

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 525 772

21 Número de solicitud: 201431468

(51) Int. Cl.:

C07D 239/74 (2006.01) A61K 31/517 (2006.01) A61P 25/24 (2006.01)

(12)

SOLICITUD DE PATENTE

A1

22 Fecha de presentación:

03.10.2014

(43) Fecha de publicación de la solicitud:

29.12.2014

(71) Solicitantes:

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA (100.0%) Edificio EMPRENDIA-Campus Vida 15782 Santiago de Compostela (A Coruña) ES

(72) Inventor/es:

SOBARZO SÁNCHEZ, Eduardo; URIARTE VILLARES, Eugenio; FONTENLA GIL, José Ángel; RODRÍGUEZ FIDALGO, Brais y CIMADEVILA FONDEVILA, Marta

(74) Agente/Representante:

PARDO SECO, Fernando Rafael

54 Título: Síntesis y uso de perimidinonas en trastornos del estado del ánimo y ansiedad

(57) Resumen:

Síntesis y uso de perimidinonas en trastornos del estado del ánimo y ansiedad. La presente invención se refiere a compuestos de fórmula I y a composiciones farmacéuticas que comprenden estos alcaloides para su uso en trastornos del estado del ánimo y ansiedad.

DESCRIPCIÓN

SINTESIS Y USO DE PERIMIDINONAS EN TRASTORNOS DEL ESTADO DEL ÁNIMO Y ANSIEDAD

SECTOR TÉCNICO DE LA INVENCIÓN

La presente invención se refiere a compuestos de fórmula I y a composiciones farmacéuticas que comprenden estos alcaloides para su uso en trastornos del estado del ánimo y ansiedad.

ESTADO DE LA TÉCNICA

5

10

15

20

25

30

Existen antecedentes previos de la capacidad inhibidora de la MAO-A en experimentos *in vitro* de algunos compuestos de fórmula I (7*H*-dibenzo[*de,h*]quinolin-7-ona, *oxoisoaporfinas*) que son selectivos y potentes inhibidores de la monoamino oxidasa A (MAO-A) (Eduardo Sobarzo-Sánchez, Matilde Yañez Jato, Francisco Orallo Cambeiro, Eugenio Uriarte Villares y Ernesto Cano Rubio, "*Use of oxoisoaporphines and their derivatives thereof as selective inhibitors of monoamino oxidase A*", **2008**, WO/2009/034216) y, por lo tanto, los convierte en potenciales fármacos útiles para el tratamiento de la depresión. Además, es bien conocido que fármacos inhibidores de la MAO-A no sólo son útiles para el tratamiento de la depresión sino que también se pueden utilizar para el tratamiento de determinados tipos de trastornos de ansiedad como pueden ser la agorafobia, fobia social, pánico, trastorno por estrés postraumático, trastorno obsesivo-compulsivo.

$$R_3$$
 R_2 R_1 R_2 R_3 R_4 R_5 R_6 R_8 R_7 R_8

Por otro lado, derivados de 7*H*-benzo[e]perimidin-7-ona (*3-azaoxoisoaporfina*) han sido clasificados en la actualidad como buenos anticancerígenos (Synthesis and cytotoxic activity of N-[(alkylamino)alkyl]carboxamide derivatives of 7-oxo-7H-benz[de]anthracene, 7-oxo-7H-naphtho[1,2,3-de]quinoline, and 7-oxo-7H-benzo[e]perimidine. Bu, X.; Chen, J.; Deady, L. W.; Smith, C. L.; Baguley, B. C.; Greenhalgh, D.; Yang, S.; Denny, W. A. *Bioorg. Med. Chem.* (2005), *13*(11), 3657-3665.; The activity of latent benzoperimidine esters to inhibit P-glycoprotein and multidrug resistance-associated protein 1 dependent efflux of pirarubicin from several lines of multidrug resistant tumor cells. Glowacka-Rogacka, D.; Arciemiuk, M.; Kupiec, A.; Bontemps-Gracz, M. M.; Borowski, E.; Tarasiuk, J. *Cancer Detect. Prev.* (2004), *28*(4), 283-293.; 8,11-Dihydroxy-6-[(aminoalkyl)amino]-7H-benzo[e]perimidin-7-ones with Activity in Multidrug-Resistant Cell Lines: Synthesis and Antitumor Evaluation. Stefanska, B.; Dzieduszycka, M.; Bontemps-Gracz, M. M.; Borowski, E.; Martelli, S.; Supino, R.; Pratesi, G.; De Cesare, M.; Zunino, F.; Kusnierczyk, H.; Radzikowski, C. *J. Med. Chem.* (1999), *42*(18), 3494-3501.; Preparation of 6-[(aminoalkyl)amino]-7H-benzo[e]perimidin-7-ones as anticancer drugs. Borowski, E. *PCT Int. Appl.* (1998), WO 9825910 A1 19980618.; 6-[(Aminoalkyl)amino]-substituted 7H-benzo[e]perimidin-7-ones as novel antineoplastic agents. Synthesis and biological evaluation. Stefanska, B.; Dzieduszycka, M.; Martelli, S.; Tarasiuk, J.; Bontemps-Gracz, M.; Borowski, E. *J. Med. Chem.* (1993), *36*(1), 38-41).

35 Sin embargo, continúa siendo necesario el desarrollo de compuestos que muestren elevada selectividad a bajas concentraciones (nM a pM) en la inhibición de la MAO-A frente a MAO-B, y buena actividad antidepresiva.

DESCRIPCIÓN DE LA INVENCIÓN

Los autores de la presente invención han sintetizado y evaluado derivados de 7*H*-benzo[e]perimidin-7-ona de fórmula II y han comprobado que los compuestos de la invención han permitido revertir de manera eficiente el estado depresivo inducido por la administración de reserpina en animales de experimentación evaluados en el test de Porsolt (Behavioural despair in mice: a primary screening test for antidepressants. Porsolt, R. D.; Bertin, A.; Jalfre, M. *Arch. Int. Pharmacodyn.* (1977), 229, 327-336; Depression: a new animal model sensitive to antidepressant treatments. Porsolt, R. D.; Le Pichon, M.; Jalfre, M. *Nature* (1977), 266, 730-732; Behavioural despair in rats: a new model sensitive to antidepressant treatments. Porsolt, R. D.; Anton, G.; Blavet, N.; Jalfre, M. *Eur. J. Pharmacol.* (1978), 47(4), 379-391; Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Porsolt, R. D.; Brossard, G.; Hautbois, C.; Roux, S. *Curr. Protoc. Neurosci.* (2001), Chapter 8, Unit 8.10A). Por lo que, la presente invención aporta la síntesis y el uso de un determinado tipo de derivado de *3-azaoxoisoaporfina* eficaz en el tratamiento de desórdenes del estado del ánimo, ansiedad y conductuales. De este modo la invención proporciona además composiciones farmacéuticas selectivas y eficaces para la inhibición de MAO-A, y útiles en el tratamiento de trastornos del estado del ánimo, como la depresión y trastornos de ansiedad.

Así, en un aspecto la invención se dirige al uso de compuestos de fórmula II, sus sales, hidratos, solvatos y N-óxidos,

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_6
 R_7

20 donde:

25

30

5

10

15

-R¹, R², R³, R⁴, R⁵, R⁶, R⁷, y R⁸ son cada uno de ellos seleccionados de forma independiente entre hidrógeno, alquenilo, formilo, halógeno, -OR^b y –NR^aR^b;

-R^a y R^b se seleccionan independientemente entre hidrógeno, alquilo, alquenilo, cicloalquilo, cicloheteroalquilo, arilo, heteroarilo, o, R^a y R^b conjuntamente forman un anillo de heterociclo, de 4 a 7 miembros conteniendo 0-2 heteroátomos independientemente seleccionados entre oxígeno, azufre y N-R^c, donde R^c se selecciona entre hidrógeno, alquilo, y -C(O)R^b, para la preparación de un medicamento para el tratamiento de trastornos del estado de ánimo y/o trastornos de la ansiedad.

En otro aspecto la invención se dirige al uso de una composición farmacéutica que comprende los compuestos de fórmula (II) como se han descrito anteriormente, para la preparación de un medicamento para el tratamiento de trastornos del estado de ánimo y/o trastornos de la ansiedad.

Descripción de las figuras

Figura 1: Tiempo de inmovilidad de los animales tratados con reserpina (Res+CMCNa), solo con el vehículo (Agua+CMCNa), el fármaco de referencia (Clorgilina) y los derivados de perimidinonas (A1-A13) (*p<0,05; *p<0,01).

- 5 Figura 2: Tiempo de movilidad de los derivados de perimidinonas ensayadas (*p<0.05; **p<0.01).
 - Figura 3: Tiempo de fuerte movilidad de los derivados de perimidinonas ensayadas (*p<0.05; **p<0.01).
 - Figura 4: Resumen de los tres tiempos evaluados (inmovilidad, movilidad y fuerte movilidad) para las nuevas perimidinonas ensavadas.

Descripción detallada de la invención 10

Los compuestos de fórmulas II han mostrado una importante selectividad en experimentos "in vitro" a bajas concentraciones (nM a pM) en la inhibición de la MAO-A frente a MAO-B, y una actividad antidepresiva superior comparados con patrones referentes como, por ejemplo, Clorgilina y Moclobemida. Estas ventajas los hacen excelentes candidatos en el tratamiento de trastornos del estado de ánimo, ansiedad, depresión, etc.

- 15 En una realización particular, los trastornos del estado de ánimo y trastornos de la ansiedad se seleccionan de entre desórdenes bipolares I, desórdenes bipolares II, desórdenes depresivos unipolares, depresión menor, desórdenes afectivos estacionales, depresión posnatal, distimia, depresión mayor, desórdenes de ansiedad, desorden al pánico, fobia social, crisis de angustia y agorafobia, desorden compulsivo obsesivo, desorden de estrés postraumático, desorden de ansiedad generalizada, desórdenes relacionados a sustancias, desórdenes 20 por uso de sustancias, desórdenes inducidos por sustancias, retiro de sustancias, déficit atencional y desórdenes por comportamiento errático, desorden hiperactivo por déficit atencional, maduración sexual irregular, narcolepsia, desórdenes control impulsivo, riesgo patológico, desórdenes de alimentación, anorexia nerviosa, bulimia nerviosa, desórdenes musculares, síndrome de piernas inquietas, dolor, dolor de cabeza, dolor facial atípico, desorden de dolor y síndrome del dolor crónico, disfunción sexual, obstrucción de vías aéreas, asma, 25 desórdenes de motilidad gastrointestinal, hemorroides, espasmo del músculo liso y esfínter en el tracto gastrointestinal y espasmos bronquiales.
 - Los compuestos de fórmula II pueden estar en forma de sales, como por ejemplo, la sal de amonio. Los
- compuestos II también pueden estar en forma oxidada, en cuyo caso son N-óxidos. En una realización particular, en los compuestos de fórmula II, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, y R⁸ son cada uno de ellos seleccionados de forma independiente entre hidrógeno, halógeno, alquello, alquenilo, formilo, -OR^b; donde 30 R^b se selecciona entre hidrógeno y alquilo y –NR^aR^b; donde R^a y R^b son como se definieron anteriormente.

En una realización particular, en los compuestos de fórmula II, R³, R⁶, R⁷ y R⁸ son hidrógeno, y R¹, R², R⁴, R⁵ se seleccionan independientemente de entre hidrógeno, cloro, bromo, yodo, metilo, etilo, propilo, carbaldehido, hidroxilo y metoxilo.

En una realización particular, los compuestos de fórmula II se seleccionan entre los compuestos:

7H-benzo[e]perimidin-7-ona 1.

35

55

- 2. 8-cloro-7H-benzo[e]perimidin-7-ona
- 40 3. 6-hidroxi-7H-benzo[e]perimidin-7-ona
 - 6-metoxi-7*H*-benzo[*e*]perimidin-7-ona 4.
 - 5. 4-metil-7H-benzo[e]perimidin-7-ona
 - 2-metil-7*H*-benzo[e]perimidin-7-ona 6.
 - 7-oxo-7*H*-benzo[e]perimidin-2-carbaldehido 7.
- 45 6-hidroxi-2-metil-7*H*-benzo[e]perimidin-7-ona 8.
 - 8-cloro-6-hidroxi-7H-benzo[e]perimidin-7-ona 9.
 - 8-cloro-6-hidroxi-2-metil-7*H*-benzo[e]perimidin-7-ona 10.
 - 11. 2-(hidroximetil)-7H-benzo[e]perimidin-7-ona
 - 8-cloro-2-metil-7*H*-benzo[e]perimidin-7-ona 12.
- 50 13. 8-cloro-7-oxo-7*H*-benzo[e]perimidin-2-carbaldehido

En la presente invención se entiende por "alquilo" una cadena hidrocarbonada lineal o ramificada que no contiene ninguna instauración, de 1 a 10 átomos de carbono, preferiblemente de 1 a 4 átomos de carbono, opcionalmente sustituidos con uno a tres sustituyentes seleccionados entre -OR^b, -NR^aS(O)_mR^b donde m se selecciona entre 1 y 2, $-SR^b$, $-S(O)_mR^b$, $-S(O)_mR^aR^b$ donde m se selecciona entre 1 y 2, $-NR^aR^b$, $-C(O)R^b$, $-C(O)R^a$, -Carilo y heteroarilo; donde R^a y R^b son como se definieron previamente.

"Cicloalquilo" se refiere a una cadena hidrocarbonada cíclica que no contiene ninguna instauración, de 3 a 10 átomos de carbono, preferiblemente de 5 a 6 átomos de carbono. El cicloalquilo puede ser monocíclico, bicíclico o tricíclico y puede incluir anillos fusionados. Opcionalmente el cicloalquilo puede estar sustituido con uno a tres sustituyentes seleccionados entre halógeno, ciano, -OR^b, -NR^aS(O)_mR^b donde m se selecciona entre 1 y 2, -SR^b, -S(O)_mR^b, -S(O)_mNR^aR^b donde m se selecciona entre 1 y 2, -NR^aR^b, -C(O)R^b, -CO₂R^b, -C(O)NR^aR^b, -NR^aC(O)R^b, -NR^aC(O)R^b, -NR^aC(O)NR^aR^b, -CF₃, -OCF₃, alquilo, arilo y heteroarilo; donde R^a y R^b son como se definieron previamente.

- "Alquenilo" se refiere a una cadena hidrocarbonada lineal o ramificada, cíclica o acíclica, que contiene al menos una instauración, de 2 a 10 átomos de carbono, preferiblemente de 2 a 5 átomos de carbono, opcionalmente sustituidos con uno a tres sustituyentes seleccionados entre halógeno, ciano, -OR^b, -NR^aS(O)_mR^b donde m se selecciona entre 1 y 2, -SR^b, -S(O) mR^b, -S(O) mNR^aR^b donde m se selecciona entre 1 y 2, -NR^aR^b, -C(O)R^b, -CO₂R^b, -C(O)NR^aR^b, -NR^aC(O)OR^b, -NR^aC(O)OR^b, -NR^aC(O)NR^aR^b, -CF₃, -OCF₃, alquilo, cicloalquilo, cicloheteroalquilo, arilo y heteroarilo; donde R^a y R^b son como se definieron previamente.
- "Cicloheteroalquilo" se refiere a un cicloalquilo que contiene al menos un heteroátomo seleccionado entre oxígeno, nitrógeno o azufre, por ejemplo: pirrolidinilo, morfolinilo, piperazinilo y piperidinilo. Opcionalmente el cicloheteroalquilo puede estar sustituido con uno a tres sustituyentes seleccionados entre $-OR^b$, $-NR^aS(O)_mR^b$ donde m se selecciona entre 1 y 2, $-SR^b$, $-S(O)_mR^b$, $-S(O)_mR^aR^b$ donde m se selecciona entre 1 y 2, $-NR^aR^b$, $-C(O)R^b$, $-CO_2R^b$, $-C(O)NR^aR^b$, $-NR^aC(O)R^b$, $-NR^aC(O)R^b$, $-NR^aC(O)NR^aR^b$, $-CF_3$, $-OCF_3$, alquilo, arilo y heteroarilo; donde $-R^a$ y $-R^a$ son como se definieron previamente.
- "Arilo" se refiere a un hidrocarburo aromático de 6 a 10 átomos de carbono, por ejemplo: fenilo o naftilo; opcionalmente el arilo puede estar sustituido con uno a tres sustituyentes seleccionados entre -OR^b, -NR^aS(O)_mR^b donde m se selecciona entre 1 y 2, -SR^b, -S(O)_mR^b, -S(O)_mNR^aR^b donde m se selecciona entre 1 y 2, -NR^aR^b, -C(O)R^b, -CO₂R^b, -C(O)NR^aR^b, -NR^aC(O)R^b, -NR^aC(O)OR^b, -NR^aC(O)NR^aR^b, -CF₃, -OCF₃, alquilo, alquenilo, arilo y heteroarilo; donde R^a y R^b son como se definieron previamente.
- "Heteroarilo" se refiere a un arilo que contiene al menos un heteroátomo seleccionado entre oxígeno, nitrógeno o azufre, por ejemplo: piridilo, pirazolilo, triazolilo, pirimidilo, isoxazolilo, indolilo y tiazolilo; opcionalmente el heteroarilo puede estar sustituido con uno a tres sustituyentes seleccionados entre -OR^b, -NR^aS(O)_mR^b donde m se selecciona entre 1 y 2, -SR^b, -S(O)_mR^b, -S(O)_mNR^aR^b donde m se selecciona entre 1 y 2, -NR^aR^b, -C(O)R^b, -CO₂R^b, -C(O)NR^aR^b, -NR^aC(O)R^b, -NR^aC(O)OR^b, -NR^aC(O)NR^aR^b, -CF₃, -OCF₃, alquilo, alquenilo, arilo y heteroarilo; donde R^a y R^b son como se definieron previamente.
 - "Halógeno" es flúor, cloro, bromo o yodo.

35

- Algunos compuestos de fórmula II (A1-A8) fueron preparados de acuerdo a las referencias que se mencionan a continuación; [Synthesis, structure, geometrical, and spectral characteristics of the (HLn)₂[CuCl₄] complexes.

 40 Crystal and molecular structure of bis(2-methylimidazolium) tetrachlorocuprate(II). Kovalchukova, O. V.; Palkina, K. K.; Strashnova, S. B.; Zaitsev, B. E. *Russ. J. Coord. Chem.* 2008, 34, 830-835.; Method of obtaining highly pure 7H-benzo[e]perimidin-7-one. Golubski, Zbigniew; Kowal, Ryszard. *Polish Patent* 2006, PL 192093 B1 2006083; Tetracycle formation from the reaction of acetophenones with 1-aminoanthraguinone, and further
- annulation of pyridine and diazepine rings. Deady, L. W.; Smith, C. L. Aust. J. Chem. 2003, 56(12), 1219-1224; Benzoperimidine-carboxylic acids and derivatives as antagonists of corticotropin releasing factor receptors. Rabinovich, A. K.; Dhanoa, D. S.; Luthin, D. R.; Bychowski, R. A.; Bhumralkar, Dilip R. PCT Int. Appl. 1998, WO 9808821 A1 19980305; Synthesis of anthrapyrimidine derivatives. Nishio, Kazuo; Kasai, Toshiyasu; Tsuruoka, Shinzo. Kogyo Kagaku Zasshi 1968, 71(12), 2026-2033; Preparation of 6-hydroxy-7H-benzo[e]perimidin-7-one (4-hydroxyanthrapyrimidine). Kowal, Ryszard; Golubski, Zbigniew E. Polish Patent 2001, PL 180370 B1 20010131;
- Anthrapyrimidines. Weidinger, H.; Eilingsfeld, H.; Haese, G. *Deutsche Patent* **1963**, 1159456 (B); Transformations of 4-methylpyrimidinoanthrone under the action of alkaline agents and amines. Kazankov, M. V.; Zotova, O. A. *Russ. J. Org. Chem.* **1999**, 35(11), 1706-1710; Dimerization mechanism of 4-methylpyrimidanthrone. Kazankov, M. V.; Zotova, O. A.; Ulanova, L. A.; Pykhtina, E. V. *Russ. J. Org. Chem.* **2000**, 36(2), 272-277; Synthesis and Cytotoxic Activity of 7-Oxo-7H-dibenz[f,ij]isoquinoline and 7-Oxo-7H-benzo[e]perimidine Derivatives. Bu, X.;
- Deady, L. W.; Finlay, G. J.; Baguley, B. C.; Denny, W. A. *J. Med. Chem.* **2001**, *44*(12), 2004-2014; Synthesis and cytotoxic activity of N-[(alkylamino)alkyl]carboxamide derivatives of 7-oxo-7H-benz[de]anthracene, 7-oxo-7H-naphtho[1,2,3-de]quinoline, and 7-oxo-7H-benzo[e]perimidine. Bu, X.; Chen, J.; Deady, L. W.; Smith, C. L.; Baguley, B. C.; Greenhalgh, D.; Yang, S.; Denny, W. A. *Bioorg. Med. Chem.* **2005**, *13*(11), 3657-3665; A facile and efficient method for hydroxylation of azabenzanthrone compounds. Ning, F. X.; Weng, X.; Huang, S. L.; Gu, L. Huang, Z. S.; Gu, L. O. Chin. Chem. Lett. **2011**, 22(1), 41, 441.
- 60 L. J.; Huang, Z. S.; Gu, L. Q. Chin. Chem. Lett. 2011, 22(1), 41-44].

El resto de los nuevos derivados de perimidinonas (A9-A13) son descritos de acuerdo al procedimiento experimental indicado más adelante para su obtención, siendo caracterizados por técnicas espectroscópicas y por medio de análisis elemental, masas e IR.

Sales farmacéuticas aceptables

Las sales farmacéuticamente aceptables pueden ser obtenidas de procedimientos estándares conocidos, por ejemplo, a través de la mezcla de los compuestos de fórmula general (II) de la presente invención con un ácido disponible, por ejemplo un ácido inorgánico como ácido clorhídrico, o con un ácido orgánico.

Preparaciones farmacéuticas

5

15

30

40

45

- 10 Los compuestos de fórmula general (II) usados para la presente invención pueden estar contenidos en formas farmacéuticas adecuadas para la administración por medio de procesos usuales usando sustancias auxiliares tales como materiales líquidos o sólidos.
 - Las composiciones farmacéuticas de la invención pueden ser administradas por vía oral o parenteral (intramuscular, subcutánea o intravenosa). Cuando las composiciones farmacéuticas son usadas por administración oral, ellas pueden tener apropiadamente formulaciones aceptables farmacéuticamente en la forma de soluciones, polvos, tabletas, comprimidos, cápsulas (incluyendo microcápsulas), etc. Excipientes convenientes para tales formulaciones son los líquidos farmacéuticamente usados o sólidos de relleno y diluyentes, solventes, lubricantes, emulsionantes, condimentos, sustancias colorantes y/o reguladoras del pH.
- Sustancias auxiliares frecuentemente usadas que pueden ser mencionadas son carbonato o estearato de magnesio, dióxido de titanio, Opadry OYS 96-14, polivinilpirrolidona, croscarmellosa de sodio, lactosa, manitol y otros azúcares o alcoholes derivados de azúcares, talco, lactoproteinas, gelatinas, almidón, celulosa y sus derivados, aceites vegetales y animales tales como aceite de hígados de pescado, girasol, aceites de nuez o sésamo, polietilen glicol y solventes tales como, por ejemplo, agua destilada y alcoholes mono- o polihídricos tales como el glicerol.
 - Cuando las composiciones farmacéuticas de la presente invención son composiciones inyectables, formulaciones aceptables y disponibles farmacéuticamente incluyen agua esterilizada, soluciones salinas isotónicas o tampones. Alternativamente, composiciones inyectables de la presente invención pueden ser composiciones de polvo esterilizadas o composiciones de polvo liofilizadas que puedan ser usadas por simple disolución en agua esterilizada.
 - Composiciones farmacéuticamente inyectables de la presente invención pueden contener azúcares (glucosa, manitol y dextrán, etc.), alcoholes polihídricos (glicerol, etc.) y sales inorgánicas (sales de sodio, magnesio, etc.).
- Cuando las composiciones farmacéuticas de la presente invención son administradas por inyección intravenosa o infusión, estas pueden contener nutrientes tales como glucosa, vitaminas, aminoácidos y lípidos.

Los siguientes ejemplos ilustran la invención de compuestos con actividad antidepresiva, y deben ser considerados para una mejor comprensión de la misma sin que supongan una limitación:

PROCEDIMIENTO EXPERIMENTAL

1. SÍNTESIS Y CARACTERIZACIÓN DE NUEVOS ANÁLOGOS DE PERIMIDINONAS (A9-A13)

Ejemplo 1

8-cloro-6-hidroxi-7*H*-benzo[e]perimidin-7-ona (A9)

A una solución de H_2SO_4 (0,028 mol, 1,6 mL) se añade H_3BO_3 (2.16 mmol, 134 mg) y HgO (0,41 mmol, 90 mg), siendo la mezcla calentada a 90°C por 2 horas. La solución resultante de color marrón se deja enfriar para adicionar **A2** (1,16 mmol, 310 mg) y volver a calentar la mezcla de forma gradual a 165°C por 12 horas con agitación constante. Finalmente la solución resultante se deja enfriar a temperatura ambiente y se diluye en agua-hielo, generándose un sólido café oscuro el cual es filtrado al vacío y lavado repetidamente con agua. El sólido obtenido se seca al vacío con desecante (P_2O_5) y posteriormente se disuelve en benceno caliente y se filtra nuevamente sobre celite. El filtrado se deja cristalizar para generar **A9** como agujas de color café claro [130 mg, 40% de rendimiento].

5

10

15

20

25

30

35

RMN-¹H (A9) (300 MHz, DMSO- d_6 , ppm) δ 7.87 (d, J = 9.5 Hz, 1H), 7.99 (m, 2H), 8.39 (d, J = 10.0 Hz, 1H), 9.05 (m, 1H), 9.55 (s, 1H). **RMN-¹³C (A9)** (300 MHz, DMSO- d_6 , ppm) δ 117.4, 124.9, 128.1, 128.7, 129.2, 133.0, 134.6, 134.8, 135.9, 137.3, 138.7, 144.8, 150.9, 154.0, 184.3. **AE:** calculado para $C_{15}H_7CIN_2O_2$: C, 63.73; H, 2.50; N, 9.91. encontrado, C, 63.31; H, 2.57; N, 9.62. **IQ-EM** (m/z): 282.8 (M^+ , 100). **IR** (KBr, u, cm⁻¹): 3430 (OH); 1636 (C=O).

Ejemplo 2

8-cloro-6-hidroxi-2-metil-7H-benzo[e]perimidin-7-ona (A10)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

A una solución de H_2SO_4 (38,91 mmol, 2 mL) se añade H_3BO_3 (3,02 mmol, 187 mg) y HgO (0,58 mmol, 126 mg), siendo la mezcla calentada a 90°C por 2 horas. La solución resultante de color marrón se deja enfriar para adicionar **A12** (1,62 mmol, 454 mg) y volver a calentar la mezcla de forma gradual a 165°C por 12 horas con agitación constante. Finalmente la solución resultante se deja enfriar a temperatura ambiente y se diluye en agua-hielo, generándose un sólido café oscuro el cual es filtrado al vacío y lavado repetidamente con agua. El sólido obtenido se seca al vacío con desecante (P_2O_5) y posteriormente se disuelve en benceno caliente para filtrarlo nuevamente sobre celite. El filtrado se deja cristalizar para generar **A10** como agujas de color café claro [187 mg, 39% de rendimiento].

RMN-¹**H** (A10) (300 MHz, DMSO- d_6 , ppm) δ 7.90 (m, 1H), 7.96 (m, 1H), 8.29 (m, 1H), 8.40 (m, 1H), 8.91 (s, 1H). **RMN-**¹³**C** (A10) (300 MHz, DMSO- d_6 , ppm) δ 29.3, 119.5, 125.0, 128.6, 129.2, 131.5, 134.0, 134.9, 135.1, 136.5, 138.5, 139.7, 147.1, 149.4, 152.5, 183.1. **AE:** calculado para $C_{16}H_9CIN_2O_2$: C, 64.77; H, 3.06; N, 9.44. encontrado, C, 66.03; H, 3.34; N, 9.91. **IQ-EM** (m/z): 296.9 (M^* , 54). **IR** (KBr,u, cm⁻¹): 3450 (OH); 1672 (C=O).

Ejemplo 3

2-(hidroximetil)-7H-benzo[e]perimidin-7-ona (A11)

A una solución de MeOH (50 mL) puesta sobre un baño de agua-hielo se añadió **A7** (2,4 g, 9,19 mmol) y en porciones pequeñas se adicionó NaBH₄ (55,1 mmol, 2,08 g) con agitación constante por 2 h. Después la suspensión resultante fue diluida con agua (200 mL) y agitada por 10 min a temperatura ambiente. Una vez que la solución resulto ser homogénea, el pH fue ajustado entre 8-9 con la adición de alícuotas de AcOH glacial. Finalmente la solución acuosa fue extraída con CH₂Cl₂ y la fase orgánica fue secada con Na₂SO₄ y concentrada al vacío. El residuo final fue purificado mediante cromatografía en gel de sílice (4% MeOH en CH₂Cl₂), obteniéndose **A11** como agujas finas color beige [530 mg, 22% de rendimiento].

RMN-¹**H** (A11) (300 MHz, DMSO- d_6 , ppm) δ 4.91 (s, 2H), 7.93 (m, 2H), 8.35 (m, 4H), 8.86 (m, 1H). **RMN-**¹³**C** (A11) (300 MHz, DMSO- d_6 , ppm) δ 65.0, 117.9, 125.4, 127.4, 127.8, 128.4, 128.6, 132.9, 133.2, 134.1, 134.4, 134.8, 149.1, 156.2, 166.9, 181.3. **AE:** calculado para $C_{16}H_{10}N_2O_2$: C, 73.27; H, 3.84; N, 10.68. encontrado, C, 72.76; H, 4.02; N, 10.58. **IQ-EM** (m/z): 262.8 (M^+ , 100). **IR** (KBr, v, v, v, v (KBr, v) 3430 (OH); 1672 (C=O).

15

5

10

Ejemplo 4

8-cloro-2-metil-7H-benzo[e]perimidin-7-ona (A12)

20

25

30

Sobre un baño de hielo-agua, POCl₃ (17,46 mmol, 1,6 mL) fue agregado gota a gota sobre una disolución de *N,N*-dimetilacetamida (**DA**) (20,37 mmol, 1,9 mL) en CH₃CN (70 mL), siendo esta reacción mantenida con agitación constante a 0°C por 1 h. Posteriormente es adicionado el derivado 5-cloro-1-amino-antraquinona (**5-CI-ANTRO**) (5,82 mmol, 1,5 g) en una porción. La mezcla resultante es dejada agitar hasta temperatura ambiente y posteriormente a 50°C por 1 día. Al día siguiente, la solución resultante color marrón fue vertida sobre agua-hielo y se añadió una solución de NaOH al 10% (30 mL), generándose un precipitado amorfo color marrón claro que fue filtrado al vacío y lavado repetidamente con agua destilada. El producto seco (1,56g) fue disuelto en EtOH (70 mL) y tratado con NH₄OAc (35 mmol, 2,7 g), siendo puesta la mezcla a reflujo por 2 h. Al cabo de este tiempo la reacción fue dejada enfriar, generándose un precipitado color café claro el cual fue filtrado al vacío y lavado repetidamente con EtOH frío. El residuo fue cristalizado en una mezcla CH₂Cl₂/CH₃CN para dar **A12** como un sólido cristalino color beige amarillento [830 mg, 51% de rendimiento].

RMN-¹**H** (**A12**) (300 MHz, DMSO- d_6 , ppm) δ 2.94 (s, 3H), 7.81 (m, 1H), 8.07 (m, 1H), 8.22 (m, 1H), 8.31 (m, 1H), 8.42 (m, 1H), 8.85 (m, 1H). **RMN-**¹³**C** (**A12**) (300 MHz, DMSO- d_6 , ppm) δ 30.4, 122.8, 123.4, 125.7, 130.0, 132.7, 134.5, 134.7, 134.9, 135.6, 136.6, 137.0, 149.1, 149.4, 156.7, 181.8. **AE**: calculado para $C_{16}H_9CIN_2O$: C, 68.46; H, 3.23; N, 9.98. encontrado, C, 67.76; H, 3.31; N, 9.78. **IQ-EM** (m/z): 280.8 (M^+ , 100). **IR** (KBr, v, cm⁻¹): 1674 (C=O).

Ejemplo 5

8-cloro-7-oxo-7H-benzo[e]perimidin-2-carbaldehido (A13)

- A una solución de **A12** (1,78 mmol, 500 mg) en dioxano (70 mL) fue añadido SeO₂ (2,67 mmol, 300 mg) en una porción para formar una suspensión que fue puesta a reflujo por 4 h. La mezcla generada fue filtrada en caliente sobre celite y lavada repetidamente con dioxano caliente, generándose una solución transparente de color marrón. La fase orgánica fue concentrada al vacío para dar un residuo, el cual fue cristalizado en una mezcla CH₂Cl₂/CH₃CN obteniéndose **A13** como un sólido color café claro [324 mg, 62% de rendimiento].
- **RMN-**¹**H** (A13) (300 MHz, DMSO- d_6 , ppm) δ 7.94 (m, 2H), 8.37 (m, 1H), 8.59 (m, 2H), 8.96 (m, 1H), 10.20 (s, 1H). **RMN-**¹³**C** (A13) (300 MHz, DMSO- d_6 , ppm) δ 119.3, 122.7, 125.5, 132.5, 132.8, 133.1, 133.3, 135.5, 135.8, 137.5, 141.4, 146.9, 153.6, 174.0, 188.6, 191.8. **AE:** calculado para C₁₆H₇ClN₂O₂: C, 65.21; H, 2.39; N, 9.51. encontrado, C, 65.02; H, 2.31; N, 9.46. **IQ-EM** (m/z): 294.0 (M^+ , 100). **IR** (KBr, u, cm⁻¹): 1672 (C=O), 1725 (CHO).

2. <u>EVALUACIÓN DE COMPUESTOS</u>

5

Los compuestos evaluados en la presente invención están basados en las siguientes fórmulas generales, correspondiente a la fórmula general (II):

7H-BENZO[e]PERIMIDIN-7-ONA (3-AZAOXOISOAPORFINA), Fórmula general (II):

$$R_3$$
 R_4
 R_4
 R_5
 R_6
 R_7
 R_6
 R_7

En que:

5

10

15

25

35

40

45

50

55

60

- en que si: R¹, R², R³, R⁴, R⁵, R⁶, R⁷ y R⁸ es hidrógeno; se trata de 7*H*-benzo[e]perimidin-7a)
- ona, llamado de aquí en adelante **A1**; en que si: R¹, R², R³, R⁴, R⁶, R⁷ y R⁸ es hidrógeno y R⁵ representa un cloro; se trata de 8b) cloro-7H-benzo[e]perimidin-7-ona, llamado de aquí en adelante A2;
- en que si: R¹, R², R³, R⁵, R⁶, R⁷ y R⁸ es hidrógeno, R⁴ representa un hidroxilo; se trata de 6c) hidroxi-7*H*-benzo[e]perimidin-7-ona, llamado de aquí en adelante A3;
- en que si: R¹, R², R³, R⁵, R⁶, R⁷ y R⁸ es hidrógeno y R⁴ representa un metoxilo; se trata de 6d)
- metoxi-7*H*-benzo[e]perimidin-7-ona, llamado de aquí en adelante **A4**; en que si: R¹, R³, R⁴, R⁵, R⁶, R⁷ y R⁸ es hidrógeno y R² representa un metilo; se trata de 4-metil-7*H*-benzo[e]perimidin-7-ona, llamado de aquí en adelante **A5**; e)
 - en que si: R², R³, R⁴, R⁵, R⁶, R⁷ y R⁸ es hidrógeno y R¹ representa un metilo; se trata de 2f) metil-7*H*-benzo[e]perimidin-7-ona, llamado de aquí en adelante **A6**:
- en que si: R², R³, R⁴, R⁵, R⁶, R⁷ y R⁸ es hidrógeno y R¹ representa un aldehído; se trata de 7g) oxo-7H-benzo[e]perimidin-2-carbaldehido, llamado de aquí en adelante A7; en que si: - R^2 , R^3 , R^6 , R^6 , R^7 y R^8 es hidrógeno; R^1 representa un metilo y R^4 representa un
 - h) hidroxilo; se trata de 6-hidroxi-2-metil-7*H*-benzo[e]perimidin-7-ona, llamado de aquí en adelante
- en que si: R¹, R², R³, R⁶, R⁷ y R⁸ es hidrógeno; R⁴ representa un hidroxilo y R⁵ representa un i) 20 cloro; se trata de 6-hidroxi-8-cloro-7H-benzo[e]perimidin-7-ona, llamado de aquí en adelante **A9**;
 - en que si: $-R^2$, R^3 , R^6 , R^7 y R^8 es hidrógeno; R^1 representa un metilo, R^4 representa un j) hidroxilo y R⁵ representa un cloro; se trata de 2-metilo-6-hidroxi-8-cloro-7*H*-benzo[e]perimidin-7-ona, llamado de aquí en adelante A10;
 - en que si: R², R³, R⁴, R⁵, R⁶, R⁷ y R⁸ es hidrógeno y R¹ representa un hidroximetil; se trata de k) 2-(hidrometil)-7H-benzo[e]perimidin-7-ona, llamado de aquí en adelante A11;
 - en que si: R², R³, R⁴, R⁶, R⁷ y R⁸ es hidrógeno; R¹ representa un metilo y R⁵ representa un I) cloro; se trata de 8-cloro-2-metil-7H-benzo[e]perimidin-7-ona, llamado de aquí en adelante
- en que si: R², R³, R⁴, R⁶, R⁷ y R⁸ es hidrógeno; R¹ representa un aldehído y R⁵ representa un 30 m) cloro; se trata de 8-cloro-7H-benzo[e]perimidin-2-carbaldehido, llamado de aquí en adelante

EVALUACIÓN DE LA ACTIVIDAD ANTIDEPRESIVA IN VIVO DE LAS PERIMIDINONAS 3.

A. CONDICIONES GENERALES

Para llevar a cabo los ensayos de potencial actividad antidepresiva in vivo se empleó el Test de Porsolt (Forced Swimming Test, FST) también conocido como test de natación forzada (Porsolt, R. D.: Le Pichon, M.: Jalfre, M. Nature 1977, 266, 730-732). Este procedimiento es el más ampliamente aceptado y el más frecuentemente utilizado. Es un test validado para evaluar la potencial actividad antidepresiva in vivo de nuevas moléculas en animales de experimentación.

Las condiciones ambientales se han mantenido homogéneas y se han utilizado animales del mismo sexo y con pesos similares.

- Los ensayos se han realizado en una habitación silente: aislada acústicamente, con regulación automática de la temperatura (19-21±1°C) y de la luz ambiental (encendida de 8:00 a 20:00 h.). Además, se realizó un control de la humedad ambiental, la cual se mantuvo entre el 45-60%.
- 2. Se han utilizado ratones albinos macho de tipo Swiss de origen Charles River CD1, con un peso comprendido entre 25±5g. Los animales fueron suministrados por el Animalario de la Universidad de Santiago de Compostela (USC).
- 3. Los animales se dispusieron en cajas de polipropileno con una superficie basal de 1000cm² (215x465x145mm). El suelo de la caja fue recubierto con un lecho de virutas de madera (Lignocel®. J. Rettenmaier & Söhne; Rosenberg, Alemania) que se cambiaban periódicamente. La +alimentación de los animales se realizó con pellets comerciales de la marca SAFE (Scientific Animal Food and Engineering; Augy, France) y agua a demanda.
- Con la finalidad de que se aclimataran al ambiente, los animales se mantuvieron un mínimo de tres días en la habitación silente, con las condiciones escritas anteriormente, antes de la realización de ensayos farmacológicos.
- 5. Tanto la estabulación como la manipulación y la experimentación se han realizado de acuerdo con los patrones establecidos en la Directiva 2010/63/UE del Parlamento y del Consejo de las Comunidades Europeas y la Legislación Española sobre los animales de experimentación (RD 53/2013 de 1 de

febrero, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia (BOE nº 34, de 8 de febrero de 2013)).

B. MÉTODOS Y EQUIPOS DE DETECCIÓN EMPLEADOS

El método in vivo utilizado tiene como características principales que:

a) Es un test corto en el tiempo (6 minutos)

5

15

20

30

35

40

45

b) Detecta un amplio espectro de antidepresivos, independientemente de su mecanismo de acción.

El comportamiento de los animales fue registrado durante 6 min mediante una cámara de vídeo analógica (Sony 10 DXC-107A, Sony Corporation, Japón), posicionada en el techo de la habitación y perpendicular a los vasos con agua en los que se introdujeron los animales. La cámara está conectada a un adaptador (Sony CMA-D2) el cual envía la señal a un monitor (Sony PVM-14M2E) y a dos convertidores digitales:

- Una tarjeta digitalizadora Picolo (Euresys, Liege, Bélgica), colocada en una de las ranuras PCI del ordenador (Dell Dimension 8200).
- Una tarjeta digitalizadora externa DVC-USB (Dazzle).

La señal digitalizada por la tarjeta Picolo es utilizada por el software de análisis de comportamiento (Computerized Animal Observation System- Ethovision V. 3.1.16, Noldus Information Technology, Wageningen, Holanda). Este software se encuentra instalado en el ordenador de control, situado en una habitación contigua a la cámara silente donde se realiza el FST. El software EthoVision localiza el centro de gravedad del animal, simbolizado gráficamente por la intersección entre los ejes de coordenadas (x,y), almacena los datos y permitía el análisis posterior de múltiples parámetros (distancia recorrida, velocidad, etc.).

Todos los ensayos también fueron digitalizados mediante la tarjeta DVC-USB y el software Dazzle MovieStar (V. 4.5) que grababa el vídeo *in vivo* del experimento y permite el análisis de comportamientos no susceptibles de automatización.

Los vasos con agua en los que se introducen los animales están iluminados por una luz difusa que permitía el correcto seguimiento de los movimientos de los ratones.

Los parámetros analizados en los ensayos fueron el tiempo de inmovilidad, de movilidad y fuerte movilidad.

C. FÁRMACOS Y SUSTANCIAS EMPLEADAS

Reserpina: Fue utilizada para inducir el estado depresivo en los ratones. Suministrada por Sigma Aldrich (St. Louis, MO, USA), se preparó disolviéndola en agua desionizada y añadiéndole 100μl de ácido acético glacial (Merck-España: Madrid. España).

La dosis administrada por vía intraperitoneal (i.p.) a los animales de experimentación fue 2,5mg/kg.

<u>Carboximetilcelulosa sódica (CMCNa):</u> Facilitada por Merck-España (Madrid, España), se utilizó al 1% (Peso/Volumen) en disolución acuosa.

<u>Clorgilina:</u> Facilitada por RBI (asociada a Merck-España). Fue empleada como fármaco de referencia (IMAO-A), a la misma dosis que las moléculas de síntesis (10mg/kg) y suspendida, al igual que estas últimas, en CMCNa al 1% (P/V).

Moléculas objeto de estudio: Los alcaloides utilizados en la presente invención son análogos de 7*H*-benzo[e]perimidin-7-onas (*3-azaoxoisoaporfinas*) (A1-A13) que fueron suspendidas en CMCNa permaneciendo en agitación vigorosa el tiempo necesario para suspensión completa (protegidas del aire y de la luz). Se prepararon a una dosis de 10mg/kg y fueron administradas a los animales de experimentación por vía i.p. en un volumen de 0,1ml por cada 10g de peso del animal.

D. PROTOCOLO DE EXPERIMENTACIÓN

Para evaluar la posible actividad antidepresiva de este tipo de alcaloides, se ha usado un modelo animal tratado previamente con reserpina, alcaloide indólico extraído de las raíces de la *rauwolfia serpentina* (serpentaria) que actúa como bloqueador del transportador vesicular de monoaminas (VMAT2). De esta forma se genera una disminución de la presencia de monoaminas en el cerebro y un consecuente síndrome depresivo inducido en animales (Disorders of mood: depression, mania, and anxiety disorders. In: Kandel, E. R. (ed) Principles of neural

science. Kandel, E. R. 4th edn. McGraw-Hill Companies, New York, (**2000**), 1216-1217.; Antidepressant-like effect of tramadol and its enantiomers in reserpinized mice: comparative study with desipramine, fluvoxamine, venlafaxine and opiates. Rojas-Corrales, M. O, Berrocoso E.; Gibert-Rahola, J.; Mico, J. A. *J. Psychopharmacol.* (**2004**), *18*, 404-411.; Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: a putative animal model of fibromyalgia. Nagakura, Y.; Oe, T.; Aoki, T.; Matsuoka, N. *Pain* (**2009**), *146*, 26-33).

La administración de reserpina, del vehículo, del fármaco de referencia utilizado como antidepresivo (clorgilina) o de los análogos de perimidinonas mencionados en esta invención se realizó por vía i.p. Se utilizaron jeringas Omnifix®-F Tuberkulin de B/BRAUN de 0.01ml-1ml y agujas de 0.5mmx 16mm.

La primera administración que se realizó a los animales de experimentación fue la de reserpina (2,5 mg/kg, i.p.). Al cabo de 18 horas se les inyectó el vehículo (CMCNa), el fármaco de referencia o las moléculas a estudiar (10 mg/kg, i.p.). Tras 30 minutos se realizó el ensayo *in vivo* con los animales de experimentación durante 6 minutos. Se evaluaron exclusivamente los últimos cuatro minutos.

De esta forma, se realizaron cuatro tipos de ensayos:

- 1) Grupo control/ratones reserpinizados: animales tratados 18 horas antes con reserpina, a los que se les administró exclusivamente el vehículo (CMCNa) y 30 minutos después se realizó el ensayo de FST.
- 2) Ratones no reserpinizados: animales a los que se les administró el vehículo (agua desionizada y 100µl de ácido acético glacial) en el que va disuelta la reserpina. Al cabo de 18 horas de esta administración se les inyectó CMCNa y a los 30 minutos se realizó la prueba.
- 3) Grupo de referencia (clorgilina) y grupos tratados (3-azaoxoisoaporfinas): Ratones reserpinizados 18 h antes a los que se les administró el fármaco de referencia, la clorgilina (10mg/kg, i.p.) o bien alguna de las siguientes moléculas objeto de este estudio (A1-A13) también a la dosis de 10mg/kg por vía i.p.

El test se realizó de acuerdo con el método desarrollado por Porsolt et al. (Porsolt, R. D.; Le Pichon, M.; Jalfre, M. *Nature* **1977**, *266*, 730-732) para ratones. El ensayo comenzó con la administración de reserpina (2,5 mg/kg, i.p.) 18 horas antes de la administración de la CMCNa (blanco), del fármaco de referencia (clorgilina, 10 mg/kg, i.p.) o de las moléculas problema (10 mg/kg, i.p.).

Treinta minutos después de la última administración (18:30 h después de la administración inicial de la reserpina) cada ratón se introdujo en un vaso de plástico de 3 litros (19,5 cm de altura, 12 cm de diámetro), lleno con agua a una temperatura de 25 ± 0,5°C, y con una profundidad de 14,5 cm. La profundidad del agua se eligió de tal forma que los animales debían nadar o flotar sin que sus patas traseras o su cola tocaran el fondo del vaso y que no pudieran salir de éste. Para el test, cada ratón se introdujo en el vaso durante 6 minutos.

Los parámetros a evaluar fueron el tiempo de inmovilidad, tiempo de movilidad y tiempo de fuerte movilidad:

En cada ensayo se evaluó:

- Tiempo de inmovilidad: El tiempo de inmovilidad es aquel durante el cual los ratones realizan sólo los movimientos necesarios para mantenerse a flote. Cuanto menor sea este tiempo, mayor es la actividad antidepresiva de la molécula a evaluada, ya que la inmovilidad se considera un índice de desesperación y de depresión del humor.
- Tiempo de movilidad: Los animales realizan movimientos de natación vigorosos, desplazándose normalmente en círculos.
- > Tiempo de fuerte movilidad: Corresponde a aquellos movimientos de natación muy vigorosos que suelen ir acompañados de intentos de salida del cilindro de experimentación.

Tal y como sugirió Porsolt *et al.*, sólo los datos medidos durante los 4 últimos minutos fueron analizados y representados.

E. RESULTADOS EXPERIMENTALES

Se presentan los resultados del tiempo de inmovilidad, movilidad y fuerte movilidad de los ratones en el FST usando perimidinonas (A1-A13).

• <u>Tiempo de Inmovilidad</u>

Con los ratones reserpinizados, o grupo control, se obtuvo un tiempo de inmovilidad de $196,30 \pm 15,58s$ y con el grupo blanco, que son los animales a los que se les administró el vehículo en el que va disuelta la reserpina es decir, son animales que no están reserpinizados, se obtuvo un valor de $121,20 \pm 8,51s$ (p<0,01 vs control).

12

15

20

30

25

35

40

45

Cuando el fármaco de referencia como IMAO-A, la clorgilina, fue administrada a los animales de experimentación reserpinizados se obtuvo un tiempo de inmovilidad de 121,30±5'82 s (p<0,01 vs control) valor este muy próximo al obtenido con los animales no reserpinizados, lo cual nos está indicando el gran poder de reversión de la depresión provocada por la reserpina que posee la clorgilina a la dosis utilizada.

La molécula base o **A1**, también provocó una reducción del tiempo de inmovilidad de los animales (160,10±7,18 s) si bien no se observó una diferencia estadísticamente significativa respecto al grupo control.

De las moléculas monosustituidas (A2, A3, A4, A5, A6, A7 y A11) destaca **A2** y **A4**, con las que se obtuvo un valor de tiempo de inmovilidad de 122,80±17,98 s y 106 ±27 s, respectivamente (p<0,01 vs. control), muy similar al obtenido con la clorgilina (103±7'5 s) lo cual pone de manifiesto la efectividad antidepresiva de esta nueva molécula (Figura 1).

La introducción de un grupo metilo entre los átomos de nitrógeno como **A12** generó un ligero descenso del tiempo de inmovilidad (170,30±9,96 s; p>0,05 vs. control). La sustitución del grupo metilo por un aldehído como **A13** generó un tiempo de inmovilidad de 194,90±6,72 s (p>0,05 vs. control), lo que hace concluir de esta invención que la sustitución de un grupo alquilo, formilo o hidroximetil entre ambos átomos de nitrógeno hace aumentar fuertemente el tiempo de inmovilidad y, por consiguiente, disminuir el efecto antidepresivo.

Tiempo de Movilidad

20 En este caso, y a diferencia de lo comentado anteriormente para el tiempo de inmovilidad, interesa obtener valores lo más elevados posibles de movilidad. Cuanto mayor sea el tiempo de movilidad mayor será la potencial actividad antidepresiva de las moléculas ensayadas.

El tiempo de movilidad de los animales no reserpinizados (114,60±8,87 s; p<0,01 vs. control) es mucho mayor que el de los animales reserpinizados o grupo control (40,80±15,31 s). De forma similar, el tiempo de movilidad del grupo tratado con la clorgilina (110,10±5,61 s; p<0,01 vs. control), fármaco de referencia como antidepresivo, fue también mucho mayor que el observado con el grupo control y muy similar al de los animales no reserpinizados, poniendo así de manifiesto su capacidad para revertir el estado depresivo de los animales tratados con reserpina.

De forma similar a la clorgilina, **A2** y **A4** también incrementaron de forma muy marcada el tiempo de movilidad (103,40±15,64 y 128±27s, respectivamente; p<0,01 vs. control) confirmando así también su potencial efecto antidepresivo (Figura 2).

Tiempo de Fuerte Movilidad

Solo la clorgilina (9,83±1,57 s; p<0,05 vs. control) y la molécula **A2** (12,94±4,04 s; p<0,01 vs. control) incrementaron el tiempo de fuerte movilidad siendo este último del orden de tres veces mayor que el observado en los animales no reserpinizados (4,20±1,62 s) y muy superior al obtenido con el grupo control de animales reserpinizados (2,90±1,53 s). Por otra parte, **A4** y **A5** aumentaron de forma similar el tiempo de fuerte movilidad (6,2±3,6 y 7,1±3,0 s, respectivamente) aunque en menor medida que **A2**.

Esto nos refuerza la idea de que **A2**, **A4** y **A5** conforman un grupo de perimidinonas que tienen una alta actividad antidepresiva frente a los fármacos de referencia usados y sin efectos citotóxicos que enmascaren o disminuyan el efecto terapéutico. La comparativa de los test usados para el uso de derivados de perimidinonas con actividad antidepresiva se resume en la Figura 4.

4. FORMULACION DEL COMPUESTO

En otro aspecto, la presente invención proporciona posibles formulaciones farmacéuticas para la preparación de un medicamento, basadas sobre los compuestos presentados aquí, para el tratamiento de trastornos relacionados con la depresión y la ansiedad.

13

40

45

50

5

10

15

Las dosis en las cuales el compuesto podría ser administrado varían dentro de un amplio rango, ajustándose a los requerimientos de cada caso en particular. En general, la dosis efectiva para la administración oral o parenteral podría estar comprendida entre 15 nanogramos/kg/día y 150 milígramos/kg/día, con una dosis preferida entre 150 nanogramos/kg/día y 15 milígramos/kg/día para todas las indicaciones descritas. La dosis diaria para un adulto humano con peso de 70 kg podría variar entre 1.05 nanogramos y 10,500 milígramos por día, preferiblemente entre 10.5 microgramos/día y 1.05 miligramos/día.

Las diferentes composiciones farmacéuticas de la invención pueden ser administradas por vía oral o parenteral de acuerdo a las diferentes formulaciones farmacéuticas descritas en las Tablas 1-4:

Ejemplo A

10 TABLETA

5

Tabla 1. Formulación farmacéutica y peso del ingrediente activo más los excipientes de una tableta.

Componente	mg/Tableta
Ingrediente activo	0.05
Lactosa en polvo	195
Almidón	30
Polivinilpirrolidona	20
Carbonato de magnesio	4.95
Peso de la Tableta	250

Ejemplo B

TABLETA

15 **Tabla 2.** Formulación farmacéutica y peso del ingrediente activo más los excipientes de una tableta.

Componente	mg/Tableta
Ingrediente activo	0.1
Lactosa en polvo	400
Almidón	50
Polivinilpirrolidona	40
Carbonato de magnesio	9.9
Peso de la Tableta	500

Ejemplo C

CÁPSULA

Tabla 3. Formulación farmacéutica y peso del ingrediente activo más los excipientes de una cápsula.

Componente	mg/Cápsula
Ingrediente activo	0.01
Lactosa cristalina	70
Microcristales de celulosa	15
Talco	10
Carbonato de magnesio	4.99
Peso de la Cápsula	100

5

Ejemplo D

SOLUCIÓN INYECTABLE

Tabla 4. Formulación farmacéutica y cantidad del ingrediente activo más los excipientes de una solución inyectable.

Componente	Cantidad
Ingrediente activo	10 mg
1M HCI	20 μl
NaCl	8 mg
Fenol	10 mg
1M NaOH	c.s.p. pH 5
H ₂ O	c.s.p. 1 ml

REIVINDICACIONES

1. Uso de los compuestos de fórmula (II), sus sales, hidratos, solvatos y N-óxidos,

$$R_{3}$$
 R_{4}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{1}
 R_{8}
 R_{7}

donde:

10

15

20

25

30

35

-R¹, R², R³, R⁴, R⁵, R⁶, R⁷, y R⁸ son cada uno de ellos seleccionados de forma independiente entre hidrógeno, alquenilo, formilo, halógeno, -OR^b y -NR^aR^b;

- R^a y R^b se seleccionan independientemente entre hidrógeno, alquilo, alquenilo, cicloalquilo, cicloheteroalquilo, arilo, heteroarilo, o, R^a y R^b conjuntamente forman un anillo de heterociclo, de 4 a 7 miembros conteniendo 0-2 heteroátomos independientemente seleccionados entre oxígeno, azufre y $N-R^c$, donde R^c se selecciona entre hidrógeno, alquilo, y $-C(O)R^b$,

para la preparación de un medicamento para el tratamiento de trastornos del estado de ánimo y/o trastornos de la ansiedad.

- 2. Uso según la reivindicación 1 donde R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , y R^8 son cada uno de ellos seleccionados de forma independiente entre hidrógeno, halógeno, alquilo, alquenilo, formilo, -O R^b ; donde R^b se selecciona entre hidrógeno y alquilo y -N R^a R b ; donde R^a y R^b son como se definieron en la reivindicación 1.
- 3. Uso según la reivindicación 1 donde R^3 , R^6 , R^7 y R^8 son hidrógeno, y R^1 , R^2 , R^4 , R^5 se seleccionan independientemente de entre hidrógeno, cloro, bromo, yodo, metilo, etilo, propilo, carbaldehido, hidroxilo y metoxilo.
- 4. Uso según la reivindicación 1 donde el compuesto (II) se selecciona entre los compuestos:
 - 1. 7H-benzo[e]perimidin-7-ona
 - 2. 8-cloro-7*H*-benzo[*e*]perimidin-7-ona
 - 3. 6-hidroxi-7*H*-benzo[*e*]perimidin-7-ona
 - **4.** 6-metoxi-7*H*-benzo[*e*]perimidin-7-ona
 - 5. 4-metil-7*H*-benzo[*e*]perimidin-7-ona
 - **6.** 2-metil-7*H*-benzo[e]perimidin-7-ona
 - **7.** 7-oxo-7*H*-benzo[e]perimidin-2-carbaldehido
 - **8.** 6-hidroxi-2-metil-7*H*-benzo[*e*]perimidin-7-ona
 - **9.** 8-cloro-6-hidroxi-7*H*-benzo[*e*]perimidin-7-ona
 - **10.** 8-cloro-6-hidroxi-2-metil-7*H*-benzo[e]perimidin-7-ona
 - **11.** 2-(hidroximetil)-7*H*-benzo[e]perimidin-7-ona
 - **12.** 8-cloro-2-metil-7*H*-benzo[*e*]perimidin-7-ona
 - **13.** 8-cloro-7-oxo-7*H*-benzo[*e*]perimidin-2-carbaldehido

5. Uso de una composición farmacéutica que comprende los compuestos de fórmula (II) como se han descrito en cualquiera de las reivindicaciones anteriores, para la preparación de un medicamento para el tratamiento de trastornos del estado de ánimo y/o trastornos de la ansiedad.

ES 2 525 772 A1

6. Uso según cualquiera de las reivindicaciones anteriores, donde los trastornos del estado de ánimo y trastornos de la ansiedad se seleccionan de entre desórdenes bipolares I, desórdenes bipolares II, desórdenes depresivos unipolares, depresión menor, desórdenes afectivos estacionales, depresión posnatal, distimia, depresión mayor, desórdenes de ansiedad, desorden al pánico, fobia social, crisis de angustia y agorafobia, desorden compulsivo obsesivo, desorden de estrés postraumático, desorden de ansiedad generalizada, desórdenes relacionados a sustancias, desórdenes por uso de sustancias, desórdenes inducidos por sustancias, retiro de sustancias, déficit atencional y desórdenes por comportamiento errático, desorden hiperactivo por déficit atencional, maduración sexual irregular, narcolepsia, desórdenes control impulsivo, riesgo patológico, desórdenes de alimentación, anorexia nerviosa, bulimia nerviosa, desórdenes musculares, síndrome de piernas inquietas, dolor, dolor de cabeza, dolor facial atípico, desorden de dolor y síndrome del dolor crónico, disfunción sexual, obstrucción de vías aéreas, asma, desórdenes de motilidad gastrointestinal, hemorroides, espasmo del músculo liso y esfínter en el tracto gastrointestinal y espasmos bronquiales.

7. Un compuesto de fórmula (II) seleccionado de entre:

15 **1.** 6-hidroxi-2-metil-7*H*-benzo[*e*]perimidin-7-ona

5

- 2. 8-cloro-6-hidroxi-7*H*-benzo[*e*]perimidin-7-ona
- 3. 8-cloro-6-hidroxi-2-metil-7H-benzo[e]perimidin-7-ona
- **4.** 2-(hidroximetil)-7*H*-benzo[e]perimidin-7-ona
- 5. 8-cloro-2-metil-7H-benzo[e]perimidin-7-ona
- **6.** 8-cloro-7-oxo-7*H*-benzo[e]perimidin-2-carbaldehido.

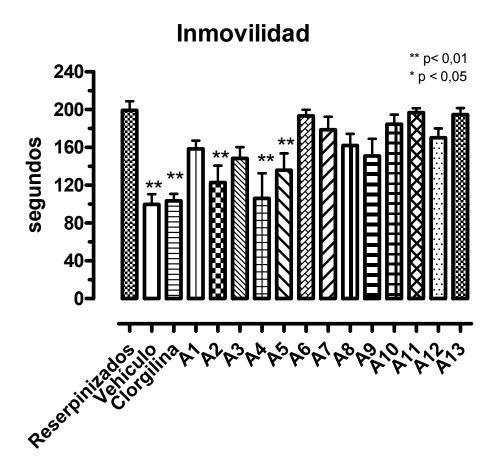


FIGURA 1

Movilidad ** p < 0,01 *p < 0,05 ** p < 0,05 ** p < 0,05 ** p < 0,05 ** p < 0,05

FIGURA 2

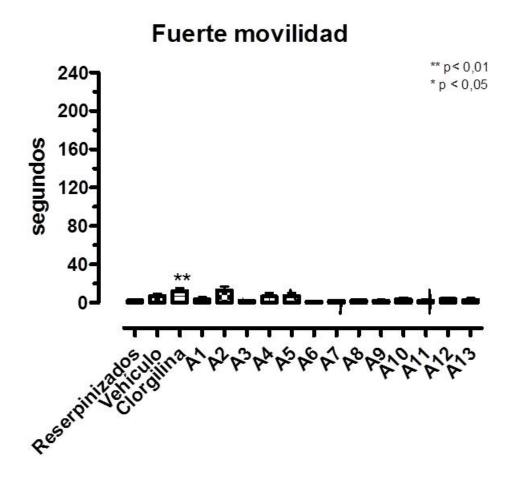


FIGURA 3

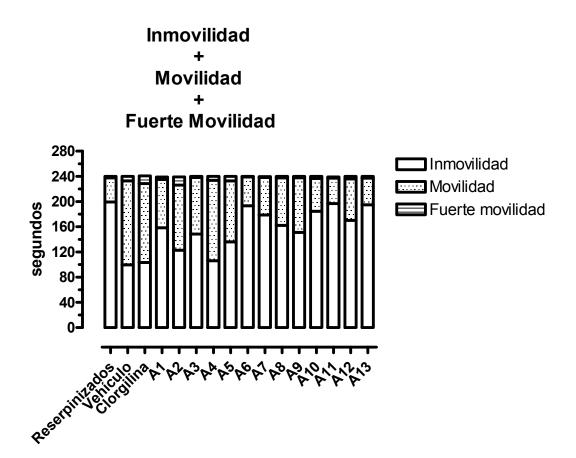


FIGURA 4

(21) N.º solicitud: 201431468

22 Fecha de presentación de la solicitud: 03.10.2014

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

Categoría	66	Documentos citados	Reivindicacione afectadas
Α	WO 2009034219 A1 (UNIVERSIDADE DE SANTIAGO DE COMPOSTELA) 19.03.2009, resumen; reivindicaciones.		1-6
Α	WO 2013050637 A1 (UNIV DE SA 11.04.2013, resumen.	WO 2013050637 A1 (UNIV DE SANTIAGO DE COMPOSTELA y UNIV ESTADUAL PAULISTA) 11.04.2013, resumen.	
Α		nal Chemistry 2005, vol 13, págs 3657-3665. "Synthesis and lkylamino)alkyl]-carboxamide derivatives of 7-oxo-7-H-	4,7
X: d Y: d r	egoría de los documentos citados le particular relevancia e particular relevancia combinado con ot nisma categoría efleja el estado de la técnica	O: referido a divulgación no escrita ro/s de la P: publicado entre la fecha de prioridad y la de pr de la solicitud E: documento anterior, pero publicado después o de presentación de la solicitud	
	presente informe ha sido realizado para todas las reivindicaciones	para las reivindicaciones nº:	
Fecha	de realización del informe 16.12.2014	Examinador M. P. Fernández Fernández	Página 1/4

INFORME DEL ESTADO DE LA TÉCNICA

Nº de solicitud: 201431468

CLASIFICACIÓN OBJETO DE LA SOLICITUD **C07D239/74** (2006.01) A61K31/517 (2006.01) A61P25/24 (2006.01) Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) C07D, A61K, A61P Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, CAS, WPI, BIOSIS

OPINIÓN ESCRITA

Nº de solicitud: 201431468

Fecha de Realización de la Opinión Escrita: 16.12.2014

Declaración

Novedad (Art. 6.1 LP 11/1986)

Reivindicaciones 1-7

SI
Reivindicaciones NO

Troit in all additions of the second of the

Actividad inventiva (Art. 8.1 LP11/1986) Reivindicaciones 1-7 SI

Reivindicaciones NO

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

Nº de solicitud: 201431468

1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	WO 2009034219 A1 (UNIVERSIDADE DE SANTIAGO DE COMPOSTELA)	19.03.2009
D02	WO 2013050637 A1 (UNIV DE SANTIAGO DE COMPOSTELA y UNIV ESTADUAL PAULISTA)	11.04.2013
D03	X BU et al., Bioorganic & Medicinal Chemistry 2005, vol 13, págs 3657-3665. "Synthesis and cytotoxic activity of N-[(alkylamino)alkyl]-carboxamide derivatives of 7-oxo-7-H-benzo[e]perimidine", esquema 4.	2005

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La solicitud se refiere, reivindicaciones 1-6, al uso de los compuestos de fórmula (II) de la reivindicación 1 para el tratamiento de trastornos del estado de ánimo, como depresión y trastornos de la ansiedad, en la reivindicación 4 se concretan varios de estos compuestos y en la reivindicación 7 se reivindican seis de estos derivados de perimidin-7-onas.

El documento D1 divulga el uso de compuestos con estructura oxoisoaporfina como inhibidores selectivos de MAO-A (monoaminoxidasa-A) para la preparación de un medicamento para el tratamiento de desórdenes depresivos. El documento D2 divulga la utilización farmacéutica de estos compuestos en forma de nanocápsulas de liberación controlada. En ambos documentos se trata de derivados de oxoisoaporfinas, en la solicitud se utilizan 3-azaoxoisoaporfinas, compuestos de este tipo se encuentran divulgados en D3, pero no se sugiere su posible uso como inhibidores de MAO-A ni su aplicación como antidepresivos.

En consecuencia las reivindicaciones 1-6 de la solicitud y los productos de la reivindicación 7 son nuevos, además la invención se considera inventiva pues en el estado de la técnica no hay indicios de que los derivados 3-azaoxoisoaporfinas sean activos para el tratamiento de la depresión y el técnico en la materia necesitaría disponer de datos experimentales para conocer su utilidad farmacéutica.

Se concluye que las reivindicaciones 1-7 de la solicitud son nuevas e inventivas y cumplen con los Art. 6.1 y 8.1 de la Ley de Patentes 11/1986.