

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 525 260

61 Int. Cl.:

G02B 3/14 (2006.01) G02B 3/12 (2006.01) G02B 15/02 (2006.01) G02B 15/00 (2006.01) H04N 5/225 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 24.03.2010 E 10762108 (8)
 (97) Fecha y número de publicación de la concesión europea: 05.11.2014 EP 2417479
- (54) Título: Sistema óptico de potencia variable
- (30) Prioridad:

10.04.2009 US 168524 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.12.2014

(73) Titular/es:

BLACKEYE OPTICS, LLC (100.0%) P.O. Box 1389 Speiden Island Eastsound, WA 98245, US

(72) Inventor/es:

JANNARD, JAMES, H. y NEIL, IAIN, A

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Sistema óptico de potencia variable

Antecedentes

5

15

20

25

30

35

40

60

65

La presente invención se refiere a un sistema óptico de potencia variable que emplea óptica líquida.

Una lente de zum tendrá a menudo tres o más grupos de lentes móviles para lograr las funciones de zum y de enfoque. Una leva mecánica puede enlazar dos grupos de lentes móviles para llevar a cabo una función de zum y un tercer grupo de lente móvil se puede utilizar para el enfoque.

La amplitud del zum se determina en parte por la amplitud del movimiento de los elementos de la lente móvil. Mayores amplitudes del zum pueden requerir espacio adicional para el movimiento de los elementos de la lente. Una lente de zum que comprende dos lentes líquidas se describe en la publicación estadounidense 2006/028734 A1.

Los sensores de imagen, como los sensores de dispositivo de carga acoplada (CCD) y los sensores de imagen CMOS (CIS) recogen la luz utilizando una pequeña superficie fotosensible tal como un fotodiodo. Los sensores de imagen pueden utilizar micro-lentes para mejorar la fotosensibilidad al recoger y enfocar la luz a partir de una gran superficie colectora de luz. El ángulo de incidencia de la luz que llega a la micro-lente o superficie fotosensible afecta a la cantidad de luz recogida por la superficie fotosensible, con la luz que se recibe en algunos ángulos que es menos probable que alcance la superficie fotosensible que la luz que se recibe con otros ángulos.

Idealmente, el ángulo de incidencia de la luz en la superficie fotosensible es constante. Sin embargo, como una lente de zum varía la longitud focal, el ángulo de incidencia de la luz puede cambiar. Por lo tanto, mover una lente a través de la amplitud de posiciones del zum puede dar lugar a resultados no deseados con los cambios del ángulo de incidencia.

Compendio

La invención se define en la reivindicación independiente. Se puede utilizar un componente óptico de potencia variable para minimizar variaciones en el ángulo de incidencia de la luz sobre una superficie imagen.

Según la invención, un sistema óptico de potencia variable comprende un primer grupo de lentes con al menos una primera célula de lente líquida, un segundo grupo de lentes con al menos una segunda célula de lente líquida y una tercera célula de lente líquida configurada para controlar un ángulo de incidencia de los rayos de luz sobre un sensor. El control de una posición del zum se basa substancialmente, al menos en parte, en la configuración de la potencia óptica de la primera célula de lente líquida y en la configuración de la potencia óptica de la segunda célula de lente líquida. Se puede proporcionar una abertura de lente aproximadamente equidistante entre una primera superficie del primer grupo de lentes y una última superficie del segundo grupo de lentes. Un diámetro de la primera célula de lente líquida es aproximadamente el mismo que un diámetro de la segunda célula de lente líquida. En una realización, el factor de zum es mayor que aproximadamente 3x. En una realización, el factor de zum es mayor que aproximadamente 5x.

Además, según la invención, un sistema óptico se dispone para recoger la radiación que emana desde un espacio objeto y entregar la radiación a una superficie imagen en un espacio imagen a lo largo de un eje óptico común. Un primer componente óptico de potencia variable que es estacionario en el eje óptico común comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos. La forma de la superficie de contacto se varía para producir un cambio de la potencia óptica en el componente óptico de potencia variable, que resulta en una variación de un ángulo del rayo principal que enfoca un punto imagen sobre la superficie imagen. Un segundo componente óptico de potencia variable comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos. La forma de la superficie de contacto se varía para reducir la variación en el ángulo del rayo principal en el punto imagen sobre la superficie imagen provocada al variar la forma del primer componente óptico de potencia variable. La forma del primer componente óptico de potencia variable puede variarse al proporcionar una función de zum y/o un enfoque.

Todavía según la invención, un sistema óptico objetivo de potencia variable no utiliza axialmente grupos en movimiento. Al menos un componente óptico de potencia variable proporciona una función de zum que comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos. La forma de la superficie de contacto se varía para producir un cambio de la potencia óptica en el componente óptico de potencia variable. Otro componente óptico de potencia variable comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos. La forma de la superficie de contacto se varía para al menos compensar parcialmente los cambios de la variación de un ángulo del rayo principal que enfoca un punto imagen sobre la superficie imagen provocados al variar el componente de potencia óptica variable que proporciona una función de zum.

Todavía según la invención, un sistema óptico objetivo de potencia variable comprende un primer grupo de lentes con al menos una primera célula de lente líquida, un segundo grupo de lentes con al menos una segunda célula de lente líquida y una abertura de la lente colocada entre el primer grupo de lentes y el segundo grupo de lentes. Los rayos de luz que pasan a través del primer grupo de lentes, del segundo grupo de lentes y de la abertura de la lente, representan una posición de zum, con el control de la posición del zum basado, al menos en parte, en la configuración de la potencia óptica de la segunda célula de lente líquida. La abertura de la lente puede estar aproximadamente equidistante entre una primera superficie del primer grupo de lentes y una última superficie del segundo grupo de lentes. El factor de zum puede ser mayor que 3x. El factor de zum puede ser mayor que 5x.

10

15

Según la invención, un sistema óptico objetivo de potencia variable comprende al menos un componente óptico de potencia variable con al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos. La forma de la superficie de contacto se varía para compensar, al menos parcialmente, los cambios en la variación de un ángulo del rayo principal que enfoca un punto imagen sobre una superficie imagen. La variación del ángulo del rayo principal puede estar provocada, al menos en parte por, por ejemplo, una función de zum, una función de enfoque o una combinación de una función de zum y una función de enfoque.

Breve descripción de los dibujos

20

45

50

55

60

Las FIGS. 1A y 1B son diagramas ópticos que representan los rayos del borde de un haz de luz axial en un sistema óptico de potencia variable que emplea líquidos.

La FIGS. 2A y 2B son diagramas ópticos que representan los rayos del borde de un haz de luz axial y los rayos de los bordes de un haz de campo fuera del eje en un sistema óptico de potencia variable que emplea líquidos.

Las FIGS. 3A, 3B, 3C, 3D y 3E ilustran varios ángulos de incidencia de los rayos de luz sobre una superficie imagen.

Las FIGS. 4A y 4B ilustran el uso de una célula de lente líquida para ajustar un ángulo de incidencia de un rayo de luz sobre una superficie imagen.

Las FIGS. 5A, 5B, 5C, 5D y 5E ilustran diagramas ópticos de un ejemplo de diseño de sistema óptico de potencia variable.

35 La FIG. 6 es un diagrama de bloques de una cámara.

Descripción detallada

En la siguiente descripción se hace referencia a los dibujos que se acompañan. Se debe entender que se pueden utilizar otras estructuras y/o realizaciones sin apartarse del alcance de la invención.

Las células de lente líquida pueden modificar una trayectoria óptica sin depender del movimiento mecánico de la célula líquida. Una célula de lente líquida que comprende primer y segundo líquidos de contacto se puede configurar de manera que una superficie óptica de contacto entre los líquidos tenga una forma variable que puede ser sustancialmente simétrica con respecto a un eje óptico de la célula de lente líquida. Se podrían alinear una multitud de elementos de lente a lo largo de un eje óptico común y disponerse para recoger la radiación que emana desde un espacio del lado del objeto y entregarla a un espacio del lado de la imagen. La célula de lente líquida podría insertarse en un camino óptico formado por la multitud de elementos de lente que se alinean a lo largo del eje óptico común. El eje óptico de la célula de lente líquida podría ser paralelo al eje óptico común, o podría estar en un ángulo o descentrado con respecto al eje óptico común.

En la actualidad, los sistemas de lentes líquidas contemplados tendrán una diferencia en el índice de refracción de aproximadamente 0,2 o más, preferiblemente al menos aproximadamente 0,3 y en algunas realizaciones al menos aproximadamente 0,4. El agua tiene un índice de refracción de aproximadamente 1,3 y la adición de sal puede permitir variar el índice de refracción a aproximadamente 1,48. Los aceites ópticos adecuados pueden tener un índice de refracción de al menos aproximadamente 1,5. Incluso al utilizar líquidos con índices de refracción más altos, más bajos o más altos y más bajos, por ejemplo un aceite de índice de refracción más alto, la amplitud de la variación de la potencia permanece limitada. Esta amplitud limitada de la variación de la potencia generalmente proporciona menos cambio del aumento que la de un grupo de lentes móvil. Por lo tanto, en un sistema óptico de potencia variable simple, para proporcionar zum mientras que se mantiene una posición de la superficie imagen constante, la mayor parte del cambio del aumento se puede proporcionar mediante un grupo de lentes móvil y la mayor parte de la compensación del desenfoque en la superficie imagen durante el cambio del aumento se puede proporcionar mediante una célula líquida.

Cabe señalar que se pueden utilizar más grupos de lentes móviles o más células líquidas, o ambos. Ejemplos de uno o más grupos de lentes móviles utilizados en combinación con una o más células líquidas se describen en la

Solicitud de Patente de EE.UU. Nº 12/246.224 titulada "Liquid Optics Zoom Lens and Imaging Apparatus", presentada el 6 de octubre de 2008.

El tamaño y las propiedades de los elementos de lente usados en un sistema introducen restricciones para tener en cuenta en el diseño del sistema de lentes. Por ejemplo, el diámetro de uno o más elementos de lente puede limitar el tamaño de una imagen formada sobre una superficie imagen. Para sistemas de lentes con propiedades variables, tales como un sistema óptico de potencia variable, la óptica pueden cambiar en función de la variación de los elementos de la lente. Así, un primer elemento de lente puede restringir un sistema de lentes en una primera configuración de zum, mientras que un segundo elemento de lente restringe el sistema de lentes en una segunda configuración de zum. Como un ejemplo, los rayos del borde para un haz de luz pueden aproximarse al borde exterior de un elemento de lente en un extremo de la amplitud del zum, al mismo tiempo que es una distancia significativa desde el borde exterior del mismo elemento de lente en el otro extremo de la amplitud del zum.

5

10

40

45

60

Las Figs. 1A y 1B ilustran diagramas ópticos de un sistema óptico de potencia variable simplificado que emplea 15 células de lente líquida. El sistema óptico de potencia variable se puede utilizar, por ejemplo, con una cámara. En la Fig. 1A, una primera célula de lente líquida LLC1 20 y una segunda célula de lente líquida LLC2 22 se configuran de tal manera que la relación de zum está en la posición ancha. Una lente imagen 24 forma la imagen de una superficie imagen (que se ilustra como un plano imagen 26) que corresponde con un dispositivo de recogida de la cámara. La lente imagen 24 puede ser una célula de lente líquida u otro tipo de lente. Los rayos 12 del borde de un haz de luz 20 axial ilustrados e la Fig. 1A están cerca del borde exterior de la célula de lente líquida LLC2 22. En consecuencia, el diámetro de la célula de lente líquida LLC2 22 es un factor limitante en el diseño de la lente. En la Fig. 1B, la célula de lente líquida LLC1 20 y la célula de lente líquida LLC2 22 se configuran de tal manera que la relación de zum está en la posición de teleobjetivo. Los rayos 12 del borde del haz de luz axial ilustrados en la Fig. 1B están cerca del borde exterior de la célula de lente líquida LLC1 20, haciendo al diámetro de la célula de lente líquida LLC1 el factor limitante. Así, el diseño simplificado ilustrado en las Figs. 1A y 1B se optimiza para aprovechar al máximo la 25 superficie sobre la célula de lente líquida LLC1 20 y la célula de lente líquida LLC2 22 para los rayos 12 del borde de los haces de luz axial entre una gama de posiciones.

Los sistemas tradicionales de lentes de zum utilizan grupos de lentes de zum en movimiento para lograr diferentes posiciones de zum. Debido a que el sistema óptico de potencia variable ilustrado en las Figs. 1A y 1B utiliza células de lente líquida, no son necesarios los grupos de lentes en movimiento. En cambio, se puede utilizar un sistema de control para controlar la forma variable de la superficie óptica de contacto en las células de lente líquida LLC1 20 y LLC2 22.

El uso de células de lente líquida en lugar de grupos de lentes en movimiento facilita la colocación de la abertura 10 de la lente entre las células de lente líquida LLC1 20 y LLC2 22. Ya que las células de lente líquida LLC1 20 y LLC2 22 no son grupos de lentes en movimiento, no hay preocupación de que la abertura 10 de la lente interferirá con su funcionamiento correcto. La abertura 10 de la lente no necesita estar equidistante entre las células de lente líquida, y la colocación de la abertura de la lente se puede optimizar según sea necesaria.

Se ha de entender que las células de lente líquida LLC1 20 y LLC2 22 podrían comprender cada una múltiples superficies, con las superficies que se controlan y/o fijan. En algunas realizaciones, las células de lente líquida ilustradas en las Figs. 1A y 1B podrían comprender una combinación de dos o más células líquidas. Se puede colocar una placa entre las células combinadas. La placa puede tener una potencia óptica que se puede establecer como se desee para el diseño. Las células de lente líquida también pueden tener placas en las superficies exteriores. En algunas realizaciones, las placas sobre las superficies exteriores pueden proporcionar potencia óptica o una función de doblado. Las placas y otros elementos de lente pueden ser esféricos o asféricos para proporcionar características ópticas mejoradas.

Los elementos de lente individuales se pueden construir a partir de materiales de fase sólida, tales como materiales de vidrio, plástico, cristalinos o semiconductores, o pueden construirse utilizando materiales líquidos o gaseosos, tales como agua o aceite. El espacio entre elementos de lente podría contener uno o más gases. Por ejemplo, se podría utilizar aire normal, nitrógeno o helio. Alternativamente, el espacio entre los elementos de lente podría ser un vacío. Cuando se utiliza "Aire" en esta descripción, se debe entender que se utiliza en un sentido amplio y puede incluir uno o más gases o un vacío. Los elementos de lente pueden tener revestimientos tales como un filtro de rayos ultravioleta.

Las Figs. 2A y 2B ilustran diagramas ópticos adicionales del sistema óptico de potencia variable simplificado de las Figs. 1A y 1B, que representan los rayos 12 del borde para un haz de luz axial y los rayos 14 del borde para un haz de campo fuera del eje. El rayo principal 16 del haz de campo fuera del eje cruza el eje óptico en la posición de la abertura 10 de la lente, la posición de la abertura de la lente indicada por marcas de verificación externas a los rayos del borde. Como se ilustra, el ángulo de incidencia 18 del rayo principal 16 de los haces de campo fuera del eje en el plano imagen 26 cambia cuando la lente de zum cambia desde la posición ancha a la posición de teleobjetivo.

65 El ángulo de incidencia es importante porque determina, en cierta medida, la cantidad de luz que llega a un sensor de imagen. Un sensor de imagen puede usar micro-lentes para mejorar la fotosensibilidad al recoger y enfocar la luz

a partir de una gran área colectora de luz. Sin embargo, si el tamaño y la amplitud de ángulos de incidencia a través del zum son demasiado grandes, las micro-lentes pueden no ser capaces de dirigir la luz al sensor de imagen para la detección eficiente a través del zum.

Se consideran las Figs. 3A-3D, que proporcionan ilustraciones de ejemplos de luz que llega a un sensor de imagen. En la Fig. 3A, el ángulo de incidencia 18 del rayo de luz principal 28 es perpendicular al sensor de imagen, lo que permite a una micro-lente dirigir con éxito los rayos de luz al sensor de imagen. Las Figs. 3B y 3C también tienen pequeñas variaciones de los ángulos de incidencia 18. La matriz de micro-lentes se podría desplazar para formar una micro matriz de lentes optimizada, que permite la redirección con éxito de los rayos de luz al sensor de imagen.

Las Figs. 3D y 3E tienen grandes variaciones en, y en el tamaño de, los ángulos de incidencia 18, lo que hace más difícil para una micro-lente dirigir los rayos al sensor de imagen.

Debido a que el ángulo de incidencia 18 del rayo de luz principal 28 cambia cuando el sistema óptico de potencia variable cambia desde la posición ancha a la posición de teleobjetivo, es posible que el ángulo de incidencia 18 para una posición de zum pudiera ser como se ilustra en la Fig. 3B, mientras que el ángulo de incidencia 18 para otra posición de zum podría ser como se ilustra en la Fig. 3C. Sin embargo, puede ser deseable reducir las variaciones del ángulo de incidencia 18.

15

30

35

40

50

55

60

65

Las Figs. 4A y 4B ilustran diagramas ópticos en los que una célula de lente líquida LLC3 30 se coloca cerca del sensor de imagen. Cuando el sistema óptico de potencia variable se mueve a través de la amplitud del zum, la potencia óptica de la célula de lente líquida LLC3 también varía. La potencia óptica variable de la célula de lente líquida LLC3 30 permite la minimización de la variación en, y en el tamaño de, el ángulo de incidencia sobre la superficie imagen en toda la amplitud del zum. Por ejemplo, en una realización, la célula de lente líquida LLC3 proporciona que el ángulo de incidencia sea menor de 10° desde la perpendicular al plano imagen 26. En otra realización, la célula de lente líquida LLC3 proporciona que el ángulo de incidencia sea menor de 5° desde la perpendicular.

Aunque las Figs. 4A y 4B ilustran la lente 30 como una célula de lente líquida, también se pueden utilizar otros tipos de lentes. Alargar el diseño óptico de potencia variable en conjunto puede permitir que se utilice una lente estándar en lugar de una célula de lente líquida.

La longitud del sistema óptico de potencia variable depende, en parte, de la amplitud de las potencias ópticas proporcionadas por las células de lente líquida. La longitud de la lente se puede minimizar al utilizar células de lente líquidas que tienen una alto diferencia de índice de los líquidos. La longitud de la lente también se puede minimizar al utilizar múltiples células de lente líquida y/o dobleces.

Por simplificación, las Figs. 1A, 1B, 2A, 2B, 4A y 4B muestran elementos de lente como placas que contienen potencia óptica. Se debe entender que los elementos de lente podrían componerse de múltiples componentes con diferentes materiales de lentes y/o superficies ópticas.

Las Figs. 5A-5E ilustran diagramas ópticos de un ejemplo de diseño óptico de potencia variable. La Fig. 5A ilustra la posición ancha, y la Fig. 5E ilustra la posición de teleobjetivo. Las Figs. 5B-5D ilustran las posiciones de zum intermedias. El enfoque infinito se utiliza para todas las posiciones de zum ilustradas en las Figs. 5A-5E.

Este diseño óptico de potencia variable utiliza cinco células de lente líquida 40, 42, 44, 46 y 48, teniendo cada una de las células de lente líquida una superficie variable 50, 52, 54, 56 y 58.

El grupo de lentes cerca del espacio objeto incluye dos células de lentes líquidas 40, 42 y se utiliza principalmente para ayudar a proporcionar el enfoque y el zum. El diseño óptico de potencia variable también incluye dos células líquidas 44, 46 que se utilizan principalmente para ayudar a proporcionar zum. En la realización ilustrada, la abertura 60 de la lente está entre el grupo de lentes que comprende las células de lentes líquidas 40, 42 y el grupo de lentes que comprende las células de lentes líquidas de lentes líquidas 44, 46. El diseño óptico de potencia variable también incluye una célula de lente líquida 48 que proporciona parcialmente el control del ángulo de incidencia en el plano imagen 62. En combinación, las cinco lentes líquidas juntas proporcionan un control de enfoque, zum y el ángulo de incidencia del rayo principal de los haces de campo fuera del eje en el plano imagen, cuando el sistema óptico de potencia variable cambia de la posición ancha a la posición de teleobjetivo y del enfoque al infinito al enfoque de cerca.

Como se ilustra en las Figs. 5A-5D, la potencia óptica proporcionada por la superficie variable 54 permanece bastante constante y sólo cambia de forma significativa en la Fig. 5E. Esto ilustra que si las posiciones de zum se limitan a la gama mostrada en las Figs. 5A-5D, la célula de lente líquida 44 podría sustituirse por un elemento de lente fijo. En consecuencia, el número de células de lente líquida podría variar con los requisitos del diseño.

Para el diseño de la lente mostrado en las FIGS. 5A-5E, se adjunta a la presente memoria como parte de esta especificación, una lista producida mediante el software de diseño óptico CodeV versión 9.70, disponible comercialmente en Optical Research Associates, Pasadena, CA USA.

La FIG. 6 ilustra un diagrama de bloques de una cámara 100 con un sistema de potencia óptica variable 102. La FIG. 6 también ilustra un módulo de control 104 de lentes que controla el movimiento y el funcionamiento del grupo de lentes en el sistema óptico 102. El módulo de control 104 incluye circuitos electrónicos que controlan el radio de curvatura en las células de lente líquida. Los niveles de señal electrónica adecuados para varias posiciones de enfoque y varias posiciones de zum se pueden determinar de antemano y se colocan en una o más tablas de búsqueda. Alternativamente, los circuitos analógicos o una combinación de circuitos y una o más tablas de búsqueda pueden generar los niveles de señal adecuados. En una realización, se utiliza un polinomio para determinar los niveles de señal electrónica adecuados. Se podrían almacenar puntos a lo largo del polinomio en una o más tablas de búsqueda o el polinomio se podría implementar con circuitos. La tablas de búsqueda, polinomios, y/u otros circuitos pueden usar variables de posición del zum, de posición del enfoque, de la temperatura o de otras condiciones.

También se pueden considerar los efectos térmicos en el control del radio de curvatura de la superficie entre los líquidos. El polinomio o la tabla de búsqueda pueden incluir una variable adicional relativa a los efectos térmicos.

El módulo de control 104 puede incluir controles preestablecidos para ajustes de zum o longitudes focales específicos. Estos ajustes se pueden almacenar por el usuario o el fabricante de la cámara.

La FIG. 6 además ilustra un módulo 106 de captura de imagen que recibe una imagen óptica que corresponde a un objeto externo. La imagen se transmite a lo largo de un eje óptico a través del sistema óptico 102 al módulo 106 de captura de imagen. El módulo 106 de captura de imagen puede utilizar una variedad de formatos, tales como el cine (por ejemplo, de película de cine o aún de imagen), o la tecnología de detección de imagen electrónica (por ejemplo, una matriz de CCD, un dispositivo CMOS o un circuito de captación de vídeo). El eje óptico puede ser lineal, o puede incluir dobleces.

El módulo 108 de almacenamiento de imagen mantiene la imagen capturada en, por ejemplo, una memoria integrada o en película, cinta o disco. En una realización, el medio de almacenamiento es extraíble (por ejemplo, memoria flash, rollo de película, cartucho de cinta o disco).

30 El módulo 110 de transferencia de imagen proporciona la transferencia de la imagen capturada a otros dispositivos. Por ejemplo, el módulo 110 de transferencia de imagen puede utilizar una o una variedad de conexiones, tales como, por ejemplo, un puerto USB, una conexión multimedia IEEE 1394, un puerto Ethernet, conexión inalámbrica Bluetooth, conexión inalámbrica IEEE 802.11, conexión por componentes de video, o conexión S-Video.

La cámara 100 se puede implementar en una variedad de formas, tales como una videocámara, una cámara de teléfono móvil, una cámara fotográfica digital o una cámara de cine.

Las células líquidas en los grupos de enfoque y de zum se podrían utilizar para proporcionar estabilización, como se describe en la Solicitud de Patente de EE.UU. Nº. 12/327.666 titulada "Liquid Optics Image Stabilization", presentada el 3 de diciembre de 2008. Al utilizar grupos de lentes sin movimiento, los dobleces se puede utilizar para reducir el tamaño del conjunto, como se describe en la Solicitud de Patente de EE.UU. Nº. 12/327.651 titulada "Liquid Optics with Folds Lens and Imaging Apparatus", presentada el 3 de diciembre de 2008. Se pueden utilizar uno o más grupos de lentes móviles en combinación con una o más células líquidas como se describe en la Solicitud de Patente de EE.UU. Nº. 12/246.224 titulada "Liquid Optics Zoom Lens and Imaging Apparatus", presentada el 6 de octubre de 2008.

Cabe señalar que serán evidentes varios cambios y modificaciones para los expertos en la técnica. Tales cambios y modificaciones se deben entender como incluidos dentro del alcance de la invención como se define mediante las reivindicaciones adjuntas.

50

5

10

15

25

REIVINDICACIONES

5

10

15

20

25

30

35

40

45

50

1. Un sistema óptico para recoger la radiación que emana de un espacio objeto y entregar la mencionada radiación a una superficie imagen en un espacio imagen a lo largo de un eje óptico común, que comprende:

un primer componente (20) de lente líquida óptica de potencia variable que es estacionario en el eje óptico común, que comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos;

un segundo componente (22) de lente líquida óptica de potencia variable que es estacionario en el eje óptico común en un lado imagen del primer componente (20) de lente líquida óptica de potencia variable, que comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos, en el que la forma de la superficie de contacto del primer componente (20) de lente líquida óptica de potencia variable y la forma de la superficie de contacto del segundo componente (22) de lente líquida óptica de potencia variable se varían al proporcionar una función de zum y producir un cambio de la potencia óptica en el primer y el segundo componentes ópticos de potencia variable, lo que resulta en una variación de un ángulo del rayo principal de los haces de campo fuera del eie:

un tercer componente (30) de lente líquida óptica de potencia variable colocado cerca de la superficie imagen y posicionado a lo largo del eje óptico común entre el espacio objeto y la superficie imagen en un lado imagen del segundo componente (22) de lente líquida óptica de potencia variable, y que comprende al menos dos líquidos con diferentes propiedades de refracción y al menos una superficie de contacto entre los dos líquidos, en el que variar la forma de la superficie de contacto del tercer componente (30) de lente líquida óptica de potencia variable minimiza una variación en un ángulo de incidencia del rayo principal sobre la superficie imagen provocada al variar la forma del primer y el segundo componentes ópticos de potencia variable; y

una abertura (60) de la lente posicionada a lo largo del eje óptico común entre el primer componente óptico de potencia variable y el segundo componente óptico de potencia variable.

- 2. El sistema óptico de la reivindicación 1, en el que el factor de zum es mayor que 3x.
- 3. El sistema óptico de la reivindicación 1, en el que el factor de zum es mayor que 4x.
- 4. El sistema óptico de la reivindicación 1, en el que el factor de zum es mayor que 5x.
- 5. El sistema óptico de cualquiera de las reivindicaciones 1 a 4, en el que el tercer componente óptico de potencia variable se configura para reducir el ángulo del rayo principal de los haces de campo fuera del eje para que sea menor de 10º respecto a la perpendicular a la superficie imagen a través de una amplitud de zum de la función de zum.
- 6. El sistema óptico de cualquiera de las reivindicaciones 1 a 4, en el que el tercer componente óptico de potencia variable se configura para reducir el ángulo del rayo principal de los haces de campo fuera del eje para que sea menor de 5º respecto a la perpendicular a la superficie imagen a través de una amplitud de zum de la función de zum.
- 7. El sistema óptico de cualquiera de las reivindicaciones 1 a 6, en el que la forma del primer componente óptico de potencia variable se varía para proporcionar una función de enfoque.

1122645+5	f3cf20v00a11						
200101025	RDY	THI	RMD	GLA	CCX	THC	GLC
> OBJ:	INFINITY	INFINITY	10.10	323	100	100	GDC
1:	INFINITY	6.301334			100	100	
2:	30.81375	2.498338		602192.583429	100	100	100
ASP	_	2.430330		002192.505429	100	100	100
	2.229363	KC : 100					
10		CUF: 0.0000	000	CCF: 100			
	:0.171562E-04	B :0.194705E-		C :279501E-09	n .0	157958	P-11
AC		BC : 100	0,	CC : 100	DC :	100	
	:273823E-14	F :0.000000E4	.00	G :0.000000E+00		.000000	
EC		FC : 100	.00	GC : 100	ис:	100	
	0.000000E+00	FC . 100		30.	nc .	100	•
JC				* .			
	SBSL7_OHARA	CDC.		PRC:			
671	. SESE/_CIMOS	Srg.		PAC:			
3:	13.50605	15.225035			100	100	
4:	52.98665	2.841018		665375.532651	100	100	100
	SBSL7 CHARA			PRC:			
5:	-27.58704	0.153974			100	100	
6:	-27.24854	1.000000		846000.238000	100	100	100
•	SBSL7 CHARA			PRC:	100	100	100
7:	INFINITY	2.888439		WATER SPECIAL	100	100	
8:	-14.03714	2.703112		OIL C300,	100	100	
9:	INFINITY	2.332029		603620.582046	100	100	100
	: SBSL7 CHARA			PRC:	100	100	100
10:	-20.29742	0,125000		PRC:	100	100	
. 11:	-21.67887	1.000000		846000.238000	100	100	100
	SBSL7 CHARA			PRC:	100	100	100
12:	INFINITY				100	300	
13:	-12.95955	2.495010		WATER_SPECIAL	100	100	
14:	INFINITY	2.223744 24.222268		'01L_C300' 846000.238000	100	100	100
	SESL7 CHARA			PRC:	100	100	100
15:	-34.73788			PRC:	100	100	
16:		1.062498		CDC12 CUADA	100	100	
17:	-14.24028 310.72426	3.325697		SBS17_OHARA	100	100	
STO:	INFINITY	0.222711			100	100.	
19:	-18.09808	1.478683		CDC1 2 OUADA	100	100	
ASP:		1.055050		SBSL7_OHARA	100	100	
K :		KC : 100					
ıc		CUF: 0.0000	000	CCF: 100			
	449685E-05	B :870614E-		C :0.328949E-08	D :	681321	E-10
AC :		BC : 100	0,	CC : 100	DC :	100	
	0.530692E-12	F :0.000000E+	00	G :0.000000E+00		.000000	
EC :		FC : 100	-	GC : 100	нс :	100	
	0.000000E+00			00	<i></i>	200	
	100	,					
20:	-12.46003	0.125000			100	100	
21:	30.52766	28.682539		844899.238246	100	100	100
GP1:	SBSL7 CHARA			PRC:			
22:	INFINITY	4.068557		WATER SPECIAL	100	100	
23:	11.64471	2.662807		.01r C300.	100	100	
24:	INFINITY	1.000000		846000.238000	100	100	100
GP1:	SBSL7 CHARA			PRC:			
25:	14.85366	0.677715			100	100	
26:	25.41477	1.730566		696795.513445	100	100	100
	SBSL7 CHARA			PRC:			
27:	INFINITY	3.883587		WATER SPECIAL	100	100	
28:	17.85087	2.499385		.01F C300.	100	100	
29:	INFINITY	1.000000		846000.238000	100	100	100
	SBSL7 CHARA			PRC:			
30:	25.74855	0.125000			100	100	
31:	16.02546	3.436559		600728.584860	100	100	100
	SLAH65 CHARA			PRC:		- 30	
					1.00	1.00	
33:	18.62558	6.799331		504789.723605	100	100	100

Gp1 : S	LAH65 ORARI	spc.	PRC:					
34:	-16.67422	0.439497	PAC.	10	0 100			
35:	-14.32508	1.000000	718150.2			100		
	BSL7 OHARA		PRC:					
36:	INFINITY	1.768546	WATER SP	ECIAL 10	0 100			
37:	11.62399	5.206835	OIF C30					
38:	INFINITY	13.287860	435000.9			100		
	BSL7 OHARA		PRC:					
	-128.41464	1.000011		10	0 100			
40:	INFINITY	0.000000		10				
IMG:	INFINITY	0.000000		10				
SPECIFICATIO	N DATA							
FNO	2.65000							
DIM	101							
WL	587.56	546.07 486.	13					
REF	2							
WIW	88	99	77					
INI	KAI							
XRI	0.00000	0.00000	0.00000	0.00000	0.00	000		
YRI	0.00000	2.10000	3.60000	4.70000	5.50	000		
WIF	1.00000	1.00000	1.00000	1.00000	1.00			
VUX	0.00000	-0.02841	-0.08672	-0.30116	-0.08			
VLX	0.00000	-0.02841	-0.08672	-0.10116	-0.08			
VUY	0.00000	0.05687	0.09431	0.11536	0.32			
VLY	0.00000	-0.08935	-0.28512	-0.40247	0.16			
POL	N	0.0000						
,								
APERTURE DAT	A/EDGE DEF	INITIONS						
CA APE								
CIR S2		14.546110						
CIR S4		8.300000						
CIR S7		7.200000						
CIR S15		6.360000						
CIR S22		5.630000						
CIR S30		7.450000						
PRIVATE CATA	1100							
PWL	65	6.30 589.30	546.10	486.00				
O17 C300				1.523800				
		,						
REFRACTIVE I	NDICES							
GLASS CO	ODE	587.5	6 546.07	486.13	3			
SBSL7 OHA	LRA	1.51633	0 1.518251	1.521905	5.			
WATER SPE	CIAL	1.33304	1 1.334468	1.337129	9			
.OIT_C300) •	1.53510	7 1.518002	1.523784				
665375.53	32651	1.66537	5 1.668349	1.674098	В			
602192.58	3429	1.60219	2 1.604653	1.609374	4			
600728.58	4860	1.60072	8 1.603177	1.607874	6			
504789.72	23605	1.50478	9 1.506455	1.509590	0 .			
846000.23	38000	1.84600	0 1.854375	1.87138	5			
603620,58	32046	1.60,362	0 1.606093	1.61083	7 .			
846000.23	38000	1.84600	0 1.854375	1.87138	5			
846000.23		1.84600						
844899.23		1.84489						
846000.23		1.84600						
696795.51		1.69679						
846000.23		1.84600						
718150.27		1.71815						
435000.95	50000	1.43500	0 1.436102	1.438080				
No1 4-				:				
No solves de	elined in s	уэтем						
No pickups d	tefuned in	system				٠.		
pacaops c		-,				-		
					2 1 2			
ZOOM DATA								
		POS 1			OS 4	POS 5		POS 7
		POS 8	POS 9	POS10 PO	0511	POS12	POS13	POS14
		POS15						

FNO	2.65000	2.85000	3.25000	4.05000	5.65000	2.65000	2.85000
••••	3.25000	4.05000	5.65000	2.65000	2.85000	3.25000	4.05000
	5.65000	***********	0.0000				
VUY F1	-0.3725E-09	-0 37258-09	0.00306	-0.3725E-09	0.00571	-0.3725E-09	-0.3725E-09
V01 F1		-0.3725E-09					
		-0.3725E-09	-0.3/23E-09	-0.31236-03	-0.37236-09	-0.3/232-09	-0.31232-09
	-0.3725E-09						0 22057 00
VLY F1		-0.3725E-09		-0.3725E-09		-0.3725E-09	
	-0.3725E-09	-0.3725E-09	-0.3725E-09	-0.3725E-09	-0.3725E-09	-0.3725E-09	-0.3725E-09
	-0.3725E-09						
VUY F2	0.05687	0.11392	0.11610	-0.00887	0.00325	0.06742	0.11342
	0.10296	-0.00920	-0.00385	0.07036	0.08675	0.06619	-0.00972
	-0.00539						
VLY F2	-0.08935	-0.05808	-0.03258	-0.01860	0.01090	-0.08457	-0.05603
	-0.03544	-0.01746	-0.00717	-0.08137	-0.05993	-0.03800	-0.01608
	-0.00778						
VUY F3	0.09431	0.16147	0.17223	0.04722	-0.00455	0.10828	0.16289
VO1 F3		0.00961	-0.01311	0.11464	0.13844	0.12845	-0.01423
	0.16114	0.00961	-0.01311	0.11404	0.25044	0.11045	0.01425
	-0.01721		0.00053	-0.04297	0.00810	-0.26913	-0.17074
VLY F3	-0.28512	-0.17620	-0.09957				
	-0.10314	-0.04848	-0.01968	-0.25910	-0.18634	-0.11253	-0.04547
	-0.02233						
VUY F4	0.11536	0.18421	0.20312	0.09011	-0.01350	0.13209	0.18804
	0.19354	0.05687	-0.02344	0.14215	0.16421	0.16305	0.03636
	-0.03050						
VLY F4	-0.40247	-0.31156	-0.16022	-0.06680	0.00355	-0.40062	-0.30180
	-0.17902	-0.07624	-0.03317	-0.38667	-0.34030	-0.19662	-0.07031
	-0.03849						
YUY F5	0.32807	0.20118	0.22173	0.11870	-0.02178	0.30003	0.20732
	0.21355	0.08881	-0.03294		0.18241	0.18517	0.07093
	-0.04295	*******					
VLY F5	0.16286	-0.27696	-0.10281	-0.01966	0.04267	0.10747	-0.26702
VL1 75	-0.11582	-0.00517	0.00543			-0.14557	
	-0.05359	-0.00517	0.00545	0.10337	-0.00772	0.2400	0,002/3
		0 22255 00		-0.3725E-09	0.00571	-0 37258-00	-0.3725E-09
VUX F1		-0.3725E-09					
		-0.3725E-09	-0.3/25E-09	-U.3/25E-U9	-0.3725E-09	-0.31236-09	-0.37236-09
	-0.3725E-09				0.00573	0 22052 00	0.00000.00
VLX F1		-0.3725E-09		-0.3725E-09			-0.3725E-09
		-0.3725E-09	-0.3725E-09	-0.3725E-09	-0.3725E-09	-0.3725E-09	-U.3725E-U9
	0.3725E-09						
VUX F2	-0.02841	-0.01622	0.00325				
	-0.00957	-0.00434	-0.00180	-0.02623	~0.01833	-0.01067	-0.00421
	-0.00216						
VLX F2	-0.02841	-0.01622	0.00315				
	-0.00957	-0.00434	-0.00180	-0.02621	-0.01833	-0.01067	-0.00421
	-0.00216						
VUX F3	-0.08672	-0.01986	0.00375	-0.01325	0.00103	-0.08201	-0.02004
	-0.01253	-0.01289	-0.00533	-0.07953	-0.05453	-0.03193	-0.01251
	-0.00644						
VLX F3	-0.08672	-0.01986	D.00375	-0.01325	0.00103	-0.08201	-0.02004
	-0.01253		-0.00533	-0.07953	-0.05453	-0.03193	-0.01251
	-0.00644						
VUX F4	-0.10116		0.00526	-0.02275	-0.00231	-0.08676	-0.01941
	-0.01045		-0.00915		-0.05302	-0.05497	-0.02154
	-0.01 T 15						
VLX F4	-0.10116		0.00526	-0.02275	-0.00231	-0.08676	-0.01941
YIM F4	-0.01045		-0.00915				
	-0.01115		-0.00915	-0.00123	0.03302	0.05477	0.02154
IRD DE	-0.03113		0.00760	-0.03132	-0.00532	-0.07246	-0.01470
VUX F5							
	-0.00744		-0.01263	-0.06588	-0.04682	-0.03213	-0.02313
	-0.01551				0.00533	0.02246	0.03470
VLX F5	-0.08580						
	-0.00744		-0.01263	-0.06588	-0.04682	-0.05219	-0.02973
	-0.01551					_	
RSL	DEF						
	DEF		DEF	DEF	DEF	DEF	DEF
	DEF	•					
THI SO	INFINITY						1016.00000
	1016.00000	1016.00000	1016.00000	508.00000	508.00000	508.00000	508.00000
	508.00000						
THC SO	100	100	100	100	100	100	100

				100		100		100	100	100	100	100
				100		,00		200	200	100	200	
R	DY 88			01714		28715		.91944	17.09808			-14.55194
				15955 00916	16.	72454	17	.20043	-15.34465	-55.41219	111.69251	16.33673
c	CY S8		17.	100		100		100	100	100	100	100
				100		100		100	100		100	100
			,	100				02022	22 52620	25 20045	12 16112	-20 53315
R	DY 813			95955 86367		78397		.03033	-37.52630 -13.22809			-28.53315 -97.41536
				72900	- 01 .	10331		.10047	-13.22009	32.04020	20.47334	31.11001
С	CY \$13			100		100		100	100			100
				100		100		100	100	100	100	100
, p	DY \$23		11.	100 64471	11	62348	11	.19322	14.22453	-33.45710	11.63668	11.66555
•				26519		53598		.74366	11.54512			17.85647
			-17.	54172							100	100
С	CY \$23			100		100		100	100			100
				100						-		
R	DY \$28			85087		.00829		.32571	-31.84040			17.65507
				20144 54073	-25	. 43228	-11	.66285	17.80085	18.76337	35.40865	-17.94695
c	CY 828		-11.	100		100		100	100	100	100	100
				100		100		100	100	100	100	100
_				100	9.7	E40E2	- 2/	.78741	- 22 . 46557	-49.96433	12.50696	90.43217
P	DY \$37			62399		.54952 .57265		5.37201	12.58709			41.16838
				92311								
c	CY \$37			100		100		100	100			100
				100		100		100	100	100	100	100
		POS 1			POS 3		os 4	POS :				
		POS 15		9	POS 1	0 2	05 11	POS .	12 703 1	5 703 14		
INFI	NITE CONJU	SATES										
E		9.7576	12.800		9.2934		9913 0894	12.804				
		8.77 81 0.8973	28.983	16 4.	5.3111	30.	0094	12.004	17.510	20.3332		
I	BFL (0.0382	0.075		0.0336		0537	-0.014				
		0.2905	-0.732	25 -	1.9746	-0.	1367	-0.248	4 -0.5050	-1.5135		
1		3.1099 9.6052	28.400	03 2	5.5220	18.	0016	-11.558	2 29.5975	28.4270		
	2	6.1320	20.935		2.9442		6364	29.464	1 27.6024	23.2268		
		8.7867 2.6500	2.85	00	3.2500	4	0500	5.650	0 2.6522	2.8483		
,		3.2362	4.00		5.4835		6542	2.849				
		5.4925										
	USED CONJUG RED	ATES 0.0000	0.00	nn	0.0000	0	0000	0.000	0 0.0096	0.0123		
,		0.0180	0.02		0.0445		0188	0.023				
		0.0776										
1		2.6500 3.2500	4.05		3.2500 5.6500		0500 6500	5.650 2.850				
		5.6500	4.05		5.0500		0300	1.050	5.150			
•	OBJ DIS 0.1	58E+14	0.158E+	14 0.1	58E+14	0.158	E+14	0.158E+1	4 1016.0000	1016.0000		
		6.0000 8.0000	1016.00	00 101	6.0000	508.	0000	508.000	0 508.0000	508.0000		
			0.158E+	14 0.1	58E+14	0.158	E+14	0.158E+1	4 1174.7013	1174.7013		
	117	4.7013							3 666.701			
		6.7013	0.00	00	0.0000		0000	0.000	0 0.000	0.0000		`
		0.0000	0.00		0.0000		0000	0.000				
		0.0000										
										3 158.7013 3 158.7013		
		8.7013	130.70		0,,013	250.	.013	150.101				
	PARAXIAL IM	AGE		-								
		5.4617 5.3545	5.36 5.44		5.3457		4244	5.321				
		5.5545	3.44		J. 4330		1133	2.523	2.000	2.7000		

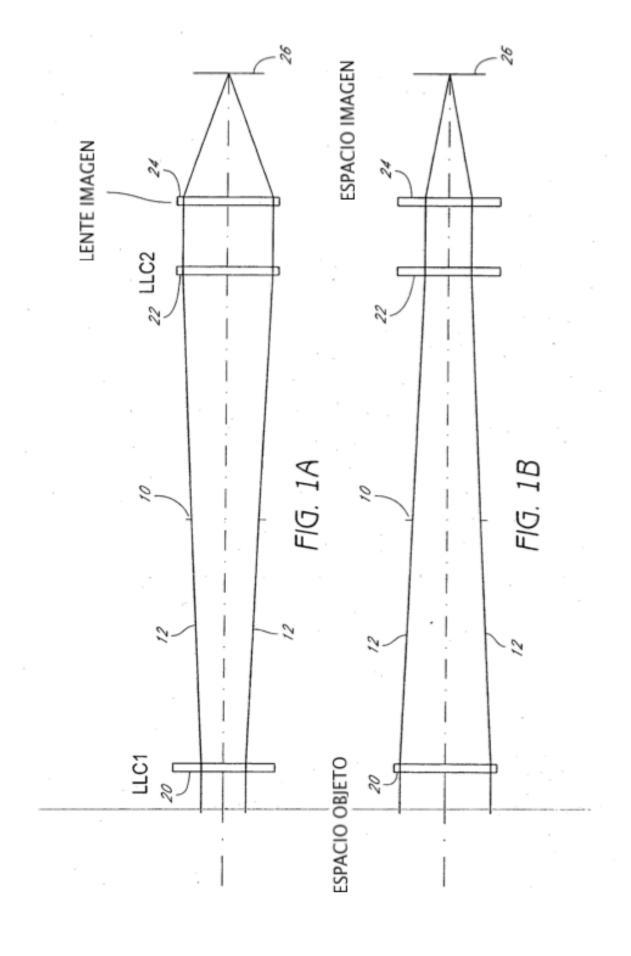
	5.5645						
THI	0.0382	0.0750	0.0336	0.0537	-0.0140	0.0440	0.0745
	0.0479	0.0775	0.0403	0.0526	0.0566	0.0680	0.0691
	0.0651						
ANG	29.2373	22.7323	15.4866	10.5978	6.3851	28.4185	22.7139
	15.8246	10.5088	6.7156	28.1314	22.4249	16,8515	10.4576
	7.5273						
ENTRANC	E PUPIL						
DIA	3.6821	4.4913	5.9364	7.1584	8.6674	3.7680	4.4933
	5.8024	7.2355	8.2632	3.8013	4.4935	5.4191	7.2862
	7.4460						
THI	28.6776	29.0249	30.5915	32.2161	33.7579	28.7413	29.0450
	30.5560	32.4615	33.8778	28.7814	29.5664	30.4477	32.6333
	33.8750						
EXIT PU	PIL						
DIA	38.7304	92.0441	22.5925	14.5999	9.3663	43.9781	93.0422
	24.6289	18.1938	12.1038	44.8572	562.5216	33.3649	22.4594
	20.1824						
THI	102.6737	-262.2505	-73.3919	-59.0758	-52.9337	116.5857	-265.0953
	-79.9957	-73.6068	~68.3455	118.9234-	1603.1159	-108.3665	-90.8895
	-113.9625						
STO DIA	10.9805	12.3930	13.5504	13.4979	13.4251	11.1220	12.3597
	13.2981	13.1863	12.5895	11.1483	11.8436	12.5320	12.9847
	11.2591						

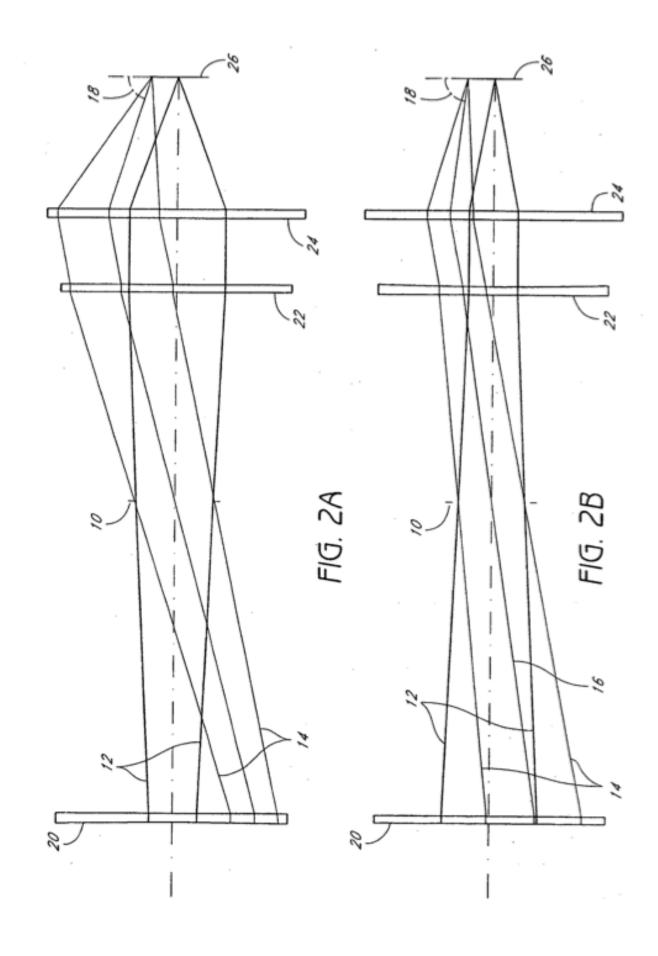
FABRICATION DATA

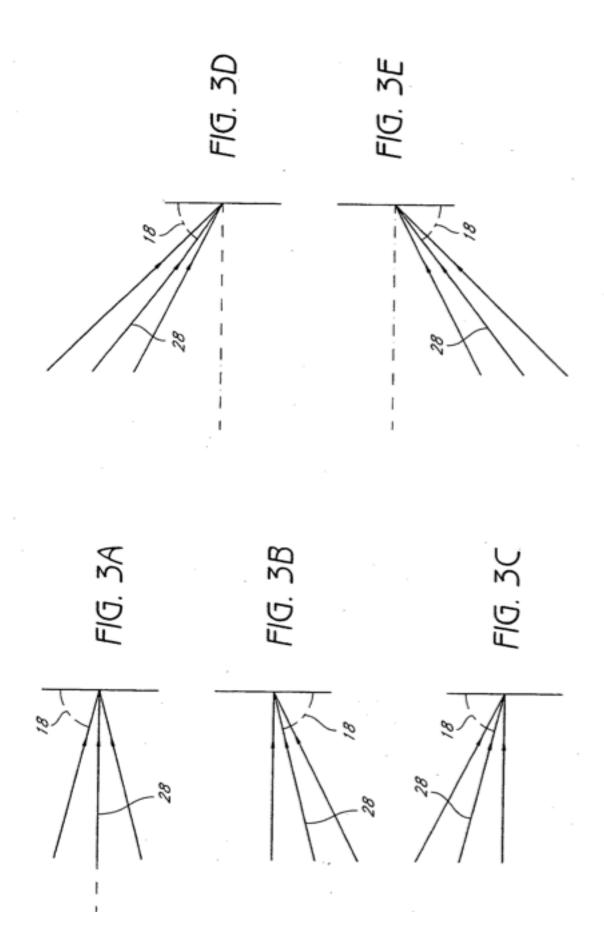
19-Mar-09 Ll2v645z5f3cf20v00s11

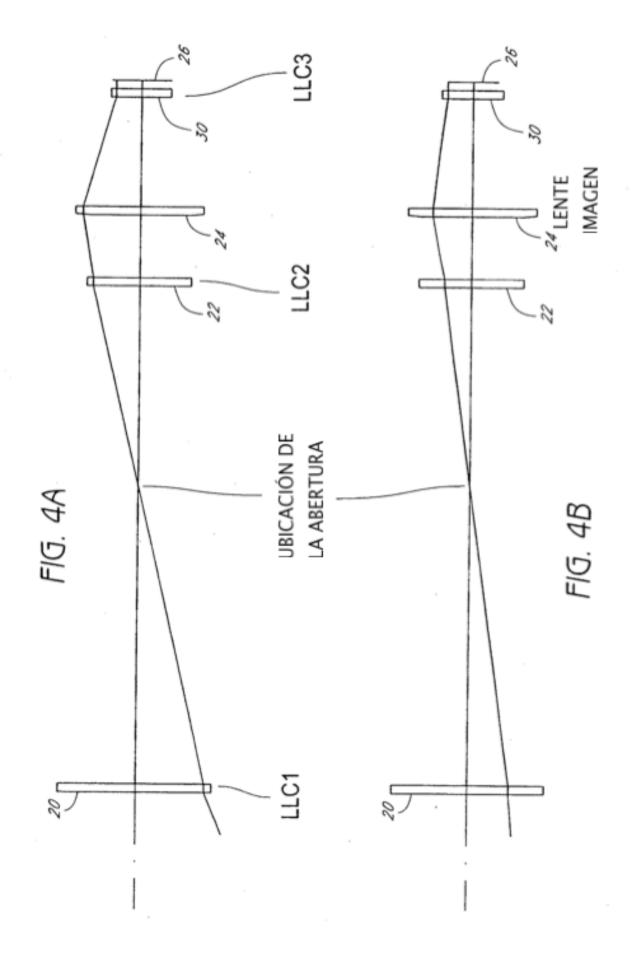
NUMBER			THICKNESS	APERTURE FRONT	DIAMETER BACK	CLASS
		_				
OBJECT	1	NF	INFINITY*6	42.0	064	
				42.0	864	
			6.3013	29.0922	23.3208	602.583
1	A(1)	13.5060 CC		29.0922	23.3200	602.363
		02 5020 04	15.2250	16.6000	15.7802	665.532
2	52.9866 CX	-27.5870 CX	0.1540	16.6000	15.7602	665.552
•	00 0405 00	INF		15.3354	14.4000	846.238
3			2.8884			
4						.OIT C300.
5	-14.0171*1			14.4526		
6	INF	-20.2974 CX		14.4526	14.3070	603.302
_	(555		0.1250	14.2061	14.2023	846.238
7	-21.6789 CC			14.2023		
8	INF	-12.9596+3		14.1941		OIT C300,
9	-12.9596+3	5.5	2.2237	14.1941		_
10	INF	-34.7379 CX		14.1066	12.7200	040.230
		210 2042 00	1.0625	32 6706	13.5077	SBSL7 Ohara
11	-14.2403 CC	310.7243 CC		12.6706	13.5077	SBSL/ Chara
			0.2227	13.5	504	
			APERTURE STOP	13.5	5504	
	- 121	10 4600 69	1.4787	12 6116	14 1770	SBSL7 Ohara
12	A (2)	-12.4600 CX	0.1250	13.6116	14.1739	SBSL/ Onala
	20 5022 04	****		14 7074	11.2600	844.238
23 24	30.52// CX	INF		11.2600		
15	11.6447*2	11.6447+2		12.1652		
				12.1532		_
16	INF	14.8537 CC		12.1517	12.1251	840.236
			0.6777	12.2445	12.4991	696.513
17	25.4148 CX		-,			
18	INF	17.8509+4		12.4991		
19	17.8509*4	INF	2.4994	14.3149		_
20	INF	25.7485 CC		14.5280	14.9000	840.238
			0.1250	16 1505	16 2120	600 584
21	16.0255 CX	-125.9552 CX	3.4366	16.1595	16.2138	600.584

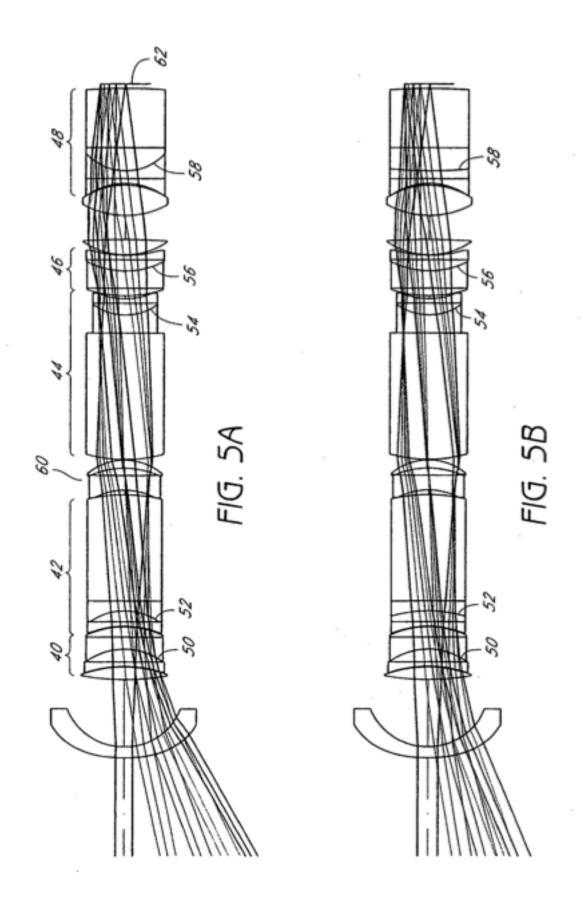
			5 3	530				
22	18.6256 CX	, -16.6742			. 2911 1	5.3369	504.723	
23 -	14.3251 CC	INF	1.0		.1234 1	5 0653	718.277	
24	INF	11.6240			.0653 1		WATER	
	11.6240*5	INF					OIF C300.	
26		-128.4146			.4228 1		435.950	
			1.0	000				
					11.0117			
	IMAGE DI	STANCE =	0.0	000				
IMAGE	1	NF			11.0117			
	Positive r Negative r Dimensions	adius indi	cates the c	enter of cu				
-	Thickness	is axial d	istance to	next surface				
_	Image diam	atar show	above is a	naravial w	2110			
		a ray trac		parazza v	3100,			
_	Other glas	e eurolier	s can be us	ed if their	materials	370		
			ent to the					
	contact th					ocorg.,		
		-						
SPHERIC	CONSTANTS							
		2					,	
		2						
,	4 (2177) 23					30		
7 =	(CURV)		4 (2) 7	6 (B) Y 4	(C) X + (D	10		
z =	(CURV)			+ (B)Y +				
		2 2 1		+ (B)Y +				
		2 2 1	/2		(C) Y + (D) Y	20	
		2 2 1	/2	2 14	16 × (D)	18	20	
		2 2 1	/2		16 × (D)	18		
1	+ (1-(1+K) (2 2 1	/2 + (E)Y	2 14	(C) Y + (B	18 18 19		
	+ (1-(1+K) (2 2 1	/2	2 14	16 × (D)	18 18 + (J)Y		D J
1	+ (1-(1+K) (2 2 1	/2 + (E)Y	2 34 + (F)Y +	(G) X + (H	18 18 + (J)Y	c	
1 ASPHERIC	+ (1-(1+K) (2 2 1, (CURV) Y)	/2 + (E)Y	2 34 + (F)Y +	(G) X + (H	18 18 + (J)Y	c	
1 Aspheric	+ (1-(2+K) (2 2 1 (CURV) Y)	/2 + (E)Y	2]4 + (F)Y + A	G(G)Y + (H) Y + (3) Y	С	J
1 Aspheric	+ (1-(1+K))	2 2 1 (CURV) Y)	/2 + (E)Y K E	2 14 + (F)Y + A F	G(G)Y + (H	18 1) Y + (J) Y E-08 -2.	С н	J 1.57958E-12
ASPHERIC	+ (1- (1+K) (2 2 1 (CURV) Y)	/2	2 14 + (F)Y + A F .71562E-05 .00000E+00	16 (G)Y + (H B G 1.94705 0.00000	18 1) Y + (J) Y E-08 -2.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERIC	+ (1-(1+K))	2 2 1 (CURV) Y)	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERIC	+ (1- (1+K) (2 2 1 (CURV) Y)	/2	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERIC	+ (1- (1+K) (2 2 1 (CURV) Y)	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERIC	+ (1- (1+K) (2 2 1 (CURV) Y)	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERIC	+ (1- (1+K) (2 2 1 (CURV) Y)	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERICAL A(1)	+ (1- (1+K) (2 2 1 (CURV) Y)	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERICAL A(1)	+ (1-(1+K))(CURV	2 2 1 (CURV) Y)	/2	2 14 + (F)Y + A F .71562E-05 .0000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
ASPHERICAL A(1) A(2) REFERENCE	+ (1-(1+K))(CURV	2 2 1 (CURV) Y)	/2	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00	1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00
A(1) A(2) REFERENCESPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449	2 2 1 (CURV) Y)	/2	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00	16 (G)Y + (H G)Y + (H 1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H 79501E-10 00000E+00 28949E-09 00000E+00	J 1.57958E-12 0.00000E+00 6.81321E-13 0.00000E+00
A(1) A(2) REFERENCESPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449	2 2 1 (CURV) Y)	/2	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00	16 (G)Y + (H G)Y + (H 1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H .79501E-10 .00000E+00	J 1.57958E-12 0.00000E+00 6.81321E-13 0.00000E+00
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449 E WAVELENGT REGION =	2 2 1 (CURV) Y)	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 -	2 14 + (F)Y + A F -71562E-05 .00000E+00 .49685E-06 .00000E+00	16 (G)Y + (H G)Y + (H B G G 1.94705 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H 79501E-10 00000E+00 28949E-09 00000E+00	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449	2 2 1, (CURV) Y) 2 2.738. 3 0.65.306	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 -	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00	16 (G)Y + (H G)Y + (H G) 1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H 79501E-10 00000E+00 .28949E-09 00000E+00	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449 E WAVELENGT REGION =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 3 22 .7382 .7383 0 5 .306.	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 -	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00	16 (G)Y + (H G)Y + (H G) 1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H 79501E-10 00000E+00 28949E-09 00000E+00	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449 E WAVELENGT REGION =	2 2 1 (CURV) Y)	/2 + (E)Y R E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00	1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E=08 -2. E+00 0. E-08 3. E+00 0.	C H .79501E-10 .00000E+00 .28949E-09 .00000E+00	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449 E WAVELENGT REGION =	2 2 1, (CURV) Y) 3 2 738 4 0 0 5 306 TH = POS. 1 POS. 1 POS. 15 -14.0171	/2 + (E)Y R E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9 -14.2871	2 14 + (F)Y + A F -71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS. 10 64.9194	16 (G)Y + (H G)Y + (H B G G 1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H 	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00 POS. 7 POS. 14
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449 E WAVELENGT REGION =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 3 22.738 9 0, 5.306 TH = POS. 1 POS. 8 POS. 15 -14.0171 77.1596	/2 + (E)Y R E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9	2 14 + (F)Y + A F -71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS. 10 64.9194	1.94705 0.00000 -8.70614 0.00000	18 1) Y + (J) Y E-08 -2. E+00 0. E-08 3. E+00 0.	C H 	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00 POS. 7 POS. 14
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525449 E WAVELENGT REGION =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 2 3 4 5 5 306 PH = POS. 1 POS. 8 POS. 15 -14 .0171 77.1596 17.0092	/2 + (E)Y R E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9 -14.2871 16.7245	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS.10 64.9194 17.2004	(C)Y + (D 16 (G)Y + (H B G 1.94705 0.00000 -8.70614 0.00000 POS. 4 POS. 11 17.0981 -15.3446	POS. POS. 16.640 -55.412	C H 79501E-10 00000E+00 28949E-09 00000E+00 5 POS. 6 12 POS.13 05 -14.7853 111.6925	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00 POS. 7 POS.14 -14.5519 16.3367
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525445 E WAVELENGT REGION = PARAMETERS 1 =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 3 2 3 4 5 5 306 5 306 PM = POS. 1 POS. 8 POS.15 -14.0171 77.1596 17.0092 11.6447	/2 + (E)Y R E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9 -14.2871 16.7245 11.6235	2 14 + (F)Y + A F -71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS.10 64.9194 17.2004 11.1932	1.94705 0.00000 -8.70614 0.00000 -8.70614 1.94705 1.94705 0.000000	POS. POS. 16.640 -55.412 -33.457	C H .79501E-10 .00000E+00 .28949E-09 .00000E+00 .5 POS. 6 .2 POS. 13 .5 -14.7853 .11.6925 .11.6367	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00 POS. 7 POS.14 -14.5519 16.3367 11.6655
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525445 E WAVELENGT REGION = PARAMETERS 1 =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 3 2 3 4 5 5 306 5 306 PM = POS. 1 POS. 8 POS.15 -14.0171 77.1596 17.0092 11.6447	/2 + (E)Y R E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9 -14.2871 16.7245 11.6235	2 14 + (F)Y + A F -71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS.10 64.9194 17.2004 11.1932	1.94705 0.00000 -8.70614 0.00000 -8.70614 1.94705 1.94705 0.000000	POS. POS. 16.640 -55.412 -33.457	C H .79501E-10 .00000E+00 .28949E-09 .00000E+00 .5 POS. 6 .2 POS. 13 .5 -14.7853 .11.6925 .11.6367	J 1.57958E-12 0.00000E+00 6.81321E-11 0.00000E+00 POS. 7 POS.14 -14.5519 16.3367 11.6655
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525445 E WAVELENGT REGION = PARAMETERS 1 =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 3 2 2.738 3 0 5.306 5 . 306 1 POS . 1 POS . 8 POS . 15 -14 . 0171 77 . 1596 17 . 0092 11 . 6447 11 . 2652	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9 -14.2871 16.7245 11.6235 17.5360	2 14 + (F)Y + A F -71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS.10 64.9194 17.2004 11.1932	POS. 4 POS. 11 17.0981 -15.3446	POS. POS. 1 16.640 -55.412 -33.457 11.545	C H .79501E-10 .00000E+00 .28949E-09 .00000E+00 .5 POS. 6 .2 POS. 13 .5 -14.7853 .11.6925 .11.6367	POS. 7 POS. 14 -14.5519 16.655 17.8565
ASPHERIC A(1) A(2) REFERENCE SPECTRAL	+ (1-(1+K)) CURV 0.03245305 -0.05525445 E WAVELENGT REGION = PARAMETERS 1 = 12 =	2 2 1, (CURV) Y) 2 2 1, (CURV) Y) 3 2 - 2.738 9 0, 5.306 TH = POS. 1 POS. 8 POS.15 -14.0171 77.1596 17.0092 11.6447 11.2652 -17.5417	/2 + (E)Y K E 229363 1 23E-15 0 000000 -4 92E-13 0 546.1 NM 486.1 - POS. 2 POS. 9 -14.2871 16.7245 11.6235 17.5360 -28.6081	2 14 + (F)Y + A F .71562E-05 .00000E+00 .49685E-06 .00000E+00 587.6 NM POS. 3 POS.10 64.9194 17.2004 11.1932 -16.7437	POS. 4 POS. 11 17.0981 -15.3446 14.2245 11.5451	POS. POS. 1 16.640 -55.412 -33.457 11.545	C H 79501E-10 00000E+00 28949E-09 00000E+00 5 POS. 6 12 POS.13 15 -14.7853 12 11.6367 11.3786 14 -13.1611	POS. 7 POS. 14 -14.5519 16.655 17.8565


•4 •5 •6	-	17.8509 36.2014 -11.5407 11.6240 -26.1004 13.9231	18.0083 -25.4323 87.5495 -183.5726	37.3257 -13.6629 -20.7874 46.3720	-31.8404 17.8009 -22.4656 12.5871	-9.4689 18.7634 -49.9643 30.3321	17.5530 35.4086 12.5070 -89.9632	17.6551 -17.9469 90.4322 41.1684
*6	-	-11.5407 11.6240 -26.1004 13.9231	87.5495	-20.7874	-22.4656	-49.9643	12.5070	90.4322
*6	-	11.6240 -26.1004 13.9231						
*6	-	-26.1004 13.9231						
	-	-26.1004 13.9231		46.3720		30.3321		41 1684
	-	13.9231						
	-							
			INF	INF	INF	INF	1016.0000	1016.0000
		1016.0000		1016.0000	508.0000		508.0000	508.0000
		508.0000						
		POS. 1	POS. 2	POS. 3	POS. 4	POS. 5	POS. 6	POS. 7
		POS. 8	POS. 9	POS. 10	POS.11	POS.12	POS.13	POS.14
		POS.15						
INFINITE CONJU	CAT	re						
EFL	w .	9.7576	12.8001	19.2934	28.9913	48.9706	9.9935	12.7983
212	_	18.7781	28.9816	45.3111	10.0894	12.8041	17.5187	
		40.8973	20.5020	45.5222	20.0054	22.0042	27.0207	20.3332
BFL		0.0382	0.0750	0.0336	0.0537	-0.0140	-0.0515	-0.0823
	_	-0.2905	-0.7325	-1.9746	-0.1367	-0.2484	-0.5050	-1.5135
		-3.1099	0.7525	2.3740	-0.2307	0.1404	0.5050	2.5255
FFL .	=	29.6052	28.4003	25.5220	18.0016	-11.5582	29.5975	28.4270
		26.1320	20.9357	2.9442	29.6364	29.4641	27.6024	23.2268
		18.7867	20.333	2.5442	23.0304	17.4041	17.0024	25.2200
F/NO	-	2.6500	2.8500	3.2500	4.0500	5.6500	2.6522	2.8483
.,		3.2362	4.0055	5.4835	2.6542	2.8494	3.2328	3.9794
		5.4925						
T USED CONJUG								
REDUCTION	=	0.0000	0.0000	0.0000	0.0000	0.0000	0.0096	0.0123
		0.0180	0.0279	0.0445	0.0188	0.0238	0.0327	0.0546
		0.0776						
FINITE F/NO	-	2.6500	2.8500	3.2500	4.0500		2.6500	2.8500
		3.2500	4.0500	5.6500	2.6500	2.8500	3.2500	4.0500
OD TOOR DIEM	_	5.6500	0 1500+14	0.1500.14	0.1600-14	0.1500.14	0 1025104	0.1008.04
OBJECT DIST	-	0.102E+04		0.158E+14 0.102E+04			0.102E+04	
		0.102E+04	0.1026+04	0.102E+04	0.508E+03	0.5082403	0.5082+03	0.508E+03
TOTAL TRACK	_		0.158E+14	0.158E+14	0.158E+14	0.158E+14	0.117E+04	0.117E+04
TOTAL TIMEN	_	0.137E+04		0.117E+04			0.667E+03	
		0.667E+03	0.11/2/04	0.1172.04	0.0072703	0.0012103	0.0072703	0.0072703
IMAGE DIST	=	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000						
OAL .		158.7013	158.7013	158.7013	158.7013	158.7013	158.7013	158.7013
		158.7013	158.7013	158.7013	158.7013	158.7013	158.7013	158.7013
		158.7013						
PARAXIAL								
IMAGE HT	=	5.4617	5.3629	5.3457	5.4244	5.4801	5.4333	5.3773
		5.3545	5.4407	5.4996	5.4435	5.3218	5.3558	5.4563
		5.5645						
IMAGE DIST	=	0.0382	0.0750	0.0336	0.0537	-0.0140	0.0440	0.0745
		0.0479	0.0775	0.0403	0.0526	0.0566	0.0680	0.0691
		0.0651						
SEMI-FIELD								
ANGLE	=	29.2373	22.7323					
		15.8246	10.5088	. 6.7156	28.1314	22.4249	16.8515	10.4576
ENTR PUPIL		7.5273						
DIAMETER	=	3.6821	4.4913	5.9364	7.1584	8.6674	3.7680	4.4933
DIMETER	-	5.8024	7.2355	8.2632	3.8013			
		7.4460	7.2333	0.2032	3.0013	4.4933	3.4191	1.2002
	-	28.6776	29.0249	30.5915	32.2161	33.7579	28.7413	29.0450
DISTANCE					28.7814		30.4477	
DISTANCE	~	30.5560					20.44//	32.0333
DISTANCE	-	30.5560 33.8750	32.4615	33.0170				
	-	30.5560 33.8750	32.4615	33.0770				
EXIT PUPIL		33.8750					43 9781	93 0422
	=		92.0441 18.1938		14.5999 44.8572		43.9781 33.3649	93.0422 22.4594


DISTANCE	2	102.6737 -79.9957 -113.9625	-262.2505 -73.6068	-73.3919 -68.3455	-59.0758 118.9234	-52.9337 -1603.1159		-265.0953 · -90.8895
APER STOP								
DIAMETER	=	10.9805	12.3930	13.5504	13.4979	13.4251	11.1220	12.3597
		13.2981	13.1863	12.5895	11.1483	11.8436	12.5320	12.9847
		11.2591						




NOTES - FFL is measured from the first surface - BFL is measured from the last surface


8759660

