfusión. Lesión de isquemia reperfusión (I/R) se refiere a lesión inflamatoria al endotelio y tejidos parenquimatosos subyacentes tras la reperfusión de tejidos hipóxicos. Es un síndrome general que es responsable tanto de la lesión aguda como crónica a diversos tejidos, incluyendo, por ejemplo, miocardio, sistema nervioso central, extremidad posterior, e intestino. La lesión de isquemia reperfusión puede dar como resultado necrosis y lesión celular irreversible. La ruta del complemento (incluyendo la ruta alternativa del complemento) es un mediador importante de la lesión I/R. Los métodos proporcionados aguí son de este modo útiles para el tratamiento de isquemia reperfusión que se produce en cualquier órgano o tejidos, incluyendo, pero sin limitarse a, lesión de isquemia reperfusión-intestinal, lesión de isquemia-reperfusión renal, lesión de isquemia-reperfusión cardíaca, lesión de isquemia-reperfusión de otros órganos internos tales como el pulmón o hígado, lesión de isquemia-reperfusión del sistema nervioso central, lesión de isquemia-reperfusión de las extremidades o dedos, hipovolemia inducida por trauma, o lesión de isquemia-reperfusión de cualquier órgano o tejido transplantado. La lesión de isquemia-reperfusión también puede ocurrir junto con una variedad de otras afecciones, incluyendo, pero sin limitarse a, apoplejía, lesión de la médula espinal, choque hipovolémico inducido por trauma, y enfermedades autoinmunitarias tales como artritis reumatoide (por ejemplo, que se puede empeorar enormemente por lesión isquémica del sinovio) o una variedad de otras enfermedades inflamatorias (enfermedades mediadas por inflamación o en las que la inflamación es un síntoma que puede dar como resultado o puede estar asociado con sucesos isquémicos y reperfusión). Otras afecciones y enfermedades en las que se produce lesión de isquemia-reperfusión serán conocidas por aquellos de pericia en la técnica.

En algunas realizaciones, se proporcionan métodos para tratar una enfermedad asociada a drusas. La expresión "enfermedad asociada a drusas" se refiere a cualquier enfermedad en la que tiene lugar la formación de drusas o placa enferma extracelular semejante a drusas, y para la que las drusas o la placa enferma extracelular semejante a drusas provocan o contribuyen a aquella o representan un signo de aquella. Por ejemplo, AMD, caracterizada por la formación de drusas maculares, es considerada como una enfermedad asociada a drusas. La enfermedad relacionada con drusas no ocular incluye, pero no se limita a, amiloidosis, elastosis, enfermedad por depósitos densos, y/o aterosclerosis. La expresión "enfermedad relacionada con drusas" también incluye glomerulonefritis (tal como MPGN II).

Otras enfermedades en las que está implicada la ruta alternativa del complemento que se pueden tratar mediante los métodos de la presente invención incluyen, por ejemplo: (1) daño tisular debido a isquemia-reperfusión tras infarto de miocardio agudo, aneurisma, apoplejía, choque hemorrágico, lesión por presión, fallo de múltiples órganos, choque hipovolémico, isquemia intestinal, lesión de la médula espinal, y lesión cerebral traumática; (2)

trastornos inflamatorios, por ejemplo quemaduras, endotoxemia y choque séptico, síndrome disneico del adulto, derivación cardiopulmonar, hemodiálisis, choque anafiláctico, asma grave, angioedema, enfermedad de Crohn, anemia drepanocítica, glomerulonefritis postestreptocócica, nefritis membranosa, y pancreatitis; (3) rechazo de transplante, por ejemplo rechazo hiperagudo de xenoinjerto; (4) enfermedades relacionadas con el embarazo, tales como pérdida fetal recurrente y preeclampsia, y (5) reacciones adversas a fármacos, por ejemplo alergia a fármacos, síndrome de fuga vascular inducida por IL-2, y alergia a medios de contraste radiográficos. Los trastornos autoinmunitarios que incluyen, pero no se limitan a, miastenia grave, enfermedad de Alzheimer, esclerosis múltiple, enfisema, obesidad, artritis reumatoide, lupus eritematoso sistémico, esclerosis múltiple, miastenia grave, diabetes mellitus insulinodependiente, encefalomielitis diseminada agua, enfermedad de Addison, síndrome de anticuerpos antifosfolipídicos, hepatitis autoinmunitaria, enfermedad de Crohn, síndrome de Goodpasture, enfermedad de Graves, síndrome de Guillain-Barré, enfermedad de Hashimoto, púrpura trombocitopénica idiopática, pénfigo, síndrome de Sjögren, y arteritis de Takayasu, también se pueden tratar con los inhibidores de la invención.

10

15

20

25

30

35

40

45

50

55

60

En algunas realizaciones, la enfermedad a tratar es cualquiera de las siguientes: complicaciones tras derivación cardiopulmonar; infarto de miocardio; lesión de isquemia/reperfusión; apoplejía; síndrome disneico agudo (ARDS); septicemia; lesión por quemaduras; inflamación asociada con derivación cardiopulmonar y hemodiálisis; plasmaféresis; plaquetoféresis; leucoféresis; oxigenación de la membrana extracorpórea (ECMO); precipitación de LDL extracorpórea inducida por heparina (HELP); respuesta alérgica inducida por medios de contraste radiográficos; rechazo de transplante; y otras afecciones inflamatorias y enfermedades autoinmunitarias/de complejos inmunitarios tales como esclerosis múltiple, miastenia grave, pancreatitis, artritis reumatoide, enfermedad de Alzheimer, asma, lesión térmica, choque anafiláctico, inflamación del intestino, urticaria, angioedema, vasculitis, nefritis glomerular, y síndrome de Sjögren, lupus eritematoso, y nefritis glomerular.

Las composiciones descritas aquí se pueden administrar a un individuo vía cualquier ruta, incluyendo, pero sin limitarse a, intravenosa (por ejemplo, mediante bombas de infusión), intraperitoneal, intraocular, intra-arterial, intrapulmonar, oral, inhalación, intravesicular, intramuscular, intra-traqueal, subcutánea, intraocular, intratecal, transdérmica, transpleural, intraarterial, tópica, por inhalación (por ejemplo, como neblinas de pulverizaciones), mucosal (tal como vía la mucosa nasal), subcutánea, transdérmica, gastrointestinal, intraarticular, intracisternal, intraventricular, rectal (es decir, vía supositorio), vaginal (es decir, vía pesario), intracraneal, intrauretral, intrahepática, e intratumoral. En algunas realizaciones, las composiciones se administran sistémicamente (por ejemplo mediante inyección intravenosa). En algunas realizaciones, las composiciones se administran localmente (por ejemplo mediante inyección intraarterial o intraocular).

En algunas realizaciones, las composiciones se administran directamente al ojo o al tejido ocular. En algunas realizaciones, las composiciones se administran tópicamente al ojo, por ejemplo en colirios. En algunas realizaciones, las composiciones se administran mediante inyección al ojo (inyección intraocular) o a los tejidos asociados con el ojo. Las composiciones se pueden administrar, por ejemplo, mediante inyección intraocular, inyección periocular, inyección subretiniana, inyección intravítrea, inyección trans-septal, inyección subescleral, inyección intracoroidea, inyección intracameral, inyección subconjuntival, inyección subconjuntival, inyección sub-Tenon, inyección retrobulbar, inyección peribulbar, o suministro yuxtaescleral posterior. Estos métodos son conocidos en la técnica. Por ejemplo, para una descripción de rutas perioculares ejemplares para el suministro retiniano de fármaco, véase Raghava et al. (2004), Expert Opin. Drug Deliv. 1(1):99-114. Las composiciones se pueden administrar, por ejemplo, al vítreo, humor acuoso, esclera, conjuntiva, el área entre la esclera y la conjuntiva, los tejidos coroideos de la retina, mácula, u otro área en o próxima al ojo de un individuo. Las composiciones también se pueden administrar al individuo como un implante. Los implantes preferidos son formulaciones de liberación sostenida biocompatibles y/o biodegradables que liberan gradualmente los compuestos a lo largo de un período de tiempo. Los implantes oculares para el suministro farmacéutico son bien conocidos en la técnica. Véanse, por ejemplo, las patentes U.S. n^{os} 5.501.856, 5.476.511, y 6.331.313. Las composiciones también se pueden administrar al individuo usando iontoforesis, incluyendo, pero sin limitarse a, los métodos ionoforéticos descritos en la patente U.S. nº 4.454.151 y en la Publicación de Solicitud de Patente U.S. nº 2003/0181531 y 2004/0058313.

En algunas realizaciones, las composiciones se administran intravascularmente, tal como intravenosamente (IV) o intraarterialmente. En algunas realizaciones (por ejemplo, para el tratamiento de enfermedades renales), las composiciones se administran directamente a las arterias (tales como arterias renales).

La cantidad eficaz óptima de las composiciones se puede determinar empíricamente, y dependerá del tipo y gravedad de la enfermedad, ruta de administración, progresión de la enfermedad, y de la salud, masa y área corporal del individuo. Tales determinaciones están dentro de la pericia de un experto en la técnica. La cantidad eficaz también se puede determinar basándose en ensayos de activación de complemento *in vitro*. Los ejemplos de dosis de moléculas CR2-FH que se pueden usar para métodos descritos aquí incluyen, pero no se limitan a, una cantidad eficaz dentro del intervalo de dosificación de cualquiera de alrededor de 0,01 μg/kg a alrededor de 300 mg/kg, o dentro de alrededor de 0,1 μg/kg a alrededor de 40 mg/kg, o dentro de alrededor de 1 μg/kg a alrededor de 20 mg/kg. Por ejemplo, cuando se administra intraocularmente, la composición se puede administrar a intervalos bajos de microgramos, incluyendo, por ejemplo, alrededor de 0,1 μg/kg o menos, alrededor de 0,05 μg/kg o menos, o 0.41 μg/kg o menos. En algunas realizaciones,

la cantidad de CR2-FH administrada a un individuo es alrededor de 10 μg a alrededor de 500 mg por dosis, incluyendo por ejemplo cualquiera de alrededor de 10 μg a alrededor de 50 μg , alrededor de 50 μg , alrededor de 100 μg , alrededor de 200 μg , alrededor de 200 μg , alrededor de 300 μg , alrededor de 300 μg , alrededor de 500 μg , alrededor de 500 μg , alrededor de 500 μg , alrededor de 10 mg, alrededor de 10 mg, alrededor de 10 mg, alrededor de 200 mg, alrededor de 200 mg, alrededor de 300 mg, alrededor de 300 mg, alrededor de 400 mg, o alrededor de 400 mg, o alrededor de 400 mg, o alrededor de 400 mg, alrededor de 500 mg por dosis.

Las composiciones de CR2-FH se pueden administrar en una única dosis diaria, o la dosis diaria total se puede administrar en dosis divididas de dos, tres, o cuatro veces al día. Las composiciones se pueden administrar también de forma menos frecuente que diariamente, por ejemplo seis veces a la semana, cinco veces a la semana, cuatro veces a la semana, tres veces a la semana, dos veces por semana, una vez por semana, una vez cada dos semanas, una vez cada tres semanas, una vez al mes, una vez cada dos meses, una vez cada tres meses, o una vez cada seis meses. Las composiciones también se pueden administrar en una formulación de liberación sostenida, tal como en un implante que libera gradualmente la composición para uso a lo largo de un período de tiempo, y que permite que la administración sea administrada menos frecuentemente, tal como una vez al mes, una vez cada 2-6 meses, una vez al año, o incluso una única administración. Los dispositivos de liberación sostenida (tales como peletes, nanopartículas, micropartículas, nanoesferas, microesferas, y similares) se pueden administrar mediante inyección, o se pueden implantar quirúrgicamente en diversas localizaciones en el ojo o tejido asociado con el ojo, tal como intraocular, intravítreo, subretiniana, periocular, subconjuntival, o sub-Tenon.

Las composiciones farmacéuticas se pueden administrar solas o en combinación con otras moléculas que se sabe que tienen un efecto beneficioso sobre la fijación retiniana o tejido retiniano dañado, incluyendo moléculas capaces de la reparación y regeneración tisular, y/o capaces de inhibir la inflamación. Los ejemplos de cofactores útiles incluyen agentes anti-VEGF (tales como un anticuerpo frente a VEGF), factor de crecimiento de fibroblastos básico (bFGF), factor neurotrófico ciliar (CNTF), axoquina (una muteína de CNTF), factor inhibido de la leucemia (LIF), neutrotrofina 3 (NT-3), neurotrofina-4 (NT-4), factor de crecimiento de nervios (NGF), factor II de crecimiento similar a insulina, prostaglandina E2, factor de supervivencia 30 kD, taurina, y vitamina A. Otros cofactores útiles incluyen cofactores que alivian los síntomas, incluyendo agentes antisépticos, antibióticos, antivirales y antifúngicos, y analgésicos y anestésicos.

Terapia génica

5

10

15

40

45

50

55

Las moléculas CR2-FH también se pueden suministrar mediante expresión de la proteína de fusión CR2-FH *in vivo*, que se denomina a menudo como "terapia génica". Por ejemplo, las células se pueden manipular con un polinucleótido (ADN o ARN) que codifica la proteína de fusión *ex vivo*, después las células manipuladas se proporcionan a un individuo para ser tratado con la proteína de fusión. Tales métodos son bien conocidos en la técnica. Por ejemplo, las células se pueden manipular mediante procedimientos conocidos en la técnica mediante uso de una partícula retroviral que contiene ARN que codifica la proteína de fusión de la presente invención.

El suministro local de las proteínas de fusión de la presente invención usando terapia génica puede proporcionar el agente terapéutico al área diana, por ejemplo al ojo o al tejido ocular.

Los métodos de suministro génico son conocidos en la técnica. Estos métodos incluyen, pero no se limitan a, transferencia directa de ADN, véase, por ejemplo, Wolff et al. (1990) Science 247: 1465-1468; 2) transferencia de ADN mediada por liposomas, *véanse*, *por ejemplo*, Caplen et al. (1995) Nature Med. 3:39-46; Crystal (1995) Nature Med. 1:15-17; Gao y Huang (1991) Biochem. Biophys. Res. Comm. 179:280-285; 3) transferencia de ADN mediada por retrovirus, véanse, por ejemplo, Kay et al. (1993) Science 262:117-119; Anderson (1992) Science 256:808-813; 4) transferencia de ADN mediada por virus de ADN. Tales virus de ADN incluyen adenovirus (preferiblemente vectores a base de Ad2 o Ad5), virus del herpes (preferiblemente vectores a base de virus del herpes simple), y parvovirus (preferiblemente vectores a base de virus adenoasociado, más preferiblemente vectores a base de AAV-2). Véanse, por ejemplo, Ali et al. (1994) Gene Therapy 1:367-384; patente U.S. nº 4.797.368, y patente U.S. nº 5.139.941.

Los retrovirus a partir de los que se pueden derivar los vectores plasmídicos retrovirales mencionados aquí anteriormente incluyen, pero no se limitan a, virus de la leucemia de ratón de Moloney, virus de necrosis del bazo, retrovirus tales como virus de sarcoma de Rous, virus de sarcoma de Harvey, virus de leucesis aviar, virus de la leucemia del gibón, virus de la inmunodeficiencia humana, adenovirus, virus del sarcoma mieloproliferativo, y virus de tumor mamario. En una realización, el vector plasmídico retroviral deriva del virus de la leucemia de ratón de Moloney.

Los adenovirus tienen la ventaja de que tienen un amplio intervalo de hospedantes, y pueden infectar células quiescentes o terminalmente diferenciadas, tales como neuronas o hepatocitos, y parecen esencialmente no oncogénicos. Véase, por ejemplo, Ali et al. (1994), más arriba, p. 367. Los adenovirus no parecen integrarse en el genoma del hospedante. Debido a que existen extracromosómicamente, se reduce enormemente el riesgo de mutagénesis por inserción. Ali et al. (1994), más arriba, p. 373.

Los virus adenoasociados muestran ventajas similares a los vectores a base de adenovirus. Sin embargo, los AAVs muestran integración específica del sitio en el cromosoma 19 humano (Ali et al. (1994), más arriba, p. 377).

Los vectores de terapia génica incluyen uno o más promotores. En algunas realizaciones, el vector tiene un promotor que conduce la expresión en múltiples tipos celulares. En algunas realizaciones, el vector tiene un promotor que conduce la expresión en tipos celulares específicos (tales como células de la retina o células en el riñón). Los promotores adecuados que se pueden emplear incluyen, pero no se limitan a, el LTR retroviral; el promotor de SV40; y el promotor de citomegalovirus humano (CVM) descrito en Miller et al. (1989) Biotechniques 7(9):980-990, o cualquier otro promotor (por ejemplo, promotores celulares tales como promotores celulares eucariotas que incluyen, pero no se limitan a, los promotores de histona, polímero III, y beta-actina). Otros promotores virales que se pueden emplear incluyen, pero no se limitan a, promotores de adenovirus, promotores de timidina cinasa (TK), y promotores de parvovirus B19. La selección de un promotor adecuado será manifiesta para aquellos expertos en la técnica a partir de las enseñanzas contenidas aquí.

La secuencia de ácido nucleico que codifica una proteína de fusión CR2-FH está bajo el control de un promotor adecuado. Los promotores adecuados que se pueden emplear incluyen, pero no se limitan a, promotores adenovirales, tales como el promotor tardío principal adenoviral; o promotores heterólogos, tales como el promotor de citomegalovirus (CMV); el promotor del virus sincitial respiratorio (RSV); promotores inducibles, tales como el promotor de MMT, el promotor de metalotioneína; los promotores de choque térmico; el promotor de albúmina; el promotor de ApoAl; promotores de globina humana; promotores de timidina cinasas virales, tales como el promotor de timidina cinasa del herpes simple; LTRs retrovirales (incluyendo las LTRs retrovirales modificadas descritas aquí anteriormente); el promotor de β-actina; el promotor de la hormona del crecimiento humano.

Los vectores plasmídicos retrovirales se pueden emplear para transducir estirpes celulares de empaquetamiento para formar estirpes celulares productoras. Los ejemplos de células de empaquetamiento que se pueden transfectar se describen en Miller (1990) Human Gene Therapy 1:5-14. Los vectores pueden transducir las células de empaquetamiento a través de cualquier medio conocido en la técnica. Tales medios incluyen, pero no se limitan a, electroporación, el uso de liposomas, una precipitación con CaPO₄. En una alternativa, el vector plasmídico retroviral se puede encapsular en un liposoma, o se puede acoplar a un lípido, y después se puede administrar a un hospedante. La estirpe celular productora genera partículas de vector retroviral infecciosas que incluyen la secuencia o secuencias de ácidos nucleicos que codifican los polipéptidos. Tales partículas del vector retroviral se pueden emplear entonces para transducir células eucariotas, ya sea in vitro o in vivo. Las células eucariotas transducidas expresarán la secuencia o secuencias de ácidos nucleicos que codifican el polipéptido. Las células eucariotas que se pueden transducir incluyen, pero no se limitan a, células madre embriónicas, células de carcinoma embriónico, así como células madre hematopoyéticas, hepatocitos, fibroblastos, mioblastos, queratinocitos, células endoteliales, y células epiteliales bronquiales.

En algunas realizaciones, se usan vectores de suministro génico que dirigen la expresión de CR2-FH en el ojo. Los vectores para el suministro génico al ojo son conocidos en la técnica, y se han descrito, por ejemplo, en la patente U.S. nº 6.943.153, y en las Publicaciones de Solicitudes de Patentes U.S. nºs US 20020194630, US 20030129164, US 200600627165.

En algunas realizaciones, la activación del complemento es inhibida al poner en contacto un fluido corporal con una composición que comprende una molécula CR2-FH *ex vivo* en condiciones que permiten que la molécula CR2-FH funcione para inhibir la activación del complemento. Los fluidos corporales adecuados incluyen aquellos que se pueden devolver al individuo, tales como sangre, plasma, o linfa. La aféresis por adsorción de tipo afinidad se describe generalmente en Nilsson et al. (1988) Blood 58(1):38-44; Christie et al. (1993) Transfusion 33:234-242; Richter et al. (1997) ASAIO J. 43(1):53-59; Suzuki et al. (1994) Autoimmunity 19: 105-112; patente U.S. nº 5.733.254; Richter et al. (1993) Metabol. Clin. Exp. 42:888-894; y Wallukat et al. (1996) Int'l J. Card. 54:1910195.

45 En consecuencia, la invención incluye métodos para tratar una o más enfermedades descritas aquí en un individuo, que comprenden tratar extracorpóreamente (es decir, fuera del cuerpo o ex vivo) la sangre del individuo con una composición que comprende una molécula CR2-FH en condiciones que permiten que la molécula funcione para inhibir la activación del complemento, y devolver la sangre al individuo.

Dosificaciones unitarias, artículos de fabricación, y kits

5

10

15

20

25

30

40

También se proporcionan formas de dosificación unitaria de composiciones de la molécula CR2-FH, conteniendo cada dosis de alrededor de 0,01 mg a alrededor de 50 mg, incluyendo, por ejemplo, cualquiera de alrededor de 0,1 mg a alrededor de 50 mg, alrededor de 50 mg, alrededor de 5 mg a alrededor de 40 mg, alrededor de 10 mg a alrededor de 20 mg, o alrededor de 15 mg de la molécula CR2-FH. En algunas realizaciones, las formas de dosificación unitaria de la composición de la molécula CR2-FH comprenden alrededor de cualquiera de 0,01 mg-0,1mg, 0,1 mg-0,2 mg, 0,2 mg-0,25 mg, 0,25 mg-0,3 mg, 0,3 mg-0,35 mg, 0,35 mg-0,4 mg, 0,4 mg-0,5 mg, 0,5 mg-1,0 mg, 10 mg-20 mg, 20 mg-50 mg, 50 mg-80 mg, 80 mg-100 mg, 100 mg-150 mg, 150 mg-200 mg, 200 mg-250 mg, 250 mg-300 mg, 300 mg-400 mg, o 400 mg-500 mg de la molécula CR2-FH. En algunas realizaciones, la forma de dosificación unitaria comprende alrededor de 0,25 mg de molécula CH2-FH. La expresión "forma de dosificación unitaria" se refiere a una unidad físicamente discreta adecuada como dosis unitarias para un

individuo, conteniendo cada unidad una cantidad predeterminada de material activo, calculada para producir el efecto terapéutico deseado, en asociación con un vehículo, diluyente, o excipiente farmacéutico adecuado. Estas formas de dosificación unitaria se pueden almacenar en un envase adecuado en dosis unitarias individuales o múltiples, y también se pueden esterilizar adicionalmente y cerrar herméticamente.

- También se proporcionan artículos de fabricación que comprenden las composiciones descritas aquí en un envase adecuado. El envase adecuado para las composiciones (tales como composiciones oftálmicas) descritas aquí son conocidos en la técnica, e incluyen, por ejemplo, viales (tales como viales cerrados herméticamente), vasijas, ampollas, botellas, tarros, envases flexibles (por ejemplo, bolsas Mylar o de plástico cerradas herméticamente), y similares. Estos artículos de fabricación se pueden además esterilizar y/o cerrar herméticamente.
- La presente invención también proporciona kits que comprenden composiciones (o formas de dosificación unitarias y/o artículos de fabricación) descritas aquí, y pueden comprender además instrucción o instrucciones sobre métodos de uso de la composición, tales como los usos descritos aquí. Los kits descritos aquí pueden incluir además otros materiales deseables desde el punto de vista comercial y del usuario, incluyendo otros tampones, diluyentes, filtros, agujas, jeringuillas, e insertos del envase con instrucciones para llevar a cabo cualesquiera métodos descritos aquí.

15 **EJEMPLOS**

20

25

30

45

50

Ejemplo 1. Secuencias ejemplares de moléculas CR2-FH y péptidos señal

Las Figuras 4-6 proporcionan secuencias de aminoácidos ejemplares de moléculas CR2-FH descritas aquí (SEC ID NOs: 5-10). "nnn" representa un ligador opcional.

La Figura 7 proporciona secuencias de aminoácidos ejemplares de péptidos de señalización descritos aquí (SEC ID NOs: 11 y 13), y polinucleótidos que codifican los péptidos de señalización (SEC ID NOs: 12 y 14).

La Figura 9 proporciona secuencia de aminoácidos de una proteína de fusión CR2-FH de ratón (denominada como CR2-fH o CR2NLFH) (SEC ID NO: 17), y un polinucleótido que codifica una CR2-FH de ratón más el péptido señal (SEC ID NO: 18).

La Figura 10 proporciona la secuencia de ADN de CR2NLFHFH, una proteína de fusión CR2-FH de ratón que contiene una porción CR2 y dos porciones FH sin una secuencia ligadora (SEC ID NO: 19).

La Figura 11 proporciona la secuencia de ADN de CR2LFHFH, una proteína de fusión CR2-FH de ratón que contiene una porción CR2 enlazada a dos porciones FH vía una secuencia ligadora (SEC ID NO: 20).

Figura 20 proporciona secuencia de aminoácidos de una proteína de fusión CR2-FH humana (denominada como CR2-fH o CR2fH humana) (SEC ID NO: 21), y un polinucleótido que codifica una CR2-fH humana más el péptido señal (SEC ID NO: 22).

La Figura 21 proporciona la secuencia de aminoácidos de una proteína de fusión CR2-FH humana que contiene dos porciones FH (denominadas como CR2-FH2 o CR2fH2 humana o CR2fH2 humana) (SEC ID NO: 23) y un polinucleótido que codifica una CR2-FH2 humana más el péptido señal (SEC ID NO: 24).

Ejemplo 2. Inhibición in vitro de la ruta alternativa por CR2-FH

Las proteínas de fusión de ratón que contienen los primeros cuatro dominios de SCR de CR2 y los primeros cinco dominios de SCR de FH (con ligador (CR2LFH) o sin ligador (CR2NLFH o CR2-fH)) se obtuvieron mediante clonación de ADN recombinante y un método de expresión génica. La secuencia para una de las proteínas de fusión CR2-FH se proporciona en la Figura 9. SEC ID NO: 17 es la secuencia polipeptídica de la proteína de fusión CR2-FH. SED ID NO: 18 es el nucleótido usado para codificar la proteína de fusión, así como un péptido señal en el término N del péptido señal.

También se obtuvo una proteína de fusión CR2-FH de ratón (denominada como CR2LFHFH, CR2-fH2 o CR2-fHH) que contiene los primeros cuatro dominios de SCR de CR2 y dos porciones FH enlazadas en tándem (conteniendo cada una de ellas los primeros cinco dominios de SCR de FH). La porción CR2 y la primera porción FH se enlazaron mediante una secuencia ligadora. La secuencia de ADN (que incluye el ADN que codifica el péptido señal) de CR2LFHFH se proporciona en la Figura 11 (SEC ID NO: 20).

Los ensayos *in vitro* para la activación de la ruta alternativa se realizaron como se describe esencialmente en Quigg et al., J. Immunol. 1998, 160(9):4553-60. En el experimento, como controles, se usaron factor H (fH) o CR2-Crry. Específicamente, 50 mg de perlas de zymosán en 10 ml de NaCl 0,15M se activaron hirviéndolas durante 60 minutos, y se lavaron dos veces en PBS. En cada mezcla de reacción se añade: 1) EGTA 10 mM y MgCl2 5 mM (concentración final); 2) 1x10⁷ perlas; 3) EDTA 10 mM (control negativo 1) o suero de HIC (control negativo 2), o una concentración creciente de una de las proteínas de fusión CR2-FH o de las proteínas control; 4) 10 μl de suero; y 5) PBS para completar el volumen total hasta 100 μl. Las mezclas se incubaron a 37°C durante 20 minutos, y las reacciones se detuvieron mediante adición de EDTA 10 mM (concentración final). Las perlas se lavaron dos veces

con PBSB fría (PBS con 1% de BSA), y se incubaron con anticuerpo de cabra conjugado con FTIC anti-C3 durante una hora en hielo. La muestra se lavó entonces dos veces en PBSB, se resuspendió en paraformaldehído al 1%, y se analizó en citometría de flujo.

La Figura 12A proporciona una representación gráfica de los datos obtenidos en un ensayo del complemento con zymosán in vitro usando proteínas de fusión CR2-FH de ratón (CR2-fH) y factor H solo (fH). Como se muestra en la figura, CR2-fH fue significativamente más eficaz que FH inhibiendo la activación del complemento. La Figura 12B proporciona una representación gráfica de los datos obtenidos en un ensayo del complemento con zymosán in vitro usando los primeros cinco dominios de SCR de FH de ratón (FH 15) y los primeros cuatro dominios de CR2 de ratón (CR2). Los primeros cinco dominios de SCR de FH de ratón tuvieron una EC50 de 250 nM, que iguala aproximadamente a la cantidad de FH en suero. La molécula que tiene los primeros cuatro dominios de CR2 no tiene ningún efecto inhibidor en absoluto. Estos datos demuestran que el efecto observado con CR2-FH es debido a los efectos combinados de las dos porciones de la molécula, en lugar de la función independiente de cada porción.

La Figura 13 proporciona una representación gráfica de datos obtenidos en un ensayo del complemento con zymosán *in vitro* usando proteína de fusión CR2-FH de ratón con ligador (CR2LFH), proteína de fusión CR2-FH sin ligador (CR2NLFH), CR2-FH-FH con ligador (CR2LFHFH), y CR2-Crry. Como se muestra en la figura, CR2-FH fue más eficaz que CR2-Crry a la hora de inhibir la activación del complemento de la ruta alternativa. CR2LFH y CR2NLFH fueron igualmente eficaces inhibiendo la activación del complemento de la ruta alternativa. CR2LFHFH es mucho más eficaz que CR2LFH y CR2NLFH.

Ejemplo 3. Tratamiento de lesión intestinal por isquemia y reperfusión mediante CR2-FH

5

10

15

25

30

35

40

45

50

20 Este experimento muestra el tratamiento de lesión intestinal por isquemia y reperfusión en un modelo de ratón.

Lesión intestinal por isquemia reperfusión. Se anestesiaron tres ratones macho adultos de 8 semanas y que pesan 20-25 g con 10 mg/kg de ketamina y 6 mg/kg de xilazina mediante inyección i.p. Los animales respiraban espontáneamente, y la temperatura corporal se mantuvo usando una manta térmica durante todo el experimento. Se llevó a cabo una laparotomía medial, y los intestinos se movieron con cuidado, permitiendo el acceso a la arteria mesentérica superior. La arteria mesentérica superior se pinzó usando una pinza microquirúrgica (Fine Instruments, USA). La isquemia se confirmó por la palidez del intestino delgado. Ratones tratados de forma simulada sufrieron laparotomía sin el pinzamiento de la arteria mesentérica superior. Después de 30 min. de isquemia, la pinza arterial se retiró permitiendo la reperfusión de la vasculatura mesentérica. Los animales se suturaron usando sutura 6.0 ethicon y se dejó que reperfusionaran durante 2 horas. Se administró 0,1 mg o 0,05 mg de CR2-fH, o control (PBS), i.v. 30 minutos después de la reperfusión, y los animales se sacrificaron 90 minutos más tarde, después de un total de 2 horas de reperfusión.

Histología. Se tomaron muestras tisulares para tinción histológica del intestino, y se fijaron en formalina al 10% a 4°C toda la noche y se procesaron subsiguientemente a parafina, o se congelaron en nitrógeno líquido para el análisis de inmunofluorescencia. Las secciones de intestino procedentes de cada animal se tiñeron con hematoxilina y eosina, y se puntuaron para el daño mucosal y la altura del vello intestinal como se describió previamente (46). De forma breve, se asignó una puntuación de 0 a un vello normal; los vellos con distorsión de la punta se puntuaron como 1; los vellos que carecen de células caliciformes y que contienen espacios de Gugenheims se puntuaron como 2; los vellos con interrupción a modo de parches de las células epiteliales se puntuaron como 3; los vellos expuestos pero con lámina propia intacta y desprendimiento de células epiteliales se asignaron 4; los vellos en los que la lámina propia exudaba se puntuaron como 5, y finalmente, los vellos que presentan hemorragia o vellos desnudos se puntuaron como 6. Todas las evaluaciones histológicas se llevaron a cabo de manera enmascarada.

Los resultados del experimento se muestran en la Figura 14A. Como se muestra en la figura, tanto 0,1 mg como 0,05 mg de CR2-fH mostraron efecto protector en el modelo de animal en comparación con los animales de control, incluso aunque los animales de control tuvieron niveles normales de factor H endógeno circulante (alrededor de 0,5 mg/ml) en exceso de las cantidades de CR2-fH administradas.

Ejemplo 3.1. Tratamiento de lesión intestinal por isquemia y reperfusión mediante CR2-FH de ratón

El experimento se llevó a cabo esencialmente como se describe en el Ejemplo 3.

De forma breve, se administraron 0,05 mg, 0,1 mg, o 0,2 mg de CR2-fH de ratón o CR2-fH2 de ratón (CR2-fHH) i.v. 30 minutos tras la reperfusión, y los animales se sacrificaron 90 minutos más tarde para el análisis histológico. Los resultados del experimento se muestran en la Figura 14B. Como se muestra en la Figura 14B, tanto CR2-fH de ratón como CR2-fHH de ratón protegieron al intestino de la lesión por isquemia-reperfusión mediada por el complemento.

Ejemplo 3.2. Tratamiento de lesión intestinal por isquemia y reperfusión mediante CR2-FH de ratón

Este experimento muestra los efectos de CR2-fH y CR2-fH2 de ratón sobre la ruta alternativa del complemento y la isquemia-reperfusión intestinal. Los experimentos se llevan a cabo esencialmente como se describe antes.

Los ensayos *in vitro* demostraron que CR2-fH de ratón fue significativamente más eficaz inhibiendo la ruta alternativa del complemento que CR2-Crry, y que CR2-fH2 de ratón fue alrededor de 2 veces más eficaz que CR2-fH de ratón. La actividad inhibidora del complemento de CR2-fH de ratón fue dependiente del direccionamiento mediado por CR2, como se demuestra mediante experimentos de bloqueo con anticuerpos anti-CR2. Además, el factor H de ratón purificado sólo tuvo actividades inhibidoras mínimas del complemento en los ensayos in vitro.

Se dirigieron CR2-fH de ratón y CR2-fH2 de ratón a sitios de activación local y remota (pulmón) del complemento tras la lesión intestinal por isquemia y reperfusión, y ambas proteínas protegieron a la mucosa intestinal y al parénquima pulmonar de la lesión a una dosis baja y de manera dependiente de la dosis. Aunque CR2-fH2 de ratón fue un inhibidor más potente de la ruta alternativa del complemento que CR2-fH de ratón *in vitro*, no hubo ninguna diferencia en el efecto protector de las dos proteínas en el modelo in vivo. En comparación con CR2-Crry, se necesitó una dosis mayor de CR2-fH de ratón, de aproximadamente 2 veces, para proporcionar protección equivalente frente a la lesión local.

Ejemplo 4. Tratamiento de isquemia-reperfusión renal mediante CR2-FH de ratón

Este ejemplo muestra el efecto de CR2-FH sobre isquemia-reperfusión renal.

5

10

35

40

45

55

Protocolo para inducción de ARF isquémica. Se anestesiaron ratones que pesan 20-25 gramos con 300 μl de 2,2,2-tribromoetanol (Sigma-Aldrich) inyectado intraperitonealmente. Después de que se anestesió a los ratones, se colocaron en una almohadilla calefactora para mantener su temperatura corporal durante la cirugía. Entonces se llevaron a cabo las laparotomías, y se localizaron y aislaron los pedículos renales mediante disección roma. Los pedículos se graparon con grapas quirúrgicas (Miltex Instrument Company, Inc.), y la oclusión del flujo de sangre se confirmó mediante inspección visual de los riñones. Las pinzas se dejaron en el sitio durante 24 minutos y después se liberaron. El tiempo de isquemia se escogió para obtener un modelo reversible de ARF isquémica con mínima trombosis vascular, y para evitar la mortalidad de los animales. Los riñones se observaron durante aproximadamente un minuto para asegurar la reanudación del flujo sanguíneo. Después de 15 minutos de reperfusión, los ratones recibieron 0,25 mg de la CR2-fH (CR2NLFH) de ratón intraperitonealmente. La fascia y la piel se suturaron con seda 4-0 (United States Surgical). Los ratones se sometieron a reposición de volumen con 0,5 ml de disolución salina normal, y se mantuvieron en una incubadora a 29°C para mantener la temperatura corporal.

Después de 24 horas de reperfusión, los ratones se anestesiaron, y se obtuvo sangre mediante punción cardíaca. Se llevó a cabo la laparotomía, y se recogieron los riñones. El protocolo del estudio fue aprobado por el University of Colorado Health Sciences Center Animal Care and Use Committee.

30 Medidas de nitrógeno ureico en suero. El nitrógeno ureico en suero se determinó para cada ratón usando un Beckman Autoanalyzer (Beckman). El resultado se muestra en la Figura 15A. Como se muestra en la figura, el nitrógeno ureico en suero se redujo en animales tratados con CR2-fH de ratón, indicando la conservación de la función renal.

Morfología renal. Después de que los riñones se retiraron de los ratones, secciones sagitales se fijaron en paraformaldehído al 4%. Después de embeberlas en parafina, se cortaron secciones de cuatro μm y se tiñeron con ácido peryódico de Shiff. Las secciones se evaluaron mediante un patólogo renal de forma enmascarada. La corteza y la banda externa de la médula externa se evaluaron en busca de necrosis epitelial, pérdida de borde en cepillo, dilatación tubular y formación de cilindro. Se revisaron para cada portaobjetos al menos diez campos (400x), y se determinó el porcentaje de túbulos que presentan estos hallazgos. Las secciones renales se puntuaron según lo siguiente basándose en el porcentaje de túbulos afectados: 0, ninguno; 1, <10%, 2, 11-25%, 3, 26-45%, 4, 46-75%, 5, >75%. El resultado del experimento se muestra en la Figura 15B. Como se muestra en la figura, CR2-fH mostró efecto protector en el modelo de animal en comparación con el animal de control.

Inmunofluorescencia: Para la inmunofluorescencia, se congelaron instantáneamente secciones sagitales de los riñones en compuesto OCT (Sakura Finetek). Se cortaron secciones de cuatro µm con un criostato, y se almacenaron a -70°C. Los portaobjetos se fijaron posteriormente con acetona y se incubaron con el anticuerpo conjugado con FITC anti-C3 de ratón (Cappel). Tras la hibridación con el anticuerpo durante una hora a temperatura ambiente, los portaobjetos se contratiñeron con hematoxilina (Vector Laboratories, Inc.). Los resultados del experimento se muestran en las Figuras 15C y 15D. Como se muestra en la figura, se depositó más C3 en los riñones de ratones tratados de forma simulada (15C) con respecto a ratones tratados con CR2-fH de ratón (15D).

50 Ejemplo 5. Tratamiento de degeneración macular relacionada con la edad mediante CR2-FH

Ratas albinas expuestas de forma constante a la luz se usan como modelos de animal para degeneración macular relacionada con la edad (AMD seca). Cinco a ocho animales se inyectaron intraocularmente bajo anestesia una vez cada dos días con una proteína de fusión CR2-FH (1 µl de disolución madre 4,3 mg/ml), comenzando con la primera inyección el día antes del comienzo de la exposición continua de luz (días -1, 1, 3, 5, 7). Un ojo sirvió como el experimental, mientras que el otro ojo sirve como el ojo de control al que se le inyectó PBS. Los animales se ensayaron con ERG en el día 8, y después se eutanasiaron para determinar la histología y el análisis de PCR. El

número de filas de fotorreceptores en los ojos inyectados con CR2-FH se comparó con aquellas de los ojos de control con PBS.

El efecto de CR2-FH se midió usando tres parámetros: actividad funcional (potenciales de ERG y DC, es decir, respuestas de fotorreceptores y RPE), histología y medidas de inflamación (por ejemplo, expresión génica mediante RT-PCR, y expresión proteica mediante inmunohistoquímica.

En el segundo modelo de animal (AMD húmeda), se evaluó si la eliminación de los activadores del complemento reduce la neovascularización coroidea (CNV). La CNV se produce en cinco a ocho ratas con un láser de criptón (200 mW, 50 μm, 0,05 s), y se documenta en montajes planos coroideos tras inyecciones de fluoresceína.

El efecto de CR2-FH se midió usando cuatro parámetros: actividad funcional (potenciales de ERG y DC, es decir, respuestas de fotorreceptores y RPE), histología, integridad vascular (montajes planos coroideos tras inyecciones de fluoresceína) y medidas de inflamación (por ejemplo, expresión génica mediante RT-PCR y expresión proteica mediante inmunohistoquímica).

Ejemplo 6. Reducción en el volumen de CNV mediante CR2-FH de ratón

5

15

30

35

40

55

Para la generación de CNV, se anestesiaron animales de 3 meses usando xilazina y ketamina (20 y 80 mg/kg, respectivamente), y las pupilas se dilataron con una gota de fenilefrina HCl (2,5%) y sulfato de atropina (1%). Se usó fotocoagulación con láser de argón (532 nm, tamaño del punto 50 μm, duración 0,05 s, 250 mW) para generar cuatro puntos de láser en cada ojo alrededor del nervio óptico, usando un cubreobjetos manual como lente de contacto. Una burbuja formada en un punto del láser indicó la ruptura de la membrana de Bruch. Nozaki et al., Proc. Natl, Acad. Sci. 2006, 103(7):2328-33.

Para la evaluación de las lesiones de CNV, se determinó el tamaño de CNV en preparaciones de montajes planos de RPE/coroides teñidas con isolectina B (que se une a restos de β-D-galactosa terminales sobre la superficie de células endoteliales y marca selectivamente la vasculatura del ratón). Para la determinación del tamaño, se usaron medidas de fluorescencia tomadas en secciones de 2 μm usando microscopía confocal. De forma breve, se obtuvo un apilamiento en Z de imágenes a lo largo de la lesión de CNV, usando el mismo ajuste de la intensidad del láser para todos los experimentos. Para cada rebanada, se determinó la fluorescencia global y se representó gráficamente frente a la profundidad.

Para la electrorretinografía, los animales se anestesiaron usando xilazina (20 mg/kg de peso corporal) y ketamina (80 mg/kg de peso corporal). Las pupilas se dilataron con una gota de fenilefrina HCI (2,5%) y tropicamina (1%). La temperatura corporal se estabilizó vía una almohadilla calefactora alimentada mediante DC, mantenida a 37°C. El montaje de ERG usado se describió previamente por Rohrer et al., J. Neurosci., 1999, 19(20): 8919-30, y se construyó según Lyubarsky y Pugh Lyubarsky et al., J. Neurosci., 1996, 16(2):563-571. La intensidad de la luz del estímulo se controló usando filtros de densidad neutra. Paradigmas del estímulo. Los animales se adaptaron a la oscuridad toda la noche y se registraron los ERGs. Las varillas se analizaron en respuesta a estímulos de un solo destello de intensidad de luz creciente. Las respuestas al destello individual fueron un promedio de al menos 3 destellos con un intervalo entre estímulos (ISI) de 15 s a 2 min. (intensidad más baja a más alta, respectivamente). Los diferentes ISIs aseguraron que las amplitudes de ERG a una intensidad dada fueron idénticas entre el primer destello y el último destello. Análisis de los datos. Para todos los registros de ERG, se midió una amplitud de onda a desde la línea base hasta el valle; se midieron amplitudes de onda b desde el valle o línea base de la onda a hasta el pico de la onda b, y los tiempos implícitos se midieron desde el comienzo del estímulo hasta un valle de la onda a o un pico de la onda b.

En un experimento, los ratones se trataron con CR2-fH de ratón intravenosa (250 μ g) 30 minutos después de la quemadura con el láser, y 6 horas después de la quemadura con el láser, y 6 horas después de la quemadura con el láser, se evaluó la función retiniana, y después los ratones se sacrificaron para la histología.

La Figura 16 muestra respuestas retinianas de las ondas a y b en ratones tratados con o sin CR2-fH. Como se muestra en la Figura 16, ambas ondas a y b de la respuesta retiniana se protegieron mediante tratamiento con CR2-fH con respecto al tratamiento con PBS. Las Figuras 17A y 17B muestran tinción con isolectina b de lesiones 6 días después de la quemadura con láser. Las Figuras 17C muestran la cuantificación de los tamaños de las lesiones basándose en la tinción con isolectina b. Como se mostró en las Figuras 17A-C, los ratones tratados con CR2-fH muestran una reducción significativa en el tamaño de la lesión en comparación con los animales tratados con PBS.

En un experimento distinto, se administró 1 μ g de CR2-fH de ratón intraópticamente inmediatamente después de la quemadura con el láser, 48 horas después de la quemadura, y 96 horas después de la quemadura. Los ojos se recogieron en el día 6 para histología. Las lesiones se visualizaron mediante tinción con isolectina-b. Los resultados se muestran en la Figura 18. La Figura 18A y 18B muestran tinción con isolectina-b de las lesiones 6 días después de la quemadura con el láser. La Figura 18C muestra la cuantificación del tamaño de las lesiones basándose en la tinción con isolectina-b. Como se muestra en las Figuras 18A-C, CR2-fH suministrada directamente al ojo reduce la diseminación de la lesión.

Ejemplo 7. Retraso del comienzo del rechazo mediado por anticuerpos en un modelo de transplante de corazón heterotrópico de ratón mediante CR2-FH de ratón

En este experimento, los ratones se transplantaron heterotópicamente desde ratones donantes C3H a ratones receptores Balb/c. Esta combinación de razas promueve un fenotipo inmunitario TH2 que promueve rechazo vascular agudo, y se caracteriza por producción de anticuerpos anti-injerto y deposición de fragmentos de activación del complemento en el injerto.

Los ratones receptores se trataron con 1) PBS, i.v., 2) una única dosis de 0,25 mg de CR2-fH de ratón, i.v. 30 minutos después de la reperfusión, y 3) múltiples dosis de 0,25 mg de CR2-fH de ratón i.v. comenzando 30 minutos después de la reperfusión, y después cada tres días posteriormente.

Los corazones se recogieron 24 horas después de la reperfusión, para análisis. Los animales tratados con CR2-fH de ratón se protegieron de la lesión por isquemia y reperfusión según se evalúa mediante histología, la ausencia de C3, una reducción en la infiltración de neutrófilos, y una reducción en las citocinas inflamatorias.

En la Figura 21 se muestran los efectos de CR2-fH de ratón sobre rechazo vascular agudo. Como se muestra en la figura, los receptores transplantados de corazón de control sobrevivieron 7.1 ± 1 días, en comparación con 11.1 ± 1.6 días (grupo de una sola dosis) y 10.7 ± 1.3 días (grupo de múltiples dosis). Hay una mejora significativa en la supervivencia en ratones tratados con CR2-fH de ratón cuando se compara con los controles (p = 0.02).

En el momento de la recogida no había diferencias obvias en los perfiles de rechazo patológico o en los niveles de anticuerpos anti-donante entre cualquiera de los grupos. De forma interesante, parece que no hay mejora significativa en la supervivencia asociada con la administración de múltiples dosis de CR2-fH de ratón cuando se compara con el grupo de una sola dosis (p < 0,05).

Ejemplo 8. Inhibición de la ruta alternativa del complemento mediante CR2-FH humana

5

15

20

25

30

35

40

45

50

55

En la Figura 20 y 21, respectivamente, se muestran las secuencias proteicas de CR2-FH humana (SEC ID NO: 21, también denominada como CR2fH) y CR2-FH2 humana (SEC ID NO: 23, también denominada como CR2fH2), que no incluyen los péptidos señal. En la Figura 20 y 21, respectivamente, se muestran las secuencias de ácidos nucleicos de CR2-FH humana (SEC ID NO: 22) y de CR2-FH2 humana (SEC ID NO: 24), incluyendo las secuencias nucleotídicas para los péptidos señal.

CR2-FH humana y de CR2-FH2 humana se purificaron a partir de sobrenadantes de células 293 transfectadas mediante cromatografía de afinidad usando HB5-separose, que contiene anticuerpo monoclonal HB5 anti-CR2 humano (nº de catálogo ATCC HB-135) enlazado a sefarosa activada con CNBr (Amershan Biosciences). Los sobrenadantes brutos de CR2-FH o de CR2-FH2 se hicieron pasar sobre la matriz, se lavaron con PBS, y se eluyeron en glicina-HCl 0,1 M, pH 3,0. La fracción eluida se neutralizó inmediatamente mediante la adición de Tris-Cl 1 M, pH 9,0, seguido del intercambio en PBS usando columnas Centricon (Millipore). 300 ng de CR2-FH y CR2-FH2 purificadas, no reducidas, se resolvieron en SDS-PAGE, y se visualizaron mediante tinción de Coomassie. CR2-FH estaba presente como dos proteínas distintas, según se determina mediante espectrometría de masas (Alphalyse, Palo Alto, CA) de 64,0 y 65,3 kDa, que se resolvió en una única banda después de la desglicosilación, mientras que CR2-FH2 fue una única especie de 99,2 kDa. La estructura secundaria inherente de estas moléculas las hace correr de forma más lenta que su peso molecular real en condiciones no reductoras.

En la Figura 22A se muestran los efectos de CR2-FH humana y CR2-FH2 humana en la deposición de C3b específica de la ruta alternativa sobre partículas de zymosán. De forma breve, se incubaron partículas de Zymosán en PBS que contiene Mg²+ 5 mM, EGTA 10 mM, 10% de suero humano, y concentraciones crecientes de CR2-FH y CR2-FH2, durante 30 minutos a temperatura ambiente con anticuerpo de cabra conjugado con FITC anti-C3 humano. El zymosán se peletizó y se lavó, seguido del análisis mediante FACS. Como se muestra en la Figura 24A, tanto CR2-FH como CR2-FH2 inhibieron la activación de la ruta alternativa del complemento. Se obtuvieron resultados similares mediante incubación con suero de ratón seguido de la detección con anticuerpo de cabra conjugado con FITC anti-C3 de ratón. De forma significativa, había 200-400 nM de FH presente en el sistema de ensayo. La CR2-FH tuvo una EC50 de 8-22 nM, que fue 20 veces menor que la cantidad de FH presente en el ensayo, demostrando un beneficio claro de FH dirigido con respecto a FH endógeno.

En la Figura 22B se muestran los efectos de CR2-FH humana y de CR2-FH2 humana sobre la lisis de eritrocitos mediada por la ruta alternativa. De forma breve, se incubaron eritrocitos de conejo (1 x 10⁸) con concentraciones variables de CR2-FH o CR2-FH2 en 1 x GVB++ (Boston BioProducts) y 17% de suero humano durante 30 minutos a 37°C. La reacción se detuvo con la adición de un décimo de volumen de PBS fría, seguido de la centrifugación para peletizar los eritrocitos no lisados. La hemolisis se cuantificó midiendo OD_{415nm}. Como se muestra en la Figura 24B, tanto CR2-FH como CR2-FH2 inhibieron significativamente la activación de la ruta alternativa del complemento. De forma significativa hubo 340-680 nM de FH presente en el ensayo. La CR2-FH tuvo una EC50 de 20-30 nM, que fue 15-20 veces menor que la cantidad de FH presente en el ensayo, demostrando un beneficio claro de FH dirigido con respecto a FH endógeno.

Ejemplo 9. Inhibición de la ruta alternativa del complemento mediante CR2-FH de ratón

ES 2 523 640 T3

Este ejemplo muestra inhibición de la ruta alternativa del complemento mediante CR2-FH de ratón usando suero para ratones deficientes en la ruta clásica.

Se usó un ensayo de ELISA con complejos inmunitarios de colágeno-anticuerpos anti-colágeno en las placas. La deposición/activación de C3 se midió usando anticuerpo anti-C3b en presencia de suero procedente de ratones de tipo salvaje o de ratones C4-/C4-. Se añadieron al suero diferentes cantidades de FH de ratón de longitud completa (2 μg/10 μl), los primeros cuatro dominios de SCR de CR2 de ratón (2 μg/10 μl), y CR2-FH de ratón (2 μg/10 μl). El resultado del estudio *in vitro* se muestra en la Figura 23. Como se muestra en la figura, CR2-FH de ratón tuvo poco efecto sobre la deposición de C3b usando suero procedente de ratones de tipo salvaje. Por el contrario, CR2-FH de ratón evitó casi completamente la deposición de C3b en suero procedente de ratones deficientes en la ruta clásica. Por otro lado, FH de ratón o CR2 de ratón tuvieron pocos efectos en ambos sistemas de ensayo. Este experimento demuestra una clara ventaja de usar CR2-FH para inhibir la ruta alternativa del complemento, particularmente cuando no está implicada la ruta clásica del complemento.

5

10

15

Para demostrar además que la inhibición de la deposición de C3b observada con CR2-FH fue debida a la inhibición de la ruta alternativa, se estudiaron los efectos de CR2-FH sobre la deposición de C3b en ausencia de la ruta clásica (ratones C4-/C4-). El calcio inhibe la ruta de lectina del complemento. La Figura 24 muestra una curva de titulación de CR2-FH de ratón en tampón suficiente de calcio usando suero procedente de ratones genosuprimidos C4-/C4-. Como se muestra en la figura, CR2-FH inhibe significativamente la deposición de C3b a la concentración de 0,5 μg/ul.

Aunque la invención anterior se ha descrito con cierto detalle a título de ilustración y por medio de ejemplos con fines de claridad de comprensión, es manifiesto para los expertos en la técnica que se pueden practicar ciertos cambios y modificaciones menores. Por lo tanto, la descripción y los ejemplos no se deberían de interpretar como limitantes del alcance de la invención.

REIVINDICACIONES

- 1. Una molécula CR2-FH que comprende:
 - (a) una porción CR2 que comprende un CR2 o un fragmento del mismo, comprendiendo el fragmento del mismo al menos los primeros dos dominios de SCR N-terminales de CR2, y
- 5 (b) una porción FH que comprende un FH o un fragmento del mismo, comprendiendo el fragmento del mismo al menos los primeros cuatro dominios de SCR N-terminales de FH,

en la que la porción CR2 de la molécula CR2-FH es capaz de unirse a un ligando de CR2, y

en la que la porción FH de la molécula CR2-FH es capaz de inhibir la activación del complemento de la ruta alternativa.

- 10 2. La molécula CR2-FH de la reivindicación 1, en la que la molécula CR2-FH comprende dos o más porciones FH.
 - 3. La molécula CR2-FH de la reivindicación 1, en la que la porción CR2 comprende los primeros cuatro dominios de SCR N-terminales de CR2, y la porción FH comprende los primeros cinco dominios de SCR N-terminales de FH.
 - 4. La molécula CR2-FH de la reivindicación 3, en la que la porción CR2 comprende aminoácidos 23 a 271 de SEC ID NO: 1, y la porción FH comprende aminoácidos 21 a 320 de SEC ID NO: 2.
- 15 S. La molécula CR2-FH de una cualquiera de las reivindicaciones 1 a 4, en la que la molécula CR2-FH es una proteína de fusión.
 - 6. Un polinucleótido que codifica la proteína de fusión de la reivindicación 5.
 - 7. Un vector que codifica el polinucleótido de la reivindicación 6.

30

- 8. Una célula hospedante que comprende el polinucleótido de la reivindicación 7.
- 9. Una composición farmacéutica que comprende una molécula CR2-FH de una cualquiera de las reivindicaciones 1 a 5, y un vehículo farmacéuticamente aceptable.
 - 10. La composición de la reivindicación 9, en el que la composición es adecuada para administración intraocular, intravenosa, intraarterial, subcutánea, intratragueal, o mediante inhalación.
- 11. La composición de la reivindicación 9 o 10, para uso en un método para tratar enfermedad en la que está implicada la ruta alternativa del complemento en un individuo.
 - 12. La composición para uso en un método para tratar enfermedad según la reivindicación 11, en la que la enfermedad en la que está implicada la ruta alternativa del complemento es cualquiera de degeneración macular, artritis reumatoide, isquemia-reperfusión, rechazo de transplante de órganos, glomerulonefritis membranoproliferativa tipo II (MPGN II), síndrome hemolítico urémico (HUS), y nefritis lúpica, o en la que la enfermedad se caracteriza por síntomas que comprenden anemia hemolítica microangiopática, trombocitopenia e insuficiencia renal aguda.
 - 13. La composición según la reivindicación 12, en la que la enfermedad es degeneración macular relacionada con la edad, o en la que la enfermedad es HUS relacionado con el factor H.

Figura 1

Figura 2.

Secuencia de aminoácidos de CR2 humano (SEC ID nº 1)

MGAAGLLGVFLALVAPGVLGISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKD KVDGTWDKPAPKCEYFNKYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQ ANNMWGPTRLPTCVSVFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKIINCLSS GKWSAVPPTCEEARCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLOGPPSSRCVIAGQGVAW TKMPVCEEIFCPSPPPILNGRHIGNSLANVSYGSIVTYTCDPDPEEGVNFILIGESTLRCTVDSQKTGT WSGPAPRCELSTSAVQCPHPQILRGRMVSGQKDRYTYNDTVIFACMFGFTLKGSKQIRCNAQGTW **EPSAPVCEKECQAPPNILNGOKEDRHMVRFDPGTSIKYSCNPGYVLVGEESIQCTSEGVWTPPVPQ** CKVAACEATGRQLLTKPQHQFVRPDVNSSCGEGYKLSGSVYQECQGTIPWFMEIRLCKEITCPPPP VIYNGAHTGSSLEDFPYGTTVTYTCNPGPERGVEFSLIGESTIRCTSNDQERGTWSGPAPLCKLSLL AVQCSHVHIANGYKISGKEAPYFYNDTVTFKCYSGFTLKGSSQIRCKRDNTWDPEIPVCEKGCQPP PGLHHGRHTGGNTVFFVSGMTVDYTCDPGYLLVGNKSHCMPSGNWSPSAPRCEETCQHVRQSL QELPAGSRVELVNTSCQDGYQLTGHAYQMCQDAENGIWFKKIPLCKVIHCHPPPVIVNGKHTGM MAENFLYGNEVSYECDOGFYLLGEKNCSAEVILKAWILERAFPQCLRSLCPNPEVKHGYKLNKTH SAYSHNDIVYVDCNPGFIMNGSRVIRCHTDNTWVPGVPTCIKKAFIGCPPPPKTPNGNHTGGNIARF SPGMSILYSCDQGYLVVGEPLLLCTHEGTWSQPAPHCKEVNCSSPADMDGIQKGLEPRKMYQYG AVVTLECEDGYMLEGSPQSQCQSDHQWNPPLAVCRSRSLAPVLCGIAAGLILLTFLIVITLYVISKH RERNYYTDTSQKEAFHLEAREVYSVDPYNPAS

Secuencia de aminoácidos de FH humano (SEC ID Nº 2)

MRLLAKIICLMLWAICVAEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVC RKGEWVALNPLRKCQKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECD TDGWTNDIPICEVVKCLPVTAPENGKIVSSAMEPDREYHFGOAVRFVCNSGYKIEGDEEMHCSDD GFWSKEKPKCVEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSC EEKSCDNPYIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCTLKPCDYPD **IKHGGLYHENMRRPYFPVAVGKYYSYYCDEHFETPSGSYWDHIHCTQDGWSPAVPCLRKCYFPY** LENGYNQNHGRKFVQGKSIDVACHPGYALPKAQTTVTCMENGWSPTPRCIRVKTCSKSSIDIENGF ISESQYTYALKEKAKYQCKLGYVTADGETSGSIRCGKDGWSAQPTCIKSCDIPVFMNARTKNDFT WFKLNDTLDYECHDGYESNTGSTTGSIVCGYNGWSDLPICYERECELPKIDVHLVPDRKKDQYKV GEVLKFSCKPGFTIVGPNSVOCYHFGLSPDLPICKEOVOSCGPPPELLNGNVKEKTKEEYGHSEVV EYYCNPRFLMKGPNKIQCVDGEWTTLPVCIVEESTCGDIPELEHGWAQLSSPPYYYGDSVEFNCSE SFTMIGHRSITCIHGVWTQLPQCVAIDKLKKCKSSNLIILEEHLKNKKEFDHNSNIRYRCRGKEGWI HTVCINGRWDPEVNCSMAQIQLCPPPPQIPNSHNMTTILNYRDGEKVSVLCQENYLIQEGEEITCK DGRWQSIPLCVEKIPCSQPPQIEHGTINS\$RSSQESYAHGTKLSYTCEGGFRISEENETTCYMGKWSS PPQCEGLPCKSPPEISHGVVAHMSDSYQYGEEVTYKCFEGFGIDGPAIAKCLGEKWSHPPSCIKTDC LSLPSFENAIPMGEKKDVYKAGEQVTYTCATYYKMDGASNVTCINSRWTGRPTCRDTSCVNPPTV QNAYIVSRQMSKYPSGERVRYQCRSPYEMFGDEEVMCLNGNWTEPPOCKDSTGKCGPPPPIDNG DITSFPLSVYAPASSVEYQCQNLYQLEGNKRITCRNGQWSEPPKCLHPCVISREIMENYNIALRWTA KQKLYSRTGESVEFVCKRGYRLSSRSHTLRTTCWDGKLEYPTCAKR

Figura 3.

Secuencia de aminoácidos de CR2-FH humana (SEC ID Nº 3)

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFNKYS SCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNINNMWGPTRLPTCVSVFP LECPALPMIHNGHITISENVGSIAPGLSVTYSCESGYLLVGEKIINCLSSGKWSAVPPTCEEAXCKSL GRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCGGGGSGGGGSC VAEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVCRKGEWVALNPLRKCQ KRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEVVKC LPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKCVEISCK SPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNPYIPNGDYS PLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

Secuencia de ácido nucleico de CR2-FH humana (SEC ID nº 4)

ATITCTTGTGGCTCTCCGCCTATCCTAAATGGCCGGATTAGTTATTATTCTACCCCCATTGC TGTTGGTACCGTGATAAGGTACAGTTGTTCAGGTACCTTCCGCCTCATTGGAGAAAAAAGTCT ATTATGCATAACTAAAGACAAAGTGGATGGAACCTGGGATAAACCTGCTCCTAAATGTGAAT ATTTCAATAAATATTCTTCTTGCCCTGAGCCCATAGTACCAGGAGGATACAAAATTAGAGGCT CTACACCCTACAGACATGGTGATTCTGTGACATTTGCCTGTAAAACCAACTTCTCCATGAACG CCAACCTGTGTAAGTGTTTTCCCTCTCGAGTGTCCAGCACTTCCTATGATCCACAATGGACATC ACACAAGTGAGAATGTTGGCTCCATTGCTCCAGGATTGTCTGTGACTTACAGCTGTAAATCTG GTTACTTGCTTGTTGGAGAAAAGATCATTAACTGTTTGTCTTCGGGAAAATGGAGTGCTGTCC CCCCCACATGTGAAGAGGCACSCTGTAAATCTCTAGGACGATTTCCCAATGGGAAGGTAAAGG AGCCTCCAATTCTCCGGGTTGGTGTAACTGCAAACTTTTTCTGTGATGAAGGGTATCGACTGC AAGGCCACCTTCTAGTCGGTGTGTAATTGCTGGACAGGGAGTTGCTTGGACCAAAATGCCAG TATGTGGCGGAGGTGGGTCGGGTGGCGGCGGATCTTGTGTAGCAGAAGATTGCAATGAACTT CCTCCAAGAAGAAATACAGAAATTCTGACAGGTTCCTGGTCTGACCAAACATATCCAGAAGG CACCCAGGCTATCTATAAATGCCGCCCTGGATATAGATCTCTTGGAAATGTAATAATGGTATG CAGGAAGGGAGAATGGGTTGCTCTTAATCCATTAAGGAAATGTCAGAAAAGGCCCTGTGGAC ATCCTGGAGATACTCCTTTTGGTACTTTTACCCTTACAGGAGGAAATGTGTTTGAATATGGTGT TGACACAGATGGATGGACCAATGATATTCCTATATGTGAAGTTGTGAAGTGTTTACCAGTGAC AGCACCAGAGAATGGAAAAATTGTCAGTAGTGCAATGGAACCAGATCGGGAATACCATTTTG GACAAGCAGTACGGTTTGTATGTAACTCAGGCTACAAGATTGAAGGAGATGAAGAAATGCAT TGTTCAGACGATGGTTTTTGGAGTAAAGAGAAACCAAAGTGTGTGGAAATTCATGCAAATCC CAATATAAATGTAACATGGGTTATGAATACAGTGAAAGAGGAGATGCTGTATGCACTGAATC TGGATGGCGTCCGTTGCCTTCATGTGAAGAAAAATCATGTGATAATCCTTATATTCCAAATGG TGACTACTCACCTTTAAGGATTAAACACAGAACTGGAGATGAAATCACGTACCAGTGTAGAA CTCCGAGATGTACCT

Figura 4.

SEC ID Nº 5, nnn = ligador opcional

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFN KYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVS VFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKIINCLSSGKWSAVPPTCEEA RCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCnnnCV AEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVCRKGEWVALNPLRKC QKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEV VKCLPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKC VEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNP YIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

SEC ID Nº 6, nnn = ligador opcional

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFN KYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVS VFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKINCLSSGKWSAVPPTCEEA RCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCnnnCV AEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNIIMVCRKGEWVALNPLRKC QKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEV VKCLPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKC VEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNP YIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

Figura 5.

SEC ID Nº 7, nnn - ligador opcional

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFN KYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNINNMWGPTRLPT CVSVFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKIINCLSSGKWSAVPPTC EEAXCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCmnnEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVCRKGEWVALNPLRKCQKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEVVKCLPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKCVEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNPYIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

SEC ID Nº 8, nnn = ligador opcional

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFN KYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNINNMWGPTRLPT CVSVFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKINCLSSGKWSAVPPTC EEAXCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCnn nEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNIIMVCRKGEWVALNPLRKC QKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEV VKCLPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKC VEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNP YIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

Figura 6.

SEC ID Nº 9, nnn = ligador opcional

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFN KYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVS VFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKIINCLSSGKWSAVPPTCEEA RCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCnnnED CNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVCRKGEWVALNPLRKCQK RPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEVVK CLPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKCVEI SCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNPYIP NGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

SEC ID Nº 10, nnn = ligador opcional

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFN KYSSCPEPIVPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVS VFPLECPALPMIHNGHHTSENVGSIAPGLSVTYSCESGYLLVGEKIINCLSSGKWSAVPPTCEEA RCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCnnneD CNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNIIMVCRKGEWVALNPLRKCQKR PCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEVVKC LPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKCVEIS CKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEEKSCDNPYIP NGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCT

Figura 7.

secuencia peptídica de CD5 (SEC ID Nº 11)

MPMGSLQPLATLYLLGMLVAS

secuencia peptídica de CD5 (SEC ID Nº 12)

ATGCCCATGGGGTCTCTGCAACCGCTGGCCACCTTGTACCTGCTGGGGATGCTGGTCGCTTCCTGCCTCGGA

secuencia peptídica de CR2 (SEC ID Nº 13)

MGAAGLLGVFLALVAPG

secuencia peptídica de CR2 (SEC ID Nº 14)

ATGGGCGCGGGCCTGCTCGGGGTTTTCTTGGCTCTCGTCGCACCGGGGGTCCTCGGG

secuencia peptídica de CR2 (SEC ID Nº 25)

MGAAGLLGVFLALVAPGVLG

secuencia peptídica de CR2 (SEC ID Nº 26)

 ${\tt ATGGGAGCCGCTGTCTCGGCGTGTTCCTCGCCTTGGTGGCACCTGGCGTCCTGGGC}$

Figura 8.

Secuencia de aminoácidos de CR2 de ratón (SEC ID Nº 15)

MLTWFLFYFSEISCDPPPEVKNARKPYYSLPIVPGTVLRYTCSPSYRLIGEKAIFCISENOVHAT WDKAPPICESVNKTISCSDPIVPGGFMNKGSKAPFRHGDSVTFTCKANFTMKGSKTVWCQAN **EMWGPTALPVCESDFPLECPSLPTIHNGHHTGOHVDOFVAGLSVTYSCEPGYLLTGKKTIKCL** SSGDWDGVIPTCKEAQCEHPGKFPNGQVKEPLSLQVGTTVYFSCNEGYQLQGQPSSQCVIVEQ KAIWTKKPVCKEILCPPPPPVRNGSHTGSFSENVPYGSTVTYTCDPSPEKGVSFTLIGEKTINCT TGSQKTGIWSGPAPYCVLSTSAVLCLOPKIKRGQILSILKDSYSYNDTVAFSCEPGFTLKGNRSI RCNAHGTWEPPVPVCEKGCQAPPKINGQKEDSYLLNFDPGTSIRYSCDPGYLLVGEDTIHCTP EGKWTPITPQCTVAECKPVGPHLFKRPQNQFIRTAVNSSCDEGFQLSESAYQLCQGTIPWFIEIR LCKEITCPPPPVIHNGTHTWSSSEDVPYGTVVTYMCYPGPEEGVKFKLIGEQTIHCTSDSRGRG **SWSSPAPLCKLSLPAVQCTDVHVENGVKLTDNKAPYFYNDSVMFKCDDGYILSGSSQIRCKA** NNTWDPEKPLCKKEGCEPMRVHGLPDDSHIKLVKRTCQNGYQLTGYTYEKCQNAENGTWFK KIEVCTVILCQPPPKIANGGHTGMMAKHFLYGNEVSYECDEGFYLLGEKSLQCVNDSKGHGS WSGPPPQCLQSSPLTHCPDPEVKHGYKLNKTHSAFSHNDIVHFVCNQGFIMNGSHLIRCHTNN TWLPGVPTCIRKASLGCQSPSTIPNGNHTGGSIARFPPGMSVMYSCYQGFLMAGEARLICTHEG TWSQPPPFCKEVNCSFPEDTNGIQKGFQPGKTYRFGATVTLECEDGYTLEGSPQSQCQDDSQW NPPLALCKYRRWSTIPLICGISVGSALIILMSVGFCMILKHRESNYYTKTRPKEGALHLETREVY SIDPYNPAS

Secuencia de aminoácidos de FH de ratón (SEC ID Nº 16)

MRLSARIIWLILWTVCAAEDCKGPPPRENSEILSGSWSEQLYPEGTQATYKCRPGYRTLGTIVK VCKNGKWVASNPSRICRKKPCGHPGDTPFGSFRLAVGSQFEFGAKVVYTCDDGYQLLGEIDY RECGADGWINDIPLCEVVKCLPVTELENGRIVSGAAETDQEYYFGQVVRFECNSGFKIEGHKEI **HCSENGLWSNEKPRCVEILCTPPRVENGDGINVKPVYKENERYHYKCKHGYVPKERGDAVCT** GSGWSSQPFCEEKRCSPPYILNGIYTPHRIIHRSDDEIRYECNYGFYPVTGSTVSKCTPTGWIPVP RCTLKPCEFPQFKYGRLYYEESLRPNFPVSIGNKYSYKCDNGFSPPSGYSWDYLRCTAQGWEP **EVPCVRKCVFHYVENGDSAYWEKVYVQGQSLKVQCYNGYSLQNGQDTMTCTENGWSPPPK** CIRIKTCSASDIHIDNGFLSESSSIYALNRETSYRCKQGYVTNTGEISGSITCLQNGWSPQPSCIKS CDMPVFENSITKNTRTWFKLNDKLDYECLVGFENEYKHTKGSITCTYYGW\$DTPSCYERECSV PTLDRKLVVSPRKEKYRVGDLLEFSCHSGHRVGPDSVQCYHFGWSPGFPTCKGQVASCAPPLE ILNGEINGAKKVEYSHGEVVKYDCKPRFLLKGPNKIQCVDGNWTTLPVCIEEERTCGDIPELEH GSAKCSVPPYHHGDSVEFICEENFTMIGHGSVSCISGKWTQLPKCVATDQLEKCRVLKSTGIEA **IKPKLTEFTHNSTMDYKCRDKQEYERSICINGKWDPEPNCTSKTSCPPPPQIPNTQVIETTVKYL** DGEKLSVLCQDNYLTQDSEEMVCKDGRWQSLPRCIEKIPCSQPPTIEHGSINLPRSSEERRDSIE SSSHEHGTTFSYVCDDGFRIPEENRITCYMGKWSTPPRCVGLPCGPPPSIPLGTVSLELESYQHG EEVTYHCSTGFGIDGPAFIICEGGKWSDPPKCIKTDCDVLPTVKNAIIRGKSKKSYRTGEQVTFR CQSPYOMNGSDTVTCVNSRWIGOPVCKDNSCVDPPHVPNATIVTRTKNKYLHGDRVRYECN KPLELFGQVEVMCENGIWTEKPKCRGL*FDL\$LKP\$NVF\$LD\$TGKCGPPPPIDNGDIT\$L\$LPV YEPLSSVEYQCQKYYLLKGKKTITCTNGKWSEPPTCLHACVIPENIMESHNIILKWRHTEKIYS **HSGEDIEFGCKYGYYKARDSPPFRTKCINGTINYPTCV**

Figura 9.

SEC ID Nº 17 (CR2-FH DE RATÓN)

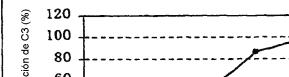
ISCDPPPEVKNARKPYYSLPIVPGTVLRYTCSPSYRLIGEKAIFCISENQVHATWDKAPPICESVNKTI SCSDPIVPGGFMNKGSKAPFRHGDSVTFTCKANFTMKGSKTVWCQANEMWGPTALPVCESDFPL ECPSLPTIHNGHHTGQHVDQFVAGLSVTYSCEPGYLLTGKKTIKCLSSGDWDGVIPTCKEAQCEHP GKFPNGQVKEPLSLQVGTTVYFSCNEGYQLQGQPSSQCVIVEQKAIWTKKPVCKEILEDCKGPPPR ENSEILSGSWSEQLYPEGTQATYKCRPGYRTLGTIVKVCKNGKWVASNPSRICRKKPCGHPGDTPF GSFRLAVGSQFEFGAKVVYTCDDGYQLLGEIDYRECGADGWINDIPLCEVVKCLPVTELENGRIVS GAAETDQEYYFGQVVRFECNSGFKIEGHKEIHCSENGLWSNEKPRCVEILCTPPRVENGDGINVKP VYKENERYHYKCKHGYVPKERGDAVCTGSGWSSQPFCEEKRCSPPYILNGIYTPHRIIHRSDDEIR YECNYGFYPVTGSTVSKCTPTGWIPVPRCT

SEC ID N° 18 (ADN de CR2-FH DE RATÓN)

ATGCCCATGGGGTCTCTGCAACCGCTGGCCACCTTGTACCTGCTGGGGATGCTGGTCGCTTCC GTGCTAGCGATTTCTTGTGACCCTCCTCCTGAAGTCAAAAATGCTCGGAAACCCTATTATTCTC TTCCCATAGTTCCTGGAACTGTTCTGAGGTACACTTGTTCACCTAGCTACCGCCTCATTGGAGA **AAAGGCTATCTTTTGTATAAGTGAAAATCAAGTGCATGCCACCTGGGATAAAGCTCCTCCTAT ATOTGAATCTGTGAATAAAACCATTTCTTGCTCAGATCCCATAGTACCAGGGGGATTCATGAA** TAAAGGATCTAAGGCACCATTCAGACATGGTGATTCTGTGACATTTACCTGTAAAGCCAACTT CACCATGAAAGGAAGCAAAACTGTCTGGTGCCAGGCAAATGAAATGTGGGGACCAACAGCTC TGCCAGTCTGTGAGAGTGATTTCCCTCTGGAGTGCCCATCACTTCCAACGATTCATAATGGAC ACCACAGGACAGCATGTTGACCAGTTTGTTGCGGGGTTGTCTGTGACATACAGTTGTGAAC CTGGCTATTTGCTCACTGGAAAAAGACAATTAAGTGCTTATCTTCAGGAGACTGGGATGGTG TCATCCGACATGCAAAGAGGCCCAGTGTGAACATCCAGGAAAGTTTCCCAATGGGCAGGTA AAGGAACCTCTGAGCCTTCAGGTTGGCACAACTGTGTACTTCTCCTGTAATGAAGGGTACCAA TTACAAGGACAACCCTCTAGTCAGTGTGTAATTGTTGAACAGAAAGCCATCTGGACTAAGAAG CCAGTATGTAAAGAAATTCCCGAAGATTGTAAAGGTCCTCCTCCAAGAGAAAATTCAGAAATT CCTGGATACCGAACACTTGGCACTATTGTAAAAGTATGCAAGAATGGAAAATGGGTGGCGTC TAACCCATCCAGGATATGTCGGAAAAAGCCTTGTGGGCATCCCGGAGACACCCCTTTGGGTC CTTTAGGCTGGCAGTTGGATCTCAATTTGAGTTTGGTGCAAAGGTTGTTTATACCTGTGATGAT GGGTATCAACTATTAGGTGAAATTGATTACCGTGAATGTGGTGCAGATGGCTGGATCAATGAT ATTCCACTATGTGAAGTTGTGAAGTGTCTACCTGTGACAGAACTCGAGAATGGAAGAATTGTG AGTGGTGCAGCAGAAACAGACCAGGAATACTATTTTGGACAGGTGGTGCGGTTTGAATGCAA TTCAGGCTTCAAGATTGAAGGACATAAGGAAATTCATTGCTCAGAAAATGGCCTTTGGAGCAA TGAAAAGCCACGATGTGTGGAAATTCTCTGCACACCACCGCGAGTGGAAAATGGAGATGGTA TAAATGTGAAACCAGTTTACAAGGAGAATGAAAGATACCACTATAAGTGTAAGCATGGTTAT GAAGAAAAGAGATGCTCACCTCCTTATATTCTAAATGGTATCTACACACCTCACAGGATTATA CACAGAAGTGATGAAATCAGATATGAATGTAATTATGGCTTCTATCCTGTAACTGGATCA ACTGTTTCAAAGTGTACACCCACTGGCTGGÄTCCCTGTTCCAAGATGTACCT

Figura 10.

GAATTCGCCGCCACCATGCCCATGGGGTCTCTGCAACCGCTGGCCACCTTGTACCTGCTGG GGATGCTGGTCGTTCCTGCGATTTCTTGTGACCCTCCTCAAGTCAAAAATGC TCGGAAACCTATTATTCTCTCCCATAGTTCCTGGAACTGTTCTGAGGTACACTTGTTCAC CTAGCTACCGCCTCATTGGAGAAAAGGCTATCTTTTGTATAAGTGAAAATCAAGTGCATGC CACCTGGGATAAAGCTCCTCCTATATGTGAATCTGTGAATAAAACCATTTCTTGCTCAGAT CCCATAGTACCAGGGGGATTCATGAATAAAGGATCTAAGGCACCATTCAGACATGGTGAT TCTGTGACATTTACCTGTAAAGCCAACTTCACCATGAAAGGAAGCAAAACTGTCTGGTGC CAGGCAAATGAAATGTGGGGACCAACAGCTCTGCCAGTCTGTGAGAGTGATTTCCCTCTG GAGTGCCCATCACTTCCAACGATTCATAATGGACACCACACGGACAGCATGTTGACCAG TTTGTTGCGGGGTTGTCTGTGACATACAGTTGTGAACCTGGCTATTTGCTCACTGGAAAAA AGACAATTAAGTGCTTATCTTCAGGAGACTGGGATGGTGTCATCCCGACATGCAAAGAGG CCCAGTGTGAACATCCAGGAAAGTTTCCCAATGGGCAGGTAAAGGAACCTCTGAGCCTTC AGGTTGGCACAACTGTGTACTTCTCCTGTAATGAAGGGTACCAATTACAAGGACAACCCT CTAGTCAGTGTGTAATTGTTGAACAGAAAGCCATCTGGACTAAGAAGCCAGTATGTAAAG **AAATTCTCGAAGATTGTAAAGGTCCTCCTCCAAGAGAAAATTCAGAAATTCTCTCAGGCTC** CCGAACACTTGGCACTATTGTAAAAGTATGCAAGAATGGAAAATGGGTGGCGTCTAACCC ATCCAGGATATGTCGGAAAAAGCCTTGTGGGCATCCCGGAGACACCCCTTTGGGTCCTTT AGGCTGGCAGTTGGATCTCAATTTGAGTTTGGTGCAAAGGTTGTTTATACCTGTGATGATG GGTATCAACTATTAGGTGAAATTGATTACCGTGAATGTGGTGCAGATGGCTGGATCAATG ATATTCCACTATGTGAAGTTGTGAAGTGTCTACCTGTGACAGAACTCGAGAATGGAAGAA TTGTGAGTGGTGCAGCAGAACAGACCAGGAATACTATTTTGGACAGGTGGTGCGGTTTG AATGCAATTCAGGCTTCAAGATTGAAGGACATAAGGAAATTCATTGCTCAGAAAATGGCC TTTGGAGCAATGAAAAGCCACGATGTGTGGAAATTCTCTGCACACCACCGCGAGTGGAAA ATGGAGATGGTATAAATGTGAAACCAGTTTACAAGGAGAATGAAAGATACCACTATAAGT GTTCTCAGCCTTTCTGTGAAGAAAAGAGATGCTCACCTCCTTATATTCTAAATGGTATCTA CACACCTCACAGGATTATACACAGAAGTGATGATGAAATCAGATATGAATGTAATTATGG CCAAGATGTACCGAAGATTGTAAAGGTCCTCCTCCAAGAGAAAATTCAGAAATTCTCTCA GGATACCGAACACTTGGCACTATTGTAAAAGTATGCAAGAATGGAAAATGGGTGGCGTCT **AACCCATCCAGGATATGTCGGAAAAAGCCTTGTGGGCATCCCGGAGACACACCCTTTGGG** TCCTTTAGGCTGGCAGTTGGATCTCAATTTGAGTTTGGTGCAAAGGTTGTTTATACCTGTG **ATGATGGGTATCAACTATTAGGTGAAATTGATTACCGTGAATGTGGTGCAGATGGCTGGA** TCAATGATATTCCACTATGTGAAGTTGTGAAGTGTCTACCTGTGACAGAACTCGAGAATGG **AAGAATTGTGAGTGGTGCAGCAGAAACAGACCAGGAATACTATTTTGGACAGGTGGTGCG** GTTTGAATGCAATTCAGGCTTCAAGATTGAAGGACATAAGGAAATTCATTGCTCAGAAAA TGGCCTTTGGAGCAATGAAAAGCCACGATGTGTGGAAATTCTCTGCACACCACCGCGAGT GGAAAATGGAGATGGTATAAATGTGAAACCAGTTTACAAGGAGAATGAAAGATACCACT **ATAAGTGTAAGCATGGTTATGTGCCCAAAGAAGAGGGGGATGCCGTCTGCACAGGCTCTG** GATGGAGTTCTCAGCCTTTCTGTGAAGAAAAGAGATGCTCACCTCCTTATATTCTAAATGG TATCTACACACCTCACAGGATTATACACAGAAGTGATGATGAAATCAGATATGAATGTAA CCTGTTCCAAGATGTACCTAA


Figura 11.

GAATTCGCCGCCACCATGCCCATGGGGTCTCTGCAACCGCTGGCCACCTTGTACCTGCTGG GGATGCTGGTCGCTTCCGTGCTAGCGATTTCTTGTGACCCTCCTCCTGAAGTCAAAAATGC TCGGAAACCCTATTATTCTCTTCCCATAGTTCCTGGAACTGTTCTGAGGTACACTTGTTCAC CTAGCTACCGCCTCATTGGAGAAAAGGCTATCTTTTGTATAAGTGAAAATCAAGTGCATGC CACCTGGGATAAAGCTCCTCCTATATGTGAATCTGTGAATAAAACCATTTCTTGCTCAGAT CCCATAGTACCAGGGGGATTCATGAATAAAGGATCTAAGGCACCATTCAGACATGGTGAT TCTGTGACATTTACCTGTAAAGCCAACTTCACCATGAAAGGAAGCAAAACTGTCTGGTGC CAGGCAAATGAAATGTGGGGACCAACAGCTCTGCCAGTCTGTGAGAGTGATTTCCCTCTG GAGTGCCCATCACTTCCAACGATTCATAATGGACACCACACAGGACAGCATGTTGACCAG TTTGTTGCGGGGTTGTCTGTGACATACAGTTGTGAACCTGGCTATTTGCTCACTGGAAAAA AGACAATTAAGTGCTTATCTTCAGGAGACTGGGATGGTGTCATCCCGACATGCAAAGAGG CCCAGTGTGAACATCCAGGAAAGTTTCCCAATGGGCAGGTAAAGGAACCTCTGAGCCTTC AGGTTGGCACACTGTGTACTTCTCCTGTAATGAAGGGTACCAATTACAAGGACAACCCT CTAGTCAGTGTGTAATTGTTGAACAGAAAGCCATCTGGACTAAGAAGCCAGTATGTAAAG AAATTCTCGGCGGAGGTGGGTCGGGTGGCGGCGGATCTGAAGATTGTAAAGGTCCTCCTC CAAGAGAAAATTCAGAAATTCTCTCAGGCTCGTGGTCAGAACAACTATATCCAGAAGGCA CCCAGGCTACCTACAAATGCCGCCCTGGATACCGAACACTTGGCACTATTGTAAAAGTAT GCAAGAATGGAAAATGGGTGGCGTCTAACCCATCCAGGATATGTCGGAAAAAGCCTTGTG GGCATCCGGAGACACCCTTTGGGTCCTTTAGGCTGGCAGTTGGATCTCAATTTGAGTT TGGTGCAAAGGTTGTTTATACCTGTGATGATGGGTATCAACTATTAGGTGAAATTGATTAC CGTGAATGTGGTGCAGATGGCTGGATCAATGATATTCCACTATGTGAAGTTGTGAAGTGTC TACCTGTGACAGAACTCGAGAATGGAAGAATTGTGAGTGGTGCAGCAGAAACAGACCAG GAATACTATTTTGGACAGGTGGTGCGGTTTGAATGCAATTCAGGCTTCAAGATTGAAGGA CATAAGGAAATTCATTGCTCAGAAAATGGCCTTTGGAGCAATGAAAAGCCACGATGTGTG GAAATTCTCTGCACACCACCGCGAGTGGAAAATGGAGATGGTATAAATGTGAAACCAGTT AGGGGATGCCGTCTGCACAGGCTCTGGATGGAGTTCTCAGCCTTTCTGTGAAGAAAAGAG ATGCTCACCTCCTTATATTCTAAATGGTATCTACACCCTCACAGGATTATACACAGAAGT GATGATGAAATCAGATATGAATGTAATTATGGCTTCTATCCTGTAACTGGATCAACTGTTT CAAAGTGTACACCCACTGGCTGGATCCCTGTTCCAAGATGTACCGAAGATTGTAAAGGTC CTCCTCCAAGAGAAAATTCAGAAATTCTCTCAGGCTCGTGGTCAGAACAACTATATCCAG **AAGGCACCCAGGCTACCTACAAATGCCGCCCTGGATACCGAACACTTGGCACTATTGTAA AAGTATGCAAGAATGGAAAATGGGTGGCGTCTAACCCATCCAGGATATGTCGGAAAAAG** CCTTGTGGGCATCCCGGAGACACCCCTTTGGGTCCTTTAGGCTGGCAGTTGGATCTCAAT TTGAGTTTGGTGCAAAGGTTGTTTATACCTGTGATGATGGGTATCAACTATTAGGTGAAAT TGATTACCGTGAATGTGGTGCAGATGGCTGGATCAATGATATTCCACTATGTGAAGTTGTG **AAGTGTCTACCTGTGACAGAACTCGAGAATGGAAGAATTGTGAGTGGTGCAGCAGAAACA** GACCAGGAATACTATTTTGGACAGGTGGTGCGGTTTGAATGCAATTCAGGCTTCAAGATT GAAGGACATAAGGAAATTCATTGCTCAGAAAATGGCCTTTGGAGCAATGAAAAGCCACG ATGTGTGGAAATTCTCTGCACACCACCGCGAGTGGAAAATGGAGATGGTATAAATGTGAA ACCAGTTTACAAGGAGAATGAAAGATACCACTATAAGTGTAAGCATGGTTATGTGCCCAA AGAAAGAGGGGATGCCGTCTGCACAGGCTCTGGATGGAGTTCTCAGCCTTTCTGTGAAGA **AAAGAGATGCTCACCTCCTTATATTCTAAATGGTATCTACACACCTCACAGGATTATACAC** AGAAGTGATGAAATCAGATATGAATGTAATTATGGCTTCTATCCTGTAACTGGATCA ACTGTTTCAAAGTGTACACCCACTGGCTGGATCCCTGTTCCAAGATGTACCTAA

Figura 12A

Figura 12B

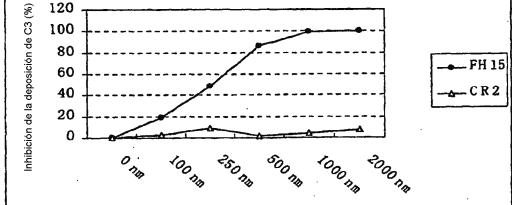
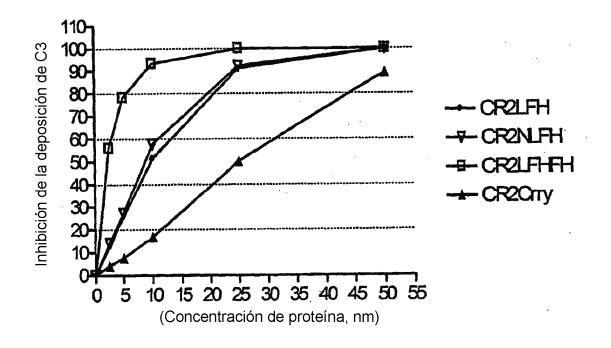



Figura 13

Comparación de proteínas CR2FH

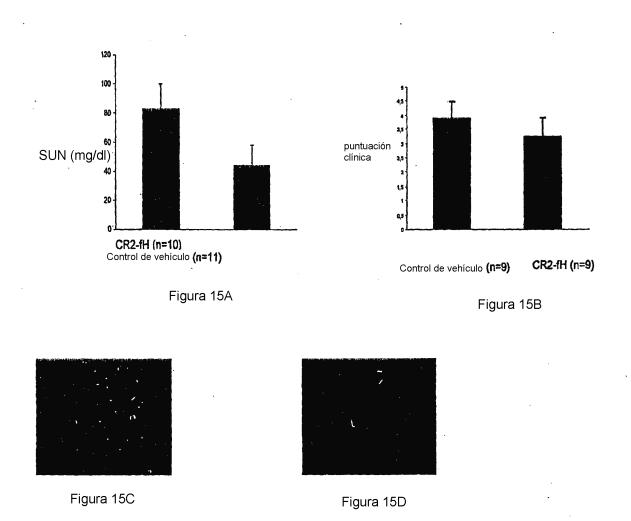
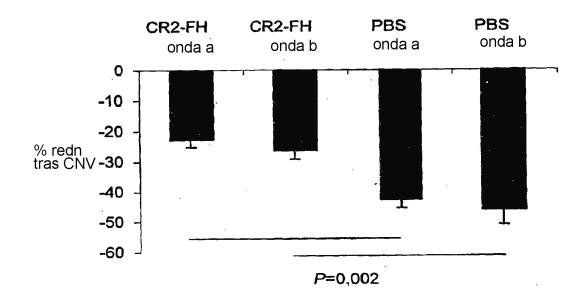
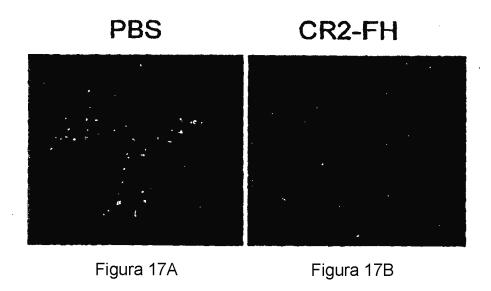




Figura 16

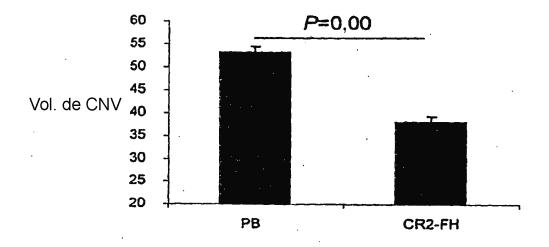
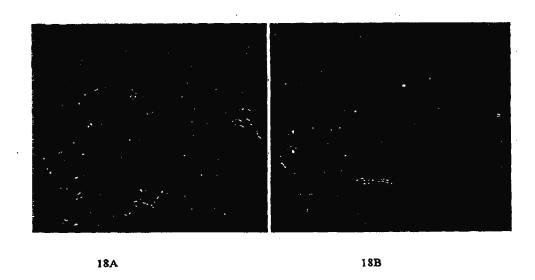



Figura 17C

Figura 18

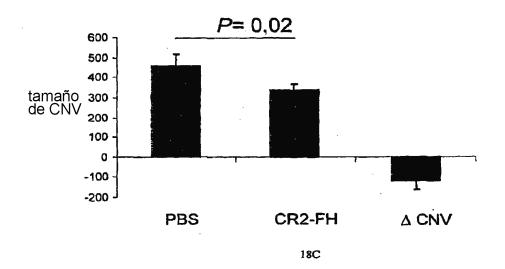


Figura 19

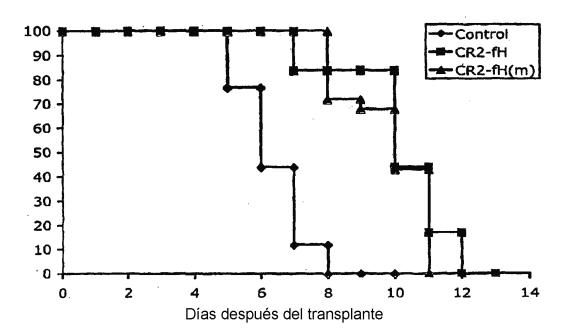


Figura 20

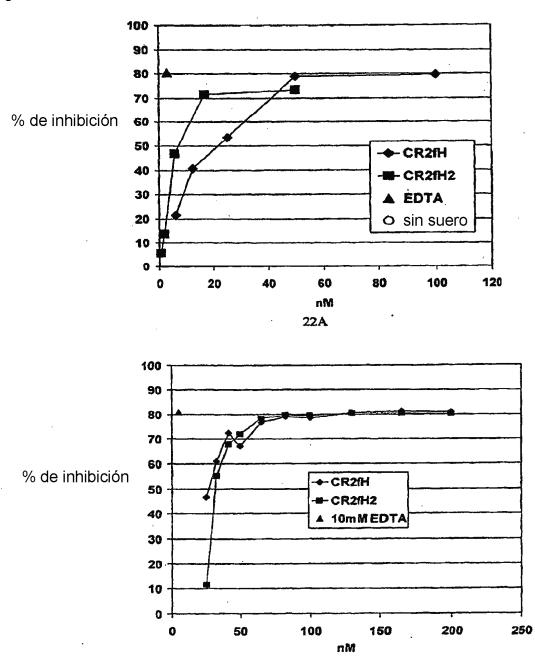
SEC ID Nº 21. secuencia de aminoácidos de CR2-FH humana

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFNKYSSCPEPI VPGGYKIRGSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVSVFPLECPALPMIHNGH HTSENVGSIAPGLSVTYSCESGYLLVGEKINCLSSGKWSAVPPTCEEARCKSLGRFPNGKVKEPPILRVGVT ANFFCDEGYRLQGPPSSRCVIAGQGVAWTKMPVCEEIFEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKC RPGYRSLGNVIMVCRKGEWVALNPLRKCQKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLL GEINYRECDTDGWTNDIPICEVVKCLPVTAPENGKIVSSAMEPDREYHFGQAVRFVCNSGYKIEGDEEMHC SDDGFWSKEKPKCVEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTESGWRPLPSCEE KSCDNPYIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCTLK

SEC ID Nº 22. secuencia de ADN de CR2-FH humana (incluyendo peptide señal)

GCCGC:aCCATGGGAGCCGCTGGTCTCCTCGGCGTGTTCCTCGCCTTGGTGGCACCTGGCGTCCTGGGC ATCAGCTGCGGTTCCCTCCACCAATCCTGAATGGCAGAATCTCCTATTACTCCACACCAATCGCCGTC GGCACTGTGATCAGATACAGCTGTTCAGGGACTTTTCGGCTGATCGGCGAGAAAAGCCTCCTCTGCAT TACCAAGGATAAGGTCGATGGGACATGGGATAAACCAGCTCCTAAGTGCGAGTACTTCAATAAGTATA GTTCATGTCCAGAGCCCATTGTTCCTGGTGGCTACAAGATTCGGGGGAGCACACCCTATCGCCACGGT CAATAATATGTGGGGTCCTACACGACTCCCCACCTGTGTCCGTGTTCCCCTTGGAATGCCCCGCCCT GCCCATGATCCATAATGGACACCACCACCAGCGAGAATGTCGGGAGTATCGCACCTGGATTGAGTGTCA CCTACTCATGCGAGTCTGGCTACCTGCTTGTAGGTGAAAAAATTATTAATTGCTTGTCCTCCGGCAAAT GGAGTGCCGTTCCCCAACTTGTGAAGAGGCCCGGTGCAAATCCCTCGGCCGCTTCCCTAATGGTAAA GTTAAAGAGCCTCCAATCCTCAGAGTGGGGGTGACCGCTAACTTCTTCTGTGATGAAGGCTACCGGTT GCAGGGACCACCAGTAGCCGGTGTGTCATAGCTGGCAGGGAGTGGCTTGGACAAAGATGCCCGTTT GTGAGGAAATCTTCGAAGACTGTAATGAGCTGCCCCCAAGACGGAATACAGAGATCCTCACAGGCTCT TGGTCCGATCAAACTTATCCAGAGGGTACCCAGGCAATTTACAAGTGCAGACCTGGATACAGGAGCCT AAAGACCATGCGGACACCCTGGAGATACACCTTTCGGTACCTTTACCCTTACCGGCGGCAATGTCTTC GAGTATGGCGTCAAGGCCGTGTACACTTGTAACGAGGGATACCAGCTGCTGGGGGAAATAAACTATC GTGAGTGTGACACTGACGGGTGGACTAACGACATCCCCATTTGCGAGGTGGTCAAGTGCCTTCCTGTA ACCGCTCCCGAAAATGGTAAGATCGTATCTTCCGCAATGGAGCCTGaTCGGGAATACcaCTTTGGACAA GCCGTTCGCTTCGTATGTAATTCAGGGTATAAAATTGAGGGCGATGAGGAGATGCACTGCAGTGATGA CGGCTTTTGGTCAAAGGAAAAGCCAAAGTGCGTAGAGATCAGTTGTAAGTCTCCTGACGTTATTAACG GGAGTCCCATCAGTCAGAAGATCATTTACAAGGAAAACGAGAGGTTCCAGTATAAATGCAATATGGGATATGAGTACTCCGAAAGAGGGGACGCCGTGTGCACAGAGTCCGGATGGCGACCTTTGCCATCTTGTG ACTGGGGACGAGATCACTTACCAATGTCGAAACGGCTTCTACCCTGCTACCAGAGGTAACACTGCCAA GTGTACCAGCACCGGTTGGATTCCCGCCCCCAGATGCACACTTAAATGATAA

Figura 21.


SEC ID Nº 23. secuencia de aminoácidos de CR2-FH2 humana

ISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFNKYSSCPEPIVPGGYKIR GSTPYRHGDSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVSVFPLECPALPMHINGHITSENVGSIAPGLSVTY SCESGYLLVGEKIINCLSSGKWSAVPPTCEEARCKSLGRFPNGKVKEPPILRVGVTANFFCDEGYRLQGPPSSRCVIAGQ GVAWTKMPVCEEIFEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVCRKGEWVALNPLRKCQK RPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEVVKCLPVTAPENGKIVSSA MEPDREYHFGQAVRFVCNSGYKIEGDEEMHCSDDGFWSKEKPKCVEISCKSPDVINGSPISQKIIYKENERFQYKCNMG YEYSERGDAVCTESGWRPLPSCEEKSCDNPYIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRC TEDCNELPPRRNTEILTGSWSDQTYPEGTQAIYKCRPGYRSLGNVIMVCRKGEWVALNPLRKCQKRPCGHPGDTPFGTFTLTGGNVFEYGVKAVYTCNEGYQLLGEINYRECDTDGWTNDIPICEVVKCLPVTAPENGKIVSSAMEPDREYHFGQAV RFVCNSGYKEGDEEMHCSDDGFWSKEKPKCVEISCKSPDVINGSPISQKIIYKENERFQYKCNMGYEYSERGDAVCTES GWRPLPSCEEKSCDNPYIPNGDYSPLRIKHRTGDEITYQCRNGFYPATRGNTAKCTSTGWIPAPRCTLK

SEC ID Nº 24. secuencia de ADN de CR2-FH2 humana (incluyendo peptide señal)

CGCCGCCACCATGGGCGCAGCAGGCTTGTTGGGCGTGTTCCTGGCATTGGTGGCACCCGGCGTATTGGGCATTTCA TGCGGCTCTCCACCCATTCTCAATGGAAGGATCTCCTACTACAGCACCCCCATAGCTGTCGGCACCGTTATCCGATACAGTTGTTCCGGTACTTTCCGGCTTATCGGCGAAAAGTCTTTGCTGTGCATTACCAAGGATAAAGTGGACGGG ACTTGGGACAAACCCGCACCTAAGTGCGAGTATTTTAACAAATATAGCAGCTGCCCTGAGCCTATAGTACCCGGGG GGTATAAAATCCGGGGCTCTACTCCCTATCGTCATGGCGATTCTGTGACCTTCGCATGTAAAACTAATTTTTCAATG GGTAAATGGTCCGCCGTGCCTCCCACATGTGAAGAGGCCCGGTGCAAGAGCCTGGGCCGGTTCCCCAACGGAAAA GTGAAGGAACCTCCTATCTTGAGGGTTGGTGTGACCGCTAACTTTTTCTGCGACGAGGGGTACAGGCTCCAAGGGC TCGGCCAGGCCGTTAGATTCGTGTAATAGCGGCTACAAAATCGAGGGCGACGAAGAAATGCATTGCAGCGATG ACGGGTTCTGGAGCAAGGAGAGCCTAAATGCGTCGAAATTTCATGCAAGAGTCCCGACGTCATAAACGGTTCTC CAATTTCCCAGAAGATCATTTATAAGGAGAATGAGCGGTTCCAGTATAAGTGTAATATGGGCTACGAGTACAGCG AACGCGGTGACGCCGTGTGTACCGAAACTGGCTGGAGACCACTGCCTAGTTGCGAGGAGAAATCCTGCGACAACC ACAGAGGACTGCAATGAACTGCCACCTCGGCGCAATACAGAAATTTTGACTGGATCATGGTCTGACCAGACTTACC CCGAGGGCACCCAGGCCATCTACAAATGTAGGCCCGGTTATCGAAGTTTGGGTAACGTGATTATGGTGTGTCGAAA AGGTGAATGGGTAGCACTCAATCCCCTCCGTAAATGCCAGAAGCGTCCTTGTGGGCACCCAGGCGATACCCCTTTT ACGATGGTTTCTGGTCTAAGGAGAAGCCTAAATGTGTCGAGATTAGCTGCAAGTCTCCCGATGTTATTAACGGCTC TCCCATCTCTCAAAAAATTATTTATAAGGAAAACGAAAGATTTCAGTACAAGTGCAATATGGGTTATGAGTACAGT GAACGTGGAGACGCCGTGTGCACAGAGTCCGGGTGGCGTCCACTGCCCAGCTGCGAAGAAAAATCCTGTGACAAC GTACCTTGAAATGATGA

Figura 22

22B

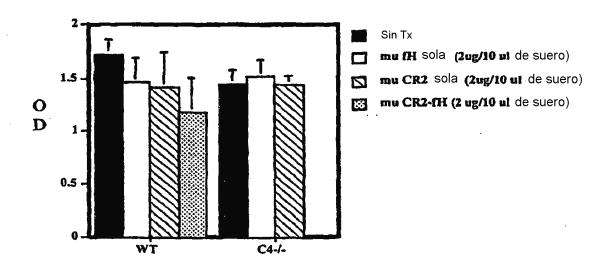
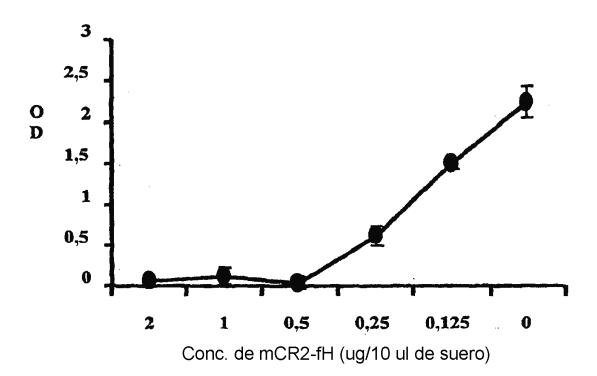



Figura 23

