

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 525 374

51 Int. Cl.:

C07D 471/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 03.03.2006 E 06744433 (1)

(97) Fecha y número de publicación de la concesión europea: 10.09.2014 EP 1853605

54 Título: Ligandos sintéticos dirigidos a integrinas para aplicaciones diagnósticas y terapéuticas

(30) Prioridad:

03.03.2005 IT MI20050328

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.12.2014

(73) Titular/es:

BRACCO IMAGING S.P.A (100.0%) Via Folli, 50 20134 Milan, IT

(72) Inventor/es:

LATTUADA, LUCIANO; MOROSINI, PIERFRANCESCO; UGGERI, FULVIO; AIME, SILVIO; TERRENO, ENZO; DELLI CASTELLI, DANIELA; SCOLASTICO, CARLO; MANZONI, LEONARDO y AROSIO, DANIELA

(74) Agente/Representante:

RIZZO, Sergio

DESCRIPCIÓN

Ligandos sintéticos dirigidos a integrinas para aplicaciones diagnósticas y terapéuticas

[0001] La presente invención se encuentra en el campo técnico del diagnóstico por la imagen dirigido y se refiere a unos compuestos novedosos de peptidomiméticos cíclicos que presentan una estructura de azabicicloalcano conjugada a una molécula biológicamente activa.

[0002] En concreto, la invención se refiere a una novedosa clase de compuestos eficaces desde el punto de vista diagnóstico o terapéutico que comprende unos novedosos péptidos cíclicos a base de azabicicloalcano que actúan de fracción de direccionamiento hacia unos receptores de integrinas.

[0003] La invención se refiere además a unas novedosas composiciones farmacéuticas que comprenden estas y usos de estas en la obtención de imágenes dirigida o en la terapia de tumores sólidos y, en general, de los estados patológicos asociados a la angiogénesis.

ANTECEDENTES DE LA INVENCIÓN

10

- [0004] Un gran número de procesos fisiológicos implican péptidos biológicamente activos, por medio de las interacciones de estos con receptores y enzimas. No obstante, los péptidos no se consideran unos fármacos idóneos dada su pobre estabilidad metabólica, su rápida excreción y su baja selectividad de receptores específicos. Una alternativa válida implica el diseño de análogos de péptidos que sean capaces de mimetizar la acción del péptido natural en el nivel del receptor (peptidomimético) [(a) Kahn, M. (Editor). «Peptide Secondary Structure Mimetics». Tetrahedron Symposia-in-Print N. º 50 1993, 49, 3433-3689. (b) Gante, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1699-1720. (c) Olson, G. L.; Bolin, D. R.; Bonner, M. P.; Bös, M.; Cook, C. M.; Fry, D. C.; Graves, B. J.; Hatada, M.; Hill, D. E.; Kahn, M.; Madison, V. S.; Rusiecki, V. K.; Sarabu, R.; Sepinwall, J.; Vincent, G. P.; Voss, M. E. J. Med. Chem. 1993, 36, 3039-3049. (d) Kitagawa, O.; Velde, D. V.; Dutta, D.; Morton, M.; Takusagawa, F.; Aubè, J. J. Am. Chem. Soc. 1995, 117, 5169-5178. (e) Giannis, A.; Kolter, T. Angew. Chem.; Int. Ed. Engl. 1993, 32, 1244. (f) Aube, J. Tetrahedron Symposia-in-Print N. º 50, 2000, 56, 9725-9842].
- [0005] En el transcurso de nuestra investigación sobre los miméticos de estructura secundaria peptídica, se han sintetizado determinados aminoácidos de 6,5- y 7,5-azabicicloalcano [(a) Colombo, L.; Di Giacomo, M.; Scolastico, C.; Manzoni, L.; Belvisi, L.; Molteni, V. *Tetrahedron Lett.* 1995, 36, 625; (b) Colombo, L.; Di Giacomo, M.; Belvisi, L.; Manzoni, L.; Scolastico, C. *Gazz. Chim. It.* 1996, 126, 543; (c) Colombo, L.; Di Giacomo, M.; Brusotti, G.; Sardone, N.; Angiolini, M.; Belvisi, L.; Maffioli, S.; Manzoni, L.; Scolastico, C. *Tetrahedron* 1998, 54, 5325-5336; (d) Angiolini, M.; Araneo, S.; Belvisi, L.; Cesarotti, E.; Checchia, A.; Crippa, L.; Manzoni, L.; Scolastico, C. *Tetrahedron* 2001, 57, 249; (f) Belvisi, L.; Colombo, L.; Colombo, M.; Di Giacomo, M.; Manzoni, L.; Vodopivec, B.; Scolastico, C. *Tetrahedron* 2001, 57, 6463; (g) EP 1 077 218; (h) Colombo, L.; Di Giacomo, M.; Vinci, V.; Colombo, M.; Manzoni, L.; Scolastico, C. *Tetrahedron*, 2003, 59, 4501-4513; (i) Manzoni, L.; Colombo, M.; Scolastico, C. *Tetrahedron Lett.* 2004, 45, 2623-2625; (1) Belvisi, L.; Colombo, L.; Manzoni, L.; Potenza, D.; Scolastico, C. *Synlett*, 2004, 1449-1471.
- [0006] Puede que dichas estructuras se consideren análogas restringidas en su conformación de las unidades dipeptídicas Ala-Pro y Phe-Pro [(a) Belvisi, L.; Bernardi, A.; Manzoni, L.; Potenza, D.; Scolastico, C. Eur. J. Org. Chem. 2000, 2563-2569; (b) Gennari, C.; Mielgo, A.; Potenza, D.; Scolastico, C.; Piarulli, U.; Manzoni, L. Eur. J. Org. Chem. 1999,379].
- [0007] La funcionalización de dichas moléculas con sustituyentes de heteroalquilo representa un objetivo de gran interés, ya que puede que las cadenas laterales aumenten la afinidad del péptido por el receptor al interactuar con los puntos hidrófobos o hidrófilos del receptor en sí. Una ventaja adicional de dichos sistemas es la posibilidad de unirse a distintos grupos farmacóforos y, por consiguiente, la posibilidad de crear una biblioteca, cuyos componentes miembros presentan distintas propiedades y actividades biológicas. En el transcurso de nuestra investigación sobre los miméticos de estructura secundaria peptídica, se han sintetizado determinados aminoácidos de 6,5- y 7,5-azabicicloalcano que se han funcionalizado con apéndices de heteroalquilo [(a) Artale, E.; Banfi, G.; Belvisi, L.; Colombo, M.; Manzoni, L.; Scolastico, C. Tetrahedron, 2003, 59, 6241-6250; (b) Bracci, A.; Manzoni, L.; Scolastico, C. Synthesis 2003, 2363-2367; (c) Bravin, F. M.; Busnelli, G.; Colombo, M.; Gatti, F.; Manzord, L.; Scolastico, C. Synthesis, 2004, 353; (d) Manzoni, L.; Belvisi, L.; Colombo, M.; Di Carlo, E.; Forni, A.; Scolastico, C. Tetrahedron Lett. 2004, 45, 6311-6315].

[0008] Asimismo, de manera similar a lo que sucede con los miméticos dipeptídicos no sustituidos restringidos en su conformación [Belvisi, L.; Bernardi, A.; Checchia, A.; Manzoni, L.; Potenza, D.; Scolastico, C.; Castorina, M.; Cupelli, A.; Giannini, G.; Carminati, P.; Pisano, C. *Org. Lett.* 2001, 3, 1001, C. Scolastico, L. Manzoni, G.

Giannini. Brit. AK Pat. Appl. 2004. GB 2395480], puede que dichas lactamas sustituidas con heteroalquilo se incorporen a pseudopéptidos cíclicos que contengan una secuencia RGD.

[0009] Puede que dichas moléculas estén dirigidas de manera selectiva a aquellos tejidos con una sobreexpresión de determinados receptores (por ejemplo, células epiteliales que toman parte en el crecimiento vascular) para poder utilizarse para inhibir la angiogénesis y controlar de manera selectiva la liberación de cualquier fármaco que esté unido opcionalmente a los grupos sustituyentes en el anillo de lactama [Arap, W.; Pasqualini, R.; Ruoslahti, E. *Science*, 1998, 279, 377]. Por consiguiente, desde un primer punto de vista, el bajo número de «andamios» del que se da cuenta en la literatura hace necesario el diseño y síntesis de unos novedosos miméticos dipeptídicos restringidos en su conformación, funcionalizados con cadenas laterales heterosustituidas para que interactúen con diversos receptores.

5

10

15

20

25

30

35

40

45

50

55

60

[0010] Asimismo, y desde otro punto de vista relevante, hoy en día es bien sabido que la molécula de adhesión celular α_νβ₃ desempeña una función importante en el proceso de angiogénesis y metástasis tumorales. Con el término angiogénesis se identifica un proceso de formación de nuevos vasos sanguíneos que se da no solo durante el desarrollo embrionario y el crecimiento y reparación de tejidos sanos, sino que también está asociado al ciclo reproductor femenino, al asentamiento y mantenimiento del embarazo y a la cicatrización de heridas y reparación de fracturas. Además de la angiogénesis que se da en el individuo sano, los sucesos angiogénicos están implicados en varios procesos patológicos, especialmente en el crecimiento y metástasis tumorales, y en otros estados en los que aumenta la proliferación de vasos sanguíneos, como la retinopatía diabética, la psoriasis y las artropatías. La angiogénesis tiene tanta importancia en la transición de un tumor de crecimiento hiperplásico a neoplásico que la inhibición de la angiogénesis se ha convertido en un campo de investigación activo en el tratamiento frente al cáncer. La angiogénesis tumoral difiere de manera significativa de la angiogénesis fisiológica. Las diferencias incluyen una estructura vascular anómala, unas interacciones alteradas célula endotelial y pericito, un flujo sanguíneo anormal, un aumento de la permeabilidad y un retraso de la maduración. Entre las moléculas que regulan la angiogénesis se incluyen los receptores de factores de crecimiento, los receptores tirosina quinasa, los receptores acoplados a proteínas G para las proteínas que modulan la angiogénesis y las integrinas [Bergers G., L.E. Benjamin, Nat. Rev. Cancer, 2003, 3:401-410; Ferrara N., Nat. Rev. Cancer, 2002, 2:795-803, Nyberg, P., L. Xie, R. Kalluri, Cancer Res., 2005, 65:3967-3979]. Son cada vez más las pruebas que ahora insinúan que la señalización por integrinas desempeña un papel clave en la angiogénesis y metástasis tumorales [Brooks, P.C., R.A. Clark, D.A. Cheresh, 1994, Science, 264:569-571, Kumar, C.C., 2003, Curr. Drug Targets, 4:123-131]. En concreto, la integrina $\alpha_v \beta_3$ aumenta en el endotelio durante la angiogénesis pero no en el endotelio quiescente [Hood, J.D. y D.A. Cheresh, 2002, Nat. Rev. Cancer, 2:91-1000, Xiong, J.P., T.Stehle, R. Zhang, A.Joachimiak, et al., 2002, Science, 296:151-155, Jin, H.y J.Varner, 2004, Br. J. Cancer, 90:561-565]. Las investigaciones han demostrado que la expresión tumoral de la integrina α_νβ₃ presenta una buena correlación con el tumor de varios tumores malignos como el melanoma, el glioma, el cáncer de ovario y el cáncer de mama. Por consiguiente, puede que la capacidad de representar por imagen cuantitativamente la expresión de la integrina $\alpha_v \beta_3$ in vivo de un modo no agresivo arroje una nueva luz acerca del mecanismo de la angiogénesis y de la eficacia del tratamiento antiangiogénico en función del antagonismo de las integrinas. Asimismo, la obtención de imágenes de la expresión tumoral de la integrina ayudará a la detección de lesiones, para seleccionar de manera más apropiada un paciente para un tratamiento anti-integrina, al desarrollo/validación de nuevos fármacos anti-integrina así como a la supervisión y optimización del tratamiento.

[0011] Kessler y colaboradores han ofrecido unos nuevos pentapéptidos cíclicos a base de RGD que incluyen el sistema optimizado c(RGDfV) [véanse, por ejemplo, los documentos US2002/0198142 y EP 0632053, US 6.001.961] donde se propone el uso de los mencionados pentapéptidos, por sí mismos, como fármacos inhibidores de integrinas en el control de enfermedades, en concreto de trastornos de la circulación, trombosis, infarto de miocardio, arteriosclerosis, inflamaciones y angiogénesis. No obstante, las referencias citadas no sugieren el uso de los péptidos reivindicados o de los derivados adecuados de estos para el diagnóstico por la imagen o la radioterapia de la angiogénesis y de trastornos angiogénicos.

[0012] El documento EP1068244 da a conocer medicamentos de utilidad para el diagnóstico y tratamiento del cáncer que comprenden péptidos o peptidomiméticos dirigidos a receptores que aumentan durante la angiogénesis y quelantes.

[0013] También se conocen agentes diagnósticos o terapéuticos que incluyen la secuencia RGD y, en concreto, los péptidos cíclicos c(RGDfV) anteriormente mencionados dirigidos a receptores de integrinas: [Janssen, M.L., W.J. Oyen, I. Dijkgraaf, et al. 2002, Cancer Res. 62:6146-6151; Haubner, R.H., H.J. Wester, et al. Cancer Res. 61:1781-1785; Haubner, R.H., H.J. Wester, et al. 2003, Q.J. Nucl. Med. 47:189-199; Haubner, R.H., H.J. Wester, 2004, Curr. Pharm. Des. 10:1439-1455; Wang, W., S. Ke, et al. 2004, Mol.Imaging 3:343-351; Sunkuku, K., K. Shi, et al., 2005, Mol.Imaging, 4:75-87, Sipkins D.A., D.A. Cheresh, et al., Nat. Med. 4:623-626].

[0014] No obstante, los mencionados agentes de la técnica anterior presentan en general inconvenientes que se derivan de una difusión o transporte pobres, una disponibilidad limitada y/o una falta de especificidad, lo que da como resultado una modesta relación entre el tumor y el fondo (*tumor-to-background ratio*) y un contraste muy bajo observado en las regiones angiogénicas.

[0015] Por consiguiente, todavía existe la necesidad de agentes diagnósticos y terapéuticos que, cuando se administren *in vivo* a un mamífero, puede que combinen una alta especificidad y unas propiedades farmacocinéticas aceptables.

10 SUMARIO DE LA INVENCIÓN

5

30

[0016] La presente invención se refiere a unos novedosos agentes terapéuticos o diagnósticos que comprenden derivados de péptidos cíclicos capaces de unirse de manera selectiva a receptores de integrinas.

15 [0017] En concreto, los derivados de péptidos cíclicos de la invención comprenden una estructura de azabicicloalcano que actúa de mimético restringido en su conformación del dipéptido omoSer-Pro, que además se conjuga a una molécula biológicamente activa. Dichos derivados de péptidos son capaces de unirse de manera selectiva a receptores de integrinas de modo que, según la presente invención, actúan de fracción de direccionamiento capaz de transportar y unir de manera satisfactoria una fracción activa enlazada a esta a dicha clase concreta de receptores.

[0018] Puede que esta clase de agentes diagnósticos o terapéuticos sea de aplicación para el diagnóstico, prevención y tratamiento de estados patológicos asociados a la angiogénesis.

25 [0019] Como se detalla en los siguientes párrafos, la presente invención se refiere a una novedosa clase de compuestos; a un proceso de elaboración para su preparación; a estos mismos compuestos para su uso como agentes terapéuticos o diagnósticos; al uso de estos últimos en la preparación de composiciones farmacéuticas para el tratamiento, prevención y obtención de imágenes de la angiogénesis y de estados patológicos asociados a esta.

[0020] Asimismo, se da a conocer un método para el tratamiento y prevención de la angiogénesis y de trastornos relacionados, así como un método para representar por imagen la angiogénesis tanto *in vitro* como *in vivo*, comprendiendo dichos métodos la administración y uso de los compuestos de la invención.

35 DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

[0021] La presente invención se refiere a unos novedosos agentes terapéuticos o diagnósticos que comprenden derivados de péptidos cíclicos capaces de unirse de manera selectiva a receptores de integrinas.

40 [0022] En concreto, un primer objeto de la invención es un compuesto de fórmula (III)

$$R_6$$
 $COOR_4$ R_8HN $COOR_4$

donde

45 n es 1 o 2,

p es un número entero entre 1 y 5,

R₄ y R₅ juntos constituyen la secuencia Asp-Gly-Arg,

R₆ es una fracción biológicamente activa,

L es un grupo (i) -CONH-, (ii) -NHCONH-, (iii) -NHCSNH-, un grupo de fórmula

$$N-N$$
 (iv) ; O (v)

o es una fracción de enlace divalente que conecta R_6 al derivado - (CH_2) p-biciclo de la fórmula (III), por medio de cualquiera de los grupos (i) a (v) anteriores;

5 sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

10

25

30

35

40

45

50

55

[0023] Dentro de los compuestos de formula (III), la secuencia de péptidos Asp-Gly-Arg está ventajosamente unida a los compuestos de un modo por el cual el grupo carboxilo está ligado al aminoácido arginina y el grupo amino está ligado al ácido aspártico.

[0024] Según una forma de realización preferida de la invención, p es 1 y n es 1. Según otra forma de realización preferida de la invención, p es 1 y n es 2. Según otra forma de realización preferida de la invención, dentro de los compuestos de fórmula (III), L es un grupo de (i) a (v).

[0025] Como se ha explicado anteriormente, los compuestos de la invención son capaces de unirse de manera selectiva a receptores de integrinas, en concreto a las integrinas ανβ3 y ανβ5 sobreexpresadas en tejidos angiogénicos. Por consiguiente, puede que dichos compuestos se unan de manera óptima a una superficie celular o una superficie intravascular que exprese el receptor diana donde ello dé como resultado una selección y localización óptimas de la actividad biológica que puede que expresen. Por consiguiente, puede que esta clase de compuestos sea de aplicación para el diagnóstico, prevención y tratamiento de estados patológicos asociados a la angiogénesis.

[0026] En la presente descripción, salvo que se exprese de otro modo, con el término <a href="mailto:«angiogénesis» en la presente memoria nos referimos a un proceso agresivo en varios pasos que se caracteriza por la proliferación de células endoteliales, la modulación de la matriz extracelular (MEC) y la adhesión y migración celulares, que da como resultado la formación de nuevos vasos sanguíneos y/o al aumento de la vascularidad de un órgano o tejido del cuerpo. Con el término «sucesos o procesos angiogénicos» en la presente memoria nos referimos a los sucesos o procesos implicados en varios estados patológicos, especialmente en el crecimiento y metástasis tumorales, y en otros estados en los que aumenta la proliferación de vasos sanguíneos, como la retinopatía diabética, la psoriasis y las artropatías.

[0027] Los términos <u>«trastornos angiogénicos»</u>, <u>«enfermedades angiogénicas»</u> y <u>«estados patológicos asociados a la angiogénesis»</u> se usan en la presente memoria indistintamente para hacer referencia a estados clínicos que implican el aumento de un proceso angiogénico que lleva a una formación excesiva de vasos sanguíneos. Dichos estados incluyen, entre otros, cáncer, psoriasis, aterosclerosis, reestenosis, varios trastornos inflamatorios como por ejemplo artritis reumatoide y neovascularización ocular que lleva en la mayoría de casos a retinopatías diabéticas, glaucoma neovascular, degeneración macular asociada a la edad u oclusión venosa de la retina.

[0028] El término <u>wintegrina</u>» en la presente memoria hace referencia a cualquiera de las muchas proteínas receptoras de la superficie celular, también conocidas como receptores proteicos de adhesión, que se unen a un ligando de la matriz extracelular o a otros ligandos de proteínas de adhesión celular y de este modo median en los procesos de adhesión célula con célula y célula con matriz. Las integrinas constituyen una superfamilia de receptores de membrana que son codificados por genes que pertenecen a una superfamilia de genes y que normalmente se componen de glicoproteínas transmembrana heterodinámicas que contienen una subunidad α - y una subunidad β -. Los integrantes de una subfamilia de integrinas presentan una subunidad β común, que puede combinarse con distintas subunidades α para formar receptores proteicos de adhesión con distintas especificidades. Entre las subunidades α conocidas, la subunidad α 0 parece ser la más promiscua, pues forma heterodímeros con seis subunidades β distintas. La integrina α 0 incluye, por ejemplo, los receptores α 10 proteínas receptores α 10 proteínas proteínas α 20 proteínas proteínas proteínas α 3 proteínas proteínas proteínas α 4 parece ser la más promiscua, pues forma heterodímeros con seis subunidades α 4 distintas. La integrina α 5 incluye, por ejemplo, los receptores α 6 distintas.

[0029] Con el término <u>«fracción de unión a las integrinas»</u> en la presente memoria nos referimos a una fracción inhibidora de integrinas que actúa de manera específica al unirse a las integrinas y, de este modo, imposibilita, revierte, inhibe o interfiere de otra manera en la unión de las integrinas a sus ligandos endógenos. Preferiblemente, las fracciones de unión a las integrinas presentan una alta afinidad y especificidad de unión por las integrinas α_v ; más preferiblemente, por las integrinas $\alpha_v\beta_3$ y/o $\alpha_v\beta_5$; lo más preferible, por la integrina $\alpha_v\beta_3$. Cuando una fracción de unión a las integrinas es parte de una molécula, le confiere su propiedad a la molécula, y las integrinas se convierten en el «blanco» de dicha molécula; esto es, esta molécula se une específica y

eficazmente a las integrinas. Puede que la unión entre las integrinas y una fracción de unión a las integrinas sea covalente o no covalente, lo que incluye en este último caso interacciones hidrófobas, interacciones electroestáticas, interacciones de Van der Waals, enlaces de hidrógeno, etc. La mayoría de veces la unión es no covalente. Con los términos <u>«antagonista de la integrina»</u> e <u>«inhibidor de integrinas»</u> utilizados indistintamente en la presente memoria nos referimos a moléculas, agentes o compuestos capaces de inhibir la actividad biológica de las integrinas.

[0030] Con los términos <u>«afinidad de unión»</u> y <u>«afinidad»</u> utilizados indistintamente en la presente memoria, nos referimos al nivel de atracción entre entidades moleculares. La afinidad se puede expresar cuantitativamente como una constante de disociación (K_d) o su inversa, la constante de asociación (K_a). En el contexto de esta invención, como se explica más adelante, se consideran dos tipos de afinidad: (a) la afinidad de una fracción de unión a las integrinas por las integrinas y (b) la afinidad de una fracción de quelatos metálicos por un metal de transición u otra entidad metálica.

15 [0031] Dentro de los compuestos de fórmula (III), R₆ designa una fracción biológicamente activa.

5

10

20

30

45

50

55

60

[0032] Con el término <u>«molécula biológicamente activa»</u> en la presente memoria nos referimos a cualquier molécula eficaz desde el punto de vista terapéutico o diagnóstico, un azúcar, un fármaco, una fracción fosfolipídica o lipídica, un residuo de biotina o de avidina que está enlazado a la fracción de direccionamiento por medio de (L).

[0033] Según un aspecto de la invención, R₆ representa una molécula eficaz desde el punto de vista terapéutico o diagnóstico.

25 [0034] En una forma de realización preferida de la invención, R₆ representa una fracción detectable por imagen.

[0035] Con los términos <u>«fracción detectable por imagen»</u> y <u>«fracción de imágenes»</u> utilizados indistintamente en la presente memoria nos referimos a cualquier fracción detectable mediante procedimientos de obtención de imágenes; es decir, cualquier fracción capaz de ofrecer, mejorar o, de cualquier manera, modificar ventajosamente la señal detectada por medio de una técnica de diagnóstico por la imagen utilizada en la actualidad, incluyendo, por ejemplo, imágenes por resonancia magnética, gammagrafías, ecografías, tomografía de rayos X, tomografía de luz, lo que permite de este modo el registro de imágenes útiles desde el punto de vista diagnóstico, preferiblemente contrastadas, cuando se utilizan junto con las mencionadas técnicas.

[0036] Ejemplos adecuados de las mencionadas fracciones detectables por imagen incluyen, por ejemplo, radionucleidos emisores de rayos gamma o positrones quelatados; iones metálicos paramagnéticos en forma de complejos quelatados o poliquelatados, así como en forma de sistemas micelares, liposomas y microesferas; partículas, micropartículas y nanopartículas magnéticas, diamagnéticas o superparamagnéticas recubiertas; agentes absorbentes de rayos X, que incluyen átomos de un número atómico mayor que 20; burbujas, balones de microburbujas y microemulsiones que incluyen un gas biocompatible; una molécula de colorante; una molécula fluorescente; una molécula fosforescente; una molécula absorbente en el espectro UV; un punto cuántico; una molécula capaz de absorción dentro de radiaciones infrarrojas cercanas o lejanas; partículas, micropartículas y nanopartículas opcionalmente recubiertas que incluyen perfluorocarbonos y, en general, todas las fracciones que generen una sustancia detectable.

[0037] En la técnica se conocen una amplia variedad de materiales detectables por medio de modalidades de diagnóstico por la imagen, y puede que la modalidad de obtención de imágenes que se vaya a utilizar se seleccione de acuerdo con la fracción detectable por imagen que incluyen los compuestos diagnósticos de la invención.

[0038] Con los términos <u>«quelante»</u>, <u>«ligando quelante de metales»</u> y <u>«ligando quelante»</u> utilizados indistintamente en la presente memoria nos referimos a fracciones, agentes, moléculas o compuestos químicos que se caracterizan por la presencia de grupos polares capaces de formar un complejo que contiene más de un enlace de coordinación con un metal de transición u otra entidad metálica. En un aspecto preferido de la invención, dicho ligando quelante incluye ácidos poliamino-policarboxílicos o fosfónicos cíclicos o lineales. Con los términos <u>«agente de contraste para la obtención de imágenes »</u> o <u>«agente de contraste»</u> en la presente memoria nos referimos a cualquier entidad detectable que pueda utilizarse para visualizar o detectar *in vitro* o *in vivo* un elemento biológico, entre los que se incluyen células, líquidos biológicos y tejidos biológicos provenientes de un paciente mamífero vivo y, preferiblemente, humano, así como órganos, regiones o tejidos del cuerpo humano afectados por la angiogénesis cuando dicha entidad detectable se utiliza junto a una técnica de diagnóstico por la imagen adecuada.

[0039] Con el término <u>«entidad metálica»</u> en la presente memoria nos referimos a un ión metálico paramagnético que es detectable por medio de técnicas de obtención de imágenes como las imágenes por resonancia

magnética (IRM), o bien a un radionucleido que es detectable por medio de técnicas de obtención de imágenes como la tomografía computadorizada por emisión de fotón único (SPECT) y la tomografía por emisión de positrones (TEP).

5 Agentes de contraste para IRM

15

20

25

60

[0040] Como se ha explicado anteriormente, y de acuerdo con una forma de realización preferida de la invención, dentro de los compuestos de fórmula (III) R₆ es una fracción detectable por imagen.

10 **[0041]** Incluso más preferiblemente, R₆ representa uno o varios iones metálicos paramagnéticos en forma de complejo quelatado o poliquelatado, o una sal adecuada de este aceptable desde el punto de vista fisiológico.

[0042] Entre los iones metálicos paramagnéticos adecuados para su uso en la presente invención se incluyen cualquiera de los iones metálicos paramagnéticos conocidos en la técnica como potenciadores del contraste en IRM y que se incorporan con facilidad a fracciones quelantes o poliquelantes.

[0043] Preferiblemente, el ión metálico paramagnético se selecciona entre los siguientes: $Fe(^{2^+})$, $Fe(^{3^+})$, $Cu(^{2^+})$, $Ni(^{2^+})$, $H(^{2^+})$, $H(^{2^+})$, $H(^{2^+})$, $H(^{3^+})$,

[0044] Puede que una fracción quelante de metales adecuada sea cualquier quelante, poliquelante de metales y molécula de complejación con metales que sea capaz de unirse con una afinidad alta a los mencionados iones paramagnéticos para producir complejos quelatados paramagnéticos, no tóxicos y de alta estabilidad que todavía dejen abierto al menos un punto de coordinación para una molécula de agua. En la técnica se conocen varias fracciones quelantes de metales, lineales o cíclicas, que incluyen ácidos, como por ejemplo que soportan grupos de ácido fosfónico de metileno, grupos de ácido hidroxámico de metileno, grupos de carboxietilideno o grupos de carboximetileno.

[0045] Ejemplos de guelantes incluyen, entre otros, ácido dietilentriaminopentaacético (DTPA) y sus derivados, que incluyen, por ejemplo, benzo-DTPA, dibenzo-DTPA, fenil-DTPA, difenil-DTPA, bencil-DTPA y dibencil DTPA; 30 ácido 1,4,7,10-tetraazaciclododecano-1,4,7,10-tetraacético (DOTA); ácido 1,4,7,10- tetraazaciclododecano-1,4,7triacético (DO3A); ácido 1,4,7,10-tetraazaciclododecano-1,4,7,10-tetrametil,4,7,10-tetraacético (DOTMA); ácido etilendiaminatetraacético (EDTA); y ácido 1,4,8,11-tetraazaciclotetradecano-1,4,8,11-tetraacético (TETA). Los ligandos quelantes adicionales son etilenobis-(2-hidroxi-fenilglicina) (EHPG) y sus derivados, que incluyen 5-Cl-35 EHPG, 5-Br-EHPG, 5-Me-EHPG, 5-t-Bu-EHPG y 5-sec-Bu-EHPG; ácido N,N'-bis(2-hidroxibencil)etilendiamina-N,N'-diacético (HBED) y sus derivados; la clase de compuestos macrocíclicos que contienen al menos 3 átomos de carbono, más preferiblemente al menos 6 y al menos dos heteroátomos (O y/o N), donde dichos compuestos macrocíclicos pueden consistir en un anillo o en dos o tres anillos que se agrupan en los elementos del heteroanillo, p. ej., benzo-DOTA, dibenzo-DOTA y benzo-NOTA, donde NOTA es ácido 1,4,7-triazaciclononano N,N',N"-triacético, benzo-TETA, benzo-DOTMA y benzo-TETMA, donde TETMA es ácido 1,4,8,11-tetraazaciclotetradecano-1,4,8,11-(metiltetraacético); derivados de ácido 1,3-propilendiaminatetraacético (PDTA) 40 y ácido trietilenotetraaminahexaacético (TTHA); derivados de 1,5,10-N,N',N"-tris(2,3-dihidroxibenzoil)tricatecolato (LICAM) y 1,3,5-N,N',N"-tris(2,3-dihidroxibenzoil)-aminometilbenceno (MECAM). Los quelantes y quelados preferidos que se contemplan en la presente invención se describen con más detalle en los documentos WO 45 2005/062828, WO2003/008390 y EP1155023 que se incorporan al presente texto a modo de referencia.

[0046] En las figuras 8a a 8c se incluyen ejemplos adicionales de quelantes preferidos según la presente invención junto con referencias bibliográficas adecuadas respecto a su preparación.

[0047] Los poliquelantes o moléculas o fracciones poliquelantes, según la presente invención, incluyen más de 50, preferiblemente más de 100 e incluso más preferiblemente más de 300 unidades quelantes, que se enlazan de manera adecuada a una cadena de polímeros. Ejemplos adecuados de dichos poliquelantes comprenden, entre otros, cadenas de poliaminoácidos funcionalizadas de manera adecuada, que incluyen cadenas de polilisina, polialbúmina y polisacarídicas que incluyen polidextranos, dendrímeros y derivados de polímeros y copolímeros que enlazan hasta 300 unidades quelantes. Véanse, para una referencia de dichas unidades poliquelantes, los documentos WO 91/05762, US5958373, WO 90/12050, WO94/27498, EP0888129, US600934, US5517993, WO93/06868, US20050085417, EP1151997, WO9306148, US6274713, WO 95/24225, US5679810, EP0607222, WO9507270, EP 0000378, WO9105762, WO 2003/014157, EP 0722442, WO 2003/014157, WO 97/01359 y WO 97/32862.

[0048] Ejemplos de agentes de contraste para IRM preferidos de la invención comprenden

Complejo quelatado 1

[0049]

Complejo quelatado 2

[0050]

5

Complejo quelatado 3

10 **[0051]**

30

Agentes eficaces desde el punto de vista terapéutico

- 15 **[0052]** En un aspecto adicional, R₆ es un agente terapéutico o una toxina para destruir y/o inhibir de manera selectiva el crecimiento de células cancerosas o, cuando sea necesario, para inhibir o estimular el crecimiento de tejidos sanos.
- [0053] En una forma de realización preferida de la invención, R₆ es un ión metálico radiactivo quelatado de manera adecuada que emite radiaciones ionizantes como partículas beta, partículas alfa y electrones Auger o Coster-Kroning, lo que ofrece de este modo un agente radiofarmacéutico capaz de dirigir dicho ión metálico radiactivo a la neovasculatura tumoral; así, el isótopo radiactivo que emite partículas beta o alfa emite una cantidad citotóxica de radiación ionizante que ocasiona la muerte celular.
- 25 **[0054]** Para fines terapéuticos, los radionucleidos preferidos incluyen 64 Cu, 90 Y, 105 Rh, 111 In, 117m Sn, 149 Pm, 153 Sm, 161 Tb, 166 Dy 166 Ho, 175 Yb, 177 Lu, $^{186/188}$ Re y 199 Au.
 - [0055] Dichos agentes farmacéuticos de la invención que comprenden un ión metálico radiactivo emisor de partículas también resultan de utilidad para el tratamiento de la artritis reumatoide, donde el crecimiento de un pannus muy vascularizado está ocasionado por la excesiva producción de factores angiogénicos al infiltrar macrófagos, inmunocitos o células inflamatorias. La emisión concentrada localmente de radiación citotóxica que ofrecen los agentes terapéuticos de la invención estimula de este modo la destrucción de la nueva vasculatura angiogénica, lo que permite de este modo el tratamiento terapéutico de dicho proceso inflamatorio.

Imágenes nucleares (gammagrafía) y radioterapia

5

10

15

20

40

45

50

55

60

[0056] Según una forma de realización alternativa de la invención, R_6 es un radionucleido emisor de rayos gamma o positrones quelatado de manera adecuada o un radionucleido para terapia. Los compuestos de la invención que comprenden dicha fracción R_6 puede que se utilicen como agentes de contraste para una gammagrafía, TEP o SPECT.

[0057] Los radionucleidos metálicos preferidos para su uso en la obtención de imágenes por TEP son iones metálicos emisores de positrones, como ⁵¹Mn, ⁵²Fe, ⁶⁰Cu, ⁶⁸Ga, ⁷²As, ^{94m}Tc o ¹¹⁰In.

[0058] Los radionucleidos metálicos preferidos para una gammagrafía o radioterapia incluyen ^{99m}Tc, ⁵¹Cr, ⁶⁷Ga, ⁶⁸Ga, ⁴⁷Sc, ⁵¹Cr, ¹⁶⁷Tm, ¹⁴¹Ce, ¹¹¹In, ¹⁶⁸Yb, ¹⁷⁵Yb, ¹⁴⁰La, ⁹⁰Y, ⁸⁸Y, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁶⁵Dy, ¹⁶⁶Dy, ⁶²Cu, ⁶⁴Cu ⁶⁷Cu, ⁹⁷Ru, ¹⁰³Ru, ¹⁸⁶Re, ¹⁸⁸Re, ²⁰³Pb, ²¹¹Bi, ²¹²Bi, ²¹³Bi, ²¹⁴Bi, ¹⁰⁵Rh, ¹⁰⁹Pd, ^{117m}Sn, ¹⁴⁹Pm, ¹⁶¹Tb, ¹⁷⁷Lu, ¹⁹⁸Au y ¹⁹⁹Au. La elección del metal se determinará en función de la aplicación terapéutica o diagnóstica deseada. Por ejemplo, para fines diagnósticos los radionucleidos preferidos incluyen ⁶⁴Cu, ⁶⁷Ga, ⁶⁸Ga, ^{99m}Tc y ¹¹¹In. Para fines terapéuticos, los radionucleidos preferidos incluyen ⁶⁴Cu, ⁹⁰Y, ¹⁰⁵Rh, ¹¹¹In, ^{117m}Sn, ¹⁴⁹Pm, ¹⁵³Sm, ¹⁶¹Tb, ¹⁶⁶Dy, ¹⁶⁶Ho, ¹⁷⁵Yb, ¹⁷⁷Lu, ^{186/188}Re y ¹⁹⁹Au. Se prefiere particularmente ^{99m}Tc para aplicaciones diagnósticas debido a su bajo coste, disponibilidad, propiedades de obtención de imágenes y elevada actividad específica. Las propiedades nucleares y radiactivas de ^{99m}Tc hacen de este isótopo un agente idóneo para la obtención de imágenes por gammagrafía. Este isótopo presenta una energía de un solo fotón de 140 keV y una vida media radiactiva de 6 horas aproximadamente, y está disponible de inmediato a partir de un generador de ⁹⁹Mo-^{99m}Tc.

[0059] Puede que los radionucleidos metálicos se quelaten por medio de, por ejemplo, quelantes lineales, macrocíclicos, de terpiridina y de N₃S, N₂S₂ o N₄ (véanse también los documentos U.S. 5.367.080, U.S. 5.364.613, U.S. 5.021.556, U.S. 5.075.099, U.S. 5.886.142) y otros quelantes conocidos en la técnica que incluyen, entre otros, HYNIC, DTPA, EDTA, DOTA, TETA y quelantes de bisamino-bistiol (BAT) (véase también U.S. 5.720.934). Por ejemplo, los quelantes de N₄ se describen en las patentes de los Estados Unidos n. os 6.143.274; 6.093.382; 5.608.110; 5.665.329; 5.656.254; y 5.688.487. Se describen determinados quelantes de N₃S en los documentos PCT/CA94/00395, PCT/CA94/00479, PCT/CA95/00249 y en las patentes de los Estados Unidos n. os 5.662.885; 5.976.495; y 5.780.006. Puede que el quelante también incluya derivados del ligando quelante mercapto-acetil-acetil-glicil-glicina (MAG3), que contiene un N₃S y sistemas N₂S₂ como MAMA (monoamidamonoaminaditioles), DADS (diaminaditioles N₂S), CODADS y similares. Estos sistemas de ligandos y una variedad de otros se describen en Liu y Edwards, *Chem Rev*, 1999, 99, 2235-2268 y en las referencias contenidas en este.

[0060] El quelante puede que también incluya complejos que contengan átomos ligandos que no se donan al metal en una red tetradentada. Estos incluyen los aductos de ácido borónico de dioximas de tecnecio y renio, como se describen en las patentes de los Estados Unidos n. OS 5.183.653; 5.387.409; y 5.118.797. Los quelantes de metales preferidos incluyen los de la Figura 8 de la 8a a la 8c (para 111 ln y lantánidos como Gd3+ paramagnético y lantánidos radiactivos, como por ejemplo 177 Lu, OY, 153 Sm y 166 Ho y los de la Figura 9 de la 9a a la 9b (para 99m Tc, 186 Re y 188 Re radiactivos). Los quelantes de metales particularmente preferidos son los de fórmula 17-21 para Gd3+ y lantánidos radiactivos, y de 22 a 33 para 99m Tc, 186 Re y 188 Re radiactivos. Estos y otros grupos de quelantes de metales se describen en las patentes de los Estados Unidos n. OS 6.093.382 y 5.608.110, en la patente de los Estados Unidos n. OS 6.143.274; en la patente de los Estados Unidos n. OS 5.627.286 y 6.093.382, en las patentes de los Estados Unidos n. OS 5.662.885; 5.780.006; y 5.976.495. De manera adicional, la formula quelante 19 se describe en, por ejemplo, la patente de los Estados Unidos n. OS 6.143.274; el grupo quelante de fórmula 31 y 32 se describen en las patentes de los Estados Unidos n. OS 5.627.286 y 6.093.382 y el grupo quelante de fórmula 33 se describe en, por ejemplo, las patentes de los Estados Unidos n. OS 5.662.885; 5.780.006; y 5.976.495.

[0061] En las Fórmulas 17 y 18 anteriores, R es alquilo, preferiblemente metilo. En las Fórmulas 31 y 32 anteriores, X es o bien CH_2 u O, Y es o bien alquilo C_1 - C_{10} ramificado o sin ramificar; Y es arilo, ariloxi, arilamino, arilaminoacilo; Y es arilquilo, donde el grupo o grupos alquilo ligados al grupo arilo son grupos alquilos C_1 - C_{10} ramificados o sin ramificar o grupos polialcoxialquilo o polihidroxipolialcoxialquilo, J es C(=O)-, OC(=O)-, OC(=O)-,

Imágenes ópticas, obtención de imágenes por sonoluminiscencia o fotoacústicas

[0062] En una forma de realización más preferida, R_6 representa una molécula de colorante; una molécula fluorescente; una molécula absorbente en el espectro UV; un punto cuántico; o una molécula capaz de absorber radiaciones en el infrarrojo cercano o lejano.

[0063] Puede que entre los parámetros ópticos que se vayan a detectar en la preparación de una imagen se incluyan, por ejemplo, la radiación transmitida, la absorción, la emisión fluorescente o fosforescente, la reflexión de la luz, los cambios en la amplitud o máximos de absorbancia, y la radiación dispersa elásticamente. Por ejemplo, el tejido biológico es relativamente translúcido a la luz en el intervalo de longitud de onda del infrarrojo cercano (NIR) de entre 650-1000 nm. La radiación NIR puede penetrar en el tejido hasta varios centímetros, lo que permite el uso de los agentes diagnósticos de la invención que comprenden una fracción de NIR para representar por imagen *in vivo* el tejido que contiene la diana.

[0064] El colorante de infrarrojo cercano puede que incluya derivados de cianina o indocianina, como por ejemplo Cy5.5, IRDye800, verde de indocianina (ICG), derivados de verde de indocianina que incluyen el verde de indocianina sustituido por ácido tetrasulfónico (TS-ICG) y una combinación de estos.

[0065] En otra forma de realización, puede que los compuestos de la invención se conjuguen con fotomarcadores, como colorantes ópticos, incluidos cromóforos o fluoróforos orgánicos, que han conjugado ampliamente y por tanto han deslocalizado sistemas de anillo y presentan unos máximos de absorción o emisión en el intervalo de entre 400-1500 nm. De manera alternativa, puede que los compuestos de la invención se derivaticen con una molécula bioluminiscente. El intervalo preferido de máximos de absorción para los fotomarcadores se encuentra entre 600 y 1000 nm para minimizar la interferencia con la señal de la hemoglobina. Preferiblemente, los marcadores de fotoabsorción presentan grandes absorciones molares, p. ej., > 10⁵ cm⁻¹M⁻¹, mientras que los colorantes ópticos fluorescentes presentarán rendimientos cuánticos altos. Ejemplos de colorantes ópticos incluyen, entre otros, los descritos en los documentos WO 98/18497, WO 98/18496, WO 98/18495, WO 98/18498, WO 98/53857, WO 96/17628, WO 97/18841, WO 96/23524, WO 98/47538 y las referencias citadas en estos. Por ejemplo, puede que los fotomarcadores se unan por enlace covalente directamente a las fracciones de direccionamiento de la invención, o puede que se enlacen a estas por medio de una fracción de enlace, como se ha descrito anteriormente.

[0066] Tras la inyección del derivado diagnóstico marcado ópticamente según la invención, el paciente es sometido a una exploración con una o varias fuentes luminosas (p. ej., un láser) en el intervalo de longitud de onda apropiado para el fotomarcador empleado en el agente. Puede que la luz utilizada sea monocromática o policromática y continua o pulsada. La luz transmitida, dispersa o reflejada se detecta por medio de un fotodetector sintonizado en una o varias longitudes de onda para determinar la ubicación del tejido que contiene la diana (p. ej., el tejido angiogénico) en el sujeto. Puede que los cambios del parámetro óptico se supervisen con el tiempo para detectar una acumulación del reactivo marcado ópticamente en la zona de la diana. Puede que se utilicen dispositivos de procesado y detección de imágenes estándar junto con los reactivos de obtención de imágenes ópticas de la presente invención.

[0067] Puede que los agentes para la obtención de imágenes ópticas descritos anteriormente también se utilicen para la obtención de imágenes acustoópticas o sonoluminiscentes llevada a cabo con agentes para la obtención de imágenes marcados ópticamente (véanse, por ejemplo, los documentos U.S. 5.171.298, WO 98/57666 y las referencias contenidas en estos). En la obtención de imágenes acustoópticas, se aplica radiación por ultrasonido al sujeto y afecta a los parámetros ópticos de la luz transmitida, emitida o reflejada. En la obtención de imágenes sonoluminiscentes, el ultrasonido aplicado es el que de hecho genera la luz que se detecta. En el documento WO 98/57666 se describen métodos de obtención de imágenes adecuados mediante dichas técnicas.

Moléculas para fines específicos

5

10

20

25

30

35

40

45

50

55

60

[0068] En otra forma de realización adicional más, R_6 es una molécula para fines específicos. Se definen como moléculas para fines específicos aquellas moléculas que puede que desempeñen o no un papel directo en la interacción con un sistema de detección, pero que presentan un atributo funcional que facilita en cierto modo el uso de las construcciones peptídicas. Puede que dichas moléculas, al adjuntarse a la construcción peptídica, por ejemplo, permitan que la construcción peptídica se incorpore a redes moleculares mayores (como construcciones supramoleculares) que en cambio pueden ser detectadas por medio de un equipo o aparato empleado para la detección de señales, ya sea por la presencia o ausencia de la señal, un cambio de la intensidad de la señal, la reflexión de una señal o una señal derivada durante o después de un periodo de irradiación por parte del equipo o aparato.

[0069] Por consiguiente, en una forma de realización, R_6 es una fracción fosfolipídica o lipídica que permite que los péptidos cíclicos de la invención enlazados a esta se incorporen, tras una agitación (por ejemplo, sacudida, zarandeo, etc.), a liposomas, o incluso a sistemas micelares, vesículas o microesferas que incluyen de manera

adecuada, por ejemplo, entidades metálicas y, en concreto, iones metálicos paramagnéticos, o bien un gas ecogénico, lo que ofrece de este modo un compuesto macromolecular para su uso en IRM o ecografías que incluye un alto número de la mencionada fracción de direccionamiento en su superficie. Junto con los compuestos peptidomiméticos de la invención que comprenden una fracción lipídica, puede que dicho sistema macromolecular incluya además tensoactivos, esfingolípidos, oligolípidos, fosfolípidos, proteínas, polipéptidos, carbohidratos y materiales de polímeros sintéticos o naturales. Véanse, por ejemplo, los documentos WO 98/53857, WO 98/18498, WO 98/18495, WO 98/18497, WO 98/18496 y WO 98/18501.

[0070] Un <u>«lípido»</u> en la presente memoria es un compuesto anfipático sintético o natural que comprende un componente hidrófilo y un componente hidrófobo. Un lípido incluye, por ejemplo, ácidos grasos, grasas neutras, fosfátidos, glicolípidos, alcoholes alifáticos y ceras, terpenos y esteroides.

10

40

45

50

55

60

[0071] Ejemplos de clases de lípidos adecuados que constituyen la fracción R6 de la invención incluyen: dioleoilfosfatidilcolina. fosfatidilcolinas. como dimiristoilfosfatidilcolina, dipalmitoilfosfatidilcolina 15 diestearoilfosfatidilcolina; fosfatidiletanolaminas. dipalmitoilfosfatidiletanolamina, como dioleoilfosfatidiletanolamina y N-succinil-dioleoilfosfatidiletanolamina; fosfatidilserina; dipalmitoilfosfatidilserina; fosfatidilqliceroles; esfingolípidos; glicolípidos como gangliósido GM1; glucolípidos; sulfátidos; ácido fosfatídico, como ácido dipalmitoil fosfatídico («DPPA»); ácidos grasos palmíticos; ácidos grasos esteáricos; ácidos grasos araquidónicos; ácidos grasos láuricos; ácidos grasos mirísticos; ácidos grasos lauroleicos; ácidos grasos 20 fisetéricos; ácidos grasos miristoleicos; ácidos grasos palmitoleicos; ácidos grasos petroselínicos; ácidos grasos oleicos; ácidos grasos isoláuricos; ácidos grasos isomirísticos; ácidos grasos isoesteáricos; colesterol y derivados del colesterol, tales como hemisuccinato de colesterol, sulfato de colesterol, y colesteril-(4trimetilamonio)- butanoato; ésteres de ácidos grasos de polioxietileno; alcoholes de ácidos grasos de polioxietileno; éteres de alcohol de ácidos grasos de polioxietileno; ésteres de ácidos grasos de sorbitán 25 polioxietilado; oxiestearato de glicerol-polietilenglicol; ricinoleato de glicerol-polietilenglicol; esteroles de soja etoxilados; aceite de ricino etoxilado; polímeros de ácidos grasos de polioxietileno-polioxipropileno; estearatos de ácidos grasos de polioxietileno; 1,2-dioleoil-sn-glicerol; 1,2-dipalmitoil-sn-3-succinilglicerol; 1,3-dipalmitoil-2-1-hexadecil-2-palmitoil-glicerofosfoetanolamina; succinilalicerol: N-succinil-dioctadecilamina: palmitoilhomocisteína; bromuro de lauriltrimetilamonio; bromuro de cetiltrimetil-amonio; bromuro de miristiltrimetilamonio; cloruro de alquildimetilbencilamonio; donde alquilo es un alquilo C₁₂, C₁₄ o C₁₆; bromuro de 30 bencildimetildodecilamonio; cloruro de bencildimetildodecilamonio; bromuro de bencildimetilhexadecilamonio; bencildimetilhexadecilamonio: bromuro de bencildimetiltetradecilamonio: bencildimetiltetradecilamonio; cloruro de cetildimetiletilamonio; bromuro de cetilpiridinio; cloruro de cetilpiridinio; cloruro de N-[(1-2,3-dioleoiloxi)-propil]-N,N,N-trimetilamonio (DOTMA); 1,2-dioleoiloxi-3-(trimetilamonio)propano 35 (DOTAP); y 1,2-dioleoil-c-(4'-trimetilamonio)-butanoil-sn-glicerol (DOTB).

[0072] Con el término <u>«vesícula»</u> en la presente memoria hacemos referencia a una entidad esférica que se caracteriza por la presencia de una cavidad interior. Las vesículas preferidas se formulan a partir de lípidos, que incluyen los diversos lípidos que se describen en el presente texto. En cualquier vesícula determinada, puede que los lípidos se encuentren en forma de monocapa o bicapa, y puede que los lípidos en la monocapa o bicapa se utilicen para formar una o varias monocapas o bicapas. Las vesículas lipídicas descritas en el presente texto incluyen entidades de dichas características que comúnmente se denominan liposomas, micelas, burbujas, microburbujas, microesferas y similares. Puede que la cavidad interna de las vesículas esté llena de un líquido, entre los que se incluyen, por ejemplo, un líquido acuoso, un gas, un precursor gaseoso y/o un material sólido o soluto, que incluye, por ejemplo, un agente bioactivo.

[0073] <u>«Liposomas»</u> en la presente memoria hace referencia a una agrupación o agregado esférico en general de compuestos anfipáticos, incluyendo compuestos lipídicos, normalmente en forma de una o varias capas concéntricas, como por ejemplo bicapas. Puede que en el presente texto también se denominen vesículas lipídicas.

[0074] El término «burbujas» se refiere a unas vesículas que en general se caracterizan por la presencia de una o varias membranas o paredes que rodean una cavidad interna que está llena de un gas o un precursor de este. Ejemplos de burbujas incluyen, por ejemplo, micelas, liposomas y similares.

[0075] «Microesferas» en la presente memoria es preferiblemente una esfera inferior o igual a 10 micras.

[0076] Por consiguiente, en una forma de realización la invención se refiere a un sistema macromolecular en forma de liposomas, microlas, microemulsiones, burbujas, microburbujas, microbalones o microesferas que comprenden un compuesto de la invención donde R_6 es una fracción fosfolipídica o lipídica.

[0077] En una forma de realización preferida, dicho sistema macromolecular es un liposoma paramagnético, es decir, un liposoma que contiene en su cavidad iones Gd^{3+} , para su uso en IRM de una expresión de integrina $\alpha_{\nu}\beta_{3}$.

[0078] En una forma de realización más preferida, dicho sistema macromolecular es un LIPOCEST.

[0079] En otra forma de realización preferida, dicho sistema macromolecular es una vesícula que contiene gas para su uso en ecografías.

[0080] En una forma de realización añadida, las mencionadas vesículas llenas de gas son micropartículas que contienen gas.

10 Agentes de contraste para ultrasonido

5

15

20

25

30

35

40

50

55

60

[0081] En una forma de realización adicional, R_6 representa cualquier material, incluyendo tensoactivos, esfingolípidos, oligolípidos, fosfolípidos, proteínas, polipéptidos, carbohidratos y materiales de polímeros sintéticos o naturales acoplados a un derivado peptídico que se incorpora a una vesícula llena de gas, es decir, microburbujas, microbalones, microesferas o emulsiones que contienen una fracción líquida o gaseosa que actúa de marcador detectable (por ejemplo, un gas ecogénico o un material capaz de generar un gas ecogénico).

[0082] Preferiblemente, R₆ representa una fracción fosfolipídica o lipídica según la definición anterior acoplada a un derivado peptídico que se incorpora a una vesícula llena de gas. En una forma de realización, las mencionadas vesículas llenas de gas son burbujas o microbalones.

[0083] Los microbalones preferidos presentan una envoltura que incluye un polímero biodegradable fisiológicamente compatible o un lípido sólido biodegradable. Los polímeros que resultan de utilidad para la preparación de los microbalones de la presente invención pueden seleccionarse entre los polímeros biodegradables fisiológicamente compatibles, como cualquiera de los descritos en cualquiera de las siguientes patentes: EP 458745, US 5.711.933, US 5.840.275, EP 554213, US 5.413.774 y US 5.578.292, cuyos contenidos íntegros se incorporan al presente texto a modo de referencia. En concreto, el polímero puede seleccionarse de polímeros biodegradables fisiológicamente compatibles, como polisacáridos de baja solubilidad en agua, polilactidas y poliglicólidos y sus copolímeros, copolímeros de lactidas y lactonas como ε-caprolactona, yvalerolactona y polipéptidos. Otros polímeros adecuados incluyen poli(orto)ésteres (véanse, por ejemplo, los documentos US 4.093.709; US 4.131.648; US 4.138.344; US 4.180.646); ácido poliláctico y poliglicólico y sus copolímeros, como por ejemplo DEXON (véase J. Heller, Biomaterials 1 (1980), 51; poli(DL-lactida-co-εcaprolactona), poli(DL-lactida-co-γ-valerolactona), poli(DL-lactida-co-γ-butirolactona), polialquilcianoacrilatos; poliamidas, polihidroxibutirato; polidioxanona; poli-β-aminocetonas (A. S. Angeloni, P. Ferruti, M. Tramontini y M. Casolaro, «The Mannich bases in polymer synthesis: 3. Reduction of poly(beta-aminoketone)s to poly(gammaaminoalcohol)s and their N-alkylation to poly(gamma-hydroxyquaternary ammonium salt)s», Polymer 23, pp 1693-1697 (1982)); polifosfacenos (Allcock, Harry R., «Polyphosphazenes: new polymers with inorganic backbone atoms» (Science 193(4259), 1214-19 (1976)) y polianhídridos. Los microbalones de la presente invención también pueden prepararse según los métodos del documento WO-A-96/15815, que se incorpora al presente texto a modo de referencia, donde los microbalones están hechos de una membrana biodegradable que comprende lípidos biodegradables, preferiblemente seleccionados a partir de mono, di o triglicéridos, ácidos grasos, esteroles, ceras y mezclas de estos. Los lípidos preferidos son di o triglicéridos, como por ejemplo di o trimiristina, di o tripalmitina o di o triestearina, en concreto tripalmitina o triestearina.

Puede que los microbalones empleen cualquiera de los gases que se dan a conocer en el presente texto o que son conocidos por los expertos en la materia.

Puede que se utilice cualquier gas biocompatible en los agentes de contraste vesiculares de la invención. El término «gas» en la presente memoria incluve cualquier sustancia (incluvendo mezclas) que se encuentre sustancialmente en forma gaseosa a la temperatura normal del cuerpo humano. Por consiguiente, puede que dicho gas incluya, por ejemplo, aire; nitrógeno; oxígeno; CO2; argón; xenón o kriptón, gases fluorados (que incluyen, por ejemplo, perfluorocarbonos, SF₆, SeF₆); un hidrocarburo de bajo peso molecular (por ejemplo, que contenga de 1 a 7 átomos de carbono), por ejemplo, un alcano como metano, etano, propano, butano o pentano, un cicloalcano como ciclopropano, ciclobutano o ciclopenteno, un alqueno como etileno, propeno, propadieno o buteno o un alquino como acetileno o propino y/o mezclas de estos. No obstante, se prefieren gases fluorados. Los gases fluorados incluyen materiales que contienen al menos un átomo de flúor. Los ejemplos incluyen, entre otros, compuestos como SF6, freones (compuestos orgánicos que contienen uno o varios átomos de carbono y flúor, es decir, CF₄, C₂F₆, C₃F₈, C₄F₈, C₄F₁₀, CBrF₃, CCl₂F₂, C₂ClF₅ y CBrClF₂) y perfluorocarbonos. El término perfluorocarbono se refiere a compuestos que contienen únicamente átomos de carbono y de flúor. Dichos compuestos incluyen perfluorocarbonos saturados, insaturados y cíclicos. Los perfluorocarbonos saturados, que son preferidos, presentan la formula C_nF_{n+2}, donde n es un valor entre 1 y 12, preferiblemente entre 2 y 10, más preferiblemente entre 3 y 8 y lo más preferible entre 3 y 6. Los perfluorocarbonos adecuados incluyen, entre otros, CF₄, C₂F₆, C₃F₈, C₄F₈, C₄F₁₀, C₅F₁₂, C₆F₁₂, C₇F₁₄, C₈F₁₈ y C₉F₂₀. Lo más preferible es que el gas o la

mezcla gaseosa comprenda SF_6 o un perfluorocarbono seleccionado entre el grupo que consiste en C_3F_8 , C_4F_8 , C_4F_{10} . C_5F_{12} , C_6F_{12} , C_7F_{14} , C_8F_{18} , siendo C_4F_{10} particularmente preferido.

En determinadas circunstancias, puede que sea deseable la inclusión de un precursor en una sustancia gaseosa (por ejemplo, un material que sea capaz de convertirse en un gas *in vivo*, a menudo denominado «precursor gaseoso»). Preferiblemente, el precursor gaseoso y el gas que produce son aceptables desde el punto de vista fisiológico. El precursor gaseoso puede activarse con el pH, fotoactivarse, activarse con la temperatura, etc. Por ejemplo, puede que determinados perfluorocarbonos se utilicen como precursores gaseosos activados con la temperatura. Dichos perfluorocarbonos, como por ejemplo perfluoropentano, presentan una temperatura de transición a fase líquida/gaseosa superior a la temperatura ambiente (o la temperatura a la que se producen y/o almacenan los agentes), pero inferior a la temperatura corporal; por consiguiente, sufren un cambio de fase y se convierten en gas dentro del cuerpo humano.

En una forma de realización adicional, R₆ es una fracción de biotina o una fracción biotinilada que permite que los péptidos cíclicos de la invención enlazados a esta se adjunten a un agregado macromolecular funcionalizado de manera adecuada que comprende, en su cavidad interna, por ejemplo, entidades metálicas o un gas ecogénico, ofreciendo de esta manera un agregado macromolecular y multifuncionalizado detectable.

Los compuestos multifuncionalizados que se obtienen al explotar las mencionadas fracciones R₆ para fines específicos comprenden un alto número de unidades de direccionamiento de la invención en su superficie. En consecuencia, puede que se unan de manera óptima a una superficie celular o a una superficie intravascular que exprese el receptor diana y, cuando estén unidos de forma satisfactoria a la diana angiogénica a la que se dirigen de manera selectiva las fracciones peptídicas de las que están comprendidos, entonces puede que se detecte dicho derivado por medio de una técnica de obtención de imágenes adecuada en función de con qué se ha llenado la cavidad de la vesícula, permitiendo de este modo el diagnóstico o prognosis de un estado de enfermedad.

Los liposomas, por ejemplo, puede que también se empleen para facilitar la administración de soluciones en forma de cápsula de agentes quimioterápicos. En este caso, los conjugados fosfolípido-peptídicos de la invención pueden incorporarse a liposomas, permitiendo de este modo que el liposoma se dirija a unos receptores de integrinas específicos y libere la sustancia terapéutica en una concentración mayor y con mayor proximidad a la región diana.

Se preparan ejemplos adecuados de este sistema multifuncionalizado de acuerdo con técnicas conocidas (véanse, por ejemplo, Sipkins, D.A. *et al.*, 1998, *Nat. Med.* 4:623-626 y las referencias citadas). Una mejor exposición de dichos compuestos y sus preparaciones se encuentra comprendida en la sección experimental más adelante.

Fracción de enlace divalente

30

45

55

40 **[0084]** Con el término «fracción de enlace divalente», cuando hace referencia a (L) en la fórmula (III), nos referimos a una fracción bifuncional que incluye al menos dos grupos de unión para que se liguen con las partes restantes de la molécula, por ejemplo mediante reacciones de reticulación o de acoplamiento.

[0085] Normalmente, puede que cualquier fracción de enlace (L) se represente por medio de los grupos difuncionales de (i) a (v) o puede representarse por medio de una fracción de enlace divalente que conecta R_6 al derivado -(CH₂)p-biciclo de la fórmula (III), que comprende dos de los grupos anteriores (i) a (v), como grupos terminales.

[0086] A modo de ejemplo no limitativo, dentro de un compuesto de fórmula (III) que se prepara como se indica de manera esquemática a continuación:

$$R_6$$
-COOH + H_2 N-(cadena)-COOH + H_2 N-(CH₂)p-biciclo ----->

For the state of t

[0087] Además de actuar de sistema de ramificación entre R_6 y la unidad de direccionamiento, la fracción de enlace L puede que establezca una distancia adecuada o «espacio» entre la fracción biológicamente activa R_6 y la unidad de direccionamiento del compuesto de la invención. De hecho, puede que una distancia óptima entre estas dos unidades represente un factor importante para el mantenimiento de la capacidad de direccionamiento

del péptido cíclico de la invención. De hecho, es bien sabido que toda derivatización inadecuada, o de cualquier modo por debajo de un nivel óptimo, de una fracción de direccionamiento a base de péptidos puede que a menudo dé como resultado una pérdida significativa de la afinidad del péptido por el objetivo diana.

5 **[0088]** Asimismo, en una visión de la invención adicional e igualmente relevante, los enlazadores (L) puede que contribuyan de manera significativa a mejorar el carácter hidrófilo del agente diagnóstico o terapéutico, ofreciendo de este modo el perfil farmacocinético o farmacodinámico deseado del compuesto de fórmula (III).

[0089] En consecuencia, L puede que incluya, sin carácter limitativo: cadenas de alquilo sustituido o no sustituido, saturado o insaturado, lineales o ramificadas; péptidos a partir de cadenas de aminoácidos lineales, ramificadas o cíclicas compuestas a partir de un solo aminoácido o de distintos aminoácidos (por ejemplo, extensiones del extremo N- o C-terminal de las fracciones de unión); cadenas de polietilenglicol, polioxietileno o polivinilpiridina derivatizadas o sin derivatizar; cadenas de poliamida sustituida o no sustituida; cadenas de poliamina, poliéster, polietilenimina, poliacrilato, poli(alcohol vinílico), poliglicerol u oligosacárido (por ejemplo, dextrano) derivatizadas o sin derivatizar; residuos de aminoácidos glicosilados, que alternan copolímeros bloque; ácidos malónicos, succínicos, glutáricos, adípicos y pimélicos; ácido caproico; diaminas y dialcoholes simples; cualquiera de los otros enlazadores dados a conocer en el presente texto; o cualquier otro enlazador polimérico simple conocido en la técnica (véanse, por ejemplo, los documentos WO 98/18497, WO 98/18496).

[0090] A partir de las definiciones anteriores, queda claro para el experto en la materia que en caso de que L incluya una cadena de alquilo, como por ejemplo una cadena de propileno -(CH₂)₃-, la fracción de enlace divalente L de la fórmula (III) podría representarse, únicamente a modo de ejemplo, de esta forma:

-CONH-(CH2)3-NHCONH-

dicho grupo actúa de puente entre la fracción bioactiva R_6 a través del grupo carboxamido, en un lado, y la unidad de direccionamiento - (CH_2) p-biciclo a través del grupo ureido, en el otro lado.

[0091] De manera similar, por ejemplo, en el caso de que L incluya un aminoácido, como por ejemplo Ala, el grupo de enlace divalente de la fórmula (III) podría representarse, a modo de ejemplo, de esta forma:

-CONH-CH(CH₃)CONH-

donde puede que R₀ esté conectado, a través de carboxamido, al grupo amino de Ala, mientras que puede que la unidad de direccionamiento esté conectada, en este caso a través de carboxamido, al grupo carboxi de Ala.

[0092] Puede que se seleccione el peso molecular (PM) de las fracciones de enlace L de la invención, por ejemplo hasta 1000 dalton aproximadamente, preferiblemente hasta 500 aproximadamente e incluso más preferiblemente hasta 300 dalton aproximadamente.

[0093] Asimismo, puede que sea deseable valerse de una fracción de enlace que sea biodegradable *in vivo* para ofrecer unas vías de excreción eficaces tras la administración de los compuestos de la invención, como por ejemplo de un agente diagnóstico.

[0094] En función de su situación dentro de las mismas fracciones de enlace, pueden estar presentes, por tanto, unos grupos biodegradables adecuados. Normalmente, una funcionalidad biodegradable puede que incluya una funcionalidad de éster, doble éster, amida, fosfoéster, éter, acetal y cetal.

45 **[0095]** A modo de ejemplo adicional, puede que la fracción de enlace de la invención también incluya fracciones homobifuncionales o heterobifuncionales, o combinaciones adecuadas de estas.

[0096] Con el término «molécula o fracción homobifuncional» en la presente memoria nos referimos a una molécula o fracción que presenta al menos dos grupos funcionales reactivos que son iguales. Con el término «molécula o fracción heterobifuncional» en la presente memoria nos referimos a una molécula o fracción que presenta al menos dos grupos reactivos diferentes. Ejemplos adecuados de una molécula homobifuncional incluyen, por ejemplo, compuestos dicarboxílicos y derivados adecuados de estos, donde el grupo o grupos carboxílicos se encuentran en forma activada o protegida de manera adecuada; diamina y derivados adecuados de esta, donde el grupo o grupos amino se encuentran en forma activada o protegida de manera adecuada.

[0097] Ejemplos de molécula dicarboxílica incluyen los siguientes compuestos: HOOC-Z-COOH, donde Z puede estar en forma $(CH_2)_n$ para dar lugar a compuestos como, por ejemplo, HOOC- $(CH_2)_n$ -CO₂H, donde n=0-10. Asimismo, el grupo Z puede ser una cadena de alquilo, mono o polisustituida por uno o varios de los siguientes

14

55

50

35

grupos: -NH-, -O-, -CO-, -NH(CO)-, -(CO)NH-, -O(CO)- o bien -(OC)O-, que da como resultado estructuras como, por ejemplo:

- HOOC-CH₂-O-(CH₂)₇-O-(CH₂)₂-O-CH₂-COOH
- HOOC-CH₂-NH-CH₂-COOH
- HOOC-(CH₂)₂-CO₂-(CH₂)₂-OCO-(CH₂)₂-COOH
- 10 HOOC-CH(OH)-CH(OH)-COOH

[0098] En una forma de realización adicional, dichas moléculas dicarboxílicas pueden comprender también un ácido aromático o heterocíclico sustituido de forma HOOC-Z-COOH, donde Z representa el núcleo aromático o heterocíclico que es el andamiaje que soporta los dos grupos carboxílicos. Ejemplos de dichas moléculas incluyen, entre otros, ácido benceno-1,4-dicarboxílico, ácido bifenil-1,4'-dicarboxílico, ácido (4'-carboximetoxi-bifenil-4-iloxi)-acético, ácido N-metilpirrol-2,5-dicarboxílico, ácido piridina-2,6-dicarboxílico, ácido N-metilpirrol-2,3-dicarboxílico, ácido N-metilpirrol-2,4-dicarboxílico, ácido piridina 2,3-dicarboxílico, ácido piridina-3,5-dicarboxílico, ácido piridina 3,4-dicarboxílico o ácido piperidina 3,5-dicarboxílico. Los derivados saturados de los compuestos aromáticos descritos anteriormente, donde Z es ahora un derivado saturado de la Z aromática o heterocíclica, también pueden emplearse para ofrecer enlazadores L adecuados según la presente invención.

[0099] Ejemplos de moléculas de diamina homobifuncionales incluyen los siguientes:

• NH₂-(CH₂)_n-NH₂, donde n=0-20; o

25

5

15

20

• $NH_2-CH_2(CH_2)_jO-(CH_2(CH_2)_mO)_n-CH_2-(CH_2)_p-NH_2$, donde j=1-20, m=1-2, n=1-100 y p=1-20.

[0100] Según una forma de realización añadida, las fracciones de enlace L puede que se deriven de una diamina aromática o heterocíclica sustituida de forma NH₂-Q-Z-Q'-NH₂, donde Z representa el núcleo aromático o heterocíclico que es el andamiaje que soporta los dos grupos aminos; y Q y Q' son:

30

- -(CH₂)_n, donde n=2-10; o
- -CH₂(CH₂)_f, donde f=1-9; o
- - $(CH_2CH_2O)_q(CH_2)_r$, donde q=1-10 y r=2-10; o
 - -(CH₂)_nNH-C(=O)-, donde n=2-10; o
 - -(CH₂CH₂O)_q(CH₂)_r-NH-C(=O)-, donde q=1-10 y r=2-10;
- 40 y donde Q y Q' pueden ser los mismos elementos u otros distintos del conjunto de fracciones descritas en el presente texto.

[0101] Es evidente que, al referirse a las moléculas o fracciones dicarboxílicas o de diamina, también se aplican las consideraciones previas con respecto al grupo de enlace (L) en la fórmula (III).

45 Por tanto, al referirse a un ácido dicarboxílico como

$$HOOC-CH_2-O-(CH_2)_2-O-(CH_2)_2-O-CH_2-COOH$$

podría representarse una fracción de enlace divalente L, en la fórmula (III), por ejemplo como R₆-NHCO-CH₂-O-(CH₂)₂

55 podría dar lugar, en la fórmula (III), a una fracción de enlace divalente como por ejemplo:

R₆-CONH-(CH₂)_n-NHCONH-(CH₂)_p-biciclo o

R₆-NHCONH-(CH₂)_n-NHCONH-(CH₂)_p-biciclo o

60

 R_6 -NHCONH-(CH₂)_n-NHCSNH-(CH₂)_p-biciclo y similares.

- [0102] En una forma de realización adicional, la fracción de enlace de la invención puede que comprenda un derivado adecuado de mono o bisimida de las mencionadas bisaminas, donde se prefieren en concreto derivados de maleimido.
- 5 **[0103]** Ejemplos de fracciones de enlace heterobifuncionales puede que incluyan compuestos que al menos soporten una función amino y una función carboxílica como grupos reactivos.
- [0104] En una forma de realización preferida, dichas moléculas de aminoácidos se derivan de un aminoácido D o L, que incluye, a modo de ejemplo no limitativo, glicina, lisina, serina, ornitina, ácido 2,3-diaminopropiónico o una combinación adecuada de estos.
 - **[0105]** En otra forma de realización, dichos aminoácidos puede que estén glicosilados de manera adecuada, mejorando de este modo la solubilidad y la capacidad de unión con la integrina por medio de interacciones no específicas o inespecíficas en las que se ve implicada la fracción glicosídica.
 - [0106] En consecuencia, L puede que opcionalmente incluya una o varias fracciones de azúcar seleccionadas de manera adecuada entre las siguientes: N-acetilgalactosamina, D-(+)-alosa, D-(+)-altrosa, D-(+)-glucosa, D-(+)-manosa, D-(-)-gulosa, D-(-)-idosa, D-(-)-galactosa, D-(-)-talosa, D-(-)-ribosa, D-(-)-arabinosa, D-(+)-xilosa o D-(-)-lixosa, por ejemplo, enlazadas a un residuo de serina, treonina o asparagina, y, preferiblemente, serina, a través de su oxígeno de la cadena lateral por medio del carbono anomérico.
 - **[0107]** Para definiciones adicionales de posibles fracciones de enlace según la invención, véanse a modo de ejemplo, los siguientes apartados en relación con el proceso de elaboración.
- 25 [0108] El término «sal aceptable desde el punto de vista farmacéutico» en la presente memoria se refiere a derivados de los compuestos de la invención donde el compuesto parental se modifica al hacer los grupos ácidos o básicos todavía no neutralizados internamente en forma de sales no tóxicas y estables, lo que no destruye la actividad faramacológica del compuesto parental. Ejemplos adecuados de las mencionadas sales incluyen: sales de ácidos minerales u orgánicos, de residuos básicos como aminas; sales de álcali u orgánicas de residuos de ácido como ácidos carboxílicos; y similares.
 - **[0109]** Los cationes preferidos de bases inorgánicas que pueden utilizarse de manera adecuada para salificar los compuestos de la invención comprenden iones de metales alcalinos o alcalinotérreos como potasio, sodio, calcio o magnesio.
 - **[0110]** Los cationes preferidos de bases orgánicas comprenden, entre otros, aquellos de aminas primarias, secundarias y terciarias como etanolamina, dietanolamina, morfolina, glucamina, N-metilglucamina, N,N-dimetilglucamina. Aniones preferidos de ácidos inorgánicos que pueden utilizarse de manera adecuada para salificar los complejos de la invención comprenden los iones de halo ácidos como cloruros, bromuros, yoduros u otros iones como sulfato.
 - **[0111]** Los aniones preferidos de ácidos orgánicos comprenden aquellos de los ácidos que se utilizan habitualmente en las técnicas farmacéuticas de salificación de sustancias básicas como, por ejemplo, acetato, succinato, citrato, fumarato, maleato u oxalato. Los cationes y aniones preferidos de aminoácidos comprenden, por ejemplo, aquellos de taurina, glicina, lisina, arginina, ornitina o de ácidos aspártico y glutámico. Las sales aceptables desde el punto de vista farmacéutico de la invención puede que se preparen a partir del compuesto parental que contiene una fracción básica o ácida por medio de métodos químicos convencionales. En general, dichas sales pueden prepararse al hacer reaccionar las formas básicas o ácidas libres de dichos compuestos con una cantidad estequiométrica de la base o ácido apropiado en un disolvente orgánico o en una mezcla de los dos.

Construcciones multiméricas

15

20

35

40

45

- [0112] En una forma de realización adicional, la presente invención se refiere a unas novedosas construcciones multiméricas que incluyen dos o más fracciones activas enlazadas a un sistema de anclaje. Ejemplos adecuados de dichas fracciones activas incluyen: una fracción de direccionamiento objetivo, una fracción de diagnóstico activa, un agente terapéutico, un fármaco, un azúcar, un lípido, un residuo de biotina.
- [0113] En concreto, en un aspecto adicional, la invención se refiere a unas novedosas construcciones multiméricas de direccionamiento que pueden explotar la avidez y especificidad de las interacciones multivalentes con integrinas ανβ3 dirigidas al incluir al menos dos péptidos cíclicos de la invención, un sistema de anclaje y unos enlazadores opcionales y a unos novedosos compuestos diagnósticos o terapéuticos que los incluyen.

[0114] Con el término <u>«sistema de anclaje»</u> en la presente memoria nos referimos a un compuesto polifuncional que contiene al menos tres puntos de unión o grupos funcionales, opcionalmente protegidos, iguales o diferentes, que se derivan de cualquier residuo orgánico polivalente que puede ser alifático de cadena abierta, opcionalmente ramificado, o alicíclico, o heterocíclico que contiene N, O, y/o S o aromático o heteroaromático, o es una fracción de estreptavidina o avidina.

[0115] Los términos <u>«funcionalidad»</u> o <u>«grupo funcional»</u> se utilizan indistintamente en la presente memoria para hacer referencia a grupos específicos de átomos dentro de moléculas o fracciones que se encargan de las reacciones químicas características de dichas moléculas o fracciones. En el contexto de la presente invención, el grupo funcional es la parte activa específica de un grupo de unión que permite reacciones de reticulación o de acoplamiento.

[0116] Con los términos <u>«grupo de unión»</u> o <u>«unidad de unión»</u> o <u>«grupo de ramificación»</u> utilizados indistintamente en la presente memoria nos referimos a un grupo o unidad capaz de reaccionar químicamente con un segundo grupo adecuado, lo que da como resultado de este modo la conjugación química o «unión» de los dos.

[0117] Con el término <u>«grupo de protección»</u> en la presente memoria se denomina a un grupo protector adaptado para preservar la función a la cual está unido. Específicamente, los grupos protectores se utilizan para preservar la función amino o la función carboxilo. Los grupos protectores apropiados incluyen, por ejemplo, bencilo, benciloxicarbonilo, ésteres de alquilo o bencilo y otros sustituyentes comúnmente utilizados para la protección de dichas funciones, que son bien conocidos para los expertos en la materia, como por ejemplo los descritos en manuales convencionales como T. W. Green, *Protective Groups in Organic Synthesis* (Wiley, N.Y. 1981).

[0118] Una «construcción multimérica de direccionamiento» en la presente memoria es una construcción multimérica que comprende dos o más péptidos cíclicos de la invención que, por consiguiente, puede explotar la avidez y especificidad de las interacciones multivalentes con integrinas ανβ3 dirigidas. Con los términos «construcción» o «construcción multimérica» utilizados indistintamente en la presente memoria nos referimos a un derivado multimérico u oligomérico de una fracción activa que incluye al menos dos de las mencionadas fracciones enlazadas de manera adecuada a un sistema de anclaje.

[0119] Por tanto, un objeto adicional de la invención es un compuesto de fórmula (IV)

$$T = \begin{bmatrix} CH_2 \\ P \end{bmatrix} D COOR_4$$

$$R_5HN$$
(IV)

donde:

5

10

15

30

35

40

45

R₄, R₅, n, p, y L, iguales o diferentes entre sí, tienen los significados que se han explicado anteriormente para los compuestos de fórmula (III),

T es un sistema de anclaje, y

r es un número entero del 2 al 10,

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

[0120] Preferiblemente, dentro de los compuestos de fórmula (IV), r es un número entero del 2 al 5. Ejemplos adecuados de sistemas de anclaje (T) según la invención incluyen:

(a) sistemas de lisina N-ramificados (véase, p. ej., Veprek, P et al., J. Pept. Sci. 5, 5 (1999); 5, 203 (1999),

- (b) derivados policarboxílicos,
- (c) derivados poliaminados,
- (d) aminoácidos,

5

10

15

25

[0121] Ejemplos no limitativos de sistemas de anclaje preferidos según la invención se incluyen en las figuras 7a, 7b y 7c. Todos esos compuestos son bien conocidos en la técnica y la mayoría de ellos ya están comercializados. Los compuestos no comercializados puede que se preparen con facilidad de acuerdo con métodos conocidos, como por ejemplo según las referencias bibliográficas adjuntas. Los compuestos del 20 al 26 se preparan según las referencias citadas en el documento EP 1259532.

[0122] Los expertos en la materia entienden que los derivados de lisina, la ornitina o el ácido 2,3-diamino propiónico puede que se empleen en serie para alargar y/o aumentar de manera adecuada la multiplicidad de dichos multímeros.

[0123] Una forma de realización alternativa está representada por las construcciones multiméricas anteriores, donde el sistema de anclaje (T) es un sistema de estreptavidina o de avidina/biotina.

[0124] A este respecto, es bien conocido para los expertos en la materia que cada molécula o fracción de avidina se une, de manera selectiva, a cuatro moléculas o fracciones de biotina. Por consiguiente, por ejemplo, una molécula de avidina puede que actúe de sistema de anclaje capaz de unirse a tres unidades de un péptido de direccionamiento biotinilado de la invención; es decir, por ejemplo, un compuesto de fórmula (III) en el que R₆ es o incluye una fracción de biotina.

[0125] Por tanto, un objeto adicional de la invención es un compuesto de fórmula (V)

$$T = \begin{bmatrix} CH_2 \\ P \\ R_5 HN \end{bmatrix}$$

$$COOR_4$$

$$(V)$$

30 donde

R₄, R₅, n, p y L, iguales o diferentes entre sí, tienen los significados que se han explicado anteriormente para los compuestos de fórmula (III),

35 R₆ es una fracción de biotina,

T es una fracción de estreptavidina o avidina

r es 2 o 3,

. 00 _ 0

40

45

50

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

[0126] Preferiblemente, dentro de los compuestos de fórmula (V), r es 3.

[0127] Los compuestos de formulas (IV) y (V) poseen propiedades farmacológicas de interés, en concreto un efecto antagonista hacia las integrinas ανβ3 y ανβ5 y muestran unas actividades antiangiogénicas de interés.

[0128] Por ello, un objeto adicional de la presente invención es el uso de dichos compuestos para la preparación de fármacos, en concreto de utilidad por su acción antagonista hacia las integrinas ανβ3 y ανβ5.

[0129] Más en concreto, la invención se refiere al uso de compuestos de fórmulas generales (IV) y (V) para la preparación de fármacos de utilidad para el tratamiento de ambos fenómenos angiogénicos alterados, y para los que puede que sucedan en procesos de metástasis tumoral, retinopatías, daños renales agudos y osteoporosis.

[0130] En una forma de realización preferida de la invención, el sistema de anclaje (T) se une con al menos dos unidades de direccionamiento de la invención y con al menos una molécula biológicamente activa o fracción R_6 , de manera opcional a través de fracciones de enlace divalente. Por tanto, un objeto adicional de la invención es un compuesto de fórmula (VI)

$$R_6-L$$
 T
 $COOR_4$
 R_6+HN
 $COOR_4$
 $COOR_4$
 $COOR_4$

donde

10

5

 R_4 , R_5 , n, p, T y L, iguales o diferentes entre sí, tienen los significados que se han explicado anteriormente para el compuesto de fórmula (IV);

r es un número entero del 2 al 10, y

15

R₆ es una fracción biológicamente activa,

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

20

[0131] En un aspecto diferente, el sistema de anclaje (T) de la invención puede que se una, de manera opcional a través de fracciones de enlace, a dos o más moléculas biológicamente activas según la invención, ofreciendo de este modo una construcción multimérica que muestra una actividad biológica mejorada.

25 **[0132]** Por consiguiente, en otra forma de realización adicional más, la invención se refiere a unos compuestos novedosos de fórmula (VII)

$$\begin{bmatrix} R_6-L & T-L & COOR_4 \\ R_6-HN & O & (VII) \end{bmatrix}$$

30 donde:

 R_4 , R_5 , n, p, T y L, iguales o diferentes entre sí, tienen los significados que se han definido anteriormente para los compuestos de (IV),

b es un número entero del 2 al 5, y

y R₆ es una fracción biológicamente activa,

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

[0133] Asimismo, los derivados multiméricos de direccionamiento de fórmula (V) todavía presentan al menos un punto de unión libre, opcionalmente protegido, capaz de unirse además a un residuo de biotina o una molécula biológicamente activa biotinilada de manera adecuada.

45

[0134] Por tanto, un objeto adicional de la invención es un agregado macromolecular como, por ejemplo, una vesícula, una microesfera, una micela o una fracción de liposoma, comprendiendo cada uno de los cuales un alto número de residuos de biotina en su superficie, estando dichos residuos de biotina acoplados, o conectados de

otra manera, con las construcciones multiméricas de direccionamiento de fórmula (V) anteriormente mencionadas.

[0135] De manera alternativa, puede que dicho agregado molecular se obtenga al acoplar las mencionadas vesículas, microesferas, micelas o liposomas biotinilados con un compuesto de fórmula (III), donde R₆ es una fracción de biotina acoplada de manera adecuada a una fracción de avidina.

[0136] Puede que dichos agregados se preparen de acuerdo con métodos convencionales conocidos en la técnica, como por ejemplo según la sección experimental.

[0137] A modo de ejemplo, los mencionados agregados macromoleculares pueden representarse mediante la fórmula (VIII)

$$A - T - R_6 - L - COOR_4$$

$$R_6 + R_6 - L - COOR_4$$

$$R_5 + N - COOR_4$$

15 donde:

20

45

5

10

R₄, R₅, n, p y L tienen los significados que se han explicado anteriormente,

R₆ es una fracción de biotina,

T es una fracción de estreptavidina o avidina,

R es 2 o 3,

A es una vesícula, una microesfera, una micela o una fracción de liposoma que comprenden varias unidades de biotina en su superficie,

s representa el número de compuestos de formula (V) por agregado macromolecular.

- 30 **[0138]** Preferiblemente, dicho valor s se expresa como el tanto por ciento que representa el mencionado derivado peptídico biotinilado, siendo 100 la cantidad total de componentes, que incluye cantidades de tensoactivos, esfingolípidos, oligolípidos, fosfolípidos, proteínas, polipéptidos, carbohidratos y materiales de polímeros sintéticos o naturales.
- 35 **[0139]** Preferiblemente, dentro de los compuestos de fórmula (VIII), r es 3.

[0140] Preferiblemente, dentro de los compuestos de fórmula (VIII), s es hasta el 10 %, más preferiblemente hasta el 3 y lo más preferible es que s sea 1 %.

40 [0141] Ejemplos adecuados de compuestos de fórmula (VIII) comprenden agregados macromoleculares donde A está representada por un liposoma paramagnético, un LIPOCEST o un compuesto vesicular lleno de gas ecogénico.

[0142] En una forma de realización, A en la fórmula (VIII) comprende un compuesto vesicular biotinilado lleno de un gas ecogénico.

[0143] En otra forma de realización, A en la fórmula (VIII) es una partícula paramagnética o superparamagnética biotinilada.

[0144] En una forma de realización particularmente preferida, A en la fórmula (VIII) comprende un LIPOCEST biotinilado.

[0145] Con LIPOCEST en la presente memoria nos referimos a liposomas paramagnéticos que actúan de agentes CEST (agentes LIPOCEST) para su uso en protocolos de obtención de imágenes por CEST.

[0146] Con obtención de imágenes por CEST en la presente memoria nos referimos a la generación de contraste en una obtención de imágenes por RM a través de la irradiación de protones móviles en un agente de contraste CEST que contiene al menos un protón móvil intercambiable con agua o en un sistema de obtención de imágenes por CEST adecuado. En la presente invención, el sistema de obtención de imágenes por CEST está representado por un sistema liposomal. En este caso, el desplazamiento químico de los protones de agua intraliposomales que deben ser irradiados para observar la transferencia de saturación se ha «desplazado» de manera adecuada como resultado de la interacción de estos con un quelato paramagnético que contiene un metal seleccionado entre hierro (II) (configuración de alto espín), hierro (III), cobalto (II), rodio (III), níquel (II), cerio (III), praseodimio (III), neodimio (III), gadolinio (III), disprosio (III), erbio (III), terbio (III), te

[0147] El complejo paramagnético puede encapsularse en la cavidad acuosa del liposoma (si es hidrófilo) y/o incorporarse a la bicapa lipídica de la membrana (si es anfifílico).

[0148] La diferencia de desplazamiento químico entre las resonancias de protones de agua intraliposomales y circundantes (Δ^{LIPO}) depende de la fórmula y preparación de los liposomas, así como de las propiedades fisicoquímicas del complejo paramagnético. En concreto, el desplazamiento químico del protón de agua se ve afectado por: i) la concentración del complejo paramagnético hidrófilo en la cavidad acuosa (si está encapsulado) y/o la concentración del complejo paramagnético incorporado a la membrana y que está de frente a la cavidad acuosa interna del liposoma, y ii) la forma del liposoma. Los agregados macromoleculares que comprenden un LIPOCEST biotinilado, su preparación y caracterización se exponen con mayor detalle en la sección experimental más adelante.

[0149] Puede que los expertos en la materia entiendan que los agregados macromoleculares según la invención que comprenden varias fracciones peptidomiméticas en su superficie puede que se obtengan igualmente al conectar un compuesto macromolecular, como por ejemplo una vesícula, una microesfera, una micela o un liposoma que incluya un alto número de fracciones de estreptavidina o avidina en su superficie, con un número adecuado de derivados de direccionamiento biotinilados de la invención; es decir, por ejemplo, compuestos de fórmula (III) donde R₆ es o comprende un residuo de biotina.

[0150] Asimismo, todos los compuestos de cada una de las fórmulas de (III) a (VIII) poseen propiedades farmacológicas de interés, en concreto un efecto antagonista hacia las integrinas $\alpha\nu\beta3$ y $\alpha\nu\beta5$ y muestran unas actividades antiangiogénicas de interés.

[0151] Por consiguiente, según otro aspecto de esta, la invención se refiere a composiciones farmacéuticas que contienen, como principio activo, al menos un compuesto de cada una de las fórmulas de (III) a (VIII), las sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción aceptables desde el punto de vista farmacéutico, junto con uno o varios posibles vehículos o excipientes aceptables desde el punto de vista farmacéutico.

[0152] En un aspecto adicional, la invención se refiere a un agente de contraste según cualquiera de las fórmulas (III), (VI) o (VIII) donde R_6 es una fracción detectable por imagen o se encuentra en forma de un agregado macromolecular detectable por imagen que comprende en su superficie varias fracciones de direccionamiento según la invención.

[0153] En una forma de realización, dicho agente de contraste es un agente de contraste para IRM y, preferiblemente, son liposomas paramagnéticos que actúan de agentes CEST.

55 <u>Preparaciones</u>

[0154] Los compuestos novedosos de la invención puede que se preparen empezando, en primer lugar, por los compuestos de la siguiente fórmula (I)

10

15

20

25

40

45

donde:

n es 1 o 2,

p es un número entero entre 1 y 5,

5 R_1 es H, alquilo (C_1 - C_4) o un grupo protector,

R₂ es H o un grupo protector,

X es -N₃, -NHR₃, -SR₃, -N=C=O, o -N=C=S,

donde $R_3 = H$ o un grupo protector;

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

[0155] Puede que los compuestos de fórmula (I) existan en distintas configuraciones

15

20

35

donde n, R_1 , R_2 y X son lo que se ha definido anteriormente y los enlaces cuneiformes y de trazos discontinuos indican que los sustituyentes se disponen por encima y por debajo del plano, respectivamente.

[0156] Salvo que se indique de otro modo, el término «alquilo (C₁-C₄)» designa un sustituyente de alquilo lineal o ramificado, saturado o insaturado, que comprende de 1 a 4 átomos de carbono, como por ejemplo metilo, etilo, propilo, isopropilo, butilo, terc-butilo. No obstante, es posible utilizar sustituyentes de alquilo que contengan un número mayor de átomos de carbono siempre que sean compatibles con las condiciones de reacción de la presente invención.

25 [0157] Según la presente invención, la expresión «grupo protector» designa un grupo protector adaptado para preservar la función a la cual está unido, específicamente la función amino o la función carboxilo. Los grupos protectores apropiados incluyen, por ejemplo, bencilo, benciloxicarbonilo, ésteres de alquilo o bencilo y otros sustituyentes comúnmente utilizados para la protección de dichas funciones, que son bien conocidos para los expertos en la materia, como por ejemplo los descritos en manuales convencionales como T. W. Green, Protective Groups in Organic Synthesis (Wiley, N.Y. 1981).

[0158] Las sales de los compuestos de fórmulas (I), (Ia) y (Ib), según la presente invención, comprenden tanto aquellas con ácidos minerales u orgánicos como aquellas que forman sales aceptables desde el punto de vista fisiológico y farmacéutico, como por ejemplo hidrocloruro, hidrobromuro, sulfato, sulfato de hidrógeno, sulfato de dihidrógeno, maleato, fumarato, 2- naftalenosulfonato, para-toluenosulfonato, oxalato, etc.

[0159] Las sales de los compuestos de fórmulas (I), (Ia) y (Ib) según la presente invención también incluyen sales de amonio cuaternario aceptables desde el punto de vista fisiológico y farmacéutico.

40 **[0160]** Dichas sales se preparan según las técnicas bien conocidas para los expertos en la materia.

[0161] Cuando hay presente un grupo carboxilo (R₂=H) libre, las sales de los compuestos de fórmula (I) también comprenden sales con bases orgánicas o minerales, como por ejemplo sales de metal alcalino o de metales alcalinotérreos, como sales de sodio, potasio o sales de calcio, o con una amina como trometamol (trometamina) o sales de arginina, lisina o cualquier otra amina aceptable desde el punto de vista fisiológico y farmacéutico.

[0162] En el transcurso de la presente descripción se describe en detalle un proceso para la síntesis de los compuestos de fórmula (I), haciendo referencias a los esquemas sintéticos explicados en las figuras 1-6 adjuntas.

50

[0163] Según la presente invención, los compuestos de fórmulas (I), (Ia) y (Ib) puede que se preparen según los procesos descritos de aquí en adelante.

[0164] En concreto, los compuestos de fórmulas generales (la) 6,5-*trans*- y (lb) 6,5-*cis*-fusionado, donde p es 1 y n es 1, puede que se preparen según un proceso sintético resumido en el Esquema 1, que comprende las siguientes etapas:

- a) hidrogenación de la isooxazolidina del compuesto 1 o del compuesto 2, por ejemplo con H₂, Pd/C en MeOH;
- b) protección del grupo amina con un grupo protector adecuado, como por ejemplo Cbz, Boc, etc.;
- transformación del grupo hidroxilo libre en una azida mediante la reacción de Mitsunobu, o por medio de cualquier otro método conocido (por ejemplo, transformación en mesilato y posterior sustitución nucleófila con azida de sodio) para dar lugar a compuestos de fórmulas 6, 9;
 - d) reducción del grupo azida en un grupo amina mediante la reacción de Staudinger, o por medio de hidrogenación para dar lugar a los compuestos **7** y **10**.
- [0165] Los compuestos de fórmulas generales (la) 7,5-trans y (lb) 7,5-cis-fusionado, donde p es 1 y n es 2, puede que se preparen según un proceso sintético resumido en el Esquema 2, que comprende las siguientes etapas:
- a) hidrogenación de la isooxazolidina del compuesto 3 o del compuesto 4, por ejemplo con H₂, Pd/C en
 MeOH:
 - b) protección del grupo amina con un grupo protector adecuado, como por ejemplo Cbz, Boc, etc.;
- c) transformación del grupo hidroxilo libre en una azida mediante la reacción de Mitsunobu, o por medio de cualquier otro método conocido (transformación en mesilato y posterior sustitución nucleófila con azida de sodio) para dar lugar a compuestos de fórmulas 12, 15;
 - d) reducción del grupo azida en un grupo amina mediante la reacción de Staudinger, o por medio de hidrogenación para dar lugar a los compuestos **13**, **16**.

[0166] Los compuestos correspondientes, donde X es -N=C=O o -N=S=O, puede que se obtengan a partir de los compuestos de amina anteriormente mencionados **13** y **16** de acuerdo con procedimientos conocidos; es decir, por ejemplo, mediante la reacción de dichos compuestos con fosgeno o tiofosgeno, respectivamente.

- 40 [0167] Los compuestos donde X es –SH puede que se obtengan, por ejemplo, a través de la transformación del grupo hidroxilo, por medio de la reacción de Mitsunobu, con ácido tioacético (*Tetrahedron Lett.* 1981, 22, 3119) o mediante cualquier otro método conocido. Los compuestos de fórmula (I), donde p es un valor entre 2 y 5, pueden obtenerse de acuerdo con procedimientos conocidos, preferiblemente empezando por los grupos hidroxilos anteriormente mencionados. Por ejemplo, el compuesto de fórmula (I) donde p es 2 puede obtenerse a partir del compuesto correspondiente donde p es 1 y X es OH mediante mesilación, reacción con NaCN y reducción del nitrilo. En otro ejemplo, el compuesto de formula (I) donde p es 3 puede obtenerse a partir del compuesto correspondiente donde p es 1 y X es OH mediante oxidación a aldehído, reacción de Wittig con cianometilfosfonato de dietilo e hidrogenación.
- 50 **[0168]** Los compuestos tricíclicos iniciales **1-4** de la figura 1 y 2 puede que se preparen según los procedimientos descritos en la figura 6, Esquema A, Preparación de los productos iniciales.

[0169] Después, la sustitución de los grupos R_1 y R_2 en la fórmula (I) con la cadena Arg-Gly-Asp (RGD) ofrece compuestos que son capaces de unirse de manera selectiva a receptores de integrinas y de actuar de inhibidor selectivo para las integrinas $\alpha\nu\beta3$ y $\alpha\nu\beta5$, de fórmula general (II)

donde:

5

10

15

35

55

n es 1 o 2.

p es un número entero entre 1 y 5,

R₄ y R₅ juntos constituyen la secuencia Asp-Gly-Arg,

X es -N₃, -NHR₃, -SR₃, -N=C=O, o -N=C=S,

donde:

10

15

25

30

5 $R_3 = H$ o un grupo protector;

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

[0170] Como anteriormente, puede que se destaquen las siguientes configuraciones para los compuestos de fórmula (II)

X COOR X COOR X R₅HN (IIb)

donde n, R₄, R₅ y X son lo que se ha definido anteriormente y los enlaces cuneiformes y de trazos discontinuos indican que los sustituyentes se disponen por encima y por debajo del plano, respectivamente.

[0171] La secuencia de péptidos Asp-Gly-Arg está ventajosamente unida a los compuestos (II), (Ha) y (IIb) de un modo por el cual el grupo carboxilo está ligado al aminoácido arginina y el grupo amino está ligado al ácido aspártico.

20 **[0172]** Los detalles que se ofrecieron anteriormente para los sustituyentes variables y las sales de los compuestos de fórmula (I) también son de aplicación a los compuestos de fórmulas (II), (Ha) y (IIb).

[0173] Puede que la cadena Asp-Gly-Arg se introduzca al adaptar los compuestos de fórmulas (I), (Ia) y (Ib) descritos anteriormente, según un proceso que comprende las siguientes etapas (Esquema 3):

- cuando R₂ es un grupo protector, reacción de desprotección quimioselectiva del grupo carboxilo de un compuesto de fórmula general (I) y condensación con el dipéptido Arg-Gly protegido de manera apropiada;
- reducción de la oxazolidina por medio de hidrogenación catalítica;
- transformación del éster metílico de glicina en el éster de bencilo mediante una reacción de transesterificación, seguida por la retirada simultánea del grupo protector de la glicina y la del grupo amino del ácido aspártico por hidrogenación catalítica;
- ciclación intramolecular mediada por medio de condensación y posterior desprotección de los grupos protectores de las cadenas laterales de aminoácidos.

[0174] Las reacciones de protección y desprotección de grupos funcionales puede que se lleven a cabo de acuerdo con técnicas conocidas.

- **[0175]** Por consiguiente, puede que los compuestos (IIa) y (IIb) se obtengan según un proceso que comprende las siguientes etapas (esquemas 4-5):
- transformación del grupo hidroxilo de los compuestos 17, 18, 19, 20 en las azidas correspondientes de acuerdo con procedimientos conocidos, por ejemplo mediante reacción de Mitsunobu o mesilación y posterior sustitución nucleófila con azida de sodio, para dar lugar a los compuestos 21, 23, 25, 27;
 - posterior reducción por medio de hidrogenación catalítica o reacción de Staudinger, ofreciendo de este modo los correspondientes derivados aminados;

50

- transformación opcional de los grupos amino en los correspondientes cianatos o tiocianatos mediante el uso de fosgeno o tiofosgeno, respectivamente, a través de reacciones conocidas;
- conjugación opcional con moléculas de interés biológico por medio de reacciones conocidas,

- posterior desprotección de los grupos protectores de las cadenas laterales de aminoácidos para dar lugar a los compuestos de fórmulas 22, 24, 23 y 25.

[0176] En concreto, la preparación de los compuestos 6,5- y 7,5- *cis* está explicada en el esquema 4 y la preparación de los compuestos 6,5- y 7,5- *trans* está explicada en el esquema 5.

[0177] Se ofrecen ejemplos y detalles de dichas reacciones en la sección experimental de la presente descripción.

15 **[0178]** Las reacciones de protección y desprotección de grupos funcionales puede que se lleven a cabo de acuerdo con técnicas conocidas, como las descritas en la sección experimental de la presente descripción.

[0179] Los detalles de este tipo de preparación para compuestos diferentes, aunque sean estructuralmente análogos, se ofrecen en el documento WO2005/042531.

[0180] Los compuestos de fórmula (II), (IIa) y (IIb), preparados de este modo y que soportan cualquier grupo X apropiado, tal y como se ha definido anteriormente, se someten además a una reacción para obtener los compuestos de la invención.

[0181] A modo de ejemplo, los compuestos de fórmula (II) donde X es un grupo amino opcionalmente protegido puede que se reaccionen con fracciones que soportan un grupo carboxi terminal o un derivado de este, para dar lugar a una ligazón de carboxamido.

[0182] Esta reacción, que se logra de acuerdo con unas condiciones operativas bien conocidas, puede representarse de manera esquemática del siguiente modo, por ejemplo para la preparación de un compuesto de fórmula (III) donde L es un grupo -CONH-:

 R_6 -COOH + H_2N -(CH_2)p-unidad de direccionamiento ----> R_6 -CONH-(CH_2)p-unidad de direccionamiento. De la misma forma, por ejemplo en el caso de que X sea un grupo -NCO o -NCS, los compuestos de fórmula (III) donde L es un grupo -NHCONH- o -NHCSNH- puede que se obtengan del siguiente modo:

 $R_6\text{-NH}_2$ + OCN-(CH $_2$)p-unidad de direccionamiento ----> $R_6\text{-NHCONH-(CH}_2)$ p-unidad de direccionamiento

0

5

20

30

35

40

45

50

55

 R_6 -NH $_2$ + SCN-(CH $_2$)p-unidad de direccionamiento ----> R_6 -NHCSNH-(CH $_2$)p-unidad de direccionamiento.

[0183] Los compuestos donde L es un grupo (iv) puede que se obtengan al reaccionar el correspondiente derivado de fórmula (II) donde X es azido (-N₃) con la correspondiente fracción funcionalizada de manera apropiada por medio de un grupo alquino terminal -C≡CH, de acuerdo con unas condiciones operativas bien conocidas como, por ejemplo, la llamada reacción de cicloadición 1,3-dipolar de la «química click» (véase, Kolb, H et al, Angew. Chem. Int. Ed. 2001, 40, 2004-20021).

[0184] Véase, a modo de ejemplo:

[0185] Los compuestos donde L es un grupo (v) puede que se obtengan al reaccionar el derivado correspondiente de fórmula (II) donde X es SH con la correspondiente fracción funcionalizada de manera

apropiada con una maleimida, de acuerdo con unas condiciones operativas bien conocidas (véase Brinkley, M. *Bioconjugate Chem.* 1992, 3, 2-13).

[0186] Véase, a modo de ejemplo:

5

10

15

25

45

[0187] Es evidente que los esquemas anteriores también puede que se apliquen para la preparación de los compuestos de fórmula (III) de la invención, donde L es una fracción de enlace divalente que comprende cualquiera de los grupos (i) a (v) anteriormente mencionados.

[0188] En dicho caso, puede que se aplique el siguiente orden de reacciones, por ejemplo en la preparación de un compuesto de fórmula (III) donde L es el siguiente grupo:

 $R_6\text{-NH}_2 + \text{HOOC-CH}_2\text{-O-(CH}_2)_2\text{-O-(CH}_2)_2\text{-O-CH}_2\text{-COOH} \xrightarrow{----} R_6\text{-HNOC-CH}_2\text{-O-(CH}_2)_2\text$

 $R_6\text{-HNOC-CH}_2\text{-O-(CH}_2)_2\text{-O-(CH}_2)_2\text{-O-CH}_2\text{-COOH+} \qquad H_2\text{N-(CH}_2)\text{p-unidad} \qquad \text{de} \\ 20 \qquad \text{direccionamiento } --- \Rightarrow R_6\text{-HNOC-CH}_2\text{-O-(CH}_2)_2\text{-O-(CH}_2)_2\text{-O-CH}_2\text{-CONH-(CH}_2)\text{p-unidad de direccionamiento.} \\$

[0189] De lo anterior resulta evidente para el experto en la materia que, cuando sea conveniente, puede que el orden de las reacciones varíe de manera apropiada sustancialmente del siguiente modo: HOOC-CH₂-O-(CH₂)₂-O-

[0190] Cualquiera de las mencionadas reacciones de reticulación o de acoplamiento puede que se lleve a cabo de acuerdo con reacciones apropiadas bien conocidas para los expertos en la materia.

[0191] Por consiguiente, por ejemplo, las estructuras lactámicas que incluyen un grupo azido puede que se unan a las moléculas biológicamente activas o compuestos de importancia biológica deseados por medio de reacciones apropiadas; es decir, por ejemplo, de química click. Cuando las estructuras lactámicas incluyen un grupo amino, puede que la fracción biológicamente activa se una, por ejemplo, a través de una reacción de amidación sencilla.

[0192] Asimismo, el peptidomimético cíclico donde X = -NH-CO o -NH-CS puede que se una a un grupo amina adecuado de la molécula biológicamente activa de acuerdo con procedimientos conocidos por los expertos en la materia para dar lugar a, por ejemplo, los correspondientes derivados de urea y tiourea.

40 **[0193]** Se ofrecen ejemplos y detalles respecto a los primeros grupos funcionales y la reacción de reticulación entre ellos en la sección experimental de la presente descripción.

[0194] Preferiblemente, en el caso de que L no sea un grupo de (i) a (v) dentro de los compuestos de la invención, puede que se derive de manera conveniente de las siguientes moléculas (denominadas brevemente enlazadores) enumeradas en la tabla 1 a continuación.

Tabla 1

ENLAZADOR	
A1	
	H₂N (COOH
	\ /n
A2	
	ноосусоон
	$\binom{n}{n}$ $n=1-4$

(continuación)

ENLAZADOR	
A3	
AS	HOOC (O) COOH
	\ / _m
A4	` ' ¹¹ n = 1-3
Α4	H-N NHo
	$H_2N \leftarrow NH_2$ $n = 2-6$
A5	M = 2-0
AS	
	H ₂ N NH ₂
	n = 1-5 Tetrahedron Lett. 1998, 39, 6277; Makromol. Chem. 1979, 180, 2539.
A6	1996, 53, 6277, Makromot. Chem. 1713, 100, 2553.
Au	
	H_2N O NH_2
A7	
	\sim
	H ₂ N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A8	
	H ₂ N COOH
	n = 1-4; J. Org. Chem.
	2001, 66, 4799; Org. Prep. Proced. Int. 2002, 34, 326
A9	
	H ₂ N COOH
	/n n = 1-6;
	Bioconjugate Chem. 1999, 10, 1021.
A10	
	СООН
	H₂N ✓
A11	COOH
	H ₂ N
A12	
	Соон
	H ₂ N
A13	- 🗸 🗸
7.110	СООН
	H ₂ N
A14	-
	СООН
	<u> </u>
	H₂N ✓

(continuación)

ENLAZADOR	
A15	
	СООН
	UN
	H ₂ N
A16	
	COOH
	H ₂ N
	11211000
A17	
	O_COOH
	H ₂ N J
A18	7.2
A10	COOH
	000/1
	H-N
A19	
	NH ₂
A20	
	_ /x ^{COOH}
	$\binom{n}{n}$ $n = 0-4$
A21	1 0 1
	o o
	NH ₂
	Bioconjugate Chem. 1990, 1, 431
A22	Bioconjugute Onena 1990, 1, 451
AZZ	0
	N- NH2
	ö Bioconjugate Chem. 1990, I, 431
A23	
	o #
	COOH
) 'n
A24	O n = 0-3
A24	0
	Ĭ
	() N → O → COOH
	Bioconjugate Chem. 1996, 7, 180
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(continuación)

ENLAZADOR	
A25	
	H_2N O O O N_3
	J. Org. Chem. 1991, 56, 4326
A26	
	$HOOC \sim O \sim O \sim N_3$
	Bioconjugate Chem. 1999, 10, 1021.
A27	
	N_3
	Bioconjugate Chem. 2000, 11, 14.
A28	
	HS () COOH
	$ \begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & &$
A29	2 12
	HS O COOH
	Bioconjugate Chem. 1996, 7, 180
A30	
	HS ONH ₂ Tetrahedron
	1997, 53, 10939
A31	
	$HS \longrightarrow NH_2$

o puede que incluso se obtenga de una combinación adecuada de estos, ofreciendo de esta manera componentes modificados y/o alargados como, por ejemplo,

[0195] La mayoría de los enlazadores de la tabla 1 son bien conocidos y están disponibles comercialmente en, por ejemplo, los catálogos de Aldrich Neosystem y Peptides International. Los compuestos no comercializados puede que se preparen con facilidad de acuerdo con métodos conocidos, como por ejemplo de según las referencias bibliográficas adjuntas.

[0196] El compuesto A 32 es nuevo y constituye un objeto adicional de la presente invención.

10

[0197] Como se ha explicado anteriormente, los enlazadores anteriores o las combinaciones adecuadas de estos puede que estén conectados a X, en un lado, y a R₆, en el otro lado, por medio de reacciones de reticulación o acoplamiento bien conocidas en la técnica. Por ejemplo, cuando X es un grupo azida, un enfoque puede que se base en la llamada reacción de cicloadición 1,3-dipolar de la «química click» (véase, p. ej., Kolb, H et al, Angew. Chem. Int. Ed. 2001, 40, 2004-20021) entre dicho grupo azida y un grupo acetilénico terminal de la fracción bifuncional. Este tipo de enfoque se expone con mayor detalle en la sección experimental más adelante. Es evidente que este mismo tipo de reacción permite conectar un grupo acetilénico en el lado peptídico con un enlazador que soporta un grupo azido terminal.

[0198] Cuando X es SH-, puede que se dé una reacción adecuada con un enlazador bifuncional que incluye, por ejemplo, un grupo maleimido terminal como, por ejemplo, los enumerados como A22-A24 en la Tabla 1.

[0199] Cuando X es NH_2 , puede que el enlazador incluya de manera adecuada un extremo C-terminal, es decir, un grupo carboxílico terminal. Puede que la conexión entre L y R_6 se haga a través de varias disposiciones, que incluyen, por ejemplo: (a) del extremo C-terminal al extremo C-terminal; (b) del extremo N-terminal (es decir, un grupo amina terminal) al extremo C-terminal; (c) del extremo C-terminal al extremo N-terminal; o (d) del extremo N-terminal al extremo N-terminal en función de los grupos de unión de L y R_6 implicados en la reacción de reticulación.

[0200] Puede que las anteriores reacciones de acoplamiento se apliquen además a la hora de considerar la preparación de todos los compuestos de la invención que se derivan del acoplamiento de una o varias fracciones peptidomiméticas de fórmula (II), un sistema de anclaje seleccionado entre los de la figura 7a-7c, una o varias fracciones biológicamente activas R₆ de la invención, a través de una o varias unidades de enlace.

[0201] Evidentemente, a la hora de llevar a cabo todas las reacciones de acoplamiento anteriormente mencionadas, los grupos funcionales opcionales en las moléculas de acoplamiento que no están implicados en dichas reacciones deben protegerse para evitar la formación de enlaces no deseados. Los grupos de protección que pueden utilizarse se enumeran, por ejemplo, en Greene, *Protective groups in Organic Synthesis* John Wiley & sons, New York (1981).

Quelatos

5

10

15

20

[0202] En el caso de que R₆, de acuerdo con los compuestos de la invención, se trate de un agente diagnóstico o radioterapéutico, como por ejemplo un quelato metálico o un sistema que contiene varios o muchos quelatos metálicos de cualquier ión metálico adecuado entre los presentados anteriormente, la formación compleja puede que se dé al marcar de manera apropiada cualquier compuesto de la invención donde R₆ es o comprende una unidad o unidades quelantes con el metal preferido apropiado, de acuerdo con métodos bien conocidos.

[0203] Por ejemplo, los complejos paramagnéticos de la invención y, en concreto, los quelatos de Gd(III) puede que se preparen mediante una adición estequiométrica de derivados adecuados de Gd(III), en concreto sales u óxidos de Gd(III). Véase, por ejemplo, el documento EP 230893 que da a conocer el marcado con iones metálicos paramagnéticos, y el documento WO 98/52618, el documento U.S. 5.879.658 y el documento U.S. 5.849.261, que dan a conocer el marcado con metales radiactivos.

[0204] A modo de ejemplo, los complejos de tecnecio o indio radiactivos de la invención resultan particularmente útiles para el diagnóstico por la imagen, mientras que los complejos de renio radiactivo resultan particularmente útiles para la radioterapia.

[0205] A la hora de considerar la obtención de imágenes por TEP, los complejos de Ga-68 y Cu-64, así como 40 diversos lantánidos, resultan particularmente útiles. En la formación de un complejo de tecnecio radiactivo, por ejemplo, un complejo de tecnecio, preferiblemente una sal de perectenato ^{99m}Tc, se reacciona con los compuestos no marcados de la invención en presencia de un agente reductor. Los agentes reductores preferidos son iones de ditionito, iones estánnicos y ferrosos; el agente reductor más preferido es cloruro estánnico. Los 45 agentes para la preparación de dichos complejos se ofrecen en un conveniente formato de kit que comprende un vial cerrado que contiene una cantidad predeterminada del compuesto de la invención que ha de ser marcado y una cantidad suficiente de agente reductor para marcar el reactivo con ^{99m}Tc. De manera alternativa, puede que el complejo se forme al reaccionar un compuesto de esta invención, que se conjuga con una fracción quelante apropiada, con un complejo lábil preformado de tecnecio y otro compuesto conocido como ligando de transferencia. Este proceso se conoce como intercambio de ligandos y es bien conocido por los expertos en la 50 materia. Puede que el complejo lábil se forme utilizando ligandos de transferencia como tartrato, citrato, gluconato o manitol, por ejemplo. Entre las sales de perectenato 99m Tc útiles en la presente invención se incluyen las sales de metales alcalinos, como la sal de sodio, o sales de amonio o sales de amonio de alquilo inferior. La preparación de los complejos de la presente invención donde el metal es renio radiactivo puede que se logre 55 utilizando como materiales iniciales compuestos de renio donde el metal se encuentra en el estado de oxidación +5 o +7. Ejemplos de compuestos en los que el renio se encuentra en el estado Re(VII) son NH₄ReO₄ o KReO₄. Re(V) está disponible en forma de, por ejemplo, [ReOCl₄](NBu₄), [ReOCl₄](AsPh₄), ReOCl₃(PPh₃)₂ y en forma de ReO₂(piridina)₄ (Ph es fenilo; Bu es n-butilo). Puede que también se utilicen otros reactivos de renio capaces de formar un compleio de renio. 60

[0206] Los agentes para la obtención de imágenes por gammagrafía marcados radiactivamente que ofrecen la presente invención deben contener una cantidad adecuada de radiactividad. A la hora de formar complejos de ¹¹¹In o ^{99m}Tc, en general se prefiere formar complejos radiactivos en soluciones que contienen radiactividad en concentraciones de desde 0,01 milicurios (mCi) aproximadamente hasta 100 mCi por mL.

5

10

15

20

25

30

35

40

45

50

55

60

[0207] Los compuestos de la invención tienen una variedad de aplicaciones en el campo terapéutico y diagnóstico.

[0208] Por ejemplo, los agentes de contraste para IRM según la presente invención puede que se utilicen del mismo modo que los reactivos de contraste para IRM convencionales. Cuando la diana es, por ejemplo, una zona angiogénica de un tejido, puede que se prefieran determinadas técnicas de RM y secuencias de impulsos para potenciar el contraste de la zona con respecto a la sangre y los tejidos del fondo. Estas técnicas incluyen (entre otras), por ejemplo, secuencias de angiografía de sangre negra cuyo objetivo es oscurecer la sangre, como las secuencias eco del espín rápido (véase, p. ej., Alexander *et al.*, *Magnetic Resonance in Medicine*, 40(2): 298-310 (1998)) y secuencias EG incoherentes de flujo (véase, por ejemplo, Edelman *et al.*, *Radiology*, 177(1): 45-50 (1990)). Dichos métodos también incluyen técnicas independientes del flujo que potencian la diferencia en el contraste, como secuencias preparadas de inversión-recuperación o de saturación-recuperación que aumentarán el contraste entre el tejido que contiene la diana, como por ejemplo un tumor angiogénico, y los tejidos del fondo. Por último, las preparaciones de transferencia de magnetización puede que también mejoren el contraste con estos agentes (véase, por ejemplo, Goodrich *et al.*, *Investigative Radiology*, 31(6): 323-32 (1996)).

[0209] Los agentes de contraste paramagnéticos de la invención, para su uso en técnicas de IRM, se administran al paciente en forma de composiciones inyectables. El método de administración del agente de contraste para IRM es preferiblemente por vía parenteral, en el sentido de vía intravenosa, intraarterial, intratecal, intersticial o intracavitaria. Para la representación por imagen de una angiogénesis activa, se prefiere la administración por vía intravenosa o intraarterial.

[0210] Para las IRM, se contempla que el sujeto recibirá una dosis de agente de contraste suficiente para potenciar la señal de RM en la diana (por ejemplo, una zona de angiogénesis) al menos en un 10 %. Tras la inyección del agente de contraste dirigido de la invención que incluye el agente para IRM, al paciente se le somete a una exploración en el aparato de IRM para determinar la ubicación de cualquier zona que contenga la diana. En entornos terapéuticos, tras la localización de la diana, puede administrarse inmediatamente después un citotóxico o terapéutico, si es necesario, y el paciente puede ser sometido a una exploración posterior para visualizar el efecto terapéutico.

[0211] En el caso de la radioterapia, puede que se utilicen posologías apropiadas conocidas en la técnica para los compuestos radioterapéuticos de la presente invención.

[0212] Los compuestos pueden administrarse por medio de muchos métodos, que incluyen, entre otros, una inyección o múltiples inyecciones por i.v. o IP, que utilizan una cantidad de radiactividad suficiente para ocasionar daños o la ablación del tejido diana, pero que no llega a ocasionar daños sustantivos a un tejido no diana (tejido sano). La cantidad y dosis necesarias son diferentes para distintas construcciones, en función de la energía y vida media del isótopo que se utilice, del grado de absorción y aclaramiento del agente del cuerpo y de la masa tumoral. En general, las dosis pueden oscilar entre 0,01 mCi aproximadamente y 100 mCi aproximadamente, preferiblemente entre 1 mCi y 50 mCi. Normalmente, puede que se utilice una sola dosis de 30-50 mCi aproximadamente hasta una dosis acumulada de hasta 3 curios aproximadamente.

[0213] Las composiciones radioterapéuticas de la invención pueden incluir tampones aceptables desde el punto de vista fisiológico, y pueden necesitar estabilizadores de la radiación para evitar que se produzcan daños radiolíticos en el compuesto antes de la inyección. Los estabilizadores de la radiación son conocidos por los expertos en la materia y puede que incluyan, por ejemplo, ácido paraaminobenzoico, ácido ascórbico, ácido gentísico y similares.

[0214] En el caso de la gammagrafía, puede que se administre el compuesto de la invención al paciente por medio de una inyección. Se utiliza una cámara TEP o una cámara gamma calibrada para la energía de rayos gamma del nucleido incorporado al agente para la obtención de imágenes con el propósito de representar por imagen áreas de absorción del agente y cuantificar la cantidad de radiactividad presente en la zona. La obtención de imágenes de la zona *in vivo* puede producirse en cuestión de pocos minutos. No obstante, si así se desea, la obtención de imágenes puede producirse horas más tarde o incluso en un periodo superior, después de que se inyecte en un paciente el péptido radiomarcado. En la mayoría de los casos, una cantidad suficiente de la dosis administrada se acumulará en la zona que se va a representar por imagen en el espacio de aproximadamente 0,1 de una hora para permitir que se tomen las imágenes por gammagrafía.

[0215] Un kit de un solo vial o multivial que contiene todos los componentes necesarios para preparar los radiofármacos de esta invención, salvo el radionucleido, constituye una parte integral de esta invención.

[0216] Un kit de un solo vial contiene preferiblemente un ligando quelante (si se utiliza un radionucleido metálico), una fuente de una sal estánnica (si se necesita una reducción, p. ej., al utilizar tecnecio), u otro agente reductor aceptable desde el punto de vista farmacéutico, y se tampona de manera apropiada con un ácido o

base aceptables desde el punto de vista farmacéutico para ajustar el pH a un valor de entre 3 aproximadamente y 9 aproximadamente. La cantidad y el tipo de agente reductor utilizado dependería en gran medida de la naturaleza del complejo de intercambio que se va a formar. Las condiciones apropiadas son bien conocidas por los expertos en la materia. Es preferible que los contenidos del kit se encuentren en forma liofilizada. Un kit de un solo vial de estas características puede que contenga de manera opcional ligandos lábiles o de intercambio como glucoheptonato, gluconato, manitol, malato, ácido cítrico o tartárico y también puede contener modificadores de reacción como el ácido dietilentriaminopentaacético (DTPA), el ácido etilendiaminatetraacético (EDTA) o la α -, β - o γ -ciclodextrina que sirven para mejorar la pureza y estabilidad radioquímicas del producto final. Puede que el kit también contenga estabilizadores, agentes de carga como el manitol, diseñados para ayudar en el proceso de criodesecación, y otros aditivos conocidos por los expertos en la materia.

10

15

20

25

30

35

40

45

50

55

60

65

[0217] Un kit multivial contiene preferiblemente los mismos componentes generales, pero emplea más de un vial en la reconstitución del radiofármaco. Por ejemplo, puede que un vial contenga todos los ingredientes necesarios para formar un complejo lábil de Tc(V) al añadir perectenato (p. ej., la fuente estánnica u otro agente reductor). Se añade perectenato a este vial y, tras esperar un periodo de tiempo pertinente, el contenido de este vial se añade a un segundo vial que contiene el ligando, así como los tampones pertinentes para ajustar el pH a su valor óptimo. Tras un tiempo de reacción de entre aproximadamente 5 y 60 minutos, se forman los complejos de la presente invención. Resulta ventajoso que se liofilice el contenido de ambos viales de este kit multivial. Al igual que en el anterior caso, puede que estén presentes modificadores de reacción, ligandos de intercambio, estabilizadores, agentes de carga, etc., en uno de los viales o en los dos.

[0218] Como se ha explicado anteriormente, los compuestos de la invención pueden formularse de manera adecuada de acuerdo con métodos conocidos y las composiciones de estos representan de hecho un objeto adicional de la invención.

[0219] Para obtener el efecto profiláctico, terapéutico o diagnóstico deseado, se administra de manera ventajosa una dosis o cantidad eficaz desde el punto de vista terapéutico o diagnóstico del principio activo en forma de dosis unitaria, una o más veces al día. Evidentemente, el profesional sanitario selecciona la posología diaria en función de la molécula biológicamente activa introducida.

[0220] El término «dosis o cantidad eficaz» en la presente memoria hace referencia a cualquier cantidad de una molécula diagnóstica o terapéutica de la invención, o a una composición farmacéutica de esta, que es suficiente para cumplir con su fin o fines diagnósticos o terapéuticos pretendidos: es decir, por ejemplo, para visualizar un elemento biológico de un paciente que incluye células, líquidos biológicos y tejidos biológicos, así como órganos, regiones o tejidos del cuerpo humano afectados por la angiogénesis o para su fin o fines terapéuticos pretendidos; o bien para retrasar o evitar el inicio de un estado patológico asociado a la angiogénesis; o para ralentizar o detener la progresión, agravamiento o deterioro de los síntomas.

[0221] Los agentes diagnósticos o terapéuticos de la invención presentan un amplio abanico de aplicaciones, ya que se pueden utilizar para administraciones por vía oral, intravascular (por ejemplo, administración por vía intravenosa, intraarterial, intracoronaria, intraventricular y similares), intratecal, intraperitoneal, intralinfática e intracavitaria. Las composiciones para la vía de administración deseada pueden prepararse por medio de cualquiera de los métodos bien conocidos en la técnica farmacéutica. Los detalles con respecto a la posología, forma farmacéutica, modos de administración, composición y demás se tratan con mayor profundidad en un texto farmacéutico estándar, como *Remington's Pharmaceutical Sciences*, 18.ª ed., Alfonso R. Gennaro, ed. (Mack Publishing Co., Easton, PA 1990) que se incorpora al presente texto a modo de referencia.

[0222] En una forma de realización preferida, se formula una composición farmacéutica adecuada según la invención siguiendo procedimientos habituales a modo de composición farmacéutica adaptada para la administración al ser humano por vía intravenosa. Normalmente, las composiciones para administración por vía intravenosa son soluciones en un tampón acuoso isotónico estéril. Otros vehículos aceptables desde el punto de vista farmacéutico incluyen, entre otros, agua estéril, solución salina, agua salina tamponada, solución salina, solución salina tamponada (incluyendo tampones como fosfato o acetato), alcohol, aceites vegetales, polietilenglicoles, gelatina, lactosa, amilosa, estearato de magnesio, talco, ácido silícico, parafina, etc. En los casos en que sea necesario, puede que la composición también incluya un agente solubilizante y un anestésico local como, por ejemplo, lidocaína para aliviar el dolor en el punto de la inyección; asimismo, puede que incluya conservantes, estabilizadores, humectantes, emulgentes, sales, lubricantes, etc., siempre que no reaccionen con los compuestos activos de manera perjudicial. De manera similar, puede que la composición comprenda excipientes convencionales, esto es, sustancias vehiculares orgánicas o inorgánicas aceptables desde el punto de vista farmacéutico que son adecuadas para aplicaciones por vía parenteral, enteral o intranasal que no reaccionan con los compuestos activos de manera perjudicial. En general, los ingredientes se proporcionarán o bien por separado o mezclados en forma de dosis unitaria, por ejemplo, en forma de polvos secos liofilizados o un concentrado libre de agua en un recipiente cerrado herméticamente como, por ejemplo, una ampolla o un sobre que indique la cantidad de agente activo en unidades de actividad. En los casos en que la composición se vaya a administrar por infusión, se puede dispensar con un frasco para infusión que contiene «agua para

inyección» o solución salina de calidad farmacéutica estéril. En los casos en que la composición se vaya a administrar por inyección, puede que se proporcione una ampolla de agua para inyección o solución salina estéril de modo que los ingredientes puede que se mezclen antes de la administración.

- 5 **[0223]** Preferiblemente, dichas composiciones farmacéuticas se formulan para administración por vía parenteral, siendo lo más preferible para administración por vía intravenosa o intraarterial. En general, y en concreto cuando la administración es por vía intravenosa o intraarterial, puede que las composiciones farmacéuticas se administren en bolo, en dos o más dosis espaciadas en el tiempo o en infusión continua o intermitente.
- [0224] Los agentes diagnósticos o terapéuticos de la invención pueden administrarse a un paciente a lo largo de un transcurso de tiempo adecuado, en función de la naturaleza del estado y de los resultados deseados. Como se describe en el presente documento, los compuestos de la presente invención pueden administrarse además de manera sistémica o local, lo que incluye, por ejemplo, mediante aplicación tópica, administración transdérmica, parenteral, gastrointestinal, intravaginal y transalveolar.
- [0225] Para aplicaciones tópicas, los compuestos de la aplicación pueden estar suspendidos, por ejemplo, en una crema, gel o enjuague que permite que los derivados peptídicos o las construcciones multiméricas penetren en la piel y entren en el torrente sanguíneo, para una administración sistémica, o que entren en contacto con el área de interés, para una administración localizada. Las composiciones adecuadas para una aplicación tópica incluyen cualquier base aceptable desde el punto de vista farmacéutico en la que los polipéptidos sean al menos mínimamente solubles. Para una administración transdérmica, los compuestos de la invención pueden aplicarse en una suspensión aceptable desde el punto de vista farmacéutico, junto con un dispositivo transdérmico adecuado o «parche». Ejemplos de dispositivos transdérmicos adecuados para la administración de los agentes diagnósticos o terapéuticos de la presente invención se describen, por ejemplo, en la patente de los Estados Unidos n. º 6.165.458, concedida el 26 de diciembre de 2000 a Foldvari, et al., y la patente de los Estados Unidos n. º 6.274.166B1, concedida el 4 de agosto de 2001 a Sintov, et al., cuyas enseñanzas se incorporan al presente texto a modo de referencia.
- [0226] Para una administración parenteral, los agentes diagnósticos o terapéuticos de la invención pueden estar suspendidos, por ejemplo, en una solución isotónica estéril aceptable desde el punto de vista farmacéutico, como solución salina y solución salina fosfatada. A continuación, puede que se inyecten por vía intravenosa, intramuscular, intraperitoneal o subcutánea.
 - [0227] Para la administración oral, los agentes de la invención pueden formularse siguiendo métodos de preparación habitualmente utilizados en la técnica farmacéutica o a modo de fórmulas recubiertas para conseguir una protección adicional frente al pH ácido del estómago, evitando de este modo la liberación del ión metálico quelatado, lo que ocurre en concreto en los valores normales del pH de los jugos gástricos. Asimismo, pueden añadirse otros excipientes, que incluyan por ejemplo edulcorantes y/o agentes aromatizantes, de acuerdo con técnicas conocidas de fórmulas farmacéuticas.

35

- [0228] Para una administración gastrointestinal e intravaginal, los compuestos de la invención pueden incorporarse a polvos, píldoras o líquidos aceptables desde el punto de vista farmacéutico para la ingestión, y supositorios para la administración rectal o vaginal.
- [0229] Para una administración transalveolar, bucal o pulmonar, los agentes diagnósticos o terapéuticos de la invención pueden estar suspendidos en un excipiente adecuado y aceptable desde el punto de vista farmacéutico para la aerosolización e inhalación o a modo de colutorio. Los dispositivos adecuados para la administración transalveolar como nebulizadores o vaporizadores, por ejemplo, también están incluidos dentro del alcance de la invención. Las fórmulas adecuadas para la administración por aerosol de polipéptidos por vías bucal o pulmonar pueden encontrarse, por ejemplo, en la patente de los Estados Unidos n. º 6.312.E65B1, concedida el 6 de noviembre de 2001 a Pankaj Modi, cuyas enseñanzas se incorporan al presente texto a modo de referencia.
- [0230] Además, los agentes de la invención pueden administrarse por vía nasal u ocular, donde los compuestos diagnósticos o terapéuticos de la invención están suspendidos en un agente líquido aceptable desde el punto de vista farmacéutico adecuado para una dosificación gota a gota.
- [0231] En todavía otro aspecto adicional, la invención se refiere al uso de los mencionados agentes diagnósticos novedosos para la preparación de una fórmula diagnóstica para su uso en el diagnóstico por la imagen, tanto *in vitro* como *in vivo*, de sistemas patológicos, que incluyen células, líquidos biológicos y tejidos biológicos que provienen de un paciente mamífero vivo y, preferiblemente, humano, así como órganos, regiones o tejidos del cuerpo humano afectados por procesos angiogénicos, incluidos tejidos tumorales o cancerosos, inflamaciones, integrina sobreexpresada y en concreto receptores de integrinas avβ, así como para la supervisión del progreso y los resultados del tratamiento terapéutico de dichas patologías.

- **[0232]** En otro aspecto más, la invención ofrece un método de obtención de imágenes de la angiogénesis tanto *in vitro* como *in vivo* que comprende el uso de un agente de diagnóstico por la imagen de la invención dirigido a receptores de integrinas y una técnica de obtención de imágenes.
- [0233] En un aspecto preferido, la invención ofrece un método de obtención de imágenes *in vivo* de un paciente que comprende: la administración, por inyección o infusión, a un paciente de una cantidad eficaz desde el punto de vista de la obtención de imágenes de un agente diagnóstico de fórmulas (III), (VI) (VII) y (VIII), donde la fracción peptídica que dicho compuesto diagnóstico incluye permite que el agente de obtención de imágenes interactúe con integrinas de modo que permite su detección mediante una técnica de obtención de imágenes.
 - [0234] En un aspecto adicional, la invención se refiere a un agente terapéutico según cualquiera de formulas (III), (VI) o (VIII), donde R₆ es una fracción eficaz desde el punto de vista terapéutico y, preferiblemente, un agente radioterapéutico, o se encuentra en forma de agregado macromolecular eficaz desde el punto de vista terapéutico que comprende en su superficie varias fracciones de direccionamiento según la invención.
 - **[0235]** En todavía otro aspecto adicional, la invención ofrece un método de prevención o inhibición de la angiogénesis tanto *in vitro* como *in vivo*, que comprende la puesta en contacto con un agente terapéutico de la invención de un sistema patológico que incluye células, líquidos biológicos, tejidos biológicos provenientes de un paciente mamífero vivo y, preferiblemente, humano, o un órgano, tejido o zona del cuerpo que presenta vasculatura angiogénica.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

10

15

- [0236] Las figuras 1- 6 comprenden esquemas sintéticos que detallan la preparación de los compuestos peptidomiméticos de la invención. En concreto:
 - La **figura 1** da a conocer, representado esquemáticamente en el Esquema 1, el proceso sintético para la preparación de compuestos de fórmulas generales (la) 6,5-*trans* y (lb) 6,5-*cis*-fusionado, donde n=1;
- La **figura 2** da a conocer, representado esquemáticamente en el Esquema 2, el proceso sintético para la preparación de compuestos de fórmulas generales (la) 7,5-*trans* y (lb) 7,5-*cis*-fusionado, donde n=2;
 - La figura 3 da a conocer, representado esquemáticamente en el Esquema 3, el proceso de ciclación.
 - Las **figuras 4-5** dan a conocer, representada esquemáticamente en los Esquemas 4 y 5, la preparación de los derivados biológicamente activos de la invención;
- (IIa) y (IIb) y de un derivado biológicamente activo de estos; en concreto, en la figura 4, esquema 4, se explica la preparación del derivado 6,5- y 7,5- *cis* y en la figura 5, esquema 5, se explica la preparación del derivado 6,5- y 7,5- *trans*.
 - La figura 6, Esquema A, da a conocer la preparación de los productos iniciales.
 - Las **figuras 7a, 7b, 7c y 7d** ilustran ejemplos de sistemas de anclaje empleados para la preparación de construcciones multiméricas de la invención.
- Las **figuras 8a, 8b, 8c** ilustran ejemplos de quelantes preferidos para o bien ¹¹¹ln y lantánidos como Gd³⁺ paramagnético o para lantánidos radiactivos como, por ejemplo, ¹⁷⁷Lu, ⁹⁰Y, ¹⁵³Sm y ¹⁶⁶Ho.
 - Las **figuras 9a, 9b** ilustran ejemplos de quelantes preferidos de un ión metálico radiactivo como 90m Tc, 186 Re v 188 Re.
- La **figura 10** presenta el espectro ¹H-RMN (14,1 T, 298 K) de la preparación del agente LIPOCEST biotinilado del ejemplo 1. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 3 ppm.
 - La **figura 11** da a conocer el espectro z normalizado de la preparación del compuesto LIPOCEST del ejemplo 1 (7 T, pulso irrad.: rectangular, potencia irrad. 6 mT, tiempo irrad. 2 s, 312 K).
- La **figura 12** presenta el correspondiente espectro ST de la preparación del compuesto LIPOCEST del ejemplo 1. Se observó un % de transferencia de saturación (ST) de alrededor 70 % a 3 ppm del agua circundante.
 - La **figura 13** presenta el espectro ¹H-RMN (14,1 T, 298 K) de la preparación del agente LIPOCEST biotinilado del ejemplo 2.

La **figura 14** presenta los espectros z normalizados de muestras diluidas de la preparación del agente LIPOCEST biotinilado del ejemplo 2 (7 T, pulso irrad.: rectangular, potencia irrad. 6 mT, tiempo irrad. 2 s, 312 K).

La **figura 15** presenta el espectro ¹H-RMN (14,1 T, 298 K) de la preparación del LIPOCEST del ejemplo 3. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 10 ppm.

La **figura 16** presenta el espectro ¹H-RMN (14,1 T, 298 K) de la preparación del LIPOCEST del ejemplo 4. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 19,3 ppm.

La **figura 17** presenta el espectro ¹H-RMN (14,1 T, 298 K) de la preparación del LIPOCEST del ejemplo 5. La diferencia de desplazamiento químico entre el aqua intraliposomal y circundante fue de -36 ppm.

La **figura 18** presenta el espectro ¹H-RMN (14,1 T, 298 K) de la preparación del LIPOCEST del ejemplo 6. La diferencia de desplazamiento guímico entre el agua intraliposomal y circundante fue de 3 ppm.

La **figura 19** presenta los espectros ST de los dos sedimentos celulares del ejemplo 7, que incluye el primero las células HUVEC tratadas con el LIPOCEST biotinilado y el segundo únicamente las células HUVEC como control (7 T, pulso irrad.: rectangular, potencia irrad. 12 µT, tiempo irrad. 2 s, 293 K).

La **figura 20** presenta las imágenes CEST-RM registradas para los dos sedimentos celulares del ejemplo 7, [on- (irradiación a 10 ppm del agua circundante), off- (irradiación a -10 ppm del agua circundante), y (on-off)] del fantoma hecho de dos capilares que contienen los dos sedimentos celulares.

SECCIÓN EXPERIMENTAL

20 <u>Definición de términos y abreviaturas</u>

[0237]

5

CEST Transferencia de saturación potenciada por el contraste

ATCC: American Type Culture Cell

25 MEM: Medio mínimo fundamental

BO: Boletín Oficial

PBS: Solución salina fosfatada de Dulbecco sin Ca++ ni Mg++

Ta: Temperatura ambiente

EBM: Medio basal de células endoteliales

30 EGM: Medio de crecimiento endotélico

HUVEC: Células endoteliales de vena umbilical humana

DMEM: Medio de Eagle modificado por Dulbecco

FCS: Suero fetal bovino RGD: Arg-Gly-Asp

35 Fmoc o fmoc 9-fluorenilmetiloxicarbonilo

NHS N-hidroxisuccinimida

DMF dimetilformamida

DMAP 4-dimetilaminopiridina

TEA Trietilamina

40 MeCN acetonitrilo

MsCl cloruro de metansulfonilo

DCM diclorometano

DMSO dimetilsulfóxido

TFA ácido trifluoroacético

Cbz benciloxicarbonilo

5 Boc t-butiloxicarbonilo

Ser Serina

Pro Prolina

Gly

30

35

Arg Arginina

10 POP 1-palmitoil-2-oleoil-sn-glicero-3-fosfocolina

DSPE-PEG2000Biotina 1,2-diestearoil-sn-glicero-3-fosfoetanolamina-N-

Glicina

[Biotinil(Polietilenglicol)2000] (sal de amonio)

DPDP 1,2-dipalmitoil-sn-glicero-3-fosfocolina

DPPC 1,2-dipalmitoil-sn-glicero-3-fosfocolina

15 DIPEA Diisopropiletilamina

HBTU (hexafluorofosfato de 2-(1H-benzotriazol-1-il)-1,2,3,3-tetrametiluronio

ST Transferencia de saturación

[0238] En los siguientes ejemplos se ilustran la preparación y las pruebas con respecto a los derivados novedosos de pentapéptidos cíclicos de la invención. Los parámetros específicos que se incluyen en los siguientes ejemplos están pensados para ilustrar la práctica de la invención, y no se presentan para limitar de modo alguno el alcance de la invención. Un técnico experto puede que comprenda que puede que se adopten del mismo modo enfoques de preparación distintos en función de los procedimientos sintéticos bien conocidos en la técnica.

[0239] Observaciones generales: los datos de ¹H-RMN y ¹³C-RMN presentados para los compuestos preparados se han registrado en los disolventes indicados mediante un instrumento Brüker Avance-400 a 400 MHz y 100,6 MHz respectivamente. Los valores de desplazamiento químico están indicados en ppm y las constantes de acoplamiento en Hz. Las potencias de rotación óptica se miden mediante un polarímetro modelo 241 de Perkin-Elmer. Se lleva a cabo una cromatografía de capa fina (CCF) mediante placas Merck F-254. Se lleva a cabo una cromatografía rápida en columna (flash) mediante gel de sílice 60, 230-400 mesh de Macherey-Nagel. Los disolventes se anhidrifican de acuerdo con procedimientos estándar y las reacciones que requieren condiciones anhidras se realizan en una atmósfera de argón. Se ha llevado a cabo una espectrometría de masas FAB⁺ mediante un espectrofotómetro VG 7070 EQ-HF, se ha llevado a cabo una espectrometría de masas ESI⁺ mediante un espectrofotómetro Bruker Esquire 3000 plus.

[0240] La caracterización de los agentes LIPOCEST se ha llevado a cabo por 1H-RMN mediante un espectrofotómetro Bruker Avance 600. En los ejemplos de más adelante se mencionan los detalles de cada una de las condiciones adoptadas.

40 **[0241]** Las imágenes RM-CEST se han obtenido en un espectrofotómetro Bruker Avance 300 equipado con una sonda de microimagen.

Preparación de los pentapéptidos cíclicos

- 45 Funcionalización de los compuestos que derivan de una ciclación 1,3 dipolar (Esquema 1 y Esquema 2)
 - a) protección del grupo amino libre

[0242] A una solución del producto $\mathbf{5}$ o $\mathbf{14}$ (0,51 mmol) en CH_2CI_2 anhidro (5 ml) en una atmósfera de argón y a temp. ambiente, se le añaden en el siguiente orden TEA (184 μ I, 1,33 mmol), Cbz-Cl (95 μ I, 0,61 mmol) y por último DMAP (15 mg, 0,126 mmol). La solución se deja en agitación durante 18 horas aproximadamente. Transcurrido este periodo de tiempo, se extrae con CH_2CI_2 (5 ml) y se lava con NH_4CI (2 x 5ml). La fase orgánica, secada sobre Na_2SO_4 , se lleva a evaporar y el producto crudo obtenido de este modo se purifica por cromatografía rápida en columna (EtOAc/ETP 7:3 \rightarrow 8:2) para obtener el producto deseado en forma de espuma blanca (60 %-78 %).

Caracterización del compuesto 5-Cbz

10

15

20

25

35

40

[0243] Rendimiento: 78 %. [α]_D²² = -13,7 (c =1;0, CHCl₃). ¹H-RMN (400 MHz, CDCl₃): δ 1,48 (s, 9H, C(CH_3)₃); 1,6 (m, 1H, H-5); 1,7 (m, 1H, H-7); 2,06 (m, 1H, H-8); 2,2 (m, 1H, H-8); 2,23 (m, 1H, H-7); 2,3 (m, 1H, H-5); 2,75 (m, 1H, H-4); 2,92 (bs, 1H, OH); 3,6 (dd, 1H, HCHOH); 3,71 (m, 1H, HCHOH); 3,72 (m, 1H, H-6); 4,38 (t, 1H, H-3); 4,48 (d, 1H, H-9); 5,15 (dd, 2H, CH_2 Ph); 6,0 (d, 1H, NHCbz); 7,28-7,42 (m, 5H, protones aromáticos). ¹³C RMN (100,6 MHz, CDCl₃): δ 171,7; 168,1; 156,7; 136,4; 128,5; 128,8; 127,9; 82,4; 66,9; 63,5; 58,9; 55,7; 52,1; 37,9; 32,5; 32,0; 31,6; 29,7; 29,2; 27,9, MS [FAB †]: 419,3 [M+1] † . Análisis elemental calculado $C_{22}H_{30}N_2O_6$: C 63,14; H 7,23; N 6,69; encontrado C 62,16; H 7,25; N 6,67.

Caracterización del compuesto 14-Cbz

[0244] Rendimiento: 60 %. $[\alpha]_D^{22} = -25.5$ (c = 1.0, CHCl₃). ¹H-RMN (400 MHz, CDCl₃): δ 1,48 (s, 9H, C(CH₃)₃); 1,51 (m, 1H, H-6); 1,53 (m, 1H, H-4); 1,75 (m, 1H, H-5); 1,83 (m, 1H, H-6); 1,98 (m, 1H, H-9); 2,0 (m, 1H, H-5); 2,2 (m, 1H, H-9); 2,25 (m, 1H, H-8); 2,33 (m, 1H, H-8); 3,4 (t, 1H, HCHOH); 3,72 (d, 1H, OH); 3,82 (d, 1H, OH); 4,03 (t, 1H, OH-7); 4,42 (dd, 1H, OH-3); 4,5 (d, 1H, OH-10); 5,15 (dd, 2H, OH-2Ph); 6,48 (d, 1H, OH-10); 7,31-7,43 (m, 5H, protones aromáticos). ¹³C RMN (100,6 MHz, CDCl₃): δ 170,5; 170,3; 158,0; 136,0; 128,6; 128,2; 128,1; 81,6; 67,5; 64,5; 61,0; 58,7; 55,5; 42,5; 33,9; 32,1; 30,9; 29,7; 29,3; 28,0; 27,2, MS [ESI[†]]: 433,3 [M+H][†]; 455,3 [M[†]Na][†]. Análisis elemental calculado $C_{23}H_{32}N_2O_6$: C 63,87; C 7,46; C 8,648; encontrado C 63,85; C 7,47; C 8,47.

30 b) Síntesis de derivados de azida

[0245] A una solución del producto **5-Cbz** o **14-Cbz** (0,29 mmol) en CH₂Cl anhidro (4 ml) en una atmósfera de argón y a temp. ambiente, se le añaden en el siguiente orden MsCl (846 µl, 0,59 mmol), y TEA (165 µl, 1,18 mmol). La solución se deja en agitación durante 45 minutos aproximadamente. Transcurrido este periodo de tiempo, se extrae con CH₂Cl y se lava con NH₄Cl. La fase orgánica, secada sobre Na₂SO₄, se evapora y el producto crudo obtenido de este modo se disuelve en DMF (3,2 ml) y, en atmósfera de argón y a temp. ambiente, se añade NaN₃ (154 mg, 2,37 mmol). La reacción se deja en agitación a 80 °C durante 18 horas aproximadamente. Transcurrido este periodo de tiempo, el DMF se evapora a sequedad, y el producto crudo se disuelve en CH₂Cl₂ y se lava con H₂O. La fase orgánica, secada sobre Na₂SO₄, se lleva a sequedad y el producto crudo obtenido de ese modo se purifica por cromatografía rápida en columna (AcOEt/ETP 7:3) para obtener el producto deseado en forma de espuma blanca (76 %-90 %).

Caracterización del compuesto 6

[0246] Rendimiento: 76 %. [α]_D²² = +19,0 (c = 1,0, CHCl₃). ¹H-RMN (400 MHz, CDCl₃): δ 1,48 (s, 9H, C(C H_3)₃); 1,61 (m, 1H, H-5); 1,72 (m, 1H, H-7); 2,08 (m, 1H, H-8); 2,14 (m, 1H, H-8); 2,24 (m, 1H, H-7); 2,31 (m, 1H, H-5); 2,9 (m, 1H, H-4); 3,28 (dd, 1H, J= Hz, HCHN₃); 3,48 (dd, 1H, HCHN₃); 3,7 (m, 1H, H-6); 4,31 (t, 1H, H-3); 4,39 (d, 1H, H-9); 5,15 (s, 2H, CH_2 Ph); 6,0 (bs, 1H, NHCbz); 7,28-7,42 (m, 5H, PH0,5H, PH1,5H, P0,5H, P1,5H, P

Caracterización del compuesto 15

[0247] Rendimiento: 90 %. [α]_D²² = -13,8 (*c* = 1,0, CHCl₃). ¹H-RMN (400 MHz, CDCl₃): δ 1,48 (s, 9H, C(CH₃)₃); 1,5 (m, 1H, *H*-5); 1,68 (m, 1H, *H*-4); 1,70 (m, 1H, *H*-6); 1,72 (m, 1H, H8); 1,82 (m, 1H, *H*-5); 1,98 (m, 1H, *H*-9); 2,13 (m, 1H, *H*-6); 2,21 (m, 1H, *H*-9); 2,34 (m, 1H, *H*-8); 3,26 (dd, 1H, J=18,9 Hz, J=12,1 Hz, *H*CHN₃); 3,65 (dd, 1H, *H*CHN₃); 4,09 (t, 1H, J= 9,0 Hz, *H*-7); 4,42 (dd, 1H, *H*-3); 4,46 (dd, 1H, J= 8,7 Hz, J= 2,0 Hz, *H*-10); 5,12 (dd, 2H, J=15,7 Hz, J=12,2 Hz, CH₂Ph); 6,08 (d, 1H, J= 7,18 Hz, N*H*Cbz); 7,3-7,42 (m, 5H, *protones aromáticos*). ¹³C
RMN (100,6 MHz, CDCl₃): δ 170,5; 169,7; 156,6; 136,3; 128,5; 128,1; 81,6; 67,1; 60,9; 58,3; 55,9; 53,7; 40,9; 33,3; 31,9; 31,5; 28,0; 27,2, MS [ESI[†]]: 448,2 [M+H][†]; 480,2 [M+Na][†]. Análisis elemental calculado C₂₃H₃₁N₅O₅: C 60,38; H 6,83; N 15,31; encontrado C 60,36; H 6,84; N 15,32.

Reducción de derivados de azida

[0248] A una solución del producto 6 o 15 (0,034 mmol) en CH_2CI_2 anhidro (350 μ I) en una atmósfera de argón y a temp. ambiente, se le añade Me_3P 1M en tolueno (51 μ I, 0.051 mmol). Transcurridas 2 horas aproximadamente, tras la finalización de la reacción, la reacción se extrae con CH_2CI_2 (1 mI), y se añade H_2O (1 mI), y la mezcla se deja en agitación durante aproximadamente 10 minutos. Transcurrido este periodo de tiempo, se separan las dos fases. La fase orgánica, secada sobre Na_2SO_4 , se evapora a sequedad.

Caracterización del compuesto 7

10

15

20

25

30

35

40

50

55

[0249] Rendimiento: 93 %. [α] $_{D}^{22}$ = -13,9 (c = 1,0, CHCl $_{3}$). 1 H-RMN (400 MHz, CDCl $_{3}$): δ 1,47 (s, 9H, C(CH $_{3}$) $_{3}$); 1,55 (m, 1H, H-5); 1,72 (m, 1H, H-7); 2,07 (m, 1H, H-8); 2,16 (m, 1H, H-8); 2,21 (m, 1H, H-7); 2,30 (m, 1H, H-5); 2,68 (m, 1H, H-4); 2,72-2,97 (m, 2H, CH $_{2}$ NH $_{2}$); 3,73 (m, 1H, H-6); 4,31 (t, 1H, H-3); 4,41 (d, 1H, H-9); 5,15 (s, 2H, CH $_{2}$ Ph); 6,4 (d, 1H, NHCbz); 7,23-7,42 (m, 5H, protones aromáticos). 13 C RMN (100,6 MHz, CDCl $_{3}$): δ 170,8; 168,1; 156,4; 136,6; 128,5; 128,0; 127,9; 81,8; 67,8; 58,9; 55,6; 53,0; 32,5; 32,0; 29,7; 29,3; 28,0, MS [ESI $^{+}$]: 418,4 [M+H] $^{+}$. Análisis elemental calculado $C_{22}H_{31}N_{3}O_{5}$: C 63,29; H 7,48; N 10,06; encontrado C 63,27; H 7,47; N 10,08.

Caracterización del compuesto 16

[0250] Rendimiento: 76 %. [α]_D²² = -14,5 (c = 1,0, CHCl₃), ¹H-RMN (400 MHz, CDCl₃): δ 1,45 (s, 9H, C(C H_3)₃); 1,5 (m, 1H, H-5); 1,53 (m, 1H, H-4); 1,65 (m, 1H, H-6); 1,72 (m, 1H, H8); 1,81 (m, 1H, H-5); 1,98 (m, 1H, H-9); 2,14 (m, 1H, H-6); 2,21 (m, 1H, H-9); 2,33 (m, 1H, H-8); 2,83 (m, 2H, C H_2 NH₂); 4,08 (m, 1H, m-7); 4,41 (m, 1H, m-3); 4,47 (m, 1H, m-8); 5,13 (m-10, 5,13 (m-11, m-11, m-11, m-12, m-13, m-14, m-15, m-16, m-16, m-16, m-17, m-18, m-18, m-19, m-19,

Preparación de derivados de amida del pentapéptido cíclico que contiene la secuencia RGD (Esquema 4 y Esquema 5)

a) Síntesis de derivados de azida

[0251] A una solución del producto **17-20** (0,055 mmol) en CH_2CI_2 anhidro (700 µI) en una atmósfera de argón y a temp. ambiente, se le añaden en el siguiente orden MsCI (8,5 µI, 0,11 mmol), y TEA (30 µI, 0,22 mmol). La solución se deja en agitación durante 30 minutos aproximadamente. Transcurrido este periodo de tiempo, el disolvente se evapora a sequedad y el producto crudo se filtra sobre gel de sílice ($CH_2CI_2/MeOH$ 9:1). El producto crudo obtenido de este modo se disuelve en DMF (550 µI) y, en atmósfera de argón y a temperatura ambiente, se añade NaN₃ (36 mg, 0,55 mmol). La reacción se deja en agitación a 80 °C durante 18 horas aproximadamente. Transcurrido este periodo de tiempo, el DMF se evapora a sequedad, y el producto crudo se disuelve en CH_2CI_2 y se lava con H_2O . La fase orgánica, secada sobre Na_2SO_4 , se evapora y el producto crudo obtenido de ese modo se purifica por cromatografía rápida en columna ($CH_2CI_2/iPrOH$ 9:1 \rightarrow 8:2) para obtener el producto deseado en forma de espuma blanca (30 %-75 %).

45 Caracterización del compuesto 21

[0252] Rendimiento: 62 %. (Sólido blanco). [α]_D²² = -6,3 (c = 1,0, CHCl₃). ¹H RMN (400 MHz, Acetona-D6): δ 1,23 (s, 6H, C(CH₃)₂ Pmc); 1,38 (s, 9H, C(CH₃)₃); 1,44 (m, 1H, $H\beta$ Arg); 1,47 (m, 1H, H-7); 1,49 (m, 1H, H-8); 1,51 (m, 1H, $H\beta$ Arg); 1,60 (m, 1H, H[@ Arg); 1,72 (m, 2H, CH₂CH₂Ar Pmc); 1,74 (m, 1H, H-5); 1,80 (m, 1H, $H\gamma$ Arg); 2,02 (s, 3H, CH₃ Pmc); 2,1 74 (m, 1H, H-5); 2,12 (m, 1H, H-4); 2,18 (m, 1H, H-7); 2,3 (m, 1H, H-8); 2,48 (s, 3H, CH₃ Pmc), 2,50 (s, 3H, CH₃ Pmc), 2,54 (m, 2H, CH₂CH₂Ar Pmc); 2,60 (m, 1H, $H\beta$ Asp); 2,91 (m, 1H, $H\beta$ Asp); 3,17 (m, 1H, $H\delta$ Arg); 3,19 (m, 1H, CH₂N₃); 3,23 (m, 1H, $H\delta$ Arg); 3,48 (m, 1H, CH₂N₃); 3,6 (m, 1H, $H\alpha$ Gly); 3,8 (m, 1H, $H\alpha$ Gly); 4,0 (m, 1H, H-6); 4,17 (m, 1H, H-9); 4,4 (m, 1H, H-3); 4,63 (m, 1H, $H\alpha$ Arg); 4,72 (m, 1H, $H\alpha$ Asp); 6,14 (bs, 1H, (NH)₂C=NH); 6,37 (bs, 2H, (NH)₂C=NH); 7,32-7,48 (m, 2H, NH Arg, NH bicíclico); 7,8 (bs, 1H, NH Gly); 8,12 (bs, 1H, NH Asp). ¹³C RMN HETCOR (400 MHz, Acetona-D6): δ 67,5; 54,8; 51,8; 51,4; 50,2; 49,4;45,8;40,1;39,9; 34,7; 32,8; 31,8;31,5;30,2; 28,1; 27,2; 26,8; 25,2; 21,3; 18,5; 17,5; 12,1. MS [FAB⁺]: calculado para C₄₀H₅₉N₁₁O₁₀S: 885,42; encontrado: 886 [M + H]⁺. Análisis calculado para C₄₀H₅₉N₁₁O₁₀S: C 54,22; H 6,71; N 17,39; encontrado C 54,20; H 6,72; N 17,37.

60 Caracterización del compuesto 23

[0253] Rendimiento: 30 %. (Sólido blanco). $[\alpha]_D^{22} = -65,15$ (c = 1,0, Acetona). ¹H RMN (400 MHz, Acetona-D6): δ 1,18 (s, 6H, C(CH₃)₂ Pmc); 1,3 (s, 9H, C(CH₃)₃); 1,44 (m, 1H, H-8); 1,45 (m, 3H, H-6, H γ Arg); 1,5 (m, 1H, H β Arg); 1,57 (m, 1H, H β Arg); 1,62 (m, 1H, H-4); 1,65 (m, 1H, H-5); 1,7 (m, 2H, CH₂CH₂Ar Pmc); 1,73 (m, 2H, H-5,

H-9); 1,95 (m, 1H, H-9); 1,96 (s, 3H, CH_3 Pmc); 1,98 (m, 1H, H-6); 2,13 (m, 1H, H-8); 2,46 (s, 3H, CH_3 Pmc); 2,48 (s, 3H, CH_3 Pmc); 2,55 (m, 2H, CH_2CH_2Ar Pmc); 2,7 (m, 1H, $H\beta$ Asp); 2,78 (m, 1H, $H\beta$ Asp); 3,07 (m, 1H, $HCHN_3$); 3,11 (m, 2H, $H\delta$ Arg); 3,56 (m, 1H, $HCHN_3$); 3,63 (m, 1H, $H\alpha$ Gly); 3,87 (m, 1H, H-7); 3,93 (m, 1H, $H\alpha$ Gly); 4,33 (m, 1H, $H\alpha$ Asp); 4,35 (m, 1H, H-3); 4,42 (m, 1H, $H\alpha$ Arg); 4,64 (m, 1H, H-10); 6,25 (bs, 1H, (NH) $_2C$ =N $_1$); 6,36 (bs, 2H, (N $_2$) $_2C$ =N $_1$); 7,46 (m, 1H, N $_3$ bicíclico); 7,77-7,9 (m, 2H, N $_3$ GRMN HETCOR (400 MHz, Acetona-D6): δ 61,2; 58,9; 53,5; 53,3; 53,1; 51,4; 43,6; 40,3; 39,6; 36,3; 33,3; 33,1; 31,6; 28,7; 27,3; 26,9; 26,1; 25,8; 25,5; 21,0; 18,0; 16,9; 11,4, MS [ESI $_2$]: calculado para C_4 1 $_1$ 1 $_1$ 1 $_2$ 100S: 899,43; encontrado: 900,9 [M + H] $_2$ 1. Análisis calculado para C_4 1 $_1$ 1 $_2$ 1 $_3$ 1 $_4$ 1 $_4$ 1 $_4$ 2 $_4$ 2, N 17,11.

Caracterización del compuesto 25

10

15

20

25

30

35

45

50

55

60

[0254] Rendimiento: 60 %. (Blanco sólido). [α]_D²² = -65,83 (c = 1,15, CHCl₃). ¹H RMN (400 MHz, Acetona-D6): δ 1,27 (m, 1H, H-5); 1,30 (s, 6H, C(CH₃)₂ Pmc); 1,45 (s, 9H, C(CH₃)₃); 1,52 (m, 1H, Hβ Arg); 1,59 (m, 1H, H-7); 1,60 (m, 1H, Hγ Arg); 1,62 (m, 1H, Hβ Arg); 1,81 (m, 2H, CH₂CH₂Ar Pmc); 1,98 (m, 1H, Hγ Arg); 2,0 (m, 1H, H-8); 2,1 (s, 3H, CH₃ Pmc); 2,38 (m, 1H, H-5); 2,42 (m, 1H, H-7); 2,43 (m, 1H, H-8); 2,56 (s, 3H, CH₃ Pmc); 2,58 (s, 3H, CH₃ Pmc); 2,6 (m, 1H, Hβ Asp); 2,62 (m, 2H, CH₂CH₂Ar Pmc); 2,9 (m, 1H, H-4); 2,95 (m, 1H, Hβ Asp); 3,19 (m, 1H, Hδ Arg); 3,25 (m, 1H, Hδ Arg); 3,37 (m, 2H, CH₂N₃); 3,62 (d, 1H, J = 13,3 Hz, Hα Gly); 4,1 (m, 1H, H-6); 4,12 (m, 1H, Hα Gly); 4,25 (m, 2H, H-9); 4,39 (m, 1H, H-3); 4,6 (m, 1H, Hα Arg); 4,67 (m, 1H, Hα Asp); 6,12 (bs, 1H, (NH)₂C=NH); 6,35 (bs, 2H, (NH)₂C=NH); 7,32-7,48 (m, 2H, NH Arg, NH bicíclico); 7,82 (bs, 1H, NH Gly); 8,1 (bs, 1H, NH Asp), 13 C RMN HETCOR (400 MHz, Acetona-D6): $\bar{\delta}$ 62,5; 55,7; 53,4; 51,2; 42,7; 40,6; 40,3; 36,3; 35,5; 34,9;33,4; 33,3; 30,0; 28,4; 28,3; 27,5; 26,0; 22,1; 20,8;17,9;16,7;13,2;11,4. MS [FAB[†]]: calculado para C₄₀H₅₉N₁₁O₁₀S: 885,42; encontrado: 886 [M + H][†]. Análisis calculado para C₄₀H₅₉N₁₁O₁₀S: C 54,22; H 6,71; N 17,39; encontrado C 54,21; H 6,73; N 17,38.

Caracterización del compuesto 27

[0255] Rendimiento: 75 %. (Sólido blanco). [α]_D²² = -35,74 (c = 1,2, CHCl₃), ¹H-RMN (400 MHz, CDCl₃): δ 1,32 (s, 6H, C(CH₃)₂ Pmc); 1,46 (s, 9H, C(CH₃)₃); 1,48 (m, 1H, H-6); 1,5 (m, 1H, Hβ Arg); 1,60 (m, 1H, Hγ Arg); 1,62 (m, 1H, Hβ Arg); 1,65 (m, 1H, H-5); 1,7 (m, 1H, H-4); 1,73 (m, 1H, H-8); 1,82 (m, 2H, CH₂CH₂Ar Pmc); 1,96 (m, 1H, Hγ Arg); 2,02 (m, 1H, H-9); 2,1 (m, 1H, H-5); 2,11 (s, 3H, CH₃ Pmc); 2,21 (m, 1H, H-8); 2,23 (m, 1H, H-9); 2,45 (m, 1H, Hβ Asp); 2,56 (s, 3H, CH₃ Pmc); 2,58 (s, 3H, CH₃ Pmc); 2,64 (m, 2H, CH₂CH₂Ar Pmc); 2,87 (m, 1H, Hβ Asp); 3,18 (m, 2H, Hδ Arg); 3,22 (m, 1H, HCHN₃); 3,53 (d, 1H, J =13,0 Hz, Hα Gly); 3,62 (m, 1H, HCHN₃); 4,24 (m, 1H, H-7); 4,26 (m, 1H, Hα Gly); 4,41 (m, 2H, H-10); 4,59 (m, 1H, Hα Arg); 4,61 (m, 1H, H-3); 4,96 (m, 1H, Hα Asp); 6,32 (bs, 3H, (NH)₂C=NH); 7,46-7,58 (m, 3H, NH Gly, NH Arg, NH bicíclico); 7,9 (bs, 1H, NH Asp). ¹³C RMN HETCOR (400 MHz, CDCl₃): δ 63,4; 58,9; 55,0; 53,8; 51,9; 49,7; 44,3; 40,5; 39,3; 35,2; 33,0; 32,5; 32,6; 31,2; 28,0; 27,8; 26,7; 25,3; 21,3; 18,6; 17,3; 11,9. MS [FAB⁺]: calculado para C₄₁H₆₁N₁₁O₁₀S: 899,43; encontrado: 901 [M + H]⁺. Análisis calculado para C₄₁H₆₁N₁₁O₁₀S: C 54,71; H 6,83; N 17,12; encontrado C 54,70; H 6,83; N 17,11.

40 b) Hidrogenación del grupo azida

[0256] A una solución del producto 21, 23, 25 o 27 (0,03 mmol) en MeOH (1 ml) se le añade una cantidad catalítica de 10 % de Pd/C. La suspensión se deja en agitación en atmósfera de hidrógeno durante 4 horas. Transcurrido ese periodo de tiempo, la mezcla de reacción se filtra sobre Celite, la fase orgánica se evapora a sequedad y las aminas crudas se utilizan en la reacción siguiente sin someterlas a una purificación.

c) Síntesis de las amidas 22, 24, 26 y 28

[0257] A una solución de R₆COOH (0,043 mmol) y HBTU (0,050 mmol) en CH₂Cl₂ anhidro (0,5 mL), se le añadió gota a gota una solución de **21-NH₂** (o **23-NH₂** o **25-NH₂** o **27-NH₂**) (0,023 mmol) y DIPEA (0,115 mmol) en CH₂Cl₂ anhidro (0,5 mL). La mezcla de reacción se agitó a temperatura ambiente durante 18 horas y a continuación se añadió una cantidad adicional de CH₂Cl₂ (3 mL). La solución se lavó con NaHCO₃ acuoso saturado (3x5 mL) y luego con KHSO₄ acuoso 1M (1x5 mL). La fase orgánica se separó, secó (Na₂SO₄) y evaporó. El residuo se purificó por cromatografía rápida en columna. El sólido obtenido se disolvió en TFA/tioanisol/1,2-etanditiol/anisol (90:5:3:2, v/v/v/v; 1 mL) y la solución se agitó durante 4 horas a temperatura ambiente. La mezcla se evaporó, el residuo se disolvió en H₂O (4 mL) y la solución se lavó con éter diisopropílico (2x5 mL). La fase acuosa se evaporó y el residuo se purificó por HPLC de preparación (eluyente A: 97 % H₂O, 3 % CH₃CN + 0,1 % TFA; eluyente B: CH₃CN + 0,1 % TFA; flujo: 4 mL/min; fase estacionaria: columna Waters X-terra RP18 5 μm, 19x50 mm; detección: UV, λ: 220 nm) para obtener el producto **22** (o **24** o **26** o **28**) en forma de sólido blanco.

Preparación de ligandos quelantes

[0258] Preparación del compuesto 5 de la figura 8a, en lo sucesivo denominado compuesto F.

a) preparación de la sustancia intermedia B

[0259]

5

10

15

[0260] Se disolvió 2-aliloxietanol **A** (20,2 mL; 19,2 g; 189 mmol) en THF anhidro (115 mL) y se añadió Na (4,12 g; 1,18 mmol) en pequeñas porciones a 0 °C. La mezcla se agitó a temperatura ambiente durante 2 horas y a continuación se añadió THF anhidro (22 mL) ofreciendo la precipitación de un sólido blanco. La suspensión se agitó a temperatura ambiente durante 1 día. Se añadió gota a gota ácido bromoacético (12,4 g; 0,09 mmol) disuelto en THF anhidro (20 mL) y la solución se agitó durante 48 horas. La mezcla se diluyó con EtOH (150 mL) y luego con agua (20 mL), manteniendo la temperatura a 0 °C. Los disolventes se evaporaron a vacío para obtener un aceite amarillo. El residuo se disolvió en agua (150 mL) y la solución se lavó con Et₂O (2x100 mL) y CHCl₃ (2x100 mL). Se añadió un 37 % de HCl a la fase acuosa para alcanzar un pH 1 y la solución se extrajo con CHCl₃ (4x100 mL). La capa orgánica se separó, secó (Na₂SO₄) y evaporó a vacío para obtener el compuesto **B** (5,42 g; 71,8 mmol). Rendimiento 38 %.

20 **[0261]** MS (ESI+): C₇H₁₂O₄; calc. 160,07; encontrado 161,1 (M+H)⁺.

b) preparación de la sustancia intermedia C

[0262]

25

35

45

50

[0263] Se añadió gota a gota una solución de bromuro de bencilo (4,56 mL; 6,57 g; 38,0 mmol) en tolueno (30 mL) a una solución del compuesto **B** (5,13 g; 32,0 mmol) y DBU (4,77 mL; 4,87 g; 32,0 mmol) en tolueno (70 mL). Transcurridas 2 horas, la mezcla se filtró y evaporó a vacío. El residuo se disolvió en CHCl₃ (50 mL) y la solución se lavó con agua (3x50 mL). La capa orgánica se separó, secó (Na₂SO₄) y evaporó a vacío. El residuo (7,23 g) se purificó por cromatografía rápida en columna (eluyente: 80:20 v/v éter de petróleo/EtOAc) para obtener el compuesto C (5,40 g; 21,6 mmol) en forma de aceite amarillo. Rendimiento 68 %.

[0264] MS (ESI⁺): C₁₄H₁₈O₄; calc. 250,12; encontrado 251,1 (M+H)⁺.

c) preparación de la sustancia intermedia D

40 **[0265]**

[0266] Se añadió gota a gota una solución de MCPBA (3,96 g; 23,0 mmol) en CHCl₃ (70 mL) a una solución de compuesto **C** (5.20 g; 21.0 mmol) en CHCl₃ (50 mL). La mezcla se agitó durante 48 horas y a continuación se lavó con un 10 % de Na₂SO₃ acuoso (3x150 mL) y agua (3x150 mL). La capa orgánica se separó, secó (Na₂SO₄) y evaporó a vacío. El residuo (4,88 g) se purificó por cromatografía rápida en columna (eluyente: 1:1 v/v CH₂Cl₂/Et₂O) para obtener el compuesto **D** (4,05 g; 15,1 mmol) en forma de aceite amarillo. Rendimiento 72 %.

d) preparación de la sustancia intermedia E

tBuOOC COOtBu

tBuOOC D

TEA
ACN

[0268] Se añadió gota a gota una solución del compuesto **D** (2,44 g; 9,20 mmol) en MeCN (30 mL) a una solución de DO3A tris-terc-butil éster (3,19 g; 6,20 mmol) y trietilamina (1,27 mL; 9,20 mmol) en MeCN (30 mL). La mezcla se agitó a 50 °C durante 32 horas y luego se enfrió a temperatura ambiente y se evaporó a vacío. El residuo se disolvió en CHCl₃ (50 mL) y la solución se lavó con agua (50 mL) y salmuera (50 mL). La capa orgánica se separó, secó (Na₂SO₄) y evaporó a vacío. El residuo (6,48 g) se purificó por cromatografía rápida en columna (eluyente 9:1;0,1 v/v/v CHCl₃/MeOH/NH₄OH) para obtener el compuesto **E** (2,87 g; 3,66 mmol) en forma de aceite amarillo. Rendimiento 59 %.

MS (ESI⁺): C₄₀H₆₈N₄O₁₁; calc. 780,49, encontrado 803,5 (M+Na)⁺

e) desprotección de E para dar lugar al producto F

15 **[0269]**

5

10

20

[0270] Se añadió un 10 % de Pd/C (28 mg) a una solución de la sustancia intermedia **E** (140 mg; 0,18 mmol) en MeOH (10 mL). La mezcla de reacción se agitó en una atmósfera de hidrógeno durante 2 horas y luego se filtró en un aparato Millipore[®] (FH 0,5 µm) y se evaporó para dar lugar al compuesto **F** (110 mg; 0,16 mmol) en forma de aceite blanco. Rendimiento 88 %.

[0271] MS (ESI⁺): C₃₃H₆₂N₄O₁₁; calc. 690,44; encontrado 713,4 (M+Na)⁺.

Enlazadores

5

20

25

[0272] Las moléculas preferidas de utilidad como enlazadores según la presente invención y enumeradas en la Tabla 1 son bien conocidas y ya están comercializadas o puede que se preparen con facilidad según la literatura citada y/o los procedimientos sintéticos conocidos.

[0273] La preparación del compuesto A32 de la tabla 1 se incluye a continuación a modo de ejemplo no limitativo.

10 [0274] El compuesto inicial de fórmula

se preparó según Arosio, D. *et. al.*, *Org. Biomol. Chem.* 2004, 2, 2113-2124. El grupo amino de este compuesto se protegió con CbzCl.

[0275] El derivado NBoc se acopló con propargilamina y el grupo de protección Boc se retiró para dar lugar al compuesto deseado según el siguiente esquema 7:

Preparación de compuestos según la fórmula (III)

a) <u>derivados biotinilados y derivados fluorescentes</u>

[0276] La preparación de los derivados biotinilados y fluorescentes comprende los siguientes pasos:

- 1) Preparación de los derivados de azida del compuesto peptidomimético.
- [0277] Esta preparación se ha llevado a cabo tal y como se ha descrito anteriormente y se ha representado esquemáticamente en el siguiente esquema 6.

Esquema 6

- 35 **2)** preparación del enlazador (A32);
 - 3) acoplamiento del enlazador con los residuos de biotina y fluoresceína.

[0278] Las reacciones de acoplamiento se han llevado a cabo según el siguiente esquema 7:

40

Esquema 7

5

[0279] El enlazador, el compuesto 17 del esquema, se conjugó a la molécula de biotina 19 mediante HBTU y DIPEA. La conjugación con fluoresceína para dar lugar al compuesto conjugado deseado 20 se llevó a cabo mediante la adición de éster 5(6)-carboxifluoresceína-N-hidroxisuccinimida 18, disponible comercialmente, a una solución básica de 17. 4) la reacción de acoplamiento entre las sustancias intermedias 6, 8 y 20, 21 ofrece los compuestos 22, 23, 24 y 25.

[0280] Este paso se ha llevado a cabo de acuerdo con el siguiente esquema 8:

Esquema 8

[0281] La reacción de acoplamiento entre el grupo azida en la fracción peptídica 6 y 8 y el y un grupo acetilénico terminal en los compuestos 20 y 21 se ha llevado a cabo según la llamada reacción de cicloadición 1,3-dipolar de la «química click» (véase, p. ej., Kolb, H et al., Angew. Chem. Int. Ed. 2001, 40, 2004-20021).

[0282] En el presente caso, en concreto, se adoptó la cicloadición [2+3] de Huisgen modificada por Sharpless de azida y acetileno para dar lugar a 1,2,3-triazoles (véase, p. ej., Rostovtsev, V.V. *et al. Angew. Chem. Int. Ed.* 2002, 40, 2004-20021). Esta reacción es quimioselectiva y regioselectiva, se lleva a cabo en condiciones templadas y, en general, se caracteriza por rendimientos altos.

[0283] Los compuestos de conjugación 22, y 24 se han obtenido con un rendimiento del 50 % - 80 %, respectivamente.

15 **[0284]** La misma reacción llevada a cabo entre 6 u 8 y el marcador de fluoresceína **20** dio lugar a los compuestos terminales **23** y **25** con unos rendimientos mayores (91 % -92 %).

b) Derivados de azúcar

5

10

20 **[0285]** La preparación se ha llevado a cabo según el procedimiento representado esquemáticamente en el siguiente Esquema **9**:

[0286] Los compuestos 11, 12, 13 y 14 se han preparado mediante una cicloadición 1,3-dipolar entre los pseudopéptidos 6 y 8 y 1-O-propargilo 2,3,4,6-tetra-O-acetil-β-D-glucosa 9 o 1-O-propargil-β-D-glucosa 10. La cicloadición se llevó a cabo mediante Cu(OAc)₂ y ascorbato de Na como catalizador en *t*BuOH/H₂O 1:1 de acuerdo con el esquema 9. La reacción se produjo en una noche a temperatura ambiente y se aislaron los productos deseados, tras una purificación por cromatografía rápida en columna con buenos rendimientos.

c) <u>Derivados de complejos quelatados</u>

5

10

Preparación del complejo quelatado 1

[0287] La preparación se ha llevado a cabo según el procedimiento representado esquemáticamente en el siguiente Esquema 10:

Esquema 10

a) preparación de la sustancia intermedia C

[0288] A una solución del compuesto $\bf B$ (0,043 mmol) y HBTU (0,050 mmol) en CH_2Cl_2 anhidro (0,5 mL), se añadió gota a gota una solución de $\bf A$ (0,023 mmol) y DIPEA (0,115 mmol) en CH_2Cl_2 anhidro (0,5 mL). La mezcla de reacción se agitó a temperatura ambiente durante 18 horas y luego se añadió una cantidad adicional de CH_2Cl_2 (3 mL). La solución se lavó con NaHCO $_3$ acuoso saturado (3x5 mL) y luego con KHSO4 acuoso 1M (1x5 mL). La fase orgánica se separó, secó (Na $_2SO_4$) y evaporó. El residuo se purificó por cromatografía rápida en columna (eluyente: 9:1 $CH_2Cl_2/MeOH$, v/v; fase estacionaria: SiO_2) ofreciendo el producto $\bf C$ (0,013 mmol) en forma de un sólido blanco. Rendimiento 57 %.

[0289] MS [ESI⁺] para $C_{77}H_{126}N_{12}O_{21}S$: calc.1586,89, encontrado 794,7 [M + 2H]²⁺.

b) preparación de la sustancia intermedia D

[0290] Una solución del producto C (0,013 mmol) en TFA/tioanisol/1,2-etanditiol/anisol (90:5:3:2, v/v/v/v; 1 mL) se agitó durante 4 horas a temperatura ambiente. La mezcla se evaporó, el residuo se disolvió en H₂O (4 mL) y la solución se lavó con éter diisopropílico (2x5 mL). La fase acuosa se evaporó y el residuo se purificó por HPLC de preparación (eluyente A: 97 % H₂O, 3 % CH₃CN + 0,1 % TFA; eluyente B: CH₃CN + 0,1 % TFA; flujo: 4 mL/min; fase estacionaria: columna Waters X-terra RP18 5 μm, 19x50 mm; detección: UV, λ: 220 nm) para obtener el producto D (0,012 mmol) en forma de sólido blanco. Rendimiento 93 %.

[0291] MS [ESI †] para C₃₉H₆₀N₁₂O₁₈: calc. 984,41, encontrado 985,4 [M + H] † , 493,2 [M + 2H] $^{2+}$.

c) preparación de la sustancia intermedia E

15

20

25

[0292] A una solución del compuesto \mathbf{D} (0,010 mmol) en H_2O (5 mL) se añadió lentamente una solución acuosa de 6,20 mM de $GdCl_3$ (1,77 mL), ajustando el pH a 7 con NaOH acuoso 0,05 M (0,605 mL). La mezcla se cargó en una columna XAD 16.00 (5 mL) y el compuesto deseado se eluyó con un gradiente de MeCN/ H_2O . Se evaporaron las fracciones que contenían el producto para dar lugar al compuesto E (0,009 mmol) a modo de sólido blanco. Rendimiento 90 %.

[0293] MS [ESI⁺] para C₃₉H₅₇GdN₁₂O₁₈: calc. 1139,32, encontrado 569,7 [M+2H]²⁺.

Preparación del complejo quelatado 2

[0294] La preparación se ha llevado a cabo según el procedimiento representado esquemáticamente en el siguiente Esquema 11:

Preparación del producto G

[0295] Se aplicó el mismo procedimiento descrito en el Esquema 10 a los compuestos A y F para obtener el producto G.

Complejos quelatados

5 **[0296]** En general, los complejos paramagnéticos de la invención y, en concreto, los quelatados de Gd(III) puede que se preparen por medio de una adición estequiométrica de derivados adecuados de Gd(III), en concreto sales u óxidos de Gd(III).

[0297] Preferiblemente, se emplea cloruro u óxido de Gd(III) al trabajar de acuerdo con métodos experimentales bien conocidos, como se explica por ejemplo en el documento EP 230893.

10 d) <u>Derivados lipídicos</u>

[0298] Se llevó a cabo la preparación del derivado peptidomimético I que incluye una fracción de N-succinil-dioctadecilamina como unidad lipófila según el procedimiento representado esquemáticamente en el siguiente Esquema 12:

Esquema 12

$$H_2N$$
 H_1
 H_2N
 H_1
 H_1
 H_1
 H_2
 H_3
 H_4
 H_4
 H_5
 $H_$

15

[0299] En concreto, el mismo procedimiento descrito en el **Esquema 10** se aplicó a los compuestos **A** y **H** para obtener el producto **I**.

Agregado multimérico de la invención

20

<u>LIPOCEST</u> como indicadores de obtención de imágenes por RM

[0300] Con LIPOCEST como fracción detectable por imagen de RM en la presente memoria nos referimos a liposomas paramagnéticos que actúan de agentes CEST (agentes LIPOCEST) para su uso en protocolos de obtención de imágenes por CEST.

5 [0301] Los agentes LIPOCEST según la invención pueden prepararse siguiendo cualquier protocolo establecido para la preparación de liposomas.

[0302] El protocolo más utilizado para la preparación de liposomas unilaminares grandes (LUV) es el «método de hidratación de película fina».

10 [0303] En pocas palabras, una mezcla de los componentes lipídicos de la membrana del liposoma (fosfolípidos, colesterol, un complejo paramagnético anfifílico en una proporción molar determinada) se disuelven en un disolvente orgánico (por lo general, una mezcla de cloroformo/metanol). El disolvente se evapora lentamente con el objetivo de obtener una fina película lipídica que además se seca a vacío durante 2 horas aproximadamente. La película se hidrata, a una temperatura determinada (por lo general, a alrededor de 55 °C) y sometida a agitación vorticial, con una solución acuosa que puede que contenga el complejo metálico paramagnético e 15 hidrófilo que se va a encapsular. Esta solución puede ser hipotónica, isotónica o hipertónica. La suspensión resultante que contiene vesículas multilaminares (MLV) se extrude varias veces (por lo general ≥ 5) por filtros de policarbonato con un tamaño de poro bien definido (de 50 a 200 nm). Tras la extrusión, el complejo metálico paramagnético que no se ha encapsulado se retira por completo por medio de una diálisis frente a un tampón 20 isotónico.

[0304] Además de la típica caracterización de los liposomas (determinación del tamaño, polidispersidad, potencial zeta y similares), los agentes LIPOCEST tienen que estudiarse para determinar: i) la diferencia de desplazamiento químico entre las resonancias de agua intraliposomal y la del protón de agua extraliposomal, y ii) su eficacia de ST.

[0305] Los valores de Δ^{LIPO} pueden determinarse de manera sencilla al registrar un espectro 1 H-RMN de la suspensión de LIPOCEST. De manera alternativa, se puede conseguir la misma información al recopilar un espectro z, en el que la intensidad de la señal del protón de aqua se mide como una función de la frecuencia de irradiación. Además de para determinar el ^{©LIPO}, el espectro z resulta de gran utilidad para evaluar la eficacia de la transferencia de saturación del agente LIPOCEST. Por lo general, ello se realiza al representar los datos obtenidos en el espectro z en forma de % de ST.

[0306] Según la osmolaridad de la solución acuosa utilizada para hidratar la película lipídica, los agentes LIPOCEST pueden clasificarse en dos grupos principales:

- LIPOCEST estándar (S-LIPOCEST), si la solución acuosa es isotónica o hipertónica. El complejo metálico paramagnético puede encapsularse solamente (S-LIPOCEST-E), incorporarse a la membrana solamente (S-LIPOCEST-I), o ambos (S-LIPOCEST-EI).
- LIPOCEST no estándar (NS-LIPOCEST), si la solución acuosa es hipotónica. El complejo metálico paramagnético puede encapsularse solamente (NS-LIPOCEST-E), incorporarse solamente (NS-LIPOCEST-I), o ambos (NS-LIPOCEST-EI).
- [0307] La diferencia más importante entre los agentes S- y NS-LIPOCEST es que los últimos muestran unos valores de Δ^{LIPO} mayores. 45

[0308] De manera análoga a los liposomas, los agentes LIPOCEST pueden protegerse de manera estérica para aumentar su estabilidad *in vivo*. Por lo general, ello se realiza al incorporar fosfolípidos pegilados a la membrana.

[0309] Los agentes LIPOCEST de direccionamiento pueden prepararse mediante dos enfoques principales:

- de acuerdo con el primero, el vector de reconocimiento está incorporado a la membrana del liposoma y el agente LIPOCEST puede interactuar directamente con la diana biológica.
- de acuerdo con el segundo, el reconocimiento LIPOCEST-diana es indirecto y las dos unidades pueden interactuar a través de la presencia de un tercer componente que promueve el reconocimiento. Por ejemplo, si tanto el vector como el LIPOCEST son biotinilados, el protocolo de direccionamiento necesita la presencia de avidina o estreptavidina. La biotinación del LIPOCEST puede realizarse de manera satisfactoria al incorporar en la membrana fosfolípidos biotinilados.

[0310] Puede que los siguientes ejemplos den a conocer mejor este aspecto de la invención.

49

50

55

60

25

30

35

40

Ejemplo 1

[0311] Preparación y caracterización de agentes LIPOCEST biotinilados que encapsulan [Tm-20]-.

5 Preparación

10

[0312] Se disolvieron 1-palmitoil-2-oleoil-*sn*-glicero-3-fosfocolina (POPC), colesterol y 1,2-diestearoil-*sn*-glicero-3-fosfoetanolamina-N-[Biotinil(Polietilenglicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (POPC/Col/DSPE-PEG2000-Biotina) fue de 55:40:5 y la cantidad total de lípidos fue de 20 mg.

[0313] La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

15 **[0314]** La película se hidrató con 1 mL de una solución de [Tm-**20**]- 0,2 M (la estructura del quelante **20** se muestra en la figura 8c). La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0315] Los liposomas biotinilados resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

[0316] El tamaño medio de esta preparación de LIPOCEST fue de 250 nm (PDI = 0,08). La figura 10 presenta el espectro ¹H-RMN (14,1 T, 298 K) de esta preparación. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 3 ppm.

[0317] La figura 11 presenta el espectro z normalizado de esta preparación (7 T, pulso irrad.: rectangular, potencia irrad. 6 mT, tiempo irrad. 2 s, 312 K). Resulta obvio que se produce la transferencia de saturación al ver la elevación visible en el lado izquierdo del espectro.

[0318] La figura 12 presenta el correspondiente espectro ST de esta preparación. Se observó un % de ST de alrededor 70 % a 3 ppm del agua circundante.

35 Ejemplo 2

30

45

50

55

60

[0319] Preparación y caracterización de agentes LIPOCEST biotinilados que incorporan Tm-21a y encapsulan [Tm-20]-

40 Preparación

[0320] Se disolvieron 1-palmitoil-2-oleoil-sn-glicero-3-fosfocolina (POPC), colesterol, 1,2-diestearoil-sn-glicero-3-fosfoetanolamina-N-[Biotinil(Polietilenglicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) y un complejo Tm-21a (el quelante 21a se muestra en la figura 8c) en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (POPC/Col/DSPE-PEG2000-Biotina/Tm-21a) fue de 43:28:4:25 y la cantidad total de los componentes fue de 20 mg.

[0321] La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

[0322] La película se hidrató con 1 mL de una solución de [Tm-20]- 0,02 M. La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0323] Los liposomas biotinilados resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

El tamaño medio de esta preparación de LIPOCEST fue de 170 nm (PDI = 0,1)

[0324] La figura 13 presenta el espectro ¹H-RMN (14,1 T, 298 K) de esta preparación. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 15 ppm.

ES 2 525 374 T3

[0325] La figura 14 presenta los espectros z normalizados de muestras diluidas de esta preparación (7 T, pulso irrad.: rectangular, potencia irrad. 6 mT, tiempo irrad. 2 s, 312 K). Se siguió detectando una ST de alrededor 10 % en la muestra diluida 64 veces.

5 Ejemplo 3

[0326] Preparación y caracterización de agentes LIPOCEST biotinilados que encapsulan [Tm-21] (el quelante 21 se muestra en la figura 8c).

10 Preparación

15

25

[0327] Se disolvieron 1,2-dipalmitoil-*sn*-glicero-3-fosfocolina (DPPC) y 1,2-diestearoil-*sn*-glicero-3-fosfoetanolamina-N-[Biotinil(Polietilenglicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (DPPC/DSPE-PEG2000-Biotina) fue de 95:5 y la cantidad total de los componentes fue de 20 mg.

[0328] La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

20 **[0329]** La película se hidrató con 1 mL de una solución de [Tm-**21**] 0,04 M. La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0330] Los liposomas biotinilados resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

[0331] El tamaño medio de esta preparación de LIPOCEST fue de 160 nm (PDI = 0,1)

30 **[0332]** La figura 15 presenta el espectro ¹H-RMN (14,1 T, 298 K) de esta preparación. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 10 ppm.

Ejemplo 4

[0333] Preparación y caracterización de agentes LIPOCEST biotinilados que incorporan Gd-21a y encapsulan [Gd-21].

Preparación

- 40 **[0334]** Se disolvieron 1,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC), 1,2-diestearoil-sn-glicero-3-fosfoetanolamina-N-[Biotinil(Polietilenglicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) y un complejo Gd-**21a** en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (DPPC/DSPE-PEG2000-Biotina/Gd-**21a**) fue de 60:5:35 y la cantidad total de los componentes fue de 20 mg.
- 45 **[0335]** La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

[0336] La película se hidrató con 1 mL de una solución de [Gd-21] 0,04 M. La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0337] Los liposomas biotinilados resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

El tamaño medio de esta preparación de LIPOCEST fue de 140 nm (PDI = 0,1)

[0338] La figura 16 presenta el espectro ¹H-RMN (14,1 T, 298 K) de esta preparación. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 19,3 ppm.

60

55

50

Ejemplo 5

[0339] Preparación y caracterización de agentes LIPOCEST biotinilados que incorporan Dy-21a y encapsulan [Tm-20]-.

Preparación

5

10

[0340] Se disolvieron 1,2-dipalmitoil-*sn*-glicero-3-fosfocolina (DPPC), 1,2-diestearoil-*sn*-glicero-3-fosfoetanolamina-N-[Biotinil(Polietilenglicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) y un complejo Dy-**21a** en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (DPPC/DSPE-PEG2000-Biotina/Gd-**21a**) fue de 60:5:35 y la cantidad total de los componentes fue de 20 mg.

[0341] La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

15

[0342] La película se hidrató con 1 mL de una solución de [Tm-20]- 0,02 M. La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0343] Los liposomas biotinilados resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

[0344] El tamaño medio de esta preparación de LIPOCEST fue de 160 nm (PDI = 0,1)

[0345] La figura 17 presenta el espectro ¹H-RMN (14,1 T, 298 K) de esta preparación. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de -36 ppm.

Ejemplo 6

 $\begin{tabular}{ll} \textbf{[0346]} Preparación y caracterización de agentes LIPOCEST que encapsulan [Tm-\textbf{20}]- e incorporan un compuesto de fórmula (III) donde R_6 es la fracción lipídica N-succinil-dioctadecilamina. \\ \end{tabular}$

Preparación

35

40

25

30

[0347] Se disolvieron 1-palmitoil-2-oleoil-*sn*-glicero-3-fosfocolina (POPC), colesterol, 1,2-diestearoil-sn-glicero-3-fosfoetanolamina-N-[metoxi(Polietilenglicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) y los derivados peptidomiméticos según la fórmula (III) que comprenden N-succinil-dioctadecilamina como fracción lipídica (derivado lipídico I del esquema 12) en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (POPC/Col/DSPE-PEG2000-Biotina/lípido de direccionamiento) fue de 55:40:2,5:2,5 y la cantidad total de los componentes fue de 20 mg.

[0348] La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

45

[0349] La película se hidrató con 1 mL de una solución de [Tm-20]- 0,2 M. La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0350] Los liposomas resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

[0351] El tamaño medio de esta preparación de LIPOCEST fue de 200 nm (PDI = 0,1)

55

[0352] La figura 18 presenta el espectro ¹H-RMN (14,1 T, 298 K) de esta preparación. La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 3 ppm.

Ejemplo 7

60

<u>Visualización de receptores de integrinas mediante un derivado peptidomimético según la fórmula (III) donde R₆ es una fracción de biotina y un agente LIPOCEST</u>

[0353] Preparación y caracterización y direccionamiento celular de agentes LIPOCEST biotinilados que incorporan Tm-21a y encapsulan [Tm-20]-.

Preparación

5

[0354] Se disolvieron 1-palmitoil-2-oleoil-*sn*-glicero-3-fosfocolina (POPC), colesterol, 1,2-diestearoil-*sn*-glicero-3-fosfoetanolamina-N-[Biotinil(Polietilen

[0355] glicol)2000] (sal de amonio) (DSPE-PEG2000Biotina) y un complejo Tm-21a en una mezcla de cloroformo/metanol 3:1. La proporción molar de los componentes (POPC/Col/DSPE-PEG2000-Biotina/Tm-21a) fue de 43:28:4:25 y la cantidad total de lípidos fue de 20 mg.

[0356] La solución se evaporó lentamente para obtener una fina película lipídica que además se secó a vacío durante 2 horas.

15

[0357] La película se hidrató con 1 mL de una solución de [Tm-20]- 0,02 M. La suspensión se sometió a agitación vorticial a 55 °C y luego se extrudió (55 °C, 4000 kPa) 5 veces por filtros de policarbonato (diámetro de 200 nm).

[0358] Los liposomas biotinilados resultantes se dializaron para retirar el complejo metálico no encapsulado (dos ciclos de diálisis de 4 horas cada uno frente a un tampón isotónico a pH 7).

Caracterización

[0359] El tamaño medio de esta preparación de LIPOCEST fue de 190 nm (PDI = 0,1)

25

[0360] La diferencia de desplazamiento químico entre el agua intraliposomal y circundante fue de 11,0 ppm (298 K).

Experimento de direccionamiento celular

30

35

40

[0361] Alrededor de 1×10^6 células HUVEC (células endoteliales de vena umbilical humana; véase, a modo de referencia, Garlanda C. Parravicini C. Sironi M. De Rossi M. Wainstok de Calmanovici R. Carozzi F. Bussolino F. Calotta F. Mantovani A. Vecchi A., «Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the phatogenesis of opportunistic vascular tumors»; 1994, *Proc Natl Acad Sci USA*, 91, 7291-7295) se separaron del agente de cultivo celular con EDTA (0,3 g/L) y se lavaron tres veces con tampón de PBS helado. Aproximadamente 5×10^5 células se suspendieron en 200 μ L de una solución que contenía el péptido de direccionamiento biotinilado de la invención, esto es, un derivado peptidomimético según la fórmula (III), donde R_6 es una fracción de biotina (60 μ M) y se incubaron a 4 °C. Transcurridos 15 minutos de incubación, las células se lavaron dos veces con tampón de PBS helado y se suspendieron en 200 μ L de una solución que contenía estreptavidina (2 μ M). Transcurridos 15 minutos de incubación a 4 °C, las células se lavaron dos veces con tampón de PBS helado y se suspendieron en 200 μ L de una suspensión que contenía el LIPOCEST biotinilado. Por último, transcurridos 15 minutos de incubación a 4 °C, las células se lavaron tres veces con tampón de PBS helado y el sedimento celular se representó por IRM.

45

[0362] En paralelo, las células HUVEC restantes (alrededor de 5×10⁵) se utilizaron de control y únicamente se lavaron tres veces con tampón de PBS helado.

[0363] La figura 19 presenta los espectros ST de los dos sedimentos celulares del ejemplo 7 que incluyen el primero las células HUVEC tratadas con el LIPOCEST biotinilado y el segundo solamente las células HUVEC de control (7 T, pulso irrad.: rectangular, potencia irrad. 12 μT, tiempo irrad. 2 s, 293 K). Las células HUVEC tratadas muestran un % máximo de transferencia de saturación de alrededor 4 % tras la irradiación a 10 ppm de la resonancia de agua circundante.

[0364] La figura 20 presenta las correspondientes imágenes CEST-RM [on- (irradiación a 10 ppm del agua circundante), off- (irradiación a -10 ppm del agua circundante), y (on-off)] del fantoma hecho de dos capilares que contienen los dos sedimentos celulares. Es importante que solamente las células HUVEC tratadas son visibles en la imagen de diferencia on-off cuando la irradiación se realiza a 10 ppm del agua circundante.

60 <u>Determinación farmacocinética</u>

RESUMEN DEL PROTOCOLO

Introducción

[0365] Puede que se lleven a cabo pruebas biológicas para evaluar la afinidad de los compuestos de la invención hacia las integrinas $\alpha\nu\beta3$ y $\alpha\nu\beta5$ por medio de pruebas conocidas también descritas en la literatura [C. C. Kumar, H. Nie, C. P. Rogers, M. Malkowski, E. Maxwell, J. J. Catino, L. Armstrong, *J. Pharmacol. Exp. Ther.* 1997, 283, 843], como por ejemplo la explicada en la solicitud de patente EP 1077 218. En el presente caso, se ha aplicado el siguiente protocolo.

Materiales

Artículos para las pruebas

10 Reactivos

5

[0366]

- Compuesto: penicilina/estreptomicina (10 000 µg/mL)
 - Proveedor: Euroclone®, Wetherby, West York, UK
 - Compuesto: L- glutamina (200mM)
 - Proveedor: Biochrom KG, Berlín, Alemania
 - Compuesto: suero fetal bovino (FCS)
- Proveedor: HyClone®, Logan, Utah, EE. UU.
 - Compuesto: medio de Eagle modificado por Dulbecco (DMEM)
 - Proveedor: SIGMA Chemicals, St. Louis, MO, EE. UU.
 - Compuesto: aminoácidos no esenciales
 - Proveedor: SIGMA Chemical Co, Sigma-Aldrich. Chem. GMBH Berlín, Alemania
- Compuesto: piruvato de sodio
 - Proveedor: SIGMA Chemical Co, Sigma-Aldrich. Chem. GMBH Berlín, Alemania
 - Compuesto: disolución salina fosfatada de Dulbecco (PBS-)
 - Proveedor: SIGMA Chemical Co, Sigma-Aldrich. Chem. GMBH Berlín, Alemania
 - Compuesto: tripsina-EDTA
- Proveedor: SIGMA Chemical Co, Sigma-Aldrich. Chem. GMBH Berlín, Alemania
 - Compuesto: 0,9 % de solución de cloruro de sodio
 - Proveedor: S.A.L.F. SpA Laboratorio Farmaceutico, Bérgamo, Italia
 - Compuesto: medio basal de células endoteliales-2 (EBM-2)
 - Proveedor: Cambrex Bio Science Walkersville Inc., Walkersville, MD, EE. UU.
- Compuesto: EGM-2 MV Single Quots
 - Proveedor: Cambrex Bio Science Walkersville, Inc. Walkersville, MD, EE. UU.
 - Anticuerpo monoclonal de ratón anti-integrina humana [®]V[®]3
 - Proveedor: Chemicon International Inc., 28835 Single Oak Drive, Tamecula CA, EE. UU.

ES 2 525 374 T3

- Anticuerpo de cabra anti IgG de ratón conjugado con fluoresceína
- Proveedor: Chemicon International Inc., 28835 Single Oak Drive, Tamecula CA, EE. UU.
- Vitronectina del plasma humano
- Proveedor: SIGMA Chemical Co, Sigma-Aldrich. Chem. GMBH Berlín, Alemania
- Ciclo(Arg-Gly-Asp-D-Phen-Val) péptido
 - Proveedor: Bachem AG, 4416 Bubendorf, Suiza
 - Proteína purificada de la integrina humana ανβ3
 - Proveedor: Chemicon International Inc., 28835 Single Oak Drive, Tamecula CA, EE. UU.
 - Peroxidasa de rábano conjugada a NeutrAvidin
- Proveedor: Pierce Biotechnology Inc., Rockford, IL 61105, EE. UU.

Sistema de prueba

[0367] Justificación de la elección del sistema de prueba: se han elegido como sistema de prueba células endoteliales de distintos orígenes y líneas celulares tumorales que expresan los receptores ανβ3 ο ανβ5 porque son adecuadas para probar la unión específica de los péptidos cíclicos al receptor de integrinas ανβ3 in vitro.

Muestras biológicas

20 **[0368]** Se cultivaron líneas celulares H5V en 90 % de DMEM suplementado con L-glutamina 2 mM, 100 μg/mL de penicilina/estreptomicina, aminoácidos no esenciales 0,1 mM, piruvato de sodio 1,0 mM y 10 % de FCS.

[0369] Se cultivaron células HUVEC en medio basal de células endoteliales-2 suplementado con EGM-2 MV Single Quots.

25

Localización de las fases experimentales

Métodos

30 Procedimientos experimentales

Análisis de FACS

[0370] Se separaron en confluencia líneas celulares seleccionadas por tratamiento con 0,02 % de EDTA, se lavaron en PBS y se mantuvieron en suspensión durante 1 hora en un medio de cultivo. A continuación, las células se incubaron con la anti-integrina humana ανβ3 del anticuerpo primario durante 1 hora a 4 °C, se lavaron en PBS y se incubaron con un anticuerpo secundario específico marcado con FITC con las mismas condiciones. Tras el lavado en PBS, se analizó la fluorescencia de la superficie celular por medio de un escáner de separación de células activadas por fluorescencia (FACS) por citometría de flujo.

40

[0371] El mismo procedimiento se utiliza para teñir las células con antagonistas de la integrina marcados con FITC.

Ensayo de adhesión

45

50

[0372] Se recubrieron placas de cultivo tisular de 96 pocillos de fibronectina o vitronectina ($5\mu g/mL$), en una noche a 4 °C. Se sembraron líneas celulares seleccionadas en cada pocillo y se dejaron adherir durante 1 o 3 horas a 37 °C en presencia de diversas concentraciones de antagonistas de la integrina o anti-integrina humana $\alpha \gamma_3$ del anticuerpo primario como control positivo. Las células no adherentes se retiraron con PBS y las células restantes se fijaron con 3,5 % de paraformaldehído durante 10 minutos, se tiñeron con 0,5 % de violeta cristal durante 10 minutos y se lavaron con agua. Las células teñidas se solubilizaron y se cuantificó la cantidad de células adherentes al medir la absorbancia a 575nm en un lector de microplacas. Los experimentos se realizaron en seis réplicas y se repitieron al menos dos veces. Los resultados se expresan en forma de media +/- DE de la concentración del compuesto que inhibe el 50 % de la adhesión celular.

Ensayo de unión de ligandos

[0373] Se diluyeron receptores de integrinas ανβ₃ y ανβ₅ purificadas a 0,5 o 1 μg/mL en tampón de recubrimiento que contenía 20 mmol/L de Tris-HCl (PH 7,4), 150 mmol/L de NaCl y 1 mmol/L de MnCl₂ en presencia de 2 mmol/L de CaCl₂ y 1 mmol/L de MgCl₂. Se añadió una alícuota de receptores diluidos (100μL/pocillo) a las microplacas de 96 pocillos y se incubó una noche a 4 °C. A continuación, las placas se lavaron y los puntos de unión no específicos se bloquearon con tampón de recubrimiento más 1-2 % de albúmina de suero bovino a temperatura ambiente durante 2 horas. Se retiró el tampón de bloqueo y se lavaron los pocillos 3 veces y se incubaron por cuadruplicado con distintas concentraciones (0,1-10μM) de antagonistas de la integrina y 1μg/mL de vitronectina humana biotinilada a temperatura ambiente durante 3 horas como competidores estándar. Las placas se lavaron 3 veces y se detectó el competidor unido por medio de un conjugado de estrepto-avidina-HRP a 0,01μg/pocillo (3).

15 **[0374]** Se calculó la concentración de antagonistas de la integrina que producían un 50 % de inhibición de la unión de vitronectina a una proteína purificada.

Ensayo de proliferación

[0375] Para el ensayo de proliferación, se sembraron líneas celulares seleccionadas en placas de 96 pocillos en un medio completo. Transcurridas 24 horas, se retiró el medio y se reemplazó con un medio fresco que contenía una concentración escalar de antagonistas de la integrina. Las placas se incubaron durante 72 horas más antes de evaluar la proliferación celular por medio de MTT u otro ensayo de proliferación alternativo.

25 <u>Inmunofluorescencia</u>

30

35

40

50

55

[0376] Se separaron en confluencia líneas celulares seleccionadas por tratamiento con 0,02 % de EDTA, se lavaron en PBS y se sembraron en un cubreobjetos de vidrio hasta confluencia. Las células se fijaron, luego se incubaron con el antagonista de la integrina marcado con FITC o con la anti-integrina humana $\alpha\nu\beta_3$ del anticuerpo primario durante 1 hora, se lavaron en PBS, que contenía 0,1 % de BSA y se incubaron con el anticuerpo secundario específico marcado con FITC. Tras el lavado en PBS, se analizaron las células positivas del receptor de integrinas mediante microscopio fluorescente.

Ensayo de agregación plaquetaria

[0377] Se midió la respuesta de agregación plaquetaria a un péptido 11-mer activador de receptor de trombina (25-100µmol/L) en un plasma rico en plaquetas de una cobaya, un ser humano o un conejo. La concentración plaquetaria se ajustó en un plasma pobre en plaquetas a 3x10⁸/mL y la agregación plaquetaria se determinó en 1 hora por método turbidimétrico en un agregómetro de doble canal. Se añadieron concentraciones vehiculares u otras de péptidos a un plasma rico en plaquetas 1 minuto antes de iniciar la agregación. El alcance de la agregación plaquetaria se cuantificó como el cambio máximo en la transmitancia de la luz en los 4 minutos posteriores a la adición del agonista. Los resultados se expresaron como la concentración de antagonistas que inhiben el 50 % de la agregación plaquetaria.

45 Ensayo de invasión in vitro

[0378] El ensayo de invasión se llevó a cabo en el sistema *transwell*. Se añadió una suspensión de líneas celulares tumorales seleccionadas (0,5-1x10⁶/mL) en el compartimento superior del inserto *transwell* recubierto de distintas proteínas basales en presencia de antagonistas de receptores de integrinas. Los *transwells* se incubaron durante 24 horas antes de retirar las células no invadidas y las proteínas matriciales. Las células migratorias e invadidas en la superficie inferior de la unidad de *transwell* se tiñeron y cuantificaron por medio de un microscopio óptico.

Ensayo de formación de vasos in vitro

[0379] El ensayo de formación de vasos se llevó a cabo según el «in vitro angiogenesis assay kit» (kit de ensayo de angiogénesis *in vitro*) adquirido de Chemicon international.

ES 2 525 374 T3

Referencias

[0380]

- 5 J.J. Marugan *et al.* «Design, Synthesis and biological evaluation of novel potent and selective ανβ3 /ανβ5 integrin dual inhibitors with improved bioavalability. Selection of the molecular care». *J. Med. Chem.* 2005, 48, pp. 926-934.
- L. Belvisi *et al.* «Biological and molecular properties of a new ανβ3 /ανβ5 integrin antagonist». *Mol Cancer Ther* 2005, 4(11), pp. 1670-1680.
 - R. Haubner *et al.* «Structural and functional aspects of RGD-containing; cyclic pentapeptides as highly potent and selective integrin ανβ3 antagonists». *J.Am. Chem. Soc.* 1996, 118, pp. 7461-7472.

Reivindicaciones

1. Compuesto de fórmula (III)

$$R_6$$
 $COOR_4$ $COOR_4$ R_5HN

donde

5

20

30

n es 1 o 2,

p es un número entero entre 1 y 5,

OR₄ y R₅ juntos constituyen la secuencia Asp-Gly-Arg,

10 R₆ es una fracción biológicamente activa seleccionada entre una molécula eficaz desde el punto de vista radioterapéutico o diagnóstico, una fracción fosfolipídica o lipídica, un residuo de biotina o de avidina;

L es un grupo (i) -CONH-, (ii) -NHCONH-, (iii) -NHCSNH-, un grupo de fórmula

$$N-N$$
 $-s$ 0 (v)

o es una fracción de enlace bifuncional que conecta R_6 al derivado -(CH_2)p-biciclo de la fórmula (III), que comprende dos de los grupos anteriores (i) a (v) como grupos terminales;

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

- 2. Compuesto según la reivindicación 1 donde L es un grupo de (i) a (v).
- 3. Compuesto según la reivindicación 1 donde L es una fracción de enlace bifuncional que conecta R₆ al derivado -(CH₂)p-biciclo de la fórmula (III), que comprende dos de los grupos anteriores (i) a (v) como grupos terminales.
- 25 4. Compuesto según la reivindicación 3 donde L comprende una cadena de alquilo o un aminoácido.
 - 5. Compuesto según la reivindicación 4 donde L se selecciona entre el grupo que consiste en:
 - -CONH-(CH₂)₃-NHCONH-,
 - -CONH-CH(CH₃)CONH-.

6. Compuesto según la reivindicación 3 donde L se deriva de los siguientes enlazadores A1 a A32

H₂N () COOH
n - 1-6, 11
ноосусоон
\ / ~
n = 1-4

(continuación)

•	
ENLAZADOR	
A3	H000 / 0 \ 000H
	HOOC (O) COOH
	<u>'n</u> n = 1-3
A4	
	H_2N NH_2
A5	(0)
	H_2N NH_2
	n = 1-5.
A6	_
	H_2N O O NH ₂
A7	11210 0 . 0 14112
A/	\sim
	H_2N
A8	
	H ₂ N COOH
	n - 1-4;
A9	
	0
	H_2N COOH $n = 1-6;$
A10	
7110	COOH
	H ₂ N
A11	11211
	COOH
	H ₂ N
A12	A
	СООН
	H ₂ N
A13	
	COOH
	, L J
	H_2N
A14	COOH
	COOR
A15	H ₂ N
Alb	COOH
	ſ
	H_2N
A16	
	COOH
	H_2N
A17	0 00011
	O_COOH
	H ₂ N
	- 🗸 🗸

(continuación)

ENLAZADOR	
A18	
	СООН
	N J
110	H-11-
A19	$_{ m NH_2}$
	/ ^{NI 12}
A20	0.001
	=_LX ^{COOH}
	n = 0-4
A21	
	jl .
	NH ₂
A22	0
	Ĭ
	N-\O\NH2
	0
A23	0
	Ä () 2000
	CN → COOH
	0 ' ''
A24	
) J
	¥ -
A25	
	H_2N O N_3
A26	- > 0 > 0 >
AZO	HOOCON ₃
A27	11000 O N
	HOOC O O O N ₃
A28	
	HS COOL
	COOH ,
A29	11
	HS O COOH
420	<u> </u>
A30	LIC O
	$HS \sim O \sim NH_2$
404	
A31	
	HSNH ₂
	1411/2
A32	0 0
	NH O NH O NH ₂
	,3

o de una combinación adecuada de estos.

ES 2 525 374 T3

7. Compuesto según la reivindicación 3 donde L se selecciona del grupo que consiste en:

 $-NHCO-CH_2-O-(CH_2)_2-O-(CH_2)_2-O-CH_2-CONH-$

-CONHCO-CH₂-O-(CH₂)₂-O-(CH₂)₂-O-CH₂-CONH-.

- 5 **8.** Compuesto según una cualquiera de las reivindicaciones de 1 a 7 donde dicha fracción activa desde el punto de vista diagnóstico R₆ es una fracción detectable por imagen.
- 9. Compuesto según la reivindicación 8 donde R₆ es un complejo quelatado o poliquelatado de un ión metálico paramagnético seleccionado entre el grupo que consiste en: Fe(²⁺), Fe(³⁺), Cu(²⁺), Ni(²⁺), Rh(²⁺), Co(²⁺), Cr(3⁺), Gad(³⁺), Eu(³⁺), Dy(³⁺), Tb(³⁺), ppm(³⁺), Nd(³⁺), Tm(³⁺), Ce(³⁺), Y(³⁺), Ho(³⁺), Er(³⁺), La(³⁺), Yb(³⁺), Mn(³⁺), Mn(²⁺).
 - **10.** Compuesto según la reivindicación 9 donde el ión metálico paramagnético es Gd(³⁺).

25

35

40

50

- 11. Compuesto según una cualquiera de las reivindicaciones de 1 a 7 donde R₆ es un complejo quelatado o poliquelatado de un ión metálico radiactivo eficaz desde el punto de vista terapéutico que emite radiaciones ionizantes que incluyen partículas beta, partículas alfa y electrones Auger o Coster-Kroning.
- 12. Compuesto según la reivindicación 11 donde R₆ es un complejo quelatado o poliquelatado de un radionucleido seleccionado entre el grupo que consiste en: ⁶⁴Cu, ⁹⁰Y, ¹⁰⁵Rh, ¹¹¹In, ^{117m}Sn, ¹⁴⁹Pm, ¹⁵³Sm, ¹⁶¹Tb ¹⁶⁶Dy, ¹⁶⁶Ho, ¹⁷⁵Yb, ¹⁷⁷Lu, ^{186/188}Re, y ¹⁹⁹Au.
 - **13.** Compuesto según la reivindicación 8 donde R₆ es un complejo quelatado o poliquelatado de un radionucleido emisor de rayos gama o positrones.
 - **14.** Compuesto según la reivindicación 13 donde dicho radionucleido emisor de rayos gamma o positrones se selecciona entre el grupo que consiste en: 51 Mn, 52 Fe, 60 Cu, 68 Ga, 72 As, 94m Tc, 110 In; 99m Tc, 51 Cr, 67 Ga, 47 Sc, 167 Tm, 141 Ce, 168 Yb, 140 La, 88 Y, 165 Dy 62 Cu, 67 Cu, 97 Ru, 103 Ru, 203 Pb, 211 Bi, 212 Bi, 213 Bi, 214 Bi, 109 Pd, y 198 Au.
- 30 **15.** Compuesto según una cualquiera de las reivindicaciones 9 o 10 donde el quelante o poliquelante es tal y como se define en las figuras 8a, 8b, 8c, 9a o 9b o comprende:
 - ácido dietilentriaminopentaacético (DTPA) y sus derivados, que incluyen benzo-DTPA, dibenzo-DTPA, fenil-DTPA, difenil-DTPA, bencil-DTPA y dibencil DTPA; ácido 1,4,7,10-tetraazaciclododecano-1,4,7,10-tetraacético (DOTA); ácido 1,4,7,10-tetraazaciclododecano-1,4,7-triacético(D03A);
 - ácido 1,4,7,10-tetraazaciclododecano-1,4,7,10-tetrametil-1,4,7,10-tetraacético (DOTMA); ácido etilendiaminatetraacético (EDTA); ácido 1,4,8,11-tetraazaciclotetradecano-1,4,8,11-tetraacético (TETA); etilenobis-(2-hidroxi-fenilglicina) (EHPG) y
 - sus derivados, que incluyen 5-Cl-EHPG, 5-Br-EHPG, 5-Me-EHPG, 5-t-Bu-EHPG, y 5-sec-Bu-EHPG; ácido N,N'-bis(2-hidroxibencil)etilendiamina-N,N'-diacético (HBED) y sus derivados; benzo-DOTA, dibenzo-DOTA y benzo-NOTA donde NOTA es ácido 1,4,7-triazaciclononano-N,N',N"-triacético; benzo-TETA, benzo-DOTMA, y
- benzo-TETMA, donde TETMA es ácido 1,4,8,11-tetraazaciclotetradecano-1,4,8,11-(metiltetraacético); derivados de ácido 1,3-propilendiaminatetraacético (PDTA) y
 - ácido trietilenotetraaminahexaacético (TTHA); derivados de 1,5,10-N,N',N"-tris(2,3-dihidroxibenzoil)tricatecolato (LICAM) y
 - 1,3,5-N,N',N"-tris(2,3-dihidroxibenzoil)-aminometilbenceno (MECAM).
 - **16.** Compuesto según la reivindicación 8 donde dicha fracción detectable por imagen R₆ es una molécula fluorescente.
- 17. Compuesto según la reivindicación 16 donde dicha molécula fluorescente es un colorante de infrarrojo cercano seleccionado entre el grupo de derivados de cianina o indocianina que consiste en: Cy5.5, IRDye800, verde de indocianina (ICG) y verde de indocianina sustituido por ácido tetrasulfónico.
 - **18.** Compuesto según cualquiera de las reivindicaciones de 1 a 7 donde R₆ es una fracción fosfolipídica o lipídica.

- 19. Compuesto según la reivindicación 18 donde la fracción fosfolipídica o lipídica comprende ácidos grasos, grasas neutras, fosfátidos, glicolípidos, alcoholes alifáticos, ceras, terpenos y esteroides, entre los cuales se dioleoilfosfatidilcolina, encuentran fosfatidilcolinas, incluyendo dimiristoilfosfatidilcolina, dipalmitoilfosfatidilcolina diestearoilfosfatidilcolina; fosfatidiletanolaminas. incluyendo 5 dipalmitoilfosfatidiletanolamina, dioleoilfosfatidiletanolamina y N-succinil-dioleoilfosfatidile fosfatidilserina; dipalmitoilfosfatidilserina; fosfatidilgliceroles; esfingolípidos; glicolípidos N-succinil-dioleoilfosfatidiletanolamina; incluyendo gangliósido GM1; glucolípidos; sulfátidos; ácido fosfatídico incluyendo ácido dipalmitoil fosfatídico («DPPA»); ácidos grasos palmíticos; ácidos grasos esteáricos; ácidos grasos araquidónicos; ácidos grasos láuricos; ácidos grasos mirísticos; ácidos grasos lauroleicos; ácidos grasos fisetéricos; ácidos grasos miristoleicos; ácidos grasos palmitoleicos; ácidos grasos petroselínicos; ácidos grasos oleicos; ácidos grasos isoláuricos; 10 ácidos grasos isomirísticos; ácidos grasos isoesteáricos; colesterol y derivados del colesterol incluyendo hemisuccinato de colesterol, sulfato de colesterol, y colesteril-(4-trimetilamonio)-butanoato; ésteres de ácidos grasos de polioxietileno; alcoholes de ácidos grasos de polioxietileno; éteres de alcohol de ácidos grasos de polioxietileno; ésteres de ácidos grasos de sorbitán polioxietilado; oxiestearato de glicerol-polietilenglicol: 15 ricinoleato de glicerol-polietilenglicol; esteroles de soja etoxilados; aceite de ricino etoxilado; polímeros de ácidos grasos de polioxietileno-polioxipropileno; estearatos de ácidos grasos de polioxietileno; 1,2-dioleoilsn-glicerol; 1,2-dipalmitoil-sn-3-succinilglicerol; 1,3-dipalmitoil-2-succinilglicerol; y 1-hexadecil-2-palmitoilglicerofosfoetanolamina; N-succinil-dioctadecilamina; palmitoilhomocisteína; bromuro de lauriltrimetilamonio; bromuro de cetiltrimetil-amonio; bromuro de miristiltrimetilamonio; cloruro de alquildimetilbencilamonio; 20 donde alquilo es un alquilo C₁₂, C₁₄ o C₁₆; bromuro de bencildimetildodecilamonio; cloruro de bencildimetildodecilamonio; bencildimetilhexadecilamonio; bromuro de bencildimetilhexadecilamonio; bromuro de bencildimetiltetradecilamonio; cloruro de bencildimetiltetradecilamonio; cloruro de cetildimetiletilamonio; bromuro de cetilpiridinio; cloruro de cetilpiridinio; cloruro de N-[(1-2,3-dioleoiloxi)-propil]-N,N,N-trimetilamonio (DOTMA); 1,2-dioleoiloxi-3-25 (trimetilamonio)propano (DOTAP); y 1,2-dioleoil-c-(4'-trimetilamonio)-butanoil-sn-glicerol (DOTB).
 - **20.** Sistema macromolecular en forma de liposoma, micela, microemulsión, burbuja, microburbuja, microbalón o microesfera que comprende un compuesto según la reivindicación 18.
- 21. Sistema macromolecular según la reivindicación 20 en forma de liposoma paramagnético, de LIPOCEST o de vesícula que contiene gas.
 - 22. Construcción multimérica con la fórmula (IV)

$$T \xrightarrow{COOR_4} COOR_4$$

$$R_5HN$$
(IV)

35 donde:

40

OR₄, R₅, L, n y p son como se define en la reivindicación 1,

T es un sistema de anclaje que contiene al menos tres puntos de unión o grupos funcionales, opcionalmente protegidos, iguales o

diferentes, que se derivan de cualquier residuo orgánico polivalente que puede ser alifático de cadena abierta, opcionalmente ramificado, o alicíclico, o heterocíclico que contiene N,O, y/o S o aromático o heteroaromático, o es una fracción de avidina;

r es un número entero del 2 al 10;

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y

mezclas de estos en cualquier proporción.

45 23. Construcción multimérica según la reivindicación 22 donde T se selecciona entre:

- (a) sistemas de lisina N-ramificados;
- (b) derivados policarboxílicos,
- (c) derivados poliaminados,
- (d) aminoácidos.

5

10 24. Construcción multimérica con la fórmula (VI) o la fórmula (VII)

$$R_{6}$$
-L T $COOR_{4}$ (VI) R_{6} -L T $COOR_{4}$ $COOR_{4}$ $COOR_{4}$ $COOR_{4}$ $COOR_{4}$ $COOR_{4}$ $COOR_{4}$ R_{6} -L R

donde

20

15 OR_4 , R_5 , L, n, p y R_6 son como se define en la reivindicación 1,

r es como se define en la reivindicación 22;

T es como se define en la reivindicación 23;

b es un número entero del 2 al 5;

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

25. Construcción multimérica con la fórmula (V)

$$T = \begin{bmatrix} CH_2 \\ R_6 \end{bmatrix}$$

$$COOR_4$$

$$COOR_4$$

$$COOR_4$$

$$COOR_4$$

$$COOR_4$$

$$COOR_4$$

$$COOR_4$$

$$COOR_4$$

donde

OR₄, R₅, L, n y p son como se define en la reivindicación 1,

R₆ es una fracción de biotina,

T es una fracción de estreptavidina o avidina,

r es 2 o 3;

sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción.

- 5 **26.** Agregado macromolecular en forma de liposoma, micela, microemulsión, vesícula o microesfera que comprende un número de residuos de biotina en su superficie, estando dichos residuos de biotina acoplados con la construcción multimérica de fórmula (V) según la reivindicación 25.
- 27. Agregado macromolecular según la reivindicación 26 en forma de liposoma paramagnético, de agente
 10 LIPOCEST o de vesícula que contiene gas.
 - 28. Compuesto seleccionado entre el grupo que consiste en:

Compuesto I

Complejo quelatado 1

Complejo quelatado 2

Complejo quelatado 3

- **29.** Compuesto o construcción multimérica de fórmula (III), (VI) o (VII), según las reivindicaciones 1 y 24, donde R₆ es una fracción eficaz desde el punto de vista radioterapéutico o diagnóstico para su uso como agente diagnóstico o radioterapéutico, respectivamente.
- **30.** Compuesto de fórmula (III), (VI) o (VII), según las reivindicaciones 1 y 24, donde R₆ es una fracción fosfolipídica o lipídica en forma de liposoma paramagnético, LIPOCEST o vesícula que contiene gas, para su uso como agente diagnóstico.
- **31.** Sistema macromolecular según la reivindicación 21 o agregado macromolecular según la reivindicación 27, para su uso como agente diagnóstico.
- 32. Composición farmacéutica que comprende un compuesto, construcción multimérica o sistema macromolecular, según una cualquiera de las reivindicaciones de la 29 a la 31, junto con excipientes, vehículos y/o diluyentes aceptables desde el punto de vista farmacéutico.
- 33. Agente diagnóstico según una cualquiera de las reivindicaciones de la 29 a la 31 para su uso en un método in vivo o in vitro para la obtención de imágenes de un sistema patológico, incluyendo dicho sistema células, líquidos y tejidos biológicos aislados de un paciente mamífero vivo, así como de órganos, región o tejidos de un cuerpo humano afectados por procesos angiogénicos, que incluyen tumores o tejidos cancerosos, inflamaciones, o para la supervisión del progreso y los resultados de tratamientos terapéuticos de dichas patologías.
- 34. Agente radioterapéutico según la reivindicación 29 para su uso en un método in vivo o in vitro para la prevención o inhibición de la angiogénesis o trastornos relacionados en un paciente que comprende la puesta en contacto de una cantidad eficaz de dicho agente radioterapéutico con un sistema patológico que incluye células, líquidos y tejidos biológicos aislados de un paciente mamífero vivo, o un órgano, tejido o zona del cuerpo que presenta vasculatura angiogénica.
 - 35. Utilización de un compuesto de fórmula (III)

$$R_6$$
 $COOR_4$ $COOR_4$ R_6 $COOR_4$

donde

35 n es 1 o 2,

5

10

p es un número entero entre 1 y 5,

OR₄ y R₅ juntos constituyen la secuencia Asp-Gly-Arg,

R₆ es una fracción fosfolipídica o lipídica, un residuo de biotina o avidina;

L es un grupo (i) -CONH-, (ii) -NHCONH-, (iii) -NHCSNH-, un grupo de fórmula

$$N-N$$
 $-S$ O (y)

- o es una fracción de enlace bifuncional que conecta R₆ al derivado -(CH₂)p-biciclo de la fórmula (III), que comprende dos de los grupos anteriores (i) a (v) como grupos terminales; o de un compuesto de fórmula (IV) según la reivindicación 22 o 23, o de fórmula (V) según la reivindicación 25 o una construcción multimérica de fórmula (VI) o (VII) según la reivindicación 24 y donde R₆ es una fracción fosfolipídica o lipídica fracción, un residuo de biotina o avidina,
- sus sales, mezclas racémicas, enantiómeros individuales, diastereoisómeros individuales y mezclas de estos en cualquier proporción, para la preparación de un agente diagnóstico o radioterapéutico.

Esquema 1

Reactivos y condiciones: i) H_2 , Pd/C; ii) Cbz-Cl, TEA, DCM (78 %); iii) MsCl, TEA, DCM; iv) NaN_3 , DMF, 80 °C, (76 % en dos pasos); v) Me_3P , H_2O , DCM (99 %).

. .

Reactivos y condiciones: i) H_2 , Pd/C; ii) Cbz-Cl, TEA, DCM (80 %); iii) MsCl, TEA, DCM; iv) NaN_3 , DMF, 80 °C, (85 % en dos pasos); v) Me_3P , H_2O , DCM (98 %).

Esquema 2

Reactivos y condiciones: i) H₂, Pd/C; ii) Cbz-Cl, TEA, DCM (75 %); iii) MsCl, TEA, DCM; iv) NaN₃, DMF, 80 °C, (80 % en dos pasos); v) Me₃P, H₂O, DCM (98 %).

Reactivos y condiciones: i) H_2 , Pd/C; ii) Cbz-CI, TEA, DCM (60 %); iii) MsCI, TEA, DCM; iv) NaN_3 , DMF, 80 °C, (90 % en dos pasos); v) Me_3P , H_2O , DCM (99 %).

Esquema 3

Reactivos y condiciones: i) TFA, DCM; ii) $NH_2Arg(Pmc)GlyOMe$, DIC, HOBt; iii) H_2 , Pd/C; iv) CbzNHAsp(tBu)OH, DIC, HOBt; v) BnOH, Ti(OiPr)₄; vi) H_2 , Pd/C; vii) HATU, HOAt, DIPEA.

Esquema 4

Síntesis de 6,5-cis

Reactivos y condiciones: i) MsCl, TEA, DCM; ii) NaN $_3$, DMF, 80 °C, (62 % en dos pasos); iii) H $_2$, Pd-C 10 %, MeOH, iv) R $_6$ COOH, HBTU, DIPEA, DCM; v) TFA

Síntesis de 7,5-cis

Reactivos y condiciones: i) MsCl, TEA, DCM; ii) NaN $_3$, DMF, 80 °C, (60 % en dos pasos); iii) H $_2$, Pd-C 10 %, MeOH, iv) R $_6$ COOH, HBTU, DIPEA, DCM; v) TFA

Esquema 5

Síntesis de 6,5-trans

Reactivos y condiciones: i) MsCl, TEA, DCM; ii) NaN $_3$, DMF, 80 °C, (60 % en dos pasos); iii) H $_2$, Pd-C 10 %, MeOH, iv) R $_6$ COOH, HBTU, DIPEA, DCM; v) TFA

Síntesis de 7,5-trans

Reactivos y condiciones: i) MsCl, TEA, DCM; ii) NaN $_3$, DMF, 80 °C, (75 % en dos pasos); iii) H $_2$, Pd-C 10 %, MeOH, iv) R $_6$ COOH, HBTU, DIPEA, DCM; v) TFA

Figura 6 Esquema A

Preparación de los productos iniciales

$$n = 1, 2$$
 $n = 1, 2$
 $n = 1, 2$

n = 1 o 2

Reactivos y condiciones: $HClO_4$, AcOtBu, 0~C; ii. Amberlyst A-21, ClCOCOOMe, -20 $^{\circ}C$; iii. $LiBH_4$, THF, $0~^{\circ}C$; iv. $(COCI)_2$, DMSO, TEA, CH_2CI_2 , -60 $^{\circ}C$; v. $Bn-NH-OH\cdot HCI$, $NaHCO_3$, $EtOH/H_2O$, $80~^{\circ}C$; vi.

Figura 7a <u>Enlazadores</u>

Figura 7b

$$H_2N$$
 COOH COOH COOH H_2N COOH H_2N COOH H_2N H_2

Synth. Commun. 2001, 31, 1307; Org. Prep. Proced. Int. 1996, 28, 49; J. Am. Chem. Soc. 2002, 124,

HOOC
$$NH_2$$

$$NH_2$$

$$NH_2$$

$$NH_2$$

$$NH_2$$

$$Tetrahedron Lett. 2001, 42, 7443;$$

H2N—NHCO X COOH

HOOC X COHN—NHCO X COOH

$$X = CH_2CH_2$$
, CH_2OCH_2 , CH_2OCH_2)3:

<u>14</u>

Figura 7c

<u>25</u>

<u>24</u>

<u>23</u>

<u>26</u>

Figura 8a

Quelantes

Bioconj. Chem (1999), 10, 137

Bioorg. Chemm. Lett. (2000), 10, 2133

Figura 8b

Figura 8c

Figura 9a

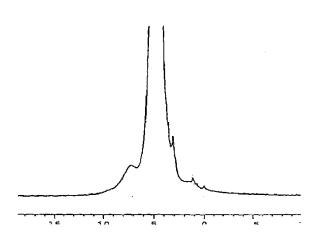
Quelantes de radionucleidos

Bioconjugate Chem. 1999, 10, 489

Bioconjugate Chem. 1999, 10, 470

Bioconjugate Chem. 1999, 10, 254

Inorg. Chem. 1997, 36, 5799


SH S

Bioconjugate Chem. 1990, 1, 132

27 Eur. J. Nucl. Med. 1994, 21, 437

Figura 9b

Figura 10

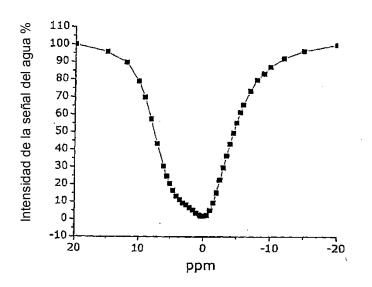


Figura 12

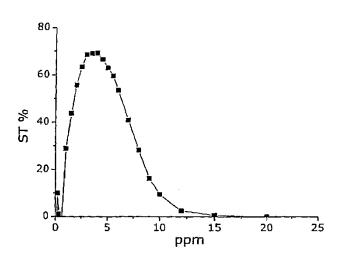
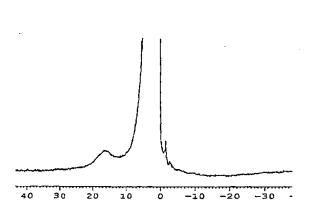
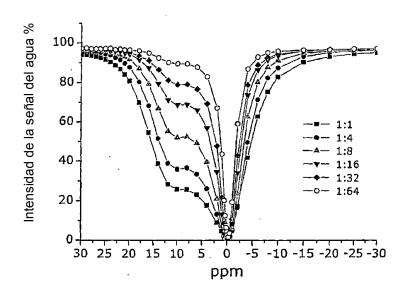
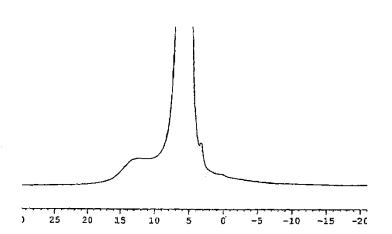
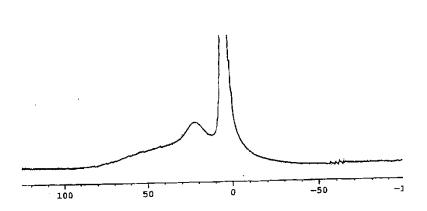


Figura 13


Figura 14

60 40 20 0 -20 -40 -60

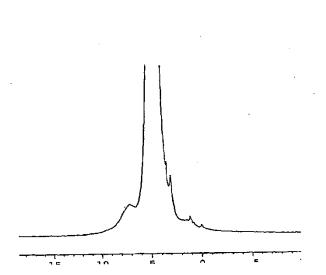


Figura 19

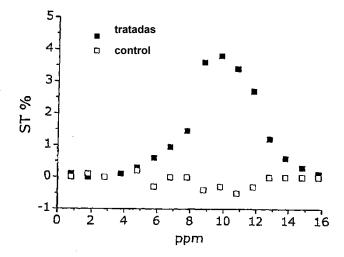
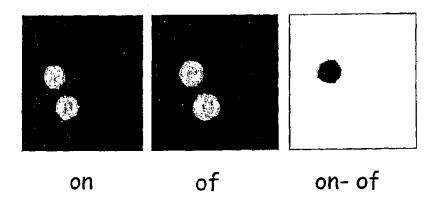



Figura 20

