

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 525 805

(51) Int. CI.:

C07K 19/00 (2006.01) C12M 1/113 (2006.01) C12N 15/63 (2006.01) C12R 1/01 (2006.01) C12M 1/107 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 26.05.2010 E 10726601 (7) (97) Fecha y número de publicación de la concesión europea: 17.09.2014 EP 2435483

(54) Título: Producción fotocatalítica de hidrógeno en cianobacterias

(30) Prioridad:

26.05.2009 US 213289 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 30.12.2014

(73) Titular/es:

RAMOT AT TEL-AVIV UNIVERSITY LTD. (100.0%) P.O. Box 39296 61392 Tel Aviv, IL

(72) Inventor/es:

NELSON, NATHAN; YACOBY, IFTACH; **GAZIT, EHUD y** BENHAR, ITAI

(74) Agente/Representante:

ISERN JARA, Jorge

S 2 525 805 T3

DESCRIPCIÓN

Producción fotocatalítica de hidrógeno en cianobacterias

5 CAMPO Y ANTECEDENTES DE LA INVENCIÓN

La presente invención se refiere a la generación de hidrógeno en cianobacterias y a polinucleótidos aislados para lo mismo.

El desarrollo de un aporte energético limpio, económicamente viable y sostenible, para el futuro es uno de los retos más urgentes de nuestra generación. Se espera que la producción de petróleo aumente en un futuro próximo y que las reservas de petróleo económicamente viables se agoten en gran medida en el 2050. Un ahorro de hidrógeno requiere formas limpias, económicas y sostenibles para generar hidrógeno. La producción actual de hidrógeno depende casi por completo del uso de fuentes no renovables (es decir reformación de vapor de gas natural, gasificación de carbón y electrolisis de agua accionada por energía nuclear). Aunque inicialmente estas estrategias probablemente impulsan una transición hacia un ahorro de hidrógeno, el hidrógeno producido es más caro y contiene menos energía que la fuente de energía no renovable de la que procede. Además el uso de combustibles fósiles y de energía nuclear es insostenible. Por lo tanto, existe una clara necesidad de establecer medios de producción de hidrógeno que sean económicamente viables.

20

25

30

Dado que la fuente de energía principal es la energía solar, una opción particularmente deseable es la producción de hidrógeno usando maquinaria fotosintética. Los dos núcleos de la maquinaria fotosintética en plantas, algas y cianobacterias son los dos centros de reacción fotoquímicos conocidos como Fotosistema I (FSI) y Fotosistema II (FSII). El FSII impulsa la reacción más altamente oxidante que se sabe que se produce en la biología, la división del agua en oxígeno, protones y electrones. El oxígeno se libera a la atmósfera y es el responsable de la conservación de la vida aerobia en la Tierra. Los electrones derivados pasan a lo largo de la cadena de transporte de electrones fotosintética desde el FSII mediante la Plastoquinona (PQ) al Citocromo bef (cit bef) y al Fotosistema I (FSI). A partir del FSI, la mayoría del potencial redox negativo se estabiliza en forma de ferredoxina (Fd) reducida que sirve como un donador de electrones para la enzima ferredoxin-NADP⁺-reductasa (FNR). En condiciones fisiológicas normales la Fd reduce el NADP⁺ a NADPH mediante el complejo Fd-FNR. En un proceso paralelo (fotofosforilación), los H⁺ se liberan en el lumen tilacoidal donde generan un gradiente de H⁺ que se usa para impulsar la producción de ATP mediante la ATP sintasa. Posteriormente, la NADPH y el ATP se usan para producir almidón y otras formas de biomasa de almacenamiento energético.

Algunas algas verdes y cianobacterias han desarrollado la capacidad de canalizar los protones y los electrones almacenados en el almidón en la producción de hidrógeno en condiciones anaerobias expresando una enzima hidrogenasa. [Wunschiers, Stangier et al. 2001, Curr Microbiol 42(5): 353-60; Happe y Kaminski 2002, Eur J Biochem 269(3): 1022-32]. La enzima hidrogenasa se localiza en el estroma del cloroplasto y obtiene electrones de la ferredoxina o flavodoxina que reduce el Fotosistema I y por tanto compite con la FNR por los electrones generados por el FSI. Sin embargo, el oxígeno es un fuerte inhibidor de la enzima hidrogenasa y por tanto, la generación de hidrógeno en estos organismos es solo transitoria. El reto más importante en la producción de

hidrógeno fotosintético es su separación espacial y/o temporal de la producción de oxígeno.

Intentos realizados para generar hidrogenasas de algas tolerantes al oxígeno no han tenido mucho éxito [Seibert et al. 2001, Strategies for improving oxygen tolerance of algal hydrogen production. Biohydrogen II. J. M. Miyake, T.; San Pietro, A., eds, Oxford, RU: Pergamon 67-77]. McTavish et al [J Bacteriol 177(14): 3960-4, 1995] han mostrado

que la mutagénesis dirigida de la hidrogenasa de *Azotobacter vinelandii* puede hacer que la producción de hidrógeno sea insensible a la inhibición de oxígeno, pero con una pérdida sustancial (78 %) de la actividad de la evolución de hidrógeno.

evolución de nidrogeno

una evolución de hidrógeno sostenida en la luz.

50

55

60

45

Los cloroplastos de plantas y algas y las membranas de cianobacterias fotosintéticas contienen dos fotosistemas: el FSII que actúa como mediador en la transferencia de electrones a partir del agua (el donador inicial de electrones) al grupo de plastoquinona y el FSI que actúa como mediador en la transferencia de electrones de la plastocianina a la ferredoxina, generando de esta manera la energía reductora necesaria para la fijación del CO₂ en forma de NADPH. Aunque ahora se sabe que el FSII es sensible a fotolesión, se considera que el FSI es más estable que el FSII. Por lo tanto, es concebible que la prevención del ensamblaje del FSII debería dar como resultado su rápida inactivación a la luz del sol y el cese de la disociación del agua (y de la generación de oxígeno). Melis (Solicitud de Patente de Estados Unidos Nº 2001/005343) explica un proceso en el que la inhibición de la actividad hidrogenasa se elevaba separando temporalmente la reacción de disociación de agua generadora de oxígeno, catalizada por el FSII, de la producción de hidrógeno sensible a oxígeno catalizada por la Hidrogenasa (HidA) de los cloroplastos. Esta separación se realizó cultivando primero algas verdes en presencia de azufre para construir reservas de un sustrato endógeno y después en ausencia de azufre. La eliminación del azufre da como resultado la inactivación del Fotosistema II de tal manera que la respiración celular conduce a anaerobiosis, a la inducción de hidrogenasa y a

65

Sin embargo, el proceso de Melis está sujeto a limitaciones prácticas considerables. La tasa real de acumulación de

gas hidrógeno es como máximo del 15 al 20 % de la capacidad fotosintética de las células [Melis y Happe 2001, Plant Physiol. Nov; 127(3): 740-8] y sufre la limitación intrínseca de que la producción de hidrógeno por privación de azufre de las algas no puede continuar indefinidamente. El rendimiento comienza a nivelarse y disminuye después de aproximadamente 40-70 horas de privación de azufre. Después de aproximadamente 100 horas de privación de azufre la algas necesitan volver a una fase de fotosíntesis normal para restablecer los sustratos endógenos.

La Publicación Internacional Nº WO 03/067213 describe un proceso para la producción de hidrógeno usando *Chlamydomonas reinhardtii* en el cual las algas se han modificado genéticamente para regular negativamente la expresión de una sulfato permeasa, CrcpSuIP, a través de la inserción de una secuencia antisentido. Se dice que esto hace que las técnicas de privación de azufre de la técnica anterior sean obsoletas, dado que obvia la necesidad de eliminar físicamente los nutrientes de azufre del medio de crecimiento para inducir la producción de hidrógeno. La captación de azufre reducida por las células usando esa técnica no sólo da como resultado una disminución sustancial de los niveles de las principales proteínas de los cloroplastos, tales como Rubisco, D1 y LHCII, sino que también priva a la célula de azufre para su uso en la biosíntesis de otras proteínas.

15

20

10

5

Ihara et al (Ihara, Nakamoto et al. 2006; Ihara, Nishihara et al. 2006) muestran una proteína de fusión que comprende una hidrogenasa [NiFe] unida a membrana (de la β -proteobacteria *Ralstonia eutropha* H16) y la subunidad periférica del FSI, la PsaE de la cianobacteria *Thermosynechococcus elongatus* como un sistema de conversión directa de luz a hidrógeno. El complejo hidrogenasa aislada-FSI aislado presentó una producción de hidrógeno accionada por la luz a una tasa de [0,58 μmol de H_2]/[mg de clorofila] h *in vitro*. Se piensa que la ineficacia de este sistema deriva de la mala capacidad de la hidrogenasa para aceptar electrones en comparación con la capacidad del FSI para donar electrones.

Peters et al [Science, 282, 4 Dec, 1998] muestran el aislamiento de una hidrogenasa solo de Fe de C*lostridium* pasteurianum que naturalmente comprende estructuras similares a la ferrodoxina. Aunque esta hidrogenasa es posiblemente capaz de generar directamente hidrógeno en condiciones iluminadas, aún está inhibida por el oxígeno.

Existe por tanto una necesidad ampliamente reconocida para, y sería muy ventajoso tener, un proceso sostenible y eficaz para la producción fotosintética de hidrógeno que no tuviese las limitaciones anteriores.

30

35

50

55

SUMARIO DE LA INVENCIÓN

De acuerdo con un aspecto de algunas realizaciones de la presente invención, se proporciona una célula cianobacteriana que comprende una proteína de fusión de la subunidad IX del centro de reacción del Fotosistema I (PsaJ) y un precursor de la subunidad III del centro de reacción del Fotosistema I (PsaF), en el que dicho PsaF está truncado por al menos diez aminoácidos en su extremo N y en el que dicho complejo FSI acepta electrones de al menos un citocromo respiratorio, comprendiendo la célula adicionalmente una enzima hidrogenasa unida a una ferrodoxina heteróloga.

40 De acuerdo con algunas realizaciones de la invención, la célula es termófila.

De acuerdo con algunas realizaciones de la invención, la secuencia de aminoácidos de la proteína de fusión es al menos 80 % idéntica a la expuesta en la SEC ID Nº: 1.

45 De acuerdo con algunas realizaciones de la invención, la secuencia de aminoácidos de dicha fusión es como se expone en la SEC ID №: 1.

De acuerdo con algunas realizaciones de la invención, la secuencia de aminoácidos de dicha subunidad PsaF se expone en la SEC ID Nº: 14.

De acuerdo con algunas realizaciones de la invención, el polinucleótido que codifica dicha proteína de fusión se inserta en el genoma de la célula.

De acuerdo con algunas realizaciones de la invención, la célula produce hidrógeno a una temperatura por encima de aproximadamente 55 °C.

De acuerdo con un aspecto de algunas realizaciones de la invención, se proporciona un polinucleótido aislado que codifica un polipéptido como se expone en la SEC ID Nº: 1.

De acuerdo con algunas realizaciones de la invención, el polinucleótido aislado es como se expone en la SEC ID Nº: 2 o SEC ID Nº: 6.

De acuerdo con algunas realizaciones de la invención, el al menos un citocromo respiratorio es el citocromo C o el citocromo M.

65

De acuerdo con algunas realizaciones de la invención, la proteína de fusión es una proteína recombinante.

De acuerdo con un aspecto de algunas realizaciones de la invención, se proporciona un polipéptido aislado que comprende una secuencia de aminoácidos al menos 80 % idéntica a la secuencia como se expone en la SEC ID Nº: 1.

5

15

20

25

De acuerdo con algunas realizaciones de la invención, el polipéptido aislado comprende la secuencia de aminoácidos como se expone en la SEC ID Nº: 1.

De acuerdo con un aspecto de algunas realizaciones de la invención se proporciona un biorreactor para la producción de hidrógeno que comprende:

- (i) una tubería que comprende las células de la presente invención, en el que una primera selección de dicha tubería se coloca en un primer depósito que se mantiene a una temperatura de aproximadamente 60-70 °C y una segunda sección de dicha tubería que se coloca en un segundo depósito que se mantiene a una temperatura de aproximadamente 30-50 °C;
- (ii) una bomba de recirculación configurada de tal manera que dichas células circulan a través de dicha tubería.

De acuerdo con un aspecto de algunas realizaciones de la invención, se proporciona un método que comprende cultivar la célula cianobacteriana de la presente invención en condiciones que generen gas hidrógeno en la célula cianobacteriana produciendo de este modo gas hidrógeno.

Salvo que se defina de otra manera, todos los términos científicos y/o técnicos usados en el presente documento tienen el mismo significado al normalmente entendido por un experto habitual en la técnica a la cual pertenece la invención. Aunque los métodos y los materiales similares o equivalentes a los descritos en el presente documento pueden usarse en la realización práctica o ensayo de las realizaciones de la invención, más adelante se describen métodos y/o materiales ejemplares. En caso de conflicto, la memoria descriptiva de la patente, incluyendo las definiciones, se controlará. Además, los materiales, métodos y ejemplos son solo ilustrativos y no pretenden ser necesariamente limitantes.

30 BREVE DESCRIPCIÓN DE LOS DIBUJOS

En el presente documento se describe la invención, solo como ejemplo, con referencia a los dibujos adjuntos. Con referencia específica ahora a los dibujos con detalle, cabe destacar que las particularidades mostradas son a modo de ejemplo y solo con fines de análisis ilustrativo de las realizaciones preferidas de la presente invención y se presentan para proporcionar lo que se considera que es lo más útil y fácil de entender de la descripción de los principios y aspectos conceptuales de la invención. En este sentido, no se intentan mostrar detalles estructurales de la invención con más detalles de los necesarios para un entendimiento fundamental de la invención, la descripción tomada con los dibujos pone de manifiesto, para los expertos en la técnica, como pueden llevarse a la práctica las diversas formas de la invención.

40

35

En los dibujos:

50

55

65

45

Las FIG. 1A-B son diagramas esquemáticos que ilustran el proceso global de la producción de hidrógeno dependiente de luz en cianobacterias. La Figura 1A muestra el proceso global asociado a membrana que inicia el FSII (fotosistema II). Al inicio, el FSII disocia el agua en oxígeno, protones y electrones. Los electrones generados se transfieren al grupo PQ (plastoquinona) desde el cual la mayoría de los electrones se transfieren al FSI. Sin embargo, una pequeña parte puede transferirse a la hidrogenasa cianobacteriana nativa y el complejo IV también puede respirar algo. En el FSI (fotosistema I), los electrones entrantes se recargan con energía fotónica. A continuación, los electrones cargados se transfieren a la Fd (ferredoxina) que los transporta a la FNR (Ferrodoxina NADPH reductasa) usando los electrones y protones para producir NADPH. La NADPH es un bloque de construcción básico para la asimilación del dióxido de carbono en azúcares, inicialmente en forma de glucosa y finalmente en forma de glucógeno superior. La Figura 1B muestra una vista esquemática de una célula cianobacteriana mostrando los compartimentos intracelulares de la membrana en los que se realiza la fotosíntesis.

60

realización de la presente invención. Figura 2A: siempre y cuando el sistema se mantenga a baja temperatura (30-50 °C), el proceso fotosintético natural se produce como se describe en la Figura 1. Figura 2B: el paso a una temperatura elevada (60-70 °C), produce un FSII termosensible que detiene el funcionamiento. Esto viene acompañado por la transformación de la célula en una fase anaerobia en la que puede expresarse la quimera Fd-hidrogenasa. Una combinación de transferencia de electrones elevada al FSI, como se describe en el presente documento y la interferencia con la donación/aceptación de electrones naturales de la Fd conduce a un transporte de electrones global desviado a la quimera Fd-hidrogenasa dando como resultado una elevación global de la producción de hidrógeno.

Las FIG. 2A-B son una representación esquemática de un sistema para producir hidrógeno de acuerdo con una

Las FIG. 3A-C son modelos de las cianobacterias y virus que codifican el FSI y consecuencias estructurales para el sitio de unión al donante de electrones. Figura 3A: FSI cianobacteriano compuesto por las subunidades codificadas por el operón viral. PsaF (magenta), PsaJ (azul). Figura 3B: El FSI viral está compuesto por las

mismas subunidades que las de la Figura 3A excepto que PsaF y PsaJ se sustituyeron por la proteína de fusión PsaJF (rojo). Figura 3C: superposición de los dos modelos mostrando la pérdida del extremo N de la PsaF y el bucle en PsaA en las subunidades virales en relación con P700. El bucle corto viral en la PsaA está en color rojo y el bucle extendido en la PsaA cianobacteriana está en color gris. Las proteínas de fusión PsaJF virales están en color magenta, la PsaJ cianobacteriana está en color azul y la PsaF en color amarillo.

La FIG. 4 es una representación esquemática de los principales elementos del biorreactor de hidrógeno de acuerdo con una realización de la presente invención. Varios miles de tubos circulares de aproximadamente 2 mm de diámetro (uno de ellos se muestra en color cian) se colocarán en una instalación que contiene cuatro cámaras. El cultivo de cianobacterias termófilas sensibles a temperatura circulará en la dirección mostrada por la flecha. En la cámara con la temperatura permisiva de 30-50 °C, las cianobacterias fijarán el CO₂ en materia orgánica produciendo oxígeno como un producto secundario. El flujo llevará al cultivo a la cámara de aclimatación de 70 °C donde el FSII se inactivará. En este momento, el cultivo se transportará a la cámara anaerobia de 60-70 °C donde la materia orgánica se convertirá fotosintéticamente en hidrógeno. Después, el flujo llevará el cultivo a la cámara de aclimatación de 30-50 °C (opcional) para reactivar el FSII. Finalmente, retornará a la cámara de producción de materia orgánica. El caudal de las diversas cámaras transparentes se modificará para maximizar la producción de hidrógeno.

Las FIG. 5A-C son representaciones esquemáticas y fotografías que ilustran la expresión y purificación de un FSI mutante de *Synechocystis sp.* PCC 6803: Figura 5A. Representación del orden del gen nativo y mutante en el genoma de *Synechocystis*. La proteína de fusión JF está bajo el control del promotor de PsaF (cuadro negro) e incluye toda la proteína PsaJ (40aa) y los últimos 121 aminoácidos de PsaF. El gen de resistencia a Kan se usó para seleccionar sucesos de transformación, que se confirmaron usando PCR. Figura 5B. Gradientes de sacarosa del FSI nativo y mutante mostrando que, en la cepa mutante, el FSI está en su forma trimérica. Figura 5C. SDS PAGE de la composición subunitaria del FSI de tipo silvestre y mutante como aparece en las fracciones triméricas recogidas del gradiente de glucosa. El peso molecular esperado de la proteína de fusión es de 14 Kda. La FIGURA 6 es una fotografía de los cristales del FSI de PsaJF mutante.

La FIGURA 7 es un gráfico que ilustra cinéticas de oxidación aceleradas del citocromo c por un FSI que contiene la fusión JF. La oxidación del citocromo c (de corazón de caballo) se realizó después usando la diferencia de absorbancia entre las longitudes de onda de 550 nm y 540 nm en un espectrofotómetro de longitud de onda dual. La solución de 1 ml consistía en Bis-Tris 10 mM pH 7, FSI de tipo silvestre que contenía clorofila 40 μg o FSI mutante fusión JF que contenía 22 μg de clorofila, citocromo c 2 nmoles y acrobat 10 nmoles. Los cambios de absorbancia inducidos por luz se registraron a 550-540 nm.

La FIGURA 8 es una representación esquemática de un biorreactor de acuerdo con una realización de la presente invención.

La FIGURA 9 es una representación esquemática que ilustra la expresión de un FSI mutante de *Synechocystis* sp. PCC 6803.

DESCRIPCIÓN DE LAS REALIZACIONES PREFERIDAS

5

10

15

20

25

30

35

45

50

55

60

65

La presente invención se refiere a la generación de hidrógeno en cianobacterias y a polinucleótidos aislados para generar lo mismo.

Antes de explicar con detalle al menos una realización de la invención, debe entenderse que la aplicación de la invención no se limita necesariamente a los detalles expuestos en la siguiente descripción o ilustrados en los Ejemplos. La invención es susceptible de otras realizaciones o de llevarse a la práctica o realizarse de diversas maneras.

El hidrógeno molecular es un candidato para reemplazar o suplementar combustibles fósiles como una fuente de energía limpia. La producción biológica natural de hidrógeno se basa en la presencia de enzimas hidrogenasas presentes en determinadas algas verdes y en bacterias fotosintéticas que pueden aceptar electrones del fotosistema I (FSI) y su conversión en gas hidrógeno. El rendimiento de hidrógeno molecular a partir de este proceso está limitado por diversas razones, siendo una de ellas que el FSI solo puede aceptar electrones de la plastoquinona.

Los autores de la presente invención supusieron que el rendimiento de hidrógeno podría aumentarse si los organismos fotosintéticos estuviesen dotados de un FSI que tuviese la posibilidad de aceptar electrones de otras fuentes.

En un reciente estudio, se configuraron las posibles consecuencias estructurales de proteínas de ensamblaje codificadas por fagos en un complejo de FSI cianobacteriano en relación con la estructura del FSI de 2,5 Å de la cianobacteria *Thermosynechococcus elongatus*. La proteína de fusión PsaJF viral (en la que el extremo C de PasJ está fusionado con el extremo N de PsaF) en la posición 210 de la subunidad F del FSI, se configuró usando el programa COOT. El análisis mostró que la proteína de fusión PsaJF viral se ajustaba perfectamente en la posición de las subunidades J y F en la estructura FSI. El único cambio notable que se observó fue la ausencia del extremo N de la subunidad F, que es responsable de la unión específica del donante de electrones natural (plastocianina) del FSI (Nelson, N. y Yocum, C. Structure and function of photosystems I and II. Annu Rev Plant Biol 57, 521-565 (2006); Amunts, A., Drory, O. & Nelson, N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58-63 (2007). En los cloroplastos de algas verdes y plantas, esta parte de subunidad F se prolonga,

dando como resultado una mayor afinidad de la plastocianina por el FSI del cloroplasto (Hippler, M., Drepper, F., Farah, J. y Rochaix, J.D. Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36, 6343-6349 (1997)). Aunque tanto la plastocianina como el citocromo c6 pueden donar electrones al FSI en *Chlamydomonas reinhardtii*, en plantas superiores este sitio es específico para la plastocianina. Sin embargo, la donación de electrones al FSI en cianobacterias no es del todo promiscua, y diversos citocromos solubles, incluyendo el citocromo c respiratorio, no pueden donar electrones al FSI (Kerfeld, C. A. y Krogmann, D. W. Photosynthetic cytochromes c in cyanobacteria, algae and plants. Annu Rev Plant Physiol Plant Mol Biol 49, 470 397-425 (1998).

- Por lo tanto, los autores de la presente invención sugieren que el reemplazo de PsaJ y PsaF con la proteína de fusión PsaJF viral permitiría la donación de electrones a través de transportadores de electrones adicionales, incluyendo citocromos que normalmente actúan como donadores de electrones a la citocromo oxidasa.
- Los dos núcleos de la maquinaria fotosintética en plantas, algas y cianobacterias son los dos centros de reacción fotoquímicos conocidos como Fotosistema I (FSI) y Fotosistema II (FSII). Dado que el FSI puede producir hidrógeno y que el FSII produce oxígeno, otro reto importante en la producción de hidrógeno fotosintético es su separación espacial y/o temporal de la producción de hidrógeno. Los autores de la presente invención proponen una solución holística al obstáculo anterior usando cianobacterias termófilas que están modificadas por ingeniería genética para separar los dos sistemas para la producción de hidrógeno.
 - Por consiguiente, los autores de la presente invención también proponen modificar por ingeniería genética las cianobacterias de tal manera que el Fotosistema II (FSII) se vuelva sensible a la temperatura (es decir que, no funcione en la temperatura no permisiva de 60 °C, pero que funcione a temperaturas permisivas de aproximadamente 50 °C).
 - Por tanto, en las temperaturas no permisivas cuando FSII se deshabilite (y se inhiba la producción de oxígeno) los citocromos donarán los electrones al FSI y el hidrógeno se producirá sin obstáculos por los efectos debilitantes del oxígeno en la hidrogenasa. Estos periodos se alternarán con los periodos de temperatura permisiva en los que se producirá la recuperación del FSI y continuará el crecimiento y la propagación regular de las cianobacterias.
 - Por tanto, de acuerdo con un aspecto de la presente invención se proporciona una célula cianobacteriana que comprende un complejo FSI que acepta electrones de al menos un citocromo respiratorio.
- La expresión "célula cianobacteriana" se refiere a una célula bacteriana que obtiene su energía a través de la fotosíntesis.
 - De acuerdo con una realización, la cianobacteria es termófila, por ejemplo, Synechococcus elongatus o Mastigocladus laminosus.
- El FSI es un complejo de proteína-clorofila, presente en plantas verdes y en cianobacterias, que forma parte de la maquinaria fotosintética dentro de la membrana tilacoidal. Tiene forma de elipse y mide aproximadamente de 9 a 15 nanómetros. El complejo FSI comprende típicamente moléculas de clorofila que sirven como una antena que absorbe fotones y transfiere la energía fotónica al P700, donde esta energía se captura y se utiliza para activar reacciones fotoquímicas. Además de las clorofilas del P700 y de la antena, el complejo FSI contiene diversos aceptores de electrones. Un electrón liberado de P700 se transfiere a un aceptor terminal en el extremo reductor de FSI a través de aceptores intermedios y el electrón se transporta a través de la membrana tilacoidal.
 - Típicamente el FSI acepta electrones de citocromos o plastocianina especializados. La presente invención contempla la modificación del FSI de tal manera que es capaz de aceptar electrones de fuentes adicionales tales como citocromos respiratorios.
 - Como se usa en el presente documento, la frase "citocromos respiratorios" se refiere a citocromos solubles de la cadena de transporte de electrones respiratoria, tales como el citrocromo c y el citocromo M (CitcM; Bernroitner M, et al., (2009) Biochim Biophys Acta. 1787, 135-143).
 - De acuerdo con una realización, las subunidades PsaJ y PsaF de FSI se modifican para generar una subunidad de fusión PsaJF que permite que el FSI se vuelva promiscuo y acepte electrones de donantes de citocromos respiratorios conservando al mismo tiempo la capacidad del FSI para donar los electrones a la ferredoxina.
- El término "PsaJ" se refiere a una subunidad (IX) del complejo proteína-clorofila del fotosistema I (FSI), presente en plantas verdes y en cianobacterias, que forma parte de la maquinaria fotosintética dentro de la membrana tilacoidal.
 - En la siguiente Tabla 1 del presente documento se proporcionan ejemplos de secuencias de aminoácidos de PsaJ.

65

50

55

5

20

25

Tabla 1

					i abia i		
Número de acceso	Nombre de la pr	oteína	a		Nombre del gen	Organismo	Longitud
NP_441427 (N_000911.1)	Subunidad IX reacción FSI	del	centro	de	psaJ	Synechocystis sp. PCC 6803	40
B0LNU9	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene sordida	44
B0LNS9	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene cryptoneura	44
P0A429	Subunidad IX reacción Fotosis			de	psaJ tsr2412	Thermosynechococcus elongatus (cepa BP-1)	41
B0LNI1	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene zawadskii (colleja de Zawadskii)	44
B0LP54	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene atocioides	44
B0LND2	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene littorea	44
B0LNJ2	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene sorensenis	44
B0LNQ7	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene latifolia (colleja Blanca) (colleja de Ampolla)	44
B0LNE0	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene uniflora	44
B0LP33	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene aegyptiaca	44
B0LNZ4	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene pseudoatocion	44
B0LN84	Subunidad IX reacción FSI	del	centro	de	psaJ	Lychnis chalcedonica (lychnis Escarlata) (cruz Maltesa)	44
B0LNX0	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene fruticosa	44
B0LP12	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene schafta	42
B0LNL5	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene integripetala	42
B0LNP3	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene conica (atrapamoscas de maíz rallado)	44
B0LNA0	Subunidad IX reacción FSI	del	centro	de	psaJ	Silene samia	44
C3KEK5	Subunidad IX reacción FSI	del	centro	de	psaJ	Ceratophyllum demersum (hepática Rígida) (Cola de zorro)	44
					1	<u> </u>	1

En la SEC ID Nº: 3 se expone una secuencia de aminoácidos ejemplar de PsaJ.

5

10

El término "PsaF" se refiere a una subunidad (III) del FSI. En su forma no modificada, PsaF es una proteína de acoplamiento a la plastocianina que contribuye a la asociación específica de la plastocianina con el FSI.

En la SEC ID Nº: 4 se expone una secuencia de aminoácidos ejemplar de PsaF.

En la siguiente Tabla 2 del presente documento se proporcionan ejemplos de secuencias de aminoácidos de PsaF.

Tabla 2

		i abia z		
Número de acceso	Nombre de la proteína	Nombre del gen	Organismo	Longitud
P29256	Subunidad III del centro de reacción Fotosistema I	psaF	Synechocystis sp. PCC 6803	165

Número de acceso	Nombre de la proteína	Nombre del gen	Organismo	Longitud
P0A401	Subunidad III del centro de reacción Fotosistema I		Thermosynechococcus elongatus (cepa BP-1)	164

De acuerdo con una realización, la subunidad PsaF se modifica (por ejemplo, se trunca) en el extremo N de tal manera que reduce la afinidad de la plastocianina por el FSI del cloroplasto. Los truncamientos contemplados incluyen la eliminación de los diez primeros aminoácidos, más preferentemente los 20 primeros aminoácidos, más preferentemente los 30 primeros aminoácidos, más preferentemente los 40 primeros aminoácidos e incluso más preferentemente los 43 primeros aminoácidos. En la SEC ID Nº: 14 se expone una secuencia de aminoácidos ejemplar de una subunidad PsaF modificada.

De acuerdo con una realización específica, la subunidad PsaF truncada se une a la subunidad PsaJ para formar una proteína de fusión de una manera similar a la encontrada en cianófagos.

La unión puede realizarse mediante un péptido enlazador o directamente.

Por tanto, la presente invención contempla células cianobacterianas que comprenden proteínas de fusión PsaJF que comprenden una secuencia de aminoácidos al menos 80 % idéntica a la expuesta en la SEC ID №: 1.

Un porcentaje de identidad de una proteína de fusión de esta realización de la presente invención con un polipéptido que tiene una secuencia de aminoácidos expuesta en la SEC ID Nº: 1, puede determinarse de cualquiera de las diversas maneras. Preferentemente, el porcentaje de identidad entre polipéptidos se determina usando el programa informático BLAST [blastp] proteína-proteína convencional del NCBI.

El gen que codifica las proteínas PsaJF modificadas puede introducirse en la célula e insertarse por recombinación homóloga en PsaA o PsaB o en cualquier otra localización en el genoma cianobacteriano. Para hacer esto, típicamente en cada lado de la región codificante de PsaJF se añaden cien pares de bases adicionales que son complementarios a los del genoma cianobacteriano. Por lo tanto, una secuencia de polinucleótidos, por ejemplo, como se expone en la SEC ID Nº: 6, puede introducirse en la célula de tal manera que se inserte en genoma cianobacteriano por recombinación homóloga. De manera alternativa o adicional, las subunidades nativas tales como PsaJ y PsAF pueden modificarse por ingeniería genética de acuerdo con el virus (es decir, pueden modificarse por ingeniería genética para expresar una proteína de fusión) y sustituirse por las subunidades originales usando técnicas recombinantes.

Dichas técnicas recombinantes las describen Bitter et al., (1987) Methods in Enzymol. 153: 516-544, Studier et al. (1990) Methods in Enzymol. 185: 60-89, Brisson et al. (1984) Nature 310: 511-514, Takamatsu et al. (1987) EMBO J. 6: 307-311, Coruzzi et al. (1984) EMBO J. 3: 1671-1680 y Brogli et al., (1984) Science 224: 838-843, Gurley et al. (1986) Mol. Cell. Biol. 6: 559-565 y Weissbach y Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, NY, Sección VIII, págs. 421-463.

Para producir polipéptidos de la presente invención usando tecnología recombinante, un polinucleótido que codifica los polipéptidos de la presente invención se liga en un vector de expresión de ácido nucleico, que comprende la secuencia de polinucleótidos bajo el control transcripcional de una secuencia reguladora en cis (por ejemplo, una secuencia promotora) adecuada para dirigir la transcripción constitutiva, específica de tejido, o inducible de los polipéptidos de la presente invención en las células hospedadoras.

Una secuencia promotora contemplada que puede usarse en las construcciones de ácido nucleico de la presente invención es el promotor de PsaF que comprende la secuencia de ácidos nucleicos como se expone en la SEC ID Nº: 5.

Por tanto, la presente invención contempla polinucleótidos aislados que codifican la proteína de fusión de la presente invención.

La frase "un polinucleótido aislado" se refiere a una secuencia de ácido nucleico mono o bicatenario que está aislada y se proporciona en forma de una secuencia de ARN, una secuencia de polinucleótidos complementaria (ADNc), una secuencia de polinucleótidos genómica y/o secuencias de polinucleótidos compuestas (por ejemplo, una combinación de lo anterior).

Como se usa en el presente documento, la frase "secuencia de polinucleótidos complementaria" se refiera a una secuencia, que se produce como resultado de la transcripción inversa de ARN mensajero usando una transcriptasa inversa o cualquier otra ADN polimerasa dependiente de ARN. Dicha secuencia puede *amplificarse* posteriormente *in vivo* o *in vitro* usando una ADN polimerasa dependiente de ADN.

60

5

10

15

20

25

30

35

40

45

50

Como se usa en el presente documento, la frase "secuencia de polinucleótidos genómico" se refiere a una secuencia derivada (aislada) de un cromosoma y por tanto representa una parte contigua de un cromosoma.

Como se usa en el presente documento, la frase "secuencia de polinucleótidos compuesta" se refiere a una secuencia, que es al menos parcialmente complementaria y al menos parcialmente genómica. Una secuencia compuesta puede incluir algunas secuencias exónicas necesarias para codificar el polipéptido de la presente invención así como algunas secuencias intrónicas interpuestas entre ambas. Las secuencias intrónicas pueden ser de cualquier fuente, incluyendo de otros genes y típicamente incluirán secuencias de señal de corte y empalme conservadas. Dichas secuencias intrónicas pueden incluir adicionalmente elemento reguladores de expresión que actúan en cis.

5

10

25

30

35

40

45

50

55

60

65

En la SEC ID N° : 2 se expone una secuencia de ácido nucleico ejemplar de los polinucleótidos de la presente invención.

Como se ha mencionado anteriormente en el presente documento, las secuencias de polinucleótidos de la presente invención se insertan en vectores de expresión (es decir, una construcción de ácido nucleico) para permitir la expresión del polipéptido recombinante. El vector de expresión de la presente invención puede incluir secuencias adicionales que hacen que este vector sea adecuado para la replicación e integración en procariotas, eucariotas o preferentemente en ambos (por ejemplo, vectores lanzadera). Los vectores de clonación típicos contienen secuencias de inicio de la transcripción y traducción (por ejemplo, promotores, potenciadores) y terminadores de la transcripción y traducción (por ejemplo, señales de poliadenilación).

Como sistemas de expresión en hospedadores para expresar los polipéptidos de la presente invención puede usarse una diversidad de células procariotas o eucariotas. Estos incluyen, pero sin limitación, microorganismos, tales como bacterias transformadas con un vector de expresión recombinante de ADN de bacteriófago, ADN de plásmido o ADN de cósmido que contiene la secuencia que codifica el polipéptido; levaduras transformadas con vectores de expresión recombinantes de levadura que contienen la secuencia que codifica el polipéptido; sistemas de células vegetales infectadas con vectores de expresión de virus recombinantes o transformadas con vectores de expresión de plásmidos recombinantes, tales como el plásmido Ti que contiene la secuencia que codifica el polipéptido.

De acuerdo con una realización de este aspecto de la presente invención, los polinucleótidos de la presente invención se expresan directamente en las cianobacterias.

De acuerdo con otra realización de este aspecto de la presente invención, los polinucleótidos de la presente invención se expresan en sistemas celulares heterólogos.

Se apreciará que la construcción de expresión de la presente invención también puede incluir otras secuencias modificadas por ingeniería genética distintas que contengan los elementos necesarios para la transcripción y traducción de la secuencia codificada insertada (que codifica el polipéptido) para optimizar la estabilidad, producción, purificación, rendimiento o actividad del polipéptido expresado, siendo particularmente relevante cuando se expresa en un sistema heterólogo.

Para introducir el vector de expresión de la presente invención en el sistema de la célula hospedadora pueden usarse diversos métodos. Dichos métodos se describen en líneas generales en Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, Nueva York (1989, 1992), en Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1989), Chang et al., Somatic Gene Therapy, CRC Press, Ann Arbor, Mich. (1995), Vega et al., Gene Targeting, CRC Press, Ann Arbor Mich. (1995), Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworths, Boston Mass. (1988) y Gilboa et at. [Biotechniques 4 (6): 504-512, 1986] e incluyen, por ejemplo, transfección, estable o transitoria, lipofección, electroporación e infección con vectores virales recombinantes. Además, véanse las Patentes de Estados Unidos Nos 5.464.764 y 5.487.992 para métodos de selección positivos-negativos.

Las células transformadas se cultivan en condiciones eficaces, que permiten la expresión de cantidades elevadas del polipéptido recombinante. Las condiciones de cultivo eficaces incluyen, pero sin limitación, medios, biorreactores, temperatura, pH y condiciones de oxígeno eficaces que permitan la producción de proteínas. Un medio eficaz se refiere a cualquier medio en el que una célula se cultiva para producir el polipéptido recombinante de la presente invención. Dicho medio incluye típicamente una solución acuosa que tiene fuentes de carbono, nitrógeno y fosfato asimilables y sales, minerales, metales y otros nutrientes, tales como vitaminas, apropiados. Las células de la presente invención pueden cultivarse en biorreactores de fermentación, matraces agitadores, tubos de ensayo, placas de microtitulación y de Petri convencionales. El cultivo puede realizarse a una temperatura, a un pH y a un contenido de oxígeno apropiado para una célula recombinante. Además, las células de la presente invención pueden cultivarse en condiciones de campo, tales como estanques abiertos, cubiertos, bolsas de plástico (véase, por ejemplo, "A Look Back at the U.S. Department of Energy's Aquatic Species Program - Biodiesel from Algae, julio de 1998, U.S. Department of Energy's Office of Fuels Development, incorporado en este documento por referencia). Un experto habitual en la técnica conoce dichas condiciones de cultivo.

Se apreciará que, para estudiar las propiedades del polipéptido puede desearse su aislamiento (y opcionalmente su cristalización). Por tanto, después de un tiempo en cultivo predeterminado, se efectúa la recuperación del polipéptido recombinante.

- 5 La frase "recuperación del polipéptido recombinante", como se usa en el presente documento, se refiere a recoger todo el medio de fermentación que contiene el polipéptido y no implica que sea necesario realizar etapas de separación o purificación adicionales.
- Por tanto, los polipéptidos de la presente invención pueden purificarse usando diversas técnicas de purificación de proteínas convencionales, tales como, pero sin limitación, desalinización (tal como en precipitación con sulfato de amonio), cromatografía de afinidad, cromatografía de intercambio iónico, filtración, electroforesis, cromatografía de interacción hidrófoba, cromatografía de filtración en gel, cromatografía de fase inversa, cromatografía con concanavalina A, cromatoenfoque y solubilización diferencial.
- Para facilitar la recuperación, la secuencia codificante expresada puede modificarse por ingeniería genética para codificar el polipéptido de la presente invención y el resto escindible fusionado. Dicha proteína de fusión puede diseñarse de tal manera que el polipéptido pueda aislarse fácilmente por cromatografía de afinidad, por ejemplo, por inmovilización en una columna específica para el resto escindible. Cuando un sitio de escisión se modifica por ingeniería genética entre el polipéptido y el resto escindible, el polipéptido puede liberarse de la columna cromatográfica por tratamiento con una enzima apropiada o con un agente que escinda específicamente la proteína de fusión en este sitio [véase, por ejemplo, Booth et al., Immunol. Lett. 19: 65-70 (1988); y Gardella et al., J. Biol. Chem. 265: 15854-15859 (1990)].
 - El polipéptido de la presente invención puede recuperarse en forma "sustancialmente pura".

25

35

40

45

60

- Como se usa en el presente documento, la frase "sustancialmente pura" se refiere a una pureza que permite el uso eficaz de la proteína en las aplicaciones descritas en el presente documento.
- Las células cianobacterianas de la presente invención pueden modificarse de otras maneras para potenciar la producción de hidrógeno.
 - Por tanto, de acuerdo con una realización, las células cianobacterianas se modifican genéticamente para expresar un fotosistema II sensible a temperatura. De esta manera, la producción de hidrógeno fosintético puede separarse temporalmente de la producción de oxígeno. De acuerdo con una realización, el Fotosistema II (FSII) se modifica de tal manera que no funcione en la temperatura no permisiva de aproximadamente 60 °C, pero funcione a temperaturas permisivas de aproximadamente 50 °C.
 - Se contemplan polipéptidos que pueden modificarse en el sistema FSII que incluyen, pero sin limitación, D1, D2, PsbO o CP43. En Physiologia Plantarum, volumen 49, tema 2, páginas 135 -140, 28 de abril de 2006, se desvelan dos mutantes del fotosistema II sensibles a temperatura del guisante.
 - Las sustituciones de aminoácidos pueden seleccionarse de acuerdo con la estructura disponible del FSII. Las subunidades modificadas pueden generarse por mutagénesis dirigida. El ADN resultante puede introducirse en el genoma cianobacteriano por técnicas conocidas, tales como recombinación homóloga o mediante una construcción de expresión.
 - Los sistemas que pueden utilizar dichos polipéptidos se describen adicionalmente más adelante en el presente documento.
- Como se ha mencionado, las enzimas hidrogenasas presentes en cianobacterias pueden aceptar electrones del fotosistema I (FSI) y su conversión en gas hidrógeno. Una limitación de este proceso es que los transportadores de electrones endógenos donan sus electrones a destinatarios que no son hidrogenasas. Por ejemplo, los transportadores de electrones reducidos, tales como ferredoxina, también donan electrones a la enzima ferrodoxin-NADP⁺-reductasa (FNR).
 - Para aumentar la producción de hidrógeno, los electrones pueden estimularse para transportarse hacia la hidrogenasa a expensas de procesos contrarios. La solicitud de Patente Internacional WO2009/013745 muestra nuevos polipéptidos de hidrogenasa que están unidos artificialmente a una ferredoxina heteróloga. En principio, dicho polipéptido impulsa el flujo de electrones desde un donador de electrones, tal como el fotosistema I (FSI), directamente a la hidrogenasa a expensas de la FNR.
 - Por tanto, otra modificación contemplada de las células cianobacterianas de la presente invención es la expresión de proteínas de fusión Ferredoxina-hidrogenasa modificadas por ingeniería genética, como se describe en la solicitud de Patente Internacional WO2009/013745, para reforzar adicionalmente la capacidad del organismo modificado por ingeniería genética para producir hidrógeno.

Como se usa en el presente documento, la frase "enzima hidrogenasa" se refiere a una secuencia de aminoácidos de una enzima hidrogenasa que tienen la capacidad de catalizar la oxidación/reducción de hidrógeno. Por tanto la presente invención contempla hidrogenasas de longitud completa así como fragmentos activos de las mismas. De acuerdo con una realización, la enzima hidrogenasa es una hidrogenasa solo de Fe. De acuerdo con otra realización, la hidrogenasa es una hidrogenasa Ni-Fe. De acuerdo con otra realización adicional, la hidrogenasa es una hidrogenasa no metálica. Son enzimas hidrogenasas ejemplares que pueden usarse de acuerdo con la presente invención las clasificadas como EC 1.12.1.2, EC 1.12.1.3, EC 1.12.2.1, EC 1.12.7.2, EC 1.12.98.1, EC 1.12.99.6, EC 1.12.5.1, EC 1.12.98.2 y EC 1.12.98.3.

5

25

40

45

50

55

60

- Como se usa en el presente documento, el término "ferrodoxina" se refiere a una secuencia de aminoácidos de la proteína con azufre e hierro que es capaz de mediar la transferencia de electrones a la hidrogenasa. Por tanto la presente invención contempla ferrodoxinas de longitud completa así como sus fragmentos activos. De acuerdo con una realización preferida de este aspecto de la presente invención, la ferrodoxina es una ferrodoxina de tipo vegetal.
- Los ejemplos de polipéptidos de ferrodoxina que pueden usarse de acuerdo con la presente invención incluyen, pero sin limitación, ferrodoxinas cianobacterianas, ferredoxinas de algas y ferredoxinas de organismos no fotosintéticos.
- El calificador "heterólogo", cuando se refiere a la ferredoxina, indica que la ferredoxina no está asociada de manera natural (es decir, es endógena a) con la hidrogenasa de la presente invención. Por tanto, por ejemplo, la frase "hidrogenasa unida a una ferredoxina heteróloga" no comprende la hidrogenasa solo de Fe de *Clostridium pasteurianum*.
 - En las SEC ID Nos: 15-20 se exponen secuencias de aminoácidos de polipéptidos de hidrogenasa-ferrodoxina ejemplares.
 - En las SEC ID Nos: 21-26 se exponen secuencias de ácidos nucleicos ejemplares que pueden usarse para expresar los polipéptidos de hidrogenasa-ferredoxina.
- Como se ha mencionado anteriormente en el presente documento, el sistema de transporte de electrones endógeno en todos los organismos fotosintéticos comprende la donación de electrones de la ferrodoxina a la ferrodoxin-NADP⁺-reductasa (FNR). Para desviar el flujo de electrones lejos de esta enzima competidora, la presente invención contempla la regulación negativa de la misma.
- La frase "ferrodoxin-NADP⁺-reductasa" como se usa en el presente documento se refiere a la enzima clasificada como EC 1.18.1.2. que está presente en organismos fotosintéticos.
 - La regulación negativa de la FNR puede efectuarse a nivel genómico (usando estrategias genéticas clásicas) y/o a nivel de transcripción. Esto puede realizarse usando diversas moléculas que interfieran con la transcripción y/o traducción (por ejemplo, antisentido, ARNip, Ribozima, ADNzima). Otros ejemplos de agentes que pueden usarse para regular negativamente la FNR se proporcionan en la solicitud de Patente Internacional WO2009/013745, incorporada en el presente documento por referencia.
 - Las células cianobacterianas modificadas de la presente invención pueden colocarse (cultivarse) en un reactor que esté adecuadamente adaptado para recoger el gas hidrógeno.
 - La Figura 8 es una ilustración esquemática en un reactor 100 para producir hidrógeno de acuerdo con una realización en la invención. El reactor 100 comprende un recipiente 102, que contiene las células cianobacterianas 104 modificadas de las realizaciones de la presente invención. Las células cianobacterianas 104 modificadas comprenden el FSII sensible a temperatura modificado genéticamente, de tal manera que el FSII se desactiva a altas temperaturas (entre 60-70 °C). El recipiente 102 también puede comprender otros componentes tales como medio celular 106 para garantizar la viabilidad de las células. El reactor 100 y el recipiente 102 se fabrican preferentemente con materiales transparentes para permitir que entre la luz del sol.
 - De acuerdo con una realización, el recipiente el recipiente 102 es un tubo dispuesto en un circuito. El recipiente 102 comprende una bomba de recirculación 114 que garantiza el flujo de las células cianobacterianas a través del recipiente 102. Típicamente la velocidad de rotación se establece a aproximadamente 20 cm por minuto. Una parte del recipiente se coloca en un depósito 108 que se mantiene a una temperatura de aproximadamente 60-70 °C. Se apreciará que la temperatura exacta se establece de acuerdo con el FSII sensible a temperatura expresado en las células cianobacterianas 104 y puede variar de 55 a 80 °C. El depósito 108 puede comprender un calentador 116 y un monitor 118 para mantener la temperatura. Otra parte del recipiente se coloca en un depósito 110 que se mantiene a una temperatura de aproximadamente 30-50 °C. Se apreciará que la temperatura exacta se establece de acuerdo con el FSII sensible a temperatura expresado en las células cianobacterianas 104 y puede variar de 22 a 55 °C. El depósito 110 puede comprender un calentador 120 y un monitor 122 para mantener la temperatura. La fracción del recipiente mantenida en el depósito 108 a diferencia del depósito 110 puede ajustarse de acuerdo con el nivel de hidrógeno requerido. El depósito 108 se mantiene como un medio anaerobio (que contiene, por ejemplo, gas nitrógeno). El depósito 110 se mantiene como un medio aerobio. El depósito 110 puede comprender

adicionalmente materia orgánica 112. El recipiente 102 se fabrica de plástico permeable a hidrógeno y a oxígeno de tal manera que los gases pueden salir del recipiente y entrar en los depósitos 108 y 110 respectivamente.

El gas hidrógeno puede recuperarse del reactor por compresión del gas nitrógeno en el compartimento 108.

Se aprecia que determinadas características de la invención, que se describen como aclaración en el contexto de realizaciones individuales, también pueden proporcionarse en combinación en una sola realización. Por otro lado, diversas características de la invención que, por brevedad, se describen en el contexto de una sola realización, también pueden proporcionarse por separado o en cualquier sub-combinación adecuada o según sea adecuada en cualquier otra realización descrita de la invención. Determinadas características descritas en el contexto de diversas realizaciones no deben considerarse que sean características esenciales de aquellas realizaciones, a menos que la realización sea inoperativa sin aquellos elementos.

Diversas realizaciones y aspectos de la presente invención como los definidos anteriormente en el presente documento y como se reivindican más adelante en la sección de reivindicaciones, encuentran apoyo experimental en los siguientes ejemplos.

Ejemplos

5

10

25

30

35

40

45

55

60

20 Se hace referencia ahora a los siguientes ejemplos, que junto con las descripciones anteriores ilustran, de manera no limitativa, algunas realizaciones de la invención.

Generalmente, la nomenclatura usada en el presente documento y los procedimientos de laboratorio utilizados en la presente invención incluyen técnicas moleculares, bioquímicas, microbiológicas y de ADN recombinante. Dichas técnicas se explican minuciosamente en la bibliografía. Véase, por ejemplo, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumenes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Maryland (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley y Sons, Nueva York (1988); Watson et al., "Recombinant DNA", Scientific American Books, Nueva York; Birren et al. (eds.) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, Nueva York (1998); metodologías como se expone en las Patentes de Estados Unidos Nos 4.666.828; 4.683.202; 4.801.531; 5.192.659 y 5.272.057; "Cell Biology: A Laboratory Handbook", Volúmenes I-III Cellis, J. E., ed. (1994); "Culture of Animal Cells - A Manual of Basic Technique" by Freshney, Wiley-Liss, N. Y. (1994), Tercera Edición; "Current Protocols in Immunology" Volúmenes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8ª Edición), Appleton y Lange, Norwalk, CT (1994); Mishell y Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman y Co., Nueva York (1980); inmunoensayos disponibles se describen ampliamente en la bibliografía de patentes y científica, véanse, por ejemplo, las Patentes de Estados Unidos Nos 3.791.932; 3.839.153; 3.850.752; 3.850.578; 3.853.987; 3.867.517; 3.879.262; 3.901.654; 3.935.074; 3.984.533; 3.996.345; 4.034.074; 4.098.876; 4.879.219; 5.011.771 y 5.281.521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., y Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., y Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, CA (1990); Marshak et al., "Strategies for Protein Purification and Characterization - A Laboratory Course Manual" CSHL Press (1996); todas ellas incorporadas por referencia como si se expusiesen en su totalidad en el presente documento. A lo largo de este documento se proporcionan otras referencias generales. Se piensa que los procedimientos del presente documento son muy conocidos en la técnica y se proporcionan por comodidad del lector. Toda la información contenida en el presente documento se incorpora en el presente documento por referencia.

50 EJEMPLO 1

Sustitución de PsaF y PsaJ por la proteína de fusión PsaJF en Synechocystis sp.

MATERIALES Y MÉTODOS

Generación de la construcción PsaJF: PsaJ se amplificó con los cebadores 5580 y 5581 y se fusionó al fragmento PsaF amplificado con los cebadores 5582 y 5583 (véase la Figura 9). El gen de fusión JF se amplificó por tanto usando secuencias de ~300 pb que contenían el promotor de PsaF y la homología negativa de PsaF para crear todo el casete génico. Este fragmento de 970 pb se clonó en el vector pGEM-Teasy. Finalmente, el fragmento se trasladó a un vector pET28 para introducir el gen de resistencia a Kan en un sitio Pstl que se diseñó en el cebador 5584.

5578 - GTAAATGCTGGCGAGAGGCCAC - SEC ID Nº: 7.

5579 - AAGAATCGTTTCCTTGGTTAAACA - SEC ID №: 8.

5580 - TGTTTAACCAAGGAAACGATTCTTATGGACGGTTTGAAATCCTTT - SEC ID № 9.

5581 - ACAGGGGTGGAAAAGAAGATCG - - SEC ID Nº: 10.

65 5582 - CCCGATCTTCTTTCCACCCCTGTTCTTGTGCTGGTGACTTTTTGAT TCCTAGC - - SEC ID №: 11.

5583 - GTCCAGTCAATGCCCAACTGGTTAGCGG - - SEC ID Nº: 12.

5584 - CCGCTAATTAGTTGGGCATTGACTGCAGGTGAGATAAAAGATTG GTTGGGA - SEC ID №: 13.

Purificación de FSI que contiene PsaJF: en placas de Petri con agar, que contenía medio BG-11, se desarrollaron células de Synechocystis con luz fluorescente. Se inocularon colonias en 500 ml de medio de cultivo que contenía BG-11. Después de 6 días en desarrollo a 30 °C, el cultivo se diluyó en un frasco de 8 l y se desarrolló durante 6 días más (DO730 final - 1,6~1,8). Las células se recuperaron por centrifugación a 6000 x g durante 20 minutos, se resuspendieron en ~100 ml de STN1 frio (Tricina 30 mM pH8, NaCl 15 mM, sacarosa 0,4 M). Las células se sedimentaron por centrifugación a 25000 x g durante 10 minutos, se resuspendieron en 50 ml de STN1 que contenían inhibidores de proteasa. La suspensión se descompuso 3 veces usando una prensa francesa y las células no lisadas y los restos celulares se retiraron por centrifugación a 25000 x g durante 10 minutos. El sobrenadante se centrifugó a 150000 x g durante 2 horas y las membranas precipitadas se suspendieron en STN1 para proporcionar una concentración de clorofila de 3 mg/ml. Se añadió dodecil maltósido (DM) a partir de una solución madre del 10 % a una concentración final de 15 mg de DM por mg de clorofila. Después de la incubación en hielo durante 30 minutos, los materiales insolubles se retiraron por centrifugación a 150.000 x g durante 30 minutos. El sobrenadante se aplicó en una columna de celulosa DEAE y se eluyó por un gradiente de NaCl de 15-350 mM (100 ml en cada cámara) en tampón que contenía DM al 0,2 %, Tricina 30 mM pH 8. A las fracciones verdes se añadió PEG 400 al 50 % para dar una concentración final del 10 %. La suspensión se centrifugó a 10.000 x g durante 5 minutos y el sedimento se solubilizó en 2 ml de Tricina 30 mM, DM al 0,005 %, NaCl 15 mM. La solución se cargó en gradiente de sacarosa al 10-40 % en NaCl 15 mM, Tricina 30 mM, DM al 0,005 %, se centrifugó en un rotor SW40 a 32.000 rpm durante 16 horas. La banda del trímero de FSI aparente se recogió y el FSI se precipitó con PEG 6000 al 10 %. Después de la centrifugación un sedimento se suspendió en MES 2 mM pH 6,5, DM al 0,002 % para dar 3 mg de clor./ml y se sometió a cristalización.

Cristalización de la proteína de fusión PsaJF: se usó exploración PEG/Ion (Hampton) para exploración inicial y las siguientes condiciones produjeron cristales:

Dihidrato de cloruro de calcio 7 - 50 mM PEG 3350 al 5 %, pH 5,1 Dihidrato de formato de magnesio 20 - 50 mM PEG 3350 al 5 %, pH 7 Tetradihidrato de acetato de magnesio 25 - 50 mM PEG 3350 al 5 %, pH 7,9 Tetrahidrato de tartrato sódico potásico 37 PEG 3350 al 5 %, pH 7,4 Citrato de amonio dibásico 48 - 50 mM PEG 3350 al 5 %, pH 5,1 Malonato sódico 4 - 50 mM pH 5, PEG 3350 al 5 %

Condiciones adicionales que produjeron cristales:

35 Mem

5

10

15

20

30

40

50

MemSys – diluido 1/3

NaCl LiSO $_4$ 5 - 33 mM, NaCitrato 33 mM pH 5,5, PEG400 al 10 %.

NaCl LiSO $_4$ 10 - 33 mM, MES 33 mM pH 6,5, PEG400 al 10 %.

NaCl MgCl₂ 11 - 33 mM, MES 33 mM pH 6,5, PEG400 al 10 %.

NaCl LiSO₄ 17 - 33 mM, HEPES 33 mM pH 7,5, PEG400 al 10 %.

NaCl MgCl $_2$ 18 - 33 mM, HEPES 33 mM pH 7,5, PEG400 al 10 %.

NaCl MgCl $_2$ 29 - 33 mM, NaCitrato 33 mM pH 5,5, PEG400 al 4,5 %.

NaCl MgCl $_2$ 35 - 33 mM, MES 33 mM pH 6,5, PEG4000 al 4,5 %.

NaCl LiSO₄ 41 - 33 mM, HEPES pH 7,5, PEG4000 al 4,5 %.

45 NaCl MgCl₂ 46 - 33 mM, Tris 33 mM pH 8,5, PEG4000.

MemStart – diluido 1/3

Dihidrógeno fosfato de amonio 9 - 33 mM pH 6,5.

NaCl 21 - 33 Mm, Na3-Citrato pH 5,6, PEG400 al 10 %

LiSO₄ 23 - 33 mM, ADA 33 mM pH 6,5, PEG400 al 10 %

Na3-Citrato 26 - 70 mM, Tris 33 mM pH 8,5, PEG400 al 10 %

NaCl 33 - 33 mM, HEPES 33 mM pH 7,5, PEG4000 al 4,5 % Sulfato de amonio 34 - 33 mM, HEPES 33 mM pH 7,5, PEG4000 al 4,5 %.

MgCl₂ 35 - 70 mM, Tris 33 mM pH 8,5, PEG4000 al 4,5 %.

Análisis de velocidades de donación de electrones por citocromos respiratorios El procedimiento se describe en la leyenda de la Figura 5.

RESULTADOS

Para fusionar las subunidades PsaJ y PsaF se construyó un plásmido, que contenía 300 pb de homología aguas abajo con respecto a PsaF y aguas arriba con respecto a PsaJ (Figura 5A). La ORF (fase de lectura abierta) de PsaJ se colocó bajo el control del promotor de PsaF y se fusionó con los aminoácidos 44-164 de PsaF. Esta proteína de fusión se asemeja bastante a la proteína de fusión JF encontrada en el genoma de fagos (Sharon, I., Alperovitch, A., Rohwer, F., Haynes, M. Glaser, F. Atamaa-Ismaeel, N., Pinter, R. Y., Partensky, F., Koonin, E. V., Wolf, Y. I., Nelson, N. y Oded Béjà, O. (2009). Photosystem I gene cassettes are present in marine virus genomes. Nature 461, 258-262). Para facilitar el aislamiento de los transformantes, el gen de resistencia a Kan se clonó aguas abajo con

respecto a la proteína de fusión. Después de la transformación de *Synechocystis*, las colonias de resistencia a Kan se seleccionaron y se sembraron en estrías varias veces para garantizar la correcta segregación del alelo mutante. La correcta integración y el reemplazo de genes de tipo silvestre se verificaron por PCR usando cebadores que se sitúan fuera del segmento reemplazado.

Después de la construcción de la cepa, se analizaron los efectos de la proteína de fusión sobre estabilidad de y/o el ensamblaje del FSI.

- Para investigar, este FSI se purificó de los cultivos de tipo silvestre y mutante usando cromatografía DEAE seguido de gradiente de sacarosa. Como se observa en la Figura 5B, no hay cambios en las cantidades relativas de las formas triméricas a monoméricas de la enzima. Cuando se aplicaron membranas solubles directamente al gradiente de sacarosa (datos no mostrados) se obtuvieron los mismos resultados. Esto demuestra que la proteína de fusión JF no afecta a la estabilidad de este supercomplejo trimérico.
- La composición subunitaria del complejo se examinó por análisis SDS-PAGE de las fracciones triméricas recogidas del gradiente de sacarosa (Figura 5C). En el gel, puede observarse una banda clara en la localización esperada de la proteína de fusión que representa la integración satisfactoria de la proteína fusionada en el complejo FSI.
- El FSI mutante purificado se cristalizó y diversas condiciones produjeron cristales. La Figura 6 representa uno de los pocillos que contiene cristales. Los cristales de este primer ensayo se analizaron en el sincrotrón SLS y difractaron a una resolución de 8 Å.
- El FSI mutante con PsaJF aislado se analizó con respecto a las velocidades de donación de electrones por citocromos respiratorios. Como se muestra en la Figura 7, el citocromo c de corazón de caballo, donó electrones al FSI mutante con PsaJF 5 veces más rápido que lo hizo el FSI de tipo silvestre. Este experimento muestra que, como se propone, el FSI mutante con PsaJF es verdaderamente promiscuo para donantes de electrones. Dado que las células mutantes crecieron igual que las células de tipo silvestre el FSI promiscuo no es perjudicial para el proceso fotosintético global.
- Aunque la invención se ha descrito junto con realizaciones específicas de las mismas, para los expertos en la materia será obvio que pueden realizarse muchas modificaciones y variaciones alternativas. Por consiguiente, se pretende abarcar todas dichas modificaciones y variaciones alternativas que se incluyen en el espíritu y amplio alcance de las reivindicaciones adjuntas.
- Todas las publicaciones, patentes y solicitudes de patentes mencionadas en esta memoria descriptiva se incorporan en el presente documento por referencia en su totalidad, en la misma medida como si indicase que cada publicación, patente o solicitud de patente individual estuviese específica e individualmente incorporada en el presente documento por referencia. Además, en la presente solicitud, las citas o identificación de cualquier referencia no se interpretarán como una admisión de que dicha referencia esté disponible como técnica anterior a la presente invención. Si se usan los títulos de las secciones, estos no deben considerarse como necesariamente limitantes.

LISTADO DE SECUENCIAS

<220>

65

5

<110> Ramot At Tel Aviv University Ltd. Nelson, Nathan 45 Yacoby, Iftach Gazit, Ehud Benhar, Itai <120> PRODUCCIÓN FOTOCATALÍTICA DE HIDRÓGENO EN CIANOBACTERIAS 50 <130> 48682 <150> US 61/213.289 55 <151> 26-05-2009 <160> 26 <170> Patentln versión 3.5 60 <210> 1 <211> 125 <212> PRT <213> Secuencia artificial

<223> Proteína de fusión PsaJF

	<400> 1
	Met Asp Gly Leu Lys Ser Phe Leu Ser Thr Ala Pro Val Met Ile Met 1 5 10 15
	Ala Leu Leu Thr Phe Thr Ala Gly Ile Leu Ile Glu Phe Asn Arg Phe 20 25 30
	Tyr Pro Asp Leu Leu Phe His Pro Cys Ser Cys Ala Gly Asp Phe Leu 35 40 45
	Ile Pro Ser Ile Leu Phe Leu Tyr Ile Ala Gly Trp Ile Gly Trp Val 50 55 60
	Gly Arg Ser Tyr Leu Ile Glu Ile Arg Glu Ser Lys Asn Pro Glu Met 65 70 75 80
	Gln Glu Val Val Ile Asn Val Pro Leu Ala Ile Lys Lys Met Leu Gly 85 90 95
	Gly Phe Leu Trp Pro Leu Ala Ala Val Gly Glu Tyr Thr Ser Gly Lys 100 105 110
5	Leu Val Met Lys Asp Ser Glu Ile Pro Thr Ser Pro Arg 115 120 125
10	<210> 2 <211> 378 <212> ADN <213> Secuencia artificial
	<220> <223> Secuencia codificante de la proteína de fusión PsaJF
15	<400> 2
	atggacggtt tgaaatcott tttgtcaact gctccggtca tgatcatggc tttgttgact 60
	ttcaccgctg gtattttgat cgagtttaat cgtttttatc ccgatcttct tttccacccc 120
	tgttcttgtg ctggtgactt tttgattoct agcattttgt tcctgtacat tgctggttgg 180
	atoggotggg tiggtogtto ttacotgatt gaaattoggg aaagcaaaaa tootgaaatg 240
	caggaagtgg ttattaatgt occoctagcg atcaaaaaaa tgttgggtgg tttcctttgg 300
	cccttggccg ccgttggtga atacacctcc ggcaaactgg tgatgaagga ttcagaaatc 360 cccacttccc cccgctaa 378
	\$70
20	<210> 3 <211> 40 <212> PRT <213> Secuencia artificial
25	<220> <223> Secuencia de aminoácidos ejemplar de PsaJ

<400> 3

Met Asp Gly Leu Lys Ser Phe Leu Ser Thr Ala Pro Val Met Ile Met $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ala Leu Leu Thr Phe Thr Ala Gly Ile Leu Ile Glu Phe Asn Arg Phe 20 25 30

Tyr Pro Asp Leu Leu Phe His Pro 35 40

5 <210> 4

<211> 165

<212> PRT

<213> Secuencia artificial

10 <220>

<223> Secuencia de aminoácidos ejemplar de PsaF

<400> 4

Met Lys His Leu Leu Ala Leu Leu Leu Ala Phe Thr Leu Trp Phe Asn
1 5 10 15

Phe Ala Pro Ser Ala Ser Ala Asp Asp Phe Ala Asn Leu Thr Pro Cys $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ser Glu Asn Pro Ala Tyr Leu Ala Lys Ser Lys Asn Phe Leu Asn Thr 35 40 45

Thr Asn Asp Pro Asn Ser Gly Lys Ile Arg Ala Glu Arg Tyr Ala Ser 50 55 60

Ala Leu Cys Gly Pro Glu Gly Tyr Pro His Leu Ile Val Asp Gly Arg 65 70 75 80

Phe Thr His Ala Gly Asp Phe Leu Ile Pro Ser Ile Leu Phe Leu Tyr $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ile Ala Gly Trp Ile Gly Trp Val Gly Arg Ser Tyr Leu Ile Glu Ile 100 105 110

Arg Glu Ser Lys Asn Pro Glu Met Gln Glu Val Val Ile Asn Val Pro 115 120 125

Leu Ala Ile Lys Lys Met Leu Gly Gly Phe Leu Trp Pro Leu Ala Ala 130 135 140

Val Gly Glu Tyr Thr Ser Gly Lys Leu Val Met Lys Asp Ser Glu Ile 145 150 155 160

Pro Thr Ser Pro Arg 165

5	<210> 5 <211> 54 <212> ADN <213> Secuencia artificial	
5	<220> <223> Promotor de PsaF	
10	<400> 5 cttatttatt tagccgcctt tttagtcttt tgtttaacca aggaaacgat tctt	54
	<210> 6 <211> 2378 <212> ADN	
15	<213> Secuencia artificial <220>	
20	<223> Región codificante de PsaJF flanqueando con regi para recombinación homóloga	ones complementarias al genoma cianobacteriano
	<400> 6	

gggcgaattg ggcccgacgt cgcatgctcc cggccgccat ggcggccgcg ggaattegat 60 tgtaaatgct ggcgagaggc cactteeggt actaeceege egaaaatttg atgggtttgt 120 atttgggaag aaaccacatt actgcaaacg ttacgattat ttacaattgc caccgcagtt 180 tcatcacaac ttgtttcaat tgctaaaatg attgccattc tctgctagtt tgagtttgat 240 ccaaaagacg acggtttatt agcccagtct ttcctattat cggctaacga tccccggatc 300 acggtaacag gttgcgaatc ttgcttattt atttagccgc ctttttagtc ttttgtttaa 360 ccaaggaaac gattottatg gacggtttga aatcottttt gtcaactgct ccggtcatga 420 teatggettt gttgacttte accgetggta ttttgatega gtttaategt ttttateeeg 480 atottetttt ccaccoctgt tottgtgotg gtgacttttt gattoctage attttgttcc 540 tgtacattgc tggttggatc ggctgggttg gtcgttctta cctgattgaa attcgggaaa 600 gcaaaaatcc tgaaatgcag gaagtggtta ttaatgtccc cctagcgatc aaaaaaatgt 660 tgggtggttt cctttggccc ttggccgccg ttggtgaata cacctccggc aaactggtga 720 tgaaggattc agaaatcccc acttcccccc gctaattagt tgggcattga ctgcaggggg 780 gggggggcgc tgaggtctgc ctcgtgaaga aggtgttgct gactcatacc aggcctgaat 840 cgccccatca tccagccaga aagtgaggga gccacggttg atgagagctt tgttgtaggt 900 ggaccagttg gtgattttga acttttgctt tgccacggaa cggtctgcgt tgtcgggaag 960 atgcgtgatc tgatccttca actcagcaaa agttcgattt attcaacaaa gccgccgtcc 1020 cgtcaagtca gcgtaatgct ctgccagtgt tacaaccaat taaccaattc tgattagaaa 1080 aactcatcga gcatcaaatg aaactgcaat ttattcatat caggattatc aataccatat 1140

```
ttttgaaaaa googtttotg taatgaagga gaaaactcac cgaggcagtt ccataggatg
                                                                       1200
                                                                      1260
gcaagatect ggtateggte tgcgatteeg actegteeaa cateaataea acetattaat
                                                                      1320
ttcccctcgt caaaaataag gttatcaagt gagaaatcac catgagtgac gactgaatcc
ggtgagaatg gcaaaagctt atgcatttct ttccagactt gttcaacagg ccagccatta
                                                                      1380
ogotogtoat caaaatcact ogoatcaacc aaaccgttat teattegtga ttgcgcctga
                                                                      1440
gegagaegaa ataegegate getgttaaaa ggacaattae aaacaggaat egaatgeaac
                                                                      1500
oggogoagga acactgocag ogcatcaaca atattttcac otgaatcagg atattettet
                                                                      1560
aatacctgga atgctgtttt cccggggatc gcagtggtga gtaaccatgc atcatcagga
                                                                      1620
gtacggataa aatgcttgat ggtcggaaga ggcataaatt ccgtcagcca gtttagtctg
                                                                      1680
accateteat etgtaacate attggeaacg ctacetttge catgttteag aaacaactet
                                                                      1740
ggcgcatcgg gcttcccata caatcgatag attgtcgcac ctgattgccc gacattatcg
                                                                      1800
                                                                      1860
cgagcccatt tatacccata taaatcagca tccatgttgg aatttaatcg cggcctcgag
caagacgttt cccgttgaat atggctcata acaccccttg tattactgtt tatgtaagca
                                                                      1920
                                                                      1980
gacagtttta ttgttcatga tgatatattt ttatcttgtg caatgtaaca tcagagattt
                                                                      2040
tgagacacaa cgtggctttc ccccccccc ctgcagaggt gagataaaag attggttggg
atttgtaatt gagatootag ocaatttttt ttggtaaaaa taactggatt aatoggttaa
                                                                      2100
tttacctggg ttgagcaaat taaggggatc tacctggcgt ttaaaaaatta attgggattc
                                                                      2160
tggcagaggt tgtaccgacc ctccggctaa actataggtg tggggattgg cgattctggc
                                                                      2220
ccctagattt tggtgggcgg ccatgatttc ttccaggcga tcaccgttga taaatcacta
                                                                      2280
gtgaattcgc ggccgcctgc aggtcgacca tatgggagag ctcccaacgc gttggatgca
                                                                      2340
                                                                      2378
tagettgagt attetatagt gteacetaaa tagettgg
```

```
<210>7
             <211> 22
 5
             <212> ADN
             <213> Secuencia artificial
             <223> Oligonucleótido de ADN monocatenario
10
             gtaaatgctg gcgagaggcc ac 22
             <210>8
15
             <211> 24
             <212> ADN
             <213> Secuencia artificial
             <220>
20
             <223> Oligonucleótido de ADN monocatenario
             aagaatcgtt tccttggtta aaca 24
25
             <210>9
             <211> 45
             <212> ADN
             <213> Secuencia artificial
30
             <220>
```

	<223> Oligonucleótido de ADN monocatenario	
5	<400> 9 tgtttaacca aggaaacgat tcttatggac ggtttgaaat ccttt 45	
	<210> 10 <211> 22 <212> ADN <213> Secuencia artificial	
10	<220> <223> Oligonucleótido de ADN monocatenario	
15	<400> 10 acaggggtgg aaaagaagat cg 22	
20	<210> 11 <211> 54 <212> ADN <213> Secuencia artificial	
	<220> <223> Oligonucleótido de ADN monocatenario	
25	<400> 11 cccgatette ttttccacce etgttettgt getggtgact ttttgattee tage	54
30	<210> 12 <211> 28 <212> ADN <213> Secuencia artificial	
35	<220> <223> Oligonucleótido de ADN monocatenario <400> 12 gtccagtcaa tgcccaactg gttagcgg 28	
40	<210> 13 <211> 51 <212> ADN <213> Secuencia artificial	
45	<220> <223> Oligonucleótido de ADN monocatenario	
	<400> 13 ccgctaatta gttgggcatt gactgcaggt gagataaaag attggttggg a	51
50	<210> 14 <211> 122 <212> PRT <213> Secuencia artificial	
55	<220> <223> Secuencia de aminoácidos de PSAF truncada	
	<400> 14	

	Asn 1	Phe	Leu	Asn	Thr 5	Thr	Aşn	Asp	Pro	Asn 10	Ser	Gly	Lys	Ile	Arg 15	Ala
	Glu	Arg	Tyr	A1a 20	Ser	Ala	Leu	Cys	Gly 25	Pro	Glu	Gly	Tyr	Pro 30	His	Leu
	Ile	Val	Asp 35	Gly	Arg	Phe	Thr	His 40	Ala	Gly	Asp	Phe	Leu 45	Ile	Pro	Ser
	Ile	Leu 50	Phe	Leu	Tyr	lle	Ala 55	Gly	Trp	Ile	Gly	Trp 60	Va1	Gly	Arg	Ser
	Tyr 65	Leu	Ile	Glu	Ile	Arg 70	Glu	Ser	Lys	Asn	Pro 75	Glu	Met	Gln	Glu	Val 80
	Val	Ile	Asn	Val	Pro 85	Leu	Ala	Ile	Lys	Lys 90	Met	Leu	Gly	Gly	Phe 95	Leu
	Trp	Pro	Leu	Ala 100	Ala	Val	Gly	Glu	Tyr 105	Thr	Ser	Gly	Lys	Leu 110	Val	Met
	Lys	Asp	Ser 115	Glu	Ile	Pro	Thr	Ser 120	Pro	Arg						
<210> 15 <211> 558 <212> PRT <213> Secuenci	ia art	ificial														
<220> <223> 1HidFd: (un pr	oduc	to red	comb	inan	te de	l dúo	pET	Hid	E + <i>F</i>	Cr F	-d siı	n enla	azad	or	
<400> 15																

5

Met 1	Gly	Trp	Ser	His 5	Pro	Gln	Phe	Glu	Lys 10	Arg	Ser	Glu	Asn	Leu 15	Туг
Phe	Gln	Gly	Ala 20	Ala	Pro	Ala	Ala	Glu 25	Ala	Pro	Leu	Ser	His 30	Va1	Gln
Gln	Ala	Leu 35	Ala	Glu	Leu	Ala	Lys 40	Pro	Lys	Asp	Asp	Pro 45	Thr	Arg	Lys
	Val 50	-				55				-	60				
6 5	Leu				70					75					80
Ī	Leu	Ī	Ī	85	-		-		90		•			95	•
	Asp		100					105					110	_	
	Glu	115					120			-		125			
	Thr 130			-		135	-				140		-		-
145	Asp	ren	TIE	PIO	туr 150	val	ser	ser	cys	155	ser	PLO	GIN	met	Met 160

Leu Ala Ala Met Val Lys Ser Tyr Leu Ala Glu Lys Lys Gly Ile Ala 165 170 175

Pro	Lys	Asp	Met 180	Val	Met	Val	Ser	11e 185	Met	Pro	Cys	Thr	Arg 190	Lys	G1n
Ser	Glu	Ala 195	Asp	Arg	Asp	Trp	Phe 200	Cys	Val	Asp	Ala	Asp 205	Pro	Thr	Leu
Arg	Gln 210	Leu	Asp	His	Val	Ile 215	Thr	Thr	Val	Glu	Leu 220	Gly	Asn	Ile	Phe
Lys 225	Glu	Arg	Gly	Ile	Asn 230	Leu	Ala	Glu	Leu	Pro 235	Glu	Gly	Glu	Trp	Asp 240
Asn	Pro	Met	Gly	Val 245	Gly	Ser	Gly	Ala	Gly 250	Val	Leu	Phe	Gly	Thr 255	Thr
Gly	Gly	Val	Met 260	Glu	Ala	Ala	Leu	Arg 265	Thr	Ala	Tyr	Glu	Leu 270	Phe	Thr
Gly	Thr	Pro 275	Leu	Pro	Arg	Leu	Ser 280	Leu	Ser	Glu	Val	Arg 285	Gly	Met	Ąŝę
Gly	Ile 290	Lys	Glu	Thr	Asn	11e 295	Thr	Met	Val	Pro	Ala 300	Pro	Gly	Ser	Lys
Phe 305	Glu	G1u	Leu	Leu	Lys 310	His	Arg	Ala	Ala	Ala 315	Arg	Ala	Glu	Ala	Ala 320
Ala	His	Gly	Thr	Pro 325	G1y	Pro	Leu	Ala	Trp 330	Asp	Gly	Ģly	Ala	Gly 335	Phé
Thr	Ser	Glu	Asp 340	Gly	Arg	Gly	Gly	Ile 345	Thr	Leu	Arg	Val	Ala 350	Val	Ala
Asn	Gly	Leu 355	Gly	Asn	Ala	Lys	Lys 360	Leu	Ile	Thr	Lys	Met 365	Gln	Ala	Gly
Glu	Ala 370	Lys	туг	Asp	Phe	Val 375	Glu	Ile	Met	Ala	Cys 380	Pro	Ala	Gly	Суз
Val 385	Gly	Gly	G1y	Gly	Gln 390	Pro	Arg	Ser	Thr	Asp 395	Lys	Ala	Ile	Thr	Gln 400
Lys	Arg	Gln	Ala	Ala 405	Leu	Tyr	Asn	Leu	Asp 410	Glu	Lys	Ser	Thr	Leu 415	Arg
Arg	Ser	His	Glu 4 20	Asn	Pro	Ser	Ile	Arg 425	Glu	Leu	Tyr	Asp	Thr 430	Tyr	Leu
Gly	Glu	Pro 435	Leu	Gly	His	Lys	Ala 440	Яis	Glu	Leu	Leu	His 445	Thr	His	Tyr
Val	Ala 450	Gly	Gly	Val	Glu	Glu 455	Lys	Asp	Glu	Lys	Lys 460	Met	Ala	Ser	Tyr

	Thr 465	Val	Lys	Leu	Ile	Thr 470	Pro	Asp	Gly	Glu	Ser 475	Ser	Ile	Glu	Cys	Ser 480
	Asp	Asp	Thr	Туг	Ile 485	Leu	Asp	Ala	БſА	Glu 490	Glu	Ala	Gly	Leu	Asp 495	Leu
	Pro	Туг	Ser	Cys 500	Arg	Ala	Gly	Ala	Cys 505	Ser	Thr	Cys	Ala	Gly 510	Lys	Ile
	Thr	Ala	Gly 515	Ser	Va1	Asp	Gln	Ser 520	Asp	Gln	Ser	Phe	525	Asp	Asp	Asp
	Gln	Ile 530	Glu	Ala	Gly	Tyr	Val 535	Leu	Thr	Cys	Val	Ala 540	Tyr	Pro	Thr	Ser
	Asp 545	Cys	Thr	Ile	Glu	Thr 550	His	Lys	Glu	Glu	Glu 555	Leu	Thr	Ala		
<210> 16 <211> 563 <212> PRT <213> Secuencia	a artif	ficial														
<220> <223> 2HidFd: u	ın pro	duct	o rec	ombi	nant	e del	dúo	pET	Hid E	Ξ + A	Cr F	d co	n un	enlaz	zador	· pequeño
<400> 16																
	Met 1	Gly	Trp	Ser	His 5	Pro	Gln	Phe	Glu	Lys 10	Arg	Ser	Glu	Asn	Leu 15	Tyr
	Phe	Gln	Gly	Ala 20	Ala	Pro	Ala	Ala	Glu 25	Ala	Pro	Leu	Ser	His 30	Val	Gln
	Gln	Ala	Leu 35	Ala	Gl u	Leu	Ala	Lys 40	Pro	Lys	Asp	Asp	Pro 45	Thr	Arg	Lys
	His	Val 50	Суѕ	Val	Gln	Val	Ala 55	Pro	Ala	Val	Arg	Val 60	Ala	Ile	Ala	Glu
	Thr 65	Leu	Gly	Leu	Ala	Pro 70	Gly	Ala	Thr	Thr	Pro 75	Lys	Gln	Leu	Ala	G1u 80
	Gly	Leu	Arg	Arg	Leu 85	Gly	Phe	Asp		Val 90	Phe	Asp	Thr	Leu	Phe 95	Gly
	Ala	Ąsp	Leu	Thr 100	Ile	Met	Glu	Glu	Gly 105	Ser	Glu	Leu	Leu	His 110	Arg	Leu
	Thr	Glu	His 115	Leu	Glu	Ala	His	Pro 120	His	Ser	Asp	Glu	Pro 125	Leu	Pro	Met
	Phe	Thr 130	ser	Cys	Cys	Pro	Gly 135	Trp	Ile	Ala	Met	Leu 140	Glu	Lys	Ser	Туг
	Pro 145	Asp	Leu	lle	Pro	Туг 150	Val	Ser	Ser	Сув	Lys 155	Ser	Pro	Gln	Met	Met 160

5

Leu	Ala	Ala	Met	Val 165	Lys	Ser	туг	Leu	Ala 170	G1 u	Lys	Lys	Gly	11e 175	Ala
Pro	Lys	Asp	Met 180	Val	Met	Val	Ser	Ile 185	Met	Pro	Cys	Thr	Arg 190	Lys	G1n
Ser	Glu	Ala 195	Asp	Arg	Asp	Trp	Phe 200	Cys	Val	Asp	Ala	Asp 205	Pro	Thr	Fen
Arg	Gln 210	Leu	Asp	His	Val	11e 215	Thr	Thr	Val	G1u	Leu 220	Gly	Asn	Ile	Phe
Lys 225	Glu	Arg	Gly	Ile	Asn 230	Leu	Ala	Glu	Leu	Pro 235	Glu	Gly	Glu	Trp	Asp 240
Asn	Pro	Met	Gly	Val 245	Gly	Ser	Gly	Ala	Gly 250	Val	Leu	Phe	Gly	Thr 255	Thr
Gly	Gly	Val	Met 260	Glu	Ala	Ala	Leu	Arg 265	Thr	Ala	туг	Glu	Leu 270	Phe	Thr
Gly	Thr	Pro 275	Leu	Pro	Arg	Leu	Ser 280	Leu	Ser	G1u	Val	Arg 285	Gly	Met	Asp
Gly	11e 290	Lys	Glu	Thr	Asn	11e 295	Thr	Met	Val	Pro	Ala 300	Pro	Gly	Ser	Lys
Phe 305	Glu	Glu	Leu	Leu	Lys 310	His	Arg	Ala	Ala	Ala 315	Arg	Ala	Glu	Ala	Ala 320
Ala	His	Gly	Thr	Pro 325	Gly	Pro	Leu	Ala	Trp 330	Asp	Gly	Gly	Ala	Gly 335	Phe
Thr	Ser	Glu	Asp 340	Gly	Arg	Gly	Gly	11e 345	Thr	Leu	Arg	Val	Ala 350	Val	Ala
Asn	Gly	Leu 355	Gly	Asn	Ala	Lys	Lys 360	Leu	Ile	Thr	Lys	Met 365	Gln	Ala	Gly
Glu	Ala 370	Lys	Tyr	Asp	Phe	Val 375	Glu	Ile	Met	Ala	Cys 380	Pro	Ala	Gly	Cys
Val 385	Gly	Gly	Gly	Gly	G1n 390	Pro	Arg	Ser	Thr	395	Lys	Ala	Ile	Thr	G1n 400
Lys	Arg	G1n	Ala	Ala 405	Leu	Туг	Asn	Leu	Asp 410	Glu	Lys	Ser	Thr	Leu 415	Arg
Ĭ			420		Pro			425					430	_	
-		435			His		440					445			
Va1	Ala	Glv	G1v	Val	Glu	G1u	Lvs	Asp	Glu	Lvs	Lvs	Glv	Glv	Glv	Glv

		450					455					460				
	Ser 465	Met	Ala	Ser	Tyr	Thr 470	Val	Lys	Leu	Ile	Thr 475	Pro	Asp	Gly	Glu	ser 480
	Ser	Ile	Gl u	Cys	Ser 485	Asp	Asp	Thr	Tyr	Ile 490	Leu	Asp	Ala	Ala	Glu 495	Glu
	Ala	Gly	Leu	Asp 500	Leu	Pro	Tyr	Ser	Cys 505	Arg	Ala	Gly	Ala	Cys 510	Ser	Thr
	Сув	Ala	Gly 515	Lys	Ile	Thr	Ala	Gly 520	Ser	Val	Asp	Gln	Ser 525	Asp	Gln	ser
	Phe	Leu 530	Asp	Asp	Asp	Gln	Ile 535	Glu	Ala	Gly	Tyr	Val 540	Leu	Thr	Cys	Val
	Ala 545	Tyr	Pro	Thr	Ser	Asp 550	Cys	Thr	Ile	Glu	Thr 555	His	Lys	Glu	Gl u	Glu 560
	Leu	Thr	Ala													
<210> 17 <211> 568 <212> PRT <213> Secuenci	a arti	ficial														
<220> <223> 3HidFd: u	ın pro	oduct	o rec	ombi	inant	e del	dúo	pET	Hid E	Ξ + A	. Cr F	d co	n un	enlaz	zadoı	mediano
<400> 17																
	Met 1	Gly	тгр	5er	His 5	Pro	Gln	Phe	Glu	Lys 10	Arg	Ser	Glu	Asn	Leu 15	Туг
	Phe	Gln	Gly	Ala 20	Ala	Pro	Ala	Ala	G1u 25	Ala	Pro	Leu	Ser	His 30	Val	Gln
	Gln	Ala	Leu 35	Ala	Glu	Leu	Ala	Lys 40	Pro	Lys	Asp	Asp	Pro 45	Thr	Arg	Lys
	His	Val 50	Cys	Val	Gln	Val	Ala 55	Pro	Ala	Val	Arg	Val 60	Ala	Ile	Ala	Glu
	Thr 65	Leu	Gly	Leu	Ala	Pro 70	Gly	Ala	Thr	Thr	Pro 75	Lys	Gln	Leu	Ala	Glu 80
	Gly	Leu	Arg	Arg	Leu 85	Gly	Phe	Asp	Glu	Val 90	Phe	Asp	Thr	Leu	Phe 95	Gly
	Ala	Asp	Leu	Thr 100	Ile	Met	Glu	Glu	Gly 105	Ser	Glu	Leu	Leu	His 110	Arg	Leu
	Thr	Glu	His 115	Leu	Glu	Ala	His	Pro 120	His	Ser	Asp	Glu	Pro 125	Leu	Pro	Met

5

	Phe	Thr 130	Ser	Сув	Сув	Pro	Gly 135	ТГР	Ile	Ala	Met	Leu 140	Glu	Lys	Ser	Tyr
	Pro 145	Asp	Leu	lle	Pro	Туг 150	Val	Ser	Ser	Cys	Lys 155	Ser	Pro	Gln	Met	Met 160
	Leu	Ala	Ala	Met	Val 165	Lys	Ser	Tyr	Leu	Ala 170	Glu	Lys	Lys	Gly	11e 175	Ala
	Pro	Lys	Asp	Met 180	Val.	Met	Val	Ser	Ile 185	Met	Pro	Cys	Thr	Arg 190	Lys	Gln
	Ser	Glu	Ala 195	Asp	Arg	Asp	Trp	Phe 200	Cys	Val	Asp	Ala	Asp 205	Pro	Thr	Leu
	Arg	Gln 210	Leu	Asp	His	Val	11e 215	Thr	Thr	Val	Gl u	Leu 220	Ġly	Asn	Ile	Phe
	Lys 225	G1u	Arg	Gly	Ile	Asn 230	Leu	Ala	Glu	Leu	Pro 235	Glu	Gly	Glu	Trp	Asp 240
	Asn	Pro	Met	Gly	Val 245	Gly	Ser	Gly	Ala	Gly 250	Val	Leu	Phe	Gly	Thr 255	Thr
	-	-		260		Ala			265			-		270		
	Gly	Thr	Pro 275	Leu	Pro	Arg	Leu	Ser 280	Leu	Ser	Glu	Val	Arg 285	Gly	Met	Asp
	Gly	11 e 290	Lys	Glu	Thr	Asn	11 e 295	Thr	Met	Val	Pro	Ala 300	Pro	Gly	Ser	Lys
	305					Lys 310					315	·				320
					325	Gly				330		-	-		335	
				340		Arg			345					350		
			355	·		Ala	-	360				-	365			_
		370	_		-	Phe	375					380				
	385	•	•	-	-	Gln 390		-			395					400
					405	Leu				410					415	
,	arg	ser	HIB	G1u 420		Pro	ser	116	Arg	GIU	rea	Tyr	Asp	Thr 430	TYT	reu

	GIÀ	Glu	435	Leu	Gly	His	Lys	440	His	Glu	Leu	Leu	His 445	Thr	His	Tyr
	Val	Ala 450	Gly	Gly	Val	G1u	Glu 455	Lys	Asp	Glu	Lys	Lys 460	Gly	Gly	Gly	Gly
	Ser 465	Gly	Gly	Gly	Gly	Ser 470	Met	Ala	Ser	Tyr	Thr 475	Val	Lys	Leu	Ile	Thr 480
	Pro	Asp	Gly	G1u	Ser 485	ser	Ile	Glu	Cys	5er 490	Asp	Asp	Thr	Туr	Ile 495	Leu
	Asp	Ala	Ala	Glu 500	Glu	Ala	Gly	Leu	Asp 505	Leu	Pro	туг	ser	Cys 510	Arg	Ala
	Gly	Ala	Cys 515	Ser	Thr	Cys	Ala	Gly 520	Lys	Ile	Thr	Ala	Gly 525	Ser	Val	Asp
	Gln	Ser 530	Asp	G1n	Ser	Phe	Le u 535	Asp	Asp	Asp	Gln	Ile 540	Glu	Ala	Gly	Tyr
	Val 545	Leu	Thr	Cys	Val	Ala 550	Tyr	Pro	Thr	Ser	Asp 555	Cys	Thr	Ile	Glu	Thr 560
	His	Lys	Glu	Glu	Glu 565	Leu	Thr	Ala								
<210> 18 <211> 527 <212> PRT <213> Secuencia	a artii	ficial														
<220> <223> 4HidFd: u	n pro	duct	o rec	ombi	inant	e de	Hid E	Ξ + A	Cr F	d C'	trunc	ado	N' tru	ıncad	do y s	sin enlazador
<400> 18																
	Met 1	Gly	Trp	Ser	His 5	Pro	Gln	Phe	Glu	Lys 10	Arg	Ser	Glu	Asn	Leu 15	Tyr
	Phe	Gln	Gly	Ala 20	Ala	Pro	Ala	Ala	Glu 25	Ala	Pro	Leu	Ser	His 30	Va1	Gln
	Gln	Ala	Leu 35	Ala	Glu	Leu	Ala	Lys 40	Pro	Lys	Asp	Asp	Pro 45	Thr	Arg	Lys
	His	Val 50	Cys	Val	Gln	Val	Ala 55	Pro	Ala	Val	Arg	Val 60	Ala	Ile	Ala	Glu
	Thr 65	Leu	Gly	Leu	Ala	Pro 70	Gly	Ala	Thr	Thr	Pro 75	Lys	Gln	Leu	Ala	Glu 80
	Gly	Leu	Arg	Arg	Leu 85	Gly	Phe	Asp	Glu	Val 90	Phe	Asp	Thr	Leu	Phe 95	Gly
	Ala	Asp	Leu	Thr	Ile	Met	Glu	Glu	Glv	Ser	Glu	Leu	Leu	His	Ara	Leu

5

			100					105					110		
Thr	Glu	His 115	Leu	Glu	Ala	His	Pro 120	Hìs	Ser	Asp	Glu	Pro 125	Leu	Pro	Met
Phe	Thr 130	Ser	Cys	Cys	Pro	Gly 135	Trp	Ile	Ala	Met	Leu 140	G1u	Lys	Ser	Туг
Pro 145	Asp	Leu	Ile	Pro	Tyr 150	Val	Ser	Ser	Cys	Lys 155	Ser	Pro	Gln	Met	Met 160
Leu	Ala	Ala	Met	Val 165	Lys	Ser	Tyr	Leu	Ala 170	Glu	Lys	Lys	Gly	Ile 175	Ala
Pro	Lув	Asp	Met 180	Val	Met	Val	Ser	Ile 185	Met	Pro	Cys	Thr	Arg 190	Lys	Gln
Ser	Glu	Ala 195	Asp	Arg	Asp	Trp	Phe 200	Суѕ	Val	Asp	Ala	Asp 205	Pro	Thr	Leu
Arg	Gln 210	Leu	Азр	His	Val	11e 215	Thr	Thr	Val	Glu	Leu 220	Gly	Aşn	lle	Phe
Lys 225	Glu	Arg	Gly	Ile	Asn 230	Leu	Ala	Glu	Leu	Pro 235	Glu	Gly	Glu	Trp	Asp 240
Asn	Pro	Met	Gly	Val 245	Gly	Ser	Gly	Ala	Gly 250	Val	Leu	Phe	Gly	Thr 255	Thr
Gly	Gly	Val	Met 250	Glu	Ala	Ala	Leu	Arg 265	Thr	Ala	туг	Glu	Leu 270	Phe	Thr
Gly	Thr	Pro 275	Leu	Pro	Arg	Leu	Ser 280	Leu	Ser	Glu	Val	Arg 285	Gly	Met	Asp
Gly	Ile 290	ГÅЗ	Glu	Thr	Asn	Ile 295	Thr	Met	Val	Pro	Ala 300	Pro	Gly	Ser	Lys
Phe 305	Glu	Glu	Leu	Leu	Lys 310	His	Arg	Ala	Ala	Ala 315	Arg	Ala	Glu	Ala	Ala 320
Ala	His	Gly	Thr	Pro 325	Gly	Pro	Leu	Ala	Trp 330	Asp	Gly	Gly	Ala	Gly 335	Phe
Thr	Ser	Glu	Asp 340	Gly	Arg	Gly	Gly	Ile 345	Thr	Leu	Arg	Val	Ala 350	Val	Ala
Asn	Gly	Leu 355	Gly	Asn	Ala	Lys	Lys 360	Leu	Ile	Thr	Lys	Met 365	Gln	Ala	Gly
Glu	Ala 370	Lys	Tyr	Asp	Phe	Val 375	Glu	Ile	Met	Ala	Cys 380	Pro	Ala	Gly	Cys
Val	Gly	Gly	Gly	GLy	Gln 390	Pro	Arg	Ser	Thr	Asp		Ala	Ile	Thr	Gln 400

	Lys	Arg	Gln	Ala	Ala 405	Leu	туг	Asn	Leu	Asp 410	Glu	Lys	Ser	Thr	Leu 415	Arg
	Arg	Ser	His	Glu 420	Asn	Pro	Ser	Ile	Arg 425	Glu	Leu	туг	Asp	Thr 430	туг	Leu
	Gly	Glu	Pro 435	Leu	Gly	His	Lys	Ala 440	His	Glu	Leu	Leu	His 445	Thr	His	Tyr
	Val	Asp 450	Asp	Thr	Tyr	Ile	Leu 455	Asp	Ala	Ala	Glu	Glu 460	Ala	Gly	Leu	Asp
	Leu 465	Pro	Tyr	Ser	Сув	Arg 470	Ala	Gly	Ala	Cys	Ser 475	Thr	Cys	Ala	G1y	Lys 480
	Ile	Thr	Ala	Gly	Ser 485	Val	Asp	Gln	Ser	Asp 490	Gln	Ser	Phe	Leu	Asp 495	yab
	Asp	Gln	Ile	G1u 500	Ala	Gly	Tyr	Val	Le u 505	Thr	Cys	Val	Ala	Туr 510	Pro	Thr
	Ser	Asp	Суs 515	Thr	Ile	Glu	Thr	His 520	Lys	Glu	Glu	Glu	Leu 525	Thr	Ala	
<210> 19 <211> 547 <212> PRT <213> Secuenci	a art	ificial														
<220> <223> 5HidFd: u	ın pr	oduc	to red	comb	oinan	te de	l dúo	pET	Hid	E + <i>F</i>	A Cr I	Fd C'	trun	cado	y sir	n enlazador
<220>	ın pro	oduc	to red	comb	oinan	te de	l dúc	pET	Hid	E + <i>F</i>	A Cr I	Fd C'	trun	cado	y sir	n enlazador
<220> <223> 5HidFd: ι															y sir Leu 15	
<220> <223> 5HidFd: ι	Met 1	Gly	Trp	Ser	His 5	Pro	Gln Ala	Phe	Glu Glu	Lys 10	Arg	Ser	G lu	Asn	Leu	Туг
<220> <223> 5HidFd: ι	Met 1	Gly Gln	Trp	Ser Ala 20	His 5 Ala	Pro Pro	Gln Ala	Phe Ala	Glu Glu 25	Lys 10 Ala	Arg Pro	Ser	Glu Ser	Asn His 30	Leu 15	Tyr Gln
<220> <223> 5HidFd: ι	Met 1 Phe Gln	Gly Gln Ala	Trp Gly Leu 35	Ser Ala 20	His 5 Ala Glu	Pro Pro Leu	Gln Ala Ala	Phe Ala Lys 40	Glu Glu 25 Pro	Lys 10 Ala Lys	Arg Pro Asp	Ser Leu Asp	Glu Ser Pro 45	Asn His 30	Leu 15 Val	Tyr Gln Lys
<220> <223> 5HidFd: ι	Met 1 Phe Gln	Gly Gln Ala Val	Trp Gly Leu 35	Ser Ala 20 Ala Val	His 5 Ala Glu	Pro Pro Leu Val	Gln Ala Ala Ala	Phe Ala Lys 40	Glu Glu 25 Pro	Lys 10 Ala Lys	Arg Pro Asp	Ser Leu Asp Val	Glu Ser Pro 45	Asn His 30 Thr	Leu 15 Val	Tyr Gln Lys Glu
<220> <223> 5HidFd: ι	Met 1 Phe Gln His	Gly Gln Ala Val 50	Trp Gly Leu 35 Cys	Ser Ala 20 Ala Val	His 5 Ala Glu Gln	Pro Leu Val Pro 70	Gln Ala Ala 55	Phe Ala Lys 40	Glu Glu 25 Pro Ala	Lys 10 Ala Lys Val	Arg Pro Asp Arg	Ser Leu Asp Val 60	Glu Ser Pro 45 Ala Gln	Asn His 30 Thr Ile	Leu 15 Val Arg	Tyr Gln Lys Glu Glu 80
<220> <223> 5HidFd: ι	Met 1 Phe Gln His Thr 65	Gly Gln Ala Val 50 Leu	Trp Gly Leu 35 Cys Gly	Ser Ala 20 Ala Val Leu Arg	His 5 Ala Glu Gln Ala Leu 85	Pro Leu Val Pro 70	Gln Ala Ala Ala 55 Gly	Phe Ala Lys 40 Pro Ala Asp	Glu Glu 25 Pro Ala Thr	Lys 10 Ala Lys Val Thr	Arg Pro Asp Pro 75	Leu Asp Val 60 Lys	Glu Ser Pro 45 Ala Gln	Asn His 30 Thr Ile Leu	Leu 15 Val Arg Ala Ala	Tyr Gln Lys Glu Glu 80

5

rne	130	ser	Cys	Cys	Pro	135	тгр	116	Ala	Met	140	GIU	Lys	ser	Tyr
Pro 145	Asp	Leu	Ile	Pro	Туг 150	Va1	Ser	Ser	Cys	Lys 155	Ser	Pro	Gln	Met	Met 160
Leu	Ala	Ala	Met	Val 165	Lys	Ser	Ty r	Leu	Ala 170		Lys	Lys	Gly	Ile 175	Ala
Pro	Lys	Asp	Met 180	Va1	Met	Val	Ser	Ile 185	Met	Pro	Cys	Thr	Arg 190	Lys	Gln
Ser	Glu	Ala 195	Asp	Arg	Asp	Trp	Phe 200	Cys	Val	Asp	Ala	Asp 205	Pro	Thr	Leu
Arg	G1n 210	Leu	Asp	His	Val	Ile 215	Thr	Thr	Val	Glu	Leu 220	Gly	Asn	Ile	Phe
Lуs 2 2 5	Glu	Arg	Gly	Ile	Asn 230	Leu	Ala	Glu	Leu	Pro 235	Glu	Gly	Glu	Trp	Asp 240
Asn	Pro	Met	Gly	Val 245	Gly	Ser	Gly	Ala	Gly 250	Val	Leu	Phe	Gly	Thr 255	Thr
Gly	Gly	Val	Met 260	Glu	Ala	Ala	Leu	Arg 265	Thr	Ala	Tyr	Glu	Leu 270	Phe	Thr
Gly	Thr	Pro 275	Leu	Pro	Arg	Leu	Ser 280	Leu	Ser	Glu	Val	Arg 285	Gly	Met	Asp
G1y	Ile 290	Lys	Glu	Thr	Asn	11e 295	Thr	Met	Val	Pro	Ala 300	Pro	Gly	Ser	Lys
Phe 305	Glu	Glu	Leu	Leu	Lys 310	His	Arg	Ala	Ala	Ala 315	Arg	Ala	Glu	Ala	Ala 320
Ala	His	Gly	Thr	Pro 325	Gly	Pro	Leu	Ala	330	Asp	G1 y	Gly	Ala	Gly 335	Phe
			340					345			Arg		350		
		355					360				Ly\$	365			
	370					375					Cys 380				
385	_				390					395	Lys				400
Lys	Arg	Gln	Ala	Ala 405	Leu	Tyr	Asn	Leu	Asp 410	Glu	Lys	Ser	Thr	Leu 415	Arg

Arg Ser His Glu Asn Pro Ser Ile Arg Glu Leu Tyr Asp Thr Tyr Leu 420 425 430

	Gly	Glu	Pro 435	Leu	Gly	His	Lys	Ala 440	His	Glu	Leu	Leu	His 445	Thr	His	Tyr
	Val	Же t 450	Ala	Ser	Туr	Thr	Val 455	-	Leu	Ile	Thr	Pro 460	Asp	Gly	Glu	Ser
	Ser 465	Ile	Glu	Суз	Ser	Asp 470	Asp	Thr	Tyr	Ile	Leu 475	Asp	Ala	Ala	Glu	Glu 480
	Ala	Gly	Leu	Asp	Leu 485	Pro	Tyr	Ser	Cys	Arg 490	Ala	Gly	Ala	Cys	Ser 495	Thr
	Суs	Ala	Gly	Lys 500	Ile	Thr	Ala	Gly	Ser 505	Val	Asp	Gln	Ser	Asp 510	Gln	Ser
	Phe	Leu	Asp 515	Asp	Asp	Gln	Ile	Glu 520	Ala	Gly	Tyr	Val	Leu 525	Thr	Cys	Val
	Ala	Туг 530	Pro	Thr	Ser	Asp	Cys 535	Thr	Ile	Glu	Thr	His 540	Lys	Glu	Glu	Glu
	Leu 545	Thr	Ala													
<210> 20 <211> 538 <212> PRT <213> Secuencia	a arti	ficial														
<220> <223> 6HidFd: u	ın pro	oduct	o rec	ombi	inant	e del	dúo	pET	Hid I	Ξ + A	. Cr F	d N'	trunc	ado		
<400> 20																
	Met 1	Gly	Trp	Ser	His 5	Pro	Gln	Phe	Glu	Lys 10	Arg	Ser	Glu	Asn	Leu 15	Tyr
	Phe	Gln	Gly	Ala 20	Ala	Pro	Ala		Glu 25	Ala	Pro	Leu		His 30	Val	Gln
	Gln	Ala	Leu 35	Ala	Glu	Leu	Ala	Lys 40	Pro	Lys	Asp	Asp	Pro 45	Thr	Arg	Lys
	His	Val 50	Cys	Val	Gln	Val	Ala 55	Pro	Ala	Val	Arg	Val 60	Ala	Ile	Ala	Glu
	Thr 65	Leu	Gly	Leu	Ala	Pro 70	Gly	Ala	Thr	Thr	Pro 75	Lys	Gln	Leu	Ala	Glu 80
	Gly	Leu	Arg	Arg	Leu 85	Gly	Phe	Asp	Glu	Val 90	Phe	Asp	Thr	Leu	Phe 95	Gly
	Ala	Asp	Leu	Thr 100	Ile	Met	Glu	G1u	Gly 105	Ser	Glu	Leu	Leu	His 110	Arg	Leu

5

Thr	Glu	His 115	Leu	Glu	Ala	His	Pro 120	His	Ser	Asp	Glu	Pro 125	Leu	Pro	Met
Phe	Thr 130	Ser	Cys	Cys	Pro	Gly 135	Trp	Ile	Ala	Met	Leu 140	Glu	Lys	Ser	Tyr
Pro 145	Asp	Leu	Ile	Pro	Tyr 150	Val	Ser	Ser	Cys	Lys 155	Ser	Pro	Gln	Met	Met 160
Leu	Ala	Ala	Met	Val 165	Lys	Ser	туг	Leu	Ala 170	Glu	Lys	Lys	Gly	Ile 175	Ala
Pro	Lys	Asp	Met 180	Val	Met	Val	Ser	Ile 185	Met	Pro	Cys	Thr	Arg 190	Lys	Gln
Ser	G1u	Ala 195	Asp	Arg	Asp	тгр	Phe 200	Cys	Val	Asp	Ala	Asp 205	Pro	Thr	Leu
Arg	Gln 210	Leu	Asp	His	Val	11e 215	Thr	Thr	Val	Glu	Leu 220	Gly	Asn	Ile	Phe
Lys 225	Glu	Arg	Gly	Ile	Asn 230	Leu	Ala	Glu	Leu	Pro 235	Glu	G1y	Glu	Trp	Asp 240
Asn	Pro	Met	Gly	Val 245	Gly	Ser	Gly	Ala	Gly 250	Val	Leu	Phe	Gly	Thr 255	Thr
Gly	Gly	Val	Met 260	Glu	Ala	Ala	Leu	Arg 265	Thr	Ala	Туr	Glu	Leu 270	Phe	Thr
Gly	Thr	Pro 275	Leu	Ρrο	Arg	Leu	ser 280	Leu	ser	Glu	Val	Arg 285	Gly	Met	Asp
Gly	Ile 290	Lys	Glu	Thr	Asn	11e 295	Thr	Met	Val	Pro	Ala 300	Pro	Gly	Ser	Lys
Phe 305	G1u	Glu	Leu	Leu	Lys 310	His	Arg	Ala	Ala	Ala 315	Arg	Ala	Glu	Ala	Ala 320
Ala	His	Gly	Thr	Pro 325	Gly	Pro	Leu	Ala	Trp 330	Asp	Gly	Gly	Ala	Gly 335	Phe
Thr	Ser	Glu	АБР 340	Gly	Arg	Gly	Gly	11e 345	Thr	Leu	Arg	Val	Ala 350	Val	Ala
Asn	Gly	Leu 355	Gly	Asn	Ala	Lys	Lys 360	Leu	Ile	Thr	Lys	Met 365	Gln	Ala	Gly
Glu	Ala 370	Ļys	Tyr	Asp	Phe	Val 375	Glu	Ile	Met	Ala	Cys 380	Pro	Ala	Gly	Сув
Val 385	Gly	Gly	Gly	Gly	Gln 390	Pro	Arg	Ser	Thr	Asp 395	Lys	Ala	Ile	Thr	G1n 400

Lys Arg Gln Ala Ala Leu Tyr Asn Leu Asp Glu Lys Ser Thr Leu Arg

					405					410					415	
	Arg	Ser	His	Glu 420	Asn	Pro	Ser	Ile	Arg 425	Gl u	Leu	Tyr	Asp	Thr 430	Tyr	Leu
	Gly	Glu	Pro 435	Leu	Gly	His	Lys	Ala 440	His	Glu	Leu	Leu	His 445	Thr	His	Tyr
	Val	Ala 450	GΙγ	Gly	Val	Glu	G1u 455	Lys	Asp	G1u	Lys	Lys 460	Asp	Asp	Thr	Tyr
	11e 465	Leu	Asp	Ala	Ala	Glü 470	Glu	Ala	Gly	Leu	Asp 475	Leu	Pro	туг	Ser	Cys 480
	Arg	Ala	Gly	Ala	Cys 485	Ser	Thr	Cys	Ala	Gly 490	Lys	Ile	Thr	Ala	Gly 495	Ser
	Val	Asp	Gln	Ser 500	Asp	Gln	Ser	Phe	Leu 505	Asp	Asp	Asp	Gln	Ile 510	Glu	Ala
	Gly	Tyr	Val 515	Leu	Thr	Cys	Val	Ala 520	Tyr	Pro	Thr	Ser	Asp 525	Cys	Thr	Ile
	Glu	Thr 530	His	Lys	Glu	Glu	Glu 535	Leu	Thr	Ala						
<210> 21 <211> 1677 <212> ADN <213> Secuence	ia art	ificia	I													
<220> <223> Dúo pET	Hid	E + <i>F</i>	A Cr I	-d siı	n enla	azado	or									

<400> 21

5

60	tcagggcgct	acctgtattt	agatotgaaa	gtttgaaaaa	gccatcegea	atgggctgga
120	actggcgaaa	egetggegga	gtgcagcagg	gctgagccat	ctgaagcgcc	geteetgetg
180	ggtgcgtgtg	tggegeegge	tgcgtgcagg	taagcatgtg	ateegaceeg	ccgaaagatg
240	gctggcggaa	cecegaaaca	ggegegacea	cctggcgccg	aaaccctggg	gegategegg
300	ggatctgacc	tgtttggcgc	ttcgataccc	tgatgaagtg	gtctgggctt	ggeetgegte
360	agcgcatccg	aacatctgga	cgtctgaccg	actgctgcat	aaggcagcga	atcatggaag
420	tgcgatgctg	egggetggat	agctgctgcc	gatgtttacc	aaccgctgcc	catagogatg
480	gcagatgatg	gcaaaagccc	gtgagcagct	gattccgtat	atccggatct	gaaaaaagct
540	gaaagatatg	gcattgcgcc	gaaaaaaaag	ctatctggcg	tggtgaaaag	ctggcggcga
600	tgattggttc	aagcggatcg	aaacagagcg	gtgcacccgt	gcattatgcc	gtgatggtga
660	cgtggaactg	tgattaccac	ctggatcatg	cctgcgtcag	eggateegae	tgcgtggatg
720	cgaatgggat	tgccggaagg	ctggcggaac	tggcattaac	ttaaagaacg	ggcaacattt
780	cggcgtgatg	gcaccaccgg	gtgctgttcg	caacacaaac	gcgtgggcag	aacccgatgg
840	gcgtctgagc	ccccgctgcc	tttaccggca	gtatgaactg	tgcgtaccgc	gaagcggcgc
900	ggtgccggcg	acattaccat	aaagagacca	ggatggcatt	tgcgtggcat	ctgagcgagg

ccgggcagca aatttgaaga actgctgaaa catcgtgcgg cggcgcgtgc ggaagcggcg 960 gcgcatggca ccccgggccc gctggcgtgg gatggcggcg cgggctttac cagcgaagat 1020 ggccgtggcg gcattaccct gcgtgtggcg gtggcgaacg gcctgggcaa cgcgaaaaaa 1080 ctgattacca aaatgcaggc gggcgaagcg aaatatgatt ttgtggaaat tatggcgtgc 1140 ccggcgggct gcgtgggcgg cggcggccag ccgcgtagca ccgataaagc gatcacccag 1200 aeacgtcagg cggcgctgta taacctggat gagaagagca ccctgcgtcg tagccatgag 1260 1320 aaccogagca ttcgtgaact gtatgatacc tatctgggcg aaccgctggg ccataaagcg catgaactgc tgcataccca ttatgtggcg ggcggcgtgg aagaaaaaaa tgaaaaaaaa 1380 atggcatcct ataccgttaa attgatcacc cocgatggtg aaagttecat cgaatgetet 1440 gacgatacet atateetega tgetgeggaa gaagetggee tagaeetgee etatteetge 1500 cgtgctgggg cttgctccac ctgtgccggt aagatcaccg ctggtagtgt tgaccaatcc 1560 gatcagtctt tcttggatga tgaccaaatt gaagctggtt atgttttgac ctgtgtagct 1620 tatcccacct ccgattgcac cattgaaacc cacaaagaag aagagctcac cgcataa 1677

```
<210> 22
<211> 1691
5 <212> ADN
<213> Secuencia artificial
```

<220>
<223> Dúo pET Hid E + A Cr Fd con un enlazador pequeño
<400> 22

atgggctgga gccatccgca gtttgaaaaa agatctgaaa acctgtattt tcagggcgct	60
geteetgetg etgaagegee getgageeat gtgeageagg egetggegga aetggegaaa	120
ccgaaagatg atccgacccg taagcatgtt gcgtgcaggt ggcgccggcg gtgcgtgtgg	180
cgategegga aaccetggge etggegeegg gegegaceae eeegaaacag etggeggaag	240
gcctgcgtcg tctgggcttt gatgaagtgt tcgataccct gtttggcgcg gatctgacca	300
tcatggaaga aggcagcgaa etgctgcate gtctgaccga acatetggaa gcgcatccgc	360
atagogatga accepteces atettacca ectectece egectegatt eceatectee	420
aaaaaagcta tooggatotg attoogtatg tgagcagotg caaaagcoog cagatgatgo	480
tggoggogat ggtgaaaagc tatctggogg aaaaaaaagg cattgcgccg aaagatatgg	540
tgatggtgag cattatgccg tgcacccgta aacagagcga agcggatcgt gattggttct	600
gcgtggatgc ggatocgacc ctgcgtcagc tggatcatgt gattaccacc gtggaactgg	660
gcaacatttt taaagaacgt ggcattaacc tggcggaact googgaaggc gaatgggata	720
accogatggg cgtgggcagc ggcgcgggcg tgctgttcgg caccaccggc ggcgtgatgg	780
aageggeget gegtaeegeg tatgaactgt ttaeeggeae eeegetgeeg egtetgagee	840
tgagcgaggt gcgtggcatg gatggcatta aagagaccaa cattaccatg gtgccggcgc	900
cgggcagcaa atttgaagaa ctgctgaaac atcgtgcggc ggcgcgtgcg gaagcggcgg	960
cgcatggcac eccgggcccg ctggcgtggg atggcggcgc gggctttacc agcgaagatg	1020
googtggogg cattaccctg cgtgtggogg tggcgaacgg cotgggcaac gcgaaaaaac	1080
tgattaccaa aatgcaggcg ggcgaagcga aatatgattt tgtggaaatt atggcgtgcc	1140
cggcgggctg cgtgggcggc ggcggccagc cgcgtagcac cgataaagcg atcacccaga	1200
aacgtcaggc ggcgctgtat aacctggatg agaagagcac cctgcgtcgt agccatgaga	1260
acccgagcat togtgaactg tatgatacct atctgggcga accgctgggc cataaagcgc	1320
atgaactgct gcatacccat tatgtggcgg gcggcgtgga agaaaaaagat gaaaaaaaag	1380
gtggcggcgg atccatggca tcctataccg ttaaattgat cacccccgat ggtgaaagtt	1440
ccatcgaatg ctctgacgat acctatatcc tegatgctgc ggaagaaget ggcctagacc	1500
tgccctattc ctgccgtgct ggggcttgct ccacctgtgc cggtaagatc accgctggta	1560
gtgttgacca atccgatcag totttottgg atgatgacca aattgaagct ggttatgttt	1620
tgacctgtgt agcttatece accteegatt geaecattga aacceacaaa gaagaagage	1680
tcaccgcata a	1691

```
<210> 23
<211> 1707
5 <212> ADN
```

<213> Secuencia artificial

<220> <223> Dúo pET Hid E + A Cr Fd con un enlazador mediano

10 <400> 23

atgggctgga	gccatccgca	gtttgaaaaa	agatotgaaa	acctgtattt	tcagggcgct	60
gctcctgctg	ctgaagcgcc	gctgagccat	gtgcagcagg	cgctggcgga	actggcgaaa	120
ccgaaagatg	atccgacccg	taagcatgtg	tgcgtgcagg	tggcgccggc	ggtgcgtgtg	180
gcgatcgcgg	aaaccctggg	cctggcgccg	ggcgcgacca	ccccgaaaca	gctggcggaa	240
ggcctgcgtc	gtctgggctt	tgatgaagtg	ttcgataccc	tgtttggcgc	ggatctgacc	300
atcatggaag	aaggcagcga	actgctgcat	cgtctgaccg	aacatctgga	agcgcatccg	360
catagcgatg	aaccgctgcc	gatgtttacc	agctgctgcc	cgggctggat	tgcgatgctg	420
gaaaaaagct	atccggatct	gattccgtat	gtgagcagct	gcaaaagccc	gcagatgatg	480
ctggcggcga	tggtgaaaag	ctatctggcg	gaaaaaaaag	gcattgcgcc	gaaagatatg	540
gtgatggtga	gcattatgcc	gtgcacccgt	aaacagagcg	aagcggatcg	tgattggttc	600
tgcgtggatg	cggatccgac	cctgcgtcag	ctggatcatg	tgattaccac	cgtggaactg	660
ggcaacattt	ttaaagaacg	tggcattaac	ctggcggaac	tgccggaagg	cgaatgggat	720
aacccgatgg	gcgtgggcag	cggcgcgggc	gtgctgttcg	gcaccaccgg	cggcgtgatg	780
gaagcggcgc	tgcgtaccgc	gtatgaactg	tttaccggca	ccccgctgcc	gcgtctgagc	840
ctgagcgagg	tgcgtggcat	ggatggcatt	aaagagacca	acattaccat	ggtgccggcg	900
ccgggcagca	aatttgaaga	actgctgaaa	catcgtgcgg	cggcgcgtgc	ggaagcggcg	960
gcgcatggca	ccccgggccc	getggegtgg	gatggcggcg	cgggctttac	cagcgaagat	1020
ggccgtggcg	gcattaccct	gcgtgtggcg	gtggcgaacg	gcctgggcaa	cgcgaaaaaa	1080
ctgattacca	aaatgcaggc	gggcgaagcg	aaatatgatt	ttgtggaaat	tatggcgtgc	1140
ccggcgggat	gcqt q qqcq q	cggcggccag	ccgcgtagca	ccgataaagc	gatcacccag	1200
aaacgtcagg	cggcgctgta	taacctggat	gagaagagca	ccctgcgtcg	tagccatgag	1260
aacccgagca	ttcgtgaact	gtatgatacc	tatctgggcg	aaccgctggg	ccataaagcg	1320
catgaactgc	tgcataccca	ttatgtggcg	ggcggc gtg g	aagaaaaaga	tgaaaaaaaa	1380
ggaggaggag	gateeggegg	cggcggctcc	atggcatcct	ataccgttaa	attgatcacc	1440
cccgatggtg	aaagttccat	cgaatgctct	gacgatacct	atatcctcga	tgctgcggaa	1500
gaagctggcc	tagacotgoo	ctattcctgc	cgtgctgggg	cttgctccac	ctgtgccggṭ	1560
aagatcaccg	ctggtagtgt	tgaccaatcc	gatcagtctt	tcttggatga	tgaccaaatt	1620
gaagotggtt	atgttttgac	ctgtgtagct	tatoccacct	ccgattgcac	cattgaaacc	1680
cacaaagaag	aagagctcac	cgcataa				1707

```
<210> 24
<211> 1584
<212> ADN
```

<213> Secuencia artificial

<220>

<223> Dúo pET Hid E + A Cr Fd C' truncado N' truncado y sin enlazador

<400> 24

5

ES 2 525 805 T3

atgggctgga	gccatccgca	gtttgaaaaa	agatctgaaa	acctgtattt	tcagggcgct	60
geteetgetg	ctgaagcgcc	gctgagccat	gtgcagcagg	cgctggcgga	actggcgaaa	120
ccgaaagatg	atccgacccg	taagcatgtg	tgcgtgcagg	tggcgccggc	ggtgcgtgtg	180
gcgatcgcgg	aaaccctggg	cctggcgccg	ggcgcgacca	ccccgaaaca	gctggcggaa	240
ggcctgcgtc	gtctgggctt	tgatgaagtg	ttcgataccc	tgtttggcgc	ggatctgacc	300
atcatggaag	aaggcagcga	actgctgcat	cgtctgaccg	aacatctgga	agcgcatccg	360
catagcgatg	aaccgctgcc	gatgtttacc	agctgctgcc	cgggctggat	tgcgatgctg	420
gaaaaaagct	atecggatet	gattccgtat	gtgagcagct	gcaaaagccc	gcagatgatg	480
ctggcggcga	tggtgaaaag	ctatctggcg	gaaaaaaag	gcattgcgcc	gaaagatatg	540
gtgatggtga	gcattatgcc	gtgcacccgt	aaacagagcg	aageggateg	tgattggttc	600
tgcgtggatg	cggatccgac	cctgcgtcag	ctggatcatg	tgattaccac	cgtggaactg	660
ggcaacattt	ttaaagaacg	tggcattaac	ctggcggaac	tgccggaagg	cgaatgggat	720
aacccgatgg	gcgtgggcag	cggcgcgggc	gtgctgttcg	gcaccaccgg	cggcgtgatg	780
gaageggege	tgcgtaccgc	gtatgaactg	tttaccggca	ccccgctgcc	gcgtctgagc	840
ctgagcgagg	tgcgtggcat	ggatggcatt	aaagagacca	acattaccat	ggtgccggcg	900
ccgggcagca	aatttgaaga	actgctgaaa	catcgtgcgg	cggcgcgtgc	ggaagcggcg	960
gcgcatggca	ccccgggccc	gctggcgtgg	gatggcggcg	cgggctttac	cagcgaagať	1020
ggccgtggcg	gcattaccct	gcgtgtggcg	gtggcgaacg	gcctgggcaa	cgcgaaaaaa	1080
ctgattacca	aaatgcaggc	gggcgaagcg	aaatatgatt	ttgtggaaat	tatggcgtgc	1140
ccggcgggct	gcgtgggcgg	cggcggccag	ccgcgtagca	ccgataaagc	gatcacccag	1200
aaacgtcagg	cggcgctgta	taacctggat	gagaagagca	ccctgcgtcg	tagccatgag	1260
aacccgagca	ttcgtgaact	gtatgatacc	tatctgggcg	aaccgctggg	ccataaagcg	1320
catgaactgc	tgcataccca	ttatgtggac	gatacctata	tcctcgatgc	tgcggaagaa	1380
gctggcctag	acctgcccta	ttcctgccgt	gctggggctt	gctccacctg	tgccggtaag	1440
atcaccgctg	gtagtgttga	ccaateegat	cagtotttct	tggatgatga	ccaaattgaa	1500
gctggttatg	ttttgacctg	tgtagcttat	cccacctccg	attgcaccat	tgaaacccac	1560

<210> 25 <211> 1644 <212> ADN

<213> Secuencia artificial

<220>

<223> Dúo pET Hid E + A Cr Fd C' truncado sin enlazador

aaagaagaag agctcaccgc ataa

<400> 25

5

10

1584

ES 2 525 805 T3

atgggctgga	gccatccgca	gtttgaaaaa	agatotgaaa	acctgtattt	tcagggcgct	60
geteetgetg	ctgaagcgcc	gctgagccat	gtgcagcagg	cgctggcgga	actggcgaaa	120
ccgaaagatg	atccgacccg	taagcatgtg	tgcgtgcagg	tggcgccggc	ggtgcgtgtg	180
gegategegg	aaaccctggg	cctggcgccg	ggcgcgacca	ccccgaaaca	gctggcggaa	240
ggcctgcgtc	gtctgggctt	tgatgaagtg	ttcgataccc	tgtttggcgc	ggatctgacc	300
atcatggaag	aaggcagcga	actgctgcat	cgtctgaccg	aacatctgga	agcgcatccg	360
catagegatg	aaccgctgcc	gatgtttacc	agetgetgee	cgggctggat	tgcgatgctg	420
gaaaaaagct	atccggatct	gattccgtat	gtgagcagct	gcaaaagccc	gcagatgatg	480
ctggcggcga	tggtgaaaag	ctatctggcg	gaaaaaaaag	gcattgcgcc	gaaagatatg	540
gtgatggtga	gcattatgcc	gtgcacccgt	aaacagagcg	aagoggatog	tgattggttc	600
tgcgtggatg	cggatccgac	cctgcgtcag	ctggatcatg	tgattaccac	cgtggaactg	660
ggcaacattt	ttaaagaacg	tggcattaac	ctggcggaac	tgccggaagg	cgaatgggat	720
aacccgatgg	gcgtgggcag	cggcgcgggc	gtgctgttcg	gcaccaccgg	cggcgtgatg	780
gaageggege	tgegtacege	gtatgaactg	tttaccggca	coccactace	gcgtctgagc	840
ctgagcgagg	tgcgtggcat	ggatggcatt	aaagagacca	acattaccat	ggtgccggcg	900
ccgggcagca	aatttgaaga	actgctgaaa	catcgtgcgg	cggcgcgtgc	ggaagcggcg	960
gegeatggea	ccccgggccc	getggegtgg	gatggcggcg	cgggctttac	cagcgaagat	1020
ggccgtggcg	gcattaccct	gcgtgtggcg	gtggcgaacg	gcctgggcaa	cgcgaaaaaa	1080
ctgattacca	aaatgcaggc	gggcgaagcg	aaatatgatt	ttgtggaaat	tatggcgtgc	1140
ccggcgggct	gcgtgggcgg	cggcggccag	ccgcgtagca	ccgataaagc	gatcacccag	1200
aaacgtcagg	cggcgctgta	taacctggat	gagaagagca	cectgegteg	tagccatgag	1260
aaccegagea	ttcgtgaact	gtatgatacc	tatctgggcg	aaccgctggg	ccataaagcg	1320
catgaactgc	tgcataccca	ttatgtgatg	gcatcctata	ccgttaaatt	gatcaccccc	1380
gatggtgaaa	gttccatega	atgctctgac	gatacctata	tectegatge	tgcggaagaa	1440
gctggcctag	acctgcccta	ttcctgccgt	gctggggctt	gctccacctg	tgccggtaag	1500
atcaccgctg	gtagtgttga	ccaatccgat	cagtetttet	tggatgatga	ccaaattgaa	1560
gctggttatg	ttttgacctg	tgtagcttat	cccacctccg	attgcaccat	tgaaacccac	1620
aaagaagaag	ageteaeege	ataa				1644

<210> 26 <211> 1617 <212> ADN 5 <213> Secuencia artificial

<223> Dúo pET Hid E + A Cr Fd N' truncado

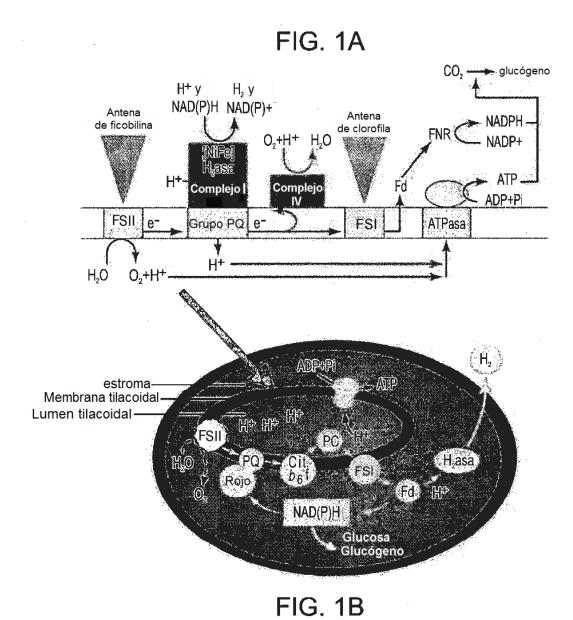
<400> 26

10

ES 2 525 805 T3

atgggctgga	gccatccgca	gtttgaaaaa	agatotgaaa	acctgtattt	tcagggcgct	60
gctcctgctg	ctgaagcgcc	gctgagccat	gtgcagcagg	cgctggcgga	actggcgaaa	120
ccgaaagatg	atccgacccg	taagcatgtg	tgcgtgcagg	tggcgccggc	ggtgcgtgtg	180
gcgatcgcgg	assccctggg	cctggcgccg	ggcgcgacca	ccccgaaaça	gctggcggaa	240
ggcetgegte	gtatgggatt	tgatgaagtg	ttcgataccc	tgtttggcgc	ggatctgacc	300
atcatggaag	aaggcagcga	actgctgcat	cgtctgaccg	aacatctgga	agcgcatccg	360
catagcgatg	aaccgctgcc	gatgtttacc	agctgctgcc	cgggctggat	tgcgatgctg	420
gaaaaaagct	atccggatct	gattccgtat	gtgagcagct	gcaaaagccc	gcagatgatg	480
ctggcggcga	tggtgaaaag	ctatctggcg	gaaaaaaaag	gcattgcgcc	gaaagatatg	540
gtgatggtga	gcattatgcc	gtgcacccgt	aaacagageg	aageggateg	tgattggttc	600
tgcgtggatg	cggatccgac	cctgcgtcag	ctggatcatg	tgattaccac	cgtggaactg	660
ggcaacattt	ttaaagaacg	tggcattaac	ctggcggaac	tgccggaagg	cgaatgggat	720
aacccgatgg	gcgtgggcag	cggcgcgggc	gtgctgttcg	gcaccaccgg	eggegtgatg	780
gaageggege	tgegtaeege	gtatgaactg	tttaccggca	ccccgctgcc	gcgtctgagc	840
ctgagcgagg	tgcgtggcat	ggatggcatt	aaagagacca	acattaccat	ggtgccggcg	900
ccgggcagca	aatttgaaga	actgctgaaa	categtgegg	cggcgcgtgc	ggaagcggcg	960
gcgcatggca	ccccgggccc	getggegtgg	gatggeggeg	cgggctttac	cagegaagat	1020
ggccgtggcg	gcattaccct	gegtgtggeg	gtggcgaacg	gcctgggcaa	cgcgaaaaaa	1080
ctgattacca	aaatgcaggc	gggcgaagcg	aaatatgatt	ttgtggaaat	tatggcgtgc	1140
ccggcggget	gcgtgggcgg	cggcggccag	ccgcgtagca	ccgataaagc	gatcacccag	1200
aaacgtcagg	cggcgctgta	taacctggat	gagaagagca	ccctgcgtcg	tagccatgag	1260
aacccgagca	ttcgtgaact	gtatgatacc	tatctgggcg	aaccgctggg	ccataaagcg	1320
catgaactgc	tgcataccca	ttatgtggcg	ggcggcgtgg	aagaaaaaga	tgaaaaaaaa	1380
gacgatacct	atatcctcga	tgctgcggaa	gaagetggee	tagacctgcc	ctattcctgc	1440
cgtgctgggg	cttgctccac	ctgtgccggt	aagatcaccg	ctggtagtgt	tgaccaatcc	1500
gatcagtctt	tcttggatga	tgaccaaatt	gaagctggtt	atgttttgac	ctgtgtagct	1560
tatcccacct	ccgattgcac	cattgaaacc	cacaaagaag	aagageteae	cgcataa	1617

REIVINDICACIONES


- 1. Una célula cianobacteriana que comprende una proteína de fusión de la subunidad IX del centro de reacción del Fotosistema I (PsaJ) y el precursor de la subunidad III del centro de reacción del Fotosistema I (PsaF), en el que dicho PsaF está truncado por al menos diez aminoácidos en su extremo N y en el que dicho complejo PSI acepta electrones de al menos un citocromo respiratorio, comprendiendo adicionalmente la célula una enzima hidrogenasa unida a una ferredoxina heteróloga.
 - 2. La célula de la reivindicación 1, que es termófila.

5

10

45

- 3. La célula de la reivindicación 1, en la que la secuencia de aminoácidos de dicha proteína de fusión es al menos el 80 % idéntica a la expuesta en la SEC ID №: 1.
- 4. La célula de la reivindicación 1, en la que la secuencia de aminoácidos de dicha fusión es como se expone en la SEC ID №: 1.
 - 5. La célula de la reivindicación 1, en la que la secuencia de aminoácidos de dicha subunidad PsaF se expone en la SEC ID Nº: 14
- 20 6. La célula de la reivindicación 1, en la que un polinucleótido que codifica dicha proteína de fusión está insertado en el genoma de la célula.
 - 7. La célula de la reivindicación 1, que produce hidrógeno a una temperatura por encima de aproximadamente 55 °C.
- 25 8. Un polinucleótido aislado, que codifica un polipéptido como se expone en la SEC ID Nº: 1.
 - 9. El polinucleótido aislado de la reivindicación 8 como se expone en la SEC ID Nº: 2 o SEC ID Nº: 6.
- 10. La célula de la reivindicación 1, en la que dicho al menos un citocromo respiratorio es el citocromo C o el citocromo M.
 - 11. La célula de la reivindicación 1, en la que dicha proteína de fusión es una proteína recombinante.
- 12. Un polipéptido aislado que comprende una secuencia de aminoácidos al menos el 80 % idéntica a la secuencia como se expone en la SEC ID №: 1.
 - 13. El polipéptido aislado de la reivindicación 12, que comprende la secuencia de aminoácidos como se expone en la SEC ID N° : 1.
- 40 14. Un biorreactor para producir hidrógeno, que comprende
 - (i) una tubería que comprende las células de cualquiera de las reivindicaciones 1-7, 10 y 11, en el que una primera sección de dicha tubería se coloca en un primer depósito que se mantiene a una temperatura de aproximadamente 60-70 °C y una segunda sección de dicha tubería se coloca en un segundo depósito que se mantiene a una temperatura de aproximadamente 30-50 °C;
 - (ii) una bomba de recirculación configurada de tal manera que dichas células circulan a través de dicha tubería.
- 15. Un método para producir gas hidrógeno, comprendiendo el método cultivar la célula cianobacteriana de cualquiera de las reivindicaciones 1-7, 10 y 11 en condiciones que generen gas hidrógeno en la célula cianobacteriana, produciendo de este modo gas hidrógeno.

41

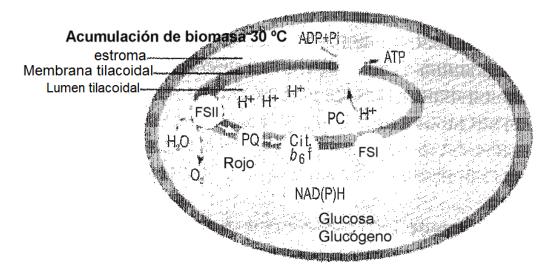


FIG. 2A

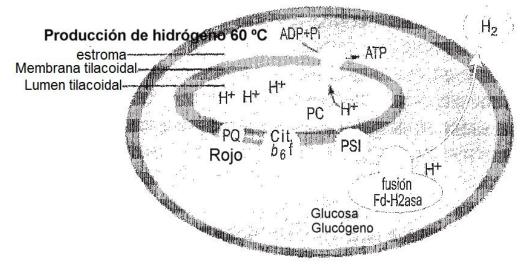
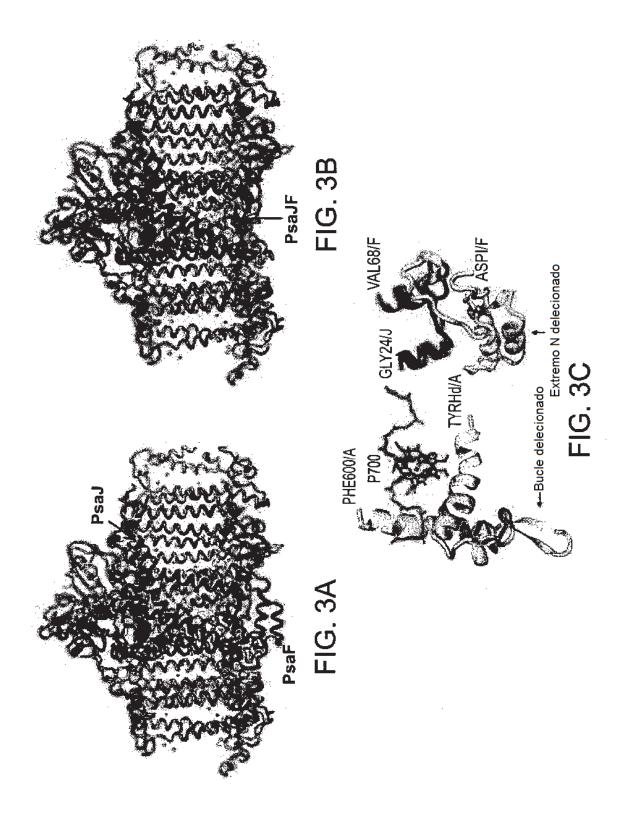
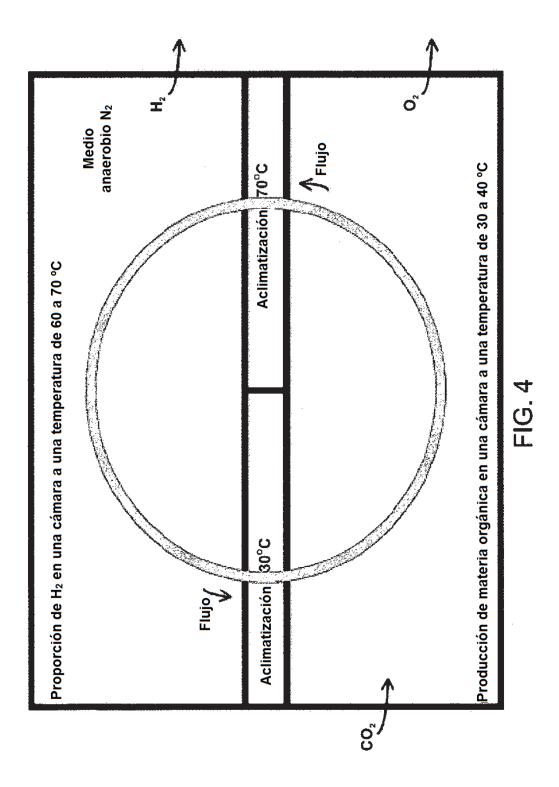
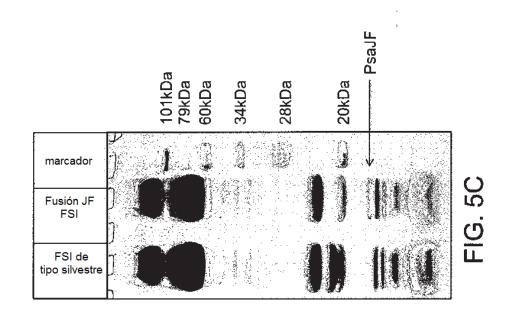





FIG. 2B

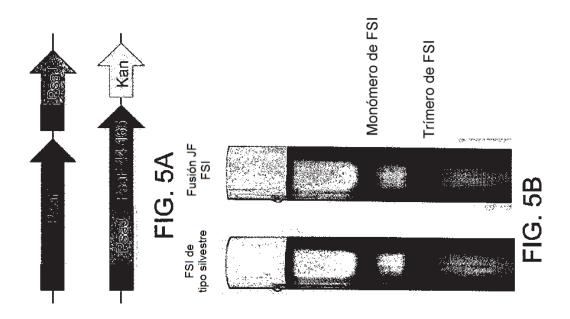


FIG. 6

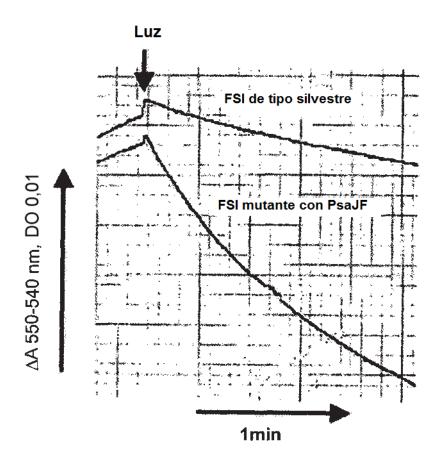


FIG. 7

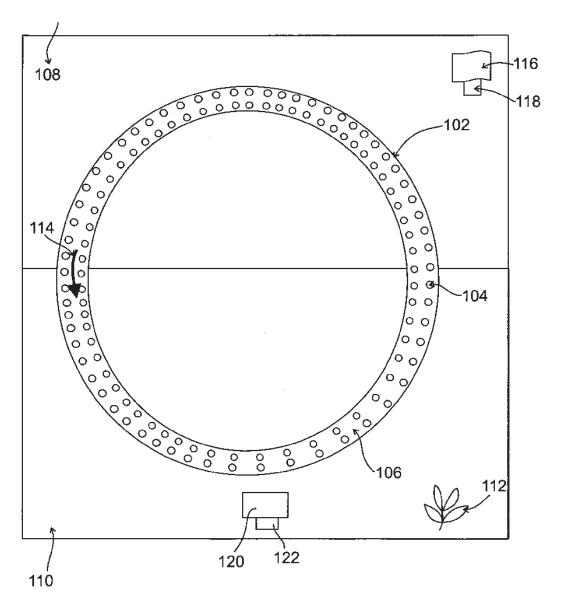
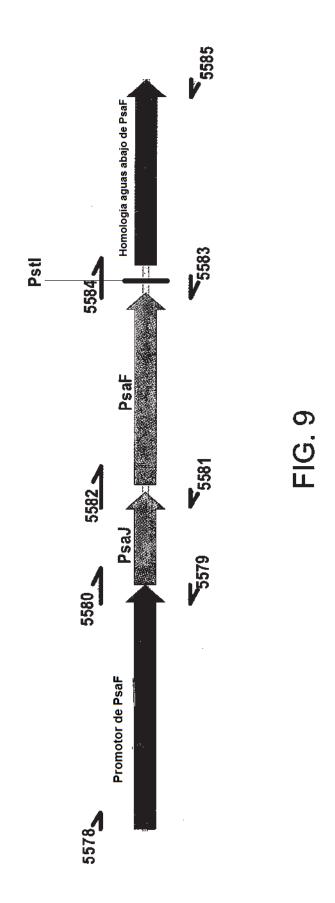



FIG. 8

