

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 524 643

51 Int. Cl.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 28.02.2008 E 10196834 (5)

(97) Fecha y número de publicación de la concesión europea: 29.10.2014 EP 2392668

(54) Título: Genes control para la normalización de datos de análisis de expresión génica

(30) Prioridad:

02.03.2007 DE 102007010252

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 10.12.2014

(73) Titular/es:

ANALYTIK JENA AG (100.0%) Konrad-Zuse-Strasse 1 07745 Jena, DE

(72) Inventor/es:

RUSSWURM, STEFAN; SALUZ, HANS PETER y DEIGNER, HANS-PETER

(74) Agente/Representante:

ROEB DÍAZ-ÁLVAREZ, María

DESCRIPCIÓN

Genes control para la normalización de datos de análisis de expresión génica

10

15

20

35

- La presente invención se refiere a un procedimiento para la normalización de una cantidad de ARNm en varias muestras de acuerdo con la reivindicación 1, a un kit con una selección de secuencias de acuerdo con la reivindicación 9, a un uso de ácidos nucleicos como genes control para la normalización de datos de análisis de expresión génica de acuerdo con la reivindicación 10 así como a conjuntos de genes control para la normalización de análisis de expresión génica de acuerdo con la reivindicación 11 y 12.
 - Igual que antes existe una necesidad de identificar genes, en particular de células sanguíneas, que muestran variación sólo mínima en su expresión en condiciones distintas. Estos denominados genes "constitutivos" se usan como referencias, controles internos y valores de referencia en la cuantificación de la expresión génica y de ARN y ARNm con procedimientos tales como inmunotransferencia tipo Northern, ensayo de protección de ribonucleasa, electroforesis capilar, micromatrices y PCR en tiempo real cuantitativa así como por medio de otros procedimientos para la medición directa de la transcripción y medición tras amplificación anterior.
 - A continuación se resumen los términos genes constitutivos y genes control de expresión en el término genes control. Esta simplificación se realiza por motivos de legibilidad y no representa ninguna limitación de la invención.
 - Una normalización de datos cuantitativos por medio de genes control tiene numerosas posibilidades de uso. Los genes control permiten una identificación de genes cuya actividad se regula de manera diferencial en distintos estados patológicos así como el desarrollo de diagnósticos que se basan en esto.
- Un gen control es un gen que muestra modificación mínima de la expresión y transcripción a través de distintas muestras de ARN y con ello sirve como control para la medición de actividades génicas variables a través de distintas muestras. Ningún gen muestra actividad no modificada por todos los tejidos. Por tanto existe una alta necesidad de nuevos genes control, en particular para sangre, dado que los valores de expresión de sangre se usan de manera diagnóstica.
 - Aunque distintos genes control se conocen en la bibliografía [1], no se conocen genes control y sus transcritos así como su uso combinado para la normalización de la expresión génica y la transcripción de muestras de sangre completa y células sanguíneas. Los transcritos (también ARNm y microARN así como otros ARN) con concentración constante en células sanguíneas y en células de órganos y tejidos periféricos que están localizados en la sangre completa, representan una condición previa para la normalización de actividades génicas y para la determinación de las modificaciones de otras actividades génicas y por consiguiente una condición previa para el diagnóstico basado en sangre. Del mismo modo están publicados ya distintos estudios para la medición de la actividad génica para el diagnóstico/pronóstico de SIRS y septicemia, por ejemplo [2, 3], sin embargo no se ha descrito aún un uso y una cuantificación de estas señales de actividad génica por medio de genes control de sangre.
 - Por consiguiente existe una necesidad de genes control de sangre y células sanguíneas robustos y que dispongan de una estabilidad, que permita una normalización y cuantificación de la expresión génica de genes o agrupaciones de genes específicos de enfermedad.
- El punto de partida para la invención dada a conocer en la presente solicitud es el conocimiento de que se detectan actividades génicas de distintos genes, que se producen en células sanguíneas, en muestras de un individuo durante las apariciones de enfermedad típicas de septicemia (que corresponden a la definición en [4]), no se diferencian de las actividades génicas de los mismos genes de individuos, en los que no se diagnosticó septicemia y pueden usarse conjuntamente o de manera individual como genes control para la normalización de actividades génicas de células sanguíneas y para la determinación de la concentración de transcritos de sangre. Esto permite la normalización y la cuantificación relativa de las actividades de otros genes, lo que puede usarse para el diagnóstico, pronóstico, terapia y control de desarrollo.
- Por consiguiente, la presente invención se basa en el objetivo de facilitar medios y procedimientos que posibiliten un punto de referencia para la diferenciación de modificaciones de expresión génica condicionada por la enfermedad y con ello un diagnóstico o control de desarrollo de la terapia.
 - De manera técnica de procedimiento se soluciona este objetivo mediante las características de la reivindicación 1.
- 60 El objetivo se soluciona además mediante un kit de acuerdo con la reivindicación 9 así como un uso de acuerdo con la reivindicación 10 y mediante conjuntos de genes control de acuerdo con las reivindicaciones 11 y 12.
- La invención describe la identificación de nuevos genes control de sangre, sondas de micromatriz adecuadas y cebadores para PCR y su uso, también en combinación, para la normalización de datos de expresión cuantitativos de sangre y células sanguíneas en micromatrices, ensayos de PCR en tiempo real y otros sistemas con o sin amplificación y con distintas posibilidades de visualización para la determinación así como su uso para el diagnóstico

de modificaciones condicionadas patológicamente en inflamaciones locales de distinta localización y en la reacción sistémica a continuación tal como SIRS, septicemia, septicemia grave con fallo orgánico.

En estos estudios es importante de manera decisiva la normalización de análisis de expresión génica. Para los fines de la presente invención debe entenderse por normalización lo siguiente:

"Por una normalización se entiende hacer comparables las mediciones de distintas matrices o experimentos de PCR o en particular de RT-PCR, reduciéndose o eliminándose la variabilidad técnica. Dentro de estos experimentos existe una multiplicidad de fuentes que pueden falsificar las mediciones. Las posibles fuentes perturbadoras técnicas son una eficiencia distinta en la transcripción inversa, el marcado o las reacciones de hibridación así como problemas con las matrices, efectos de carga en los reactivos o condiciones específicas de laboratorio".

El procedimiento de acuerdo con la invención está caracterizado por que puede diferenciarse en una muestra de sangre de individuo la actividad de uno o varios genes que van a someterse a estudio mediante detección de la presencia y de la cantidad del producto génico con respecto a las cantidades de los productos génicos delos genes control entre SIRS y septicemia.

Para ello se dan a conocer genes control y secuencias génicas de sangre y células sanguíneas así como cebadores y sondas derivados de los mismos, que pueden usarse para la determinación, visualización y normalización y cuantificación de actividades génicas y transcritos. Las secuencias de las sondas de oligonucleótidos en una realización preferente están expuestas en la tabla 1 y corresponden al protocolo de secuencias adjunto de Sec ID 1 a Sec ID 7, las secuencias de cebadores usadas en la tabla 2 corresponden al protocolo de secuencias adjunto de Sec ID 8 a Sec ID 21. A este respecto, las secuencias de las sondas de oligonucleótidos pueden adoptar también otras secuencias, en una realización preferente de una longitud de 50-100 nucleótidos, que se unen específicamente a transcritos de los genes expuestos en la tabla 3 con secuencias de Sec ID 22 a Sec ID 97. La longitud de las secuencias usadas en procedimientos de amplificación tal como PCR puede ser cualquiera en tanto que favorezcan la manipulación y amplificación enzimática deseada.

Tabla 1: sondas de oligonucleótidos de ADN

Símbolo de gen	SEC ID
ITGAL	1
SNAPC1	2
CASP8	3
C7	4
PPARD	5
IL18	6
F3	7

Tabla 2: Cebadores de ADN directos e inversos.

Símbolo de	SEC ID de cebador directo	SEC ID de cebador inverso
gen		
ITGAL	8	15
SNAPC1	9	16
CASP8	10	17
C7	11	18
PPARD	12	19
IL18	13	20
F3	14	21

Tabla 3: Genes control (secuencias de ARN)

N.º de acceso GenBank	SEC ID
NM_024081	22
AA398364	23
N34546	24
AA659421	25
AA682479	26
AK024118	27
AA923316	28
BM309952	29
AI093653	30
Al131415	31
Al263527	32
AA282242	33
CR740270	34

30

5

10

15

20

BG191861	35
Al301257	36
Al310464	37
AW964023	38
Al351933	39
AA100540	40
Al362368	41
Al817134	42
Al381377	43
Al520967	44
	45
AA253470	45
AI559304	
AI565002	47
AI587389	48
Al609367	49
Al635278	50
AI702056	51
A1707917	52
A1733176	53
AI769053	54
AI798545	55
Al801425	56
AI801595	57
Al809873	58
Al862063	59
Al923251	60
Al925556	61
Al932551	62
Al932884	63
Al933797	64
Al933967	65
Al935874	66
H06263	67
H22921	68
H54423	69
N22551	70
N73510	71
R06107	72
	73
R42511 R43088	73
NM_181705	75
R92455	76
R93174	77
T77995	78
T79815	79
T83946	80
T95909	81
T98779	82
AK127462	83
W80744	84
W86575	85
AJ297560	86
NM_001562	87
BU629240	88
NM_001228	89
NM_001993	90
NM_002209	91
NM_002392	92
NM_000587	93
NM_004379	94
BC002715	95
NM_003082	96
AA664688	97
7171000	J1

Los cebadores en la tabla 2 pueden usarse para preparar productos de amplificación que contenían la región deseada (secuencia) de los genes mencionados. En una realización habitual, el producto es de 150-200 nucleótidos de largo.

5

10

Los genes control pueden usarse individualmente o en combinación de varios. Habitualmente puede determinarse la actividad de genes control tal como se describe en el presente documento con sondas de hibridación para micromatrices o cebadores para PCR y PCR en tiempo real. Los genes control y sus productos de expresión pueden determinarse sin embargo también tras la amplificación con otros procedimientos conocidos por el experto tales como por ejemplo NASBA (Nucleic Acid Sequence-based Amplification, amplificación a base de secuencias de ácidos nucleicos) y en distinta combinación. Éstos pueden determinarse también con una serie de otros procedimientos o posibilidades de visualización tales como por ejemplo con ayuda de anticuerpos monoclonales. Los cebadores y las sondas pueden usarse para el gen, el producto de expresión (ARNm) o los productos de expresión que no se procesan completamente para dar ARNm.

15

En otras realizaciones, los cebadores y las sondas se unen a una región específica de los genes control dados a conocer en el presente documento o sus transcritos. Sin embargo, las sondas y los cebadores pueden interaccionar con cualquier región de las secuencias génicas dadas a conocer en el presente documento o secuencias transcritas a partir de las mismas. Los cebadores y las sondas pueden interaccionar a través del apareamiento de bases continuo, sin embargo no han de interaccionar continuamente con la secuencia complementaria completa. Las composiciones de tampón, concentraciones salinas, etapas de lavado y temperaturas pueden seleccionarse en el presente documento de manera variable.

25

20

Igualmente pueden compararse estas modificaciones de los genes control y de los genes de prueba con los valores de expresión (o datos derivados de los mismos, tales como por ejemplo valores promedio) de una o varias muestras de referencia, que no se determinan simultáneamente con la muestra objetivo.

30

Una forma de realización de la invención está caracterizada por que se determinan valores de expresión usando genes control de la tabla 3 así como ácidos nucleicos y transcritos de estos genes control de sangre y de células sanguíneas como genes control mediante comparación de los valores de expresión con uno o varios ácidos nucleicos de prueba y mediante cuantificación con respecto al ácido nucleico de prueba.

35

Otra forma de realización de la invención está caracterizada por que se usan ácidos nucleicos y sondas de ADN con las secuencias según la tabla 1 y su unión de ARN incluyendo microARN y de transcritos (ARN o ARNm) en sangre o a partir de células sanguíneas de genes según la tabla 3 en disolución o de manera inmovilizada sobre superficies o partículas o perlas y el uso de los transcritos unidos de estos genes para la normalización mediante comparación de las cantidades unidas (valores de expresión) de los ácidos nucleicos con uno o varios ácidos nucleicos de prueba unidos a sondas y para la cuantificación con respecto al ácido nucleico de prueba unido.

40

Una forma de realización de la invención está caracterizada por que el procedimiento para la diferenciación ex vivo, in vitro entre SIRS y septicemia (ambas que corresponden a [4]) basándose en la correlación de las cantidades de ARN de gen control y gen de prueba, comprende las siguientes etapas:

45

aislar ARN de gen control así como ARN de gen de prueba de una muestra de sangre

marcar el ARN de gen control y de gen de prueba con un marcador detectable y llevar a contacto con el ADN en condiciones de hibridación, siendo el ADN un fragmento génico u oligonucleótido, que se une específicamente a transcritos, productos de amplificación o transcritos in vitro de genes control.

detectar cuantitativamente las señales de marcación del ARN de gen control y gen de prueba de manera

50

c)

correspondiente a b) y comparar los datos cuantitativos de las señales de marcación para realizar una declaración de si un gen específico o fragmento génico se expresa de manera más fuerte o más débil en comparación con las señales de los genes control.

Otra forma de realización de la invención está caracterizada por que se hibrida el ARN de gen control antes de la medición del ARN de gen de prueba con el ADN y se detectan las señales de marcación del complejo ARN control/ADN, eventualmente se transforman posteriormente y eventualmente se archivan en forma de tabla o curva de calibración.

60

55

Otra forma de realización de la invención está caracterizada por que se identifican y se cuantifican ARN de los genes control o partes de los mismos por medio de secuenciación o secuenciación parcial por ejemplo por medio de pirosecuenciación.

65

Otra forma de realización de la invención está caracterizada por que como ARN de gen control se usa ARNm o microARN.

Otra forma de realización de la invención está caracterizada por que el ADN se dispone, en particular se inmoviliza, para la unión específica del ARN del gen control o sus transcritos in vitro en zonas predeterminadas sobre un soporte en forma de una micromatriz.

5 Otra forma de realización de la invención está caracterizada por que en caso de la muestra biológica se trata de la de un ser humano.

Estas secuencias con la secuencia ID: 1 hasta la secuencia ID: 97 están comprendidas conjuntamente mediante el alcance de la presente invención y se dan a conocer en detalle en el protocolo de secuencias adjunto de 70 páginas, que comprende 107 secuencias, que por consiguientes parte de la invención.

Otra forma de realización de la invención está caracterizada por que las sondas inmovilizadas o libres se marcan con secuencias que corresponden a la tabla 1. Para esta forma de realización se usan como sondas oligonucleótidos autocomplementarios, las denominadas balizas moleculares. Éstos llevan en sus extremos un par fluoróforo/inhibidor, de modo que se encuentran en ausencia de una secuencia complementaria en una estructura de horquilla plegada y proporcionan en primera lugar una señal de fluorescencia con una correspondiente secuencia de prueba. La estructura de horquilla de la baliza molecular es estable tanto tiempo hasta que la muestra se hibrida en la secuencia de captador específica, lo que conduce a una modificación de la conformación y con ello también a la liberación de la fluorescencia indicadora.

20

30

10

15

Otra forma de realización de la invención está caracterizada por que se usan al menos de 1 a 14 sondas de ácido nucleico o sus complementarias para la unión de los transcritos o sus complementarias de los genes control.

Otra forma de realización de la invención está caracterizada por que los análogos sintéticos de los genes control o los oligonucleótidos sintéticos que se unen a los transcritos de los genes control, comprenden en particular aproximadamente 60 pares de bases.

Otra forma de realización de la invención está caracterizada por que como ADN de genes enumerados en las reivindicaciones se sustituyen por secuencias derivadas de su ARN, análogos sintéticos, aptámeros así como ácidos peptidonucleicos.

Otra forma de realización de la invención está caracterizada por que como marcador detectable se usa un marcador radiactivo, en particular ³²P, ¹⁴C, ¹²⁵I, ³³P o ³H.

- Otra forma de realización de la invención está caracterizada por que como marcador detectable se usa un marcador no radiactivo, en particular un marcador de color o de fluorescencia, un marcador enzimático o marcador inmunitario y/o puntos cuánticos o una señal eléctricamente medible, en particular modificación del potencial y/o de la conductividad y/o capacidad durante la hibridación.
- 40 Otra forma de realización de la invención está caracterizada por que el ARN de muestra y ARN de gen control y/o derivados enzimáticos o químicos llevan la misma marcación.

Otra forma de realización de la invención está caracterizada por que el ARN de gen de prueba y ARN de gen control y/o derivados enzimáticos o químicos llevan distintas marcaciones.

45

Otra forma de realización de la invención está caracterizada por que las sondas de ADN se inmovilizan sobre vidrio o plástico.

Otra forma de realización de la invención está caracterizada por que las moléculas de ADN individuales se inmovilizan a través de un enlace covalente en el material de soporte.

Otra forma de realización de la invención está caracterizada por que las moléculas de ADN individuales se inmovilizan por medio de interacciones electrostáticas y/o de dipolo-dipolo y/o hidrófobas y/o puentes de hidrógeno en el material de soporte.

55

60

Otra forma de realización de la invención consiste en el uso de secuencias de ácido nucleico de gen control específicas recombinantes o preparadas de manera sintética, secuencias parciales de manera individual o en cantidades parciales como calibrador en ensayos de septicemia y/o para la valoración de la acción y toxicidad en la selección de principios activos y/o para la preparación de agentes terapéuticos y de sustancias y mezclas de sustancias que están previstas como agente terapéutico, para la prevención y el tratamiento de SIRS y septicemia.

Está claro para el experto que las características de la invención individuales expuestas en las reivindicaciones pueden combinarse entre sí de manera discrecional sin limitación.

Como genes control en el sentido de la invención se entiende todas las secuencias de ADN derivadas, secuencias parciales y análogos sintéticos (por ejemplo ácidos peptidonucleicos, PNA). La descripción de la invención en

relación con la determinación de la expresión génica en el plano de ARN no representa ninguna limitación sino únicamente un uso a modo de ejemplo.

Un uso del procedimiento de acuerdo con la invención se encuentra en la normalización de datos de medición de la expresión génica diferencial de sangre completa, por ejemplo para la diferenciación entre SIRS y septicemia y sus grados de gravedad (ambas que corresponden a [4]). Para ello se aísla el ARN de los genes control de la sangre completa del correspondiente paciente y una muestra control de una persona de experimentación sana o pacientes no infecciosos. El ARN se marca a continuación, por ejemplo de manera radiactiva con ³²P o con moléculas colorantes (fluorescencia). Como moléculas de marcación pueden usarse todas las moléculas y/o señales de detección conocidas en el estado de la técnica para este fin. El experto conoce igualmente las correspondientes moléculas y/o los correspondientes procedimientos.

El ARN así marcado se hibrida a continuación con moléculas de ADN inmovilizadas sobre una micromatriz. Las moléculas de ADN inmovilizadas sobre una micromatriz representan una elección específica de los genes de acuerdo con la presente invención para la normalización de datos de expresión génica en la diferenciación de SIRS y septicemia.

Las señales de intensidad de las moléculas hibridadas se miden a continuación mediante aparatos de medición adecuados (reproductor de imágenes de fósforo, escáner para micromatrices) y se analizan mediante otras valoraciones soportadas por software. A partir de las intensidades de señal medidas se determinan las relaciones de expresión entre los genes de prueba de la muestra del paciente y los genes control. A partir de las relaciones de expresión de los genes subrregulados y/o sobrerregulados pueden sacarse conclusiones, tal como en los experimentos descritos a continuación, sobre la diferenciación de SIRS y septicemia.

Otro uso de las actividades génicas determinadas por medio de análisis de micromatrices con cuantificación posterior para la normalización de datos de expresión génica consiste en el uso para la diferenciación de SIRS y septicemia para el tratamiento posterior electrónico con el fin de la preparación de software para fines diagnósticos (por ejemplo para la determinación de la localización de una inflamación y para la evaluación de la gravedad de la enfermedad de una respuesta inmunitaria individual en particular en infecciones, también en el contexto de sistemas de gestión de datos de pacientes o sistemas de expertos) o para la modelación de vías celulares de transmisión de señales.

Para la realización de la evaluación de las micromatrices para los fines de la presente solicitud de patente se aplica lo siguiente:

Descripción de experimentos de micromatrices

5

10

15

20

35

40

55

60

(Según la Minimum Information About a Microarray Experiment [MIAME] Checkliste - nueva edición enero de 2005, basándose en Brazma A *et al.*, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nature Genetics 29, 365 - 371 (2001) [17), al que se hace referencia por el presente documento en su totalidad)

Lectura de los portaobjetos / especificaciones técnicas del escáner

45 a) escáner: GenePix 4000B escáner de fluorescencia de luz incidente confocal (Axon

Instruments)

b)Software para el escaneado: GenPix Pro 4.0

c) parámetros de escaneado: potencia de láser: canal Cy3 - 100%

canal Cy5 - 100%

50 voltaje PMT: canal Cy3 - 700 V

canal Cy5 - 800 V

d) resolución espacial (espacio de pixeles) - 10 $\mu\text{m}.$

Lectura y procesamiento de los datos

En el contexto de los experimentos se hibridaron más de 1000 muestras de sangre de pacientes. Cada par de ARN (ARN de paciente contra ARN de comparación) se hibridó conjuntamente sobre una micromatriz. A este respecto se marcó el ARN de paciente con un colorante fluorescente rojo y el ARN de comparación con un colorante fluorescente verde. Las imágenes digitalizadas de la matriz hibridada se evaluaron con el software GenePix Pro 4.0 o 5.0 de Axon Instruments. Para la detección de puntos, la cuantificación de señales y la evaluación de la calidad del punto se usó el software de análisis GenePix™. Los puntos se marcaron de manera correspondiente a los ajustes en el software GenePix™ con 100 = "buena", 0 = "hallada", -50 = "no hallada", -75 = "ausente", -100 = "mala". Los datos brutos se depositaron en un correspondiente archivo *.gpr.

Normalización, transformación y procedimiento de selección de datos

e) Transformación y normalización de los datos de señales

Para la normalización y transformación de varianza estabilizada de los datos brutos se usó el procedimiento de Huber *et al.* [5], en el que se estimaron los errores aditivos y multiplicativos de bloque en bloque. Para ello se consultan aproximadamente el 75 % de todos los puntos. Las señales se transforman a continuación con la función arcsen. (así corresponde la relación transformada de \pm 0,4 a aproximadamente una modificación de 1,5 veces {para números grandes es arcsen (x) casi idéntico con el Ln (2x)}.

Rocke DM, Durbin B, A model for measurement error for gene expression arrays., J Comput Biol. 2001;8(6):557-69 [18] han desarrollado un modelo para la estimación del error de medición en matrices de expresión génica como función del nivel de expresión, haciéndose referencia a éste por el presente documento en su totalidad. Este modelo de error permite junto con otros procedimientos de análisis, transformaciones de datos y valoraciones ya una comparación más exacta de los datos de expresión génica y proporciona directrices para análisis de fondo, determinación de intervalos de confianza y tratamiento de los datos de análisis para su análisis o tratamiento posterior multivariado.

Debido al modelo de error mencionado anteriormente de Rocke y Durbin [18] han desarrollado Huber W, Heydebreck A, y Sueltmann H, Variance stabilization applied to microarray data calibration and to the quantification of differential expression., Bioinformatics. 2002;18 supl. 1: pág. 96-104 [19], un modelo estadístico para datos de expresión génica de micromatrices, al que se hace referencia por el presente documento en su totalidad. El modelo comprende una calibración de datos, la cuantificación de distintos niveles de expresión así como la cuantificación del error de medición. Huber et al. [19] han deducido para ello una transformación de datos para mediciones de intensidad de señal y una estadística de la diferencia, que usando la función de área arcsen conduce a una estabilización de la varianza y normalización de un conjunto de datos de señal a través de todo su intervalo de intensidad. Este procedimiento se mostró en particular por medio de datos de expresión génica de micromatrices, sin embargo puede transferirse en el contexto de la presente invención también a otros procedimientos para la medición de la expresión génica.

Por consiguiente, mediante la transformación mencionada por medio de la función de área se compensa la dependencia de la varianza, observada con frecuencia en la evaluación de señales, de la intensidad de señal.

f) Filtrado

5

10

15

20

25

30

35

40

45

50

55

60

Las replicas técnicas (múltiples puntos de la misma muestra) en la micromatriz se separaron por filtración de las intensidades de señal corregidas y transformadas dependiendo de su calidad de punto. Para cada punto se seleccionaron las replicas con la caracterización más alta y se promedió la correspondiente intensidad de señal. La expresión de puntos con replicas exclusivamente no medibles se caracteriza con "NA" (not available, no disponible).

Otro uso del procedimiento de acuerdo con la invención consiste en la medición de la expresión génica diferencial para la determinación concomitante de la terapia de la probabilidad de que pacientes respondan a la terapia planificada y/o para la determinación de la respuesta a una terapia especializada y/o a la determinación del final de terapia en el sentido de una "monitorización de fármacos" en pacientes con SIRS y septicemia y sus grados de gravedad. Para ello se aísla el ARN (ARN de prueba y ARN control) de las muestras de sangre del paciente recogidas en intervalos temporales. Las distintas muestras de ARN se marcan juntas y se hibridan con genes de prueba seleccionados así como genes control que están inmovilizados sobre una micromatriz. A partir de las relaciones de expresión entre genes control individuales o varios y genes de prueba tales como por ejemplo TNF alfa puede calificarse por consiguiente que probabilidad existe de que pacientes respondan a la terapia panificada y/o si la terapia iniciada es eficaz y/o cuanto tiempo deben someterse a terapia aún los pacientes de manera correspondiente y/o si el efecto de terapia máximo se ha conseguido ya con la dosis y la duración usadas.

Otro uso del procedimiento de acuerdo con la invención consiste en el uso del ARN de los genes de acuerdo con la invención para la obtención de información cuantitativa mediante procedimientos dependientes de la hibridación, en particular hidrólisis enzimática o química, procedimiento de resonancia de plasmón de superficie (procedimiento SPR), cuantificación posterior de los ácidos nucleicos y/o de derivados y/o fragmentos de los mismos.

Los transcritos amplificados por medio de PCR (también otros procedimientos de amplificación tales como por ejemplo NASBA) y cuantificados de genes control representan otra forma de realización de acuerdo con la presente invención para la normalización de datos de expresión génica en la diferenciación de SIRS y septicemia y sus grados de gravedad. Las señales de intensidad de los transcritos amplificados se miden a continuación mediante aparatos de medición adecuados (PCR-detector de fluorescencia) y se analizan mediante otras evaluaciones asistidas por el software. A partir de las intensidades de señal medidas se determinan las relaciones de expresión entre los genes de prueba de la muestra de paciente y los genes control. A partir de las relaciones de expresión de los genes subrregulados y/o sobrerregulados pueden sacarse conclusiones, tal como en los experimentos descritos a continuación, sobre la diferenciación de SIRS y septicemia y sus grados de gravedad.

Otro uso del procedimiento de acuerdo con la invención consiste en el uso de las actividades génicas determinadas por medio de PCR u otros procedimientos de amplificación con cuantificación posterior para la normalización de datos de expresión génica para la diferenciación de SIRS y septicemia y sus grados de gravedad para el tratamiento posterior electrónico con el fin de fabricar software para fines diagnósticos (por ejemplo para la determinación del foco de una inflamación y para la estimación de la gravedad de una respuesta inmunitaria individual en particular en caso de infección bacteriana, también en el contexto de sistemas de gestión de datos de pacientes o sistemas de expertos) o para la modelación de vías celulares de transmisión de señales.

Otro uso del procedimiento de acuerdo con la invención consiste en la determinación de una cantidad de ARNm en 10 una muestra que comprende a) aislamiento de los ácidos nucleicos, b) una medición del valor de expresión de uno o varios ácidos nucleicos seleccionados de SEC ID 22 a SEC ID 97; c) una comparación de los valores de expresión de los ácidos nucleicos seleccionados con valores de porcentaje conocidos de los ácidos nucleicos en la cantidad total de ARNm; d) extrapolación de los valores de expresión de uno o varios ácidos nucleicos seleccionados de SEC ID 22 a SEC ID 97 con respecto a la cantidad total de ARNm y d) determinación de la cantidad total de ARNm en la 15 muestra.

Otro uso del procedimiento de acuerdo con la invención consiste en la normalización de una cantidad de ARNm eventualmente amplificada en varias muestras de sangre que comprende a) una comparación de los valores de expresión de uno o varios ácidos nucleicos seleccionados de SEC ID 22 a SEC ID 97 a través de distintas muestras; b) deducción de un valor para la normalización de valores de expresión de uno o varios ácidos nucleicos seleccionados de SEC ID 22 a SEC ID 97 a través de varias muestras y c) una normalización de la expresión de otros ácidos nucleicos que se aislaron de otras muestras, basándose en la etapa b).

La invención puede referirse además a un kit que contiene una selección de secuencias de acuerdo con SEC ID 22 25 a SEC ID 97 y/o fragmentos génicos de las mismas con al menos 1-100, en una realización preferente 1-5 y 1-10 nucleótidos para la determinación de perfiles de expresión génica in vitro en una muestra de paciente, para su uso como genes control.

La invención puede referirse además también a un kit que contiene una selección de sondas de hibridación de 30 acuerdo con SEC ID N.º 1 a SEC ID N.º 7 y/o fragmentos génicos de las mismas con al menos 50 nucleótidos para la determinación de perfiles de expresión génica in vitro en una muestra de paciente, para su uso como genes control

La invención puede referirse igualmente a un kit que contiene una selección de sondas de cebador de acuerdo con SEC ID N.º 8 a SEC ID N.º 21 y/o fragmentos génicos de las mismas con al menos 15 nucleótidos para la determinación de perfiles de expresión génica in vitro en una muestra de paciente, para su uso como genes control.

En su versión más amplia y más general, la presente invención se refiere a las siguientes formas de realización:

- 40 A) al menos un gen control para la normalización de datos de análisis de expresión génica de muestras de sangre de un paciente, seleccionándose el gen control de las siguientes secuencias de ARN: SEC ID 22 a SEC ID 97, en particular SEC ID 87, SEC ID 89, SEC ID 90, SEC ID 91, SEC ID 93, SEC ID 95 y SEC ID 96.
- B) Al menos un cebador, derivado de los genes control de acuerdo con A) para la normalización de datos de análisis 45 de expresión génica basados en la amplificación de ácido nucleico, de muestras de sangre de un paciente, seleccionándose el cebador de las siguientes secuencias de ADN: SEC ID 8 a SEC ID 21.
 - C) Al menos una sonda, derivada de los genes control de acuerdo con B) para la normalización de datos de análisis de expresión génica de muestras de sangre de un paciente, comprendiendo el conjunto de sondas las siguientes secuencias de ADN: Sec ID 1 a Sec ID 7 así como sus secuencias de ácido nucleico complementarias.
 - D) Un procedimiento para la normalización de datos de análisis de expresión génica con al menos un ácido nucleico control, seleccionado de los genes control de acuerdo con A) o un conjunto de cebadores de acuerdo con B) o un conjunto de sondas de acuerdo con C), en el que
 - a) se realiza in vitro al menos un ensayo de análisis de expresión génica de muestras de sangre de un paciente;
 - b) como base para la normalización de los datos de análisis de expresión génica de las muestras que van a someterse a prueba se somete a prueba conjuntamente al menos un ácido nucleico control en el mismo ensayo;
 - c) se detectan señales de los análisis de expresión génica, que reproducen la magnitud de la expresión génica de una multiplicidad de genes así como del al menos un ácido nucleico control;
 - d) los datos de señales obtenidos en la etapa c) se someten a una transformación matemática para al menos atenuar la variabilidad técnica de los datos de señales; y por consiguiente
 - e) normalizar los datos de señales de las muestras que van a someterse a estudio.
- 65 E) Las formas de realización preferentes del procedimiento de acuerdo con D) son:

9

50

20

35

55

Un procedimiento según D), en el que la transformación matemática de los datos de señal se realiza por medio del arcsen o por medio de una aproximación logarítmica;

y/o

5

10

el ensayo de expresión génica se selecciona de:

- f) aislamiento de ácidos nucleicos de una muestra de sangre;
- g) eventualmente una amplificación conjunta de un conjunto de ácidos nucleicos control así como los ácidos nucleicos que van a someterse a ensayo; y
- h) hibridación de sondas:

y/o

15 los ácidos nucleicos comprenden ARNm o microARN;

y/o

los ácidos nucleicos se amplifican por medio de PCR, PCR en tiempo real, NASBA, TMA o SDA;

20

y/o

los valores de expresión de los ácidos nucleicos control y de prueba se determinan por medio de procedimientos de hibridación; y/o

25

se realiza la medición de los valores de expresión de los ácidos nucleicos control y/o de prueba en disolución o de ácidos nucleicos que están inmovilizados en un soporte;

y/o

30

el soporte es una micromatriz, partícula, perla, vidrio, metal o membrana;

y/o

los ácidos nucleicos control y/o de prueba están acoplados al soporte indirectamente a través de otros componentes de unión tales como anticuerpos, antígenos, oligonucleótidos, balizas moleculares o enzimas;

y/o

- 40 los valores de expresión de los ácidos nucleicos control y de prueba, determinados *in vitro* a partir de una muestra de paciente, se usan como parámetro de entrada para la fabricación de software para la descripción del pronóstico individual de un paciente, para fines de diagnostico, para decisiones de terapia y/o sistemas de gestión de datos de pacientes.
- F) Un uso al menos de un ácido nucleico control, seleccionado de los genes control de acuerdo con A) o un cebador de acuerdo con B) o una sonda de acuerdo con C), para la normalización de un procedimiento de análisis de expresión génica para el diagnóstico de enfermedades con reacción inmunitaria sistémica.
 - G) Las formas de realización preferentes del uso de acuerdo con F) son:

Un uso según F), en el que las enfermedades se seleccionan de: septicemia, septicemia grave, choque septicémico o fallo multiorgánico;

y/o

55

60

65

50

en un procedimiento para el diagnóstico *in vitro* de SIRS, septicemia, septicemia grave, choque septicémico o fallo multiorgánico en un individuo usando conjuntos de ácidos nucleicos control y ácidos nucleicos de prueba, cuya expresión es específica para SIRS o septicemia, que comprende las siguientes etapas:

- a) aislamiento simultáneo de los ácidos nucleicos control y de prueba de una muestra del individuo,
- b) eventualmente amplificación de los ácidos nucleicos control y de prueba,
- c) determinación de los valores de expresión de los ácidos nucleicos control y de prueba
- d) una normalización de la expresión génica de los ácidos nucleicos de prueba basándose en los valores de expresión de los ácidos nucleicos control
- e) determinación de si los valores de expresión normalizados del ácido nucleico de prueba han alcanzado un valor específico para SIRS, septicemia, septicemia grave, choque septicémico o fallo multiorgánico.

Básicamente para la transformación de datos/normalización en el contexto de la presente invención se aplica también lo siguiente:

5 1ª Variante: (se propone en experimentos de PCR o también en pequeñas matrices diagnósticas como normalización)

Las señales de los genes control se agregan y a continuación se calcula la relación de las señales de los genes de prueba con respecto a la señal agregada de los genes control. En el caso de señales logarítmicas está constituida la relación entonces por la diferencia.

2ª Variante: (por ejemplo Huber *et al.* [19] en enfoques de "genoma completo" o matrices grandes) Las señales de los genes control se usan para estimar los parámetros de una transformación adecuada o la propia transformación.

A continuación se aplica esta transformación en los genes de prueba.

Otras ventajas y características de la presente invención resultan debido a la descripción de ejemplos de realización.

20 Ejemplo de realización 1

Identificación de genes control de sangre y de células sanguíneas

Medición de la expresión génica:

25

10

15

Se midió la expresión génica de 372 pacientes de unidad de cuidados intensivos (pacientes UCI). Todos los pacientes se trataron con medicina de cuidados intensivos. A este respecto se consideraron por paciente siete días en UCI como máximo. En caso de pacientes con más de siete días en UCI se seleccionaron sietes días al azar. En total se introdujeron los datos de 1261 experimentos de micromatrices en los análisis.

30

Las características seleccionadas de los pacientes están representadas en las tablas 4 y 5. Se realizan indicaciones con respecto a la edad, sexo y categorías ACCP/SCCM. Como muestras de referencia sirvieron el ARN total de líneas celulares SIG-M5. Todas las muestras de pacientes se hibridaron conjuntamente con la muestra de referencia respectivamente en una micromatriz.

35

Tabla 4: Datos generales de los pacientes

Número de pacientes (micromatrices)	372 (1261)
Mortalidad	94 (25,3 %)
Sexo [M/H]	113/259
Edad en años	68 (15)
APACHE-II	16 (9)
SAPS-II	32 (15)
SOFA	8 (4)
Duración de estar tumbado en días	8 (22)

Están indicados respectivamente la mediana y entre paréntesis el intervalo intercuartil (IQR)

40 Tabla 5: Indicaciones condicionadas por operación para el registro IST (es posible seleccionar una o más opciones)

Indicación	Número de pacientes
Vasos	153
coronarios	
Válvulas	65
Gastrointestinal	34
Tórax	17
Politraumatismo	13
Vasos	8
periféricos	
Urogenital	8
Neurocirugía	6

Descripción experimental:

Extracción de sangre y aislamiento de ARN

La sangre completa de los pacientes se extrajo en la unidad de cuidados intensivos de los pacientes por medio del kit PAXGene de acuerdo con las especificaciones del fabricante (Qiagen). Tras la extracción de la sangre completa se aisló el ARN total de las muestras usando el kit PAXGene Blood RNA de acuerdo con las especificaciones del fabricante (Qiagen).

Cultivo de células

5

10

15

20

25

30

35

50

55

60

Para el cultivo de células (muestras control) se usaron 19 criocultivos celulares (SIGM5) (congelados en nitrógeno líquido). Las células se inocularon respectivamente con 2 ml de medio Iscove (Biochrom AG) complementado con suero de ternero fetal (FCS) al 20 %. Los cultivos celulares se incubaron a continuación durante 24 horas a 37 ºC con un 5 % de CO2 en placas de 12 pocillos. Después se dividió el contenido de 18 pocillos en 2 partes con respectivamente el mismo volumen, de modo que finalmente estaban a disposición 3 placas del mismo formato (en total 36 pocillos). El cultivo se continuó a continuación durante 24 horas en las mismas condiciones. A continuación de esto se combinaron los cultivos resultantes de 11 pocillos de cada placa y se centrifugaron (1000 x g, 5 min, temperatura ambiente). El sobrenadante se descartó y el sedimento de células se disolvió en 40 ml del medio mencionado anteriormente. Estos 40 ml de células disueltas se dividieron en dos matraces de 250 ml en partes iguales y tras incubación de 48 horas y adición de 5 ml del medio mencionado anteriormente se incubaron de nuevo. De los 2 ml restantes de las dos placas que quedan se añadieron 80 ul en pocillos vacíos de las mismas placas, que ya estaban preparadas previamente con 1 ml del medio mencionado anteriormente. Tras incubación de 48 horas se procesó únicamente una de las placas de 12 pocillos tal como sigue: de cada pocillo se tomaron 500 μl y se combinaron. Los 6 ml que resultan de esto se añadieron en un matraz de 250 ml, que contenía aproximadamente 10 ml de medio fresco. Esta mezcla se centrifugó con 1000 x g durante 5 minutos a temperatura ambiente y se disolvió en 10 ml del medio mencionado anteriormente. El recuento de células posterior dio el siguiente resultado: 1,5 x 10⁷ células por ml, 10 ml de volumen total, número total de células: 1,5 x 108. Dado que el número de células aún no era suficiente se añadieron 2,5 ml de la suspensión celular mencionada anteriormente en 30 ml del medio mencionado anteriormente en un matraz de 250 ml (75 cm²) (en total 4 matraces). Tras un tiempo de incubación de 72 horas se añadieron respectivamente 20 ml de medio fresco en los matraces. Tras incubación siguiente de 24 horas se realizó el recuento de células tal como se describió anteriormente, que dio como resultado un número de células total de 3,8 x 108 células. Para conseguir el número de células deseado de 2 x 106 células se resuspendieron las células en 47,5 ml del medio mencionado anteriormente en 4 matraces. Tras un tiempo de incubación de 24 horas se centrifugaron las células y se lavaron dos veces con tampón fosfato sin Ca²⁺ y Mg²⁺ (Biochrom AG).

El aislamiento del ARN total se realizó por medio del kit NucleoSpin RNA L (Machery&Nagel) de manera correspondiente a las indicaciones del fabricante. El procedimiento descrito anteriormente se repitió hasta que se consiguió el número de células necesario. Esto era necesario para conseguir la cantidad necesaria de 6 mg de ARN total, lo que corresponde a una eficiencia de 600 µg de ARN por 10⁸ células.

Transcripción inversa / marcación / hibridación

Tras la extracción de la sangre completa se aisló el ARN total de las muestras usando el kit PAXGene Blood RNA (PreAnalytiX) de acuerdo con las especificaciones del fabricante y se sometió a prueba su calidad. De cada muestra se tomaron alícuotas de 10 µg de ARN total y junto con 10 µg de ARN total de células SIGM5 como ARN de referencia se transcribieron en ADN complementario (ADNc) con la transcriptasa inversa Superscript II (Invitrogen) y a continuación se eliminó de la mezcla el ARN mediante hidrólisis alcalina. En la mezcla de reacción se sustituyó una parte del dTTP por aminoalil-dUTP (AA-dUTP) para permitir más tarde el acoplamiento del colorante de fluorescencia al ADNc.

Tras la purificación de la mezcla de reacción se marcaron covalentemente el ADNc de las muestras y controles con los colorantes de fluorescencia Alexa 647 y Alexa 555 y se hibridaron en una micromatriz de la empresa SIRS-Lab. Sobre la micromatriz usada se encuentran 5308 polinucleótidos inmovilizados con una longitud de 55 - 70 pares de bases, que representan respectivamente un gen humano y puntos control para el control de calidad. Una micromatriz se subdivide en 28 submatrices con un patrón de 15x15 puntos.

La hibridación y el lavado o secado posterior se realizó en la unidad de hibridación HS400 (Tecan) según las indicaciones del fabricante durante 10,5 horas a 42 °C. La disolución de hibridación usada está compuesta de las respectivas sondas de ADNc marcadas, 3,5x SSC (1x SSC contienen cloruro de sodio 150 mM y citrato de sodio 15 mM), un 0,3 % de dodecilsulfato de sodio (V/V), un 25 % de formamida (V/V) y en cada caso 0,8 μg μl-1 cot-1 de ADN, ARN-t de levadura y ARN poli-A. El lavado posterior de las micromatrices se realizó con el siguiente programa a temperatura ambiente: en cada caso lavar durante 90 segundos con tampón de lavado 1 (2x SSC, un 0,03 % de dodecilsulfato de sodio), con tampón de lavado 2 (1x SSC) y finalmente con tampón de lavado 3 (0,2x SSC). Después se secaron las micromatrices bajo una corriente de nitrógeno con una presión de 2,5 bar a 30 °C durante 150 segundos.

Tras la hibridación se leyeron las señales de hibridación de las micromatrices con un escáner GenePix 4000B (Axon) y se determinaron las relaciones de expresión de los genes expresados de manera diferenciada con el software GenePix Pro 4.0 (Axon).

5 Evaluación:

15

25

30

35

45

Para la evaluación se determinó la intensidad promedio de un punto como el valor de mediana de los correspondientes píxeles de punto.

10 Preselección de muestras de genes:

Para una primera preselección de las sondas de genes se realizó la corrección de errores sistemáticos según el planteamiento de Huber *et al.* [5]. A este respecto se estimaron los sesgos estadísticos aditivos y los multiplicativos dentro de una micromatriz del 75 % de las muestras de genes existentes.

A continuación se evaluaron las relaciones normalizadas y transformadas de las señales de las muestras de pacientes contra los controles generales. Es decir, para el j-ésimo de la k-ésima matriz, el cálculo dio como resultado el valor

20
$$G_{j,k} = arcsen(Scy5(j,k)) - arcsen(Scy3(j,k))$$

en el que [Scy3(j,k), Scy5(j,k)] designa el correspondiente par de señales de fluorescencia. Para todas las sondas de genes se calculó a continuación la mediana de las desviaciones absolutas de la mediana (MAD), es decir MAD(G_{j,1}, ..., G_{j,1261}), y el 10 % de las sondas de genes se seleccionaron con la MAD más pequeña. Como segundo criterio para la preselección se consulta la intensidad de señal promedio arcsen(Scy5(j,k)) + arcsen(Scy3(j,k)). En los análisis posteriores se consideraron únicamente sondas de genes, cuya mediana de la intensidad de señal promedio se encontraba en el denominado intervalo de señal dinámico, preferentemente entre 6 y 8 (en la escala logarítmica).

Selección de los genes control:

Para las sondas de genes preseleccionadas se calcularon cantidades relativas, colocándose el valor de expresión más alto en 1. A continuación se calculó la medida de estabilidad génica M de Vandesompele et al. [6]. Por medio del procedimiento por etapas descrito igualmente en Vandesompele et al., en el que en cada etapa se separa el gen con la estabilidad más baja, se dispusieron las sondas de genes según su estabilidad. Como valor umbral superior para la selección de las sondas de genes sirvió de base el valor (redondeado) 0,6 para el valor promedio de la medida de estabilidad M (Tabla 6).

La definición matemática para la medida de estabilidad génica M era de acuerdo con Vandesompele et al.

Para cada combinación de dos genes control internos j y k, se proporciona una matriz A_{jk} de m elementos, que está constituida por las relaciones de expresión transformadas con log₂ a_{ij}/a_{ik} (ecuación 1). La variación por parejas V_{jk} para los genes control j y k se define además como desviación estándar de los elementos A_{jk} (ecuación 2), siendo SD la desviación estándar. La medida de estabilidad génica M_j para el gen control j es entonces la media aritmética de todas las variaciones por parejas V_{ik} (ecuación 3):

(para todas las j,k se aplica \in [1,n] y j \neq k):

$$A_{jk} = \left\lceil \log_2\left(\frac{a_{1j}}{a_{1k}}\right), \log_2\left(\frac{a_{2j}}{a_{2k}}\right), \dots, \log_2\left(\frac{a_{mj}}{a_{mk}}\right) \right\rceil = \left\lceil \log_2\left(\frac{a_{ij}}{a_{ik}}\right) \right\rceil_{i=1,\dots,m}$$
(1)

$$V_{jk} = SD_i(A_{jk}) \tag{2}$$

$$Mj = \frac{\sum_{k=1}^{n} V_{jk}}{n-1} \tag{3}$$

Se determinó una agrupación de 76 secuencias específicas con actividad génica no modificada que corresponden a las SEC ID N.º 22 a SEC ID N.º 97, que son parte constituyente del protocolo de secuencias adjunto.

Tabla 6: genes control (base de ARN) determinados y sus valores de estabilidad

Tabla 6		RN) determinados y sus valores (de estabilidad	
Sec	Número de registro	MAD de las relaciones de	Mediana de las intensidades	Estabilidad
ID	GenBank	señales	promedio	M
22	NM_024081	0,200	7,190	0,368
23	AA398364	0,179	6,730	0,385
24	N34546	0,171	6,265	0,401
25	AA659421	0,212	7,127	0,380
26	AA682479	0,218	6,209	0,373
27	AK024118	0,172	6,601	0,457
28	AA923316	0,197	6,891	0,374
29	BM309952	0,205	7,533	0,417
30	AI093653	0,156	7,120	0,355
31	Al131415	0,156	6,881	0,413
32	Al263527	0,173	6,614	0,379
33	AA282242	0,181	6,758	0,381
34	CR740270	0,191	6,360	0,346
35	BG191861	0,191	6,292	0,377
		·		
36	Al301257	0,244	6,039	0,401
37	Al310464	0,202	6,229	0,423
38	AW964023	0,204	6,776	0,380
39	Al351933	0,171	6,478	0,414
40	AA100540	0,196	7,180	0,365
41	Al362368	0,199	6,967	0,397
42	Al817134	0,167	6,592	0,362
43	Al381377	0,193	6,179	0,401
44	Al520967	0,188	6,534	0,386
45	AA253470	0,182	7,002	0,365
46	AI559304	0,195	7,408	0,369
47	Al565002	0,182	7,149	0,381
48	Al587389	0,197	7,006	0,355
49	Al609367	0,206	6,648	0,354
50	Al635278	0,200	6,629	0,427
51	AI702056	0,208	6,370	0,391
52	Al707917	0,177	6,392	0,414
53	Al733176	0,209	6,211	0,411
54	AI769053	0,210	7,570	0,383
55	AI798545	0,167	7,289	0,394
56	Al801425	0,174	6,780	0,406
57	Al801595	0,188	7,061	0,409
58	Al809873	0,200	7,207	0,413
59	Al862063	0,173	7,001	0,347
60	Al923251	0,197	7,085	0,359
61	Al925556	0,178	6,924	0,329
62	Al932551	0,177	7,191	0,329
63			7,191	0,409
64	Al932884 Al933797	0,182 0,204	6,834	0,409
65	AI933967	0,193	7,007	0,443
66	Al935874	0,203	7,166	0,388
67	H06263	0,169	7,140	0,337
68	H22921	0,241	6,445	0,408
69	H54423	0,175	7,046	0,385
70	N22551	0,205	6,830	0,387
71	N73510	0,181	7,084	0,388
72	R06107	0,164	7,067	0,352
73	R42511	0,212	6,110	0,371
74	R43088	0,215	6,067	0,398
75	NM_181705	0,208	6,821	0,383
76	R92455	0,203	6,629	0,410
77	R93174	0,211	7,164	0,358
78	T77995	0,201	7,251	0,423
79	T79815	0,197	7,270	0,417
80	T83946	0,196	7,388	0,363
81	T95909	0,177	7,109	0,414
	-	- /	,	-, -

82	T98779	0,186	6,964	0,416
83	AK127462	0,198	6,784	0,367
84	W80744	0,194	6,995	0,364
85	W86575	0,236	6,761	0,438
86	AJ297560	0,175	7,063	0,380
87	NM_001562	0,192	7,021	0,516
88	BU629240	0,214	6,696	0,401
89	NM_001228	0,235	6,286	0,423
90	NM_001993	0,192	6,874	0,451
91	NM_002209	0,201	7,676	0,425
92	NM_002392	0,197	6,969	0,431
93	NM_000587	0,199	6,848	0,334
94	NM_004379	0,222	7,135	0,415
95	BC002715	0,182	6,685	0,502
96	NM_003082	0,214	6,327	0,469
97	AA664688	0,192	6,610	0,396

Ejemplo de realización 2

10

5 Ensayo de estabilidad de los genes control por medio de ensayos de expresión génica de pacientes con y sin septicemia.

Se muestra en este ejemplo de realización que los genes control determinados en el primer ejemplo de realización son estables también en pacientes tratados con medicina de cuidados intensivos con y sin septicemia. Para ello se consideraron datos de micromatrices de 118 pacientes. En total se analizaron 394 días de paciente (micromatrices), considerándose como máximo siete días por paciente.

Tabla 7: Datos generales de los pacientes

Número de pacientes (micromatrices)	118 (394)
Mortalidad	31 (26,3 %)
Sexo [M/H]	41/77
Edad en años [mediana (IQR)]	68,5 (14,8)

15 Tabla 8: Distribución de los días de paciente según la categoría ACCP/SCCM así como otros parámetros diagnósticos

	Pacientes UCI*	SIRS	Septicemia	Septicemia grave	Choque septicémico
Número de días	33	158	24	90	89
Puntuación SOFA	7 (3)	7 (4)	6 (3,25)	8 (4)	10 (3)
Número de ODF	2 (2)	2 (1)	1,5 (1)	3 (2)	3 (2)
PCT [ng/ml]	1,6 (3,8)	1,8 (5,4)	1,2 (5,1)	2,5 (4,9)	6,4 (11,5)
CRP [mg/l]	144 (53,9)	112,5 (106,4)	141 (87,1)	133 (105,9)	170 (146)
WBC [no/l]	7750 (4075)	11100 (7100)	13350 (8800)	12900 (6675)	16100 (10600)

^{*} pacientes tratados con medicina de cuidados intensivos que no han desarrollado SIRS o septicemia Está indicado respectivamente la mediana y entre paréntesis el intervalo intercuartil (IQR)

Para demostrar la aplicabilidad de los genes control por medio de una comparación de pacientes con SIRS y septicemia se seleccionaron los siguientes genes de prueba (véase la tabla 9).

Tabla 9: Genes de prueba para la comparación de pacientes con SIRS y septicemia

Table 6. Contro de praesa para la comparación de paciónico con circo y depliconia			
Nombre	Número de registro GenBank	Bibliografía	Sec ID
CARD8	NM_014959	[7]	98
CCBP2	NM_001296	[8]	99
CCL26	NM_006072	[9]	100
FADD	NM_003824	[10]	101
IL6R	NM_181359	[11]	102
ITGB2	NM_000211	[12]	103
MAPK3	NM_002746	[13]	104
MYD88	NM_002468	[14]	105
TNF	NM_000594	[15]	106
TREM1	NM_018643	[16]	107

25 Estos genes de prueba se han descrito en la bibliografía científica en relación con septicemia.

Para los análisis estadísticos se seleccionaron 6 pacientes con SIRS grave (SIRS + disfunciones orgánicas) y 9 pacientes con septicemia grave (septicemia + disfunciones orgánicas) (tabla 10).

5 Tabla 10: Características seleccionadas de los pacientes con SIRS y septicemia

	SIRS grave	Septicemia grave
Número de	6	9
pacientes		
Mortalidad	0 (0 %)	5 (55,6 %)
Sexo [H/M]	4/2	7/2
Edad [años]	70,5 (7)	74(7)
Puntuación SOFA	8 (2,25)	10 (4)
Número de ODF	3,5 (1,75)	3 (1)
PCT [ng/ml]	3,1 (5,5)	28,2 (38,8)
CRP [mg/l]	71,2 (15,6)	206 (180)
WBC [no/l]	14250 (3800)	15800 (4600)

Está indicado respectivamente la mediana y entre paréntesis el intervalo intercuartil (IQR).

La normalización de los diez genes de prueba se realizó por medio de los siguientes cinco genes control seleccionados al azar. Para ello se usa el procedimiento de Vandesompele *et al.* [6] (tabla 11).

Tabla 11: Genes control seleccionados (conjunto 1)

1 4014 1 11 001100 00111101 00100010114400 (
Número de registro	Sec ID				
GenBank					
Al263527	32				
AW964023	38				
Al933797	64				
T98779	82				
NM_004379	94				

Una comparación por medio de la prueba de t de dos muestras al azar proporcionó el siguiente resultado (tabla 12)

15 Tabla 12: Actividad génica de los genes de prueba normalizados con el conjunto 1 de los genes control

Table 12. 7 totivie	Table 12: Netividae gerilee de lee gerilee de proced hermalizades cen el ce						
Símbolo de	Sec ID	SIRS media	Septicemia media	Valor de p			
gen							
CARD8	98	1,85	4,32	0,045			
CCBP2	99	1,25	2,69	0,004			
CCL26	100	1,52	2,69	0,041			
FADD	101	1,26	3,45	0,028			
IL6R	102	1,58	2,15	0,175			
ITGB2	103	1,04	2,60	0,074			
MAPK3	104	1,26	2,49	0,052			
MYD88	105	1,11	2,34	0,025			
TNF	106	1,41	2,47	0,055			
TREM1	107	1,09	1,52	0,154			

Para demostrar la reproducibilidad de los resultados se repitió la comparación estadística, seleccionándose al azar de nuevo cinco genes control (conjunto 2) (tabla 13)

20 Tabla 13: Genes control (conjunto 2)

Número de registro GenBank	Sec ID
Al609367	49
AI862063	59
H06263	67
R92455	76
BC002715	95

Tras la normalización por medio del procedimiento de Vandesompele et al. se obtienen los siguientes resultados para la prueba de t de dos muestras al azar (tabla 14):

Tabla 14: Actividad génica de los genes de prueba normalizados con el conjunto 2 de los genes control

Símbolo de	Sec ID	SIRS media	Septicemia media	Valor de p
gen				
CARD8	98	1,67	3,71	0,029
CCBP2	99	1,15	2,35	0,001
CCL26	100	1,37	2,34	0,033
FADD	101	1,15	2,98	0,015
IL6R	102	1,44	1,88	0,210
ITGB2	103	0,97	2,27	0,050
MAPK3	104	1,15	2,34	0,065
MYD88	105	1,03	2,05	0,028
TNF	106	1,28	2,20	0,057
TREM1	107	0,99	1,34	0,145

Los resultados muestran una reproducibilidad muy buena de los resultados. En las dos comparaciones, los marcadores idénticos son significativos hasta el nivel del 5 % o el 10 %.

Ejemplo de realización 3

Determinación de los valores de estabilidad de genes control seleccionados mediante sus cebadores específicos por medio de PCR en tiempo real

Aislamiento de ARN

A partir de sangre completa se aisló ARN con ayuda del kit PAXgene (PreAnalytiX) según las indicaciones del fabricante.

15 PCR con transcriptasa inversa cuantitativa (RT-PCR)

Mediante transcripción inversa se transcribieron con ayuda de un cebador de oligo-dT ARNm, independientemente de su secuencia, en ADNc. Las cadenas de ADNc que se producen a este respecto de manera complementaria al ARNm usado se usaron a continuación como moldes para distintas reacciones de PCR.

20

25

30

5

10

- a) Para la mezcla de reacción se pipetearon conjuntamente los siguientes componentes:
 - μg de ARN concentrado
 - 10 μl de H₂O
 - 1 μl de dNTP (dGTP, dATP, dCTP, dTTP)
 - 1 μ l de oligo dT (0,5 μ g/ μ l)
- b) 5 min a 70 °C, a continuación 5 min hasta hielo
- c) A continuación se añadió la siguiente mezcla:
 - 4 μl de tampón RT
 - 2 μl de DTT 0,1 M
 - 1 μl de ARNasa out (inhibidor de ARNasa)
 - 1 μl de transcriptasa inversa SuperScript
- 35 d) Incubar durante 1 h a 42 °C
 - e) Incubar durante 15 min a 70 °C

Reacción en cadena de la polimerasa

40

Con ayuda de la PCR se amplificó la sección de ADN seleccionada y se cuantificó a continuación y con ello se determinó la intensidad de la expresión génica de los genes control:

Para la PCR se usó el sistema de AccuPrime Tag ADN polimerasa de Invitrogen.

45

Para una mezcla de 25 µl se pipetean conjuntamente los siguientes componentes en un tubo de 200 µl:

- 2,5 µl de 10X tampón para PCR AccuPrime
- 20 μl de ARNasa libre de H₂O
- 1 μl de molde de ADN diluido 1:10 (aproximadamente 0,82 ng/μl)
- $1\,\mu l$ de mezcla de cebadores (en cada caso 0,5 μl de cebadores directos/inversos que corresponden a la tabla 2)

$0.5 \mu I$ de AccuPrime Taq ADN polimerasa

Se realiza el siguiente programa en el termociclador de PCR en tiempo real (corbett research RG 3000):

5	94 °C	2 min
	94 °C	30 s]
	58 °C	30 s 30 s 1 min 30 ciclos
	68 °C	1 min ∫
	68 °C	2 min

En primer lugar se desnaturalizó completamente a 94 °C el molde de ADN y se activó la enzima. A continuación siguieron 30 ciclos de amplificación que están constituidos por desnaturalización a 94 °C, apareamiento a 58 °C y elongación a 68 °C. A continuación de la PCR se aplicaron las muestras en un gel de agarosa al 1,5 % para comprobar a través del tamaño de los fragmentos la autenticidad de los productos.

Tabla 15: Valores de estabilidad de genes control seleccionados (base de ARN) determinados mediante cebadores específicos y PCR en tiempo real

Sec ID	Número de registro GenBank	Estabilidad M
87	NM_001562	1,1028295
89	NM_001228	1,0377301
90	NM_001993	1,9214240
91	NM_002209	1,1226082
93	NM_000587	1,1679851
95	BC002715	1,1285312
96	NM_003082	0,9456845

Bibliografía

10

15

20

35

45

50

[1] Warrington JA, Nair A, Mahadevappa M, et al., Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes., Physiol Genomics. 27 de abril de 2000;2(3):143-7

[2] Documento US 10/551.874, Method for recognising acute generalized inflammatory conditions (SIRS), Sepsis, Sepsis-like conditions and systemic infections

[3] O'Dwyer MJ. Mankan AK, Stordeur P, The occurrence of severe sepsis and septic shock are related to distinct patterns of cytokine gene expression. Shock. Diciembre 2006;26(6):544-50.

30 [4] Bone RC, Balk RA, Cerra FB, *et al.* (1992) The ACCP/SCCM Consensus Conference Committee (1992) Definitions for Sepsis and organ failure and guidelines for the use of innovative therapies in Sepsis. Chest 101:1656-1662; y Crit Care Med 1992; 20: 864-874.

[5] Huber W, Heydebreck A, Sueltmann H, et al. (2003) Parameter estimation for the calibration and variance stabilization of microarray data. Stat. Appl. in Gen. and Mol. Biol.. volumen. 2, número 1, artículo 3

[6] Vandesompele J, De Preter K, Pattyn F, et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averiging of multiple internal control genes. Genome Biology 2002, 3(7):research0034.1-0034.11

[7] Razmara M, Srinivasula SM, Wang L, *et al.*, CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem. 19 de abril de 2002;277(16):13952-8. Epub 30 de enero de 2002.

[8] Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev. Diciembre de 2005;16(6):553-60. Epub 20 de enero de 2005.

[9] Yamamoto T, Umegae S, Kitagawa T, Matsumoto K. Intraperitoneal cytokine productions and their relationship to peritoneal sepsis and systemic inflammatory markers in patients with inflammatory bowel disease. Dis Colon Rectum. Mayo de 2005;48(5):1005-15.

[10] Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL. Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J. Abril de 2001;15(6):879-92.

[11] Andrejko K.M., Chen J., and Deutschman C.S. Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat. Am J Physiol Gastrointest Liver Physiol 275: G1423-G1429, 1998.

- [12] Piguet P.F., Vesin C., Rochat A. β2 Integrin modulates platelet caspase activation and life span in mice. European Journal of Cell Biology, volumen 80, número 2, Febrero de 2001, págs. 171-177(7).
- [13] Riedemann NC, Guo RF, Hollmann TJ, *et al.*, Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. FASEB J. Febrero de 2004;18(2):370-2. Epub 19 de diciembre de 2003.
 - [14] Weighardt H, Kaiser-Moore S, Vabulas RM, et al., Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J Immunol. 15 de septiembre de 2002;169(6):2823-7.
- 10 [15] Hedberg CL, Adcock K, Martin J, *et al.*, Tumor necrosis factor alpha -- 308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J. Mayo de 2004;23(5):424-8.
- [16] Gibot S, Kolopp-Sarda MN, Bene MC, *et al.*, A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med. 6 de diciembre de 2004;200(11):1419-26.
 - [17] Brazma A, Hingamp P, Quackenbush J et al., Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nature Genetics 29, 365 371 (2001)
- 20 [18] Rocke DM, Durbin B, A model for measurement error for gene expression arrays., J Comput Biol. 2001;8(6):557-
 - [19] Huber W, Heydebreck A, Sueltmann H, Variance stabilization applied to microarray data calibration and to the quantification of differential expression., Bioinformatics. 2002;18 supl. 1:págs. 96-104.

Protocolo de secuencias

	<110> SIRS-lab GmbH	
5	<120> Genes control para la normalización de datos de análisis de expresión génica	
	<130> SL0630	
10	<140> <141>	
	<160> 107	
15	<170> Patent Prepare 0.5.2	
	<210> 1 <211> 67 <212> ADN <213> Homo sapiens	
20	<400>1 gagttagagg ccagcctggc gaaaccccat ctctactaaa aatacaaaat ccaggcgtgg	60
	tggcaca	67
25	<210> 2 <211> 69 <212> ADN <213> Homo sapiens	
	<400>2 ttataggtgt gagctactgt acccagcctt aacctgtttc acagttgatt atacttcatg	60
30	ctgttttcc	69
35	<210> 3 <211> 69 <212> ADN <213> Homo sapiens	
	<400>3 ccacactacc acattaaaaa aattagaaag tagccacgta tggtggctca tgtctataat	60
	cccagcact	69
40	<210> 4 <211> 64 <212> ADN <213> Homo sapiens	
45	<400>4 cccaaatgct gggattacag acatgaacca ccacgcctgg ctggaatact tactcttgtc	60
	ggga	64
50	<210> 5 <211> 65 <212> ADN <213> Homo sapiens	
	<400>5 acgtagatag aggtggagac aggaaaaaga ctaagccaga cgtggtggct cacacctgta	60
55	atccc	65
	~210~6	

	<211> 70 <212> ADN <213> Homo sapiens	
5	<400>6 gttcaaaacg aagactagct attaaaattt catgccgggc gcagtggctc acgcctgtaa	60
	tcccagccct	70
10	<210> 7 <211> 70 <212> ADN <213> Homo sapiens	
	<400>7 cttggcctcc caaagtgcta gtattatggg cgtgaaccac catgcccagc cgaaaagctt	60
15	ttgaggggct	70
15	<210> 8 <211> 19 <212> ADN <213> Homo sapiens	
20	<400> 8 tgacagagcc agtgggaag	19
25	<210> 9 <211> 19 <212> ADN <213> Homo sapiens	
30	<400>9 aggtgtgagc tactgtacc	19
35	<210> 10 <211> 20 <212> ADN <213> Homo sapiens	
	<400> 10 gctaaattcc acactaccac	20
40	<210> 11 <211> 20 <212> ADN <213> Homo sapiens	
45	<400> 11 ccacgctcgt ctccaactcc	20
50	<210> 12 <211> 20 <212> ADN <213> Homo sapiens	
	<400> 12 cactgtgcct gagctctgac	20
55	<210> 13 <211> 20 <212> ADN <213> Homo sapiens	
60	<400> 13	

	gatgaattgg gggatagatc	20
5	<210> 14 <211> 19 <212> ADN <213> Homo sapiens	
10	<400> 14 gagatggggt ttcaccatc	19
45	<210> 15 <211> 19 <212> ADN <213> Homo sapiens	
15	<400> 15 caattctcct acctcaacc	19
20	<210> 16 <211> 19 <212> ADN <213> Homo sapiens	
25	<400> 16 ggattacagg catgcaacc	19
30	<210> 17 <211> 20 <212> ADN <213> Homo sapiens	
	<400> 17 ttgagtgcag cggtgtgaac	20
35	<210> 18 <211> 21 <212> ADN <213> Homo sapiens	
40	<400> 18 ccacagcata atgaattctg c	21
45	<210> 19 <211> 20 <212> ADN <213> Homo sapiens	
50	<400> 19 tgttggccag gctggtttcg	20
	<210> 20 <211> 19 <212> ADN <213> Homo sapiens	
55	<400> 20 cctgacctct ggtgatctg	19
60	<210> 21 <211> 21 <212> ADN <213> Homo sapiens	
	<400> 21	

21 ttagaaaagt cctagaaatg c <210> 22 <211> 2015 5 <212> ARN <213> Homo sapiens cccggaccga ggcaggacct cacccgcgc gtgttccccg ggcgcccctc tgcgaacccc 60 aggcccttcc caggtttgcg cgcgggggcc atccagaccc tgcggagagc gaggcccgga 120 gcgtcgccga ggtttgaggg cgccggagac cgagggcctg gcggccgaag gaaccgcccc 180 aagaagagcc tctggcccgg gggctgctgg aacatgtgcg gggggacaca gtttgtttga 240 cagttgccag actatgttta cgcttctggt tctactcagc caactgccca cagttaccct 300 ggggtttcct cattgcgcaa gaggtccaaa ggcttctaag catgcgggag aagaagtgtt 360 420 tacatcaaaa gaagaagcaa actttttcat acatagacgc cttctgtata atagatttga 480 tctqqaqctc ttcactcccq qcaacctaqa aaqaqaqtqc aatqaaqaac tttqcaatta 540 tgaggaagcc agagagattt ttgtggatga agataaaacg attgcatttt ggcaggaata 600 ttcagctaaa ggaccaacca caaaatcaga tggcaacaga gagaaaatag atgttatggg ccttctgact ggattaattg ctgctggagt atttttggtt atttttggat tacttggcta 660 720 ctatctttgt atcactaagt gtaataggct acaacatcca tgctcttcag ccgtctatga 780 aagggggagg cacactccct ccatcatttt cagaagacct gaggaggctg ccttgtctcc 840 attgccgcct tctgtggagg atgcaggatt accttcttat gaacaggcag tggcgctgac cagaaaacac agtgtttcac caccaccacc atatcctggg cacacaaaag gatttagggt 900 atttaaaaaa tctatgtctc tcccatctca ctgactacct tgtcattttg gtataagaaa 960 tttgtgttat ttgataggcc gggcatggtg gctcatgcct gtaatcccag cactttggga 1020 1080 ggccaggagt tcgagaccag cctggccaac atggtgaaac ccggtctcta ctaaaaattc aaaaattacc taggcgtcat ggggcatgcc tgtagtccca cctacttggg aggctgaagc 1140 aggagaattg ctcgaacctg ggaggcagag gttgcagtaa gctgagatca cgccactgca 1200

ttccagcctg ggcgacagag caagactcca tctcaaaaat aaaataaaaa aagaaagaaa

gaaaagaaga agaaagaga agaaggagaa ggagatgaag gaggaggagg aggagaagga gaagaagaag aagaagaaga ccacaaaaga catgactatc caacttttta tgacaaactg

caaggaataa aggaagaata agtccatgta ctgtaccaca gaagttctgt ctgcatcttg

23

1260

1320

1380

	gaccigaaci	tgattattat	cagcitgata	agagacttt	tgactctata	tccttgcagt	1300
	taagaagaaa	gcacttttt	gtaatgtttg	ttttaatggt	tcaaaaaaaa	tctttcttat	1560
	aaagagcata	ggtagaatta	gtgaactctt	tggatccttt	gtacagataa	aggttataga	1620
	tttcttgtgt	tgaatattaa	aaaagcaagg	atgtctaacc	attaagatta	tccaaagtca	1680
	ggctgggcgc	agtggctcac	gcctgtaatc	ccagcacttt	gggagggata	ggtgggcgga	1740
	tcacctgagg	tcaggagttt	gagaccagcc	tggccaacat	ggcaaaaccc	cgtctctaca	1800
	aaaatacaaa	agaaattagc	cagacatgat	ggcgggtgcc	tctaatccca	gctactgggg	1860
	aggctgaggt	gggagaatcg	cttgaactcg	ggaggtggag	gttgtagtga	ggcgagattg	1920
	tgccattgca	ctccaacctg	ggcgacagag	tgagactcca	tctcaaaaaa	aaaaaaaaa	1980
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaa			2015
5	<210> 23 <211> 356 <212> ARN <213> Homo sa	apiens					
	<400> 23 gttttgtttg	ttttgtttt	ttttttaata	tttttaaga	gctgtaaaga	aggagaagag	60
	gaatgagaaa	atgagaaaga	attattatta	ttattggtgg	tagtagtgat	agagactgta	120
	tgtggcctat	aaaggctaac	atattcactg	tctgaccctt	tagagaaagt	ttgtcaaccc	180
	ctggcctaga	acatgggtgg	cttcttacta	gggctcagta	agtgtctgaa	tgaaggaagg	240
	aacagtttaa	aactcagctt	tgccgggcgc	agtggctcac	gcctgcaatc	ccagcaccct	300
4.0	gggaggccga	ggcgggcgga	tcatgaggtc	aggagttcga	gaccagcccg	gccaac	356
10	<210> 24 <211> 451 <212> ARN <213> <i>Homo</i> sa	npiens					
15	<400> 24	agttcttact	atottoccca	aacaaatete	aaactcctnn	attcaaacaa	60
		tcactctccc					120
		actgtctaga	5 5 55	5	5 5 55	5	180
		ctttgtggca	-				240
		agattacata	_	_			300
		ctcagcgaat	_		_		360
	attcaacctt	ttactcaatc	ctgaatcatc	tgtataaatt	ggaaataaca	gttgtcatac	420
	aaactttaag	taattccttc	actgggtacc	n			451
20	<210> 25 <211> 397 <212> ARN <213> Homo sa	apiens					
	<400> 25						

	ttttttttt	tttttgagac	gtagtctttc	tctgtcacct	aggttgaagt	gcagtggtgc	60
	aatcttggct	cactgcaacc	tccacctccc	aggttgaagc	gattctcctg	cctcagcctc	120
	ctgagtagct	gggattacag	gcatgcacca	tcacacctga	ctttgtattt	ttagtagaga	180
	cggggtttcg	ccatgttgcc	aggctggtct	caaactcctg	agctcagcca	atctgcccgc	240
	cttggcctcc	caaaatgctg	ggattacagg	cgtgacacta	gtgcctggcc	tggtctttca	300
	gtaccatata	caagcctgca	ataaatctgt	ttagacataa	tgtcatagaa	gtgagtgtat	360
	ctgtgggaca	aatccctaga	attgctgggt	caaaggg			397
5	<210> 26 <211> 457 <212> ARN <213> Homo sa	piens					
	<400> 26 tgaccaggat	ctcactcagt	cactcaggct	agagtgcagt	ggcatgatca	tggctcacca	60
	cagacttgac	ctcccagact	caggtgattc	tcccacctca	gcctcccgag	tagctacgac	120
	tacaggcgtg	cgccaccacg	cctggactaa	tttttccata	gaaacggggt	tttaccatgt	180
	tgccccaggc	tggtctcgaa	ctcttgtgct	taagagatcc	tcctgcctca	cactcccaaa	240
	gtgctgggat	tacaggtgtg	agccacggtg	cctggcctat	actatctctt	tcaactctct	300
	caataactta	caaatgaaga	aactagggct	tacagaggtt	aagggttaag	taggggcaca	360
	tggtaggaaa	tcagaattct	aacctacatc	tatgcaaccc	cgacatctgt	gctccttcca	420
	ttccattaaa	aacatgtagg	ctgcaaaaaa	ccacagg			457
10	<210> 27 <211> 2811 <212> ARN <213> Homo sa	piens					
15	<400> 27	atatatacat	aaaaaaaaa	ttaacaataa	ctaaacctaa	3C44444343	60
				ttgacagtga gaaaggacag			120
				cgaatgtgag			180
				aaaaatgata			240
				tacatgtgat			300
				aagccttaga			360
				ctttcccctc			420
				aaatgctact			480
				aaggtaatct			540
				caaagcttgg			600
				ttagtattgt			660
	cctctatgtg	tgactctagg	tcttacaaaa	tcaaggtgtc	ctttctcatt	gagacttcct	720

tattaataaa	atatttcttc	tattaaattc	aacctggcac	caagcatagt	aggtaatagg	780
cacacacaat	gactgtttat	tgaatgaatg	aataaaatga	ttatgttagg	gcattctgag	840
caattcatcc	taagcagcta	attttctcct	acttctttta	ttatagtgtg	tgtttgtgtg	900
tgtgtgtgtg	tgtgtctgaa	atgtcccatc	ctacaggttc	attaatattt	aatagaaatg	960
aaagaagaaa	aatacctatt	aagtgttttg	atttcatcct	tttcattgaa	ttgaaaaagt	1020
atatcattta	ttcctgaaga	gaaatctaga	ttttgctcta	tattaaacat	ttgacattta	1080
ttggtcctta	atgctaatat	agataccagc	ctgctggttg	tcacattcta	tctgtttata	1140
cgaaggttgt	agacacacag	cgtatgtaca	tatgcctagt	tgctctcatt	ccttttgttt	1200
cacatctcaa	gcctaaccca	gactgaaaag	gttttgaagg	ctgagattat	tcatcacccc	1260
atcattatag	aaagcagggc	tggcccaagg	ttctcacagt	gggagcaagg	tggattttaa	1320
ctctgatcag	tgttgtagct	caaatataaa	aagaactgca	gcacaaaagt	cacaaggata	1380
aatgatcccc	tcgttcttct	cccataaaaa	taagcagcca	attgaaggtg	gaagtcagta	1440
cagtgcggca	ttcccagagg	cgacagaacc	taagattcca	tttctaaaga	cactgctcaa	1500
caagaagacc	acctgggatg	tcttacataa	aaccattggc	ctggcagctt	ttggctgagt	1560
tctctattct	ggttcaagcc	agcatcacag	cctatctgtg	gttttaacaa	ctgatggaat	1620
ttgtattttg	agaaccctca	tccgttagca	tgaagcaaac	tcaaagcatt	gttgctcatc	1680
agttgtcatc	tgtttgagaa	agattttgat	ttgtttactt	gtagtgaagc	ttgaccatac	1740
ttctccaggg	gctttttaaa	aagatgaatg	tgtcagcttg	tagatttgtc	cccatgaatg	1800
aaaccacaag	caaattctct	tctctcttcc	agcctccctt	cctccctctt	gtttcttcag	1860
tggccatctg	tgcattatgt	tcccattgcc	aggccctctt	caagcagctt	atctatgagt	1920
gaattcagaa	acttcaaatt	ataaaggaca	cccagataat	tggcctgttc	tccaaagtat	1980
ctgtcccctg	tgctgctgcc	agattccttc	ttaatgaata	catccagtga	cagtgggatt	2040
cttgagcttg	tccgtatctg	tgagaaaatg	agctctcctg	ctttgtaaca	gcttgtggct	2100
cagggaaaaa	aatgacagcc	attgcacaag	tttcctttga	atgtagtttt	ctttcccata	2160
aatgatactt	tgagaataca	gttaaggggt	tattagtttt	ctatttcatg	cctggcctgt	2220
gtgtgagaat	aacacaagct	gtcactgcaa	atcagtagct	aaaaatgctt	tgtctggtta	2280
atgtgaacat	ttaatatttg	gctcaattaa	aaattaaccg	atgaaagtac	atgtcattgg	2340
aatttgaaaa	taccttttgt	acggaatact	taaagggcat	cacccatgac	taaaccagtg	2400
cttttaaaat	atggagaata	tggggaaatt	taatatgagt	tgggatactt	gactctttt	2460
taaaacctct	ctacctgttt	ggcacaacag	ggtattgata	aagagtgggc	tcattgttat	2520
ggcaaaggat	tcacttgcat	ctctgtgttt	ttaagtgggt	aattgttttt	ttgcactcag	2580
tcacatgatt	aaagcagaca	gaacaagaga	tcagttattc	atttatacca	tacttttaaa	2640
aaaatattga	gccaggccct	ggggaagtgg	gaagtgagag	ccagagcggc	gtggctgata	2700
gtctagggca	gtgctatcca	atcttttggc	ttccctgggc	cacattggaa	gaagaagaat	2760
tgtcttgggc	cacacgtaaa	atacgctaac	acgaatgata	gctgatgagc	t	2811

_	<210> 28 <211> 394 <212> ARN <213> Homo sa	apiens					
5	<400> 28	acaaaatcat	ccccatcacc	caagetggaa	cacataatat	agateteage	60
		acggagtcgt					120
		ctctgcctcc					
		gaagcgcgcc		_			180
						cccgcctcgg	240
		tgctgggatt					300
	taagagacta	aacataggaa	agctaggaga	tcttgtgtgg	tggcaggttt	cttctgccac	360
	tcaggggtag	gacactgggg	cagggggagt	ggcc			394
10	<210> 29 <211> 497 <212> ARN <213> Homo sa	apiens					
	<400> 29 gcacgagaag	agtctcattc	caggaaccct	ttgtagttag	ttggctggca	tgtttacttg	60
	ctgctgtagc	cagccaagat	gagtgcacct	aggccctcaa	aaaggatttt	ttttacctc	120
	aatctagcct	gaccctcata	tctgtggttg	cctctgagac	gaacatccat	gctagtataa	180
	aaatagttag	gaatgccctt	ggcagaactg	aagctcttat	taaatggtgg	acagagctct	240
	tgccagcttt	gatccagccc	ctcagtctcg	gagttatggg	gcagggttgg	ggggcagtgc	300
	tacactgtaa	agaatttcca	ggctgggcgc	ggtggctcat	gcctgtaatc	ccagcacttt	360
	gggaggccga	ggagggcgga	tcacaaggtc	aagagattga	gatcatcctg	gccaacatgg	420
	tgaaactccg	tctctactaa	aaatacaaaa	attagctggg	catggtggca	cgtgcctgta	480
15	gtcccagcta	cttggga					497
20	<210> 30 <211> 206 <212> ARN <213> Homo sa	apiens					
	<400> 30 tgagacagtg	tcttactcag	ttgggactac	aagtgtgtgc	caccatgccc	ggctatctta	60
	tctacctatc	gacctgagac	agggtctccc	cttctgttgc	ctgggctgga	gtgcaccggt	120
	gtgatctcgg	ctccctatag	cctccacctc	ttgggcccaa	gtgatcctcc	aacctcagtc	180
	tcacgagtag	ctgggattac	agctgc				206
25	<210> 31 <211> 376 <212> ARN <213> Homo sa	apiens					
20	.400. 04						

	ttttttttt	taagtgtcag	tgttcataaa	ggcccttttt	ctttttcaag	gatgggtata	60
	aagtgttact	cggccgaacg	cggtggctca	cacctgtaat	tccaacactt	tgggattaca	120
	ggcgtgagcg	accgcgccca	gccgaacttc	tgcctcttaa	atccagggtt	ctccctgtca	180
	gtacagtgag	gtggtaacta	gcaaaagcta	tgagatatga	ctgcctgggt	acatatccca	240
	gctctttcac	ttatctttgt	ggctttacgc	aaattactta	acctcttat	gattgtttct	300
	tcatttgtaa	aaggaagata	ataacagtgc	ctatatatag	ggtttttatg	aagaataaat	360
	gagatagtat	atataa					376
5	<210> 32 <211> 337 <212> ARN <213> Homo sa	apiens					
	<400> 32 ttttttttt	ttttatttt	agacaaagtc	ttgctctatt	gcccaggctg	tagtgcagtg	60
	gcacaatcat	agctcactat	aaccctcgac	ctcccgggct	caagcaatcc	tcccacctca	120
	gcctcccgaa	tagctgggac	tacaggcatg	caccaccaag	cctggctaat	ttgctatttt	180
	tgtttttcat	agagacagag	tctggccatg	ttgcttaggc	aggtttcgaa	ttccttgcct	240
	cagcctctca	aggaatttgc	attgttttta	atgaaaaaac	acacatatgg	tgaacagtaa	300
	aagtgggaga	attgaacagc	cctaaaatca	agtagtc			337
10 15	<210> 33 <211> 381 <212> ARN <213> Homo sa	apiens					
15	<400> 33 aagatggagt	cttactctgt	cgcccagact	ggagtggtgc	gatctcggct	cactgcaacc	60
	tccaactcct	gggttcaagc	aattctcctg	cctcagcttt	ccaagtagct	gggactacag	120
	gtgtgcgccg	ccacacccag	ctaattttg	tatttttag	tagagacagg	gcttcactat	180
	atgttggcaa	gactggtctc	gaacccctga	cctcaggtaa	tctgcctgcc	ttggcttccc	240
	taagtgctgg	gattacagtt	gtgagccacc	acgcccagcc	agcactacct	tttctattgt	300
	gcatcctaat	ggtctgtagt	atagacatat	ttatagggga	aagaaaggaa	tagatgtggg	360
	caaaaagaag	ctaaaaaaca	t				381
20	<210> 34 <211> 494 <212> ARN <213> Homo sa	npiens					
	<400> 34 ttatttggct	aaattattga	tcctacttca	gagggaaagt	gtaccaggca	gttttggtgg	60
25	gtggtgctga	agtctgggga	gtgagtttag	tcttcagact	attcttggcg	acatcaccag	120

	tgttgcaago	accaccatto	ccagttaggc	actttttgtc	cctggtaaga	cttgaccttt	180
	atctggaaca	ctccttttgt	ccctagagtg	gggacctaag	gctcagcaaa	agggcagaat	240
	caggaaagco	tttatggtgt	ggctaaagga	gtggccagag	ccttgggact	cctttgctgc	300
	cttctccctg	gttccagttg	tctttagatt	ttcacggctc	ttactgctgt	tacttaacag	360
	tattttccag	g ccaggcatgg	tggttcacgc	ctctggtccc	tgcactttgg	gaggccgagg	420
	caggcggato	acctgggatt	gggagttcgg	gaccagcctg	tccaacatgg	cgaacctcgt	480
	ctcttctgag	g agta					494
5	<210> 35 <211> 521 <212> ARN <213> Homo sa	piens					
	<400> 35 ttttttttt	tttttacttg	ataatagatt	aagatttatt	tattcagtaa	gcgataacaa	60
	ttttgaattt	ttatgcctaa	tggtattaac	ttaaaataat	aatacaagca	atattgagaa	120
	atctataaga	aataacagac	aaatctataa	tcatagaagg	aaatttcagc	cactgctaga	180
	taaggtagac	acaaaagtca	gtaaggttgc	aaaaggtgag	cagaatgatt	aaaaatttaa	240
	caagttggca	gggcacagtg	gctcatgcat	gtaatcccag	cactttagga	ggccgaggca	300
	ggctgatcac	gaggtcagga	gttcaagacc	agcctggcca	acatggtaaa	accccatctc	360
	tactaaaaat	acaaaaatta	tccgggtgta	gtggtgcatg	cctgtaatcc	cagctactcg	420
	ggaggctgag	gcaggagaat	tgcttgaatc	caggagggag	agattgtggt	gagccaagat	480
	tgcctcactg	cactccagcc	tggggaacag	agaaaggccc	t		521
10	<210> 36 <211> 351 <212> ARN <213> Homo sa	piens					
15	<400> 36		*****	****		****	60
		ctttttatat					60
		aatgggcatg					120
		ccggcatata					180
		ctatgtgaac					240
		tccccataca					300
	gcatccatac	tgtgcctctt	gcggtcctct	gtgagagctt	cctgagagac	g	351
20	<210> 37 <211> 451 <212> ARN <213> Homo sa	piens					
	<400> 37 tttttgagac	acagtcttgc	tctgtcaccc	gggctggaat	acagtggtac	aatcttggcc	60
25	tccacctccc	aagttcaagc	aattctcctg	cctcagcctc	ccaagtagct	aggattacag	120

	gcacccacca	ccacgcccgg	ttaacttttg	gttttaagac	ggtgtcttgc	tctgttgccc	190
	aggctagggt	gcaatggtgc	catcttggct	caccgcaacc	tccacctcat	gggttcaagc	240
	aattctcctg	cctcagcctc	ccgagtagct	gggattacaa	gcgcacccca	ccacacccgg	300
	ctaatttttg	tatttttagt	agagacggag	tttcaccatg	ttggccaggc	tggtctggaa	360
	ctcctgacct	caagtgatcc	gcccgcctcg	gcctcccaag	gtgctaggat	tacaggcgtg	420
	agccaccgct	cccagccgca	ccgtttttt	С			451
5	<210> 38 <211> 674 <212> ARN <213> Homo sa	piens					
	<400> 38 ttatttggtg	ttaaacaggt	ttaatgacgg	tcatggcaac	tttttggcac	aatgaaaaat	60
	atcgcccatg	atcaacgtgt	tctgttctgg	ggaagggggc	aaaggcaggg	tgaatcactt	120
	tcttaaaaag	tatagctcaa	gttgggagtg	cagagggaat	ggggagaaaa	cccttccgct	180
	gcctgtgtcg	aagtgcagga	gcccccaccc	ccatactcac	ctgagtccag	cccctctggg	240
	gaaagaaggg	gtgcatgaac	tccccttagt	ccacaggcgc	ctccctgtgg	cccaaggccc	300
	tcttcacact	ccatcttgta	gccccagcag	gagctatttt	ccgaaaagtg	ctgggattac	360
	aggcgtgagc	cactgtgccc	agctgagatc	tgatggtttt	aaaaagagga	gctcccctgc	420
	atgagatctc	actttttgcc	tgctaccatt	tatgtaagat	gtgacttgct	ccttcttgcc	480
	ttccatcatg	actgtgaagc	ttccccacc	atatggaatt	gtaagttcaa	ttaaacttct	540
	tttctttgga	anttcnaaag	ccctcccttt	acacttgcaa	agggtcccaa	aatacttcct	600
	tgagggggg	gccccgtacc	ccaattcgcc	ctttggtgga	gtcgttttaa	caattccctg	660
	gcccgccgtt	ttaa					674
10	<210> 39 <211> 330 <212> ARN <213> Homo sa	piens					
15	<400> 39 tttttttaga	aagaagtggg	gtctcacatg	ctgtccaggc	tagtctcaaa	ctcctgggct	60
	caagccatcc	tctcacctcg	gcctcccaaa	gtgctgggat	tcaggcatga	gccaccactc	120
	ccggccctca	attaataact	tgacttaaga	taatctagtt	catattaact	taatttcata	180
	gcatacaaaa	actatgcttc	atttcttcct	tccattattc	tatcatgaat	atggcacctt	240
	tttgtgttat	aagcccattg	acacagttta	taattattgc	ttatgcaggt	gggtgtcttt	300
	taaatcagag	ataagagaat	aaaatatcta				330
20	<210> 40 <211> 446 <212> ARN <213> Homo sa	piens					
	<400> 40						

	ccagiligia	lllalllall	lattiattia	tttagagaca	gagicicgci	Cigicgccia	60
	ggggggtgca	gtggcgcaat	ctcagctcac	tgcaacctcc	acctcccggg	ttcaagcgat	120
	tctcctgcct	cagcctcctg	agtagctggg	attacaggcg	tgtgccacca	tgcccagcta	180
	attttttgta	tttttagtag	agacagggtt	tcaccgtgtt	agccagggtg	gtcttgatct	240
	cctgacctca	tgatccgtcc	gcctcagcct	cccagagtgc	tgggattaca	ggcatgagcc	300
	actgcgcctg	gcccaattta	ttttttttg	tagtttcatt	ctcctcacat	ccaaacagct	360
	acagctttcc	ctccttttgt	ggggtcccca	aaccaagtct	cttttcagga	gagcagacat	420
	gtgcctccac	acagttctga	agttcn				446
5	<210> 41 <211> 406 <212> ARN <213> Homo sa	piens					
	<400> 41 ttttttctga	gacggagtct	tgctctgtcc	cccaggccgg	agtgcagtgg	cgccatctca	60
	tctcactgca	agctccgcct	cccgggttca	cgcccttctc	ctgcctcagc	ctcccgagtt	120
	gctgggacta	caggcgcccg	ccaccacgcc	cggctaattt	ttgtatttt	agtagagaag	180
	gggtttcacc	gtgttagcca	taatggtctc	gatctcctga	cctcatgatc	cacccgtctc	240
	agcctcccaa	agtgctagga	ttacaggcgt	gagccagcgc	gcccggccta	ccctccctat	300
	tttcaaaaac	attgtggcaa	tggacaaaat	tcacatgtac	aaccgatcat	tacaatcaga	360
	cgctctgtga	tacgtgtacc	aacgacaagg	gctgaaataa	tgactg		406
10	<210> 42 <211> 320 <212> ARN <213> Homo sa	piens					
15	<400> 42 cacacccagc	taactttttg	tattttttgt	agacagggtt	tcaccttatt	tctcaggctg	60
						gctaggatta	120
	caggcgtgag	ccattgcgcc	cagcctcaaa	actcttctac	ctaaaatcac	cttcagagcc	180
	atgctagaaa	attagtatca	ttcctttaca	atcggaatcc	aacttggcca	ctaaaatgtt	240
	tccttagact	tggtcctaaa	tgatttttgg	attgtttcaa	aacctgaaaa	acaccttcac	300
	aggataaaga	taaaagaatg					320
20	<210> 43 <211> 448 <212> ARN <213> Homo sa	piens					
	<400> 43 tttcttttag	acagggtctc	actctgttgc	ccagactgga	atgcagtggt	gcagtcttgg	60
25	ctcactgcag	cctcaacgtc	ttgggctcaa	gcgatcctcc	catctcagcc	tttcaagtac	120

	ttgggactac	aggcatgctc	caccacatcc	agctaatttt	tgtattntgc	gtaaagatgg	180
	nngttttgcc	atgctgcttc	tcgaactcct	ggagggggnc	aagtaattct	gtccacctca	240
	acctacaaaa	gtgccggaac	tataagcatg	agccactgac	ccagcttgaa	atggtaatnt	300
	aataaaatat	atcatttatt	tttcaaagac	tagatctacc	catganccac	agatctgaat	360
	attttaaatt	gtcttccctg	gtacatcatt	gccattacct	nnnaatggta	cactctacan	420
	tatgctannn	nnnggtgcat	anaangaa				448
5	<210> 44 <211> 270 <212> ARN <213> Homo sa	piens					
	<400> 44 tttttttt	tttttgctca	cagaatgtat	acgtttattt	tttaacggag	ttaattcatg	60
	gccgggtgtt	gtggctccca	cctgtaatcc	cagcactttg	ggaggctgag	gcgggtggat	120
	cacctgaggt	caggagttca	agatcagcct	ggccaaaatg	gtgaaacctc	atctctacta	180
	aaaatacaaa	aattagccag	gtgtgatggc	atgtacctat	aatcccagct	actcaggagg	240
	ctgagacagg	agaatcgctt	gaatctggga				270
10	<210> 45 <211> 386 <212> ARN <213> <i>Homo</i> sa	piens					
15	<400> 45 taaaataata	gaggcatagt	ctctctatqt	caggctggtc	tcaaaactcc	tggcctcaag	60
		acctcagcct					120
		gacatttcta					180
						gattccaaaa	240
	tggaaaacgg	atttttctgc	tgcctctggg	gacactgaaa	aaagaacctc	cacatgagtt	300
	cagaggcagc	accggcagct	taggggaagt	catggcttcc	actgcgtgtc	taggaagcgc	360
	tctttcagga	tgctctgagg	ctgcca				386
20	<210> 46 <211> 413 <212> ARN <213> <i>Homo</i> sa	piens					
	<400> 46 tggtgagaca	gagatttact	cttgttgccc	aggctggagt	gcaatggcat	gatctcagct	60
	caccgcatcc	tccacatcct	ccgcctccca	ggttcaagtg	attctcctgc	ctcagcctcc	120
	tgagtatctg	ggattacagg	catgtgccac	cacgcccggc	taattttgta	cttttttagt	180
	agagacgggg	tttcatagtg	ttgcctaggc	tgatctcaaa	ctcctgacct	caggtgatct	240
25		gcctcccaaa ttttaatcaa					300 360
	aggaccagca	aaatcatctg	ttgggacttg	ttagtggagc	tctcctagat	agt	413

E	<210> 47 <211> 438 <212> ARN <213> Homo sa	piens					
5	<400> 47 ttcttttctc	ctttttttt	tttcttttt	tgagtcagag	tctgtcgccc	agcctggagg	60
	gcagtggtgg	gatcttggct	cactgcaatc	tctgccttcc	aggctcaagc	aattctcctg	120
	cctcagcctc	ctgagtagct	gggactacag	gcctgcacta	ccacacctgg	ctaacttttg	180
	tatttttagg	agacagggtt	tcaccatgtt	ggccaggctg	gtctcgaact	cctggcttca	240
	agtgattcgc	ctgcctccca	aagtgatggg	attacaggcg	tgagccactg	tgcccggcca	300
	gggtttttt	ttcctgaagg	gctgatcatg	gctttgttcc	actcactgtg	cccttcttcc	360
	tctgcttgga	actggacaga	agttccaata	agctactgtc	ttctattaag	taaggaccag	420
	acatgaaaaa	ctttatgg					438
10	<210> 48 <211> 651 <212> ARN <213> Homo sa	piens					
	<400> 48 tccatttgaa	agacactcat	ttatttgtta	ataacacaag	ccaaacaaaa	acatatctgg	60
	ggatgaatct	gcgaaaccta	ctagggttaa	aattttactt	ctcttaattg	tttggcttcc	120
	aaaacatatt	tggcttccaa	aacagattca	aattcaaaaa	atatttacgg	ccagctgtgg	180
	tggctcatgc	ctgtaatccc	agcactttgg	gaggccaagg	tgggcggatc	acgaggtcag	240
	gagatggaga	ccattctagc	caacatggtg	aaaccccgtc	tctactaaaa	atgcaaaaat	300
	tatctgggta	tggtggtacg	tgcctggagt	cccagctact	tcggaggctg	aggctggaga	360
	atcactttca	cctggaaggg	cgaggttgca	gtgagctgag	atttgccact	gcactccaac	420
	ttggtgacag	agtgagactc	tgtctcanaa	aaatggaata	attaaataaa	aaataattgt	480
	tcagagtgcc	actagggaga	ggtatattca	ttagaatgga	caatgccttt	taatggtatg	540
	gttgccggtg	gctggctcac	gcctgatccc	acaactttgg	agggcgaggn	gggcgaacaa	600
15	gaggtcaggt	cgaaccagcc	tgacccaaat	gtgaaacctg	cttactaaaa	a	651
20	<210> 49 <211> 428 <212> ARN <213> Homo sa	piens					
	<400> 49 ccactgttgc	tgagacattt	ttattggcat	aggttatatg	tttgtgtgtg	tgtgtgtgtg	60
	tgtccctaaa	caatatttag	caagttgact	gtttttaaac	tttatatcaa	tggtgtatat	120
	taaatatgat	cgtctacagt	ttgcttttac	agctcaatag	tttaaaaaca	aaacaaaaca	180

	aaaagctgca	gtaatccccc	tgccgttatt	catgaggatt	acatttcacg	acccccagtg	240
	gatgtctaaa	actagattag	tactaaatcc	tgtatacatt	ttcctataca	tatgtaccta	300
	tgatggttta	atttataatg	tttgcacggg	agattaaaaa	caataactaa	taataaaata	360
	gaataactag	agcaggccag	gcaaggtgac	tcacgcctgt	aatcccagct	ctttgggagg	420
	ctgaggtg						428
5	<210> 50 <211> 436 <212> ARN <213> Homo sa	apiens					
	<400> 50 tttttttta	aaggatgaga	aaaaattggt	acacacgaac	aatgctcaca	aaacggctgg	60
	gagaaaggca	aaatctaagc	atattataag	ggtgggattc	agaatacagg	agggcagagg	120
	gggctgccac	tgtgatgggt	gggaatgaag	aaagggaact	gctactgctc	tgaaggagaa	180
	gggaaagccc	gctgtcgggc	agtgtgtgtg	cagagacagg	aaactggctg	aagcatccac	240
	tgtgaagaat	ggaagactgg	gactacattt	cccaaattct	acttgtgtat	tataaactgc	300
	tacccatgaa	gatggttcta	tttgaaagta	atatttaggc	cgggcgtaat	ctcagcactt	360
	tgggattaaa	cgcgtgagcc	accacacccg	gcccaagtct	taaaaagaaa	aaacaaaacg	420
	acagggatat	attatt					436
10 15	<210> 51 <211> 475 <212> ARN <213> Homo sa	apiens					
	<400> 51 tatgagatgg	gggtcttact	atgttgccca	ggatggattt	gaaatcctgg	gcttaaggga	60
	tcctcctgct	caggctctgg	actagctggg	attacaggtg	tgtgccacca	caccttgctt	120
	tcccactaat	tctgttcctg	ctagtttctt	cccttacaag	taaggtgggt	catatttacc	180
	tgtgagaaac	tcagaaatac	tcacttttcc	aggacagctg	gggtgaagag	aatatgtagt	240
	ggccactgta	ctttgtagga	aagacctagg	gctgcccagc	cagatgcagg	ggcttcccgg	300
	ggagaagttt	cccgagaagg	cccttctctt	gcctgagtag	catctttgtg	ctcctttccg	360
	tgatactcga	ttgtcaagtg	caacagaggg	agaaggttgt	catcatctag	caataccttg	420
	tgtgctgact	gttgaaaggc	cacattcaca	tcatgctcag	ttactgcagt	gggtg	475
20	<210> 52 <211> 439 <212> ARN <213> Homo sa	apiens					
	<400> 52 tggagagttg	gatctcgtat	cctgcctaga	ctggtcttga	acacctgggc	taagcgatcc	60
25	tccacttcag	cctccccaag	ttcttggact	acaggcgtca	gccaccatgc	ccagctccta	120

	gtgtcctttt	tagggtctta	agcaccacaa	agggaatctt	gattaactag	tgacaatcac	180
	aacaagtcca	cagccttgct	cctagcctgc	ctccatacag	acagcaatta	aataccacct	240
	gtgtaaactg	caggagagta	gttcaaattt	ggctgagtaa	ctttttcctg	gcatgaaaga	300
	accggctcta	atgactagtt	cattccagat	ttcactggac	attagatcta	gtgctttgtt	360
	ttgtttgcaa	catttcctat	ttgcccacac	ataaatggac	tttggggtct	aaggccccac	420
	tgctcttcaa	atggacatg					439
5	<210> 53 <211> 519 <212> ARN <213> Homo sa	piens					
	<400> 53 tctttcctca	aatctttatt	gtcagtctat	cacctatata	tctatagtta	gggaagcttt	60
	catatagagc	aagggtgcac	tccagatata	tgattcatct	actaattaat	aatgaataac	120
	ttgcaatgtg	ccaggtgctc	ttttaaaagc	atttagatgt	tttaacttat	ttaaatctgt	180
	aaacatttct	tttaaaagta	tgttatcagt	aatgaaaatg	gcctacatcc	tactctataa	240
	aggccagtag	tttacttctt	ggaatatcat	cttggtcagt	catgatctga	ggagaatata	300
	cacctgtttc	aacagtgatt	atcattgtat	aaaatttttg	aaacaccttt	tggaattact	360
	aaagggttgt	gacacatctc	tatgtacatt	ctcagtaatg	aaaatttta	acttcaggga	420
	gaattaaatt	ttggaaagaa	taaaaaatat	ctaggccagg	catggtggct	ctaaaggtaa	480
40	ttntaaaagt	cctcaaaatg	ttttaattgt	agcattgcg			519
10	<210> 54 <211> 319 <212> ARN <213> Homo sa	piens					
15	<400> 54 ttttttaatg	tgacccattt	atttatttat	ttatttatga	tggagtctca	aaaaaaaaa	60
	aaagaaagaa	aaacaattct	tgtaatccca	gcactttggg	aggcatatca	cttgaggtca	120
	ggagttggag	acgagcctga	ccaacatgaa	accctatctc	taaaaaagaa	aaagacctct	180
	ttgcaaacaa	ccttggtgca	aaagtttact	actaccattt	cattctcaac	attaaggacc	240
	tagtgtgctt	ggtgggtgga	caagaaaaca	aatctaggaa	agggaaagct	tttctacaca	300
	aagagtagta	gcacctcaa					319
20	<210> 55 <211> 352 <212> ARN <213> Homo sa	piens					
	<400> 55 ttttttttt	tttttttaat	tttttttat	ttatttattt	tgagacagag	tctcattctg	60
	tccccaggc	tggagtgcag	tggtacgatc	ttggctcact	gcagcctccg	cctcctggat	120
25	tcaagcgatt	ctcctgcctc	agcctgccga	gtggctggga	ttacaggtgt	gcaccaccat	180

	gcccggctaa	tcttttgtat	ttttagtaga	tatggggttt	caccatgttg	gccaggttgg	240
	tctcaagctc	ctgacctcaa	ggatccgccc	accttggctt	cccaaagtgg	ctgggttaca	300
	ggcgtgagcc	accatgccca	gccagaatgc	aaccatatgt	ttaaagataa	ta	352
5	<210> 56 <211> 232 <212> ARN <213> <i>Homo</i> sa	piens					
	<400> 56 ttgagacgaa	gtgtcgctct	tgttgcccag	cctggagtgc	aatagcgcaa	tctccaccca	60
	ctgcatcctc	cacctcctgg	gctcaagtga	ttctcccgcc	tgagcctccc	gagtagctag	120
	gactacaggc	gcccaccacc	gggcccagct	aattttttgt	atttttagta	gagatggggt	180
	ttcaccatgt	tggccaggct	ggtctggaac	ttctgacctc	aggtgatcca	СС	232
10 15	<210> 57 <211> 446 <212> ARN <213> Homo sa	piens					
10	<400> 57 tgagacggag	tcttagttgt	ccaggctgga	gtgcagtggt	acgatctcag	ctcactgcaa	60
	ccactgactc	ccaggttcaa	gcaattcttc	tgtgtcagcc	tcctgaggag	ttggggctgc	120
	aggcaagtgc	caccacgcct	ggctaacttt	tgtatttta	gtagagacgg	ggtttcacca	180
	tatcgctcag	gctggtctca	aacttctgac	ctcatgacct	gcccgcctct	acctcccaaa	240
	gtgttgggat	tacaggcgtg	agctaccacg	cctggccaga	actatcattt	gattcagaaa	300
	tctcatcatt	gggtatctac	ccaaagaaaa	atagtttatt	atatgaaaat	gatacgtata	360
	cttgcacatt	tattgcagca	tgctcacaac	agcaaactgt	atatatcaga	aaagcttaat	420
	attcaaaata	tatagaaaat	tcaaag				446
20	<210> 58 <211> 510 <212> ARN <213> Homo sa	piens					
	<400> 58 aattagctgg	gcatggtggt	gcacacctat	agtcctaact	acttaggagg	ctgaggtggg	60
	acgactgctt	gagccgagga	gtttgaaggc	aatagagaga	gactctgttt	caaagaaata	120
	aaatgtaaag	acaaatttct	ccttcctctt	caaatatgag	aatcatcata	gccctcccta	180
	actcctatat	tttttagatt	aatcaaactc	agatttctca	aacattctag	aacacaactt	240
	gatcttgcct	cccaagatta	acccttccag	aactttttaa	ctttgttaaa	gtgcctgtct	300
	ttccatcttt	ttaaaataga	gcttatcaaa	gaatttctgt	gaaagtttcc	ctttgcttcc	360
	tcaccggaat	gatctgtgat	cacattagga	ttccatcttt	gaaaactact	atctaagcca	420
25		ttaagatttc cttaatgggt		aaaaaaatcc	ctttttctta	atttctctaa	480 510
	<210> 59 <211> 245						

	<212> ARN <213> Homo sa	apiens					
	<400> 59 ttctttaaga	gatggggcct	ctctatgttg	ctcaggctgg	tcatgaattc	cagccctcaa	60
	atgatcctcc	caccttggct	tctccaagtg	ctgggattac	aggtgtgact	caccatgctc	120
	ggccagatca	tcacttttct	gtcacttaaa	tctcttgata	aaggtgcttg	atctcaaatt	180
	ttctcttctt	taccttagct	cctataccac	taaagtcttc	tttgaaaaaa	aaaaaaatca	240
5	ctttt						245
10	<210> 60 <211> 479 <212> ARN <213> Homo sa	apiens					
	<400> 60 tttttttgag	atggggtctc	gctctgtcgc	ccaggctgga	gtgcgtgcag	tggcacaatc	60
	tcggctcacg	gcaaactctg	cctcccagat	accacacaag	gacttctccg	agccagcttt	120
	ctgagggtta	actgagggct	gaggggttca	agaaggagga	cacgggcaca	gggactcacg	180
	ggcagtgaga	ggcagtgggg	ccaatggcgt	gaggagcacc	agagagcagg	agggaacggg	240
	cccggggcgt	gaatccggcc	ccatgagtgc	tcttcggccg	cccaaaaccg	gtcccatggg	300
	taacagcgtg	gccttcggca	agtgactaaa	gggcttcctg	cctcagcttc	cccacctgta	360
	aacagaggat	aacaatggca	tgtactggat	ctggcataaa	gtaaatgttc	aatagatagc	420
	tagaaaagaa	tgttttaaaa	cctcagagat	acattaggcg	aaaataaaag	ctgggctac	479
15	<210> 61 <211> 480 <212> ARN <213> Homo sa	apiens					
20	<400> 61 tgagacagag	tctcaccctg	tcacccaggc	tggatggagt	gcagtggtgt	gatctcggct	60
	cactgcaagc	tccgcctcct	gggttcacac	ttctcctgcc	tcagcctcct	gagtagctgg	120
	gactacaggc	gcccgccacc	acgcccagct	aattttttt	gtagttttag	tagagtcggg	180
	gtttcaccgt	gttaaccagg	atggtctcga	tctcctgccc	ttgtgatccg	cccgcctcgg	240
	cctcccaaag	tgctgggatt	acaggcgtga	gctaccacgc	ccggccgtct	tgtgtcttct	300
	ttactgtgac	tgggtcgttt	ttaagaaagg	ttatcagctt	tgtgtttggt	ttcccacagt	360
	tgataaaaat	ctatcaaaaa	cattataatt	tgcaaggaaa	aaggttttc	aatggctgca	420
	ggaaccagaa	agaaatagca	tttcttatct	gtataaacac	aaacatttaa	agctagtcac	480
25	<210> 62 <211> 179 <212> ARN <213> Homo sa	apiens					
	<400> 62						

	tttttttta	atttcagaca	gaateteact	cggtcgccca	ggctggagtg	caatggtgcg	60
	atctcggctc	actgcaacct	ctgcctcctg	gattcaggca	attctcctgg	ctcagcctcc	120
	tgagtagctg	ggattacagg	cacccaccac	catgcccagc	tattntctgt	atttttagt	179
5	<210> 63 <211> 307 <212> ARN <213> Homo sa	apiens					
	<400> 63						60
		tagagacggg					120
		cccacctcgg	_				120
		acatttgtta				_	180
		agctcataaa					240
		attttacatt	agggactact	aagaacaacc	aggatgatga	taatagtcat	300
10	cactaaa						307
15	<210> 64 <211> 275 <212> ARN <213> Homo sa	apiens					
10	<400> 64 tgtatttca	gtagagacaa	ggtttcagtc	ttgaattcct	aacctccggt	gatccacctg	60
	cctcagcctc	ccaaagttct	gggattacag	gcatgagaaa	ccatgcccag	ccgatttctc	120
	tcatttttt	tttttttt	ttttaagaga	caaggtgctc	gctgtgttgc	ccaggnctgg	180
	tctcaaactc	ctgggctcaa	gcaatcctcc	tgccttggcc	tcctgagtca	aaaagtgcat	240
	ctcanatagt	tttaaaatgg	atgtgcaata	tttag			275
20	<210> 65 <211> 306 <212> ARN <213> Homo sa	apiens					
	<400> 65 ttttttttt	ttgagacagt	ctcactttgt	cgccaggctg	gagtgtggag	tgcagtggca	60
	caatcttggc	tcactgcaac	ctctgcctcc	tgggttcaag	cgattctcct	gcttcagcct	120
	cctaagtagc	tgggattaca	ggcacacccc	accacacccg	gctaattttt	atattttag	180
	tagaaagggg	gtttacccat	gttggccagc	tgggtcttga	actcctacct	ntntggatcc	240
	acccgcctcg	gcttccaaaa	gggggaagtc	actgcaccca	gccttgctgg	atttttctaa	300
25	aacctt						306
30	<210> 66 <211> 444 <212> ARN <213> Homo sa	apiens					
	<400> 66						

	τττττττττ	ttttttttt	ttttgagatg	gaattttgtt	cttgttgtcc	aggctggagt	60
	gcaatggggt	gatctcggct	caccgaaacc	tccagcctgg	gtgacagagt	gacaccctat	120
	ctcaaaaaaa	aaaaattctt	cattgctcat	atacgtcaga	ttattacaat	tttggtatgc	180
	ttaaaaatca	cagagagcca	aataaggtgg	ccaagagaga	agaaaatgat	aagttgtcca	240
	cacaagcgct	ctgatccaag	ttaaaaacaa	gcaaagtaag	gtatgggagt	acaaaatcac	300
	aaaaatattt	tagagcattt	taaaaagggg	gctattataa	ttatcttctt	ttaattatta	360
	attttaatat	cttaacatgc	caccaaatta	aattcttcct	gaatagagaa	agataagctt	420
	ttaaaaattc	tgcatcatta	ctgg				444
5	<210> 67 <211> 311 <212> ARN <213> Homo sa	piens					
	<400> 67 ttttttttt	tttttttt	tttttttt	atttagagat	ggggttttgc	tctgttgccc	60
	aggntggagt	gcagtggcat	gatcatagct	cacagcagcc	tctaactcat	gggctcaagc	120
	aactcttaca	cttcagcctc	caaagtagct	gggactacag	gcatgagaaa	ccacacttgg	180
	ctaacacaca	cacacacaca	cacacacaca	cacacataat	tgctatcatc	tctatcaaat	240
	atacacatat	atttgatata	tatgtatatt	tgtgtgtgtg	tgtgtgtgtg	tatatatata	300
	tatatatatg	t					311
10 15	<210> 68 <211> 441 <212> ARN <213> Homo sa	piens					
10	<400>68 ttttttttt	tttgagacag	ggtctcactc	tgtcacccag	gctagagtac	agtggcacaa	60
	tctcggctta	ctgcaacctc	tgcctcccag	gttcaagcga	ttctcctgcc	tcagcctccc	120
	gagtaactag	gaccacaggc	acacaccacc	atgcccggct	aatttttgca	tttttagtag	180
	agacagggct	tcaccatgtt	ggccagggct	ggtctcaatt	tcttgacctc	atgatccacc	240
	agcatcggcc	tcatgatgtg	ctggggatta	cagggcatga	gncaacgcac	tcgggcctag	300
	tattcaattt	tacagggcag	ggccacctct	tacctatttt	cacaggaaaa	ccagtnttta	360
	cacagganca	gtnaggaacc	actggaattc	agtnggtctt	ttcngggggg	ttntaggttc	420
	acantggatt	taaantacag	g				441
20	<210> 69 <211> 435 <212> ARN <213> Homo sa	piens					
	<400> 69						

	tgttgttgaa	tattccttaa	tggagtcgat	gaatttgcag	agacccctcc	aagattcttt	60
	tgtttgattc	ctttcatgac	catcacccta	gaccttcaag	tttgctgact	agatttgggg	120
	gttgtgtgtt	tagaaaggat	aacaagcttg	tcatgggcta	gaacctgtgg	tcttcataaa	180
	tagcttagta	ggatatatgg	ctttttctat	gaaaggtgga	gaacatgcat	taaaaatggg	240
	caaattctgg	cctggggcat	ggtggcttat	gcctgttaat	cccagcactt	ggggaggctg	300
	aagcgggcag	gtcgtctgag	ggtcagggag	ttttgagacc	agcctggccc	aaaataatgn	360
	aatcctgtct	cntgctaaaa	ctaccaaaan	tagcntgggc	ntggtagcac	acccntagtc	420
	ccngctactt	gggga					435
5	<210> 70 <211> 348 <212> ARN <213> Homo sa	piens					
	<400> 70 ttttttttt	tttttttt	tttttttt	aaagagatgg	agtcttgcca	tcttacgcag	60
	gatggtctca	aactcctggg	ctcaagcgag	tctcctgcct	tggtgtttca	aagtgctggg	120
	attacaggtg	tgagccactg	tgcccagcca	acttctcatt	ttaaaagaat	ttcagattta	180
	aaaaaattgc	aaaaatactg	cgagagaatc	cncatatact	tttcacccag	atccaccaaa	240
	tgttaacatc	ttaaataacc	atattatgnt	gatcaaaacc	agaaatacta	ttaactactc	300
10	tacagacttg	actcaaaatt	caccaactgt	ctgcctaatt	ttagtcca		348
15	<210> 71 <211> 304 <212> ARN <213> Homo sa	piens					
	<400> 71 tgtagagaca	ggcgcttact	atgttgccca	ggctcggttt	taaactccaa	gcctcaagtg	60
	atcctcctgc	cttggattcc	aaagtgctgg	gattatagtt	gtgagccact	gcgcccaaca	120
	ttcccatgac	ttttttgtga	aggaggcatt	caccaagctt	ttcctaatct	ttaccataag	180
	ccaggctctg	cggtaaacac	cccacaataa	atgtttatca	gaggacttag	cagggaagta	240
	cattaaatgt	taacgcctta	atctgatact	gaaaataaaa	gataatttca	acttggtttt	300
	tnaa						304
20	<210> 72 <211> 192 <212> ARN <213> Homo sa	piens					
	<400>72	ctatgttacc	caggctggtc	ttgaagtcct	gggctcaagc	aatgctcctg	60
				gcatgagcac			120
05	_	-		gaattaaaca			180
25	cccaaacatc		geeneagag	Janeedaded			192

<210> 73

	<211> 487 <212> ARN <213> Homo sa	apiens					
5	<400> 73						
	ttttttttt	tntctatttt	tagcagagac	ggggtttcac	catgttggtc	aggctggtct	60
	agagctcctg	acctcaggcg	atccacccgc	ctcagcctcc	caaaatgctg	gtataacagg	120
	catgagccac	agcgtctggc	cagaatcata	tcttaatagc	aatcccataa	tgtagtttta	180
	ccagaaatac	catagtcaat	tttacagggt	gggttcagtt	tttcttaaat	tacttacccc	240
	taagattaaa	gaatatttta	aaatattgtt	ataagngaca	taactaaact	attaggtttn	300
	tgcaaaagta	attgtagttt	ttgccattaa	aaggcaatta	taaaggaaaa	cggggatatt	360
	aataggngtt	acttctaggc	ttgnaagggn	taacattctt	ttttggctac	ttaaaagtaa	420
	tgggcaaaaa	ctggcaattg	tttttggcac	caacctatta	gggcaagaga	acccnatggg	480
	ctttttg						487
10	<210> 74 <211> 446 <212> ARN <213> Homo sa	apiens					
	<400> 74 tttttttt	aatagagatg	ggggatctca	tcgtcaccca	ggttggaatg	cagtgatacc	60
	atcacagctc	gctgcagcct	ccacctcctg	ggatcaaccc	ctacctcatt	ctcctgactg	120
	ggactacagg	cactcaccac	cacactgggc	taattaaaaa	aaaaaattct	tttttgtagg	180
	gaagtggtct	tgctatgtca	cccaggttga	tctagaactc	ctgacctcaa	gtcacccgtc	240
	cgcattatcc	tcccaaagtg	ctgaggatta	cagacgtgag	gccactgcac	ttgggcctat	300
	ttaggggctt	ctaattcact	ttccttttcc	ttcttgtcta	aattcttgtg	tttttagaat	360
	ctggcatttt	attttaaggt	natcttcaan	tccttttggg	aagtagtgag	gggagtaaat	420
	gcttaacctg	tgtaggaaac	cntttt				446
15	<210> 75 <211> 6213 <212> ARN <213> Homo sa	apiens					
20	<400> 75 cagtctttga	ttggttgctg	agaggcgggg	ctactcgact	gctctggagg	tagcggccgc	60
	ggtgaggaga	gccatgggac	gggcagtcaa	ggttttacag	ctctttaaaa	cactgcacag	120
	gaccagacaa	caagtttta	aaaatgatgc	cagagcatta	gaagcagcca	gaataaagat	180
		ttcaaaaata					240
		tctgatgttg					300
		acactgaaac					360

ttgtgatgca	ccaactcaga	agcaatgagt	tttctagaat	acaacaagtc	tttgtacttt	420
ttaactttaa	aatctacaac	tctggcaaaa	gtcctggaaa	tgcagacatt	ttccctgaac	480
tggcatattg	aaaatgaatg	aattacagaa	tagcttcata	tttaaatttc	atgttaaaag	540
gtcattactg	agaactaaag	aacataatta	agtatttcta	aaggaaatta	gataagaaaa	600
catttcattt	tcattgaaaa	tcaaatttca	taaagcaaag	taaatgctta	gggagatata	660
ttcaatcttt	gaccttgatg	agtatttgat	cttaccatag	ctatttgaga	atgtggtgct	720
tttacaaatt	ggtgagtttt	cctgccatgt	gaaatgcaat	tattacattt	aaattgttag	780
attaaaatga	tatttagtcc	tgaaaaatat	taaattggtc	aaaaaaatca	cagtgtatgc	840
cagctctcta	cagaaagtgg	cctttgtttt	ctaaagcact	gggattattt	ctgtagctaa	900
tatataattg	tacagtttct	ttttagagat	agagagtatc	tctgtgttct	tatgaagaca	960
ttttttatca	gttttctgaa	aatagatgaa	taaaatatta	tagtcaccta	gggtcactat	1020
ggaataaaga	aatcctagtt	taaagaggaa	atagtggccc	ttgatcaaac	tatttaatat	1080
ggccttagta	gaattagctg	tatttagaca	aagttagact	ttagtgtgaa	atgtaatcgg	1140
tggctacatt	ctcatcgttt	taattaatga	aacttaaatg	gcttctcttc	ttccacatgt	1200
cctgtccttg	acaagatggg	cagtatcaca	aaaggtcctg	gcattctacc	atctaacact	1260
aggaactgta	aaatactgtt	taatattctt	cttgtttctc	ttttatctgt	gtatctttgc	1320
cattctattt	tctcagtgaa	tagtatgttt	tctcccattc	actgataaat	tctctcattt	1380
gatgatgata	cagggtttt	aatttttgca	agattctcaa	tgcaagcatt	gttatgtatc	1440
tagaaattat	acctagagaa	aaatgaaagt	cgtttcaaat	ttgaaatttg	cccttttaag	1500
agaatgctga	atgtcatcgc	agtatataat	cactatataa	atgtgctgac	ttacagttat	1560
tttagtgtct	atatgacata	ttttgaggaa	agttggctga	cgttatttaa	atttaatata	1620
tattctatat	tttagtgtta	ttgaatattt	tatcactgag	cttttttctt	taacctgaat	1680
tccctgttcc	atttttcatt	catattaatt	taaataactc	cagatttctt	tcttatagtc	1740
attattagta	gcagatgaga	ttaataattc	acatgtttat	taaagatagt	ggcttagaaa	1800
ttttaagata	tattgatata	ggcccgggcg	ctgtggctca	cacctgtaat	cccgcacttt	1860
gggaggctga	ggcgggcaga	tcacaaggtc	aggagttcga	gaccagcctg	gccaatgtgg	1920
tgaaacccca	tctctactaa	aaacacaaaa	attagccagg	tatggtggcg	ggcgcctgta	1980
gtcccagcta	ctcgggaggc	tgaggcagga	aaatcacttg	aacccgggag	gtggaggttg	2040
cagtgaactg	agattgtgcc	actgcactcc	agcctggggg	acagagtgag	actctgtctc	2100
aaaaaaaaa	aagaaaaaaa	aaggaaaaag	gaaaaaaaaa	agatatattg	atacagatag	2160
gtagatatga	tattgtactt	tcatgccata	agactacaca	ataaagttcc	tgaaagttcc	2220
tggctgggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggcaggcag	2280
atcacctgag	gtcaggagtt	ctagaccagc	ctgaccaaca	tggggaaacc	ctgtctctac	2340
taaaaaaaat	acagaattag	ccaggtgtgg	tggcacatgt	ctgtaatccc	agctactcgg	2400

gagactgagg	caggagaatt	gcttgaaccc	aggagacgga	ggttgcagtg	agccgagatc	2460
gcaccattgc	actccagcct	aggcaacaag	agtgaaactc	cgtctcaaaa	ataaataaat	2520
aaataaagtt	cctgtgaagt	atataaacat	gtcaacaaca	ggcttgactg	tcacaaaatt	2580
ctgaaagatg	tcgcactcta	ttcttatata	gcatatgcta	atttatttat	ttattttttg	2640
agattgagtt	ctgctgtgtc	acccaggttg	gagtgcagtg	gcatggtcat	ggtccactaa	2700
agccttgacc	cctggggctc	agcagttatg	ccaactaagc	ctcccaaata	gctgagacta	2760
gaggtatgcg	ccaccacacc	tagctatttt	ttttatttt	agtaaggaca	aggtctcatt	2820
atgttggcca	ggctggtctc	aaattcctga	gctcagttga	tcctcccacc	tcagcctccc	2880
aaagtgctgg	gattacaggt	gtaagccact	gcaccctgcc	tattcttata	atcatatatt	2940
tatatttcaa	atggatttta	actggttatt	taatagttta	attagataaa	gtaattcatg	3000
gctgggtgtg	gtggctcacg	cctgtaatcc	cagcactttg	gcaggctgag	gcaggtggat	3060
tacctgaggt	cggaagttcg	agaccagccc	aaccaacgtg	gagaaacccc	atctctatta	3120
aaaatgcaaa	attagcagga	catggtgata	cacacctgta	atcccagcta	gtcaggaggc	3180
tgaggcagga	gaattacttg	agccagggaa	gcagaggttg	tggtgagcta	agattgtgcc	3240
actgcactcc	agcctgagag	aacaagactc	cgtctcaaaa	aaagaaaaaa	agaaaacttt	3300
tttacacatg	ggtatctcac	catgttgccc	aggctggagt	gcagtagcta	ttcataggca	3360
cagtcatagc	acactgcagc	ctagaatttc	tgacctcaag	caatcatcct	gcctcagcct	3420
cctaagtagc	taggactaca	ggtgcatacc	accataacca	gctttaatta	aatgttttt	3480
atttggttat	ttttttaag	ttttctgtat	tcacacaagg	ggttgcccaa	atataatttt	3540
gctttgacta	ttgagatcta	gtgaaagtgg	ggtatatgaa	ttctaattgc	aaatatccag	3600
gctcagaggc	ccagcaggac	tttctaacac	aatcttttag	cggaagttag	aaatggtata	3660
tagcaggaga	gtcagatttg	agaagcatat	gtagattcga	agctggggga	atatggcagg	3720
tagtttgtac	aacatctaat	tcagaacatt	aaaattaaga	ttttagtcaa	actgtgttta	3780
agttagttct	tattttcctg	tagatgcatc	tcacagcatc	agtacaatac	caaaaaagca	3840
cacaagaata	agaatatgtg	gaatttctat	acctattgac	aaagcacata	atttaaccat	3900
aaacacaaag	ccataggtca	acaaagaaat	gaagattcca	gttctgaagg	tgagttttct	3960
gaagccaaag	tggatacatg	caaaattaat	atagttttac	tgtatatcag	ttgtcaccaa	4020
tcagaaatgg	aaaacagatc	ctatttataa	ttgcaaacaa	aactgtaaaa	tagactttt	4080
aaagtctggg	aatagacttc	taaaataagc	tataacactt	aaaaaggaga	gatatactat	4140
gttcctagat	aggacaattg	aaaattctgg	agatgacagt	ttttcaaaaa	tctattgagg	4200
ccaggtgcag	tggcccatgc	ctgtagttcc	agtactttgg	gaggcctagg	tgggtggatc	4260
acctgaggtt	gggagtttga	gaccagcctg	accaacatgg	agaaaccccg	tctctactaa	4320
aaatacaaaa	ttagccaggc	gtggtggtgc	atgcctgtaa	tcccagctac	tcgggaggct	4380
gaggcgtgag	aatcgcttga	acccggtagg	cagatgttgc	agtgagccga	gatcgcacca	4440

```
ttgcactcca gcctaggcaa caagagcgaa actccatctc aaaaatagaa aaaacattta
                                                                  4500
tcgaaatccc aacaagttga caaatatatc cacataaaaa tataaaactt ctgtattctg
                                                                  4560
tgaaagctac tataaataaa gtttagagaa agttatttgc cacctatgtc atgattgaaa
                                                                  4620
tagttaattg atcctgtgaa tcagttagca aaacataact caatggaaag ataggcaaat
                                                                  4680
                                                                  4740
gatacaaata agaaattcac aaaagaagaa atactaagtc tctagtgatg agagaaatgt
                                                                  4800
aaattaaaat gaaacatgtt tgttcatcaa gttgtcacaa gttagacaat catatccaat
atttttaaag gttgtaagac tataaggaaa tagccactgt catatcattt ttaaaggaat
                                                                  4860
4920
tgttgtctag gctggactca aacttctgga ctcaagcaat cctcgcaaca tcattaatag
                                                                  4980
ctgagagtag agacttgagc caccacacct gactataggg cctttttgaa aggaaaattg
                                                                  5040
acatcatcaa aattttaaat atattcagtc tatttctcaa aaactcaaag aatactaata
                                                                  5100
aatgtgtact caggtatatg tacagaaatt gctgtaacat tataatttta aacaatttaa
                                                                  5160
aacagactga gtttccaaag ttagggtaca atgaaagaaa aggtggctta tttatactct
                                                                  5220
ggaatatttt ccaagagttg aaaaggatga ggatacacac acacacaca acacacaca
                                                                  5280
                                                                  5340
acacacaca acacacaca agtttgggta tccctaatcc agaaattcaa atgctccaaa
gtccaaaact ttctgaccca ccaacatgac tgatgctcaa aggaaatggc cactggaaga
                                                                  5400
tttcagattt tcagatttgg agtgctcaac cagtaagtat ataatgcaaa taatccaaaa
                                                                  5460
tacaaaaaaa aaaaaaaaga aatctgaaac acttctgatc ccaagcattt cagaaaacgg
                                                                  5520
atgttcattt gtgtgtgtgt gtgtgtgtaa gcaggtgttg ctagaaattc acttatatac
                                                                  5580
aagaaaactt tttgtgtaca tatttgcata tatatgtaca aatgggtaga aacgatacat
                                                                  5640
gattaatctt aatcgggaag gaaaagagat ttagggaagg aagcagtaag tgagaacttt
                                                                  5700
tattctattt actcctgcac gtttaaatat tgtttacagt gagtatatca acatgtaagt
                                                                  5760
                                                                  5820
gttaaaagac aataagctac tagtgatttt taatataaaa ttaactataa aatattttaa
atattagcaa ataatatagc acactcatga acctaattcc cacatttgat agttgttaca
                                                                  5880
                                                                  5940
ttttgccatg tttgtttaaa ggtctaagtc ataaaatctt ataaagctaa accccaccct
tctctttctc ctctctcc aggataatta ctgttttata gtttgtggat atcattccct
                                                                  6000
tacttgtgtt tatactttta ccaagtgtgt atgtattcaa aaaacagttg ttttgtgatt
                                                                  6060
ttaaaatgta aatgaatggc gttatgctcc atgtattctg caacttttca tcatacatta
                                                                  6120
ggttttggcg atttagccat aatttggcat gaattcaggt cttttaagtt ttattccatt
                                                                  6180
gtaagaataa acaagtttgt tcattcatgt ctc
                                                                  6213
```

<210> 76 <211> 354 <212> ARN

<213> Homo sapiens

<400> 76

	gtaaaaggca	aaaatttgag	acttataagc	tatatggtag	cttatttttg	ggtggggaag	60
	aaatgagaaa	agaatataac	atctcttact	ggcatgacac	attttgataa	aaaatcttat	120
	tgtcctttcc	tactaggaat	gatccactgt	aagggcaaaa	ataatataca	aggcaaagtt	180
	tttntttggg	aggacagagt	ctcactctgt	cacccgggct	gggagtgcag	tgggtacgat	240
	tcttgggctc	actggcaacc	tctccctccc	ggggttcaag	gtgattcttc	gtgcctcagc	300
	ctcttgagta	gctgggggtt	tacagggcgc	gtgccactgc	gtnccggcta	nttt	354
5	<210> 77 <211> 399 <212> ARN <213> Homo sa	apiens					
	<400> 77 gcgtgtgtgt	aaccttgaac	tcctaggctc	aagtgatcct	cccaccttag	cctctcaagt	60
	agctgggtct	acaggtgtgt	accaccatgt	ctggctaatt	tattaatttt	ttttgtagag	120
	acagggtctc	actatgttgc	ccaggctggt	cttgaattcc	tgggcttcaa	gtgancctaa	180
	tgcctcagcc	tcctaaagct	ctgggactac	aggcatgagc	tatcatgccc	agccagtact	240
	aaataatttt	taacaaaaga	ntaaatcatt	attttttata	taaggtttct	gtaagggggg	300
	ctacaggatt	tattatactt	ttctgacatc	caaagntttc	aaatttggtt	atatttttcc	360
10	ngatatatgg	agggcccaaa	atacttttt	aataacctt			399
15	<210> 78 <211> 510 <212> ARN <213> Homo sa	apiens					
13	<400> 78	22+4444+5+	+2662+2++4	cccatactaa	+a+c222c+c	ctagactcaa	60
				cccatgctgg			120
				ctgggaccac			180
				agagaagggg			
				tcccacctca			240 300
				tccctcattc			360
				ttattccctt ttcagagggc			420
				caagaggccc			480
		antcaggggn		caagaggeee	cttttacgt	gggggcgacc	510
		anceaggggn	ceceeca				310
20	<210> 79 <211> 392 <212> ARN <213> Homo sa	apiens					
	<400> 79 ttcagagata	gggtctagct	ctgtcactta	ggctggagtg	cagtagatga	tttatagctc	60
25	actgcaacct	tgaactcctg	acctcgtgat	ccgcccacct	tggcctccca	aagtggtggg	120

	attacaggcg	tgcnccgttg	cctggccatg	ccagctaatt	taaattttt	tttttgtaga	180
	ggaaggagtc	atgctacatt	ccccaggctg	gtcttaagct	cctggcctca	agtcggcctg	240
	ggcttccaaa	ttctgggatt	atgggtttta	cctgggccag	agaagatata	tttgaatcaa	300
	acttaggggg	acaaggattt	ctgtacatca	gtgttgtcct	tgaggaaact	gaaatgcagc	360
	tttggggaaa	gatnttttca	gagcagagag	aa			392
5	<210> 80 <211> 498 <212> ARN <213> Homo sa	npiens					
	<400> 80 tttttaagta	gagatggggt	tttgccatgt	tgncagggtg	gtctcaaact	catagcctca	60
	tgtaatccac	ctgcctcgac	ttccaaaagt	gctgggatta	caggtgtgag	ccactgtgac	120
	cagcctgact	tcaaatcctg	tgttgaatag	aagtagtgag	atcgggcatc	cttctcttat	180
	tcctgatctt	ggaggcaaag	atttcagtct	ttcacctaaa	atgactgaaa	gactttcagc	240
	catgggcttt	gcatgactgg	cctttatttt	gttgctgtac	attccttctt	ttcctggntt	300
	tgggagtgtt	ttaccagggg	aaagggtntt	caaggctggg	ggcaccgtgg	gcctcaagcc	360
	ttgcaaattg	cccagcactt	ttggggaggg	ccaagggtgg	ggcgctccgt	gcccaatttc	420
	ttgggncctc	gagggccaaa	atttccccaa	taagtgaagg	ccgtatttta	aaattccgna	480
	555	5 555		5 5 55	2	_	
	aatcaangtc			5 5 55	J	_	498
10		aaaaggct		3 3 33			498
10	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81	aaaaggct apiens					
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt	aaaaggct apiens ttcaaactcc	tgacctcaga	tgatccaccc	acctcagcct	cccaaagtgc	60
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca	aaaaggct apiens ttcaaactcc ggcgtgaggc	tgacctcaga accacaccca	tgatccaccc gcccagatga	acctcagcct gcttctttc	cccaaagtgc ttgtttattg	60 120
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa	tgacctcaga accacaccca ttatacatca	tgatccaccc gcccagatga tgttgttttg	acctcagcct gcttctttc agccattcac	cccaaagtgc ttgtttattg atgctgatga	60 120 180
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga acatttgagt	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa tgttttcac	tgacctcaga accacaccca ttatacatca tttttgacta	tgatccaccc gcccagatga tgttgttttg ttattgatgc	acctcagcct gcttctttc agccattcac tgctgtgaac	cccaaagtgc ttgtttattg atgctgatga gttcacctgc	60 120 180 240
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga acatttgagt gtgtgcttgt	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa tgttttcac gtggggcatt	tgacctcaga accacaccca ttatacatca tttttgacta ctgaggacca	tgatccaccc gcccagatga tgttgttttg ttattgatgc	acctcagcct gcttctttc agccattcac tgctgtgaac	cccaaagtgc ttgtttattg atgctgatga gttcacctgc	60 120 180 240 300
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga acatttgagt gtgtgcttgt ttngttggga	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa tgttttcac	tgacctcaga accacaccca ttatacatca tttttgacta ctgaggacca	tgatccaccc gcccagatga tgttgttttg ttattgatgc	acctcagcct gcttctttc agccattcac tgctgtgaac	cccaaagtgc ttgtttattg atgctgatga gttcacctgc	60 120 180 240
	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga acatttgagt gtgtgcttgt	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa tgttttcac gtggggcatt natgatgctg	tgacctcaga accacaccca ttatacatca tttttgacta ctgaggacca	tgatccaccc gcccagatga tgttgttttg ttattgatgc	acctcagcct gcttctttc agccattcac tgctgtgaac	cccaaagtgc ttgtttattg atgctgatga gttcacctgc	60 120 180 240 300
15	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga acatttgagt gtgtgcttgt ttngttggga <210> 82 <211> 431 <212> ARN <213> Homo sa <400> 82	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa tgttttcac gtggggcatt natgatgctg	tgacctcaga accacaccca ttatacatca tttttgacta ctgaggacca gtatc	tgatccaccc gcccagatga tgttgttttg ttattgatgc gancacgngt	acctcagcct gcttctttc agccattcac tgctgtgaac aagcaaaagt	cccaaagtgc ttgtttattg atgctgatga gttcacctgc gangctacat	60 120 180 240 300
15	aatcaangtc <210> 81 <211> 325 <212> ARN <213> Homo sa <400> 81 cccnnctggt tgggattaca ccaaataaga acatttgagt gtgtgcttgt ttngttggga <210> 82 <211> 431 <212> ARN <213> Homo sa <400> 82 cggagtcccn	aaaaggct apiens ttcaaactcc ggcgtgaggc gtcctttgaa tgttttcac gtggggcatt natgatgctg	tgacctcaga accacaccca ttatacatca tttttgacta ctgaggacca gtatc ccaggntgga	tgatccaccc gcccagatga tgttgtttg ttattgatgc gancacgngt	acctcagcct gcttctttc agccattcac tgctgtgaac aagcaaaagt	cccaaagtgc ttgtttattg atgctgatga gttcacctgc gangctacat	60 120 180 240 300 325

	tggtcaggct	ggtcttgaac	tcccgacctc	aggtgatccg	cctgcctcgg	cctcccaaag	240
	tgctggggat	tacaggcgtg	cgacccacgn	cccagccacc	tnttaaattt	cttaatcacg	300
	gattgttttc	agctcaggac	atacacaagg	gcaagtagga	attactaata	aaatcacttt	360
	taccctcaac	cattcanggt	ctctaaggng	catgcanagg	ggttacatgn	cgggggnaag	420
	ggaaggcact	t					431
5	<210> 83 <211> 2350 <212> ARN <213> Homo sa	piens					
	<400> 83 atatgccttt	ttaaaaaaat	tatcttttcc	attggtgact	atgaggttga	gagatgattc	60
	tcctacattt	ctggctgctc	ctcttcaagt	accttccctg	gctcctctgg	attttttgt	120
	tttgttttgt	tttgttttgt	tttgtttttg	agacaaagtc	ttgctttgtt	gcccaggctg	180
	gagtgcagtg	gcaggatctt	ggctcaccag	ctcactgcag	cctccacctc	ccgggttcga	240
	gggattctgg	tgcctcagcc	tccagagtag	ctgggactac	aggcccggct	agtttttgta	300
	cttttggtag	agatgggggt	ttcaccaggc	tggtcttgaa	ctcctgcctc	gggtgatctg	360
	cccgcctcgg	cctcccaaag	tgctgggatt	ctaggcatga	gccaccgcgc	ctggcctggc	420
	tcctcttctt	cttccactca	gatatgcctg	accctgtcaa	cactttggtt	gaggtcttct	480
	ttcttctttc	ttttttgctc	cgcacattta	gcttatgact	tcaaccatca	tttctcagag	540
	catgggtctg	gctcaacctc	tctcctgaat	ttcagaccta	caagtctagc	tacttggtgg	600
	agacctcccc	agaatgacct	gctgcttccc	aaaagcagac	tctccaaatt	acagtcagta	660
	tctccccgg	aagcattccc	ccaggcattt	ctctttctgc	cttcaattcc	ccattctcct	720
	acattgcctt	gccagaagcc	tgctggtcag	cttggatttc	tttttgtcct	ttttttcta	780
	tattttgctg	gtgcctagtc	atgtagttgc	tgcctctaca	ctttctcttc	tttaaaaaaa	840
	attattaaag	caccacgtgc	ttgttgtaaa	catttccaga	aaatacagaa	gtgctcaaag	900
	tgaaaaaatg	gaaatgcctt	gtcccttcct	cattccctgc	cctaacctca	cgccccagat	960
	tcagctatgt	aatagtctgt	catgccaagt	cttatttcca	gctcctcttt	tccatcccca	1020
	ctgccatcat	ctgaactaaa	cggattgttt	tccatctggt	ctccttggct	tttcctttca	1080
	gtgcagctca	acagacatta	atcaagtgcc	ttccacacac	caaagtccta	ccctagatcc	1140
	tagaggttca	gagacaagta	agatagttaa	agagatccac	attccagagc	tgtttaactt	1200
	tgggcaagtt	acttaatctc	tctgaccctt	acttccttat	ctgtaaaatg	atgctaatcc	1260
	cagcaccttt	ttcatgggtt	tggacgagca	ttaatgagat	gatccatgta	aaactctttg	1320
	tactaactac	ctggtacact	gtatctgctc	cataaatgtc	agtgacaaca	atgataataa	1380
	tgacaatgtt	tggaggagtt	tatagcttaa	tggagagact	taaagcataa	gaattatcta	1440
	ggcgaagaat	gatgagaaaa	tatttttgga	aaaggaaaac	aaacagttct	actaaaatta	1500
	aaaggctgat	gtagaggctt	gggaaactgg	gaggtaagag	ctcggactgt	gtcctctaag	1560

	acageance ecganging ageanage energence agreement gyggigating	1020
	ctcaaaatga ggatttaatg gctgcacctc cgagcaagtt ggtaatttac atatcggaat	1680
	gctatccatc aaggaaaatg ggcagactac agttacatgc atcaacacag acaagcttca	1740
	aacaatattg agtgtaaaaa gcaagacata gaaatatata tttagtaaga gtaaaaatac	1800
	agtaaaggta aaaaagaggc aaaactaaac aatatattgc ttaagcaata aggatacaca	1860
	aactaatgaa aatcaaagga tttactaata caaacttcag tatagtaatt aattggaatg	1920
	ggagagaaag atgcaaagtt tctatttctt tttttgtttt gttttgagac agtgtctcat	1980
	tctgttgcca aggcaggagt gcggtggcag gatctcagat cactgcaggc tcagcctcct	2040
	gggttcaggt ggttcttctg cctcggcctc ccgagtggct gggattgcag gcatgcacca	2100
	ccacgcccgg ctgattttg taattttggt agagatggag tttcaccgtg ttggccaggc	2160
	tggtctcgaa ctcctggtct taagtaatcc gcccacctct gccatcaaag tttctgtttc	2220
	ttaagttggc tgccgagtac acaggttttc tttgtaaaat aattatttaa attgttaata	2280
	tgcattactt atatgctttt catttacaat gtatttcaca agaaaaataa aacaaagcaa	2340
	ataagaaaac	2350
5	<210> 84 <211> 184 <212> ARN <213> Homo sapiens	
	<pre><400> 84 gttgcagaga tggtgaggat gtcttgcttt gttacccagg ttggtcttga atttgtggct</pre>	60
	ttaagtgatc ctcccacctt ggcctcccaa agtgctcggg ttacaggcgt acaacagtgc	120
	ctggcctgta ttttattgta attccttttt ccattctcat ctcaatgcat ttccaaatta	180
	gaga	184
10 15	<210> 85 <211> 410 <212> ARN <213> Homo sapiens	
	<400> 85 aaaatatcag ctttattacc aaggatgact gtgctgcagg aggcggctca gtgtgaagaa	60
	ctacgggttt cctgatgttg aagctcagaa ttagccacac tgaccttctc agtcatgcat	120
	gatgccagga aaatcacagg cttccattct acagtgaagg gcttggagga gcaggcaata	180
	atctgtagtc cccagctact tggaggcagt ggacgggaag atggcttgag cccacggagt	240
	tccaagttgt agtgcactat catcatgcca ctgcatctgc actccagcct gggtgacaga	300
	atgaaactct gtgtctccat tccccgtggt ttgcttggtt tggtttgatt tgggtctggt	360
	cttactactg ctgcctctcc gtttgactgg caaagtgtgg actgggcact	410
20	<210> 86 <211> 16459 <212> ARN <213> Homo sapiens	

<400> 86						
gtgcaatggt	gcaatctcag	ctcgctgtaa	cctccgcctc	ctgggttcaa	gcaattctcc	60
tgcctcagcc	tcctgagtag	ctgggattac	aggtgcctgc	caccatgcct	ggctaatttt	120
ttgtatttt	agtagacaca	gggtttcagc	ttgttggcca	ggctggtctc	gaacccctga	180
tctcaggtga	tccacctgcc	tcggccaccc	aaagtgctgg	gattacaggc	atgagccacc	240
gtgcccggat	gaaaagtgct	tttaaaaaag	cataccccgt	ctctactaaa	aatacaaaaa	300
aaaaaattag	ccagacatgg	tggcaggcgc	ctgtagtccc	agctactcgg	gaggctgagg	360
caggataatg	acgtgaaccc	gggaggtgga	gcttgcagtg	agccgagatt	gcgccactgc	420
actccagcct	gggcgacaga	gcgagactct	gtctcaaaaa	ataaataaat	aaataaaata	480
aaaataaata	aaaaagcata	aaataattca	attttttga	aggactttta	gaaactgttt	540
aattttagaa	actatctgat	tgtgatacat	gctaacacac	tcatatactc	cctcctcccc	600
acaacacaca	cacagcctct	ctttgtcgct	cataaagtct	tcggaagctt	tctcagtgct	660
tttaggagta	tgacagaagt	ccttacatgg	ccaacaggaa	cctgcatggt	cttttcacca	720
cttactgtgt	cttcctcatc	tttctgttgt	gctcccctt	gtgctctcct	ccagccctgc	780
tgtcattcct	ccacatggaa	gtctttttt	ttttttttt	ttttttgaga	cagagtctcg	840
ctctgtcgcc	aggctggagt	gcagtggcgc	aatctcggct	tactgcaacc	tccgcctcct	900
gggttcaagc	gattctcctg	cctcagcccc	cccaagtagc	tgggactata	ggagcacacc	960
accacgtcca	gctaatttt	gtattttag	tagagacagg	gtttcaccat	gttggccaga	1020
tctgctgacc	tggtcgtgat	ctcctgacct	tgtgatccac	ccacgttggt	ctcccaaagt	1080
gctgggatta	caggtgtgag	ccaccgcacc	cggccaggaa	gtctttttg	actcctgcca	1140
tgttctcctg	gcacttcttc	cttatacaga	gatcacacat	gcacattgta	catttgctca	1200
gtgagtgtag	ggactgctgc	tctggttttc	ttgtttgttt	gttgcttatt	tctgtatcac	1260
caggatctaa	cacaatgctt	ggttagctgt	acccgagtat	ttactgagtg	catgaattcc	1320
atccattgta	ttttctgtag	ctacctgatc	tttatttgaa	cctttcaaga	tatctcattc	1380
cattttggtg	ttcttattat	aatagaaatt	agagaaaata	tttgcaacca	aaatgagaaa	1440
aaggtaatat	taatatacaa	aaagctcata	taagttactg	aagaaaatgt	ctaaagccct	1500
aataaatagg	caaagaatgt	aaatagctaa	gtcacaaaag	aaatcttaga	atgcttaaaa	1560
gatccaggtg	caatggttca	tgcctgtaat	cccaacactt	taggaggcca	aggcagtagg	1620
atcacttgaa	gccaggagtt	acaagcttag	caacaaagca	agacctcatc	tctacaaaaa	1680
acaaaaaaat	aaaaaaacta	gccaggcgta	gtggcactca	cctgtagtcc	cagctattct	1740
agagccaagg	gagggaggat	tgccttgagc	ccagggattt	gacgctatgg	tgagctatga	1800
tcgtgtcact	gcactcagcc	tgggcaataa	agagacacac	tgactcttaa	aaaaaatggc	1860
caaaagagat	ctgagaataa	ttatctttac	taggcatcaa	ataagtgcaa	atcaaagcaa	1920

actgccacct	attaattgag	caaaacattt	aattgataat	ctatttttca	gaatgtattg	1980
gtctagttag	aatatcaatt	cttacctttc	tgacagatga	ctagtccttt	gtaaataccc	2040
agtcacctct	tttcagttaa	agttgctgtc	tccaaggagt	ttgcaatcta	attggggagg	2100
taaaatctca	actcaagaaa	tgagaagtca	gcatgaaaac	ccattgatgt	cgtattgctt	2160
ttgctgctct	gatgtggtgg	ctcacacctg	taatcccagc	actttgggag	gctggggtga	2220
gaggatcact	tgaacccagg	agttcaagag	cagcctgggt	aacatggcca	aaccctgtgt	2280
caaaaaagt	ttttaaaaat	tagcccggcg	tggtggcaca	tgcctgtagt	cccagctact	2340
caggaggctg	aggtgagagg	atggctggag	gctggcaagt	agaggctgta	atgaactgag	2400
atggtgccac	cagaaggacg	gagtttccct	taaccaagat	aatatgtata	gtggctagtc	2460
tggcacatgg	cacttactgg	gtattccata	aagagtagtt	tatttcccca	aaatgtagag	2520
taagagtgaa	agactttgat	ccaatgtact	tctgtccacc	tacacaagca	aatagaatgt	2580
ttcaccagaa	taattagaca	aaaaatttta	tatgtaattg	gcacattgga	atccttgtaa	2640
attactcctt	ctgttggcca	agagatttac	tcctttggtg	gaacttgtgt	ttttccatat	2700
gacaataata	tagtaatggc	aagtatatca	ataataataa	aactttttt	aaaaagtaaa	2760
gggaaaatct	taccaaatta	atgtttcatt	ttaaggaaaa	tatgactcta	tgcccatttt	2820
tttccttcca	ggatgttgcc	ttatggctgt	ttagcaacag	gagatcgctc	tggcctcatt	2880
gaagttgtga	gcacctctga	aacaattgct	gacattcagc	tgaacagtag	caatgtggct	2940
gctgcagcag	ccttcaacaa	agatgccctt	ctgaactggc	ttaaagaata	caactctggg	3000
ttagtttatt	ctgtttaatt	atcatttttc	tgtacaaaca	gccaaacaaa	tactgtatgc	3060
tcccaataga	agtcagcagt	gtgttagagg	aaatattagt	gtttttatc	tattgcttca	3120
tttcttgtta	gaacaaaatg	acacatagcc	cttcgtaaag	tcttgtaaat	ggtgaatgtt	3180
gaattctact	ttatctaaat	caaattttgg	agccccgcag	taaagttaca	atctatgaat	3240
ttaagtattt	aaagataaca	tactgaagcc	tttgttcaag	tgcatcagct	tctctaatta	3300
tgtgaatata	tgaacttaag	tgagttttta	atgagttggt	agattgtgat	ttctccaaac	3360
taaaaaatgc	aatgtttgga	attatggcta	tggtgttaga	aaagcactaa	tatataggaa	3420
ataaaagaac	ttcacagtgt	gagggggaaa	tggtctgcaa	gtatttttgg	ctaaagactt	3480
cagagtcaga	cacattttat	cgagaacttg	taatatgcaa	atcagtttcc	aaattttgat	3540
cttaaggcct	tgtctccagg	gaatctctat	tacttacttc	taattgaaat	cagtgactta	3600
aatgtttgaa	actgcagtgc	ttaactctta	aacatgaaat	tgtagtcagt	ctttggtcaa	3660
aactaactaa	aatgttccca	acccctagca	tgatctagca	aagccatggt	ctcttctaag	3720
tactgtgaac	atgagtctac	tcacagcccc	accgaaacac	agctcccagg	acgtttgaat	3780
atctaaggcc	cagttattta	atgtctttga	aggcagctct	ctcagcccag	cccctgtgaa	3840
gaccacccac	actccccttg	gctgatccac	atgttctctc	atacggtttt	ggcagctctg	3900
tgttctcctc	acaattaaaa	aggaaacaga	ggtatggttt	gggtctcact	ctacacgctt	3960

ggaggctgaa	aaccttttt	gcttctgttc	ttttctcttg	ttcagggatg	acctggaccg	4020
agccattgag	gaatttacac	tgtcctgtgc	tggctactgt	gtagcttctt	atgtccttgg	4080
gattggtgac	agacatagtg	acaacatcat	ggtcaaaaaa	actggccagg	tgagctgctc	4140
ctcaggatct	gccaagggcc	ttagtaatgc	tatttcttat	gtatagcata	atctcttgtg	4200
caactcagcc	agattctttt	gtgattctta	gtgtcatatc	tttgtcttta	cttcaatttc	4260
tcactacctc	tcgtttcata	tatagtctac	tacatgtatt	catttgtttg	cttgcttgat	4320
ggtaagcatt	tatttgttta	aaaaattact	aaaggctgtg	tgtggtggct	cacgcctgta	4380
atcccagcac	tttgggatcc	cgagccggcc	ggattacctg	aggtcaggag	tttgagacca	4440
gcctggtcaa	catggcgaaa	cccgtctct	actaaaaata	taaaaattag	ccaggcatgg	4500
tggcaggcgc	ctgtaatccc	agctacttgg	gagactgagg	caggagaatc	acttgaacct	4560
gggaggcgga	ggttgcagtg	agccgagatc	gcctcactgt	gctccagcct	gggcaacaag	4620
agtgaaactc	catctcaaaa	aaaaattatt	gaaaaaattt	ttgtagttaa	agtggcctgt	4680
tcttcaatat	aagaaatagt	atttgggata	catttgtacc	taacagaagg	agcggataat	4740
gtactggatg	tattaaattt	aaagattacc	aatgctattc	atatcctttg	cccactttt	4800
gatggggttg	tttgttttt	tcttgtaaat	ttgtttgagt	tcattgtaga	ttctggacat	4860
tagccatttg	tcagatgagt	aggttgcgaa	aattttctcc	cattttgtag	gttgcctgtt	4920
cactctgatg	gtagtttctt	ttgctgtgca	gaagctcttt	agtttaatta	gatcccattt	4980
gtcaattttg	gcttttgttg	ccattgcttt	tggtgtttta	gacatgaagt	ccttgcccat	5040
gcctatgtcc	tgaatggtaa	tgcctaagtt	ttcttctagg	gtttttatgg	ttttaggtct	5100
aacgtttaag	tctttaatcc	aaaagaagac	atttatgcag	ccaacagaca	catgaaaaaa	5160
tgctcatcat	cactggccat	cagagaaatg	caaatcaaaa	ccacagtggg	ataccatctc	5220
acaccagtta	gaatggcaat	cattaaaaag	tcaggaaaca	acaggtgctg	gagaggatgt	5280
ggagaaatag	gaacactttt	acattgttgg	tgggactgta	aactagttca	accattgtgg	5340
aagtcagtgt	ggcgattcct	cagggatcta	gaactagaaa	taccatttga	cccagccatc	5400
ccattactgg	gtatataccc	aaaggactat	aaatcatgct	gctataaaga	cacatgcaca	5460
cgtatgttta	ttgcggcact	attcacaata	gcaaagactt	ggaaccaacc	caaatgtcca	5520
acaatgatag	actggattaa	gaaaatgtgg	cacatatata	ccatggaata	ctatgcagcc	5580
ataaaaaagg	atgagttcat	gtcctttgta	gggacatgga	tgaaattgga	aatcatcatt	5640
ctcagtaaac	tatcacaagg	acaaaaaacc	aaacaccgca	tgttctcact	catagatggg	5700
aattgaacaa	tgagaacaca	tggacacagg	aaggggaaca	tcacactctg	gggactgttg	5760
tggggtgggg	ggaggggga	gggatagcat	taggagatat	acctaatgct	aaaggacgag	5820
ttaatgggta	cagcacacca	gcatggcaca	tgtatacata	tgtaactaac	cggcacattg	5880
tgcacatgta	ccctaaaact	taaaataaaa	aaaaaaaaa	agattaccaa	tgctaaaaaa	5940
aaaaagttgg	gatgaacccc	acttgagtta	ttttctcttt	tagaacatca	tacctaatta	6000

tatatgggag aagggagaa	ıc agtcgtgtga	gtaatagcat	tctggggtac	ctagggaatc	6060
tagaccatgt tgtttataa	a gtacttaagt	tttcaaatga	aaatttcatt	tttcagagtg	6120
acatatttgt aaacactt	t tatgttaagc	aaaaacagat	gagatatctt	agataatttt	6180
tcagtttagc ccccctage	ja attcccacat	tagaggcata	ctagaatgaa	aatctctctg	6240
ggtcactgtg tgaacttt	g ttctatgagg	gacccacagt	tttgtatctc	cttggaaatc	6300
tggattagtt ctggcttg	g ctttgagagt	tgatgtggaa	tgaatttgta	atgcactata	6360
atacatgaat gcaccatg	a cgattgagga	atctcgtgtc	catacttaaa	aggagtccct	6420
tggacttccg tccaatca	a ttaaacactt	agatttatct	ccattttctt	cttttacacc	6480
tctaaaacaa taataagga	na ttaagaaata	tataaactca	agaagtcaaa	gatgatagga	6540
aaataggcca cagtgggt	ja aacctattac	cagacttcgg	ggtgatagaa	agtgagatag	6600
agaagtggca gtgactta	jc agaactgaga	aaatagaaag	tcagtacttg	taaaggggta	6660
cgcaagtccc ataaaagc	c tggaatcaga	ggcaccatgt	atactgttca	aggagggata	6720
cagaaagagg ctgaaaca	ja actagttggc	agcttatata	tggaaccagt	taggcactca	6780
agtccccttc ccttatgc	ca agaaggagac	agatttattc	tctgaagaaa	ctggttctga	6840
ctcaagcaca cttatttc	a cagagactac	aagaaagggt	cccatattaa	aaatggagat	6900
ggagtgaaag tcggcgtag	jt aaatggtaca	atctgcagcc	acttccactt	gctttattct	6960
aagaacagtg gcagccag	ıt gtatagttga	ccctcatcaa	aagactaggt	gattctattc	7020
tagaaatctg attggttc	a ttgaaaagtc	ctgcagatct	gacagttgag	atttctccct	7080
agtttctata caaggaag	c caccaatcaa	caagcaagcc	taccatgtac	atagaatttt	7140
cattcagctt tttagtga	t cattgttaaa	tatgaatggt	cagctaagga	ttaatatact	7200
tttaaaaaat gacaaaaa	t gaatatgttt	atcatgtacg	acatattgtt	ttgaagtatg	7260
tcttcattgt ggacttga	a aattgagctg	acctgtgtgt	tacctcacat	acttatcttt	7320
ttttgtgatg ataacatt	a aaacctagtc	tttcagcagt	tttcaggaat	acaatatatt	7380
gttgttaact atagttgc	a tgttgtaaga	cagatctgtt	gaacttattc	ctcctaagtg	7440
aaattttgta ttatttga	c agtatctccc	cagcacctgc	agccaccatt	ctactctcta	7500
ctggattagc agacattt	a gggaaacctc	taccatgaaa	gatagaaacc	aaataggcaa	7560
aatagggaag aaaagaaa	ng aactctggga	aaacagggta	actgcagtaa	acagagggtg	7620
attttaaaaa tcaaagcaa	a aaaatatatt	gtatctttaa	agtaataata	ggattctgtt	7680
ttttacaatc agcacata	ja ggtcttgaaa	attagaaata	ggaacaaaca	aaaagttaaa	7740
atagaaatag tgtaaata	t ttgtggcagg	catagttgta	agtgctttat	atataatcta	7800
atgccttcag gcctgatg	ıc aaccttatag	agtggcggca	atagccccat	tttacaagtg	7860
aggatattaa ggcaacag	ng agtagacata	tcaggatttt	aaccctggga	gtttggctca	7920
tattcttttt ttttaatc	a ccatgcctta	atatctccaa	aaaatatgat	aaatagagag	7980
aagatccaga aacaataga	ng actcagtcca	gggaggtata	ctctcagcct	aatggatatt	8040

ccagaaagaa	ggagaatggc	gtgaacctgg	gaggtggagc	ttgcagtaag	ctgaaatcac	8100
gccactgcac	tctagcctgg	gcgacagagc	gagactccgt	ctcaaaaaaa	aaaaaaaaa	8160
aaaaaaagaa	gaggaaagaa	gggcacttac	taagcaaata	atatactaag	acatttccca	8220
gagccaatgt	tcatgaatat	ccagtcaaaa	tagcacaaaa	attttctgag	aacggaagaa	8280
aaacaccctt	actaagtacc	tgcactatga	aatttcagtg	catcagacgt	aaagagaaag	8340
tcttaaaact	ttcacagaga	cacagcaggc	cacataccag	agtttagaag	tcaaaatgac	8400
ttggctcctc	aatagctaca	ttggcaatta	taagacagtg	cacgttagcc	ttcataattt	8460
tgagggaaaa	tgatttctaa	cctaaaattc	gataaccaaa	ctttttttt	ttttctgag	8520
acggagactt	gctctgtcgc	ccaggctgga	gtgcagtggc	gtgatcccgg	ctcactgcag	8580
cctccgcctc	ctgggttcaa	gtgattctcc	tgcctcagcc	tccccaggca	gctgggggac	8640
cacaggcatg	cgccaccacg	cccagtcaag	tataaagggt	agaatgaaga	catttttcca	8700
acttgcaggg	tcacaaaact	tgtcactcct	ctgcatcttt	tctcagaggc	tgccagaata	8760
aggacatcta	ccaaaacaag	tgcctaaacc	aataattatc	aagtggggtg	atttttcact	8820
caggggacat	ttgttaatat	atgaaaacag	ttttagttgt	cataactggg	gggtggggta	8880
gtccagtgga	tagaggccag	ggatgctgct	aaacacccat	acaggacaga	accccatatc	8940
aaagaattat	atggcctatg	tcagtgtgtg	ccagtattga	gaaaccctgg	tctcaaccaa	9000
aagagaatgt	gatgtggaca	caaaacgggc	tccaaatggg	agaagaggaa	agggaaggcc	9060
caggatgatg	gctctgcagc	aacaccggag	aacaaccagc	ccagctagaa	accagtagat	9120
tacctgactg	tctggaaaac	agttttgaaa	atgatttgta	gatttgttgt	tgtttgattt	9180
gtagatttt	aaggagagtt	tgggaagaat	taatgctaag	gtcatagaac	actaagctaa	9240
atgaatgaat	gaatacatgc	gtacagtttt	ctaaaggaaa	aaaaggtgaa	catgtgaaaa	9300
ataaaaacac	tgaatattga	tgtaaccaga	aattatgaca	taatgtgcca	cagtgtgtag	9360
cattatgtta	gcataaaagt	actaaatctt	tatcttccat	aataagaata	gtaatataca	9420
attagggagc	aaaaataaat	ataaacatat	tatttagaaa	aatggaggca	gacaccagga	9480
aaaacaccta	gtgagaagag	taagaagtta	cctctaaaga	gtagcactca	atgtggggag	9540
ctagtagggc	aaggatgtac	ttttttgtgg	ttgttgttgt	tgttgagaca	gggtcttact	9600
ctgtcaccca	ggcaagagcg	tagtggcatc	atcatggccc	attgcagcct	cgacctccta	9660
ggctcaagca	attcccccac	ctcacccccc	ctgagtagct	gggaccacag	gtgtgtgcca	9720
ctatgcctga	ctaattttt	ccttcatttg	tagagatggg	gtctcgctat	gttgcctagg	9780
ctggccttga	actcctggtt	tcaagtgatc	ctcctgcctc	agcttcccaa	agtgctggga	9840
ttgcagacat	gagccaccac	aaccaacctg	tactcttttc	ttgttatgtt	ttatagaact	9900
atttgacttt	ttaaaaatca	gacattttaa	ttctttggat	gtatttttct	ttctaaagcg	9960
tctccttttc	cactagatat	ctacagttta	atatcagggt	tatttattat	tgattgtaaa	10020
agtcttaaga	gtgttagata	tggtctcttc	tcacctggct	cagtgggcta	taaacagagg	10080

gagaagggct	cagatgtgga	tgggtatagt	tcctgggggt	ctaggactat	ggaggttttg	10140
cctttatatt	tggaacccac	cagaaaaatg	aaggaaatta	aatcccattt	gttttccagc	10200
tcttccacat	tgactttgga	catattcttg	gaaatttcaa	atctaagttt	ggcattaaaa	10260
gggagcgagt	gccttttatt	cttacctatg	atttcatcca	tgtcattcaa	caaggaaaaa	10320
caggaaatac	agaaaagttt	ggccggtgag	tactgccctt	gtgccaaggc	tgaacacttc	10380
taacattttc	ttatctgacc	aggtggacca	gcatttctta	gctgagatat	atttggatct	10440
gggagatatt	cagtctgatt	ataggaagct	tttgggggaa	tttgcctgtc	agattattgt	10500
gctggttcag	aaattcccag	ataggagaaa	cagaatgcta	gaaatttaaa	atagttatta	10560
tattttattc	caataatata	ctacctttta	cctgtttcag	aacattctct	gaaactatta	10620
agacagttga	taggaagatg	ctgaaaagac	atctgctgtc	attgtgtatg	gagtacagta	10680
agggaactag	aattcagggc	aaattttta	atctctgatc	tattactggc	tacctacatg	10740
ttcccaagca	taatacttgt	ctttttgcct	ttgtatcatc	ttaaaatggg	gacaaaaata	10800
tgaaattaag	ggctactatg	atggttagag	acatatcatg	taaccaacac	atacttaaca	10860
aatcattgtc	actatccttt	atagttctgt	ttgggtttct	gcagaatata	cctcagtggg	10920
tctagttttc	tctttggcaa	aataagggga	tacgattgga	tggtcctcag	cctggcgcgg	10980
taggtcatgc	ctgtaatctc	agcactttgg	gaggccaagg	cacacagatc	actggaggtc	11040
ggagtttgag	accagcctga	ccaacatggt	gaaaccccgt	ctctactaaa	aatacaaaaa	11100
gtagccaggt	gtggtggcac	acgcctgtaa	tctcagctac	tcaggaggct	gaggcagaat	11160
tgcttgaacc	tggaaggcag	aagttgcagt	gagccaagat	cacgccactg	cactccagcc	11220
tgggagacag	agcaaggttc	catctcaaaa	aaaaaacatt	ggatgatctt	cttgagggac	11280
catcttgaag	aggagagaga	gggaaggcag	gatgacagga	aggagcaaaa	gcactgacac	11340
tgattgaggg	gacttttaaa	aaattagttt	ctggaatcag	accacaaata	tagaacccag	11400
aagtatgttc	agaaatcctt	gtggattata	attataactg	atttaataat	cagttcttgt	11460
gtctcataga	attaaaaagt	ctagattatt	attaaaaatg	taatagcctt	tcgtcataga	11520
atttctattt	agttttgttt	ttgaaaaata	tatctgtgat	gttagagaga	ttgattgttt	11580
tatgtagatt	ttagtcctgg	gacaattttc	gcagaagtaa	aaatcagaaa	tgaaccttta	11640
gttcagtagg	aattttctta	ttctaataga	aagtctagct	gtgttttctt	aatttcctgt	11700
atgaaatgtg	ctctctcccc	tctaacactg	tgctcatgtg	gtttgctgca	tcacccaaag	11760
gttccgccag	tgttgtgagg	atgcatatct	gattttacga	cggcatggga	atctcttcat	11820
cactctcttt	gcgctgatgt	tgactgcagg	gcttcctgaa	ctcacatcag	tcaaagatat	11880
acagtatctt	aaggtataaa	accacttttc	cttctctctt	ggactttgtg	ggcattgagc	11940
tcagttttag	ctgcctgttt	tattcaagtg	gctgaaggaa	gtagaacaaa	gtcatttcct	12000
ctaagatggt	tcttagccag	gagggaaaga	atctgggaag	tacataaagg	aggaattttg	12060
tagagtagct	tgtaacccag	aagattttcc	catcagtaga	aggggcgtaa	agaagactgg	12120

tattgggctg	tagccttctt	actcacatta	ctgaaagacc	gcagatcagg	agcgggttgc	12180
caccttgatt	ttccacagtc	tgcctttttc	ttgccaggat	cttagtaggt	cttgagtcat	12240
cttactggat	ttgggtggta	gtggcaagca	gctgtgcatc	ctgcagtaat	tataaattat	12300
tttcatcttc	aaaaaccttt	tggaagaagt	catattatct	ccctatcttg	gggttctgcc	12360
tcctgcagat	gatatttaaa	taagaacatg	aagcatgctg	cctgatggtg	gctggggagg	12420
cacaaccaat	ccagcctcct	gcagactttg	atatttgcac	atctctacta	aagttatata	12480
aaatcatatt	ttccccttc	cattttagga	ctctcttgca	ttagggaaga	gtgaagaaga	12540
agcactcaaa	cagtttaagc	aaaaatttga	tgaggcgctc	agggaaagct	ggactactaa	12600
agtgaactgg	atggcccaca	cagttcggaa	agactacaga	tcttaacgat	cagccttcgc	12660
tcctaatgta	tttgttggtt	tcatttcatt	ttcattttgc	acttgcacta	aattgaacat	12720
gaccctgtta	gagatgttat	aaagggaatg	aaatcctgga	actcagagtt	aaattaagaa	12780
caaggcatcc	cacagaacct	aatctgaaca	atccccgatg	attccctctg	ctttttgaat	12840
gcttccaaga	cttatcatga	aaactgtcaa	tggataatca	tttcctgctg	actttgcacg	12900
ccaaggaatg	ctactaggga	ttgtttccgt	ttttgtttgt	tttttctaat	atttggtact	12960
tcccagaatg	gtgtaaatac	ttcttttcaa	tgttgtgacc	aagtattgtc	actcagccaa	13020
caacttttcc	acacctgggg	gttggtggct	gttcttactg	tccaaatgaa	gctaaaaaga	13080
aaggcatctt	tcttcccttt	taaaattgtg	taaactgcaa	attataatat	aatttgaatt	13140
tatgattatt	ttccagaaga	aatcttgtaa	acctgtggat	actcattaat	tcttttgtta	13200
atatttattt	ccatgatagc	atcattccag	ccagacttgc	tgaaaatcta	ctggtgaggc	13260
aaatataata	tatataaata	tgctacatat	atatttataa	aatttctagt	gggagttcta	13320
tataaatgtt	tctttggtat	tcttcagcct	gtgatttaaa	gttttacaaa	aagcagagct	13380
ttttcctaag	ttacttttca	gttaggtaac	tgtgtgatcc	agttcttcca	gctgcttcta	13440
taatgaggca	catattaata	cagtttttat	atggtatcta	tgaaagagtt	cacttcatag	13500
agaataatac	ttgagcaaat	gtatccaaga	aagcaagcaa	atgaaaagaa	acctatttat	13560
ggaataaact	ccagatctga	aattcagtat	tttagaaaaa	tgccagctct	tcttactgta	13620
tttattaaaa	cttgtaataa	tgtgattttt	ttcaaggata	ttagttcaaa	ttgaaatggt	13680
ttcacgccac	acggaaatct	ttaagttatt	tgttgaggta	ccatatattt	agggtgctag	13740
gggcaagtaa	tgttaatatg	tgcaatagga	actactggtt	tgaatgtgta	aatgggtgat	13800
ctctctgagt	cctggcaaca	tccagcaaaa	ctactgctta	ttctccaaag	aatattggga	13860
gctctcaatc	ctcggtgata	tgggaaagag	aactgagtat	ttgccctatg	actgagcttt	13920
ctataggaat	tttattaaag	aatgtttaat	tttgttgtcc	ttcttaatgt	tctcagtcaa	13980
ataaatgagt	gagctggttt	cggctgctct	tggaatgggt	gagcctcttc	tttatgggta	14040
gactgggcct	ttggaacttg	gcactggaac	tccaagaaat	ggccaagtca	gtagacaaac	14100
caacctcagg	aataggctaa	ggcttattat	ggcctcttcc	ctgacttctc	cccttgtttc	14160

ccagcctcat	caggcatggt	ataggaggcc	ccctggactt	tggtgggagc	ctgaggtaag	14220
gagccatgca	tatgggaggt	gtcctgaagt	ctgggtagtt	acttggcact	gagccaaggc	14280
cagactctgc	tgctttggag	ctcttgttca	tggggcagat	gctggagcag	tccagttcct	14340
tggaaataac	tcagctgagg	atgggagttg	gcccctgaat	tcctcatttc	cagggctggt	14400
gtagactcac	tgagacttcc	aggaatagaa	ctatggaagg	acaggtttgt	tcagagatct	14460
ttgtctagta	gccacccacc	atttcatgaa	ccaggccgca	ggtcagtggt	ttggagaatg	14520
gtgaacactg	ccaggaagaa	atggatacca	ttctttccag	aggggtctcc	tcagccaaaa	14580
ggagggcctt	gataaataca	tgccaaatca	gtgaagttca	agtcaactgt	ttttcccata	14640
tgggcaccaa	attgtatctt	tcctgttttc	tttgaagggt	taagtaacgt	gaccatagtc	14700
acagagtagt	tgatggagcc	agtattcaaa	cccagaaagt	aagaagccta	ttttaattat	14760
ctgtgctctt	tactcacaat	gcctcagtat	acatttcaga	tttattgggt	tccacaaata	14820
gaaacctatg	gaaattttga	atcaaattgc	attaagctat	agacaaggtt	gagacaaatt	14880
gacatctcca	gaatattgag	ttttccaaaa	tatgtaagtg	gagtacccat	ttatttagat	14940
tatctttcat	ttatatccgc	aatgatttat	agtattctgt	gtttacatat	tatgcatcgt	15000
ttgttagatt	cctgggtaag	tgactttatt	gtaagtttca	ttgttgttaa	tctatagcaa	15060
tcattctcca	agtgtggtcc	cctgatgagg	agcatcagca	tcaccagaga	gaactggtta	15120
aaaatgcaaa	ttcttaattt	ttaatttttg	tgagtacata	gtagatatat	atatgggata	15180
catggaatat	tttgatacag	gcatataaca	tgtaattatc	gcatcagggt	aattggggta	15240
tccattacct	caagcattta	tcctttgtat	tagaaacaat	ccagttatac	tcttttagtt	15300
attttaagat	ctataattaa	attatcgact	atagttactc	tgttgtgcta	tcaaatacta	15360
gatcttattc	attcttacta	tttttttgt	acccatagaa	atgcagattc	ttggtggggc	15420
ctggcagctc	acacctgtaa	tcccagcatt	ttgggagggc	gaggccgggg	aatcacctga	15480
ggtcaggagt	tcaagattag	cctggccaac	atggtgaaac	ctgtatctac	taaaaacaca	15540
aaaattagct	gggcatggtg	gctggctcct	gtaatcccag	ctactcgaaa	ggctgaggta	15600
ggagaatcac	ttgaacccag	gaggcggagg	ttgcagtagc	cgagatcaca	ccactgcact	15660
ccagcctggg	taacagagtg	agactccatc	tcaaaaaaag	aaaaaaaaa	gaaatgcaca	15720
tccttgagcc	ctgccctgga	gctactgatt	tagaaatggg	ggtggagccc	caaacctgta	15780
tttaatttaa	tttatttatt	tatttatttt	ttgagatgga	gtctcgcttt	gttgcccagg	15840
ctggagtgca	gtggtgtgat	ctcgattcac	ttcaacctcc	acctcccagg	ttcaagcaat	15900
tatgtctcaa	cctcccgagt	ttagctggga	ctacaggtat	gcaccaccat	gtccagctaa	15960
tttttgtatt	tttaataaag	acagggtttc	accatattgg	tcaggctggt	ctcgaactcc	16020
tgacctcagg	tgatccacct	acctcaacct	cccaaagtgc	tgggattata	ggcatgagcc	16080
accgcaccca	gccaaacctg	tattttcata	aagttccaga	gcaaaggtcc	acaaatacat	16140
ttgatgtttg	tatttagcag	acttataaac	tttctaatta	atcctaacaa	tttatttgta	16200

	tgaattttt	ttttttttc	ttgagacagg	gtctcactat	gtcacccagg	ctggagtgca	16260
	gtggcgtact	ctcggctcac	tgcaacctct	gtctcctggg	cttaggtggt	cctccgacct	16320
	cagcctcctg	aatagctggg	gccacaggca	tgcaccacca	cacgcagcta	atttttgttt	16380
	gtttgtttgt	ttgttttaag	agacggaggt	ttaccatgtt	gcccaggttg	gcctcaaact	16440
	tctggactca	agcagtctg					16459
5	<210> 87 <211> 1145 <212> ARN <213> Homo sa	piens					
	<400> 87 attctctccc	cagcttgctg	agccctttgc	tcccctggcg	actgcctgga	cagtcagcaa	60
	ggaattgtct	cccagtgcat	tttgccctcc	tggctgccaa	ctctggctgc	taaagcggct	120
	gccacctgct	gcagtctaca	cagcttcggg	aagaggaaag	gaacctcaga	ccttccagat	180
	cgcttcctct	cgcaacaaac	tatttgtcgc	aggaataaag	atggctgctg	aaccagtaga	240
	agacaattgc	atcaactttg	tggcaatgaa	atttattgac	aatacgcttt	actttatagc	300
	tgaagatgat	gaaaacctgg	aatcagatta	ctttggcaag	cttgaatcta	aattatcagt	360
	cataagaaat	ttgaatgacc	aagttctctt	cattgaccaa	ggaaatcggc	ctctatttga	420
	agatatgact	gattctgact	gtagagataa	tgcaccccgg	accatattta	ttataagtat	480
	gtataaagat	agccagccta	gaggtatggc	tgtaactatc	tctgtgaagt	gtgagaaaat	540
	ttcaactctc	tcctgtgaga	acaaaattat	ttcctttaag	gaaatgaatc	ctcctgataa	600
	catcaaggat	acaaaaagtg	acatcatatt	ctttcagaga	agtgtcccag	gacatgataa	660
	taagatgcaa	tttgaatctt	catcatacga	aggatacttt	ctagcttgtg	aaaaagagag	720
	agaccttttt	aaactcattt	tgaaaaaaga	ggatgaattg	ggggatagat	ctataatgtt	780
	cactgttcaa	aacgaagact	agctattaaa	atttcatgcc	gggcgcagtg	gctcacgcct	840
	gtaatcccag	ccctttggga	ggctgaggcg	ggcagatcac	cagaggtcag	gtgttcaaga	900
	ccagcctgac	caacatggtg	aaacctcatc	tctactaaaa	atacaaaaaa	ttagctgagt	960
	gtagtgacgc	atgccctcaa	tcccagctac	tcaagaggct	gaggcaggag	aatcacttgc	1020
	actccggagg	tagaggttgt	ggtgagccga	gattgcacca	ttgcgctcta	gcctgggcaa	1080
	caacagcaaa	actccatctc	aaaaaataaa	ataaataaat	aaacaaataa	aaaattcata	1140
	atgtg						1145
10	<210> 88 <211> 732 <212> ARN <213> <i>Homo</i> sa	piens					
15	<400> 88 ttttttttt	ttttttttgg	acacagggtc	ttgctgttgc	ccaggctgga	gtgcagtggc	60
	atgaccatag	ctcactgcag	ccttgacttc	cttaactcaa	gcaatcctct	tgcctcagcc	120

tcctgtagca	ctgtaggcac	acacaactat	gcctggctaa	ttttaacatt	tttctttcac	180
cttcttgacc	cttatcttct	atacccggct	aattttttgt	agagacagtg	tcttgctatg	240
ttgtccaagc	tggtcttgaa	ttcctcgcct	caagcaatcc	ttccacctca	gcttcctgag	300
tgttaggatt	acaggcatga	gccactgcac	ctggcctcca	acaggtaatt	ttagaacatt	360
tttccctcta	cactaattac	cctcctataa	cctccatttg	ttatcactta	ctttctgatg	420
ttgtattcat	agagcatgaa	tatcttagaa	agatggcacc	atccttctat	taataagacc	480
agcagaatag	ctcagtttaa	agttcctcta	aacccaagaa	aatatcaaac	aaaaatgtct	540
ttttttagat	aaatttgaag	tcagaagata	ttttgatatg	agtctagtca	tctcttggta	600
tccatggggg	attggttcct	gaaacccttg	gataccaaaa	tccacagaag	gatgctcaag	660
tctctgtaaa	atagcatagt	atttatatat	agcctatgca	catttcccca	tacactttag	720
attactctag	at					732
<210> 89 <211> 2914 <212> ARN <213> Homo sa	piens					
<400> 89	tttttggttt	ctatttcacc	ttatatctaa	actaatctaa	addctddttd	60
	gcttcctgcc					120
	aggaatacca					180
	tgggtgcgtc					240
	ggtcacttga					300
	tcagcagaaa					360
	agttcctgag					420
	tgttattcca					480
	aggagctgct					540
	aggaggagat					600
	tccacttctg					660
	ctttctggcg					720
	aagtgagcag					780
	gcaaactgga					840
	tcctgggaga					900
	tgctgaagat					960
	tgacaatctc					1020
	accaaatgaa					1080
	aagcacggga					1140
_					55	

acacacttgg atgcaggggc tttgaccacg acctttgaag agcttcattt tgagatcaag

```
ccccacgatg actgcacagt agagcaaatc tatgagattt tgaaaatcta ccaactcatg
                                                                      1260
                                                                      1320
gaccacagta acatggactg cttcatctgc tgtatcctct cccatggaga caagggcatc
atctatggca ctgatggaca ggaggccccc atctatgagc tgacatctca gttcactggt
                                                                      1380
                                                                      1440
ttgaagtgcc cttcccttgc tggaaaaccc aaagtgtttt ttattcaggc ttgtcagggg
gataactacc agaaaggtat acctgttgag actgattcag aggagcaacc ctatttagaa
                                                                      1500
atggatttat catcacctca aacgagatat atcccggatg aggctgactt tctqctqqqq
                                                                      1560
atggccactg tgaataactg tgtttcctac cgaaaccctg cagagggaac ctggtacatc
                                                                      1620
                                                                      1680
cagtcacttt gccagagcct gagagagcga tgtcctcgag gcgatgatat tctcaccatc
ctgactgaag tgaactatga agtaagcaac aaggatgaca agaaaaacat ggggaaacag
                                                                      1740
atgcctcagc ctactttcac actaagaaaa aaacttgtct tcccttctga ttgatggtgc
                                                                      1800
                                                                      1860
tattttgttt gttttgtttt gttttgtttt tttgagacag aatctcgctc tgtcgcccag
gctggagtgc agtggcgtga tctcggctca ccgcaagctc cgcctcccgg gttcaggcca
                                                                      1920
ttctcctqcc tcaqcctccc qaqtaqctqq qactacaqqq qcccqccacc acacctqqct
                                                                      1980
aattttttaa aaatattttt agtagagaca gggtttcact gtgttagcca gggtggtctt
                                                                      2040
gatctcctga cctcgtgatc cacccacctc ggcctcccaa agtgctggga ttacaggcgt
                                                                      2100
gagccaccgc gcctggccga tggtactatt tagatataac actatgttta tttactaatt
                                                                      2160
ttctagattt tctactttat taattgtttt gcactttttt ataagagcta aagttaaata
                                                                      2220
                                                                      2280
ggatattaac aacaataaca ctgtctcctt tctcttatgc ttaaggcttt gggaatgttt
                                                                      2340
ttagctggtg gcaataaata ccagacacgt acaaaatcca gctatgaata tagagggctt
atgattcaga ttgttatcta tcaactataa gcccactgtt aatattctat taactttaat
                                                                      2400
                                                                      2460
tctctttcaa agctaaattc cacactacca cattaaaaaa attagaaagt agccacgtat
                                                                      2520
ggtggctcat gtctataatc ccagcacttt gggaggttga ggtgggagga ttgcttgaac
ccaagaggtc aaggctgcag tgagccatgt tcacaccgct gcactcaagc ttgggtgaca
                                                                      2580
                                                                      2640
gaacaagacc ccgtctcaaa aaaaattttt tttttaataa aacaaaattt gtttgaaatc
ttttaaaaaat tcaaatgatt tttacaagtt ttaaataagc tctccccaaa cttgctttat
                                                                      2700
gccttcttat tgcttttatg atatatatat gcttggctaa ctatatttgc tttttgctaa
                                                                      2760
caatgctctg gggtcttttt atgcatttgc atttgctctt tcatctctgc ttggattatt
                                                                      2820
ttaaatcatt aggaattaag ttatctttaa aatttaagta tctttttca aaaacatttt
                                                                      2880
                                                                      2914
ttaatagaat aaaatataat ttgatcttat taaa
<210> 90
<211> 2153
<212> ARN
<213> Homo sapiens
<400> 90
```

10

60

aagactgcga gctccccgca cccctcgca ctccctctgg ccggcccagg gcgccttcag

gggcgccacg	gaacccgctc	gatctcgccg	ccaactggta	120
gccccgggtc	ccgcgccccg	agaccgccgt	cgctcggacg	180
cgcccaggtg	gccggcgctt	caggcactac	aaatactgtg	240
gaaatcaact	aatttcaaga	caattttgga	gtgggaaccc	300
cactgttcaa	ataagcacta	agtcaggaga	ttggaaaagc	360
cacagagtgt	gacctcaccg	acgagattgt	gaaggatgtg	420
ggtcttctcc	tacccggcag	ggaatgtgga	gagcaccggt	480
tgagaactcc	ccagagttca	caccttacct	ggagacaaac	540
gagttttgaa	caggtgggaa	caaaagtgaa	tgtgaccgta	600
cagaaggaac	aacactttcc	taagcctccg	ggatgtttt	660
actttattat	tggaaatctt	caagttcagg	aaagaaaaca	720
gtttttgatt	gatgtggata	aaggagaaaa	ctactgtttc	780
ctcccgaaca	gttaaccgga	agagtacaga	cagcccggta	840
aggggaattc	agagaaatat	tctacatcat	tggagctgtg	900
tgtcatcatc	ctggctatat	ctctacacaa	gtgtagaaag	960
gaaggagaac	tccccactga	atgtttcata	aaggaagcac	1020
ctatattgca	ctgtgaccga	gaacttttaa	gaggatagaa	1080
tatttcggag	catgaagacc	ctggagttca	aaaaactctt	1140
ttagcattct	ggttttgaca	tcagcattag	tcactttgaa	1200
accaattcca	agttttaatt	tttaacacca	tggcaccttt	1260
ttatatattc	cgcacttaag	gattaaccag	gtcgtccaag	1320
tcttaaaaaa	tcctgggtgg	acttttgaaa	agctttttt	1380
agtcttgctc	tgttgcccag	gctggagtgc	agtagcacga	1440
ccgtctctcg	ggttcaagca	attgtctgcc	tcagcctccc	1500
gcgcactacc	acgccaagct	aatttttgta	ttttttagta	1560
tggccaggct	ggtcttgaat	tcctgacctc	agtgatccac	1620
tgctagtatt	atgggcgtga	accaccatgc	ccagccgaaa	1680
caatccatgt	aggaaagtaa	aatggaagga	aattgggtgc	1740
atatgtctat	aatatagtgt	ttaggttctt	tttttttca	1800
aaacaattgg	gcaaactttg	tattaatgtg	ttaagtgcag	1860
agcttcctaa	tatgctttac	aatctgcact	ttaactgact	1920
agagctaact	atattttat	aagactacta	tacaaactac	1980
cttaaagctt	ctatggttga	cattgtatat	ataattttt	2040
ggattttcta	tttatgtagg	taatattgtt	ctatttgtat	2100
	gccccggtc cgccaggtg gaaatcaact cactgttcaa cacagagtgt ggtcttctcc tgagaactcc gagttttgaa cagaaggaac acttattat gtttttgatt ctcccgaaca aggggaattc tgtcatcatc gaaggagaac ctatattgca tattcggag ttagcattct accaattcca ttataaaaa agtcttgctc ccgtctctcg gcgcactacc tggccaggct tgctagtatt caatccatgt atatgctat acaattgca	gccccaggtc ccgcgccccg cgcccaggtg gccggcgtt gaaatcaact aatttcaaga cactgttcaa ataagcacta cacagagtgt gacctcaccg ggtcttctcc tacccggcag tgagaactcc ccagagttca gagttttgaa caggtgggaa cagaaggaac aacactttcc actttattat tggaaatctt gttttgatt gatgtggata ctcccgaaca gttaaccgga aggggaattc agagaaatat tgtcatcatc ctggctatat gaaggagaac tccccactga ctatattgca ctgtgaccga tattcggag catgaagacc ttagcattct ggttttgaca accaattcca agttttaatt ttatatattc cgcacttaag tcttaaaaaa tcctgggtgg agtcttgctc tgttgcccag ccgtctctcg ggttcaagca gcgcactacc acgccaagct tggccaggct ggtcttgaat tgctagtatt atgggcgtga caatccatgt aggaaagtaa atatgtctat aatatgtgt aaccaattca tatgctttac agagctaact actatgcttac agagctaact atatgctttac agagctaact atatgctttac agagctaact atatgctttac agagctaact atatgctttac agagctaact atatgtttac atatgctta atatgctttac agagctaact atatgctttac agagctaact atatgctttac atatgctta atatgctttac agagctaact atatgctttac atatgctta atatgctttac agagctaact atatgctttac agagctaact atatgctttac	gccccaggtc ccgcgccccg agaccgcctccgcaggtcgcccaggtcgcccaggtcgccccaggtcgccccaggtcgccccaggtcgccccaggtcgcccccaggtcgcccccaggtcgcccccaccaggaatccaccaccagagtcgcccccccc	gggcgccacg gaacccgctc gaactcgccg ccactgggac gccccaggtg gccggcgcct caggcactac aaatactgtg gaaatcaact aattcaaga caattttgga gtgggaaccc cactgttcaa ataagcacta agcaggagat ttggaaaag cacagagtgt gacctcaccg acgagattgg gaaggatgtg ggtcttccc cacagagtga gaaggacacg tgagaactcc ccaaggtgaa cacataagtgaa tggagacacaac gagttttgaa caggtgggaa cagagacacaa cagagagaac cagaaggaac aacctttcc taagctccg ggattttt cagaaggaac aacctttcc taagctcgg gaattttt actttattat tggaaatct caagttcagg aaagaaaaca gttttgatt gattggaaat ctactgttt caagttcagg cacctgtt ctcccagaaca gttaaccga aaggacagaa ctactttt ctgaggttg tgtacatcat ctggcataa ctctacacaa gtgtagaaag ctatattgca ctggaaccaga cagcattgaa cactttgaa ctatattcggaa ctggaatttaa

2153 atattgagat aatttattta atatacttta aataaaggtg actgggaatt gtt <210> 91 <211> 5133 5 <212> ARN <213> Homo sapiens <400> 91 60 cctctttcac cctgtctagg ttgccagcaa atcccacggg cctcctgacg ctgcccctgg 120 ggccacaggt ccctcgagtg ctggaaggat gaaggattcc tgcatcactg tgatggccat 180 ggcgctgctg tctgggttct ttttcttcgc gccggcctcg agctacaacc tggacgtgcg 240 gggcgcgcgg agcttctccc caccgcgcgc cgggaggcac tttggatacc gcgtcctgca 300 tcagtgccag tcgggcacag gacactgcct gccagtcacc ctgagaggtt ccaactatac 360 420 ctccaagtac ttgggaatga ccttggcaac agaccccaca gatggaagca ttttggcctg 480 tgaccctggg ctgtctcgaa cgtgtgacca gaacacctat ctgagtggcc tgtgttacct 540 cttccgccag aatctgcagg gtcccatgct gcaggggcgc cctggttttc aggaatgtat caagggcaac gtagacctgg tatttctgtt tgatggttcg atgagcttgc agccagatga 600 atttcagaaa attctggact tcatgaagga tgtgatgaag aaactcagca acacttcgta 660 720 ccagtttgct gctgttcagt tttccacaag ctacaaaaca gaatttgatt tctcagatta 780 tgttaaatgg aaggaccctg atgctctgct gaagcatgta aagcacatgt tgctgttgac 840 caataccttt ggtgccatca attatgtcgc gacagaggtg ttccgggagg agctgggggc 900 ccggccagat gccaccaaag tgcttatcat catcacggat ggggaggcca ctgacagtgg 960 caacatcgat gcggccaaag acatcatccg ctacatcatc gggattggaa agcattttca 1020 gaccaaggag agtcaggaga ccctccacaa atttgcatca aaacccgcga gcgagtttgt 1080 gaaaattctg gacacatttg agaagctgaa agatctattc actgagctgc agaagaagat 1140 ctatgtcatt gagggcacaa gcaaacagga cctgacttcc ttcaacatgg agctgtcctc 1200 cagcggcatc agtgctgacc tcagcagggg ccatgcagtc gtgggggcag taggagccaa 1260 ggactgggct gggggctttc ttgacctgaa ggcagacctg caggatgaca catttattgg 1320 gaatgaacca ttgacaccag aagtgagagc aggctatttg ggttacaccg tgacctggct 1380 gccctcccgg caaaagactt cgttgctggc ctcgggagcc cctcgatacc agcacatggg 1440 ccgagtgctg ctgttccaag agccacaggg cggaggacac tggagccagg tccagacaat 1500 ccatgggacc cagattggct cttatttcgg tggggagctg tgtggcgtcg acgtggacca 1560 agatggggag acagagctgc tgctgattgg tgccccactg ttctatgggg agcagaggg 1620 aggccgggtg tttatctacc agagaagaca gttggggttt gaagaagtct cagagctgca 1680 gggggacccc ggctacccac tcgggcggtt tggagaagcc atcactgctc tgacagacat 1740 caacggcgat gggctggtag acgtggctgt gggggcccct ctggaggagc agggggctgt

10

gtacatcttc aatgggaggc acggggggct tagtccccag ccaagtcagc ggatagaagg

1800

gacccaagtg	ctctcaggaa	ttcagtggtt	tggacgctcc	atccatgggg	tgaaggacct	1860
tgaaggggat	ggcttggcag	atgtggctgt	gggggctgag	agccagatga	tcgtgctgag	1920
ctcccggccc	gtggtggata	tggtcaccct	gatgtccttc	tctccagctg	agatcccagt	1980
gcatgaagtg	gagtgctcct	attcaaccag	taacaagatg	aaagaaggag	ttaatatcac	2040
aatctgtttc	cagatcaagt	ctctctaccc	ccagttccaa	ggccgcctgg	ttgccaatct	2100
cacttacact	ctgcagctgg	atggccaccg	gaccagaaga	cgggggttgt	tcccaggagg	2160
gagacatgaa	ctcagaagga	atatagctgt	caccaccagc	atgtcatgca	ctgacttctc	2220
atttcatttc	ccggtatgtg	ttcaagacct	catctccccc	atcaatgttt	ccctgaattt	2280
ctctctttgg	gaggaggaag	ggacaccgag	ggaccaaagg	gcgcagggca	aggacatacc	2340
gcccatcctg	agaccctccc	tgcactcgga	aacctgggag	atcccttttg	agaagaactg	2400
tggggaggac	aagaagtgtg	aggcaaactt	gagagtgtcc	ttctctcctg	caagatccag	2460
agccctgcgt	ctaactgctt	ttgccagcct	ctctgtggag	ctgagcctga	gtaacttgga	2520
agaagatgct	tactgggtcc	agctggacct	gcacttcccc	ccgggactct	ccttccgcaa	2580
ggtggagatg	ctgaagcccc	atagccagat	acctgtgagc	tgcgaggagc	ttcctgaaga	2640
gtccaggctt	ctgtccaggg	cattatcttg	caatgtgagc	tctcccatct	tcaaagcagg	2700
ccactcggtt	gctctgcaga	tgatgtttaa	tacactggta	aacagctcct	ggggggactc	2760
ggttgaattg	cacgccaatg	tgacctgtaa	caatgaggac	tcagacctcc	tggaggacaa	2820
ctcagccact	accatcatcc	ccatcctgta	ccccatcaac	atcctcatcc	aggaccaaga	2880
agactccaca	ctctatgtca	gtttcacccc	caaaggcccc	aagatccacc	aagtcaagca	2940
catgtaccag	gtgaggatcc	agccttccat	ccacgaccac	aacataccca	ccctggaggc	3000
tgtggttggg	gtgccacagc	ctcccagcga	ggggcccatc	acacaccagt	ggagcgtgca	3060
gatggagcct	cccgtgccct	gccactatga	ggatctggag	aggctcccgg	atgcagctga	3120
gccttgtctc	cccggagccc	tgttccgctg	ccctgttgtc	ttcaggcagg	agatcctcgt	3180
ccaagtgatc	gggactctgg	agctggtggg	agagatcgag	gcctcttcca	tgttcagcct	3240
ctgcagctcc	ctctccatct	ccttcaacag	cagcaagcat	ttccacctct	atggcagcaa	3300
cgcctccctg	gcccaggttg	tcatgaaggt	tgacgtggtg	tatgagaagc	agatgctcta	3360
cctctacgtg	ctgagcggca	tcggggggct	gctgctgctg	ctgctcattt	tcatagtgct	3420
gtacaaggtt	ggtttcttca	aacggaacct	gaaggagaag	atggaggctg	gcagaggtgt	3480
cccgaatgga	atccctgcag	aagactctga	gcagctggca	tctgggcaag	aggctgggga	3540
tcccggctgc	ctgaagcccc	tccatgagaa	ggactctgag	agtggtggtg	gcaaggactg	3600
agtccaggcc	tgtgaggtgc	agagtgccca	gaactggact	caggatgccc	agggccactc	3660
tgcctctgcc	tgcattctgc	cgtgtgccct	cgggcgagtc	actgcctctc	cctggccctc	3720
agtttcccta	tctcgaacat	ggaactcatt	cctgaatgtc	tcctttgcag	gctcataggg	3780
aagacctgct	gagggaccag	ccaagagggc	tgcaaaagtg	agggcttgtc	attaccagac	3840

	ggttcaccag	cctctcttgg	ttccttcctt	ggaagagaat	gtctgatcta	aatgtggaga	3900
	aactgtagtc	tcaggaccta	gggatgttct	ggccctcacc	cctgccctgg	gatgtccaca	3960
	gatgcctcca	cccccagaa	cctgtccttg	cacactcccc	tgcactggag	tccagtctct	4020
	tctgctggca	gaaagcaaat	gtgacctgtg	tcactacgtg	actgtggcac	acgccttgtt	4080
	cttggccaaa	gaccaaattc	cttggcatgc	cttccagcac	cctgcaaaat	gagaccctcg	4140
	tggccttccc	cagcctcttc	tagagccgtg	atgcctccct	gttgaagctc	tggtgacacc	4200
	agcctttctc	ccaggccagg	ctccttcctg	tcttcctgca	ttcacccaga	cagctccctc	4260
	tgcctgaacc	ttccatctcg	cccacccctc	cttccttgac	cagcagatcc	cagctcacgt	4320
	cacacacttg	gttgggtcct	cacatctttc	acacttccac	caccctgcac	tactccctca	4380
	aagcacacgt	catgtttctt	catccggcag	cctggatgtt	ttttccctgt	ttaatgattg	4440
	acgtacttag	cagctatctc	tcagtgaact	gtgagggtaa	aggctatact	tgtcttgttc	4500
	accttgggat	gacgccgcat	gatatgtcag	ggcgtgggac	atctagtagg	tgcttgacat	4560
	aatttcactg	aattaatgac	agagccagtg	ggaagataca	gaaaaagagg	gccggggctg	4620
	ggcgcggtgg	ttcacgcctg	taatcccagc	actttgggag	gccaaggagg	gtggatcacc	4680
	tgaggtcagg	agttagaggc	cagcctggcg	aaaccccatc	tctactaaaa	atacaaaatc	4740
	caggcgtggt	ggcacacacc	tgtagtccca	gctactcagg	aggttgaggt	aggagaattg	4800
	cttgaacctg	ggaggtggag	gttgcagtga	gccaagattg	cgccattgca	ctccagcctg	4860
	ggcaacacag	cgagactccg	tctcaaggaa	aaaataaaaa	taaaaagcgg	gcacgggccc	4920
	ggacatcccc	acccttggag	gctgtcttct	caggctctgc	cctgccctag	ctccacaccc	4980
	tctcccagga	cccatcacgc	ctgtgcagtg	gccccacag	aaagactgag	ctcaaggtgg	5040
	gaaccacgtc	tgctaacttg	gagccccagt	gccaagcaca	gtgcctgcat	gtatttatcc	5100
	aataaatgtg	aaattctgtc	caaaaaaaaa	aaa			5133
	:210> 92 :211> 2357 :212> ARN :213> Homo saj	piens					
	:400> 92 cgagcttggc	tgcttctggg	gcctgtgtgg	ccctgtgtgt	cggaaagatg	gagcaagaag	60
•	ccgagcccga	ggggcggccg	cgacccctct	gaccgagatc	ctgctgcttt	cgcagccagg	120
	agcaccgtcc	ctccccggat	tagtgcgtac	gagcgcccag	tgccctggcc	cggagagtgg	180
	aatgatcccc	gaggcccagg	gcgtcgtgct	tccgcgcgcc	ccgtgaagga	aactggggag	240
	tcttgaggga	ccccgactc	caagcgcgaa	aaccccggat	ggtgaggagc	aggcaaatgt	300
	gcaataccaa	catgtctgta	cctactgatg	gtgctgtaac	cacctcacag	attccagctt	360
		gaccctggtt					420
						cantatatta	480

tgactaaacg	attatatgat	gagaagcaac	aacatattgt	atattgttca	aatgatcttc	540
taggagattt	gtttggcgtg	ccaagcttct	ctgtgaaaga	gcacaggaaa	atatatacca	600
tgatctacag	gaacttggta	gtagtcaatc	agcaggaatc	atcggactca	ggtacatctg	660
tgagtgagaa	caggtgtcac	cttgaaggtg	ggagtgatca	aaaggacctt	gtacaagagc	720
ttcaggaaga	gaaaccttca	tcttcacatt	tggtttctag	accatctacc	tcatctagaa	780
ggagagcaat	tagtgagaca	gaagaaaatt	cagatgaatt	atctggtgaa	cgacaaagaa	840
aacgccacaa	atctgatagt	atttcccttt	cctttgatga	aagcctggct	ctgtgtgtaa	900
taagggagat	atgttgtgaa	agaagcagta	gcagtgaatc	tacagggacg	ccatcgaatc	960
cggatcttga	tgctggtgta	agtgaacatt	caggtgattg	gttggatcag	gattcagttt	1020
cagatcagtt	tagtgtagaa	tttgaagttg	aatctctcga	ctcagaagat	tatagcctta	1080
gtgaagaagg	acaagaactc	tcagatgaag	atgatgaggt	atatcaagtt	actgtgtatc	1140
aggcagggga	gagtgataca	gattcatttg	aagaagatcc	tgaaatttcc	ttagctgact	1200
attggaaatg	cacttcatgc	aatgaaatga	atcccccct	tccatcacat	tgcaacagat	1260
gttgggccct	tcgtgagaat	tggcttcctg	aagataaagg	gaaagataaa	ggggaaatct	1320
ctgagaaagc	caaactggaa	aactcaacac	aagctgaaga	gggctttgat	gttcctgatt	1380
gtaaaaaaac	tatagtgaat	gattccagag	agtcatgtgt	tgaggaaaat	gatgataaaa	1440
ttacacaagc	ttcacaatca	caagaaagtg	aagactattc	tcagccatca	acttctagta	1500
gcattattta	tagcagccaa	gaagatgtga	aagagtttga	aagggaagaa	acccaagaca	1560
aagaagagag	tgtggaatct	agtttgcccc	ttaatgccat	tgaaccttgt	gtgatttgtc	1620
aaggtcgacc	taaaaatggt	tgcattgtcc	atggcaaaac	aggacatctt	atggcctgct	1680
ttacatgtgc	aaagaagcta	aagaaaagga	ataagccctg	cccagtatgt	agacaaccaa	1740
ttcaaatgat	tgtgctaact	tatttcccct	agttgacctg	tctataagag	aattatatat	1800
ttctaactat	ataaccctag	gaatttagac	aacctgaaat	ttattcacat	atatcaaagt	1860
gagaaaatgc	ctcaattcac	atagatttct	tctctttagt	ataattgacc	tactttggta	1920
gtggaatagt	gaatacttac	tataatttga	cttgaatatg	tagctcatcc	tttacaccaa	1980
ctcctaattt	taaataattt	ctactctgtc	ttaaatgaga	agtacttggt	ttttttttt	2040
cttaaatatg	tatatgacat	ttaaatgtaa	cttattattt	tttttgagac	cgagtcttgc	2100
tctgttaccc	aggctggagt	gcagtggcgt	gatcttggct	cactgcaagc	tctgcctccc	2160
gggttcgcac	cattctcctg	cctcagcctc	ccaattagct	tggcctacag	tcatctgcca	2220
ccacacctgg	ctaattttt	gtacttttag	tagagacagg	gtttcaccgt	gttagccagg	2280
atggtctcga	tctcctgacc	tcgtgatccg	cccacctcgg	cctcccaaag	tgctgggatt	2340
acaggcatga	gccaccg					2357

<210> 93

<211> 4034 5 <212> ARN <213> Homo sapiens

<400> 93 agggagaggc	agagaggcag	gcagcctgct	gggctcttcc	tgctgttgaa	aacttacccg	60
gcccttacag	aggaaatctt	cctcctct	tctgccctga	atgttttccc	aaacatgaag	120
gtgataagct	tattcatttt	ggtgggattt	ataggagagt	tccaaagttt	ttcaagtgcc	180
tcctctccag	tcaactgcca	gtgggacttc	tatgcccctt	ggtcagaatg	caatggctgt	240
accaagactc	agactcgcag	gcggtcagtt	gctgtgtatg	ggcagtatgg	aggccagcct	300
tgtgttggaa	atgcttttga	aacacagtcc	tgtgaaccta	caagaggatg	tccaacagag	360
gagggatgtg	gagagcgttt	caggtgcttt	tcaggtcagt	gcatcagcaa	atcattggtt	420
tgcaatgggg	attctgactg	tgatgaagac	agtgctgatg	aagacagatg	tgaggactca	480
gaaaggagac	cttcctgtga	tatcgataaa	cctcctccta	acatagaact	tactggaaat	540
ggttacaatg	aactcactgg	ccagtttagg	aacagagtca	tcaataccaa	aagttttggt	600
ggtcaatgta	gaaaggtgtt	tagtggggat	ggaaaagatt	tctacaggct	gagtggaaat	660
gtcctgtcct	atacattcca	ggtgaaaata	aataatgatt	ttaattatga	attttacaat	720
agtacttggt	cttatgtaaa	acatacgtcg	acagaacaca	catcatctag	tcggaagcgc	780
tcctttttta	gatcttcatc	atcttcttca	cgcagttata	cttcacatac	caatgaaatc	840
cataaaggaa	agagttacca	actgctggtt	gttgagaaca	ctgttgaagt	ggctcagttc	900
attaataaca	atccagaatt	tttacaactt	gctgagccat	tctggaagga	gctttcccac	960
ctccctctc	tgtatgacta	cagtgcctac	cgaagattaa	tcgaccagta	cgggacacat	1020
tatctgcaat	ctgggtcgtt	aggaggagaa	tacagagttc	tattttatgt	ggactcagaa	1080
aaattaaaac	aaaatgattt	taattcagtc	gaagaaaaga	aatgtaaatc	ctcaggttgg	1140
cattttgtcg	ttaaattttc	aagtcatgga	tgcaaggaac	tggaaaacgc	tttaaaagct	1200
gcttcaggaa	cccagaacaa	tgtattgcga	ggagaaccgt	tcatcagagg	gggaggtgca	1260
ggcttcatat	ctggccttag	ttacctagag	ctggacaatc	ctgctggaaa	caaaaggcga	1320
tattctgcct	gggcagaatc	tgtgactaat	cttcctcaag	tcataaaaca	aaagctgaca	1380
cctttatatg	agctggtaaa	ggaagtacct	tgtgcctctg	tgaaaaaact	atacctgaaa	1440
tgggctcttg	aagagtatct	ggatgaattt	gacccctgtc	attgccggcc	ttgtcaaaat	1500
ggtggtttgg	ctactgttga	ggggacccat	tgtctgtgcc	attgcaaacc	gtacacattt	1560
ggtgcggcgt	gtgagcaagg	agtcctcgta	gggaatcaag	caggaggggt	tgatggaggt	1620
tggagttgct	ggtcctcttg	gagcccctgt	gtccaaggga	agaaaacaag	aagccgtgaa	1680
tgcaataacc	cacctcccag	tgggggtggg	agatcctgcg	ttggagaaac	gacagaaagc	1740
acacaatgcg	aagatgagga	gctggagcac	ttgaggttgc	ttgaaccaca	ttgctttcct	1800
ttgtctttgg	ttccaacaga	attctgtcca	tcacctcctg	ccttgaaaga	tggatttgtt	1860
caagatgaag	gtacaatgtt	tcctgtgggg	aaaaatgtag	tgtacacttg	caatgaagga	1920
tactctctta	ttggaaaccc	agtggccaga	tgtggagaag	atttacggtg	gcttgttggg	1980

gaaatgcatt	gtcagaaaat	tgcctgtgtt	ctacctgtac	tgatggatgg	catacagagt	2040
cacccccaaa	aacctttcta	cacagttggt	gagaaggtga	ctgtttcctg	ttcaggtggc	2100
atgtccttag	aaggtccttc	agcatttctc	tgtggctcca	gccttaagtg	gagtcctgag	2160
atgaagaatg	cccgctgtgt	acaaaaagaa	aatccgttaa	cacaggcagt	gcctaaatgt	2220
cagcgctggg	agaaactgca	gaattcaaga	tgtgtttgta	aaatgcccta	cgaatgtgga	2280
ccttccttgg	atgtatgtgc	tcaagatgag	agaagcaaaa	ggatactgcc	tctgacagtt	2340
tgcaagatgc	atgttctcca	ctgtcagggt	agaaattaca	cccttactgg	tagggacagc	2400
tgtactctgc	ctgcctcagc	tgagaaagct	tgtggtgcct	gcccactgtg	gggaaaatgt	2460
gatgctgaga	gcagcaaatg	tgtctgccga	gaagcatcgg	agtgcgagga	agaagggttt	2520
agcatttgtg	tggaagtgaa	cggcaaggag	cagacgatgt	ctgagtgtga	ggcgggcgct	2580
ctgagatgca	gagggcagag	catctctgtc	accagcataa	ggccttgtgc	tgcggaaacc	2640
cagtaggctc	ctggaggccc	tggtcagctt	gcttggaatc	cagcaggcag	ctggggctga	2700
gtgaaaacat	ctgcacaact	gggcactgga	cagcttttcc	ttcttctcca	gtgtctacct	2760
tcctcctcaa	ctcccagcca	tctgtataaa	cacaatcctt	tgttctccca	aatctgaatc	2820
gaattactct	tttgcctcct	ttttaatgtc	agtaaggata	tgagcctttg	cacaggctgg	2880
ctgcgtgttc	ttgaaatagg	tgttaccttc	tctgggcctt	ggtttttaa	aatctgtaaa	2940
attagaggat	tgcactagag	aaacttgaat	gctccattca	ggcctatcat	tttattaagt	3000
atgattgaca	cagcccatgg	gccagaacac	actctacaaa	atgactagga	taacagaaag	3060
aacgtgatct	cctgattaga	gagggtggtt	ttcctcaatg	gaaccaaata	taaagaggac	3120
ttgaacaaaa	atgacagata	caaactattt	ctatcctgag	tagtaatctc	acacttcatc	3180
ctatagagtc	aaccaccaca	gataggaatt	ccttattctt	tttttaattt	ttttaagaca	3240
gagtctcact	ttgttgccca	ggctggagcg	cagtggggtg	atctcatctc	cctgcaacct	3300
ccgcctcctg	ggttcaagcg	attcttgtgc	ctcagcttcc	caagcagctg	ggattacagg	3360
tgcccgccac	cacgcccagc	taatttttgc	atttttagta	gagatggggt	ttcaccatgt	3420
tggccacgct	cgtctccaac	tcctgacctc	aggtaatccg	cctgccttgg	cctcccaaag	3480
tgctgggatt	acagacatga	accaccacgc	ctggctggaa	tacttactct	tgtcgggaga	3540
ttgaaccact	aaaatgttag	agcagaattc	attatgctgt	ggtcacaggg	gtgtcttgtc	3600
tgagaacaaa	tacaattcag	tcttctcttt	ggggttttag	tatgtgtcaa	acataggact	3660
ggaagtttgc	ccctgttctt	ttttcttttg	aaagaacatc	agttcatgcc	tgaggcatga	3720
gtgactgtgc	atttgagaat	agttttccct	attctgtgga	tacagtccca	gagttttcag	3780
ggagtacaca	ggtagattag	tttgaagcat	tgacctttta	tttattcctt	atttctcttt	3840
catcaaaaca	aaacagcagc	tgtgggagga	gaaatgagag	ggcttaaatg	aaatttaaaa	3900
taagctatat	tatacaaata	ctatctctgt	attgttctga	ccctggtaaa	tatatttcaa	3960
aacttcagat	gacaaggatt	agaacactca	ttaaagatgc	tattcttcag	aaaaaaaaa	4020

aaaaaaaaa aaaa 4034

<210> 94 <211> 2964 <212> ARN <213> Homo sapiens

<400> 94 60 agtcggcggc ggctgctgct gcctgtggcc cgggcggctg ggagaagcgg agtgttggtg agtgacgcgg cggaggtgta gtttgacgcg gtgtgttacg tggggggagag aataaaactc 120 cagcgagatc cgggccgtga acgaaagcag tgacggagga gcttgtacca ccggtaacta 180 aatgaccatg gaatctggag ccgagaacca gcagagtgga gatgcagctg taacagaagc 240 tgaaaaccaa caaatgacag ttcaagccca gccacagatt gccacattag cccaggtatc 300 tatgccagca gctcatgcaa catcatctgc tcccaccgta actctagtac agctgcccaa 360 tgggcagaca gttcaagtcc atggagtcat tcaggcggcc cagccatcag ttattcagtc 420 480 tccacaagtc caaacagttc agatttcaac tattgcagaa agtgaagatt cacaggagtc 540 agtggatagt gtaactgatt cccaaaagcg aagggaaatt ctttcaagga ggccttccta 600 caggaaaatt ttgaatgact tatcttctga tgcaccagga gtgccaagga ttgaagaaga gaagtctgaa gaggagactt cagcacctgc catcaccact gtaacggtgc caactccaat 660 ttaccaaact agcagtggac agtatattgc cattacccag ggaggagcaa tacagctggc 720 780 taacaatggt accgatgggg tacagggcct gcaaacatta accatgacca atgcagcagc cactcagccg ggtactacca ttctacagta tgcacagacc actgatggac agcagatctt 840 agtgcccagc aaccaagttg ttgttcaagc tgcctctgga gacgtacaaa cataccagat 900 tcgcacagca cccactagca ctattgcccc tggagttgtt atggcatcct ccccagcact 960 tcctacacag cctgctgaag aagcagcacg aaagagagag gtccgtctaa tgaagaacag 1020 1080 ggaagcagct cgagagtgtc gtagaaagaa gaaagaatat gtgaaatgtt tagaaaacag 1140 agtggcagtg cttgaaaatc aaaacaagac attgattgag gagctaaaag cacttaagga 1200 cctttactgc cacaaatcag attaatttgg gatttaaatt ttcacctgtt aaggtggaaa atggactggc ttggccacaa cctgaaagac aaaataaaca ttttatttc taaacatttc 1260 1320 tttttttcta tgcgcaaaac tgcctgaaag caactacaga atttcattca tttgtgcttt tgcattaaac tgtgaatgtt ccaacacctg cctccacttc tcccctcaag aaattttcaa 1380 1440 cgccaggaat catgaagaga cttctgcttt tcaaccccca ccctcctcaa gaagtaataa 1500 tttgtttact tgtaaattga tgggagaaat gaggaaaaga aaatctttt aaaaatgatt tcaaggtttg tgctgagctc cttgattgcc ttagggacag aattacccca gcctcttgag 1560 ctgaagtaat gtgtgggccg catgcataaa gtaagtaagg tgcaatgaag aagtgttgat 1620 tgccaaattg acatgttgtc acattctcat tgtgaattat gtaaagttgt taagagacat 1680 1740 accctctaaa aaagaacttt agcatggtat tgaaggaatt agaaatgaat ttggagtgct

	ttttatgtat	gttgtcttct	tcaatactga	aaatttgtcc	ttggttctta	aaagcattct	1800
	gtactaatac	agctcttcca	tagggcagtt	gttgcttctt	aattcagttc	tgtatgtgtt	1860
	caacattttt	gaatacatta	aaagaagtaa	ccaactgaac	gacaaagcat	ggtatttgaa	1920
	ttttaaatta	aagcaaagta	aataaaagta	caaagcatat	tttagttagt	actaaattct	1980
	tagtaaaatg	ctgatcagta	aaccaatccc	ttgagttata	taacaagatt	tttaaataaa	2040
	tgttattgtc	ctcaccttca	aaaatattta	tattgtcact	catttacgta	aaaagatatt	2100
	tctaatttac	tgttgcccat	tgcacttaca	taccaccacc	aagaaagcct	tcaagatgtc	2160
	aaataaagca	aagtgatata	tatttgttta	tgaaatgtta	catgtagaaa	aatactgatt	2220
	ttaaatattt	tccatattaa	caatttaaca	gagaatctct	agtgaatttt	ttaaatgaaa	2280
	gaagttgtaa	ggatataaaa	agtacagtgt	tagatgtgca	caaggaaagt	tattttcaga	2340
	catatttgaa	tgactgctgt	actgcaatat	ttggattgtc	attcttacaa	aacattttt	2400
	tgttctcttg	taaaaagagt	agttattagt	tctgctttag	ctttccaata	tgctgtatag	2460
	cctttgtcat	tttataattt	taattcctga	ttaaaacagt	ctgtatttgt	gtatatcata	2520
	cattgttttc	aataccactt	ttaattgtta	ctcattttat	tcactaagct	cgataaatct	2580
	aacagttact	cttaaaaaaa	aaaaaaagac	taaggtggat	tttaaaaatt	ggaaactgac	2640
	ataatgttag	gttataattt	ctcatttgga	gccgggcgca	gtggctcacg	cctgtaatcc	2700
	cagcactttg	ggaggccaag	gtgggtggat	cacctgtggt	caagagttca	agaccagcct	2760
	ggccatcatg	gtgaaacccc	atctctacta	aaaatacaaa	aattagccag	gcgtggtggc	2820
	tggcgcctgt	aatcccagct	actcaggagg	ttgaggcagc	agaattgctt	gaacccagga	2880
	ggcagagggt	tgcagtgagc	cgagatagca	ccattgcact	ccagcctggg	cgactccatc	2940
	tcaaaaaata	aaaaaaaaaa	aaaa				2964
<	<210> 95 <211> 1977 <212> ARN <213> Homo sa _l	piens					
	<400> 95 gttttggcag	gagcgggaga	attctgcgga	gcctgcggga	cggcggcggt	ggcgccgtag	60
	gcagccggga	cagtgttgta	cagtgttttg	ggcatgcacg	tgatactcac	acagtggctt	120
	ctgctcacca	acagatgaag	acagatgcac	caacgaggct	gatgggaacc	atcctgtaga	180
	ggtccatctg	cgttcagacc	cagacgatgc	cagagctatg	actgggcctg	caggtgtggc	240
	gccgagggga	gatcagccat	ggagcagcca	caggaggaag	cccctgaggt	ccgggaagag	300
	gaggagaaag	aggaagtggc	agaggcagaa	ggagccccag	agctcaatgg	gggaccacag	360
	catgcacttc	cttccagcag	ctacacagac	ctctcccgga	gctcctcgcc	accctcactg	420
	ctggaccaac	tgcagatggg	ctgtgacggg	gcctcatgcg	gcagcctcaa	catggagtgc	480
	cgggtgtgcg	gggacaaggc	atcgggcttc	cactacggtg	ttcatgcatg	tgaggggtgc	540
	aagggcttct	tccgtcgtac	gatccgcatg	aagctggagt	acgagaagtg	tgagcgcagc	600

tgcaagattc	agaagaagaa	ccgcaacaag	tgccagtact	gccgcttcca	gaagtgcctg	660
gcactgggca	tgtcacacaa	cgctatccgt	tttggtcgga	tgccggaggc	tgagaagagg	720
aagctggtgg	cagggctgac	tgcaaatgag	gggagccagt	acaacccaca	ggtggccgac	780
ctgaaggcct	tctccaagca	catctacaat	gcctacctga	aaaacttcaa	catgaccaaa	840
aagaaggccc	gcagcatcct	caccggcaaa	gccagccaca	cggcgccctt	tgtgatccac	900
gacatcgaga	cattgtggca	ggcagagaag	gggctggtgt	ggaagcagtt	ggtgaatggc	960
ctgcctccct	acaaggagat	cagcgtgcac	gtcttctacc	gctgccagtg	caccacagtg	1020
gagaccgtgc	gggagctcac	tgagttcgcc	aagagcatcc	ccagcttcag	cagcctcttc	1080
ctcaacgacc	aggttaccct	tctcaagtat	ggcgtgcacg	aggccatctt	cgccatgctg	1140
gcctctatcg	tcaacaagga	cgggctgctg	gtagccaacg	gcagtggctt	tgtcacccgt	1200
gagttcctgc	gcagcctccg	caaacccttc	agtgatatca	ttgagcctaa	gtttgaattt	1260
gctgtcaagt	tcaacgccct	ggaacttgat	gacagtgacc	tggccctatt	cattgcggcc	1320
atcattctgt	gtggaggtga	gtgagagtgg	ggcaggtggg	ctggcctggc	acacccagtc	1380
gtcctggggg	ttggccctca	ctgcagggca	ctgtgcctga	gctctgacag	tgtggggaag	1440
tgtccctgtg	atcttggcag	tggaacatgc	aaggcactga	ctgagcatgc	aggatcagct	1500
ccatctcatt	atgtacgtag	atagaggtgg	agacaggaaa	aagactaagc	cagacgtggt	1560
ggctcacacc	tgtaatccca	gcactttggc	aggccgaggc	gggtggatca	cttgaggtca	1620
ggagttcgaa	accagcctgg	ccaacatggt	gaaaccccgt	ctctactaaa	aatacaaaaa	1680
attagccaga	tgtggtggca	cgcgcctgta	atcccagcta	cttgggaggc	tgagccagga	1740
gaatcgcttg	aacccgagag	gtggaggttg	cagtgagcca	aaatcccacc	actgcactcc	1800
agcctgggtg	acagagtgag	accctgtctc	aaaaaaagg	aaaaggacta	acaggcagta	1860
tgctgtcatg	ttaatgtggg	gtggaaaaat	tgtctgcatt	ttttctgcat	ttttaaaatt	1920
ccaacacaat	aaatacaata	ataactatgc	taaaaaaaa	aaaaaaaaa	aaaaaaa	1977
<210> 96 <211> 2594 <212> ARN <213> Homo sa	piens					
<400> 96 gcttcgggtg	ccatggggac	tcctcccggc	ctgcagaccg	actgcgaggc	gctgctcagc	60
cgcttccagg	agacggacag	tgtacgcttc	gaggacttca	cggagctctg	gagaaacatg	120
aagttcggga	ctatcttctg	tggcagaatg	agaaatttag	aaaagaacat	gtttacaaaa	180
gaagctttag	ctttggcttg	gcgatatttt	ttacctccat	acaccttcca	gatcagagtt	240
ggtgctttgt	atctgctata	tggattatat	aatacccaac	tgtgtcaacc	aaaacaaaag	300
atcagagttg	ccctgaagga	ttgggatgaa	gttttaaaat	ttcagcaaga	tttagtaaat	360
gcacagcatt	ttgatgcagc	ttatatttt	aggaagctac	gactagacag	agcatttcac	420

tttacagcaa	tgcccaaatt	gctgtcatat	aggatgaaga	aaaaaattca	ccgagctgaa	480
gttacagaag	aatttaagga	cccaagtgat	cgtgtgatga	aacttatcac	ttctgatgta	540
ttagaggaaa	tgctgaatgt	tcatgatcat	tatcagaaca	tgaaacatgt	aatttcagtt	600
gataagtcca	agccagataa	agccctcagc	ttgataaagg	atgattttt	tgacaatatt	660
aagaacatag	ttttggagca	tcagcagtgg	cacaaagaca	gaaagaatcc	atccttaaag	720
tcaaaaacta	atgatggaga	agaaaaaatg	gaaggaaatt	cacaagaaac	ggagagatgt	780
gaaagggcag	aatcattagc	gaaaataaaa	tcaaaggcct	tttcagttgt	catacaggca	840
tccaaatcaa	gaaggcatcg	tcaagtcaaa	ctcgactctt	ctgactctga	ttctgcatct	900
ggtcaagggc	aagtcaaagc	aactaggaaa	aaagagaaga	aagaaagatt	gaaaccagca	960
ggaaggaaga	tgtctctcag	aaacaaaggc	aatgtgcaga	atatacacaa	ggaagataaa	1020
cctttaagtc	tgagtatgcc	tgtaattaca	gaagaagaag	agaatgaaag	tttgagtgga	1080
acagagttca	ctgcatccaa	gaagaggaga	aaacactgaa	caaagagcct	ggtgtagttt	1140
ttaattttga	gttttctgac	agaagaaaag	attgatattt	tgtgtattga	acaggaagac	1200
tgccagtatt	aaaaaaatcc	ttctgggaat	ctgtaggtta	tttcttggaa	attgcaatac	1260
gtagttctag	aataaaagta	caaaaaatta	gaataagaat	tctttaacat	tttctttaat	1320
gatttgcata	aatggagata	aaacttgtat	ttagtatgta	atagaaaaaa	ttctgttatt	1380
cgcagattgt	tactatttcc	tataaggttt	tgtgatacta	tactgtccta	atacagtctg	1440
gtaatactat	tctattttat	ttaaaatatt	ttttattgaa	atattaatgt	ttattacatg	1500
caaataacta	ttttgtatct	acagtcggat	aatggatttt	ttattttgta	tatttattct	1560
attttgtata	ttgttaagtg	caataaagtt	tttgccttgc	tttattttt	aatacataaa	1620
acttacattc	tcataacgtg	attgataact	taggaagttc	acaatgtatt	ttctacttct	1680
gcaattaaat	attctttagt	gcttgtttat	tattactaaa	tactaattaa	gtactaacaa	1740
gtacttaaat	actaatgtat	taagtattta	agtactttct	aataaaatct	ttaacaataa	1800
taatgtaaat	ttcagaatgt	gtctctggta	cagaatagtt	gatattaaca	gaaaaaaaa	1860
aatctgtagc	ttcatgaata	tgccactctg	ttaatttctt	gttccagaca	ttttaataga	1920
gattgcttga	gccatgttgt	ttgaattgct	gccaatagca	gaccatatcc	ctatcatgtt	1980
gttggctcaa	ctgtttttt	tttttcccta	atagagatgg	agtatcgcta	tgttgctcag	2040
gctggtcttg	aactcctggg	ctcaagctat	cctcctgcct	cagcctccca	aagtactggg	2100
attataggtg	tgagctactg	tacccagcct	taacctgttt	cacagttgat	tatacttcat	2160
gctgttttcc	agcatggtat	tattaaggga	tttaaagttt	gggttgcatg	cctgtaatcc	2220
cagcattttg	ggaggccgag	gtgggcggat	cacgaggtca	ggagatcgag	accatcgtga	2280
ctaacacagt	gaaaccccgt	ctctaataaa	aatacgaaaa	attagccagg	cgtggtggcg	2340
ggcgcctgta	atcccagcta	ctcgggaagc	tgaggcagga	gaatggtgtg	aacccagtga	2400
gccgagatcg	tgccactgca	ctccagcctg	ggcaacagag	tgagacttcg	tctcaaaaaa	2460

	aaaaaaaaa	gtttgggttg	aagatcaaat	tcgtgatatc	tctatatcta	atctttaaaa	2520
	atcagaatgc	taatgctgac	gcaaataaaa	ttttcattta	ttagcaaaaa	aaaaaaaaa	2580
	aaaaaaaaa	aaaa					2594
5	<210> 97 <211> 273 <212> ARN <213> Homo sa	piens					
	<400> 97 tttttttttt	tttttttt	gggacggagt	tcgctctgtc	gcccaggctg	gagcgcactg	60
	gtgcaatctc	agcttgctac	accctctacc	tcccgggtgt	caccatgttg	gccaggctgg	120
	ttttgaactt	ctgactcaag	tgatctgcac	acctcagcct	ttaaagtgct	aggattacaa	180
	gcatgagcca	ccacacctgc	tccttctatt	tcattttaac	ataaataagt	aatagtagct	240
	aagacttact	aagcactatg	tattagacag	ttt			273
10	<210> 98 <211> 5059 <212> ADN <213> Homo sa	piens					
10	<400> 98 ctggttctca	acttcttttg	aaataatgtt	catagagaag	gagggctgtc	tgagattcga	60
	gggaaacaag	ctctcaggac	ttccggtcgc	catgatggct	gtgggcggta	aacgcggtta	120
	gtgcaagcat	ctgggccatc	ttcaatggta	aaaaagatac	agtaaagaca	taaataccac	180
	atttgacaaa	tggaaaaaaa	ggagtgtcca	gaaaagagta	gcagcagtga	ggaagagctg	240
	ccgagacggg	tatacaggga	gctaccctgt	gtttctgaga	ccctttgtga	catctcacat	300
	tttttccaag	aagatgatga	gacagaggca	gagccattat	tgttccgtgc	tgttcctgag	360
	tgtcaactat	ctggggggga	cattcccagg	agacatttgc	tcagaagaga	atcaaatagt	420
	ttcctcttat	gcttctaaag	tctgttttga	gatcgaagaa	gattataaaa	atcgtcagtt	480
	tctggggcct	gaaggaaatg	tggatgttga	gttgattgat	aagagcacaa	acagatacag	540
	cgtttggttc	cccactgctg	gctggtatct	gtggtcagcc	acaggcctcg	gcttcctggt	600
	aagggatgag	gtcacagtga	cgattgcgtt	tggttcctgg	agtcagcacc	tggccctgga	660
	cctgcagcac	catgaacagt	ggctggtggg	cggccccttg	tttgatgtca	ctgcagagcc	720
	agaggaggct	gtcgccgaaa	tccacctccc	ccacttcatc	tccctccaag	gtgaggtgga	780
	cgtctcctgg	tttctcgttg	cccattttaa	gaatgaaggg	atggtcctgg	agcatccagc	840
	ccgggtggag	cctttctatg	ctgtcctgga	aagccccagc	ttctctctga	tgggcatcct	900
	gctgcggatc	gccagtggga	ctcgcctctc	catccccatc	acttccaaca	cattgatcta	960
	ttatcacccc	caccccgaag	atattaagtt	ccacttgtac	cttgtcccca	gcgacgcctt	1020
	gctaacaaag	gcgatagatg	atgaggaaga	tcgcttccat	ggtgtgcgcc	tgcagacttc	1080
	accccaata	aaaccctaa	actttaattc	c20++2+2++	atatctaatt	ctactaacct	1140

gaaagtaatg	cccaaggagt	tgaaattgtc	ctacaggagc	cctggagaaa	ttcagcactt	1200
ctcaaaattc	tatgctgggc	agatgaagga	acccattcaa	cttgagatta	ctgaaaaaag	1260
acatgggact	ttggtgtggg	atactgaggt	gaagccagtg	gatctccagc	ttgtagctgc	1320
atcagcccct	cctcctttct	caggtgcagc	ctttgtgaag	gagaaccacc	ggcaactcca	1380
agccaggatg	ggggacctga	aaggggtgct	cgatgatctc	caggacaatg	aggttcttac	1440
tgagaatgag	aaggagctgg	tggagcagga	aaagacacgg	cagagcaaga	atgaggcctt	1500
gctgagcatg	gtggagaaga	aaggggacct	ggccctggac	gtgctcttca	gaagcattag	1560
tgaaagggac	ccttacctcg	tgtcctatct	tagacagcag	aatttgtaaa	atgagtcagt	1620
taggtagtct	ggaagagaga	atccagcgtt	ctcattggaa	atggataaac	agaaatgtga	1680
tcattgattt	cagtgttcaa	gacagaagaa	gactgggtaa	catctatcac	acaggctttc	1740
aggacagact	tgtaacctgg	catgtaccta	ttgactgtat	cctcatgcat	tttcctcaag	1800
aatgtctgaa	gaaggtagta	atattccttt	taaattttt	ccaaccattg	cttgatatat	1860
cactatttta	tccattgaca	tgattcttga	agacccagga	taaaggacat	ccggataggt	1920
gtgtttatga	aggatggggc	ctggaaaggc	aacttttcct	gattaatgtg	aaaaataatt	1980
cctatggaca	ctccgtttga	agtatcacct	tctcataact	aaaagcagaa	aagctaacaa	2040
aagcttctca	gctgaggaca	ctcaaggcat	acatgatgac	agtcttttt	ttttttgtat	2100
gttaggactt	taacacttta	tctatggcta	ctgttattag	aacaatgtaa	atgtatttgc	2160
tgaaagagag	cacaaaaatg	ggagaaaatg	caaacatgag	cagaaaatat	tttcccactg	2220
gtgtgtagcc	tgctacaagg	agttgttggg	ttaaatgttc	atggtcaact	ccaaggaata	2280
ctgagatgaa	atgtggtaaa	tcaactccac	agaaccacca	aaaagaaaat	gagggtaatt	2340
cagcttattc	tgagacagac	attcctggca	atgtaccata	caaaaaataa	gccaactctg	2400
acatttggat	tctaccatag	actctgtcat	tttgtagcca	tttcagctgt	cttttgatta	2460
atgttttcgt	ggcacacata	tttccatcct	tttatgttta	atctgtttaa	aacaagttcc	2520
tagtagacac	catctggttg	agtcagtttt	ttttatggtg	tattttgaac	ccattctgat	2580
agtctctttt	aactggaaga	tttcaattac	ttacgttaat	gtaattatta	atatgttagg	2640
atttatcctc	agtcagccag	tttgttatgt	cttttctatt	ctactgttat	cacatttgta	2700
ccacttaaag	tggaatctag	gcactttatc	accatttaga	tcctattacc	ttttctcatc	2760
taggatatag	ttatcttcta	cataatcttt	ctgtatctta	aaacccatca	ataaattatt	2820
atatatttc	tacttttaat	cactcagaag	atttaaaaaa	ctcatgagaa	gagtaatctg	2880
ttatgttttt	ccagatattt	accatttctg	ttgctcttcc	ttcattattt	tccaaatttc	2940
gttctgcaaa	tttccacttc	ttctgataga	cgttttttag	ttcttttaga	gtggttctga	3000
taggtacaga	ttctcttatt	ttttgcttcc	tctgaggaca	tctttttctc	accttcattc	3060
tcagtgatgt	tttttgcttg	tagtatttt	agttgacatt	gttttctgtt	cagcagtttc	3120
cttttagctt	ccgtatttcc	tgatgagaaa	tctgcagtca	ttcaaattgt	tgtttccctg	3180

tatgtagtgt	gtcattttc	tgtcagattt	caaggtattt	atctttagtt	tttagccatt	3240
tcattatgtt	ggggatgagt	ttccttgttt	tattcccttt	ggaatttgct	ccaattcata	3300
aatttgcagt	tttatgtctt	ttaccaaact	tagaggtttt	cagcctaatt	tctaaaaata	3360
ctttttatta	gcctgatttt	catctttata	ggaaatagtt	taagtgatga	caagttccaa	3420
tagcttatat	gcccagaagg	ccttcaaaat	aagaattttg	aaagaataca	gaaaacaaac	3480
ttttatatcc	ttctcatgtc	ttctactgta	aaattcatat	gctttgctac	tctaaaccta	3540
gtttgaaatc	aacagtcttg	agaatagatg	aaaattttga	tgaatagtgg	aattctttta	3600
aatggaaacc	tcttacatgt	gattttcctt	gccatctaga	aataaaccat	agtatttatg	3660
ttgaatcaat	caatattata	ttttgtttt	ttcctcctct	tctgagactc	ttattgtgga	3720
aatgttagac	ttttatgttt	tcctaaatgt	ccctgatatt	ctacttattt	agaacatctt	3780
ttcattttt	ccattattct	gattgggtaa	ttttaatttg	tctattttca	aatttgctgg	3840
agtgttcacc	tgttgttgtc	tgtgtcgtcc	cactgagtgc	attcaccacc	ttttaaattt	3900
tggtcactgt	atgtatcagt	tctaaaattt	ccattttgtt	ctctatattt	taaatttctt	3960
ggcttatatt	ctattttcct	gcaaatgtgt	cagcatttgc	ttgtttgagc	ttttttttt	4020
tcaagacagg	gtctcaactc	tgttacccag	gctggagtgc	agtggtgcga	tctcagctca	4080
ctgcaacctc	tgcctcctgg	ttcaagcgat	tattgtgcct	cagcctcctg	agtagctggg	4140
attacaggca	tgcaccacca	cagcccagct	aattttttgt	atttttagta	gagacagagt	4200
tttgctatgt	tggccaggct	ggttttgaac	tcctggcctc	aagtgatcca	cccacctcag	4260
cctcccaaag	tgctgggatt	acaggccact	acacctggca	catttgagta	ttttttttt	4320
tttttttt	ttgagatgga	gtctcgctct	gtcatctagg	ctggagtgca	gtggtgtgat	4380
ctcagctcac	tgcagcctct	gtctcccggg	ctcaagcgat	tctcttgcct	cagcctcctg	4440
agtagctagg	actacaggtg	catgccaaca	cgcccggcta	attttttaa	aaaatatttt	4500
tagtagagac	agggtttcac	cattttggcc	aggatggtct	cgatctcctg	acctcatgat	4560
ccacccgcct	cggccttcca	aagtgctggg	attacaggca	tgagccaccg	tgcctggcct	4620
catttgagta	tttttataat	gtctctttta	aagtctttgt	cagataattc	cactgtacat	4680
gttattcagt	gtttggtgtc	cactgagttg	tcatttgcca	gacaagtgga	gatttttgca	4740
gctcatcctt	gtattctcag	tagttccgat	atgtaccctc	gacatgtgaa	tgttatctta	4800
tgagactctg	ttttatttgt	atccaacaga	agatgtttat	tatttatttg	gctttctgtg	4860
aactgaggtc	ttaatatcag	ctcattttaa	aagtctttgc	agtggtattc	ggatctatcc	4920
tgtgtgtgcc	tatgagattg	ggtgcagtgt	atcctgttag	ctccattctc	agggcgtttg	4980
aatgtgaatt	aggaccagcg	caatgaatgc	tcaagttggg	gttgggcgtt	agaattcata	5040
aaagtcttta	tatgctcag					5059

<210> 99

<211> 2962 <212> ADN

<213> Homo sapiens

<400> 99 ggatcctttc	tggaatggag	gtcttatgag	ctgctattga	acacggcaga	gcctgttggt	60
gacctgcaca	caggagccct	ccagtcagta	ctgattgaat	tactcaaggc	tgcctctctg	120
caaagttgag	cactacagga	cgtcgggact	gggcatttcc	ttccaacatg	gccgccactg	180
cctctccgca	gccactcgcc	actgaggatg	ccgattctga	gaatagcagc	ttctattact	240
atgactacct	ggatgaagtg	gccttcatgc	tctgcaggaa	ggatgcagtg	gtgtcctttg	300
gcaaagtctt	cctcccagtc	ttctatagcc	tgatttttgt	gttgggcctc	agcgggaacc	360
tccttcttct	catggtcttg	ctccgttacg	tgcctcgcag	gcggatggtt	gagatctatc	420
tgctgaatct	ggccatctcc	aaccttctgt	ttctggtgac	actgcccttc	tggggcatct	480
ccgtggcctg	gcattgggtc	ttcgggagtt	tcttgtgcaa	gatggtgagc	actctttata	540
ctattaactt	ttacagtggc	atctttttca	ttagctgcat	gagcctggac	aagtacctgg	600
agatcgttca	tgctcagccc	taccacaggc	tgaggacccg	ggccaagagc	ctgctccttg	660
ctaccatagt	atgggctgtg	tccctggccg	tctccatccc	tgatatggtc	tttgtacaga	720
cacatgaaaa	tcccaagggt	gtgtggaact	gccacgcaga	tttcggcggg	catgggacca	780
tttggaagct	cttcctccgc	ttccagcaga	acctcctagg	gtttctcctt	ccactccttg	840
ccatgatctt	cttctactcc	cgtattggtt	gtgtcttggt	gaggctgagg	cccgcaggcc	900
agggccgggc	tttaaaaata	gctgcagcct	tggtggtggc	cttcttcgtg	ctatggttcc	960
catacaatct	caccttgttt	ctgcatacgc	tgttggacct	gcaagtattc	gggaactgtg	1020
aggtcagcca	gcatctagac	tacgcactcc	aggtaacaga	gagcatcgcc	ttccttcact	1080
gctgcttttc	ccccatcctg	tatgccttct	ccagtcaccg	cttccgccag	tacctgaagg	1140
ctttcctggc	tgccgtgctt	ggatggcacc	tggcacctgg	cactgcccag	gcctcattat	1200
ccagctgttc	tgagagcagc	atacttactg	cccaagagga	aatgactggc	atgaatgacc	1260
ttggagagag	gcagtctgag	aactacccta	acaaggagga	tgtggggaat	aaatcagcct	1320
gagtgaccaa	attttggtct	ggtgggaaca	gatgggaacc	agctcaattg	ggtgtccact	1380
caaagtgctc	tctccagggg	cctcagtgac	tgtgttgcta	aacccagtgg	tcagttctca	1440
gttctcagcc	atcagcagca	tttgctcgcc	ccgccttctt	cctccacttt	cttcacttgc	1500
ttccaggata	ccacgctttc	ttttctgaat	tgctacaatc	tttcttcctt	ccttccttgc	1560
ttccttcctt	ccttccttcc	ctctctccct	ccctccctcc	ctcgcttctt	cccttcctcc	1620
tttcctccct	tcctactttc	cttccttcct	tctgacaggg	tcttgctcta	ttgctctgtc	1680
acccaggctg	gaatgcagtg	gcgagatctc	cgctcactgt	agcctcctcc	ccctgggttg	1740
aagcaattct	catgcctcag	cctcccaagt	agccaggact	ataggcacct	gccaccatgc	1800
ctggctaatt	tttgtatttt	ttttctttct	ttctttcttt	tcttttttt	tttttttga	1860
gacggagtct	cactcttgtt	gcccaggctg	gacaacaatg	gcgcgatctc	ggctcactgc	1920
aacctccacc	tcccggattc	aagcgattct	cctgcctcag	cctcctgagt	agctggaact	1980

acatgcgcgt	gccaccacgc	acagctaatt	tttataattt	tagtagagat	ggggtttcac	2040
tgcgttggcd	aggatgatct	cgatctcttg	accttgggat	ccacccgcct	tggcctccca	2100
aagtgctggg	, attacaggtg	tgagccacca	tgcctggccc	taatttttgt	gtttttatta	2160
gaaacagagt	ttcaccatgt	tggccaggct	ggagaattgc	tgtaatagtt	ttccaactgg	2220
cccctgtcct	tcctctctct	tgctctcctc	ccatctcatc	tgcacctagc	agccagagtg	2280
atcctgatac	tctcggcctt	tacttccgcc	tccctcagag	cagcagcctg	tcaaaacacc	2340
agattacaad	aaatttagtt	taaaggtctc	aattagcgtt	attggcaatt	ctagaatcag	2400
gcaacagact	cattgaatca	ggaacagatt	cactccataa	aatacagaga	gtgctgcaat	2460
gagctgggta	gaagaggtta	gttttataga	caggaagggg	ctgtcaaagg	cagaaagaaa	2520
tgaagaacaa	aaaaaaagat	tgatttttt	ttttttgaga	caggatctca	ctctgtcatc	2580
caggctgaag	, tccaatccca	caatcatggc	tcactgcagc	caccacctcc	tgagctcaag	2640
tgatcctccc	atctaagccc	ccaagtagct	aggactacag	gagcacacca	ccacacctgg	2700
ctaatttttg	, tattttttgt	ggagacaggg	tctcagtatg	ttacccaggt	tggactggaa	2760
acccttggct	caagcaattt	gcctgcctca	gcctcccaaa	gtgctgggat	tacaggcgtg	2820
agccactgca	ı cagggccaga	ttcatcattt	caaagttact	ttctatatgc	ggccggaaca	2880
gggtggttga	catcagtttt	cttcaggtta	ctttttaata	atgattaaaa	cggggaactt	2940
cattatcaaa	aaaaaaaaaa	aa				2962
<210> 100 <211> 562 <212> ADN <213> Homo sa	apiens					
<400> 100 ctggaattga	ggctgagcca	aagaccccag	ggccgtctca	gtctcataaa	aggggatcag	60
gcaggaggag	tttgggagaa	acctgagaag	ggcctgattt	gcagcatcat	gatgggcctc	120
tccttggcct	ctgctgtgct	cctggcctcc	ctcctgagtc	tccaccttgg	aactgccaca	180
cgtgggagtg	acatatccaa	gacctgctgc	ttccaataca	gccacaagcc	ccttccctgg	240
acctgggtgc	gaagctatga	attcaccagt	aacagctgct	cccagcgggc	tgtgatattc	300
actaccaaaa	gaggcaagaa	agtctgtacc	catccaagga	aaaaatgggt	gcaaaaatac	360
atttctttac	tgaaaactcc	gaaacaattg	tgactcagct	gaattttcat	ccgaggacgc	420
ttggaccccg	ctcttggctc	tgcagccctc	tggggagcct	gcggaatctt	ttctgaaggc	480
tacatggacc	cgctggggag	gagagggtgt	ttcctcccag	agttacttta	ataaaggttg	540
ttcatagagt	tgacttgttc	at				562
<210> 101 <211> 1873 <212> ADN	aniens					

<400> 101

gacgatacgc	cgggcgcagg	cgcagaagcc	gcgcccgtcc	gcggcgccgc	cagccagggc	60
ggaaacggct	gcggcttcgc	tagggacgca	tgcgcgggtc	ccttagtttt	cgcgagataa	120
cggtcgaaaa	cgcgctcttg	tcgatttcct	gtagtgaatc	aggcaccgga	gtgcaggttc	180
gggggtggaa	tccttgggcc	gctgggcaag	cggcgagacc	tggccagggc	cagcgagccg	240
aggacagagg	gcgcacggag	ggccgggccg	cagccccggc	cgcttgcaga	cccgccatg	300
gacccgttcc	tggtgctgct	gcactcggtg	tcgtccagcc	tgtcgagcag	cgagctgacc	360
gagctcaagt	tcctatgcct	cgggcgcgtg	ggcaagcgca	agctggagcg	cgtgcagagc	420
ggcctagacc	tcttctccat	gctgctggag	cagaacgacc	tggagcccgg	gcacaccgag	480
ctcctgcgcg	agctgctcgc	ctccctgcgg	cgccacgacc	tgctgcggcg	cgtcgacgac	540
ttcgaggcgg	gggcggcggc	cggggccgcg	cctggggaag	aagacctgtg	tgcagcattt	600
aacgtcatat	gtgataatgt	ggggaaagat	tggagaaggc	tggctcgtca	gctcaaagtc	660
tcagacacca	agatcgacag	catcgaggac	agataccccc	gcaacctgac	agagcgtgtg	720
cgggagtcac	tgagaatctg	gaagaacaca	gagaaggaga	acgcaacagt	ggcccacctg	780
gtgggggctc	tcaggtcctg	ccagatgaac	ctggtggctg	acctggtaca	agaggttcag	840
caggcccgtg	acctccagaa	caggagtggg	gccatgtccc	cgatgtcatg	gaactcagac	900
gcatctacct	ccgaagcgtc	ctgatgggcc	gctgctttgc	gctggtggac	cacaggcatc	960
tacacagcct	ggactttggt	tctctccagg	aaggtagccc	agcactgtga	agacccagca	1020
ggaagccagg	ctgagtgagc	cacagaccac	ctgcttctga	actcaagctg	cgtttattaa	1080
tgcctctccc	gcaccaggcc	gggcttgggc	cctgcacaga	tatttccatt	tcttcctcac	1140
tatgacactg	agcaagatct	tgtctccact	aaatgagctc	ctgcgggagt	agttggaaag	1200
ttggaaccgt	gtccagcaca	gaaggaatct	gtgcagatga	gcagtcacac	tgttactcca	1260
cagcggagga	gaccagctca	gaggcccagg	aatcggagcg	aagcagagag	gtggagaact	1320
gggatttgaa	ccccgccat	ccttcaccag	agcccatgct	caaccactgt	ggcgttctgc	1380
tgcccctgca	gttggcagaa	aggatgtttt	gtcccatttc	cttggaggcc	accgggacag	1440
acctggacac	tagggtcagg	cggggtgcgt	ggtggggaga	ggcatggctg	gggtgggggt	1500
ggggagacct	ggttggccgt	ggtccagctc	ttggcccctg	tgtgagttga	gtctcctctc	1560
tgagactgct	aagtaggggc	agtgatggtt	gccaggacga	attgagataa	tatctgtgag	1620
gtgctgatga	gtgattgaca	cacagcactc	tctaaatctt	ccttgtgagg	attatgggtc	1680
ctgcaattct	acagtttctt	actgttttgt	atcaaaatca	ctatctttct	gataacagaa	1740
ttgccaaggc	agcgggatct	cgtatcttta	aaaagcagtc	ctcttattcc	taaggtaatc	1800
ctattaaaac	acagctttac	aacttccata	tcacaaaaaa	aaaaaaaaa	aaaaaaaaa	1860
aaaaaaaaa	aaa					1873

<210> 102 <211> 4082

<212> ADN <213> Homo sapiens

<400> 102						
ggcggtcccc	tgttctcccc	gctcaggtgc	ggcgctgtgg	caggaagcca	cccctcggt	60
cggccggtgc	gcggggctgt	tgcgccatcc	gctccggctt	tcgtaaccgc	accctgggac	120
ggcccagaga	cgctccagcg	cgagttcctc	aaatgttttc	ctgcgttgcc	aggaccgtcc	180
gccgctctga	gtcatgtgcg	agtgggaagt	cgcactgaca	ctgagccggg	ccagagggag	240
aggagccgag	cgcggcgcgg	ggccgaggga	ctcgcagtgt	gtgtagagag	ccgggctcct	300
gcggatgggg	gctgccccg	gggcctgagc	ccgcctgccc	gcccaccgcc	ccgcccgcc	360
cctgccaccc	ctgccgcccg	gttcccatta	gcctgtccgc	ctctgcggga	ccatggagtg	420
gtagccgagg	aggaagcatg	ctggccgtcg	gctgcgcgct	gctggctgcc	ctgctggccg	480
cgccgggagc	ggcgctggcc	ccaaggcgct	gccctgcgca	ggaggtggcg	agaggcgtgc	540
tgaccagtct	gccaggagac	agcgtgactc	tgacctgccc	gggggtagag	ccggaagaca	600
atgccactgt	tcactgggtg	ctcaggaagc	cggctgcagg	ctcccacccc	agcagatggg	660
ctggcatggg	aaggaggctg	ctgctgaggt	cggtgcagct	ccacgactct	ggaaactatt	720
catgctaccg	ggccggccgc	ccagctggga	ctgtgcactt	gctggtggat	gttccccccg	780
aggagcccca	gctctcctgc	ttccggaaga	gcccctcag	caatgttgtt	tgtgagtggg	840
gtcctcggag	caccccatcc	ctgacgacaa	aggctgtgct	cttggtgagg	aagtttcaga	900
acagtccggc	cgaagacttc	caggagccgt	gccagtattc	ccaggagtcc	cagaagttct	960
cctgccagtt	agcagtcccg	gagggagaca	gctctttcta	catagtgtcc	atgtgcgtcg	1020
ccagtagtgt	cgggagcaag	ttcagcaaaa	ctcaaacctt	tcagggttgt	ggaatcttgc	1080
agcctgatcc	gcctgccaac	atcacagtca	ctgccgtggc	cagaaacccc	cgctggctca	1140
gtgtcacctg	gcaagacccc	cactcctgga	actcatcttt	ctacagacta	cggtttgagc	1200
tcagatatcg	ggctgaacgg	tcaaagacat	tcacaacatg	gatggtcaag	gacctccagc	1260
atcactgtgt	catccacgac	gcctggagcg	gcctgaggca	cgtggtgcag	cttcgtgccc	1320
aggaggagtt	cgggcaaggc	gagtggagcg	agtggagccc	ggaggccatg	ggcacgcctt	1380
ggacagaatc	caggagtcct	ccagctgaga	acgaggtgtc	cacccccatg	caggcactta	1440
ctactaataa	agacgatgat	aatattctct	tcagagattc	tgcaaatgcg	acaagcctcc	1500
caggttcaag	aagacgtgga	agctgcgggc	tctgaaggaa	ggcaagacaa	gcatgcatcc	1560
gccgtactct	ttggggcagc	tggtcccgga	gaggcctcga	cccaccccag	tgcttgttcc	1620
tctcatctcc	ccaccggtgt	ccccagcag	cctggggtct	gacaatacct	cgagccacaa	1680
ccgaccagat	gccagggacc	cacggagccc	ttatgacatc	agcaatacag	actacttctt	1740
ccccagatag	ctggctgggt	ggcaccagca	gcctggaccc	tgtggatgat	aaaacacaaa	1800
cgggctcagc	aaaagatgct	tctcactgcc	atgccagctt	atctcagggg	tgtgcggcct	1860
ttggcttcac	ggaagagcct	tgcggaaggt	tctacgccag	gggaaaatca	gcctgctcca	1920

gctgttcagc tggttgagg	gt ttcaaacctc	cctttccaaa	tgcccagctt	aaaggggcta	1980
gagtgaactt gggccactg	gt gaagagaacc	atatcaagac	tctttggaca	ctcacacgga	2040
cactcaaaag ctgggcag	gt tggtgggggc	ctcggtgtgg	agaagcggct	ggcagcccac	2100
ccctcaacac ctctgcaca	aa gctgcaccct	caggcaggtg	ggatggattt	ccagccaaag	2160
cctcctccag ccgccatgo	ct cctggcccac	tgcatcgttt	catcttccaa	ctcaaactct	2220
taaaacccaa gtgccttag	gc aaattctgtt	tttctaggcc	tggggacggc	ttttacttaa	2280
accgccaagg ctgggggaa	ng aagctctctc	ctccctttct	tccctacagt	tgaaaaacag	2340
ctgagggtga gtgggtgaa	at aatacagtat	ctcagggcct	ggtcgttttc	aacagaatta	2400
taattagttc ctcattage	ca ttttgctaaa	tgtgaatgat	gatcctaggc	atttgctgaa	2460
tacagaggca actgcattg	g ctttgggttg	caggacctca	ggtgagaagc	agaggaagga	2520
gaggagaggg gcacaggg	c tctaccatcc	cctgtagagt	gggagctgag	tgggggatca	2580
cagcctctga aaaccaat	tctctcttct	ccacctccca	caaaggagag	ctagcagcag	2640
ggagggcttc tgccattte	ct gagatcaaaa	cggttttact	gcagctttgt	ttgttgtcag	2700
ctgaacctgg gtaactag	gg aagataatat	taaggaagac	aatgtgaaaa	gaaaaatgag	2760
cctggcaaga atgtgttta	a acttggtttt	taaaaaactg	ctgactgttt	tctcttgaga	2820
gggtggaata tccaatat	c gctgtgtcag	catagaagta	acttacttag	gtgtggggga	2880
agcaccataa ctttgttta	ag cccaaaacca	agtcaagtga	aaaaggagga	agagaaaaaa	2940
tattttcctg ccaggcat	gg tggcccacgc	acttcgggag	gtcgaggcag	gaggatcact	3000
tgagtccaga agtttgaga	at cagcctgggc	aatgtgataa	aaccccatct	ctacaaaaag	3060
cataaaaatt agccaagt	gt ggtagagtgt	gcctgaagtc	ccagatactt	ggggggctga	3120
ggtgggagga tctcttgag	gc ctgggaggtc	aaggctgcag	tgagccgaga	ttgcaccact	3180
gcactccagc ctgggtgad	a gagcaagtga	gaccctgtct	caaaaaaaga	aaaagaaaaa	3240
gaaaaaatat tttcccta	t agagaagaga	ttgtggtttc	attctgtatt	ttgtttttgt	3300
cttaaaaagt ggaaaaata	ag cctgcctctt	ctctactcta	gggaaaaacc	agcgtgtgac	3360
tactccccca ggtggtta	g gagagggtgt	ccggtccctg	tcccagtgcc	gagaaggaag	3420
cctcccacga ctgcccgg	a gggtcctaga	aattccccac	cctgaaagcc	ctgagctttc	3480
tgctatcaaa gaggtttta	aa aaaaatccca	tttaaaaaaa	atcccttacc	tcggtgcctt	3540
cctcttttta tttagttc	t tgagttgatt	cagctctgca	agaattgaag	caggactaaa	3600
tgtctagttg taacacca	g attaaccact	tcagctgact	tttctgtccg	agctttgaaa	3660
attcagtggt gttagtgg	t acccagttag	ctctcaagtt	atcagggtat	tccagagtgg	3720
ggatatgatt taaatcag	cc gtgtaaccat	ggacccaata	tttaccagac	cacaaaactt	3780
ttctaatact ctaccctc	t agaaaaacca	ccaccatcac	cagacaggtg	cgaaaggatg	3840
aaagtgacca tgttttgt	t acggttttcc	aggtttaagc	tgttactgtc	ttcagtaagc	3900
cgtgattttc attgctggg	c ttgtctgtag	attttagacc	ctattgctgc	ttgaggcaac	3960

tcatcttagg	ttggcaaaaa	ggcaggatgg	ccgggcgcgg	tggctcacgc	ctgtaatcct	4020
agcactttgg	gaggccaagg	tgggaggatt	gcttgagctc	aggagtttga	gaccaacctg	4080
gg						4082
<210> 103 <211> 2887 <212> ADN <213> Homo sa	piens					
<400> 103 ggagctgaga	ggaacaggaa	gtgtcaggac	tttacgaccc	gcgcctccag	ctgaggtttc	60
tagacgtgac	ccagggcaga	ctggtagcaa	agcccccacg	cccagccagg	agcaccgccg	120
aggactccag	cacaccgagg	gacatgctgg	gcctgcgccc	cccactgctc	gccctggtgg	180
ggctgctctc	cctcgggtgc	gtcctctctc	aggagtgcac	gaagttcaag	gtcagcagct	240
gccgggaatg	catcgagtcg	gggcccggct	gcacctggtg	ccagaagctg	aacttcacag	300
ggccggggga	tcctgactcc	attcgctgcg	acacccggcc	acagctgctc	atgaggggct	360
gtgcggctga	cgacatcatg	gaccccacaa	gcctcgctga	aacccaggaa	gaccacaatg	420
ggggccagaa	gcagctgtcc	ccacaaaaag	tgacgcttta	cctgcgacca	ggccaggcag	480
cagcgttcaa	cgtgaccttc	cggcgggcca	agggctaccc	catcgacctg	tactatctga	540
tggacctctc	ctactccatg	cttgatgacc	tcaggaatgt	caagaagcta	ggtggcgacc	600
tgctccgggc	cctcaacgag	atcaccgagt	ccggccgcat	tggcttcggg	tccttcgtgg	660
acaagaccgt	gctgccgttc	gtgaacacgc	accctgataa	gctgcgaaac	ccatgcccca	720
acaaggagaa	agagtgccag	ccccgtttg	ccttcaggca	cgtgctgaag	ctgaccaaca	780
actccaacca	gtttcagacc	gaggtcggga	agcagctgat	ttccggaaac	ctggatgcac	840
ccgagggtgg	gctggacgcc	atgatgcagg	tcgccgcctg	cccggaggaa	atcggctggc	900
gcaacgtcac	gcggctgctg	gtgtttgcca	ctgatgacgg	cttccatttc	gcgggcgacg	960
ggaagctggg	cgccatcctg	accccaacg	acggccgctg	tcacctggag	gacaacttgt	1020
acaagaggag	caacgaattc	gactacccat	cggtgggcca	gctggcgcac	aagctggctg	1080
aaaacaacat	ccagcccatc	ttcgcggtga	ccagtaggat	ggtgaagacc	tacgagaaac	1140
tcaccgagat	catccccaag	tcagccgtgg	gggagctgtc	tgaggactcc	agcaatgtgg	1200
tccaactcat	taagaatgct	tacaataaac	tctcctccag	ggtcttcctg	gatcacaacg	1260
ccctccccga	caccctgaaa	gtcacctacg	actccttctg	cagcaatgga	gtgacgcaca	1320
ggaaccagcc	cagaggtgac	tgtgatggcg	tgcagatcaa	tgtcccgatc	accttccagg	1380
tgaaggtcac	ggccacagag	tgcatccagg	agcagtcgtt	tgtcatccgg	gcgctgggct	1440
tcacggacat	agtgaccgtg	caggttcttc	cccagtgtga	gtgccggtgc	cgggaccaga	1500
gcagagaccg	cagcctctgc	catggcaagg	gcttcttgga	gtgcggcatc	tgcaggtgtg	1560
acactggcta	cattgggaaa	aactgtgagt	gccagacaca	gggccggagc	agccaggagc	1620
tggaaggaag	ctgccggaag	gacaacaact	ccatcatctg	ctcagggctg	ggggactgtg	1680

tctgcgggca	gtgcctgtgc	cacaccagcg	acgtccccgg	caagctgata	tacgggcagt	1740
actgcgagtg	tgacaccatc	aactgtgagc	gctacaacgg	ccaggtctgc	ggcggcccgg	1800
ggagggggct	ctgcttctgc	gggaagtgcc	gctgccaccc	gggctttgag	ggctcagcgt	1860
gccagtgcga	gaggaccact	gagggctgcc	tgaacccgcg	gcgtgttgag	tgtagtggtc	1920
gtggccggtg	ccgctgcaac	gtatgcgagt	gccattcagg	ctaccagctg	cctctgtgcc	1980
aggagtgccc	cggctgcccc	tcaccctgtg	gcaagtacat	ctcctgcgcc	gagtgcctga	2040
agttcgaaaa	gggccccttt	gggaagaact	gcagcgcggc	gtgtccgggc	ctgcagctgt	2100
cgaacaaccc	cgtgaagggc	aggacctgca	aggagaggga	ctcagagggc	tgctgggtgg	2160
cctacacgct	ggagcagcag	gacgggatgg	accgctacct	catctatgtg	gatgagagcc	2220
gagagtgtgt	ggcaggcccc	aacatcgccg	ccatcgtcgg	gggcaccgtg	gcaggcatcg	2280
tgctgatcgg	cattctcctg	ctggtcatct	ggaaggctct	gatccacctg	agcgacctcc	2340
gggagtacag	gcgctttgag	aaggagaagc	tcaagtccca	gtggaacaat	gataatcccc	2400
ttttcaagag	cgccaccacg	acggtcatga	accccaagtt	tgctgagagt	taggagcact	2460
tggtgaagac	aaggccgtca	ggacccacca	tgtctgcccc	atcacgcggc	cgagacatgg	2520
cttgccacag	ctcttgagga	tgtcaccaat	taaccagaaa	tccagttatt	ttccgccctc	2580
aaaatgacag	ccatggccgg	ccgggtgctt	ctgggggctc	gtcgggggga	cagctccact	2640
ctgactggca	cagtctttgc	atggagactt	gaggagggag	ggcttgaggt	tggtgaggtt	2700
aggtgcgtgt	ttcctgtgca	agtcaggaca	tcagtctgat	taaaggtggt	gccaatttat	2760
ttacatttaa	acttgtcagg	gtataaaatg	acatcccatt	aattatattg	ttaatcaatc	2820
acgtgtatag	aaaaaaata	aaacttcaat	acaggctgtc	catggaaaaa	aaaaaaaaa	2880
aaaaaaa						2887
<210> 104 <211> 1902 <212> ADN <213> <i>Homo</i> sa	piens					
<400> 104 ctggcgcgcg	cggccctgcg	ggtgacaggc	aggcgggaag	gggcggggcc	tcgggcgggg	60
ccgccgtggg	gaggagggcg	gtgggagggg	aggagtggag	atggcggcgg	cggcggctca	120
ggggggcggg	ggcggggagc	cccgtagaac	cgagggggtc	ggcccggggg	tcccggggga	180
ggtggagatg	gtgaaggggc	agccgttcga	cgtgggcccg	cgctacacgc	agttgcagta	240
catcggcgag	ggcgcgtacg	gcatggtcag	ctcggcctat	gaccacgtgc	gcaagactcg	300
cgtggccatc	aagaagatca	gccccttcga	acatcagacc	tactgccagc	gcacgctccg	360
ggagatccag	atcctgctgc	gcttccgcca	tgagaatgtc	atcggcatcc	gagacattct	420
gcgggcgtcc	accctggaag	ccatgagaga	tgtctacatt	gtgcaggacc	tgatggagac	480
tgacctgtac	aagttgctga	aaagccagca	gctgagcaat	gaccatatct	actacttcct	540

600

ctaccagatc ctgcggggcc tcaagtacat ccactccgcc aacgtgctcc accgagatct

aaagccctcc	aacctgctca	tcaacaccac	ctgcgacctt	aagatttgtg	atttcggcct	660
ggcccggatt	gccgatcctg	agcatgacca	caccggcttc	ctgacggagt	atgtggctac	720
gcgctggtac	cgggccccag	agatcatgct	gaactccaag	ggctatacca	agtccatcga	780
catctggtct	gtgggctgca	ttctggctga	gatgctctct	aaccggccca	tcttccctgg	840
caagcactac	ctggatcagc	tcaaccacat	tctgggcatc	ctgggctccc	catcccagga	900
ggacctgaat	tgtatcatca	acatgaaggc	ccgaaactac	ctacagtctc	tgccctccaa	960
gaccaaggtg	gcttgggcca	agcttttccc	caagtcagac	tccaaagccc	ttgacctgct	1020
ggaccggatg	ttaaccttta	accccaataa	acggatcaca	gtggaggaag	cgctggctca	1080
cccctacctg	gagcagtact	atgacccgac	ggatgagcca	gtggccgagg	agcccttcac	1140
cttcgccatg	gagctggatg	acctacctaa	ggagcggctg	aaggagctca	tcttccagga	1200
gacagcacgc	ttccagcccg	gagtgctgga	ggccccctag	cccagacaga	catctctgca	1260
ccctggggcc	tggacctgcc	tcctgcctgc	ccctctcccg	ccagactgtt	agaaaatgga	1320
cactgtgccc	agcccggacc	ttggcagccc	aggccggggt	ggagcatggg	cctggccacc	1380
tctctccttt	gctgaggcct	ccagcttcag	gcaggccaag	gccttctcct	ccccacccgc	1440
cctccccacg	gggcctcggg	acctcaggtg	gccccagttc	aatctcccgc	tgctgctgct	1500
gcgcccttac	cttccccagc	gtcccagtct	ctggcagttc	tggaatggaa	gggttctggc	1560
tgccccaacc	tgctgaaggg	cagaggtgga	gggtggggg	cgctgagtag	ggactcaggg	1620
ccatgcctgc	cccctcatc	tcattcaaac	cccaccctag	tttccctgaa	ggaacattcc	1680
ttagtctcaa	gggctagcat	ccctgaggag	ccaggccggg	ccgaatcccc	tccctgtcaa	1740
agctgtcact	tcgcgtgccc	tcgctgcttc	tgtgtgtggt	gagcagaagt	ggagctgggg	1800
ggcgtggaga	gcccggcgcc	cctgccacct	ccctgacccg	tctaatatat	aaatatagag	1860
atgtgtctat	ggctgaaaaa	aaaaaaaaa	aaaaaaaaa	aa		1902
<210> 105 <211> 2826 <212> ADN <213> Homo sa	piens					
<400> 105 tcgagacctc	aagggtagag	gtgggcaccc	ccgcctccgc	acttttgctc	ggggctccag	60
attgtagggc	agggcggcgc	ttctcggaaa	gcgaaagccg	gcggggcggg	gcgggtgccg	120
caggagaaag	aggaagcgct	ggcagacaat	gcgacccgac	cgcgctgagg	ctccaggacc	180
gcccgccatg	gctgcaggag	gtcccggcgc	ggggtctgcg	gccccggtct	cctccacatc	240
ctcccttccc	ctggctgctc	tcaacatgcg	agtgcggcgc	cgcctgtctc	tgttcttgaa	300
cgtgcggaca	caggtggcgg	ccgactggac	cgcgctggcg	gaggagatgg	actttgagta	360
cttggagatc	cggcaactgg	agacacaagc	ggaccccact	ggcaggctgc	tggacgcctg	420
gcagggacgc	cctggcgcct	ctgtaggccg	actgctcgag	ctgcttacca	agctgggccg	480

cgacgacgtg	ctgctggagc	tgggacccag	cattgaggag	gattgccaaa	agtatatctt	540
gaagcagcag	caggaggagg	ctgagaagcc	tttacaggtg	gccgctgtag	acagcagtgt	600
cccacggaca	gcagagctgg	cgggcatcac	cacacttgat	gaccccctgg	ggcatatgcc	660
tgagcgtttc	gatgccttca	tctgctattg	ccccagcgac	atccagtttg	tgcaggagat	720
gatccggcaa	ctggaacaga	caaactatcg	actgaagttg	tgtgtgtctg	accgcgatgt	780
cctgcctggc	acctgtgtct	ggtctattgc	tagtgagctc	atcgaaaaga	ggtgccgccg	840
gatggtggtg	gttgtctctg	atgattacct	gcagagcaag	gaatgtgact	tccagaccaa	900
atttgcactc	agcctctctc	caggtgccca	tcagaagcga	ctgatcccca	tcaagtacaa	960
ggcaatgaag	aaagagttcc	ccagcatcct	gaggttcatc	actgtctgcg	actacaccaa	1020
ccctgcacc	aaatcttggt	tctggactcg	ccttgccaag	gccttgtccc	tgccctgaag	1080
actgttctga	ggccctgggt	gtgtgtgtat	ctgtctgcct	gtccatgtac	ttctgccctg	1140
cctcctcctt	tcgttgtagg	aggaatctgt	gctctactta	cctctcaatt	cctggagatg	1200
ccaacttcac	agacacgtct	gcagcagctg	gacatcacat	ttcatgtcct	gcatggaacc	1260
agtggctgtg	agtggcatgt	ccacttgctg	gattatcagc	caggacacta	tagaacagga	1320
ccagctgaga	ctaagaagga	ccagcagagc	cagctcagct	ctgagccatt	cacacatctt	1380
caccctcagt	ttcctcactt	gaggagtggg	atggggagaa	cagagagtag	ctgtgtttga	1440
atccctgtag	gaaatggtga	agcatagctc	tgggtctcct	gggggagacc	aggcttggct	1500
gcgggagagc	tggctgttgc	tggactacat	gctggccact	gctgtgacca	cgacactgct	1560
ggggcagctt	cttccacagt	gatgcctact	gatgcttcag	tgcctctgca	caccgcccat	1620
tccacttcct	ccttccccac	agggcaggtg	gggaagcagt	ttggcccagc	ccaaggagac	1680
cccaccttga	gccttatttc	ctaatgggtc	cacctctcat	ctgcatcttt	cacacctccc	1740
agcttctgcc	caaccttcag	cagtgacaag	tccccaagag	actcgcctga	gcagcttggg	1800
ctgcttttca	tttccacctg	tcaggatgcc	tgtggtcatg	ctctcagctc	cacctggcat	1860
gagaagggat	cctggcctct	ggcatattca	tcaagtatga	gttctgggga	tgagtcactg	1920
taatgatgtg	agcagggagc	cttcctccct	gggccacctg	cagagagctt	tcccaccaac	1980
tttgtacctt	gattgcctta	caaagttatt	tgtttacaaa	cagcgaccat	ataaaagcct	2040
cctgccccaa	agcttgtggg	cacatgggca	catacagact	cacatacaga	cacacacata	2100
tatgtacaga	catgtactct	cacacacaca	ggcaccagca	tacacacgtt	tttctaggta	2160
cagctcccag	gaacagctag	gtgggaaagt	cccatcactg	agggagccta	accatgtccc	2220
tgaacaaaaa	ttgggcactc	atctattcct	tttctcttgt	gtccctactc	attgaaacca	2280
aactctggaa	aggacccaat	gtaccagtat	ttatacctct	aatgaagcac	agagagga	2340
agagagctgc	ttaaactcac	acaacaatga	actgcagaca	cagctgttct	ctccctctct	2400
ccttcccaga	gcaatttata	ctttaccctc	aggctgtcct	ctggggagaa	ggtgccatgg	2460
tcttaggtgt	ctgtgcccca	ggacagaccc	taggacccta	aatccaatag	aaaatgcata	2520

tctttgctcc	actttcagcc	aggctggagc	aaggtacctt	ttcttaggat	cttgggaggg	2580
aatggatgcc	cctctctgca	tgatcttgtt	gaggcattta	gctgccatgc	acctgtcccc	2640
ctttaatact	gggcatttta	aagccatctc	aagaggcatc	ttctacatgt	tttgtacgca	2700
ttaaaataat	ttcaaagata	tctgagaaaa	gccgatattt	gccattcttc	ctatatcctg	2760
gaatatatct	tgcatcctga	gtttataata	ataaataata	ttctaccttg	gaaaaaaaaa	2820
aaaaaa						2826
<210> 106 <211> 1669 <212> ADN <213> <i>Homo</i> sa	piens					
<400> 106 ctccctcagc	aaggacagca	gaggaccagc	taagagggag	agaagcaact	acagaccccc	60
cctgaaaaca	accctcagac	gccacatccc	ctgacaagct	gccaggcagg	ttctcttcct	120
ctcacatact	gacccacggc	tccaccctct	ctcccctgga	aaggacacca	tgagcactga	180
aagcatgatc	cgggacgtgg	agctggccga	ggaggcgctc	cccaagaaga	caggggggcc	240
ccagggctcc	aggcggtgct	tgttcctcag	cctcttctcc	ttcctgatcg	tggcaggcgc	300
caccacgctc	ttctgcctgc	tgcactttgg	agtgatcggc	ccccagaggg	aagagttccc	360
cagggacctc	tctctaatca	gccctctggc	ccaggcagtc	agatcatctt	ctcgaacccc	420
gagtgacaag	cctgtagccc	atgttgtagc	aaaccctcaa	gctgaggggc	agctccagtg	480
gctgaaccgc	cgggccaatg	ccctcctggc	caatggcgtg	gagctgagag	ataaccagct	540
ggtggtgcca	tcagagggcc	tgtacctcat	ctactcccag	gtcctcttca	agggccaagg	600
ctgcccctcc	acccatgtgc	tcctcaccca	caccatcagc	cgcatcgccg	tctcctacca	660
gaccaaggtc	aacctcctct	ctgccatcaa	gagcccctgc	cagagggaga	ccccagaggg	720
ggctgaggcc	aagccctggt	atgagcccat	ctatctggga	ggggtcttcc	agctggagaa	780
gggtgaccga	ctcagcgctg	agatcaatcg	gcccgactat	ctcgactttg	ccgagtctgg	840
gcaggtctac	tttgggatca	ttgccctgtg	aggaggacga	acatccaacc	ttcccaaacg	900
cctccctgc	cccaatccct	ttattacccc	ctccttcaga	caccctcaac	ctcttctggc	960
tcaaaaagag	aattgggggc	ttagggtcgg	aacccaagct	tagaacttta	agcaacaaga	1020
ccaccacttc	gaaacctggg	attcaggaat	gtgtggcctg	cacagtgaag	tgctggcaac	1080
cactaagaat	tcaaactggg	gcctccagaa	ctcactgggg	cctacagctt	tgatccctga	1140
catctggaat	ctggagacca	gggagccttt	ggttctggcc	agaatgctgc	aggacttgag	1200
aagacctcac	ctagaaattg	acacaagtgg	accttaggcc	ttcctctctc	cagatgtttc	1260
cagacttcct	tgagacacgg	agcccagccc	tccccatgga	gccagctccc	tctatttatg	1320
tttgcacttg	tgattattta	ttatttattt	attatttatt	tatttacaga	tgaatgtatt	1380
						1440

5

tatttgggag accggggtat cctgggggac ccaatgtagg agctgccttg gctcagacat 1440

gttttccgtg	aaaacggagc	tgaacaatag	gctgttccca	tgtagccccc	tggcctctgt	1500
gccttcttt	gattatgttt	tttaaaatat	ttatctgatt	aagttgtcta	aacaatgctg	1560
atttggtgac	caactgtcac	tcattgctga	gcctctgctc	cccaggggag	ttgtgtctgt	1620
aatcgcccta	ctattcagtg	gcgagaaata	aagtttgctt	agaaaagaa		1669
<210> 107 <211> 948 <212> ADN <213> Homo sa	piens					
<400> 107 attgtggtgc	cttgtagctg	tcccgggagc	cctcagcagc	agttggagct	ggtgcacagg	60
aaggatgagg	aagaccaggc	tctgggggct	gctgtggatg	ctctttgtct	cagaactccg	120
agctgcaact	aaattaactg	aggaaaagta	tgaactgaaa	gaggggcaga	ccctggatgt	180
gaaatgtgac	tacacgctag	agaagtttgc	cagcagccag	aaagcttggc	agataataag	240
ggacggagag	atgcccaaga	ccctggcatg	cacagagagg	ccttcaaaga	attcccatcc	300
agtccaagtg	gggaggatca	tactagaaga	ctaccatgat	catggtttac	tgcgcgtccg	360
aatggtcaac	cttcaagtgg	aagattctgg	actgtatcag	tgtgtgatct	accagcctcc	420
caaggagcct	cacatgctgt	tcgatcgcat	ccgcttggtg	gtgaccaagg	gtttttcagg	480
gacccctggc	tccaatgaga	attctaccca	gaatgtgtat	aagattcctc	ctaccaccac	540
taaggccttg	tgcccactct	ataccagccc	cagaactgtg	acccaagctc	cacccaagtc	600
aactgccgat	gtctccactc	ctgactctga	aatcaacctt	acaaatgtga	cagatatcat	660
cagggttccg	gtgttcaaca	ttgtcattct	cctggctggt	ggattcctga	gtaagagcct	720
ggtcttctct	gtcctgtttg	ctgtcacgct	gaggtcattt	gtaccctagg	cccacgaacc	780
cacgagaatg	tcctctgact	tccagccaca	tccatctggc	agttgtgcca	agggaggagg	840
gaggaggtaa	aaggcaggga	gttaataaca	tgaattaaat	ctgtaatcac	cagctatttc	900

taaagtcagc gtctcacctt aaaaaaaaaa aaaaaaaaa aaaaaaaa

REIVINDICACIONES

- 1. Procedimiento para la normalización de una expresión de ARNm en varias muestras de sangre que comprende:
- a) una comparación de los valores de expresión de uno o varios ácidos nucleicos seleccionados de SEC ID 22 a SEC ID 97 a través de distintas muestras de sangre;
- b) derivación de una medida de estabilidad génica para la normalización de valores de expresión de uno o varios ácidos nucleicos, seleccionados de SEC ID 22 a SEC ID 97 a través de varias muestras de sangre; y
- 10 c) una normalización de la expresión de otros ácidos nucleicos, que se aislaron de varias muestras de sangre, basándose en la etapa b).
 - 2. Procedimiento según la reivindicación 1, caracterizado por que el ARNm se amplifica, en el que mediante transcripción inversa con ayuda de un cebador oligo-dT se transcribe ARNm en ADNc y las cadenas de ADNc producidas de manera complementaria al ARNm usado se usan como molde para reacciones en cadena de la polimerasa (PCR).
 - 3. Procedimiento según la reivindicación 2, en el que los ácidos nucleicos se amplifican por medio de PCR o PCR en tiempo real.
 - 4. Procedimiento según una de las reivindicaciones 1-3, en el que los valores de expresión de los ácidos nucleicos se determinan por medio de procedimientos de hibridación.
- 5. Procedimiento según una de las reivindicaciones 1-4, en el que la medición de los valores de expresión de los ácidos nucleicos se realiza en disolución o en ácidos nucleicos que están inmovilizados en un soporte.
 - 6. Procedimiento según la reivindicación 5, en el que el soporte es una micromatriz, partícula, perla, vidrio, metal o membrana.
- 30 7. Procedimiento según una de las reivindicaciones 1-6, en el que los ácidos nucleicos están acoplados al soporte de manera indirecta a través de otros componentes de unión tales como anticuerpos, antígenos, oligonucleótidos, balizas moleculares o enzimas.
- 8. Procedimiento según una de las reivindicaciones 1-7, en el que los valores de expresión de los ácidos nucleicos determinados *in vitro* a partir de una muestra de paciente se usan como parámetro de entrada para la fabricación de software para la descripción del pronóstico individual de un paciente, para fines de diagnóstico, para decisiones de terapia y/o sistemas de gestión de datos de pacientes.
- 9. Uso de ácidos nucleicos, seleccionados del grupo que está constituido por: SEC ID 22-86, 88, 92, 94 y 97 como gen control para la normalización de datos de análisis de expresión génica de muestras de sangre.
 - 10. Uso de un conjunto de genes control para la normalización de datos de análisis de expresión génica de muestras de sangre de un paciente, en el que el conjunto de genes control comprende las siguientes secuencias de ácido nucleico: SEC ID 32, SEC ID 38, SEC ID 64, SEC ID 82 y SEC ID 94.
 - 11. Uso de un conjunto de genes control para la normalización de datos de análisis de expresión génica de muestras de sangre de un paciente, en el que el conjunto de genes control comprende las siguientes secuencias de ácido nucleico: SEC ID 49, SEC ID 59, SEC ID 67, SEC ID 76 y SEC ID 95.

15

5