

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 526 518

51 Int. Cl.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 04.06.2002 E 10181536 (3)

(97) Fecha y número de publicación de la concesión europea: 26.11.2014 EP 2322661

(54) Título: Métodos y secuencias para la detección e identificación de cepas de Staphylococcus aureus MREJ tipo ix resistentes a meticilina

(30) Prioridad:

04.06.2001 CA 2348042

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 13.01.2015

(73) Titular/es:

GENEOHM SCIENCES CANADA, INC. (100.0%) 2050, boulevard René Lévesque Ouest 4ème étage Sainte-Foy, QC G1V 2K8, CA

(72) Inventor/es:

HULETSKY, ANN y ROSSBACH, VALERY

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Métodos y secuencias para la detección e identificación de cepas de Staphylococcus aureus MREJ tipo ix resistentes a meticilina

Antecedentes de la invención

5 Importancia clínica del Staphylococcus aureus

La especie *Staphylococcus aureus* que contiene coagulasa está bien descrito que se trata de un patógeno oportunista humano. Las infecciones intrahospitalarias ocasionadas por *S. aureus* son una causa importante de morbimortalidad. Algunas de las infecciones más graves ocasionadas por *S. aureus* afectan a la piel e incluyen forúnculos o diviesos, celulitis, impétigo e infecciones de heridas posoperatorias en varios sitios. Algunas de las infecciones más graves producidas por *S. aureus* son bacteriemia, neumonía, osteomielitis, endocarditis aguda, miocarditis, pericarditis, cerebritis, meningitis, dermatitis exfoliativa neonatal y diferentes abscesos. La intoxicación alimentaria mediada por enterotoxinas estafilocócicas es otro síndrome importante relacionado con *S. aureus*. El síndrome del choque tóxico, una enfermedad adquirida fuera del hospital, también se ha atribuido a la infección o colonización por *S. aureus* toxigénico (Murray et al., Eds., 1999, *Manual of Clinical Microbiology*, 7.ª ed., ASM Press, Washington, D. C.).

En los años ochenta surgió en los hospitales el problema epidemiológico y clínico importante de *S. aureus* resistentes a la meticilina (SARM). Los SARM son resistentes a todos los β-lactámicos, entre ellos las penicilinas, cefalosporinas, carbapenémicos y monobactámicos, que son los antibióticos utilizados con más frecuencia para curar las infecciones por *S. aureus*. Las infecciones por SARM sólo se pueden tratar con antibióticos más costosos y más tóxicos, que normalmente se utilizan como la última línea de defensa. Dado que los SARM consiguen extenderse con facilidad de un paciente a otro a través del personal, los hospitales de todo el mundo se enfrentan con el problema de controlar los SARM. Por lo tanto, es necesario desarrollar pruebas sencillas y rápidas de diagnóstico y de detección para detectar y/o identificar los SARM con el objetivo de reducir su diseminación y mejorar el diagnóstico y el tratamiento de los pacientes infectados.

25 La resistencia a la meticilina en S. aureus es única porque se debe a la adquisición del ADN de otros Staphylococcus sin coagulasa (o coagulasa-negativos, SCN) que codifica la proteína supernumeraria de unión a la penicilina resistente a los β-lactámicos (PBP, por su nombre en inglés), que se encarga de las funciones biosintéticas de las PBP normales cuando la célula está expuesta a los antibióticos β-lactámicos. S. aureus normalmente contiene cuatro PBP, de las cuales las PBP 1, 2 y 3 son esenciales. La PBP de baja afinidad en los 30 SARM, denominada PBP 2a (o PBP2'), está codificada por el gen cromosómico mecA y funciona como una transpeptidasa resistente a los β-lactámicos. El gen mecA está ausente en los S. aureus sensibles a la meticilina, pero está ampliamente distribuido entre otras especies de estafilococos y está muy conservado (Ubukata et al., 1990, Antimicrob. Agents Chemother. 34: 170-172).

Cuando se determinó la secuencia nucleotídica de la región del ADN que rodea al gen mecA de la cepa N315 de S. 35 aureus (aislada en Japón en 1982), Hiramatsu et al. hallaron que el gen mecA se alberga en un nuevo elemento genético, denominado casete cromosómico estafilocócico de mec (SCCmec, por su nombre en inglés), insertado en el cromosoma. SCCmec es un elemento genético móvil caracterizado por la presencia de repeticiones directas e inversas terminales, un conjunto de genes de recombinasas específicas de sitio (ccrA y ccrB) y el complejo génico mecA (Ito et al., 1999, Antimicrob. Agents. Chemother. 43: 1449-1458; Katayama et al., 2000, Antimicrob. Agents 40 Chemother, 44: 1549-1555). El elemento se escinde con precisión del cromosoma de la cepa N315 de S. aureus y se integra en un sitio cromosómico específico de S. aureus en la misma orientación mediante la función de un conjunto único de genes de recombinasas que comprenden ccrA y ccrB. Se encontraron dos nuevos elementos genéticos de SSCmec que compartían características estructurales similares cuando se clonó y secuenció la región del ADN que rodeaba el gen mecA de las cepas de SARM NCTC 10442 (la primera cepa de SARM aislada en 45 Inglaterra en 1961) y 85/2082 (una cepa de Nueva Zelanda aislada en 1985). Los tres SCCmec se han denominado tipo I (NCTC 10442), tipo II (N315) y tipo III (85/2082) basándose en el año de aislamiento de las cepas (Ito et al., 2001, Antimicrob. Agents. Chemother. 45: 1323-1336) (figura 1). Hiramatsu et al. han encontrado que los ADN de SSCmec están integrados en un sitio específico del cromosoma de S. aureus sensible a la meticilina (SASM). Caracterizaron las secuencias nucleotídicas de las regiones que flanqueaban los extremos izquierdo y derecho del 50 ADN de SCCmec (a saber, attL y attR, respectivamente), así como las regiones alrededor del sitio de integración del ADN de SCCmec (a saber, attBscc, que es el sitio de integración en el cromosoma bacteriano para el ADN de SCCmec). El sitio attBscc se localizaba en el extremo 3' de un nuevo marco de lectura abierto (ORF, por su nombre en inglés), orfX. El gen orfX posiblemente codifica un polipéptido de 159 aminoácidos que comparte identidad con algunos polipéptidos identificados previamente, pero de función desconocida (Ito et al., 1999, Antimicrob. Agents 55 Chemother. 43: 1449-1458). Recientemente, Hiramatsu et al. (Ma et al., 2002, Antimicrob. Agents Chemother. 46: 1147-1152) y Oliveira et al., (Oliveira et al., 2001, Microb. Drug Resist. 7: 349-360) han descrito un nuevo tipo de SCCmec (tipo IV). Las secuencias del extremo derecho del nuevo SCCmec de tipo IV de las cepas de S. aureus CA05 y 8/6-3P publicadas por Hiramatsu et al. (Ma et al., 2002, Antimicrob. Agents Chemother. 46: 1147-1152) eran casi idénticas a lo largo de 2000 nucleótidos al SCCmec de tipo II de la cepa de S. aureus N315 (Ito et al., 2001, 60 Antimicrob. Agents. Chemother, 45: 1323-1336). No se dispone de secuencias del extremo derecho del SCCmec de tipo IV en las cepas de S. aureus HDE288 y PL72 descritas por Oliveira et al. (Oliveira et al., 2001, Microb. Drug Resist. 7: 349-360).

Los métodos que se han usado antes para detectar e identificar los SARM (Saito et al., 1995, J. Clin. Microbiol. 33: 2498-2500; Ubukata et al., 1992, J. Clin. Microbiol. 30: 1728-1733; Murakami et al., 1991, J. Clin. Microbiol. 29: 2240-2244; Hiramatsu et al., 1992, Microbiol. Immunol. 36: 445-453), que se basan en la detección del gen mecA y de secuencias cromosómicas específicas de S. aureus, encontraron dificultades a la hora de discriminar entre los SARM y los estafilococos sin coagulasa (SCN) resistentes a la meticilina porque el gen mecA está ampliamente distribuido tanto en S. aureus como en los SCN (Suzuki et al., 1992, Antimicrob. Agents. Chemother. 36: 429-434). Hiramatsu et al. (patente de los EE.UU. n.º 6 156 507) han descrito un ensayo de PCR específico de los SARM que 10 utiliza cebadores que son capaces de hibridarse específicamente al extremo derecho de los 3 tipos de ADN de SCCmec en combinación con un cebador específico para el cromosoma de S. aureus, que corresponde a la secuencia nucleotídica a la derecha del sitio de integración de SCCmec. Dado que las secuencias nucleotídicas que rodean el sitio de integración de SCCmec en otras especies estafilocócicas (tales como S. epidermidis y S. haemolyticus) son diferentes a las encontradas en S. aureus, este ensayo de PCR era específico para la detectar los 15 SARM. Este ensayo de PCR también suministró información para la tipificación de MREP (por su nombre en inglés, que significa «polimorfismo del extremo derecho de mec») del ADN de SCCmec (Ito et al., 2001, Antimicrob. Agents Chemother. 45: 1323-1336; Hiramatsu et al., 1996, J. Infect. Chemother. 2: 117-129). Este método de tipificación se aprovecha del polimorfismo del extremo derecho de los ADN de SCCmec adyacentes al sitio de integración entre los tres tipos de SCCmec. El tipo III tiene una secuencia nucleotídica única, mientras que el tipo II tiene una inserción de 20 102 nucleótidos en el extremo derecho del SCCmec de tipo I. El método de tipificación de MREP descrito por Hiramatsu et al., (Ito et al., 2001, Antimicrob. Agents Chemother. 45: 1323-1336; Hiramatsu et al., 1996, J. Infect. Chemother. 2: 117-129) define el SCCmec de tipo I como el MREP de tipo i, el SCCmec de tipo II como el MREP de tipo ii y el SCCmec de tipo III como el MREP de tipo iii. Se debe observar que el método de tipificación de MREP no consigue diferenciar entre el SCCmec de tipo II y el nuevo SCCmec de tipo IV descrito por Hiramatsu et al. (Ma et al., 2002, Antimicrob. Agents. Chemother. 46: 1147-1152) porque estos dos tipos de SCCmec muestran la misma secuencia nucleotídica en el extremo derecho.

El conjunto de cebadores que Hiramatsu et al. describen como la combinación de cebadores óptima (SEQ ID n.º 22, 24, 28 en la patente de los EE.UU. n.º 6 156 507 que corresponde a las SEQ ID n.º 56, 58 y 60, respectivamente, en la presente invención) se ha utilizado en la presente invención para analizar por PCR una serie de cepas de SARM y SASM (figura 1 y tabla 1). De las 39 cepas de SARM analizadas, 20 no se amplificaron mediante el ensayo de PCR múltiplex de Hiramatsu et al. (tablas 2 y 3). De hecho, el método de Hiramatsu resultó satisfactorio a la hora de detectar menos del 50% de las 39 cepas de SARM analizadas.

Este hallazgo demuestra que algunas cepas de SARM tienen secuencias en el extremo derecho de la unión del extremo derecho de SCC*mec*-cromosoma que son diferentes de las identificadas por Hiramatsu et al. Por consiguiente, el sistema desarrollado por Hiramatsu et al. no permite la detección de todos los SARM. La presente invención se refiere a la generación de datos de secuencia de la unión entre el extremo derecho de SCC*mec*-cromosoma que se necesitan para detectar más cepas de SARM para mejorar el ensayo de Hiramatsu et al. Es necesario desarrollar más cebadores y sondas ubicuos para detectar la mayor parte de las cepas de SARM en todo el mundo.

40 Compendio de la invención

45

50

55

La invención se refiere a las realizaciones tal y como se definen en las reivindicaciones.

La invención se refiere a un método para detectar la presencia de las cepas de *Staphylococcus aureus* resistentes a la meticilina (SARM) de MREJ de tipos i, ii, iii y ix que comprenden:

a) poner en contacto una muestra en la que hay que analizar la presencia de dichas cepas de SARM de MREJ de tipos i, ii, iii y ix, en donde dichas cepas de SARM incluyen un elemento de casete cromosómico estafilocócico de *mec* (SCC*mec*) que contiene un gen *mecA* insertado en el ADN cromosómico, con lo que se genera un polimorfismo de secuencia en la unión del extremo derecho (MREJ, por su nombre en inglés) de tipo i, ii, iii o ix que comprende secuencias del extremo derecho del elemento SCCmec y del ADN cromosómico que está unido a dicho extremo derecho del elemento SCCmec, con un primer cebador y un segundo cebador para cada uno de dichos MREJ de tipos i, ii, iii y ix,

en donde cada dicho primer cebador se hibrida con dicho extremo derecho del elemento SCC*mec* de una secuencia de MREJ de tipo i, ii, iii o ix seleccionada del grupo que consiste en: SEQ ID n.º 1, 20 a 25, 41 y 199 y complementos de las mismas, para la MREJ de tipo i, SEQ ID n.º 2, 17 a 19, 26, 40, 173 a 183, 185, 186 y 197 y complementos de las mismas, para la MREJ de tipo ii, SEQ ID n.º 4 a 16, 104, 184 y 198 y complementos de las mismas, para la MREJ de tipo iii y SEQ ID n.º 168 y el complemento de la misma, para la MREJ de tipo ix; y en donde cada dicho segundo cebador se hibrida con una secuencia cromosómica de *S. aureus* para generar específicamente uno o varios amplicones si tal cepa de SARM de MREJ de tipo i, ii, iii o ix está presente en dicha muestra; y

y b) detectar la presencia de dicho o dichos amplicones.

La invención se refiere a un kit para detectar la presencia de cepas de SARM de MREJ de tipos i, ii, iii y ix en una muestra que comprende:

- a) un primer conjunto de oligonucleótidos que se hibridan con las secuencias del extremo derecho del elemento SCC*mec* de MREJ de tipos i, ii, iii y ix seleccionadas del grupo que consiste en: SEQ ID n.º 1, 20 a 25, 41 y 199, y complementos de las mismas, para la MREJ de tipo i, SEQ ID n.º 2, 17 a 19, 26, 40, 173 a 183, 185, 186 y 197, y complementos de las mismas, para la MREJ de tipo ii, SEQ ID n.º 4 a 16, 104, 184 y 198 y complementos de las mismas, para la MREJ de tipo iii, y SEQ ID n.º 168 y el complemento de la misma, para la MREJ de tipo ix; y
- 10 b) un segundo oligonucleótido que se hibrida con una secuencia cromosómica de S. aureus;

en donde dichos oligonucléotidos de a) y b) permiten generar selectivamente uno o varios amplicones que comprende secuencias del extremo derecho del elemento SCCmec y del ADN cromosómico que se une a dicho extremo derecho de dichas cepas de SARM de MREJ de tipos i, ii, iii y ix.

Un objeto de la presente invención es dar a conocer un método específico, ubicuo y sensible que utiliza sondas y/o 15 cebadores de amplificación para determinar la presencia y/o la cantidad de ácidos nucleicos de todas las cepas de SARM.

La ubicuidad de al menos el 50% entre las cepas que representan las cepas de SARM de los tipos IV a X es un objeto de esta invención.

Por consiguiente, se da a conocer un método para detectar la presencia de una cepa de *Staphylococcus aureus* resistente a la meticilina (SARM) en una muestra, en donde la cepa de SARM es resistente debido a la presencia de un inserto de SCC*mec* que contiene un gen *mecA*, en donde dicho SCCmec está insertado en ácidos nucleicos bacterianos, con lo que se genera una unión en el extremo derecho polimórfico (MREJ), en donde el método comprende la etapa de hibridar los ácidos nucleicos de la muestra con una serie de sondas y/o cebadores, caracterizado por que:

- (i) los cebadores y/o sondas son específicos de las cepas de SARM y capaces de hibridarse con ácidos nucleicos de MREJ polimórficas, en donde la MREJ polimórfica comprende MREJ de tipos i a x; y
 - (ii)los cebadores y/o sondas juntos son capaces de hibridarse con al menos cuatro tipos de MREJ seleccionadas de MREJ de los tipos i a x.

En una realización específica, los cebadores y/o sondas se escogen para que se hibriden en las condiciones de 30 hibridación corrientes e incluso más específicamente, se colocan juntos en el mismo confinamiento físico.

Se ha desarrollado un método específico que utiliza cebadores y/o sondas que tienen al menos 10 nucleótidos de longitud y que son capaces de hibridarse con la MREJ de los tipos i a iii, definidas en cualquiera de las SEQ ID n.º: 1, 20, 21, 22, 23, 24, 25, 41, 199; 2, 17, 18, 19, 26, 40, 173; 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 197; 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 104, 184, 198, y con una o más MREJ de los tipos iv a ix, que 35 tiene las SEQ ID n.º 42, 43, 44, 45, 46, 51; 47, 48, 49, 50; 171; 165, 166; 167; 168. Para ser perfectamente ubicuos con todas las MREJ secuenciadas, los cebadores y/o sondas juntos pueden hibridarse con dichas SEQ ID n.º de MREJ de los tipos i a ix.

Los siguientes cebadores y/o sondas específicos que tienen las secuencias siguientes se han denominado:

para la detección de MREJ de tipo i

40 66, 100, 101, 105, 52, 53, 54, 55,

56, 57, 64, 71, 72, 73, 74, 75, 76,

70, 103, 130, 132, 158, 159, 59,

62, 126, 127, 128, 129, 131, 200,

201, 60, 61, 63

5

25

45 32, 83, 84, 160, 161, 162, 163, 164

85, 86, 87, 88, 89

para la detección de MREJ de tipo ii

66, 97, 99, 100, 101, 106, 117,

```
5 126, 127
    128, 129, 131, 200, 201
    60, 61, 63
    32, 83, 84, 160, 161, 162, 163, 164
    85, 86, 87, 88, 89
10 para la detección de MREJ de tipo iii
    67, 98, 102, 107, 108
    64, 71, 72, 73, 74, 75, 76, 70,
    103, 130, 132, 158, 159
    58,
15 59, 62
    126, 127
    128, 129, 131, 200, 201
    60, 61, 63
    32, 83, 84, 160, 161, 162, 163, 164
20 85, 86, 87, 88, 89
    para la detección de MREJ de tipo iv
    79, 77, 145, 147
    64, 71, 72, 73, 74, 75, 76, 70,
    103, 130, 132, 158, 159
25 59, 62
    126, 127
    128, 129, 131, 200, 201
    60, 61, 63
    68
30 32, 83, 84, 160, 161, 162, 163, 164
    85, 86, 87, 88, 89
    para la detección de MREJ de tipo v
    65, 80, 146, 154, 155
    64, 71, 72, 73, 74, 75, 76,
35 70, 103, 130, 132, 158, 159
    59, 62
    126, 127
```

118, 124, 125, 52, 53, 54, 55, 56, 57

64, 71, 72, 73, 74, 75, 76, 70,

103, 130, 132, 158, 159

59, 62

128, 129, 131, 200, 201

60, 61, 63

32, 83, 84, 160, 161, 162, 163, 164

85, 86, 87, 88, 89

5 para la detección de MREJ de tipo vi

202, 203, 204

64, 71, 72, 73, 74, 75, 76, 70,

103, 130, 132, 158, 159

59, 62

10 126, 127

128, 129, 131, 200, 201

60, 61, 63

32, 83, 84, 160, 161, 162, 163, 164

85, 86, 87, 88, 89

15 para la detección de MREJ de tipo vii

112, 113, 114, 119, 120, 121, 122

123, 150, 151, 153

64, 71, 72, 73, 74, 75, 76, 70, 103,

130, 132, 158, 159

20 59, 62

126, 127

128, 129, 131, 200, 201

60, 61, 63

32, 83, 84, 160, 161, 162, 163, 164

25 85, 86, 87, 88, 89

para la detección de MREJ de tipo viii

115, 116, 187, 188, 207, 208

64, 71, 72, 73, 74, 75, 76, 70,

103, 130, 132, 158, 159

30 59, 62

126, 127

128, 129, 131, 200, 201

60, 61, 63

32, 83, 84, 160, 161, 162, 163, 164

35 85, 86, 87, 88, 89

para la detección de MREJ de tipo ix

109, 148, 149, 205, 206

```
64, 71, 72, 73, 74, 75, 76
    70, 103, 130, 132, 158, 159
    59, 62
    126, 127
 5 128, 129, 131, 200, 201
    60, 61, 63
    32, 83, 84, 160, 161, 162, 163, 164
    85, 86, 87, 88, 89
    Entre ellas, se utilizan las siguientes parejas de cebadores que tienen las secuencias siguientes:
10 para la detección de MREJ de tipo i
    64/66, 64/100, 64/101; 59/52,
    59/53, 59/54, 59/55, 59/56, 59/57,
    60/52, 60/53, 60/54, 60/55, 60/56
    60/57, 61/52, 61/53, 61/54, 61/55
15 61/56, 61/57, 62/52, 62/53, 62/54
    62/55, 62/56, 62/57, 63/52, 63/53
    63/54, 63/55, 63/56, 63/57
    para la detección de MREJ de tipo ii
    64/66, 64/97, 64/99, 64/100, 64/101
20 59/52, 59/53, 59/54, 59/55, 59/56,
    59/57, 60/52, 60/53, 60/54, 60/55,
    60/56, 60/57, 61/52, 61/53, 61/54,
    61/55, 61/56, 61/57, 62/52, 62/53,
    62/54, 62/55, 62/56, 62/57, 63/52
25 63/53, 63/54, 63/55, 63/56, 63/57
    para la detección de MREJ de tipo iii
    64/67, 64/98, 64/102; 59/58,
    60/58, 61/58, 62/58, 63/58
    64/79
```

para la detección de MREJ de tipo iv

64/80 para la detección de MREJ de tipo v

64/204 para la detección de MREJ de tipo vi

64/112, 64/113 para la detección de MREJ de tipo vii

64/115, 64/116 para la detección de MREJ de tipo viii

64/109 para la detección de MREJ de tipo ix

35 De igual modo, entre ellas, se utilizan las siguientes sondas que tienen las secuencias siguientes:

SEQ ID n.º 32, 83, 84, 160, 161, 162, 163, 164 para la detección de MREJ de tipos i a ix.

En el método realizado más preferido, se usan juntos los siguientes cebadores y/o sondas que tienen las secuencias

nucleotídicas que vienen a continuación. Las combinaciones preferentes utilizan:

- i) SEQ ID n.º 64, 66, 84, 163, 164 para la detección de MREJ de tipo i
- ii) SEQ ID n.º 64, 66, 84, 163, 164 para la detección de MREJ de tipo ii
- iii) SEQ ID n.º 64, 67, 84, 163, 164 para la detección de MREJ de tipo iii
- iv) SEQ ID n.º 64. 79, 84, 163, 164 para la detección de MREJ de tipo iv
- v) SEQ ID n.º 64, 80, 84, 163, 164 para la detección de MREJ de tipo v
- vi) SEQ ID n.º 64, 112, 84, 163, 164 para la detección de MREJ de tipo vii.

Todas estas sondas y cebadores pueden incluso utilizarse juntos en el mismo confinamiento físico.

Se da a conocer un método para tipar una MREJ de una cepa de SARM, que comprende las etapas de: reproducir el método anterior con cebadores y/o sondas específicos para un tipo de MREJ determinada, y detectar una sonda o cebador hibridado como una indicación de la presencia de una MREJ de tipo determinado.

Se da a conocer un ácido nucleico seleccionado de las SEQ ID n.º:

- i) SEQ ID n.º 42, 43, 44, 45, 46, 51 para la secuencia de MREJ de tipo iv;
- ii) SEQ ID n.º 47, 48, 49, 50 para la secuencia de MREJ de tipo v;
- 15 iii) SEQ ID n.º 171 para la secuencia de MREJ de tipo vi;
 - iv)SEQ ID n.º 165, 166 para la secuencia de MREJ de tipo vii;
 - v) SEQ ID n.º 167 para la secuencia de MREJ de tipo viii;
 - vi)SEQ ID n.º 168 para la secuencia de MREJ de tipo ix.

También son objeto de esta invención los oligonucleótidos de al menos 10 nucleótidos de longitud que se hibridan con cualquiera de estos ácidos nucleicos y que se hibridan con una o varias MREJ de los tipos seleccionados entre iv a ix. Entre ellos, las parejas de cebadores (o sondas) que tienen las siguientes SEQ ID n.º:

```
para la detección de MREJ de tipo i
```

```
64/66, 64/100, 64/101; 59/52,
```

5

59/53, 59/54, 59/55, 59/56, 59/57,

25 60/52, 60/53, 60/54, 60/55, 60/56

60/57, 61/52, 61/53, 61/54, 61/55

61/56, 61/57, 62/52, 62/53, 62/54

62/55, 62/56, 62/57, 63/52, 63/53

63/54, 63/55, 63/56, 63/57

30 para la detección de MREJ de tipo ii

64/66, 64/97, 64/99, 64/100, 64/101

59/52, 59/53, 59/54, 59/55, 59/56,

59/57, 60/52, 60/53, 60/54, 60/55,

60/56, 60/57, 61/52, 61/53, 61/54,

35 61/55, 61/56, 61/57, 62/52, 62/53,

62/54, 62/55, 62/56, 62/57, 63/52

63/53, 63/54, 63/55, 63/56, 63/57

para la detección de MREJ de tipo iii

64/67, 64/98, 64/102; 59/58,

60/58, 61/58, 62/58, 63/58

para la detección de MREJ de tipo iv
64/80 para la detección de MREJ de tipo v
64/204 para la detección de MREJ de tipo vi
64/112, 64/113 para la detección de MREJ de tipo vii
64/115, 64/116 para la detección de MREJ de tipo viii
64/109 para la detección de MREJ de tipo viii

Además, también se encuentran dentro del alcance de esta invención las sondas internas que tienen las secuencias nucleotídicas definidas en cualquiera de las SEQ ID n.º 32, 83, 84, 160, 161, 163, 164. También son otros objetos de esta invención las composiciones de interés que comprenden los cebadores y/o sondas que se renaturalizan o se hibridan con una o varias MREJ de los tipos seleccionados de iv a ix, así como con los ácidos nucleicos de más arriba, que comprenden o no cebadores y/o sondas, que se hibridan con una o varias MREJ de los tipos seleccionados de i a iii. Las composiciones preferidas comprenderían los cebadores que tienen las secuencias nucleotídicas definidas en las SEQ ID n.º:

para la detección de MREJ de tipo i

64/66, 64/100, 64/101; 59/52,

59/53, 59/54, 59/55, 59/56, 59/57,

60/52, 60/53, 60/54, 60/55, 60/56

20 60/57, 61/52, 61/53, 61/54, 61/55

61/56, 61/57, 62/52, 62/53, 62/54

62/55, 62/56, 62/57, 63/52, 63/53

63/54, 63/55, 63/56, 63/57

para la detección de MREJ de tipo ii

25 64/66, 64/97, 64/99, 64/100, 64/101

59/52, 59/53, 59/54, 59/55, 59/56,

59/57, 60/52, 60/53, 60/54, 60/55,

60/56, 60/57, 61/52, 61/53, 61/54,

61/55, 61/56, 61/57, 62/52, 62/53,

30 62/54, 62/55, 62/56, 62/57, 63/52

63/53, 63/54, 63/55, 63/56, 63/57

para la detección de MREJ de tipo iii

64/67, 64/98, 64/102; 59/58,

60/58, 61/58, 62/58, 63/58

para la detección de MREJ de tipo iv 64/80 para la detección de MREJ de tipo v 64/204 para la detección de MREJ de tipo vi 64/112, 64/113 para la detección de MREJ de tipo vii 64/115, 64/116 para la detección de MREJ de tipo viii 64/109

para la detección de MREJ de tipo ix,

o sondas, cuyas SEQ ID n.º son: 32, 83, 84, 160, 161, 162, 163, 164 o ambas.

Descripción detallada de la invención

En esta memoria se da a conocer en particular un método en donde cada uno de los ácidos nucleicos de SARM o una variante o parte de los mismos comprenden una región diana específica que se puede hibridar con dichos cebadores o sondas desarrollados para que sean ubicuos;

en donde cada uno de dichos ácidos nucleicos o una variante o parte de los mismos comprende una región diana específica que se puede hibridar con dichos cebadores o sondas;

en donde dicho método comprende las etapas de poner en contacto dicha muestra con dichas sondas o cebadores y detectar la presencia y/o cantidad de las sondas hibridadas o de los productos amplificados como una indicación de la presencia y/o cantidad de SARM.

En el método, las secuencias de fragmentos de ADN de la unión del extremo derecho de SCC*mec*-cromosoma, en adelante denominada MREJ que significa «unión en el extremo derecho de *mec*» que incluye secuencias procedentes del extremo derecho de SCC*mec* y del ADN cromosómico a la derecha del sitio de integración de SCC*mec*, se utilizan como secuencias originales a partir de las cuales se obtienen los cebadores y/o las sondas. Las secuencias de MREJ incluyen nuestras secuencias en propiedad así como las secuencias obtenidas de las bases de datos públicas y de la patente de los EE.UU. n.º 6 156 507, y se seleccionaron por su capacidad para detectar de manera sensible, específica, ubicua y rápida los ácidos nucleicos diana de los SARM.

Nuestros fragmentos de ADN y oligonucleótidos (cebadores y sondas) en propiedad también son otro objeto de esta invención, tal y como se define en las reivindicaciones.

La composición de las sustancias tales como los kits de diagnóstico que comprenden los cebadores para amplificación o las sondas para detección de los SARM también son objetos de la presente invención, tal y como se define en las reivindicaciones.

En los métodos y los kits de más arriba, las sondas y los cebadores no se limitan a ácidos nucleicos y pueden incluir, pero sin limitarse a ellos, análogos de nucleótidos. Los reactantes para diagnóstico formados por las sondas y los cebadores pueden estar presentes en cualquier forma adecuada (unidos a un soporte sólido, líquido, liofilizado, etc).

En los métodos y kits de más arriba, las reacciones de amplificación pueden incluir, pero sin limitarse a ellas: a) reacción en cadena de la polimerasa (PCR), b) reacción en cadena de la ligasa (LCR), c) amplificación de ácidos nucleicos basada en la secuencia (NASBA, por su nombre en inglés), d) amplificación de secuencias automantenida (3SR, por su nombre en inglés), e) amplificación por desplazamiento de cadena (SDA, por su nombre en inglés), f) amplificación de señal de ADN ramificado (bDNA, por su nombre en inglés), g) amplificación mediada por la transcripción (TMA, por su nombre en inglés), h) tecnología de ciclación de sondas (CPT, por su nombre en inglés), i) PCR anidada, j) PCR múltiplex, k) amplificación en fase sólida, l) amplificación de señal dependiente de nucleasa (NDSA, por su nombre en inglés), m) tecnología de amplificación con círculo rodante (RCA, por su nombre en inglés), n) amplificación por desplazamiento de hebras ancladas, o) amplificación con círculo rodante (inmovilizado) en fase sólida.

En los métodos y los kits de más arriba, la detección de los ácidos nucleicos de los genes diana puede incluir tecnologías en tiempo real o postamplificación. Estas tecnologías de detección pueden incluir, pero sin limitarse a ellos, métodos basados en la transferencia de la energía de resonancia mediante fluorescencia (FRET, por su nombre en inglés) tales como la hibridación adyacente de sondas (entre ellos, métodos sonda-sonda y sondacebador), sonda *Taq*Man, sonda fluorescible, sonda Scorpion, sonda de nanopartículas y sonda Amplifluor. Otros métodos de detección incluyen la detección de los ácidos nucleicos del gen diana mediante métodos inmunológicos, métodos de hibridación en fase sólida sobre filtros, chips o cualquier otro soporte sólido. En estos sistemas, la hibridación se puede seguir mediante fluorescencia, quimioluminiscencia, potenciometría, espectrometría de masas, resonancia de plasmones, polarimetría, colorimetría, citometría de flujo o escanometría. La secuenciación de nucleótidos, que incluye la secuenciación mediante la terminación con didesoxinucleótidos o la secuenciación por hibridación (p. ej., secuenciación con un chip de ADN) representa otro método para detectar y caracterizar los ácidos nucleicos de los genes diana.

En una realización preferente se utiliza un protocolo de PCR para la amplificación del ácido nucleico.

50 Un método para detectar una gran variedad de posibles cepas de SARM que tienen diferentes tipos de MREJ se puede llevar a cabo en reacciones y confinamientos físicos independientes, un tipo cada vez. Otra alternativa es que se podría llevar a cabo simultáneamente para diferentes tipos en confinamientos físicos independientes, o en los mismos confinamientos físicos. En la última situación posible se podría llevar a cabo una reacción de PCR múltiplex que requeriría que los oligonucleótidos sean capaces de hibridarse con una región diana en las condiciones habituales. Dado que muchas sondas o cebadores son específicas para un determinado tipo de MREJ, la tipificación

de una cepa de SARM es una realización posible. Cuando se utiliza una mezcla de oligonucleótidos que se hibriden al mismo tiempo con más de un tipo en un único confinamiento físico o contenedor, se utilizarán diferentes marcaciones para diferenciar un tipo de otro.

Perseguimos desarrollar una prueba o kit que use ADN para detectar e identificar los SARM. Aunque las secuencias de los genes *orfX* y algunos fragmentos del ADN de SCC*mec* están disponibles en las bases de datos públicas y se han utilizado para desarrollar pruebas de ADN para detectar los SARM, los nuevos datos de secuencias que permiten mejorar la detección e identificación de los SARM que son objeto de la presente invención nunca se habían caracterizado anteriormente, o se conocían pero no se había demostrado que estuvieran localizadas en el extremo derecho del SCC*mec* adyacente al sitio de integración (tabla 4). Estas nuevas secuencias no se podrían haber predicho ni detectado mediante el ensayo de PCR específico de SARM desarrollado por Hiramatsu et al. (patente de los EE.UU. n.º 6 156 507). Estas secuencias permitirán mejorar las pruebas actuales que usan ADN para el diagnóstico de los SARM porque permiten diseñar cebadores y sondas ubicuos para detectar e identificar más cepas de SARM, entre ellas, todos los principales clones epidémicos del planeta.

Los kits, cebadores y sondas de diagnóstico mencionados más arriba se pueden utilizar para detectar y/o identificar los SARM, incluso si dichos kits, cebadores y sondas de diagnóstico se utilizan para aplicaciones *in vitro* o *in situ*. Dichas muestras pueden incluir, pero sin limitarse a ellas: una muestra clínica, una muestra ambiental, un cultivo microbiano, una colonia microbiana, un tejido y una línea celular.

Dichos kits, cebadores y sondas de diagnóstico se puedan utilizar solos o en combinación con cualquier otra prueba adecuada para detectar y/o identificar microorganismos, entre ellas, pero sin limitarse a ellas: un ensayo basado en la detección de ácidos nucleicos, un inmunoensayo, un ensayo enzimático, un ensayo bioquímico, un ensayo lisotípico, un ensayo serológico, un medio de cultivo diferencial, un medio de cultivo de enriquecimiento, un medio de cultivo selectivo, un medio de ensayo específico, un medio de cultivo de identificación, un medio de cultivo de recuento, una tinción celular, un cultivo en líneas celulares específicas y un ensayo de infectividad con animales.

En los métodos y los kits que se describen más adelante en la presente memoria, las sondas oligonucleotídicas y los cebadores para amplificación se han deducido de secuencias más largas (a saber, fragmentos de ADN de al menos 100 pares de bases). Todas las secuencias de ADN se han obtenido bien de nuestras secuencias en propiedad o de bases de datos públicas (tablas 5, 6, 7, 8, y 9).

Para el experto en la técnica está claro que también se pueden deducir secuencias oligonucleotídicas diferentes a las descritas, y que son apropiadas para detectar y/o identificar los SARM a partir de los fragmentos de las secuencias en propiedad o de determinadas secuencias de las bases de datos públicas. Por ejemplo, los cebadores o sondas oligonucleotídicos pueden ser más cortos, pero de una longitud de al menos 10 nucleótidos o más que los elegidos; también se pueden seleccionar de cualquier parte de los fragmentos de ADN en propiedad o de las secuencias seleccionadas de las bases de datos públicas; también pueden ser variantes del mismo oligonucleótido. Si el ADN diana o una variante del mismo se hibrida a un oligonucleótido determinado, o si el ADN diana o una 35 variante del mismo se puede amplificar mediante una pareja de cebadores oligonucleotídicos para PCR, lo contrario también es cierto; un ADN diana determinado puede hibridarse con una sonda oligonucleotídica variante o ser amplificado por una variante de cebador oligonucleotídico para PCR. Otra alternativa es que los oligonucleótidos se pueden diseñar a partir de dichas secuencias de fragmentos de ADN para utilizarlos en métodos de amplificación diferentes a la PCR. Por consiguiente, el núcleo de esta invención es la detección y/o identificación de los SARM 40 dirigida selectivamente a las secuencias de ADN genómico que se utilizan como fuente de cebadores para amplificación y/o sondas oligonucleotídicas, específicos y ubicuos. Aunque la selección y la evaluación de los oligonucleótidos adecuados para los propósitos diagnósticos requieren mucho esfuerzo, es realmente posible que el experto en la técnica deduzca, a partir de los fragmentos de ADN seleccionados, oligonucleótidos diferentes a los recogidos en las tablas 5, 6, 7, 8 y 9 que sean adecuados para los propósitos diagnósticos. Cuando un fragmento en propiedad o una secuencia de las bases de datos públicas se selecciona por su especificidad y ubicuidad, incrementa la probabilidad de que los subconjuntos de los mismos sean también específicos y ubicuos.

Los fragmentos de ADN en propiedad se han obtenido como un repertorio de secuencias creadas por la amplificación de los ácidos nucleicos de SARM con nuevos cebadores. Estos cebadores y el repertorio de ácidos nucleicos, así como el repertorio de secuencias nucleotídicas, son otros objetos de esta invención (tablas 4, 5, 6, 7, 8 y 9).

Por lo tanto, las reivindicaciones están de acuerdo con la presente invención.

SECUENCIAS PARA DETECTAR E IDENTIFICAR LOS SARM

50

En la descripción de esta invención, la terminología «ácidos nucleicos» y «secuencias» podrían utilizarse indistintamente. Sin embargo, los «ácidos nucleicos» son entidades químicas, mientras que las «secuencias» son los trozos de información codificados por estos «ácidos nucleicos». Los ácidos nucleicos y las secuencias son fuentes de información igual de valiosas en el ámbito de esta invención.

Diseño y síntesis de cebadores y sondas oligonucleotídicos

Como parte de las reglas de diseño, a todos los oligonucleótidos (sondas para la hibridación y cebadores para la amplificación del ADN por PCR) se les evaluó su idoneidad para la hibridación o amplificación por PCR mediante análisis informático con programas estándares (a saber, los programas del paquete GCG de Wisconsin, el programa de análisis de cebadores OligoTM 6 y MFOLD 3.0). También se evaluó la posible idoneidad de las parejas de cebadores para PCR antes de sintetizarlos con la verificación de la ausencia de rasgos indeseados tales como tramos largos de un nucleótido y una proporción elevada de restos G o C en el extremo 3' (Persing et al., 1993, *Diagnostic Molecular Microbiology: Principles and Applications*, American Society for Microbiology, Washington, D.C.). Se sintetizaron cebadores oligonucleotídicos para amplificación con un sintetizador automático de ADN (Applied Biosystems). Se evaluaron los diseños de las sondas fluorescibles mediante los criterios establecidos por Kramer et al. (http://www.molecular-beacons.org).

La secuencia oligonucleotídica de los cebadores o de las sondas puede proceder de cualquier hebra del ADN bicatenario. Los cebadores o las sondas pueden consistir en las bases A, G, C o T o análogos, y pueden estar degenerados en una o más posiciones de nucleótidos escogidas (Nichols et al., 1994, *Nature*, 369: 492-493). Los cebadores y las sondas también pueden consistir en análogos de nucleótidos tal como los ácidos nucleicos bloqueados (LNA, por su nombre en inglés) (Koskin et al., 1998, *Tetrahedron* 54: 3607-3630), y los ácidos peptidonucleicos (PNA, por su nombre en inglés) (Egholm et al., 1993, *Nature*, 365: 566-568). Los cebadores o las sondas pueden tener cualquier longitud adecuada y se pueden seleccionar en cualquier parte dentro de las secuencias de ADN de los fragmentos en propiedad, o de las secuencias seleccionadas de las bases de datos que son adecuadas para la detección de los SARM.

Las variantes de un determinado gen microbiano de diana se producen de forma natural y se atribuyen a la variación de la secuencia de ese gen durante la evolución (Watson et al., 1987, Molecular Biology of the Gene, 4.ª ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA; Lewin, 1989, Genes IV, John Wiley & Sons, Nueva York, NY). Por ejemplo, diferentes cepas de las mismas especies microbianas pueden tener una o mas variaciones de uno 25 sólo o varios nucleótidos en el sitio de hibridación del oligonucleótido. La persona experta en la técnica es muy consciente de la existencia de ácidos nucleicos y/o secuencias variantes para un gen específico, y que la frecuencia de las variaciones de la secuencia depende de la presión selectiva sobre un producto génico determinado durante la evolución. La detección de una secuencia variante para una región entre dos cebadores para PCR se puede demostrar mediante la secuenciación del producto de amplificación. Para demostrar la presencia de variaciones de 30 secuencia en el sitio de hibridación del cebador, se tiene que amplificar una diana de ADN más larga con cebadores para PCR localizados fuera de ese sitio de hibridación. La secuenciación de este fragmento más largo permitirá detectar la variación de la secuencia en este sitio de hibridación del cebador. Se puede aplicar una estrategia parecida para mostrar las variaciones en el sitio de hibridación de la sonda. En la medida en que la divergencia de los ácidos nucleicos y/o las secuencias de diana, o una parte de los mismos, no afecte significativamente a la sensibilidad y/o especificidad y/o ubicuidad de los cebadores o de las sondas para amplificación, el ADN microbiano variante está dentro del alcance de esta invención. También se pueden utilizar variantes de los cebadores o sondas seleccionados para amplificar o hibridarse a un ADN diana variante.

Amplificación del ADN

Para la amplificación del ADN mediante el método de PCR ampliamente utilizado, se obtuvieron parejas de 40 cebadores de nuestros fragmentos de ADN en propiedad o de las secuencias de las bases de datos públicas.

Durante la amplificación del ADN por PCR se utilizan dos cebadores oligonucleotídicos que se fijan cada uno a una hebra del ADN diana del genoma microbiano desnaturalizado con calor para amplificar exponencialmente *in vitro* el ADN diana mediante ciclos térmicos sucesivos que permiten la desnaturalización del ADN, la hibridación de los cebadores y la síntesis de nuevas dianas en cada ciclo (Persing et al., 1993, *Diagnostic Molecular Microbiology:* 45 *Principles and Applications*, American Society for Microbiology, Washington, D.C.).

Brevemente, los protocolos de la PCR en un termociclador estándar (PTC-200 de MJ Research Inc., Watertown, MA) fueron los siguientes: en 20 μl de mezcla de reacción de PCR se amplificaron suspensiones bacterianas estandarizadas y tratadas o ADN genómico preparado de cultivos bacterianos o especímenes clínicos. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), MgCl₂ a 2,5 mM, 0,4 μM de cada cebador, 200 μM de cada uno de los cuatro dNTP (Pharmacia Biotech), seroalbúmina bovina (SAB) a 3,3 μg/μl (Sigma-Aldrich Canada Ltd, Oakville, Ontario, Canada) y 0,5 unidades de la ADN polimerasa *Taq* (Promega Corp., Madison, WI) combinada con el anticuerpo *Taq*StartTM (BD Biosciences, Palo Alto, CA). El anticuerpo *Taq*StartTM, que es un anticuerpo monoclonal neutralizante de la ADN polimerasa *Taq*, se añadió a todas las reacciones de PCR para realzar la especificidad y la sensibilidad de las amplificaciones (Kellogg et al., *BioTechniques* 16: 1134-1137). El tratamiento de los cultivos bacterianos o de los especímenes clínicos consiste en un protocolo rápido para lisar las células microbianas y eliminar o neutralizar los inhibidores de la PCR (descrito en la solicitud de los EE.UU. en tramitación con la presente n.º 60/306 163). Para la amplificación del ADN genómico purificado, las muestras se añadieron directamente a la mezcla de amplificación para PCR. Se utilizó un control interno, obtenido de secuencias que no se encuentran en las secuencias de MREJ diana ni en el genoma humano, para verificar la eficacia de la PCR y no había ninguna inhibición significativa de la PCR.

El número de ciclos realizados para los ensayos de PCR varía de acuerdo con el nivel de sensibilidad requerido. Por ejemplo, el nivel de sensibilidad requerido para la detección microbiana directa en un espécimen clínico es más alto que para la detección en un cultivo microbiano. Por consiguiente, para la detección directa en especímenes clínicos se requerirán probablemente ensayos de PCR más sensibles que tengan más ciclos térmicos.

El experto en la técnica de amplificación de ácidos nucleicos conoce la existencia de otros procedimientos de amplificación rápidos tal como la reacción de la cadena de la ligasa (LCR), PCR tras la transcriptasa inversa (RT-PCR), la amplificación mediada por la transcripción (TMA), la replicación de secuencias automantenida (3SR), la amplificación basada en la secuencia de ácido nucleico (NASBA), la amplificación por desplazamiento de cadena (SDA), ADN ramificado (bDNA), la tecnología de ciclación de sondas (CPT), la amplificación en fase sólida (SPA), la 10 tecnología de amplificación con círculo rodante (RCA), la RCA en fase sólida, la SDA anclada y la amplificación de la señal dependiente de nucleasa (NDSA) (Lee et al., 1997, Nucleic Acid Amplification Technologies: Application to Disease Diagnosis, Eaton Publishing, Boston, MA; Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Westin et al., 2000, Nat. Biotechnol. 18: 199-204). El alcance de esta invención no se limita al uso de la amplificación por PCR, sino que más bien incluye el uso 15 de cualquier método de amplificación de ácidos nucleicos o cualquier otro procedimiento que se puede utilizar para incrementar la sensibilidad y/o la rapidez de los ensayos diagnósticos que usan ácidos nucleicos. El alcance de la presente invención también cubre el uso de cualquier amplificación de ácidos nucleicos y la tecnología de detección, que incluye las tecnologías de detección en tiempo real o postamplificación, una tecnología de amplificación combinada con la detección, una tecnología de matrices o chips de ácidos nucleicos para hibridación, un chip para 20 amplificación, o combinación de tecnologías de amplificación e hibridación de chips. La detección y la identificación mediante cualquier método de secuenciación de nucleótidos también está bajo el alcance de la presente invención.

También está bajo el alcante de esta invención cualquier oligonucleótido procedente de las secuencias de ADN de MREJ de *S. aureus* y utilizable en cualquier tecnología de hibridación y/o amplificación de ácidos nucleicos.

Evaluación del método de detección de SARM desarrollado por Hiramatsu et al.

25 De acuerdo con Hiramatsu et al., (Ito et al., 1999, Antimicrob. Agents Chemother. 43: 1449-1458; Katayama et al., 2000, Antimicrob. Agents Chemother. 44: 1549-1555; Ito et al., 2001, Antimicrob. Agents Chemother. 45: 1323-1336; Ma et al., 2002, Antimicrob. Agents Chemother. 46: 1147-1152), entre las cepas de SARM se encuentran cuatro tipos de ADN de SCCmec. Hallaron que los ADN de SSCmec están integrados en un sitio específico del cromosoma de los SASM (denominado orfX). Desarrollaron un ensayo de PCR múltiplex específico para SARM que incluye cebadores que pueden hibridarse en el extremo derecho de los SCCmec de tipos I, II y III (SEQ ID n.º 18, 19, 20, 21, 22, 23, 24 en la patente de los EE.UU. n.º 6 156 507 que corresponden a las SEQ ID n.º 52, 53, 54, 55, 56, 57, 58, respectivamente, en la presente invención) así como cebadores específicos del cromosoma de S. aureus a la derecha del sitio de integración de SCCmec (SEQ ID n.º 25, 28, 27, 26, 29 en la patente de los EE.UU. n.º 6 156 507 que corresponden a las SEQ ID n.º 59, 60, 61, 62, 63, respectivamente, en la presente invención) (tabla 1 y figura 1). 35 El conjunto de cebadores que Hiramatsu et al. han descrito como la combinación de cebadores óptima (SEQ ID n.º 22, 24 y 28 de la patente de los EE.UU. n.º 6 156 507 corresponden a las SEQ ID n.º 56, 58 y 60 en la presente invención) se utilizó en la presente invención para analizar por PCR una serie de cepas de SARM, SASM, SCN resistente a la meticilina (SCNRM) y SCN sensible a la meticilina (SCNSM) (tabla 2). Para comprobar la ubicuidad, la especificidad y la sensibilidad de estos cebadores se utilizó un ensayo de PCR que se llevó a cabo en un 40 termociclador estándar (PTC-200 de MJ Research Inc.) mediante el protocolo siguiente: 1 μl de una suspensión bacteriana estandarizada tratada o de una preparación de ADN genómico purificada de bacterias se amplificaron en una mezcla de reacción de PCR de 20 µl. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 2,5 mM, 0,4 µM de cada uno de los cebadores específicos del cromosoma de S. aureus y del SCCmec (SEQ ID n.º 22, 24 y 28 de la patente de los EE.UU. n.º 6 156 507 que corresponden a las SEQ ID n.° 56, 58 y 60 de la presente invención), 200 μM de cada uno de los cuatro dNTP (Pharmacia Biotech), SAB a 3,3 μg/μl (Sigma) y 0,5 U de polimerasa *Taq* (Promega) unida al anticuerpo *Taq*StartTM (BD Biosciences).

A continuación, las reacciones de PCR se sometieron a un termociclado de 3 min a 94 °C seguido de 40 ciclos de 60 s a 95 °C para la etapa de desnaturalización, 60 s a 55 °C para la etapa de hibridación y 60 s a 72 °C para la etapa de extensión, y después viene una extensión final de 7 minutos a 72 °C en un termociclador estándar (PTC-200 de MJ Research Inc.). La detección de los productos de PCR se realizó mediante electroforesis en geles de agarosa (2%) que contenía 0,25 μg/ml de bromuro de etidio. De las 39 cepas de SARM analizadas, 20 no se amplificaron con el ensayo de PCR desarrollado por Hiramatsu et al. (ejemplo 1, tablas 2 y 3).

Con vistas a establecer un ensayo diagnóstico rápido para los SARM, los presentes inventores desarrollaron nuevos conjuntos de cebadores específicos del extremo derecho de SCC*mec* de los tipos I y II (SEQ ID n.º 66, 100 y 101) (Anexo 1), SCC*mec* de tipo II (SEQ ID n.º 97 y 99), SCC*mec* de tipo III (SEQ ID n.º 67, 98 y 102) y en el cromosoma de *S. aureus* a la derecha del sitio de integración de SCC*mec* (SEQ ID n.º 64, 70, 71, 72, 73, 74, 75 y 76) (tabla 5). Estos cebadores, que amplifican amplicones cortos (de 171 a 278 pb), son compatibles para el uso en ensayos de PCR rápidos (tabla 7). El diseño de estos cebadores se basó en el análisis de varios alineamientos de secuencias de las secuencias de *orfX* y SCC*mec* descrito por Hiramatsu et al. (patente de los EE.UU. n.º 6 156 507) o disponibles en GenBank (tabla 10, anexo 1). Estos diferentes conjuntos de cebadores se utilizaron para analizar por PCR una serie de cepas de SARM, SASM, SCNRM y SCNSM. Se desarrollaron varios cebadores de amplificación

para detectar los tres tipos de SSCmec (SEQ ID n.º 97 y 99 para el SCCmec de tipo II, SEQ ID n.º 66, 100 y 101 para el SCCmec de los tipos I y II y SEQ ID n.º 67, 98 y 102 para el SCCmec de tipo III). Los cebadores se eligieron de acuerdo con su especificidad por las cepas de SARM, su sensibilidad analítica en la PCR y la longitud del producto de la PCR. Se eligió un conjunto de dos cebadores para la región del extremo derecho de SCCmec (SEQ 5 ID n.º 66 específica de SCCmec de los tipos I y II; SEQ ID n.º 67 específica de SCCmec de tipo III). De los 8 cebadores diferentes diseñados para que se hibriden sobre el cromosoma de S. aureus a la derecha del sitio de integración de SCCmec (que se hibridarán selectivamente al gen orfX) (SEQ ID n.º 64, 70, 71, 72, 73, 74, 75 y 76), se encontró que sólo una (SEQ ID n.º 64) era específica de los SARM basándose en el análisis de diferentes cepas de SARM, SASM, SCNRM y SCNSM (tabla 12). Por consiguiente, se desarrolló un ensayo de PCR que utilizaba el 10 conjunto óptimo de cebadores (SEQ ID n.º 64, 66 y 67) que podría amplificar específicamente las cepas de SARM que contenían SCCmec de los tipos I, II y III (figura 2, anexo 1). Aunque el ensayo de PCR desarrollado con este nuevo conjunto de cebadores era muy sensible (a saber, permitió la detección de 2 a 5 copias del genoma para los tres tipos de SCCmec) (tabla 11), presentó las mismas limitaciones (a saber, falta de ubicuidad) que el ensayo desarrollado por Hiramatsu et al. Las 20 cepas de SARM que no se amplificaron con los cebadores de Hiramatsu et al. tampoco se detectaron mediante el conjunto de cebadores que comprenden las SEQ ID n.º 64, 66 y 67 (tablas 3 y 12). Claramente, se necesitan herramientas de diagnóstico para conseguir una ubicuidad de al menos el 50% entre las cepas analizadas.

Con vistas a establecer un método de identificación y detección de los SARM más ubicuo (a saber, capacidad para detectar todas o la mayoría de las cepas de SARM), determinamos la secuencia de la MREJ presente en estas 20 cepas de SARM que no se amplificaron. Esta investigación ha conducido al descubrimiento e identificación de siete secuencias diana de MREJ nuevas y diferentes que se pueden utilizar para los propósitos diagnósticos. Estas siete nuevas secuencias de MREJ no se pudieron predecir ni detectar con el sistema descrito en la patente de los EE.UU. n.º 6 156 507 por Hiramatsu et al. A saber, la presente invención representa un método mejorado para detectar e identificar los SARM porque proporciona un método de diagnóstico más ubicuo que permite detectar los principales clones de SARM epidémicos en el mundo.

Secuenciación de secuencias nucleotídicas de MREJ a partir de cepas de SARM no amplificables con los cebadores específicos de SCC*mec* de los tipos I, II y III

Dado que el ADN de 20 cepas de SARM no se amplificó con el conjunto de cebadores desarrollado por Hiramatsu et al. (SEQ ID n.º 22, 24 y 28 de la patente de los EE.UU. n.º 6 156 507 que corresponden a las SEQ ID n.º 56, 58 y 60 de la presente invención) (tablas 2 y 3) ni con el conjunto de cebadores desarrollado en la presente invención basándose en las secuencias de los mismos tres tipos de SCC*mec* (I, II y III) (SEQ ID n.º 64, 66 y 67) (tabla 12), se determinó la secuencia nucleotídica de la MREJ para 16 de estas 20 cepas de SARM.

La transposasa de IS*431* se relaciona a menudo con la inserción de los genes de resistencia dentro del locus *mec.*El gen que codifica esta transposasa se ha descrito que con frecuencia está en una o varias copias dentro del
segmento derecho de SCC*mec* (Oliveira et al., 2000, *Antimicrob. Agents Chemother.* 44: 1906-1910; Ito et al., 2001, *Antimicrob. Agents Chemother.* 45: 1323-36). Por lo tanto, en un primer intento de secuenciar las nuevas MREJ de
16 de las 20 cepas de SARM descritas en la tabla 3, se diseñó un cebador en la secuencia del gen que codifica la
transposasa de IS*431* (SEQ ID n.º 68) y se combinó con un cebador específico de *orfX* a la derecha del sitio de
integración de SCC*mec* (SEQ ID n.º 70) (tablas 5 y 8). La estrategia utilizada para seleccionar estos cebadores se
ilustra en la figura 3.

Los fragmentos de MREJ a secuenciar se amplificaron con el protocolo de amplificación siguiente: 1 μl de la suspensión celular tratada (o de una preparación de ADN genómico purificado) se transfirió directamente a 4 tubos que contenían 39 μl de una mezcla de reacción de PCR. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 2,5 mM, 1 μM de cada uno de los 2 cebadores (SEQ ID n.º 68 y 70), 45 200 μM de cada uno de los cuatro dNTP, 3,3 μg/μl de SAB (Sigma-Aldrich Canada Ltd) y 0,5 U de la ADN polimerasa *Taq* (Promega) unida al anticuerpo *Taq*StartTM (BD Biosciences). Las reacciones de PCR se ciclaron en un termociclador estándar (PTC-200 de MJ Research Inc.) como sigue: 3 min a 94 °C seguido de 40 ciclos de 5 s a 95 °C para la etapa de desnaturalización, 30 s a 55 °C para la etapa de hibridación y 2 min a 72 °C para la etapa de extensión.

Posteriormente se agruparon las cuatro mezclas amplificadas por PCR y se resolvieron 10 μl de la mezcla por electroforesis en un gel de agarosa al 1,2% que contenía 0,25 μg/ml de bromuro de etidio. A continuación se visualizaron los amplicones con un Alpha-Imager (Alpha Innotech Corporation, San Leandro, CA) al exponerlo a la luz UV a 254 nm. Se estimó el tamaño de los amplicones por comparación con una escalera de masas moleculares de 1 kb (Life Technologies, Burlington, Ontario, Canadá). Lo que quedó de mezcla amplificada por PCR (150 μl en total) también se resolvió mediante electroforesis en un gel de agarosa al 1,2%. Luego se visualizaron los amplicones por tinción con azul de metileno (Flores et al., 1992, *Biotechniques*, 13: 203-205). De nuevo se estimó el tamaño de los amplicones por comparación con una escalera de masas moleculares de 1 kb. De las 16 cepas seleccionadas entre las 20 descritas en la tabla 3, seis se amplificaron con las SEQ ID n.º 68 y 70 como cebadores (CCRI-178, CCRI-8895, CCRI-8903, CCRI-1324, CCRI-1331 y CCRI-9504). Para estas seis cepas de SARM se obtuvo un producto de amplificación de 1,2 kb. La banda que corresponde a este producto de amplificación específico se cortó del gel de agarosa y se purificó con el kit de extracción de gel QIAquickTM (QUIAGEN Inc.,

Chassworth, CA). Después se aplicó directamente el protocolo de secuenciación al fragmento de ADN purificado del gel. Ambas hebras de los productos de amplificación de la MREJ se secuenciaron mediante el método de secuenciación de terminación de cadenas con didesoxinucleótidos en un secuenciador automático de ADN de Applied Biosystems (modelo 377) con su kit de reacción Big DyeTM Terminator Cycle Sequencing Ready (Applied Biosystems, Foster City, CA). Las reacciones de secuenciación se realizaron con los mismos cebadores (SEQ ID n.º 68 y 70) y 10 ng/100 pb por reacción de los amplicones purificados en gel. La secuenciación de MREJ de las seis cepas de SARM (CCRI-178, CCRI-8895, CCRI-8903, CCRI-1324, CCRI-1331 y CCRI-9504) descritas en la tabla 3 produjo las SEQ ID n.º 42, 43, 44, 45, 46 y 51, respectivamente (tabla 4).

Para estar seguros de que la secuencia determinada no contenía errores atribuibles a la secuenciación de los artefactos de la PCR, hemos secuenciado dos preparaciones de los productos de amplificación de MREJ purificados de gel que se originaron de dos amplificaciones de PCR independientes. Para la mayor parte de los fragmentos diana, las secuencias determinadas para ambas preparaciones de amplicones eran idénticas. Además, las secuencias de ambas hebras eran complementarias al 100%, lo que confirma la alta precisión de la secuencia determinada. Las secuencias de MREJ determinadas con la estrategia anterior se describen en la lista de secuencias y en la tabla 4.

Para secuenciar la MREJ en las cepas para las que no se había obtenido ningún amplicón con la estrategia que incluye cebadores específicos del gen de la transposasa de IS431 y del gen *orfX*, se utilizó otra estrategia que utiliza cebadores que están dirigidos selectivamente a las secuencias de *mecA* y *orfX* para amplificar fragmentos genómicos más largos. Se utilizó un nuevo cebador para PCR que está dirigido selectivamente a *mecA* (SEQ ID n.º 69) (tabla 8) en combinación con el mismo cebador en la secuencia de *orfX* (SEQ ID n.º 70). La estrategia utilizada para seleccionar estos cebadores se ilustra en la figura 3.

Se utilizó el protocolo de amplificación siguiente: se transfirió el ADN genómico purificado (300 ng) a un volumen final de 50 µl de una mezcla de reacción de PCR. Cada reacción de PCR contenía el tampón Herculase a 1X (Strategene, La Jolla, CA), 0,8 µM de cada uno de los 2 cebadores (SEQ ID n.º 69 y 70), 0,56 mM de cada uno de los cuatro dNTP y 5 U de *Herculase* (Stratagene). Las reacciones de PCR se ciclaron en un termociclador estándar (PTC-200 de MJ Research Inc.) como sigue: 2 min a 92 °C seguidos de 35 o 40 ciclos de 10 s a 92 °C para la etapa de desnaturalización, 30 s a 55 °C para la etapa de hibridación y 30 min a 68 °C para la etapa de extensión.

Posteriormente, 10 µl de la mezcla amplificada por PCR se resolvieron mediante electroforesis en un gel de agarosa al 0,7% que contenía 0,25 µg/ml de bromuro de etidio. A continuación se visualizaron los amplicones como se describe más arriba. Se estimó el tamaño de los amplicones por comparación con una escalera de masas moleculares de 1 kb (Life Technologies). Después se llevó a cabo una reacción de reamplificación en 2 a 5 tubos con el mismo protocolo con 3 µl de la primera reacción de PCR utilizada como muestra problema para la segunda amplificación. Las mezclas reamplificadas por PCR se agruparon y también se resolvieron por electroforesis en un gel de agarosa al 0,7%. Entonces se visualizaron los amplicones mediante tinción con azul de metileno como se 35 describe más arriba. Se obtuvo un producto de amplificación de unas 12 kb con esta estrategia de amplificación con todas las cepas analizadas. La banda que corresponde al producto de amplificación específico se cortó de gel de agarosa y se purificó como se describe más arriba. El fragmento de ADN purificado de gel se utilizó directamente luego en el protocolo de secuenciación tal y como se describe más arriba. Las reacciones de secuenciación se llevaron a cabo con los mismos cebadores para amplificación (SEQ ID n.º 69 y 70) y 425-495 ng de los amplicones purificados en gel en cada reacción. Posteriormente, los cebadores de secuenciación internos (SEQ ID n.º 65, 77 y 96) (tabla 8) se utilizaron para obtener los datos de las secuencias en ambas hebras procedentes de un trozo más grande del amplicón. De las 20 cepas de SARM descritas en la tabla 3, 5 (CCRI-1331, CCRI-1263, CCRI-1377, CCRI-1311 v CCRI-2025) se secuenciaron con esta estrategia, lo que produjo las SEQ ID n.º 46, 47, 48, 49 v 50, respectivamente (tabla 4). La secuencia dentro del gen mecA también se obtuvo a partir de los amplicones 45 generados que produjeron las SEQ ID n.º 27, 28, 29, 30 y 31 a partir de las cepas CCRI-2025, CCRI-1263, CCRI-1311, CCRI-1331 y CCRI-1377, respectivamente (tabla 4). También se obtuvieron secuencias más largas dentro del gen mecA y de las regiones cadena abajo para las cepas CCRI-2025, CCRI-1331 y CCRI-1377, tal y como se describe más adelante.

Para obtener secuencias más largas del gen *orfX*, se utilizaron otras dos estrategias que utilizan cebadores que están dirigidos selectivamente a las secuencias de *mecA* y de *orfX* (en el codón de inicio) para amplificar fragmentos cromosómicos más largos. Se diseñó un nuevo cebador para PCR en *orfX* (SEQ ID n.º 132) a utilizar en combinación con el mismo cebador en el gen *mecA* (SEQ ID n.º 69). La estrategia utilizada para seleccionar estos cebadores se ilustra en la figura 3. Con los cebadores SEQ ID n.º 69 y 132 se amplificaron ocho cepas de *S. aureus* (CCRI-9860, CCRI-9208, CCRI-9504, CCRI-1331, CCRI-9583, CCRI-9681, CCRI-2025 y CCRI-1377). La estrategia tilizada para seleccionar estos cebadores se ilustra en la figura 3.

Se utilizó el protocolo de amplificación siguiente: se transfirió ADN genómico purificado (350 a 500 ng) a una mezcla de reacción de PCR de 50 μl. Cada reacción de PCR contenía el tampón Herculase a 1X (Stratagene), 0,8 μM de cada uno de los cebadores de la pareja (SEQ ID n.º 69 y 132), 0,56 mM de cada uno de los cuatro dNTP y 7,5 U de *Herculase* (Stratagene) con MgCl₂ a 1 mM. Las reacciones de PCR se sometieron al termociclado que se describe más arriba.

Posteriormente, 5 µl de la mezcla amplificada por PCR se resolvieron mediante electroforesis en gel de agarosa al 0,8% con 0,25 µg/ml de bromuro de etidio. Luego se visualizaron los amplicones tal y como se describe más arriba. Para una cepa de S. aureus (CCRI-9583), se tuvo que volver a amplificar con los cebadores SEQ ID n.º 96 y 158 (figura 3) en 4 tubos, mediante el mismo protocolo de PCR, con 2 µl de la primera reacción de PCR como muestra problema para la segunda amplificación. Las mezclas reamplificadas mediante PCR se agruparon y también se resolvieron mediante electroforesis en un gel de agarosa al 0,8%. Después se visualizaron los amplicones mediante tinción con azul de metileno tal y como se describe más arriba. Se obtuvo una banda de aproximadamente 12 a 20 kb con esta estrategia de amplificación según las cepas analizadas. La banda que corresponde al producto de amplificación específico se cortó del gel de agarosa y se purificó con el kit de extracción de gel QIAquick[™] o el kit de 10 extracción de gel QIAEX II (QIAGEN Inc.). Dos cepas, CCRI-9583 y CCRI-9589, también se amplificaron con los cebadores SEQ ID n.º 132 y 150, lo que generó un producto de amplificación de 1,5 kb. Los amplicones largos (12-20 kb) se secuenciaron utilizando de 0,6 a 1 µg por reacción, mientras que los amplicones cortos (1,5 kb) se secuenciaron con 150 ng por reacción. Las reacciones de secuenciación se realizaron con diferentes conjuntos de cebadores para cada cepa de S. aureus: 1) SEQ ID n.º 68, 70, 132, 145, 146, 147, 156, 157 y 158 para la cepa 15 CCRI-9504; 2) SEQ ID n.º 70, 132, 154 y 155 para la cepa CCRI-2025; 3) SEQ ID n.º 70, 132, 148, 149, 158 y 159 para la cepa CCRI-9681; 4) SEQ ID n.º 70, 132, 187 y 188 para la cepa CCRI-9860; 5) SEQ ID n.º 70, 132, 150 y 159 para la cepa CCRI-9589, 6) SEQ ID n.º 114, 123, 132, 150 y 158 para la cepa CCRI-9583; 7) SEQ ID n.º 70, 132, 154 y 155 para la cepa CCRI-1377, 8) SEQ ID n.º 70, 132, 158 y 159 para la cepa CCRI-9208; 9) SEQ ID n.º 68, 70, 132, 145, 146, 147 y 158 para la cepa CCRI-1331; y 10) SEQ ID n.º 126 y 127 para la cepa CCRI-9770.

20 En una cepa (CCRI-9770), los genes *orfX* y *orf*SA0022 resultaron estar total o parcialmente delecionados basándose en la amplificación con cebadores específicos para estos genes (SEQ ID n.º 132 y 159 y SEQ ID n.º 128 y 129, respectivamente) (tabla 8). Posteriormente se diseñó un nuevo cebador para PCR en *orf*SA0021 (SEQ ID n.º 126) para utilizarlo en combinación con el mismo cebador en el gen *mecA* (SEQ ID n.º 69). Se obtuvo un producto de amplificación de 4,5 kb con este conjunto de cebadores. La amplificación, purificación y secuenciación de los 25 amplicones se llevó a cabo tal y como se describe más arriba.

Para obtener la secuencia de la región de SSC*mec* que contiene *mecA* para 10 de las 20 cepas de SARM descritas en la tabla 3 (CCRI-9504, CCRI-2025, CCRI-9208, CCRI-1331, CCRI-9681, CCRI-9860, CCRI-9770, CCRI-9589, CCRI-9583 y CCRI-1377), el cebador descrito más arriba diseñado en *mecA* (SEQ ID n.º 69) se utilizó en combinación con un cebador diseñado en la región cadena abajo de *mecA* (SEQ ID n.º 118) (tabla 8). Se obtuvo un producto de amplificación de 2 kb para todas las cepas analizadas. Una cepa, la CCRI-9583, se volvió a amplificar con los cebadores SEQ ID n.º 96 y 118 a partir del amplicón generado con cebadores SEQ ID n.º 69 y 132 descritos más arriba. La amplificación, reamplificación y purificación de amplicones, y las reacciones de secuenciación, se realizaron tal y como se describe más arriba. Las reacciones de secuenciación se realizaron con los amplicones generados con las SEQ ID n.º 69 y 132 descritas más arriba o las SEQ ID n.º 69 y 118. Se utilizaron diferentes conjuntos de cebadores para secuenciación para cada cepa de *S. aureus*: 1) SEQ ID n.º 69, 96, 117, 118, 120, 151, 152 para las cepas CCRI-9504, CCRI-2025, CCRI-1331, CCRI-9770 y CCRI-1377; 2) SEQ ID n.º 69, 96, 118 y 120 para las cepas CCRI-9208, CCRI-9681 y CCRI-9589; 3) SEQ ID n.º 69, 96, 117, 118, 120 y 152 para la cepa CCRI-9860; y 4) SEQ ID n.º 96, 117, 118, 119, 120, 151 y 152 para la cepa CCRI-9583.

A continuación, las secuencias obtenidas para 16 de las 20 cepas no amplificables por el ensayo de Hiramatsu (tabla 4) se compararon con las secuencias disponibles de las bases de datos públicas. En todos los casos, los trozos de la secuencia tenían una identidad cercana al 100% con las secuencias públicamente disponibles para *orfX* (SEQ ID n.º 42-51, 165-168 y 171) o *mecA* y la región secuencia abajo (SEQ ID n.º 27-31, 189-193, 195, 197-199 y 225). Sin embargo, mientras que el trozo de *orfX* de los fragmentos (SEQ ID n.º 42-51, 165-168 y 171) compartía una identidad de casi el 100% con el gen *orfX* de la cepa de SASM NCTC 8325 descrita por Hiramatsu et al. (SEQ ID n.º 3), se demostró que la secuencia del ADN dentro del extremo derecho del propio SCC*mec* era muy diferente de la de los tipos I, II, III y IV descritas por Hiramatsu et al. (tabla 13, figura 4). Se obtuvieron seis nuevos tipos de secuencias diferentes.

Se debe advertir que Hiramatsu et al. demostraron que el SCC*mec* de tipo I se podía asociar al MREP de tipo i, los SCC*mec* de tipos II y IV se asocian al MREP de tipo ii, y el SCC*mec* de tipo III se asocia al MREP de tipo iii. Nuestros datos de secuenciación de MREJ de las diferentes cepas de SARM condujeron a descubrir 6 nuevos tipos de MREP denominados tipos iv, v, vi, vii, viii y ix. Las MREJ que comprenden diferentes tipos de MREP se denominaron según el esquema de numeración de MREP. Por lo tanto, el MREP de tipo i está comprendido dentro de la MREJ de tipo i, el MREP de tipo ii está comprendido dentro de la MREJ de tipo ii, etc., hasta llegar al MREP de tipo ix.

Las secuencias que están en el extremo derecho de SCCmec obtenidas de las cepas CCRI-178, CCRI-8895, CCRI-8903, CCRI-1324, CCRI-1331 y CCRI-9504 (SEQ ID n.º 42, 43, 44, 45, 46 y 51) eran casi idénticas unas a otras y mostraban una identidad de casi el 100% con IS431 (n.º de acceso de GenBank AF422691, ABO37671, AF411934). Sin embargo, nuestros datos de secuencias revelaron por primera vez la localización de esta secuencia de IS431 en el extremo derecho de SCCmec adyacente al sitio de integración. Por lo tanto, como las secuencias del extremo derecho de SCCmec de estas 6 cepas de SARM eran diferentes de las de SCCmec de tipo I de la cepa NCTC 10442, SCCmec de tipo II de la cepa N315, SCCmec de tipo III de la cepa 85/2082 y SCCmec de tipo IV de las cepas CA05 y 8/6-3P descritas por Hiramatsu et al. (Ito et al., 2001, Antimicrob. Agents Chemother. 45: 1323-1336;

Ma et al., 2002, *Antimicrob. Agents Chemother.* 46: 1147-1152), estas nuevas secuencias se denominaron MREP de tipo iv (SEQ ID n.º 42-46 y 51). Una búsqueda con BLAST con el trozo de SCC*mec* de las secuencias de MREP de tipo iv produjo alineamientos significativos con secuencias que codifican trozos de muy diversas transposasas conocidas. Por ejemplo, cuando se compara con el n.º de acceso de Genbank AB037671, el MREP de tipo iv de la SEQ ID n.º 51 compartió una identidad del 98% con la posible transposasa de IS*431* y su región cadena abajo; también estaban presentes en el alineamiento dos huecos de 7 nucleótidos cada uno.

Las secuencias obtenidas de las cepas CCRI-1263, CCRI-1377, CCRI-1311 y CCRI-2025 (SEQ ID n.º 47-50) eran casi idénticas entre sí y diferentes de los tres tipos de SCC*mec* y del MREP de tipo iv y, por consiguiente, se denominaron MREP de tipo v. Cuando se compara con las secuencias de GenBank mediante BLAST, las secuencias de MREP de tipo v no compartían ninguna homología significativa con ninguna secuencia publicada, excepto en los primeros 28 nucleótidos. Este tramo corto correspondía a los últimos 11 nucleótidos codificantes de *orfX*, seguido de 17 nucleótidos cadena abajo que incluyen la repetición inversa derecha (IR-R, por su nombre en inglés) de SCC*mec*.

La secuencia obtenida de la cepa CCRI-9208 también era diferente de los tres tipos de SCC*mec* y de los MREP de 15 los tipos iv y v y, por consiguiente, se denominó MREP de tipo vi (SEQ ID n.º 171). Tras una búsqueda con BLAST, se demostró que el MREP de tipo vi era único, y que no mostraba ninguna homología significativa con ninguna secuencia publicada.

Las secuencias obtenidas de las cepas CCRI-9583 y CCRI-9589 también eran diferentes de los tres tipos de SCC*mec* y de los MREP de tipos iv a vi y, por lo tanto, se denominaron MREP de tipo vii (SEQ ID n.º 165 y 166). Tras una búsqueda con BLAST, también se demostró que el tipo vii de MREP era único, y que no mostraba ninguna homología significativa con ninguna secuencia publicada.

La secuencia obtenida de la cepa CCRI-9860 también era diferente de los tres tipos de SCC*mec* y de los MREP de tipos iv a vii y, por lo tanto, se denominó MREP de tipo viii (SEQ ID n.º 167). La secuencia obtenida de la cepa CCRI-9681 también era diferente de los tres tipos de SCC*mec* y de los MREP de tipos iv a viii y, por lo tanto, se denominó MREP de tipo ix (SEQ ID n.º 168). Las búsquedas con BLAST con el trozo de SSC*mec* de las secuencias de los MREP de tipos viii y ix devolvió alineamientos significativos, pero sólo para los primeros ~150 nucleótidos de cada tipo de MREP. Por ejemplo, el comienzo de la secuencia del MREP de tipo viii tenía una identidad del 88% con un trozo del n.º de acceso a GenBank AB063173, pero no se encontró ninguna homología significativa con ninguna secuencia publicada para el resto de la secuencia. De la misma manera, los primeros ~150 nucleótidos del MREP de tipo ix tenían una identidad del 97% con la misma porción de AB063173, y el resto de la secuencia era única. El pequeño trozo homólogo de los MREP de tipos viii y ix corresponde en la AB063173 a los últimos 14 nucleótidos codificantes de *orfX*, la IR-R de SCC*mec* y un trozo de *orf*CM009. Aunque compartan cierto parecido, los MREP de tipos viii y ix son muy diferentes entre sí; tal y como se muestra en la tabla 13, sólo hay una identidad del 55,2% entre ambos tipos para los primeros 500 nucleótidos del trozo de SCC*mec*.

Finalmente, no obtuvimos ninguna secuencia dentro de SSC*mec* de la cepa CCRI-9770. Sin embargo, tal y como se describe en el apartado «Secuenciación de las secuencias nucleotídicas de MREJ a partir de cepas de SARM no amplificables con los cebadores específicos de los SCC*mec* de tipos I, II y III», esta cepa tiene aparentemente una deleción total o parcial de los genes *orfX* y *orf*SA0022 en el ADN cromosómico a la derecha del sitio de integración de SCC*mec*, y esto representaría una nueva unión en el extremo derecho. Por lo tanto, esta nueva secuencia la denominamos MREP de tipo x (SEQ ID n.º 172). La secuenciación futura debería revelar si esta denominada MREJ de tipo x contiene un nuevo MREP de tipo x o si la ausencia de amplificación está ocasionada realmente por variaciones en la parte cromosómica de la MREJ.

Las secuencias del primer trozo de 500 nucleótidos del extremo derecho de todos los SCC*mec* obtenidos en la presente invención se compararon con las de los SCC*mec* de los tipos I, II y III con los programas de GCG Pileup y Gap. La tabla 13 describe la identidad a nivel de nucleótido entre el extremo derecho de los SCC*mec* de las seis secuencias nuevas y las de los SCC*mec* de tipos I, II y III con el programa Gap de GCG. Mientras que los SCC*mec* de tipos I y II mostraron una identidad de casi el 79,2% (al diferir sólo por una inserción de 102 pb presente en el SCC*mec* de tipo II) (figuras 1, 2 y 4), todos los demás tipos de MREP mostraron identidades que variaban del 40,9% al 57,1%. Esto explica porqué el extremo derecho de los nuevos MREP de tipos iv a ix descritos en la presente invención no se pudieron predecir ni detectar con el sistema descrito por Hiramatsu et al.

No se secuenciaron cuatro cepas (CCRI-1312, CCRI-1325, CCRI-9773 y CCRI-9774) descritas en la tabla 3, sino que en su lugar se caracterizaron con los cebadores para PCR. Con cebadores para amplificación específicos descritos en los ejemplos 4, 5 y 6 se demostró que las cepas CCRI-1312 y CCRI-1325 contenían MREP de tipo v, mientras que con los cebadores para amplificación específicos descritos en el ejemplo 7 se demostró que las cepas CCRI-9773 y CCRI-9774 contenían MREP de tipo vii.

Para obtener la secuencia completa del SCC*mec* presente en las cepas de SARM descritas en la presente invención se desarrollaron cebadores específicos para el cromosoma de *S. aureus* a la izquierda (cadena arriba del gen *mecA*) del sitio de integración de SCC*mec*. Basándose en las secuencias de las bases de datos públicas disponibles, se diseñaron 5 cebadores diferentes (SEQ ID n.º 85-89) (tabla 9). Estos cebadores se pueden utilizar en combinación

con cebadores específicos del cromosoma de *S. aureus* para secuenciar todo el SCC*mec* o, alternativamente, utilizarlos en combinación con un cebador específico de *mecA* (SEQ ID n.º 81) para secuenciar la unión en el extremo izquierdo del SCC*mec*. También desarrollamos varios cebadores específicos para que las secuencias de SCC*mec* conocidas que hay a lo largo del locus para obtener la secuencia completa de SCC*mec* (tabla 9). Estos cebadores permitirán asignar un tipo de SCC*mec* a las cepas de SARM descritas en la presente invención.

Selección de los cebadores para amplificación a partir de las secuencias de SCCmec/orfX

Las secuencias de MREJ determinadas por los inventores o seleccionadas de las bases de datos públicas se utilizaron para seleccionar los cebadores para PCR para detectar e identificar los SARM. La estrategia utilizada para seleccionar estos cebadores para PCR se basó en el análisis de alineamientos múltiples de secuencias de 10 diferentes secuencias de MREJ.

Tras el análisis de los datos de las seis secuencias nuevas de MREP de los tipos iv a ix descritas más arriba, se diseñaron los cebadores específicos para cada secuencia de los nuevos tipos de MREP (SEQ ID n.º 79, 80, 109, 112, 113, 115, 116 y 204) (figura 2, tabla 5, ejemplos 3, 4, 5, 6, 7 y 8). Los cebadores específicos para los MREP de los tipos iv, v y vii (SEQ ID n.º 79, 80 y 112) se utilizaron en múltiplex con los tres cebadores para detectar los SCC*mec* de los tipos I, II y III (SEQ ID n.º 64, 66 y 67) y el cebador específico de *orfX* de *S. aureus* (SEQ ID n.º 64) (ejemplos 3, 4, 5, 6, y 7). Los cebadores específicos de los MREP de tipos vi, viii y ix (SEQ ID n.º 204, 115, 116 y 109) también se diseñaron y se comprobaron con su diana específica (ejemplo 8).

Detección de los productos de amplificación

Clásicamente, la detección de los productos de amplificación por PCR se realiza por electroforesis estándar en gel de agarosa teñido con bromuro de etidio, tal y como se describe más arriba. Sin embargo, está claro que se pueden utilizar otros métodos para detectar los productos de amplificación específicos, que pueden ser más rápidos y más prácticos para el diagnóstico convencional. Los ejemplos de tales métodos se describen en la solicitud de patente internacional en tramitación con la presente WO 01/23604 A2.

La detección de los amplicones también se puede realizar mediante hibridación líquida o en soporte sólido con sondas de ADN internas específicas de especie que se hibridan a un producto de amplificación. Tales sondas se pueden generar a partir de cualquier secuencia de nuestro repertorio y diseñar para que se hibriden específicamente a productos de amplificación de ADN que son objeto de la presente invención. Otra posibilidad es que los amplicones se pueden caracterizar por secuenciación. Véase la solicitud de patente internacional en tramitación con la presente WO 01/23604 A2 para los ejemplos de los métodos de detección y de secuenciación.

Para mejorar la eficacia de la amplificación de ácidos nucleicos, se puede modificar la composición de la mezcla de reacción (Chakrabarti y Schutt, 2002, *Biotechniques*, 32: 866-874; Al-Soud y Radstrom, 2002, *J. Clin. Microbiol.*, 38: 4463-4470; Al-Soud y Radstrom, 1998, *Appl. Environ. Microbiol.* 64: 3748-3753; Wilson, 1997, *Appl. Environ. Microbiol.*, 63: 3741-3751). Tales modificaciones de la mezcla de reacción de amplificación incluyen el uso de diferentes polimerasas o la adición de facilitadores de la amplificación de ácidos nucleicos, tales como asbetaína,
 SAB, sulfóxidos, proteína gp32, detergentes, cationes, cloruro de tetrametilamonio y otros.

En una realización preferente, la detección en tiempo real de la amplificación por PCR se monitorizó con sondas fluorescibles en un aparato Smart Cycler[®] (Cepheid, Sunnyvale, CA). Se desarrolló un ensayo de PCR múltiplex que contenía cebadores específicos para los MREP de tipos i a v y para el *orfX* de *S. aureus* (SEQ ID n.º 64, 66, 67, 79 y 80), una sonda fluorescible específica de la secuencia de orfX (SEQ ID n.º 84, véase anexo II y figura 2) y un control interno para monitorizar la inhibición de la PCR. El control interno contiene secuencias complementarias a los cebadores específicos de orfX y de los MREP de tipo iv (SEQ ID n.º 79 y 64). El ensayo también contiene una sonda fluorescible, marcada con tetracloro-6-carboxifluoresceína (TET), específica de una secuencia interna del fragmento de ADN generado durante la amplificación del control interno. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 3,45 mM, 0,8 µM de cada uno de los cebadores específicos del 45 MREP (SEQ ID n.º 66 y 67) y del cebador específico de *orfX* (SEQ ID n.º 64), 0,4 μM de cada uno de los cebadores específicos de MREP (SEQ ID n.º 79 y 80), 80 copias del control interno, 0,2 µM de la sonda fluorescible marcada con TET específica del control interno, 0,2 µM de la sonda fluorescible (SEQ ID n.º 84) marcada con 6carboxifluoresceína (FAM), 330 μM de cada uno de los cuatro dNTP (Pharmacia Biotech), 3,45 μg/μl de SAB (Sigma), y 0,875 U de la polimerasa *Taq* (Promega) unida al anticuerpo *Taq*StartTM (BD Biosciences). La amplificación por PCR en el Smart Cycler[®] se realizó como sigue: 3 min a 95 °C para la desnaturalización inicial, luego 48 ciclos de tres etapas que consisten en 5 s a 95 °C para la etapa de desnaturalización, 15 s a 60 °C para la etapa de hibridación y 15 s a 72 °C para la etapa de extensión. Las pruebas de sensibilidad realizadas con ADN genómico purificado a partir de una cepa de SARM de cada tipo de MREP (i a v) mostraron un límite de detección de 2 a 10 copias de genoma (ejemplo 5). Ninguna de las 26 SCNRM ni de las 10 SCNSM analizadas dieron positivo 55 con este ensayo múltiplex. Las ocho cepas de SARM (CCRI-9208, CCRI-9770, CCRI-9681, CCRI-9860, CCRI-9583, CCRI-9773, CCRI-9774, CCRI-9589) que albergan las secuencias nuevas de MREP de los tipos vi, viii, ix y x descritas en la presente invención permanecieron indetectables (ejemplo 5).

En una realización preferente, se evaluó la detección de SARM con el ensayo de PCR múltiplex en tiempo real en el

aparato Smart Cycler[®] (Cepheid, Sunnyvale, CA) directamente de los especímenes clínicos. Se recogieron 142 muestras nasales con torunda durante un programa de seguimiento hospitalario de SARM en el Hospital General de Montreal (Montreal, Quebec, Canadá). Las muestras de las torundas se analizaron en el Centre de Recherche en Infectiologie de la Universidad Laval antes de que pasaran 24 horas desde su recogida. Una vez recibidas, las torundas se sembraron en placas de agar con manitol y, luego, el material nasal de la misma torunda se preparó con un protocolo de preparación de especímenes simple y rápido descrito en la solicitud de patente de los EE.UU. en tramitación con la presente n.º US 60/306 163. La identificación clásica de SARM se realizó mediante los métodos de cultivo estándares.

De las 34 muestras, el ensayo de PCR detectó 33 positivos para SARM basándose en el método de cultivo. En comparación con el cultivo, el ensayo de PCR detectó 8 especímenes más que dieron positivo para el SARM con una sensibilidad del 97,1% y una especificidad del 92,6% (ejemplo 6). Este ensayo de PCR múltiplex representa un método rápido y poderoso de detección específica de vehículos de SARM directamente de especímenes nasales, y se puede utilizar con cualquier tipo de especímenes clínicos tales como heridas, sangre o cultivo de sangre, LCR, etc.

En una realización preferente, se desarrolló un ensayo de PCR múltiplex que contenía cebadores específicos de los MREP de tipos i, ii, iii, iv, v y vi, y del *orfX* de *S. aureus* (SEQ ID n.º 66, 67, 79, 80 y 112) y tres sondas fluorescibles específicas para la secuencia de *orfX* que permitieron detectar los dos polimorfismos de secuencia identificados en esta región de la secuencia de *orfX*. Cuatro de las cepas que no se detectaron con el ensayo múltiplex para detección de los MREP de tipos i a v se detectaron ahora con este ensayo múltiplex, mientras que las cuatro cepas de SARM (CCRI-9208, CCRI-9770, CCRI-9681, CCRI-9860) que albergan los MREP de tipos vi, viii, ix y x descritos en la presente invención permanecieron indetectables (ejemplo 7). También se diseñaron cebadores específicos para los MREP de tipos vi, viii y ix (SEQ ID n.º 204, 115, 116 y 109) y se demostró que detectaban sus cepas diana específicas (ejemplo 8). Mientras que los cebadores y las sondas procedentes de las enseñanzas de Hiramatsu et al. permitieron detectar sólo el 48,7% (19 cepas de 39) de las cepas de SARM de la tabla 2, los cebadores y las sondas diseñados en la presente invención permiten detectar el 97,4% de las cepas (38 cepas de 39) (véanse los ejemplos 7 y 8). Por lo tanto, se puede decir que nuestro ensayo tiene una ubicuidad superior al 50% para las cepas de SARM recogidas en la tabla 2.

Pruebas de especificidad, ubicuidad y sensibilidad para las sondas y cebadores oligonucleotídicos

Se analizó la especificidad de las sondas y cebadores oligonucleotídicos mediante la amplificación del ADN o mediante la hibridación con especies de estafilococos. Todas las especies estafilocócicas analizadas probablemente eran patógenos relacionados con infecciones o posibles contaminantes que se pueden aislar de especímenes clínicos. Cada ADN diana se puede liberar desde las células microbianas mediante tratamientos químicos y/o físicos estándares para lisar las células (Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, 2.ª ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) o, alternativamente, se utilizó ADN genómico purificado con el kit de ADN GNOMETM (Qbiogene, Carlsbad, CA). Posteriormente, el ADN se amplificó con el conjunto de cebadores. Las sondas o cebadores específicos se hibridaron sólo con el ADN diana.

A los cebadores oligonucleotídicos que se encontró que amplificaban específicamente el ADN del SARM diana se les analizó posteriormente su ubicuidad por amplificación (a saber, los cebadores ubicuos que amplificaron con eficacia la mayor parte o todos los aislados de SARM). Finalmente, se determinó la sensibilidad analítica de los ensayos de PCR mediante diluciones de 10 veces o de 2 veces del ADN genómico purificado de los microorganismos diana. Para la mayoría de los ensayos se obtuvieron unos niveles de sensibilidad en el margen de 2 a 10 copias de genoma. La especificidad, la ubicuidad y la sensibilidad analítica de los ensayos por PCR se analizó bien directamente con cultivos bacterianos o bien con ADN genómico bacteriano purificado.

Las sondas fluorescibles se analizaron con la plataforma Smart Cycler[®] tal y como se describe más arriba. Se consideró que una sonda fluorescible era específica sólo cuando se hibridaba únicamente al ADN amplificado de la MREJ de *S. aureus*. A las sondas fluorescibles que se halló que eran específicas se les analizó posteriormente su ubicuidad (a saber, las sondas ubicuas que detectaban con eficacia la mayoría o todos los aislados de SARM) por hibridación a los ADN bacterianos de diferentes cepas de SARM.

Cepas bacterianas

50 Las cepas de referencia utilizadas para construir subrepertorios de datos de secuencias de unión del extremo derecho del SCC*mec*-cromosoma en propiedad, así como para comprobar los ensayos de hibridación y de amplificación, se obtuvieron de (i) la American Type Culture Collection (ATCC), (ii) el Laboratorio de Salud Pública de Québec (LSPQ) (Ste-Anne de Bellevue, Québec, Canadá), (iii) los centros para la prevención y el control de enfermedades (CDC, por su nombre en inglés) (Atlanta, GA), (iv) el Instituto Pasteur (París, Francia) y v) la colección Harmony (Londres, Reino Unido) (tabla 14). En esta invención también se utilizaron aislados clínicos de SARM, SASM, SCNRM y SCNSM de diferentes regiones geográficas (tabla 15). Se confirmó la identidad de nuestras cepas de SARM mediante pruebas fenotípicas y se volvió a confirmar mediante análisis por PCR con cebadores específicos de *S. aureus* y cebadores específicos para *mecA* (SEQ ID n.º 69 y 81) (Martineau et al., 2000, *Antimicrob. Agents. Chemother.* 44: 231-238).

En aras de la claridad, a continuación se encuentra una lista con los ejemplos, tablas, figuras y anexos de esta invención.

DESCRIPCIÓN DE LOS EJEMPLOS

- **Ejemplo 1:** los cebadores desarrollados por Hiramatsu et al. sólo pueden detectar las cepas de SARM que pertenecen a los MREP de tipos i, ii y iii, mientras que no detectan los tipos de MREP nuevos prevalentes.
 - **Ejemplo 2**: detección e identificación de SARM con cebadores específicos de las secuencias de MREP de tipos i, ii y iii desarrolladas en la presente invención.
 - **Ejemplo 3**: desarrollo de un ensayo de PCR múltiplex en un termociclador estándar para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v.
- 10 **Ejemplo 4**: desarrollo de un ensayo de PCR múltiplex en tiempo real en el Smart Cycler[®] para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv v v.
 - **Ejemplo 5**: desarrollo de un ensayo de PCR múltiplex en tiempo real en el Smart Cycler[®] para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v, y que incluye un control interno.
- **Ejemplo 6**: detección de SARM mediante el ensayo múltiplex en tiempo real en el Smart Cycler[®] basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v para detectar SARM directamente en los especímenes clínicos.
 - **Ejemplo 7**: desarrollo de un ensayo de PCR múltiplex en tiempo real en el Smart Cycler[®] para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv, v, vi y vii.
 - **Ejemplo 8**: desarrollo de ensayos de PCR en tiempo real en el Smart Cycler[®] para detectar e identificar SARM basándose en los MREP de tipos vi, viii y ix.

20 DESCRIPCIÓN DE LAS TABLAS

La tabla 1 da a conocer información sobre todos los cebadores para PCR desarrollados por Hiramatsu et al. en la patente de los EE.UU. n.º 6 156 507.

La tabla 2 es una recopilación de los resultados (ubicuidad y especificidad) para la detección de la unión en el extremo derecho de SCC*mec-orfX* con los cebadores descritos por Hiramatsu et al. en la patente de los EE.UU. n.º 6 156 507 en un termociclador estándar.

La tabla 3 es una lista de cepas de SARM no amplificables con los cebadores que están dirigidos selectivamente a los tipos I, II y III de las secuencias de la unión del extremo derecho del SCC*mec-orfX*.

La tabla 4 es una lista de las secuencias nucleotídicas de las MREJ de Staphylococcus aureus.

La tabla 5 da a conocer información sobre todos los cebadores desarrollados.

30 La tabla 6 es una lista de las sondas fluorescibles desarrolladas.

La tabla 7 muestra el tamaño de los amplicones de las diferentes parejas de cebadores descritas por Hiramatsu et al. en la patente de los EE.UU. n.º 6 156 507 o descritas en la presente memoria.

La tabla 8 da a conocer información sobre los cebadores desarrollados para secuenciar la unión en el extremo derecho de SCC*mec*-cromosoma.

35 La tabla 9 da a conocer información sobre los cebadores desarrollados para obtener la secuencia completa de SCC*mec*.

La tabla 10 es una lista de las secuencias disponibles en las bases de datos públicas (GenBank, proyectos genómicos o patente de los EE.UU. n.º 6 156 507) utilizadas para diseñar cebadores y sondas.

La tabla 11 ofrece la sensibilidad analítica del ensayo de PCR desarrollado en la presente invención con los cebadores que están dirigidos selectivamente a los tipos I, II y III de las secuencias de la unión en el extremo derecho de SCC*mec-orfX* y realizado en un termociclador estándar.

La tabla 12 es una recopilación de los resultados (ubicuidad y especificidad) para la detección de SARM con los cebadores desarrollados en la presente invención que están dirigidos selectivamente a los tipos I, II y III de las secuencias de unión en el extremo derecho de SCC*mec-orfX* y realizados en un termociclador estándar.

45 La tabla 13 muestra una comparación de la identidad de las secuencias entre los primeros 500 nucleótidos del extremo derecho de los SCC*mec* entre 9 tipos de MREP.

La tabla 14 da a conocer información sobre las cepas de referencia de SARM, SASM, SCNRM y SCNSM utilizadas para validar los ensayos de PCR desarrollados en la presente invención.

La tabla 15 da a conocer información sobre el origen de las cepas clínicas de SARM, SASM, SCNRM y SCNSM utilizadas para validar los ensayos de PCR descritos en la presente invención.

5 La tabla 16 describe la sensibilidad analítica del ensayo de PCR desarrollado en la presente invención que utiliza cebadores que están dirigidos selectivamente a 5 tipos de secuencias de MREP y realizado en un termociclador estándar.

La tabla 17 es una recopilación de los resultados (ubicuidad y especificidad) para el ensayo de PCR desarrollado en la presente invención que usa los cebadores que están dirigidos selectivamente a 5 tipos de secuencias de MREP y 10 realizado en un termociclador estándar.

La tabla 18 describe la sensibilidad analítica del ensayo de PCR desarrollado en la presente invención que usa la plataforma Smart Cycler[®] para la detección de 5 tipos de MREP.

La tabla 19 es una recopilación de los resultados (ubicuidad y especificidad) para el ensayo de PCR desarrollado en la presente invención que utiliza cebadores y una sonda fluorescible que está dirigida selectivamente a 5 tipos de secuencias de MREP y realizado en la plataforma Smart Cycler[®].

La tabla 20 describe la sensibilidad analítica del ensayo de PCR desarrollado en la presente invención que usa la plataforma Smart Cycler[®] para la detección de 6 tipos de MREP.

La tabla 21 es una recopilación de los resultados (ubicuidad y especificidad) para el ensayo de PCR desarrollado en la presente invención que usa cebadores y una sonda fluorescible que está dirigida selectivamente a 6 tipos de 20 secuencias de MPREP y realizado en la plataforma Smart Cycler[®].

DESCRIPCIÓN DE LAS FIGURAS

La figura 1 es un diagrama que ilustra la posición de los cebadores desarrollados por Hiramatsu et al. (patente de los EE.UU. n.º 6 156 507) en la unión del extremo derecho de SCC*mec*-cromosoma para detectar e identificar SARM.

La figura 2 es un diagrama que ilustra la posición de los cebadores seleccionados en la presente invención en la unión del extremo derecho de SCC*mec-orf*X para detectar e identificar SARM.

La figura 3 es un diagrama que ilustra la posición de los cebadores seleccionados en la presente invención para secuenciar los nuevos tipos de MREP.

La figura 4 ilustra un alineamiento de secuencias de nueve tipos de MREP.

LEYENDAS DE LAS FIGURAS

30 Figura 1. Organización esquemática de los tipos I, II y III de las uniones en el extremo derecho de SCC*mec-orfX*, y localización de los cebadores (SEQ ID n.º 52-63) descritos por Hiramatsu et al. para detectar e identificar SARM. El tamaño de los amplicones se describe en la tabla 7.

Figura 2. Organización esquemática de los MREP de tipos i, ii, iii, iv, v, vi, vii, viii y ix, y localización de los cebadores y la sonda fluorescible que están dirigidos selectivamente a todos los tipos de MREP (SEQ ID n.º 20, 64, 66, 67, 79, 80, 84, 112, 115, 116, 84, 163 y 164) que se desarrollaron en la presente invención. El tamaño de los amplicones se describe en la tabla 7.

Figura 3. Organización esquemática de las uniones en el extremo derecho de SCC*mec*-cromosoma, y localización de los cebadores (SEQ ID n.º 65, 68, 69, 70, 77, 96, 118, 126, 132, 150 y 158) desarrollados en la presente invención para secuenciar los MREP de tipos iv, v, vi, vii, viii, ix y x.

40 Figura 4. Alineamiento múltiple de secuencias de representantes de nueve tipos de MREP (representados por trozos de las SEQ ID n.º 1, 2, 104, 51, 50, 171, 165, 167 y 168 para los tipos i, ii, iii, iv, v, vi, vii, viii y ix, respectivamente).

DESCRIPCIÓN DE LOS ANEXOS

Los anexos muestran las estrategias utilizadas para seleccionar cebadores y sondas internos:

El anexo I ilustra la estrategia para seleccionar los cebadores a partir de las secuencias de SCC*mec* y de *orfX* 45 específicas de los SCC*mec* de los tipos I y II.

El anexo II ilustra la estrategia para seleccionar las sondas fluorescibles específicas para detectar en tiempo real las uniones en el extremo derecho de SCC*mec-orfX*.

Tal y como se muestra en estos anexos, los cebadores para amplificación seleccionados pueden contener inosinas

y/o bases ambiguas. La inosina es un análogo de nucleótido capaz de unirse específicamente a cualquiera de los cuatro nucleótidos A, C, G o T. Otra posibilidad es que se utilicen oligonucleótidos degenerados que consisten en una mezcla de oligonucleótidos que tienen dos o más de los cuatro nucleótidos A, C, G o T en el sitio de las discordancias. La inclusión de la inosina y/o de degeneraciones en los cebadores para amplificación proporciona cierta tolerancia a los apareamientos erróneos, con lo que se permite la amplificación de un abanico más amplio de secuencias nucleotídicas diana (Dieffenbach y Dveksler, 1995, *PCR Primer: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Plainview, Nueva York).

Ejemplos

EJEMPLO 1:

10 Los cebadores desarrollados por Hiramatsu et al. sólo pueden detectar las cepas de SARM que pertenecen a los MREP de tipos i, ii y iii, mientras que no detectan nuevos tipos de MREP prevalentes.

Tal y como se muestra en la figura 1, Hiramatsu et al. han desarrollado varios cebadores que pueden hibridarse específicamente al extremo derecho de los ADN de SCC*mec* de tipos I, II y III. Combinaron estos cebadores con cebadores específicos de la región del cromosoma de *S. aureus* localizada a la derecha del sitio de integración de SCC*mec* para detectar los SARM. Hiramatsu et al. demostraron que el conjunto de cebadores (SEQ ID n.º 22, 24 y 28 en la patente de los EE.UU. n.º 6 156 507 que corresponde a las SEQ ID n.º 56, 58 y 60 en la presente invención) eran los más específicos y ubicuos para detectar SARM. Este conjunto de cebadores ofrece productos de amplificación de 1,5 kb para el SCC*mec* del tipo I, de 1,6 kb para el SCC*mec* del tipo II y de 1,0 kb para el SCC*mec* de tipo III (tabla 7). Se ensayó la ubicuidad y la especificidad de este ensayo de PCR múltiplex con 39 cepas de SARM, 41 cepas de SASM, 9 cepas de SCNRM y 11 cepas de SCNSM (tabla 2). En una mezcla de reacción de PCR de 20 μl se amplificó 1 μl de una suspensión bacteriana estandarizada tratada o de una preparación de ADN genómico bacteriano purificado de bacterias. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 2,5 mM, 0,4 μM de cada uno de los cebadores específicos de SCC*mec* y de *orfX* (SEQ ID n.º 56, 58 y 60), 200 μM de cada uno de los cuatro dNTP (Pharmacia Biotech), 3,3 μg/μl de SAB (Sigma) y 0,5 U de la polimerasa *Taq* (Promega) unida al anticuerpo *Taq*StartTM (BD Biosciences).

Las reacciones de la PCR se sometieron a continuación al termociclado: 3 min a 94 °C seguidos de 40 ciclos de 60 s a 95 °C para la etapa de desnaturalización, 60 s a 55 °C para la etapa de hibridación y 60 s a 72 °C para la etapa de extensión, y luego se realizó la última extensión de 7 minutos a 72 °C en un termociclador estándar (PTC-200 de MJ Research Inc.). La detección de los productos de PCR se realizó mediante electroforesis en geles de agarosa (2%) que contienen 0,25 µg/ml de bromuro de etidio.

Ninguna de las cepas de SCNRM o SCNSM analizadas fue detectada con el conjunto de cebadores que detectan los SCC*mec* de tipos I, II y III. De las 39 cepas de SARM analizadas, 20 no se detectaron con este ensayo de PCR múltiplex (tablas 2 y 3). Una de estas cepas de SARM sin detectar corresponde al clon portugués de SARM muy epidémico (cepa CCRI-9504; De Lencastre et al., 1994, *Eur, J. Clin. Microbiol. Infect. Dis.* 13: 64-73) y otra corresponde al clon canadiense de SARM muy epidémico CMRSA1 (cepa CCRI-9589; Simor et al., *CCDR* 1999, 25-12, 15 de junio). Estos datos demuestran que el conjunto de cebadores desarrollado por Hiramatsu et al. (SEQ ID n.º 22, 24 y 28 en la patente de los EE.UU. 6 156 507 que corresponden a las SEQ ID n.º 56, 58 y 60 en la presente invención) no es ubicuo para detectar los SARM y sugiere que algunas cepas de SARM tienen secuencias en la unión del extremo derecho de SCC*mec* que son diferentes de las identificadas por Hiramatsu et al. En los SARM se encuentran secuencias de SCC*mec* de otros tipos u otras secuencias en el extremo derecho del SCC*mec* (tipo de MREP). Una limitación de este ensayo es la detección inespecífica de 13 cepas de SASM (tabla 2).

EJEMPLO 2:

Detección e identificación de SARM con cebadores específicos de las secuencias de los MREP de tipos i, ii y iii desarrolladas en la presente invención. Según el análisis de los alineamientos múltiples de secuencias de las secuencias de orfX y de SCCmec descritas por Hiramatsu et al. o disponibles en GenBank, se diseñó un conjunto de cebadores (SEQ ID n.º 64, 66, 67) capaces de amplificar segmentos cortos de las uniones en el extremo derecho de SCCmec-orfX de los tipos I, II y III a partir de cepas de SARM y de discriminarlas de los SCNSM (anexo I y figura 2). El conjunto de cebadores elegido ofrece productos de amplificación de 176 pb para el SCCmec de tipo I, de 278 pb para el SCCmec de tipo II y de 223 pb para el SCCmec de tipo III, y permite la amplificación rápida por PCR. Estos cebadores se utilizaron en PCR múltiplex para comprobar su ubicuidad y especificidad con 208 cepas de SARM, 252 cepas de SASM, 41 cepas de SCNRM y 21 cepas de SCNSM (tabla 12). La amplificación y la detección por PCR se realizó tal y como se describe en el ejemplo 1. Las reacciones de PCR se sometieron a continuación a un termociclado (3 minutos a 94 °C seguidos de 30 o 40 ciclos de 1 s a 95 °C para la etapa de desnaturalización y de 30 s a 60 °C para la etapa de hibridación-extensión y luego va seguida por una última extensión de 2 minutos a 72 °C) en un termociclador estándar (PTC-200 de MJ Research Inc.). La detección de los productos de PCR se realizó como se describe en el ejemplo 1.

Con este conjunto de cebadores (tabla 12) no se detectó ninguna de las cepas analizadas de SCNRM ni de SCNSM. Sin embargo, las 20 cepas de SARM que no se detectaron con el conjunto de cebadores desarrollado por Hiramatsu

et al. (SEQ ID n.º 56, 58 y 60) tampoco se detectaron con los cebadores desarrollados en la presente invención (tablas 3 y 12). Estos datos también demuestran que algunas cepas de SARM tienen secuencias en la unión del extremo derecho del SCC*mec*-cromosoma que son diferentes a las identificadas por Hiramatsu et al. De nuevo, como se observó con los cebadores de Hiramatsu, también se detectaron inespecíficamente 13 cepas de SASM (tabla 12). Queda por establecer la importancia clínica de este hallazgo porque estas cepas que parecen SASM podrían ser el resultado de una deleción reciente del locus *mec* (Deplano et al., 2000, *J. Antimicrob. Chemotherapy*, 46: 617-619; Inglis et al., 1990, *J. Gen. Microbiol.* 136: 2231-2239; Inglis et al, 1993, *J. Infect. Dis.* 167: 323-328; Lawrence et al, 1996, *J. Hosp. Infect.*, 33: 49-53; Wada et al., 1991, *Biochem. Biophys. Res. Comm.* 176: 1319-1326).

10 **EJEMPLO 3**:

Desarrollo de un ensayo de PCR múltiplex en un termociclador estándar para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v. Tras el análisis de dos de los datos de secuencias de los nuevos MREP de tipos iv y v descritos en la presente invención, se diseñaron y usaron dos nuevos cebadores (SEQ ID n.º 79 y 80) en las múltiplex con los tres cebadores SEQ ID n.º 64, 66 y 67 descritos en el ejemplo 2. La amplificación por PCR y detección de los productos de PCR se realizó tal y como se describe en el ejemplo 2. Los análisis de sensibilidad realizados con diluciones decimales o a la mitad del ADN genómico purificado de diferentes cepas de SARM de cada tipo de MREP mostraron un límite de detección de 5 a 10 copias del genoma (tabla 16). Se realizaron pruebas de especificidad con 0,1 ng de ADN genómico purificado o 1 µl de una suspensión bacteriana estandarizada. Todas las cepas de SCNRM o de SCNSM analizadas dieron negativo con este ensayo múltiplex (tabla 17). De las 20 cepas de SARM que no se detectaron con la PCR múltiplex descritas en los ejemplos 1 y 2, ahora se detectaron 12 con este ensayo múltiplex. De nuevo, tal y como se observó con los cebadores de Hiramatsu, también se detectaron inespecíficamente las 13 cepas de SASM (tabla 12). Las ocho cepas de SARM (CCRI-9208, CCRI-9583, CCRI-9773, CCRI-9774, CCRI-9589, CCRI-9860, CCRI-9681, CCRI-9770) y que albergan las secuencias de MREP de los nuevos tipos vi, vii, viii, ix y x descritas en la presente invención permanecieron indetectables.

EJEMPLO 4:

Desarrollo de un ensayo de PCR múltiplex en tiempo real en el Smart Cycler[®] para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v. El ensayo de PCR múltiplex descrito en el ejemplo 3 que contiene los cebadores (SEQ ID n.º 64, 66, 67, 79 y 80) se adaptó a la plataforma Smart Cycler[®] (Cepheid). Se desarrolló una sonda fluorescible específica de la secuencia de orfX (SEQ ID n.º 84, véase el anexo II). Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 3,5 mM, 0,4 µM de cada uno de los cebadores específicos de SCCmec y de orfX (SEQ ID n.º 64, 66, 67, 79 y 80), 0,2 µM de la sonda fluorescible marcada con FAM (SEQ ID n.º 84), 200 μM de cada uno de los cuatro dNTP, 3,3 μg/μl de SAB y 0,5 U de la polimerasa *Taq* unida al anticuerpo *Taq*StartTM. La amplificación por PCR en el Smart Cycler[®] se 35 realizó como sigue: 3 min a 94 °C para la desnaturalización inicial, luego 45 ciclos de tres etapas que consisten en 5 s a 95 °C para la etapa de desnaturalización, 15 s a 59 °C para la etapa de hibridación y 10 s a 72 °C para la etapa de extensión. La detección de la fluorescencia se realizó al final de cada etapa de hibridación. Los análisis de sensibilidad realizados con ADN genómico purificado de varias cepas de SARM de cada tipo de MREP mostraron un límite de detección de 2 a 10 copias del genoma (tabla 18). Ninguna de las SCNRM ni SCNSM dieron positivo con 40 este ensayo múltiplex (tabla 19). De nuevo, como se observó con los cebadores de Hiramatsu, también se detectaron inespecíficamente 13 cepas de SASM. De las 20 cepas de SARM que no se detectaron con la PCR múltiplex descritas en los ejemplos 1 y 2, 12 sí se detectaron con este ensayo múltiplex. Tal y como se describe en el ejemplo 3, las ocho cepas de SARM que albergan las secuencias de MREP de los nuevos tipos vi, vii, viii, ix y x descritas en la presente invención permanecieron indetectables.

45 **EJEMPLO 5**:

Desarrollo de un ensayo de PCR múltiplex en tiempo real en el Smart Cycler[®] para detectar e identificar SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v que incluye un control interno. El ensayo de PCR múltiplex descrito en el ejemplo 4 que contiene los cebadores específicos para los MREP de tipos i a v y para el *orfX* de *S. aureus* (SEQ ID n.º 64, 66, 67, 79 y 80) y una sonda fluorescible específica de la secuencia de *orfX* (SEQ ID n.º 84, véase el anexo II) se optimizó para incluir un control interno que monitorice la inhibición de la PCR. Este control interno contiene secuencias complementarias a los cebadores específicos de *orfX* y del MREP de tipo iv (SEQ ID n.º 79 y 64). El ensayo también contiene una sonda fluorescible marcada con TET específica de una secuencia interna del amplicón generado por amplificación del control interno. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 3,45 mM, 0,8 μM de cada uno de los cebadores específicos de MREP (SEQ ID n.º 66 y 67) y del cebador específico de *orfX* (SEQ ID n.º 64), 0,4 μM de cada uno de los cebadores específicos de MREP (SEQ ID n.º 79 y 80), 80 copias del control interno, 0,2 μM de la sonda fluorescible marcada con TET específica del control interno, 0,2 μM de la sonda fluorescible marcada con FAM (SEQ ID n.º 84), 330 μM de cada uno de los cuatro dNTP (Pharmacia Biotech), 3,45 μg/μl de SAB (Sigma) y 0,875 U de la polimerasa *Taq* (Promega) unida al anticuerpo *Taq*StartTM (BD Biosciences). La amplificación por PCR en el Smart Cycler[®] se realizó como sigue: 3 min a 95 °C para la desnaturalización inicial, luego 48 ciclos de tres etapas que consisten en 5 s a 95 °C para la etapa de desnaturalización, 15 s a 60 °C para la etapa de hibridación y 15 s a 72 °C

para la etapa de extensión. Los análisis de sensibilidad realizados con ADN genómico purificado de una cepa de SARM para cada tipo de MREP (i a v) mostraron un límite de detección de 2 a 10 copias del genoma. Ninguna de las 26 SCNRM ni de las 10 SCNSM dieron positivo con este ensayo múltiplex. De nuevo, como se observó con los cebadores de Hiramatsu, también se detectaron inespecíficamente 13 cepas de SASM. Como se describe en los ejemplos 3 y 4, las ocho cepas de SARM que albergan las secuencias de MREP de los nuevos tipos vi a x descritas en la presente invención permanecieron indetectables.

EJEMPLO 6:

Detección de SARM mediante el ensayo múltiplex en tiempo real en el Smart Cycler[®] basándose en las secuencias de los MREP de tipos i, ii, iii, iv y v, directamente en los especímenes clínicos. El ensayo descrito en el ejemplo 5 se adaptó para la detección directa en los especímenes clínicos. Se analizaron en total 142 muestras nasales recogidas con torunda durante un programa de seguimiento hospitalario de SARM en el Hospital General de Montreal (Montreal, Quebec, Canadá). Las muestras de las torundas se analizaron en el Centre de Recherche en Infectiologie de la Universidad Laval en menos de 24 horas desde su recogida. Tras su recepción, las torundas se sembraron en placas de agar con manitol, y luego se preparó el material nasal de la misma torunda con un protocolo de preparación de especímenes simple y rápido descrito en la solicitud de patente de los EE.UU en tramitación con la presente n.º US 60/306 163. La identificación clásica de los SARM se realizó mediante métodos de cultivo estándares.

El ensayo de PCR descrito en el ejemplo 5 detectó 33 de las 34 muestras positivas para SARM basándose en el método de cultivo. En comparación con el cultivo, el ensayo de PCR detectó 8 especímenes positivos más de SARM para una sensibilidad de 97,1% y una especificidad del 92,6%. Este ensayo de PCR múltiplex representa un método rápido y poderoso para la detección específica de portadores de SARM directamente de especímenes nasales y se puede utilizar con cualquier tipo de especímenes clínicos tales como heridas, sangre o cultivo de sangre, LCR, etc.

EJEMPLO 7:

Desarrollo de un ensayo de PCR múltiplex en tiempo real en el Smart Cycler® para detectar e identificar 25 SARM basándose en las secuencias de los MREP de tipos i, ii, iii, iv, v y vii. Tras el análisis de los datos de la secuencia del nuevo MREP de tipo vii descrito en la presente invención (SEQ ID n.º 165 y 166), se diseñaron dos nuevos cebadores (SEQ ID n.º 112 y 113) y se ensayaron en múltiplex con los tres cebadores SEQ ID n.º 64, 66, y 67 descritos en el ejemplo 2. Se seleccionó el cebador SEQ ID n.º 112 para uso en el múltiplex sobre la base de su sensibilidad. También se utilizaron en el múltiplex tres sondas fluorescibles (SEQ ID n.º 84, 163 y 164) específicas 30 de la secuencia de orfX que permitieron detectar dos polimorfismos de secuencia identificados en esta región de la secuencia de orfX, basándose en el análisis de las SEQ ID n.º 173-186. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 3,45 mM, 0,8 µM de cada uno de los cebadores específicos de SCCmec (SEQ ID n.º 66 y 67) y del cebador específico de orfX (SEQ ID n.º 64), 0,4 µM de cada uno de los cebadores específicos de SCC*mec* (SEQ ID n.º 79 y 80), 0,2 μ M de la sonda fluorescible marcada con FAM (SEQ ID n.º 84), 330 μ M de cada uno de los cuatro dNTP (Pharmacia Biotech), 3,45 μ g/ μ l de SAB (Sigma) y 0,875 U de la polimerasa *Taq* (Promega) unida al anticuerpo *Taq*Start[™] (BD Biosciences). La amplificación por PCR en el Smart Cycler® se realizó como sigue: 3 min a 95 °C para la desnaturalización inicial, luego 48 ciclos de tres etapas que consisten en 5 s a 95 °C para la etapa de desnaturalización, 15 s a 60 °C para la etapa de hibridación y 15 s a 72 °C para la etapa de extensión. La detección de la fluorescencia se realizó al final de cada etapa de hibridación. 40 Las pruebas de sensibilidad realizadas con ADN genómico purificado de varias cepas de SARM de cada tipo de MREP mostraron un límite de detección de 2 copias del genoma (tabla 20). Ninguna de las 26 SCNRM ni de las 8 SCNSM dieron positivo con este ensayo múltiplex. De nuevo, como se observó con los cebadores de Hiramatsu, también se detectaron 13 cepas de SASM inespecíficamente (tabla 21). Cuatro de las cepas que no se detectaron con el ensayo múltiplex para la detección de MREP de los tipos i a v se detectaron ahora con este ensayo múltiplex, 45 mientras que permanecieron indetectables las cuatro cepas de SARM (CCRI-9208, CCRI-9770, CCRI-9681, CCRI-9860) que albergan MREP de los tipos vi, viii, ix y x descritos en la presente invención.

EJEMPLO 8:

Desarrollo de los ensayos de PCR en tiempo real en el Smart Cycler® para detectar e identificar SARM basándose en los MREP de tipos vi, viii, ix. Tras el análisis de los datos de secuencia de los nuevos MREP de tipos vi, viii y ix descritos en la presente invención, se diseñaron dos nuevos cebadores específicos del MREP de tipo vi (SEQ ID n.º 202 y 204), un cebador específico del MREP de tipo viii (SEQ ID n.º 116), un cebador específico del MREP de tipos viii y ix (SEQ ID n.º 115). Cada cebador para PCR se utilizó en combinación con el cebador específico de *orfX* (SEQ ID n.º 64) y se analizó frente a su cepa diana específica. Cada reacción de PCR contenía KCl a 50 mM, Tris-HCl a 10 mM (pH 9,0), Triton X-100 al 0,1%, MgCl₂ a 3,45 mM, 0,4 μM de cada uno de los cebadores específicos de SCC*mec* y de *orfX*, 200 μM de cada uno de los cuatro dNTP, 3,4 μg/μl de SAB, y 0,875 U de la polimerasa *Taq* unida al anticuerpo *Taq*SartTM. La amplificación por PCR se realizó como se describe en el ejemplo 7. Los análisis de sensibilidad realizados con ADN genómico purificado de sus respectivas cepas diana de SARM demostraron que la mejor combinación de parejas de cebadores eran SEQ ID n.º 64 y 115 para la detección de los MREP de tipos viii y ix simultáneamente. Estos nuevos cebadores específicos de SCC*mec* se pueden utilizar en múltiplex con cebadores específicos de MREP de los tipos

i, ii, iii, iv, v y vii (SEQ ID n.º 64, 66, 67, 79 y 80) descritos en los ejemplos anteriores para proporcionar un ensayo de SARM más ubicuo.

En conclusión, hemos mejorado la ubicuidad de la detección de las cepas de SARM. Se han identificado nuevos MREJ de tipos iv a x. Entre las cepas representativas de estos nuevos tipos, los cebadores y/o sondas de Hiramitsu conseguían detectar menos del 50% de los mismos. Por consiguiente, hemos pasado ampliamente la barra de una ubicuidad de al menos el 50%, porque nuestros cebadores y sondas se diseñaron para detectar el 100% de las cepas analizadas como representantes de los MREJ de tipos iv a ix. Por consiguiente, aunque la ubicuidad depende del grupo de cepas y representantes que están analizándose, ahora sabemos que acercarse a una ubicuidad del 100% es un objetivo alcanzable, cuando se utilizan las secuencias de las uniones en el extremo derecho (MREJ) para diseñar sondas y cebadores que se ocupen del polimorfismo en esta región. Según cuántos tipos desconocidos de MREJ existan, tenemos un margen de maniobra que va del 50% (más alto que para los cebadores de Hiramatsu con las cepas analizadas) al 100% si secuenciamos todas las MREJ existentes para diseñar de manera adecuada las herramientas y métodos diagnósticos presentes, siguiendo las enseñanzas anteriores.

Tabla 1. Cebadores para amplificación por PCR descritos por Hiramatsu et al. en la patente de los EE.UU. n.º 6 156 507 encontrados en el listado de secuencias.

SEQ ID n.º (presente invención)	Diana	Posición ^{a,b}	SEQ ID n.º (patente de los EE.UU. n.º 6 156 507)
52	MREP de los tipos i y ii	480	18
53	MREP de los tipos i y ii	758	19
54	MREP de los tipos i y ii	927	20
55	MREP de los tipos i y ii	1154	21
56	MREP de los tipos i y ii	1755	22
57	MREP de los tipos i y ii	2302	23
58	MREP del tipo iii	295°	24
59	orfX	1664	25
60	orfSA0022 ^d	3267	28
61	orfSA0022 ^d	3585	27
62	orfX	1389	26
63	orfSA0022 ^d	2957	29

^a Posición hace referencia a la posición del nucleótido del extremo 5' del cebador.

20 d orfSA0022 hace referencia a la designación del marco abierto de lectura del número de acceso de GenBank AP003129 (SEQ ID n.º 231).

Tabla 2. Análisis de especificidad y ubicuidad realizados en un termociclador estándar con el conjunto óptimo de cebadores descritos por Hiramatsu et al. (SEQ ID n.º 22, 24 y 28 en la patente de los EE.UU. n.º 6 156 507 que corresponden a las SEQ ID n.º 56, 58 y 60, respectivamente, en la presente invención) para la detección de SARM.

Cepas	Resultados de la PCR para la unión en el extremo derecho de SCC	
	Positivas (%)	Negativas (%)
SARM – 39 cepas	19 (48,7)	20 (51,2)
SASM – 41 cepas	13 (31,7)	28 (68,3)
SCNRM – 9 cepas*	0 (0%)	9 (100%)
SCNSM – 11 cepas*	0 (0%)	11 (100%)

^{*} Detalles referentes a las cepas de SCN:

SCNRM: S. caprae (1)

S. cohni cohnii (1)

^b La numeración para las SEQ ID n.º 52-57 usa de referencia la SEQ ID n.º 2; la numeración para la SEQ ID n.º 58 usa de referencia la SEQ ID n.º 4; la numeración para las SEQ ID n.º 59-63 usa de referencia la SEQ ID n.º 3.

^c El cebador es el complemento inverso de la secuencia diana.

- S. epidermidis (1)
- S. haemolyticus (2)
- S. hominis (1)
- S. sciuri (1)
- 5 S. simulans (1)
 - S. warneri (1)
 - SCNSM: S. cohni cohnii (1)
 - S. epidermidis (1)
 - S. equorum (1)
- 10 S. gallinarum (1)
 - S. haemolyticus (1)
 - S. lentus (1)
 - S. lugdunensis (1)
 - S. sachharolyticus (1)
- 15 S. saprophyticus (2)
 - S. xylosus (1)

Tabla 3. Origen de cepas de SARM que no se amplifican con los cebadores desarrollados por Hiramatsu et al. (SEQ ID n.º 22, 24 y 28 en la patente de los EE.UU. n.º 6 156 507 que corresponden a las SEQ ID n.º 56, 58 y 60, respectivamente, en la presente invención) así como con los cebadores desarrollados en la presente invención que están dirigidos selectivamente a los MREP de tipos i, ii y iii (SEQ ID n.º 64, 66 y 67).

Denominación de la cepa de Staphylococcus aureus:		_ Origen	
Original	CCRI ^a	- Oligeli	
ATCC BAA-40 ^b	CCRI-9504	Portugal	
ATCC 33592	CCRI-178	EE.UU.	
R991282	CCRI-2025	Quebec, Canadá	
4508	CCRI-9208	Quebec, Canadá	
19121	CCRI-8895	Dinamarca	
Z109	CCRI-8903	Dinamarca	
45302	CCRI-1263	Ontario, Canadá	
R655	CCRI-1324	Quebec, Canadá	
MA 50428	CCRI-1311	Quebec, Canadá	
MA 50609	CCRI-1312	Quebec, Canadá	
MA 51363	CCRI-1331	Quebec, Canadá	
MA 51561	CCRI-1325	Quebec, Canadá	
14A0116	CCRI-9681	Polonia	
23 (CCUG 41787)	CCRI-9860	Suecia	
SE26-1	CCRI-9770	Ontario, Canadá	
SE1-1	CCRI-9583	Ontario, Canadá	
ID-61880 ^c	CCRI-9589	Ontario, Canadá	
SE47-1	CCRI-9773	Ontario, Canadá	
SE49-1	CCRI-9774	Ontario, Canadá	

39795-2

CCRI-1377

Quebec, Canadá

^a CCRI significa «Collection of the Centre de Recherche en Infectiologie».

Tabla 4. Secuencias nucleotídicas de MREJ de Staphylococcus aureus.

SEQ ID n.º	Denominación de la cepa de	Staphylococcus aureus:	Diana genética
	Original	CCRIª	
27	R991282	CCRI-2025	mecA
28	45302	CCRI-1263	mecA
29	MA 50428	CCRI-1311	mecA
30	MA 51363	CCRI-1331	mecA
31	39795-2	CCRI-1377	mecA y 1,5 kb de la región secuencia abajo
42	ATCC 33592	CCRI-178	MREP de tipo iv
43	19121	CCRI-8895	MREP de tipo iv
44	Z109	CCRI-8903	MREP de tipo iv
45	R655	CCRI-1324	MREP de tipo iv
46	MA 51363	CCRI-1331	MREP de tipo iv
47	45302	CCRI-1263	MREP de tipo v
48	39795-2	CCRI-1377	MREP de tipo v
49	MA 50428	CCRI-1311	MREP de tipo v
50	R991282	CCRI-2025	MREP de tipo v
51	ATCC BAA-40	CCRI-9504	MREP de tipo iv
165	SE1-1	CCRI-9583	MREP de tipo vii
166	ID-61880	CCRI-9589	MREP de tipo vii
167	23 (CCUG 41787)	CCRI-9860	MREP de tipo viii
168	14A016	CCRI-9681	MREP de tipo ix
171	4508	CCRI-9208	MREP de tipo vi
172	SE26-1	CCRI-9770	orfSA0021 ^b y 75 pb de orfSA0022
173	26 (98/10618)	CCRI-9864	MREP de tipo ii
174	27 (98/26821)	CCRI-9865	MREP de tipo ii
175	28 (24344)	CCRI-9866	MREP de tipo ii
176	12 (62305)	CCRI-9867	MREP de tipo ii
177	22 (90/14719)	CCRI-9868	MREP de tipo ii
178	23 (98/14719)	CCRI-9869	MREP de tipo ii
179	32 (97S99)	CCRI-9871	MREP de tipo ii
180	33 (97S100)	CCRI-9872	MREP de tipo ii
181	38 (825/96)	CCRI-9873	MREP de tipo ii
182	39 (842/96)	CCRI-9874	MREP de tipo ii
183	43 (N8-892/99)	CCRI-9875	MREP de tipo ii
184	46 (9805-0137)	CCRI-9876	MREP de tipo iii
185	1	CCRI-9882	MREP de tipo ii

^b Clon portugués.

^c Clon canadiense EMRSA1.

186	29	CCRI-9885	MREP de tipo ii
189	SE1-1	CCRI-9583	mecA y 2,2 kb de la región cadena abajo, que incluye IS431mec
190	ATCC BAA-40	CCRI-9504	mecA y 1,5 kb de la región cadena abajo
191	4508	CCRI-9208	mecA y 0,9 kb de la región cadena abajo
192	ID-61880	CCRI-9589	mecA y 0,9 kb de la región cadena abajo
193	14A016	CCRI-9681	mecA y 0,9 kb de la región cadena abajo
195	SE26-1	CCRI-9770	mecA y 1,5 kb de la región cadena abajo, que incluye IS431mec
197	ATCC 43300	CCRI-175	MREP de tipo ii
198	R522	CCRI-1262	MREP de tipo iii
199	13370	CCRI-8894	MREP de tipo i
219	ATCC BAA-40	CCRI-9504	tetK
220	MA 51363	CCRI-1331	mecA y 1,5 kb de la región cadena abajo
221	39795-2	CCRI-1377	IS431mec y 0,6 kb de la región cadena arriba
222	R991282	CCRI-2025	mecA y 1,5 kb de la región cadena abajo
223	R991282	CCRI-2025	IS431mec y 0,6 kb de la región cadena arriba
224	23 (CCUG 41787)	CCRI-9860	mecA y 1,5 kb de la región cadena abajo
225	23 (CCUG 41787)	CCRI-9860	IS431mec y 0,6 kb de región cadena arriba
233	14A016	CCRI-9681	MREP de tipo ix
2			

^a CCRI significa «Collection of the Centre de Recherche en Infectiologie».

Tabla 5. Cebadores para PCR desarrollados

		ADN de origen	
SEQ ID n.º	Diana	Posición ^a	SEQ ID n.º
64	orfX	1720	3
70	orfX	1796	3
71	orfX	1712	3
72	orfX	1749	3
73	orfX	1758	3
74	orfX	1794	3
75	orfX	1797	3
76	orfX	1798	3
66	MREP de tipos i y ii	2327	2
100	MREP de tipos i y ii	2323	2
101	MREP de tipos i y ii	2314	2

^b orfS0021 y orfSA0022 hacen referencia a la designación del marco abierto de lectura del número de acceso de GenBank AP003129 (SEQ ID n.º 231).

97	MREP de tipo ii	2434	2
99	MREP de tipo ii	2434	2
67	MREP de tipo iii	207 ^b	4
98	MREP de tipo iii	147 ^b	4
102	MREP de tipo iii	251 ^b	4
79	MREP de tipo iv	74 ^b	43
80	MREP de tipo v	50 ^b	47
109	MREP de tipo ix	652 ^b	168
204	MREP de tipo vi	642 ^b	171
112	MREP de tipo vii	503 ^b	165
113	MREP de tipo vii	551 ^b	165
115	MREP de tipo viii y ix	514 ^b	167
116	MREP de tipo viii	601 ^b	167

^a Posición usa de referencia la posición del nucleótido del extremo 5' del cebador.

Tabla 6. Sondas fluorescibles desarrolladas

SEQ ID n.º	Diana	Posición
32	orfX	86ª
83	orfX	86ª
84	orfX	34 ^{a,b}
160	orfX	55 ^{a,b}
161	orfX	34 ^{a,b}
162	orfX	114 ^a
163	orfX	34 ^{a,b}
164	orfX	34 ^{a,b}

^a Posición usa de referencia la posición del nucleótido del extremo 5' del bucle de la sonda fluorescible en la SEQ ID 5 n.° 3.

Tabla 7. Longitud de los amplicones obtenidos con las diferentes parejas de cebadores.

SEQ ID n.º	Diana ^a	Longitud del amplicón ^a
59/52 ^b	orfX/MREP de tipos i y ii	2079 (tipo i); 2181 (tipo ii)
59/53 ^b	orfX/MREP de tipos i y ii	1801 (tipo i); 1903 (tipo ii)
59/54 ^b	orfX/MREP de tipos i y ii	1632 (tipo i); 1734 (tipo ii)
59/55 ^b	orfX/MREP de tipos i y ii	1405 (tipo i); 1507 (tipo ii)
59/56 ^b	orfX/MREP de tipos i y ii	804 (tipo i); 906 (tipo ii)
59/57 ^b	orfX/MREP de tipos i y ii	257 (tipo i); 359 (tipo ii)
60/52 ^b	orfSA0022/MREP de tipos i y ii	2794 (tipo i); 2896 (tipo ii)
60/53 ^b	orfSA0022/MREP de tipos i y ii	2516 (tipo i); 2618 (tipo ii)
60/54 ^b	orfSA0022/MREP de tipos i y ii	2347 (tipo i); 2449 (tipo ii)
60/55 ^b	orfSA0022/MREP de tipos i y ii	2120 (tipo i); 2222 (tipo ii)
60/56 ^b	orfSA0022/MREP de tipos i y ii	1519 (tipo i); 1621 (tipo ii)
60/57 ^b	orfSA0022/MREP de tipos i y ii	972 (tipo i); 1074 (tipo ii)

^b El cebador es el complemento inverso de la secuencia diana.

^b La secuencia del bucle de la sonda fluorescible es el complemento inverso de la SEQ ID n.º 3.

61/52 ^b	orfSA0022/MREP de tipos i y ii	2476 (tipo i); 2578 (tipo ii)
61/53 ^b	orfSA0022/MREP de tipos i y ii	2198 (tipo i); 2300 (tipo ii)
61/54 ^b	orfSA0022/MREP de tipos i y ii	2029 (tipo i); 2131 (tipo ii)
61/55 ^b	orfSA0022/MREP de tipos i y ii	1802 (tipo i); 1904 (tipo ii)
61/56 ^b	orfSA0022/MREP de tipos i y ii	1201 (tipo i); 1302 (tipo ii)
61/57 ^b	orfSA0022/MREP de tipos i y ii	654 (tipo i); 756 (tipo ii)
62/52 ^b	orfX/MREP de tipos i y ii	2354 (tipo i); 2456 (tipo ii)
62/53 ^b	orfX/MREP de tipos i y ii	2076 (tipo i); 2178 (tipo ii)
62/54 ^b	orfX/MREP de tipos i y ii	1907 (tipo i); 2009 (tipo ii)
62/55 ^b	orfX/MREP del tipos i y ii	1680 (tipo i); 1782 (tipo ii)
62/56 ^b	orfX/MREP de tipos i y ii	1079 (tipo i); 1181 (tipo ii)
62/57 ^b	orfX/MREP de tipos i y ii	532 (tipo i); 634 (tipo ii)
63/52 ^b	orfSA0022/MREP de tipos i y ii	3104 (tipo i); 3206 (tipo ii)
63/53 ^b	orfSA0022/MREP de tipos i y ii	2826 (de tipo i); 2928 (tipo ii)
63/54 ^b	orfSA0022/MREP de tipos i y ii	2657 (tipo i); 2759 (tipo ii)
63/55 ^b	orfSA0022/MREP de tipos i y ii	2430 (tipo i); 2532 (tipo ii)
63/56 ^b	orfSA0022/MREP de tipos i y ii	1829 (tipo i); 1931 (tipo ii)
63/57 ^b	orfSA0022/MREP de tipos i y ii	1282 (tipo i); 1384 (tipo ii)
59/58 ^b	orfX/MREP de tipo iii	361
60/58 ^b	orfSA0022/MREP de tipo iii	1076
61/58 ^b	orfSA0022/MREP de tipo iii	758
62/58 ^b	orfX/MREP de tipo iii	656
63/58 ^b	orfSA0022/MREP de tipo iii	1386
70/66	orfX/MREP de tipos i y ii	100 (tipo i); 202 (tipo ii)
70/67	orfX/MREP de tipo iii	147 (tipo iii)
64/66 ^c	orfX/MREP de tipos i y ii	176 (tipo i), 278 (tipo ii)
64/67 ^c	orfX/MREP de tipo iii	223
64/79 ^c	orfX/MREP de tipo iv	215
64/80 ^c	orfX/MREP de tipo v	196
64/97 ^c	orfX/MREP de tipo ii	171
64/98 ^c	orfX/MREP de tipo iii	163
64/99 ^c	orfX/MREP de tipo ii	171
64/100 ^c	orfX/MREP de tipos i y ii	180 (tipo i); 282 (tipo ii)
64/101 ^c	orfX/MREP de tipos i y ii	189 (tipo i); 291 (tipo ii)
64/102 ^c	orfX/MREP de tipo iii	263
64/109 ^c	orfX/MREP de tipo ix	369
64/204 ^c	orfX/MREP de tipo vi	348
64/112 ^c	orfX/MREP de tipo vii	214
64/113 ^c	orfX/MREP de tipo vii	263
64/115 ^c	orfX/MREP de tipo viii	227
64/116 ^c	orfX/MREP de tipo viii	318
a La Janaitud	•	ra los tipos do MPED amplificados por al conjunto de

^a La longitud del amplicón se da en pares de bases para los tipos de MREP amplificados por el conjunto de cebadores.

5 Tabla 8. Otros cebadores desarrollados

		ADI	ADN de origen	
SEQ ID n.º	Diana	Posición ^a	SEQ ID n.º	
77	MREP de tipo iv	993	43	
65	MREP de tipo v	636	47	
70	orfX	1796	3	
68	IS431	626	92	
69	mecA	1059	78	
96	mecA	1949	78	
31	mecA	1206	78	
114	MREP de tipo vii	629 ^b	165	
117	MREP de tipo ii	856	194	
118	MREP de tipo ii	974 ^b	194	
119	MREP de tipo vii	404	189	
120	MREP de tipo vii	477 ^b	189	
123	MREP de tipo vii	551	165	
124	MREP de tipo ii	584	170	
125	MREP de tipo ii	689 ^b	170	
126	orfSA0021	336	231	
127	orfSA0021	563	231	
128	orfSA0022 ^d	2993	231	
129	orfSA0022 ^d	3467 ^b	231	
132	orfX	3700	231	
145	MREP de tipo iv	988	51	
146	MREP de tipo v	1386	51	
147	MREP de tipo iv	891 ^b	51	
148	MREP de tipo ix	664	168	
149	MREP de tipo ix	849 ^b	168	
150	MREP de tipo vii	1117 ^b	165	
151	MREP de tipo vii	1473	189	
152	IS431mec	1592 ^b	189	
154	MREP de tipo v	996 ^b	50	
155	MREP de tipo v	935	50	
156	tetK del plásmido pT181	1169 ^b	228	
157	tetK del plásmido pT181	136	228	
158	orfX	2714 ^b	2	
159	orfX	2539	2	
187	MREP de tipo viii	967 ^b	167	

^b Conjunto de cebadores descritos por Hiramatsu et al. en la patente de los EE.UU. n.º 6 156 507.

^c Conjunto de cebadores desarrollados en la presente memoria.

^d *orf*SA0022 hace referencia a la designación del marco abierto de lectura del número de acceso de GenBank AP003129 (SEQ ID n.º 231).

188 MREP de tipo viii 851 167

Tabla 9. Cebadores para amplificación y/o secuenciación desarrollados

			ADN de origen	
SEQ ID n.º	Diana	Posición ^a	SEQ ID n.º	
85	Cromosoma de S. aureus	197 ^b	35	
86	Cromosoma de S. aureus	198 ^b	37	
87	Cromosoma de S. aureus	197 ^b	38	
88	Cromosoma de S. aureus	1265 ^b	39	
89	Cromosoma de S. aureus	1892	3	
103	orfX	1386	3	
105	MREP de tipo i	2335	2	
106	MREP de tipo ii	2437	2	
107	MREP de tipo iii	153 ^b	4	
108	MREP de tipo iii	153 ^b	4	
121	MREP de tipo vii	1150	165	
122	MREP de tipo vii	1241 ^b	165	
130	orfX	4029 ^b	231	
131	Región entre <i>orf</i> SA0022 y <i>orf</i> SA0023 ^d	3588	231	
133	merB del plásmido pl258	262	226	
134	merB del plásmido pl258	539 ^b	226	
135	merR del plásmido pl258	564	226	
136	merR del plásmido pl258	444	227	
137	merR del plásmido pl258	529	227	
138	merR del plásmido pl258	530 ^b	227	
139	rep del plásmido pUB110	796	230	
140	rep del plásmido pUB110	761 ^b	230	
141	rep del plásmido pUB110	600	230	
142	aaaD del plásmido pUB110	1320 ^b	229	
143	aaaD del plásmido pUB110	759	229	
144	aaaD del plásmido pUB110	646	229	
153	MREP de tipo vii	1030	165	
200	orf\$A0022 ^d	871 ^c	231	
201	orf\$A0022 ^d	1006	231	
202	MREP de tipo vi	648	171	
203	MREP de tipo vi	883 ^b	171	
205	MREP de tipo ix	1180	168	
206	MREP de tipo ix	1311 ^b	233	
207	MREP de tipo viii	1337	167	
208	MREP de tipo viii	1441 ^b	167	
209	ccrA	184	232	

^a Posición usa de referencia la posición del nucleótido del extremo 5' del cebador.

^b El cebador es el complemento inverso de la secuencia diana.

210	ccrA	385	232
211	ccrA	643 ^b	232
212	ccrA	1282 ^b	232
213	ccrB	1388	232
214	ccrB	1601	232
215	ccrB	2139 ^b	232
216	ccrB	2199 ^b	232
217	ccrB	2847 ^b	232
218	ccrB	2946 ^b	232

^a Posición usa de referencia la posición del nucleótido del extremo 5' de cebador.

Tabla 10. Origen de los ácidos nucleicos y/o las secuencias disponibles en las bases de datos públicas que se encuentran en el listado de secuencias

SEQ ID n.º	Cepa de Staphylococcus	Fuente	Número de acceso	Diana genética ^{a,b}
1	NCTC 10442	Base de datos	AB033763	MREJ de tipo I de SCC <i>mec</i>
2	N315	Base de datos	D86934	MREJ de tipo II de SCC <i>mec</i>
3	NCTC 8325	Base de datos	AB014440	Cromosoma de SASM
4	86/560	Base de datos	AB013471	MREJ de tipo III de SCCmec
5	86/961	Base de datos	AB013472	MREJ de tipo III de SCCmec
6	85/3907	Base de datos	AB013473	MREJ de tipo III de SCCmec
7	86/2652	Base de datos	AB013474	MREJ de tipo III de SCCmec
8	86/1340	Base de datos	AB013475	MREJ de tipo III de SCCmec
9	86/1762	Base de datos	AB013476	MREJ de tipo III de SCCmec
10	86/2082	Base de datos	AB013477	MREJ de tipo III de SCCmec
11	85/2111	Base de datos	AB013478	MREJ de tipo III de SCCmec
12	85/5495	Base de datos	AB013479	MREJ de tipo III de SCCmec
13	85/1836	Base de datos	AB013480	MREJ de tipo III de SCCmec
14	85/2147	Base de datos	AB013481	MREJ de tipo III de SCCmec
15	85/3619	Base de datos	AB013482	MREJ de tipo III de SCCmec
16	85/3566	Base de datos	AB013483	MREJ de tipo III de SCCmec
17	85/2232	Base de datos	AB014402	MREJ de tipo II de SCC <i>mec</i>
18	85/2235	Base de datos	AB014403	MREJ de tipo II de SCC <i>mec</i>
19	MR108	Base de datos	AB014404	MREJ de tipo II de SCC <i>mec</i>
20	85/9302	Base de datos	AB014430	MREJ de tipo I de SCC <i>mec</i>
21	85/9580	Base de datos	AB014431	MREJ de tipo I de SCC <i>mec</i>
22	85/1940	Base de datos	AB014432	MREJ de tipo I de SCC <i>mec</i>
23	85/6219	Base de datos	AB014433	MREJ de tipo I de SCC <i>mec</i>
24	64/4176	Base de datos	AB014434	MREJ de tipo I de SCC <i>mec</i>
25	64/3846	Base de datos	AB014435	MREJ de tipo I de SCCmec

^b El cebador es el complemento inverso de la secuencia diana.

^c El cebador contiene dos discordancias.

^d orfSA0022 y orfSA0023 hacen referencia a la designación del marco abierto de lectura del número de acceso de 5 GenBank AP003219 (SEQ ID n.º 231).

26	HUC19	Base de datos	AF181950	MREJ de tipo II de SCC <i>mec</i>
33	G3	Patente de los EE.UU n.º 6 156 507	SEQ ID n.º 15	MREJ de tipo II de SCCmec de S. epidermidis
34	SH 518	Patente de los EE.UU. n.º 6 156 507	SEQ ID n.º 16	MREJ de tipo II de SCCmec de S. haemolyticus
35	ATCC 25923	Patente de los EE.UU. n.º 6 156 507	SEQ ID n.º 9	Cromosoma de S. aureus
36	STP23	Patente de los EE.UU. n.º 6 156 507	SEQ ID n.º 10	Cromosoma de S. aureus
37	STP43	Patente de los EE.UU. n.º 6 156 507	SEQ ID n.º 12	Cromosoma de S. aureus
38	STP53	Patente de los EE.UU. n.º 6 156 507	SEQ ID n.º º 13	Cromosoma de S. aureus
39	476	Proyecto Genoma ^c		Cromosoma de S. aureus
40	252	Proyecto Genoma ^c		MREJ de tipo II de SCC <i>mec</i>
41	COL	Proyecto Genoma ^d		MREJ de tipo I de SCC <i>mec</i>
78	NCTC 8325	Base de datos	X52593	mecA
82	NCTC 10442	Base de datos	AB033763	mecA
90	N315	Base de datos	D86934	mecA
91	85/2082	Base de datos	AB037671	mecA
92	NCTC 10442	Base de datos	AB033763	IS431
93	N315	Base de datos	D86934	IS431
94	HUC19	Base de datos	AF181950	IS431
95	NCTC 8325	Base de datos	X53818	IS431
104	85/2082	Base de datos	AB037671	MREJ de tipo III de SCC <i>mec</i>
226	Desconocido	Base de datos	L29436	merB en el plásmido pl258
227	Desconocido	Base de datos	L29436	merR en el plásmido pl258
228	Desconocido	Base de datos	S67449	tetK en el plásmido pT181
229	HUC19	Base de datos	AF181950	aadD en el plásmido pUB110
230	HUC19	Base de datos	AF181950	rep en el plásmido pUB110
231	N315	Base de datos	AP003129	orfSA0021, orfSA0022, orfSA0023
232	85/2082	Base de datos	AB037671	ccrA/ccrB

^a MREJ se refiere a la unión en el extremo derecho de *mec* e incluye secuencias del extremo derecho de SSC*mec* y del ADN cromosómico a la derecha del sitio de integración de SCC*mec*.

Tabla 11. Sensibilidad analítica del ensayo de PCR específico de SARM que está dirigido selectivamente a los MREP de tipos i, ii y iii en un termociclador estándar con el conjunto de cebadores desarrollado en la presente invención (SEQ ID n.º 64, 66 y 67).

	Denominación de la cepa:	Límite de detección
Original	CCRI ^a (tipo de MREP)	(número de copias del genoma)
13370	CCRI-8894 (I)	5
ATCC 43300	CCRI-175 (II)	2
35290	CCRI-1262 (III)	2

^b A menos que se especifique de otra manera, todas las secuencias se obtuvieron de cepas de *S. aureus*.

^c Proyecto Genoma del Instituto Sanger (http://www.sanger.ac.uk).

^{5 &}lt;sup>d</sup> Proyecto Genoma del TIGR (http://www.tigr.org).

Tabla 12. Pruebas de especificidad y ubicuidad realizadas en un termociclador estándar con el conjunto de cebadores que están dirigidos selectivamente a los MREP de tipos i, ii y iii desarrollados en la presente invención (SEQ ID n.º 64, 66 y 67) para la detección de SARM

Cepas	Resultados de la PCR para MREJ			
	Positivo (%)	Negativo (%)		
SARM – 208 cepas	188 (90,4)	20 (9,6)		
SASM – 252 cepas	13 (5,2)	239 (94,8)		
SCNRM – 41 cepas*	0	42 (100)		
SCNSM – 21 cepas*	0	21 (100)		

5 *Detalles referentes a las cepas de SCN:

SCNRM:

- S. caprae (2)
- S. cohni cohnii (3)
- S. cohni urealyticum (4)
- S. epidermidis (8)

10

- S. haemolyticus (9)
- S. hominis (4)
- S. sciuri (4)
- S. sciuri sciuri (1)
- S. simulans (3)

15

- S. warneri (3)
- SCNSM: S. cohni cohnii (1)
 - S. epidermidis (3)
 - S. equorum (2)
 - S. felis (1)

20

- S. gallinarum (1)
- S. haemolyticus (1)
- S. hominis (1)
- S. lentus (1)
- S. lugdunensis (1)

25

- S. sachharolyticus (1)
- S. saprophyticus (5)
- S. simulans (1)
- S. warneri (1)
- S. xylosus (1)

30

^a CCRI hace referencia a «Collection of the Centre de Recherche en Infectiologie».

Tabla 13. Porcentaje de la identidad de secuencia para los primeros 500 nucleótidos del extremo derecho de los SCC*mec* entre los 9 tipos de MREP^{a,b}

Tipo de MREP	i	ii	iii	iv	V	vi	vii	viii	ix
i	_	79,2	42,8	42,8	41,2	44,4	44,6	42,3	42,1
ii			43,9	47,5	44,7	41,7	45,0	52,0	57,1
iii				46,8	44,5	42,9	45,0	42,8	45,2
iv					45,8	41,4	44,3	48,0	41,3
٧						45,4	43,7	47,5	44,3
vi							45,1	41,1	47,2
vii								42,8	40,9
viii									55,2
ix									_

^a «Primeros 500 nucleótidos» hace referencia a los 500 nucleótidos dentro del extremo derecho de SCC*mec*, y que comienzan en el sitio de integración de SCC*mec* en el cromosoma de *Staphylococcus aureus* tal y como se muestra 5 en la figura 4.

Tabla 14. Cepas de referencia utilizadas para analizar la sensibilidad y/o especificidad y/o ubicuidad de los ensayos de PCR específicos de SARM que están dirigidos selectivamente a secuencias de MREJ

Especie de <i>Staphylococcus</i>	Cepas	Fuente ^a
SASM (n = 45)	33591	ATCC
	33592	ATCC
	33593	ATCC
	BAA-38	ATCC
	BAA-39	ATCC
	BAA-40	ATCC
	BAA-41	ATCC
	BAA-42	ATCC
	BAA-43	ATCC
	BAA-44	ATCC
	F182	CDC
	23 (CCUG 41787)	Colección HARMONY
	ID-61880 (EMRSA1)	LSPQ
	MA 8628	LSPQ
	MA 50558	LSPQ
	MA 50428	LSPQ
	MA 50609	LSPQ
	MA 50884	LSPQ
	MA 50892	LSPQ
	MA 50934	LSPQ
	MA 51015	LSPQ
	MA 51056	LSPQ
	MA 51085	LSPQ

^b Las secuencias se extrajeron de las SEQ ID n.º 1, 2, 104, 51, 50, 171, 165, 167 y 168 para los tipos i a ix, respectivamente.

LSPQ

MA 51172

	_	
	MA 51222	LSPQ
	MA 51363	LSPQ
	MA 51561	LSPQ
	MA 52034	LSPQ
	MA 52306	LSPQ
	MA 51520	LSPQ
	MA 51363	LSPQ
	98/10618	Colección HARMONY
	98/26821	Colección HARMONY
	24344	Colección HARMONY
	62305	Colección HARMONY
	90/10685	Colección HARMONY
	98/14719	Colección HARMONY
	97S99	Colección HARMONY
	97S100	Colección HARMONY
	825/96	Colección HARMONY
	842/96	Colección HARMONY
	N8-890/99	Colección HARMONY
	9805-01937	Colección HARMONY
	1	Kreiswirth-1
	29	Kreiswirth-1
	29060	ATCC
SCNRM (n = 4)	35983	ATCC
SCINNIVI (II – 4)	35984	ATCC
	2514	LSPQ
SASM (n = 28)	MA 52263	LSPQ
	6538	ATCC
	13301	ATCC
	25923	ATCC
	27660	ATCC
	29213	ATCC
	29247	ATCC
	29737	ATCC
	RN 11	CDC
	RN 3944	CDC
	RN 2442	CDC
	7605060113	CDC
	BM 4611	Instituto Pasteur
	BM 3093	Instituto Pasteur
	3511	LSPQ
	MA 5091	LSPQ
	MA 8849	LSPQ

	MA 8871	LSPQ
	MA 50607	LSPQ
	MA 50612	LSPQ
	MA 50848	LSPQ
	MA 51237	LSPQ
	MA 51351	LSPQ
	MA 52303	LSPQ
	MA 51828	LSPQ
	MA 51891	LSPQ
	MA 51504	LSPQ
	MA 52535	LSPQ
	MA 52783	LSPQ
	12228	ATCC
	14953	ATCC
	14990	ATCC
	15305	ATCC
	27836	ATCC
	27848	ATCC
	29070	ATCC
	29970	ATCC
SCNSM (n = 17)	29974	ATCC
	35539	ATCC
	35552	ATCC
	35844	ATCC
	35982	ATCC
	43809	ATCC
	43867	ATCC
	43958	ATCC
	49168	ATCC

ATCC hace referencia a «American Type Culture Collection».

LSPQ hace referencia a «Laboratorio de Salud Pública de Quebec».

CDC hace referencia a «Centros para la Prevención y el Control de Enfermedades» (por su nombre en inglés).

5 Tabla 15. Aislados clínicos utilizados para analizar la sensibilidad y/o especificidad y/o ubicuidad de los ensayos de PCR específicos de SARM que están dirigidos selectivamente a las secuencias de MREJ.

Especie de Staphylococcus	Número de cepas	Fuente
	150	Canadá
SARM (n = 177)	10	China
	10	Dinamarca
	9	Argentina
	1	Egipto
	1	Suecia
	1	Polonia

	3	Japón
	1	Francia
	208	Canadá
	10	China
SASM (n = 224)	4	Japón
,	1	EE.UU.
	1	Argentina
SCNRM (n = 38)	32	Canadá
	3	China
	1	Francia
	1	Argentina
	1	EE.UU.
SCNSM (n = 17)	14	Reino Unido
33143W (II = 17)	3	Canadá

Tabla 16. Sensibilidad analítica de las pruebas realizadas en un termociclador estándar con el conjunto de cebadores que están dirigidos selectivamente a los MREP de tipos i, ii, iii, iv y v (SEQ ID n.º 64, 66, 67, 79 y 80) desarrollados en la presente invención para la detección y la identificación de SARM.

Denominación de la cepa de Staphylococcus aureus:		Límite de detección	
Original	CCRI ^a (tipo de MREP)	(número de copias del genoma	
13370	CCRI-8894 (i)	10	
ATCC 43300	CCRI-175 (ii)	5	
9191	CCRI-2086 (ii)	10	
35290	CCRI-1262 (iii)	5	
352	CCRI-1266 (iii)	10	
19121	CCRI-8895 (iv)	5	
ATCC 33592	CCRI-178 (iv)	5	
MA 50428	CCRI-1311 (v)	5	
R991282	CCRI-2025 (v)	5	

^{5 &}lt;sup>a</sup> CCRI hace referencia a «Collection of the Centre de Recherche en Infectiologie».

Tabla 17. Pruebas de especificidad y ubicuidad realizadas en un termociclador estándar con el conjunto de cebadores que se dirigen selectivamente a los MREP de tipos i, ii, iii, iv y v (SEQ ID n.º 64, 66, 67, 79 y 80) desarrollados en la presente invención para la detección e identificación de SARM.

Cepas	Resultados de la PCR para la unión en el extremo derecho de SCCmec-orfX	
-	Positivo (%)	Negativo (%)
SARM – 35 cepas ^a	27 (77,1)	8 (22,9)
SASM – 44 cepas	13 (29,5)	31 (70,5)
SCNRM – 9 cepas*	0	9 (100)
SCNSM – 10 cepas*	0	10 (100)

^a Las cepas de SARM incluyen las 20 cepas recogidas en la tabla 3.

10 *Detalles referentes a las cepas de SCN:

SCNRM: S. caprae (1)

S. cohni cohnii (1)

S. epidermidis (1)

- S. haemolyticus (2)
- S. hominis (1)
- S. sciuri (1)
- S. simulans (1)
- 5 S. warneri (1)
 - SCNSM: S. cohni (1)
 - S. epidermidis (1)
 - S. equorum (1)
 - S. haemolyticus (1)
- 10 S. lentus (1)
 - S. lugdunensis (1)
 - S. sachharolyticus (1)
 - S. saprophyticus (2)
 - S. xylosus (1)

15 Tabla 18. Sensibilidad analítica de los análisis realizados en el termociclador Smart Cycler® con el conjunto de cebadores que están dirigidos selectivamente a los MREP de tipos i, ii, iii, iv y v (SEQ ID n.º 64, 66, 67, 79 y 80) y la sonda fluorescible (SEQ ID n.º 84) desarrollados en la presente invención para la detección e identificación de SARM.

Denominación de la cepa de Staphylococcus aureus:		Límite de detección
Original	CCRI ^a (tipo de MREP)	(número de copias del genoma)
13370	CCRI-8894 (i)	2
ATCC 43300	CCRI-175 (ii)	2
9191	CCRI-2086 (ii)	10
35290	CCRI-1262 (iii)	2
352	CCRI-1266 (iii)	10
ATCC 33592	CCRI-178 (iv)	2
MA 51363	CCRI-1331 (iv)	5
19121	CCRI-8895 (iv)	10
Z109	CCRI-8903 (iv)	5
45302	CCRI-1263 (v)	10
MA 50428	CCRI-1311 (v)	5
MA 50609	CCRI-1312 (v)	5
MA 51651	CCRI-1325 (v)	10
39795-2	CCRI-1377 (v)	10
R991282	CCRI-2025 (v)	2

^a CCRI hace referencia a «Collection of the Centre de Recherche en Infectiologie».

Tabla 19. Pruebas de especificidad y ubicuidad realizadas en el termociclador Smart Cycler® con el conjunto de cebadores que están dirigidos selectivamente a los MREP de tipos i, ii, iii, iv y v (SEQ ID n.º 64, 66, 67, 79 y 80) y sonda fluorescible (SEQ ID n.º 84) desarrollados en la presente invención para la detección de SARM.

Cepas	Resultados de	PCR para MREJ
	Positivos (%)	Negativos (%)
SARM – 29 cepas ^a	21 (72,4)	8 (27,6)
SASM – 35 cepas	13 (37,1)	22 (62,9)
SCNRM – 14 cepas	0	14 (100)
SCNSM – 10 cepas	0	10 (100)

^a Las cepas de SARM incluyen las 20 cepas recogidas en la tabla 3.

5 Detalles referentes a las cepas de SCN:

SCNRM: S. epidermidis (1)

S. haemolyticus (5)

S. simulans (5)

S. warneri (3)

10 SCNSM: S. cohni cohnii (1)

S. epidermidis (1)

S. gallinarum (1)

S. haemolyticus (1)

S. lentus (1)

15 S. lugdunensis (1)

S. saccharolyticus (1)

S. saprophyticus (2)

S. xylosus (1)

Tabla 20. Sensibilidad analítica de las pruebas realizadas en el termociclador Smart Cycler[®] con el conjunto de cebadores que se dirigen selectivamente a los MREP de tipos i, ii, iii, iv, v y vii (SEQ ID n.º 64, 66, 67, 79 y 80) y la sonda fluorescible (SEQ ID n.º 84) desarrollados en la presente invención para detectar e identificar SARM.

Denominación de la cepa de Staphylococcus aureus:		Límite de detección
Original	CCRI ^a (tipo de MREP)	(número de copias del genoma)
13370	CCRI-8894 (i)	2
ATCC 43300	CCRI-175 (ii)	2
35290	CCRI-1262 (iii)	2
ATCC 33592	CCRI-178 (iv)	2
R991282	CCRI-2025 (v)	2
SE-41-1	CCRI-9771 (vii)	2

^a CCRI hace referencia a «Collection of the Centre de Recherche en Infectiologie».

Tabla 21. Pruebas de especificidad y ubicuidad realizadas en el termociclador Smart Cycler[®] con el conjunto de cebadores que se dirigen selectivamente a los MREP de tipos i, ii, iii, iv, vi y vii (SEQ ID n.º 64, 66, 67, 79 y 80) y la sonda fluorescible (SEQ ID n.º 84) desarrollados en la presente invención para la detección e identificación de SARM.

Cepas	Resultados de	PCR para MREJ
	Positivos (%)	Negativos (%)
SARM – 23 cepas ^a	19 (82,6)	4 (17,4)
SASM – 25 cepas	13 (52)	12 (48)
SCNRM – 26 cepas	0	26 (100)
SCNSM - 8 cepas	0	8 (100)

^{5 &}lt;sup>a</sup> Las cepas de SARM incluyen las 20 cepas recogidas en la tabla 3.

Detalles referentes a las cepas de SCN:

SCNRM: S. capitis (2) S. caprae (1) S. cohnii (1) 10 S. epidermidis (9) S. haemolyticus (5) S. hominis (2) S. saprophyticus (1) S. sciuri (2) 15 S. simulans (1) S. warneri (2) SCNSM: S. cohni cohnii (1) S. epidermidis (1) S. haemolyticus (1) 20 S. lugdunensis (1) S. saccharolyticus (1) S. saprophyticus (2) S. xylosus (1)

Anexo I: Estrategia para la selección de cebadores para amplificación específicos para los MREP de tipos i y 25 ii.

MREP de tipos i y ii orfX

T.	. ,		
SEQ ID NO.:	2324	2358 2583	
2	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
1 .		TTACTTATGA TACCT TGTGCAGGCC	
17ª .	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
18ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
19ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
20ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
21ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
22ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
23ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
24ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
25ª	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
26	TAT GTCAAAAATC ATGAACCTCA	TTACTTATGA TACCT TGTGCAGGCC	GTTTGATCCG CC
33°		CtT gGTGtAaaCC	aTTgGAgCCa CC
34°		CCT caTGCAatCC	aTTTGATC

Secuencia seleccionada para el cebador de los MREP de tipos i y ii

(SEQ ID n.º 66) GTCAAAAATC ATGAACCTCA TTACTTATG

Secuencia seleccionada para el cebador de *orfX*^b

5 (SEQ ID n.º 64) TGTGCAGGCC GTTTGATCC

Las posiciones de las secuencias usan la referencia de la SEQ ID n.º 2.

Los nucleótidos en mayúscula son idénticos a los de las secuencias seleccionadas o coinciden con tales secuencias.

Las discordancias están indicadas por letras minúsculas. Los puntos indican huecos en las secuencias mostradas.

Anexo II: estrategia para seleccionar una sonda fluorescible específica para la detección de MREJ en tiempo real

	orfX	
SEQ ID NO. :	327	371
165	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
180	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
181	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
182	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
183	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
184	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
186	ACAAG GACGT CTTACAACGC AGTAACTAtG CA	CTA
174	ACAAG GACGT CTTACAACGt AGTAACTACG CA	CTA
175	ACAAG GACGT CTTACAACGt AGTAACTACG CA	CTA
178	ACAAG GACGT CTTACAACGt AGTAACTACG CA	CTA
176	ACAAG GACGT CTTACAACGt AGTAACTACG CA	CTA
173	ACAAG GACGT CTTACAACGt AGTAACTACG CA	CTA
177	ACAAG GACGT CTTACAACGt AGTAACTACG CA	CTA
169	ACAAG GACGT CTTACAACGC AGTAACTACG CA	CTA
199	ACAAG GACGT CTTACAACGC AGTAACTACG CA	CTA
33ª,Þ	ACCAB GACGT CTTACAACGC AGCAACTAtG Ct	tTA
34 ^{a,b}	AtgAG GACGT CTTACAACGC AGCAACTACG CA	CTt

15 Secuencia seleccionada para las sondas fluorescibles de orfX

(SEQ ID n.º 163)^c

GACGT CTTACAACGC AGTAACTAtG

(SEQ ID n.º 164)^c

GACGT CTTACAACGC AGTAACTACG

(SEQ ID n.º 84)^c

GACGT CTTACAACGC AGTAACTACG

Los nucleótidos discrepantes entre las secuencias de *orfX* y la SEQ ID n.º 84 se muestran en minúscula. Otras entradas en la lista de secuencias también presentan variaciones similares. El tallo de las sondas fluorescibles no se muestra en aras de la claridad. Las posiciones de secuencia usan la referencia de la SEQ ID n.º 165.

25

^a Estas secuencias son los complementos inversos de las SEQ ID n.º 17-25.

^{10 &}lt;sup>b</sup> Esta secuencia es el complemento inverso del cebador seleccionado.

^c Las SEQ ID n.º 33 y 34 se obtuvieron de especies de SCN.

^a Estas secuencias son los complementos inversos de las SEQ ID n.º 33 y 34.

^b Las SEQ ID n.º 33 y 34 se obtuvieron de especies de SCN.

^c Las secuencias presentadas son el complemento inverso de las sondas fluorescibles seleccionadas.

Listado de secuencias

<110> GENEOHM SCIENCES CANADA INC.

5 <120> SECUENCIAS PARA DETECCIÓN E IDENTIFICACIÓN DE STAPHYLOCOCCUS AUREUS RESISTENTE A METICILINA

<130> GOH11811PCTEPD4

10 <140> Solicitud divisional de EP 09 174 581.0

<141> 2002-06-04

<150> CA 2,348,042

<151> 2001-06-04

15

<160> 233

<170> PatentIn version 3.5

20 <210> 1

<211> 3050

<212> DNA

<213> Staphylococcus aureus

25 <400> 1

tcgtgccatt gatgcagagg	gacatacatt	agatatttgg	ttgcgtaagc	aacgagataa	60
tcattcagca tatgcgttta	tcaaacgtct	cattaaacaa	tttggtaaac	ctcaaaaggt	120
aattacagat caggcacctt	caacgaaggt	agcaatggct	aaagtaatta	aagcttttaa	180
acttaaacct gactgtcatt	gtacatcgaa	atatctgaat	aacctcattg	agcaagatca	240
ccgtcatatt aaagtaagaa	agacaaggta	tcaaagtatc	aatacagcaa	agaatacttt	300
aaaaggtatt gaatgtattt	acgctctata	taaaaagaac	cgcaggtctc	ttcagatcta	360
cggattttcg ccatgccacg	aaattagcat	catgctagca	agttaagcga	acactgacat	420
gataaattag tggttagcta	tatttttta	ctttgcaaca	gaaccgaaaa	taatctcttc	480
aatttatttt tatatgaatc	ctgtgactca	atgattgtaa	tatctaaaga	tttcagttca	540
tcatagacaa tgttcttttc	aacattttt	atagcaaatt	gattaaataa	attctctaat	600
ttctcccgtt tgatttcact	accatagatt	atattatcat	tgatatagtc	aatgaataat	660
gacaaattat cactcataac	agtcccaacc	cctttatttt	gatagactaa	ttatcttcat	720
cattgtaaaa caaattacac	cctttaaatt	taactcaact	taaatatcga	caaattaaaa	780
aacaataaaa ttacttgaat	attattcata	atatattaac	aactttatta	tactgctctt	840
tatatataaa atcattaata	attaaacaag	ccttaaaata	tttaactttt	ttgtgattat	900
tacacattat cttatctgct	ctttatcacc	ataaaaatag	aaaaaacaag	attcctaaag	960

aatataggaa	tcttgtttca	gactgtggac	aaactgattt	tttatcagtt	agcttattta	1020
gaaagtttta	tttaaattac	agtttctatt	tttattagat	cacaatttta	ttttagctct	1080
tgttcaagta	atcattttc	gccaaaaact	ttatactgaa	tagcttctac	attaaatact	1140
ttgtcaatga	gatcatctac	atctttaaat	tcagaataat	ttgcatatgg	atctataaaa	1200
taaaattgtg	gttctttacc	ggaaacatta	aatattctta	atattaaata	tttctgctta	1260
tattctttca	tagcaaacat	ttcatttagc	gacataaaaa	atggttcctc	aatactagaa	1320
gatgtagatg	ttttaatttc	aataaatttt	tctacagctt	tatctgtatt	tgttggatca	1380
aaagctacta	aatcatagcc	atgaccgtgt	tgagagcctg	gattatcatt	taaaatattc	1440
ctaaactgtt	ctttcttatc	ttcgtctatt	ttattatcaa	ttagctcatt	aaagtaattt	1500
agcgctaatt	tttctccaac	tttaccggtt	aatttattct	ctttatttga	tttttcaatt	1560
tctgaatcat	ttttagtagt	ctttgataca	ccttttttat	attttggaat	tattccttta	1620
ggtgcttcca	cttccttgag	tgtcttatct	ttttgtgctg	ttctaatttc	ttcaatttcg	1680
ctgtcttcct	gtatttcgtc	tatgctattg	accaagctat	cataggatgt	ttttgtaact	1740
tttgaagcta	attcattaaa	tagttctaaa	aatttcttta	aatcctctag	catatcttct	1800
tctgtgaatc	cttcattcaa	atcataatat	ttgaatctta	ttgatccatg	agaatatcct	1860
gatggataat	cattttttaa	atcataagat	gaatctttat	tttctgcgta	ataaaatctt	1920
ccagtattaa	attcatttga	tgtaatatat	ttattgagtt	cggaagataa	agttaatgct	1980
ctttgttttg	cagcattttt	atcccgcgga	aacatatcac	ttatctttga	ccatccttga	2040
ttcaaagata	agtatatgcc	ttctccttcc	ggatgaaaaa	gatataccaa	ataatatcca	2100
tcctttgttt	cttttgttat	attctcatca	tatattgaaa	tccaaggaac	tttactatag	2160
ttcccagtag	caaccttccc	tacaactgaa	tatttatctt	cttttatatg	cacttttaac	2220
tgcttgggta	acttatcatg	gactaaagtt	ttatatagat	cacctttatc	ccaatcagat	2280
tttttaacta	cattattggt	acgtttctct	ttaattaatt	taaggacctg	cataaagttg	2340
tctatcattt	gaaattccct	cctattataa	aatatattat	gtctcatttt	cttcaatatg	2400
tacttattta	tattttaccg	taatttacta	tatttagttg	cagaaagaat	tttctcaaag	2460
ctagaacttt	gcttcactat	aagtattcag	tataaagaat	atttcgctat	tatttacttg	2520
aaatgaaaga	ctgcggaggc	taactatgtc	aaaaatcatg	aacctcatta	cttatgataa	2580
gcttctcctc	gcataatctt	aaatgctctg	tacacttgtt	caattaacac	aacccgcatc	2640
atttgatgtg	ggaatgtcat	tttgctgaat	gatagtgcgt	agttactgcg	ttgtaagacg	2700
tccttgtgca	ggccgtttga	tccgccaatg	acgaaaacaa	agtcgctttg (cccttgggtc	2760
atgcgttggt	tcaattcttg	ggccaatcct	tcggaagata (gcatctttcc t	ttgtatttct	2820
aatgtaatga	ctgtggattg	tggtttgatt	ttggctagta	ttegttggee t	ttctttttct	2880
tttacttgct	caatttcttt	gtcactcata	ttttctggtg	ctttttcgtc t	tggaacttct	2940
atgatgtcta	tcttggtgta	tgggcctaaa	cgtttttcat	attctgctat q	ggcttgcttc	3000
caatatttct	cttttagttt	ccctacagct	aaaatggtga	ttttcatgtc		3050

<210> 2 <211> 3050 <212> DNA <213> Staphylococcus aureus

5

<400> 2

acctcattga gcaagatcac cgtcatatta aagtaagaaa gacaaggtat caaagtatca 60 atacagcaaa gaatacttta aaaggtattg aatgtattta cgctctatat aaaaagaacc 120 gcaggtctct tcagatctac ggattttcgc catgccacga aattagcatc atgctagcaa 180 gttaagcgaa cactgacatg ataaattagt ggttagctat attttttac tttgcaacag 240 300 aaccgaaaat aatctcttca atttatttt atatgaatcc tgtgactcaa tgattgtaat 360 atctaaagat ttcagttcat catagacaat gttcttttca acatttttta tagcaaattg attaaataaa ttctctaatt tctcccgttt gatttcacta ccatagatta tattatcatt 420 480 gatatagtca atgaataatg acaaattatc actcataaca gtcccaaccc ctttcttttg atagactaat tatcttcatc attgtaaaac aaattacacc ctttaaattt aactcaactt 540 aaatatcgac aaattaaaaa acaataaaat tacttgaata ttattcataa tatattaaca 600 660 actttattat actgctcttt atatataaaa tcattaataa ttaaacaagc cttaaaatat ttaacttttt tgtgattatt acacattatc ttatctgctc tttatcacca taaaaataga 720 aaaaacaaga ttcctaaaga atataggaat cttgtttcag actgtggaca aactgatttt 780 ttatcagtta gcttatttag aaagttttat ttaaattaca gtttctattt ttattagatc 840 acaattttat tttagctctt gttcaagtaa tcatttttcg ccaaaaactt tatactgaat 900 agcttctaca ttaaatactt tgtcaatgag atcatctaca tctttaaatt cagaataatt 960 tgcatatgga tctataaaat aaaattgtgg ttctttaccg gaaacattaa atattcttaa 1020 tattaaatat ttctgcttat attctttcat agcaaacatt tcatttagcg acataaaaaa 1080 tggttcctca atactagaag atgtagatgt tttaatttca ataaattttt ctacagcttt 1140

atctgtattt	gttggatcaa	aagctactaa	atcatagcca	tgaccgtgtt	gagagcctgg	1200
attatcattt	aaaatattcc	taaactgttc	tttcttatct	tcgtctattt	tattatcaat	1260
tagctcatta	aagtaattta	gcgctaattt	ttctccaact	ttaccggtta	atttattctc	1320
tttatttgat	ttttcaattt	ctgaatcatt	tttagtagtc	tttgatacac	cttttttata	1380
ttttggaatt	attcctttag	gtgcttccac	ttccttgagt	gtcttatctt	tttgtgctgt	1440
tctaatttct	tcaatttcgc	tgtcttcctg	tatttcgtct	atgctattga	ccaagctatc	1500
ataggatgtt	tttgtaactt	ttgaagctaa	ttcattaaat	agttctaaaa	atttctttaa	1560
atcctctagc	atatcttctt	ctgtgaatcc	ttcattcaaa	tcataatatt	tgaatcttat	1620
tgatccatga	gaatatcctg	atggataatc	attttttaaa	tcataagatg	aatctttatt	1680
ttctgcgtaa	taaaatcttc	cagtattaaa	ttcatttgat	gtaatatatt	tattgagttc	1740
ggaagataaa	gttaatgctc	tttgttttgc	agcatttta	tcccgcggaa	acatatcact	1800
tatctttgac	catccttgat	tcaaagataa	gtatatgcct	tctccttccg	gatgaaaaag	1860
atataccaaa	taatatccat	cctttgtttc	ttttgttata	ttctcatcat	atattgaaat	1920
ccaaggaact	ttactatagt	tcccagtagc	aaccttccct	acaactgaat	atttatcttc	1980
ttttatatgc	acttttaact	gcttgggtaa	cttatcatgg	actaaagttt	tatatagatc	2040
acctttatcc	caatcagatt	ttttaactac	attattggta	cgtttctctt	taattaattt	2100
aaggacctgc	ataaagttgt	ctatcatttg	aaattccctc	ctattataaa	atatattatg	2160
tctcattttc	ttcaatatgt	acttatttat	attttaccgt	aatttactat	atttagttgc	2220
agaaagaatt	ttctcaaagc	tagaactttg	cttcactata	agtattcagt	ataaagaata	2280
tttcgctatt	atttacttga	aatgaaagac	tgcggaggct	aactatgtca	aaaatcatga	2340
acctcattac	ttatgataag	cttcttaaaa	acataacagc	aattcacata	aacctcatat	2400
gttctgatac	attcaaaatc	cctttatgaa	gcggctgaaa	aaaccgcatc	atttatgata	2460
tgcttctcca	cgcataatct	taaatgctct	atacacttgc	tcaattaaca	caacccgcat	2520
catttgatgt	gggaatgtca	ttttgctgaa	tgatagtgcg	tagttactgc	gttgtaagac	2580
gtccttgtgc	aggccgtttg	atccgccaat	gacgaataca	aagtcgcttt	gcccttgggt	2640
catgcgttgg	ttcaattctt	gggccaatcc	ttcggaagat	agcatctttc	cttgtatttc	2700
taatgtaatg	actgtggatt	gtggtttaat	tttggctagt	attcgttggc	cttcttttc	2760
ttttacttgc	tcaatttctt	tgtcgctcat	attttctggt	gctttttcgt	ctggaacttc	2820
tatgatgtct	atcttggtgt	atgggcctaa	acgtttttca	tattctgcta	tggcttgctt	2880
ccaatatttc	tcttttagtt	tccctacagc	taaaatggtg	attttcatgt	cgtttggtcc	2940
tccaaattgt	tatcaacttt	ccagttatcc	acaagttatt	aacttgttca	cactgttccc	3000
tcttattata	ccaatatttt	ttgcagtttt	tgatattttc	ctgacattta		3050

^{5 &}lt;210> 3

<211> 3183

<212> DNA

<213> Staphylococcus aureus

^{10 &}lt;400> 3

ctgcagaggt	aattattcca	aacaatacca	ttgatttcaa	aggagaaaga	gatgacgtta	60
gaacgcgtga	aacaaattta	ggaaacgcga	ttgcagatgc	tatggaagcg	tatggcgtta	120
agaatttctc	taaaaagact	gactttgccg	tgacaaatgg	tggaggtatt	cgtgcctcta	180
tcgcaaaagg	taaggtgaca	cgctatgatt	taatctcagt	attaccattt	ggaaatacga	240
ttgcgcaaat	tgatgtaaaa	ggttcagacg	tctggacggc	tttcgaacat	agtttaggcg	300
caccaacaac	acaaaaggac	ggtaagacag	tgttaacagc	gaatggcggt	ttactacata	360
tctctgattc	aatccgtgtt	tactatgata	taaataaacc	gtctggcaaa	cgaattaatg	420
ctattcaaat	tttaaataaa	gagacaggta	agtttgaaaa	tattgattta	aaacgtgtat	480
atcacgtaac	gatgaatgac	ttcacagcat	caggtggcga	cggatatagt	atgttcggtg	540
gtcctagaga	agaaggtatt	tcattagatc	aagtactagc	aagttattta	aaaacagcta	600
acttagctaa	gtatgatacg	acagaaccac	aacgtatgtt	attaggtaaa	ccagcagtaa	660
gtgaacaacc	agctaaagga	caacaaggta	gcaaaggtag	taagtctggt	aaagatacac	720
aaccaattgg	tgacgacaaa	gtgatggatc	cagcgaaaaa	accagctcca	ggtaaagttg	780
ttttgttgct	agcgcataga	ggaactgtta	gtagcggtac	agaaggttct	ggtcgcacaa	840
tagaaggagc	tactgtatca	agcaagagtg	ggaaacaatt	ggctagaatg	tcagtgccta	900
aaggtagcgc	gcatgagaaa	cagttaccaa	aaactggaac	taatcaaagt	tcaagcccag	960
aagcgatgtt	tgtattatta	gcaggtatag	gtttaatcgc	gactgtacga	cgtagaaaag	1020
ctagctaaaa	tatattgaaa	ataatactac	tgtatttctt	aaataagagg	tacggtagtg	1080
tttttttatg	aaaaaaagcg	ataaccgttg	ataaatatgg	gatataaaaa	cgaggataag	1140
taataagaca	tcaaggtgtt	tatccacaga	aatggggata	gttatccaga	attgtgtaca	1200
atttaaagag	aaatacccac	aatgcccaca	gagttatcca	caaatacaca	ggttatacac	1260

taaaaatcgg	gcataaatgt	caggaaaata	tcaaaaactg	caaaaaatat	tggtataata	1320
agagggaaca	gtgtgaacaa	gttaataact	tgtggataac	tggaaagttg	ataacaattt	1380
ggaggaccaa	acgacatgaa	aatcaccatt	ttagctgtag	ggaaactaaa	agagaaatat	1440
tggaagcaag	ccatagcaga	atatgaaaaa	cgtttaggcc	catacaccaa	gatagacatc	1500
atagaagttc	cagacgaaaa	agcaccagaa	aatatgagtg	acaaagaaat	tgagcaagta	1560
aaagaaaaag	aaggccaacg	aatactagcc	aaaatcaaac	cacaatccac	agtcattaca	1620
ttagaaatac	aaggaaagat	gctatcttcc	gaaggattgg	cccaagaatt	gaaccaacgc	1680
atgacccaag	ggcaaagcga	ctttgttttc	gtcattggcg	gatcaaacgg	cctgcacaag	1740
gacgtcttac	aacgcagtaa	ctacgcacta	tcattcagca	aaatgacatt	cccacatcaa	1800
atgatgcggg	ttgtgttaat	tgaacaagtg	tacagagcat	ttaagattat	gcgaggagag	1860
gcgtatcata	agtaaaacta	aaaaattctg	tatgaggaga	taataatttg	gagggtgtta	1920
aatggtggac	attaaatcca	cgttcattca	atatataaga	tatatcacga	taattgcgca	1980
tataacttaa	gtagtagcta	acagttgaaa	ttaggcccta	tcaaattggt	ttatatctaa	2040
aatgattaat	atagaatgct	tctttttgtc	cttattaaat	tataaaagta	actttgcaat	2100
agaaacagtt	atttcataat	caacagtcat	tgacgtagct	aagtaatgat	aaataatcat	2160
aaataaaatt	acagatattg	acaaaaaata	gtaaatattc	caatgaagtt	tcaaaagaac	2220
aattccaaga	aattgagaat	gtaaataata	aggtcaaaga	attttattaa	gatttgaaag	2280
agtatcaatc	aagaaagatg	tagtttttta	ataaactatt	tggaaaataa	ttatcataat	2340
ttaaaaactg	acaatttgcg	agactcataa	aatgtaataa	tggaaataga	tgtaaaatat	2400
aattaagggg	tgtaatatga	agattaatat	ttataaatct	atttataatt	ttcaggaaac	2460
aaatacaaat	tttttagaga	atctagaatc	tttaaatgat	gacaattatg	aactgcttaa	2520
tgataaagaa	cttgttagtg	attcaaatga	attaaaatta	attagtaaag	tttatatacg	2580
taaaaaagac	aaaaaactat	tagattggca	attattaata	aagaatgtat	acctagatac	2640
tgaagaagat	gacaatttat	tttcagaatc	cggtcatcat	tttgatgcaa	tattatttct	2700
caaagaagat	actacattac	aaaataatgt	atatattata	ccttttggac	aagcatatca	2760
tgatataaat	aatttgattg	attatgactt	cggaattgat	tttgcagaaa	gagcaatcaa	2820
aaatgaagac	atagttaata	aaaatgttaa	ttttttcaa	caaaacaggc	ttaaagagat	2880
tgttaattat	agaaggaata	gtgtagatta	cgttagacct	tcagaatctt	atatatcagt	2940
ccaaggacat	ccacagaatc	ctcaaatttt	tggaaaaaca	atgacttgtg	gtacaagtat	3000
ttcattgcgt	gtaccgaata	gaaagcagca	attcatagat	aaaattagtg	tgataatcaa	3060
agaaataaac	gctattatta	atcttcctca	aaaaattagt	gaatttccta	gaatagtaac	3120
tttaaaagac	ttgaataaaa	tagaagtatt	agatacttta	ttgctaaaaa	aactatcgaa	3180
ttc						3183

5 <210> 4 <211> 479

<212> DNA

<213> Staphylococcus aureus

	<400> 4						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaaca	479
5	<210> 5 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
10	<400> 5						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataac	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480
15	<210> 6 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
20	<400> 6						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	atccccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agatttgtgt	tagaaacagt	480
25	<210> 7 <211> 480 <212> DNA <213> Stanby	vococcus aure	alie				

	<400> 7						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480
5	<210> 8 <211> 309 <212> DNA <213> Staphy	rlococcus aure	eus				
10	<220> <221> caracte <222> (237) <223> n es a,	(237)					
15	<400> 8						
	ggcggatcaa	acggcctgca	caaggacgtc	: ttacaacgca	a gtaactacg	c actatcattc	60
	agcaaaatga	cattcccaca	tcaaatgatg	cgggttgtgt	taattgaac	a agtgtacaga	120
	gcatttaaga	ttatgcgtgg	agaagcgtat	cataaataaa	a actaaaaat	t aggttgtgta	180
	taatttaaaa	atctaatgag	atgtggagga	attacatata	a tgaaatatt	g gattatncct	240
	tgcaatatca	tacgatgttt	atagagtgtt	taataaacca	a tttttcaac	t attgatgatc	300
	tacaatata						309
20	<210> 9 <211> 471 <212> DNA <213> Staphy	rlococcus aure	eus				
25	<400> 9						
	ttggcggatc	aaacggcctg	cacaaggacg	tcttacaacg	cagtaactac	gcactatcat	60
	tcagcaaaat	gacattccca	catcaaatga	tgcgggttgt	gttaattgaa	caagtgtaca	120
	gagcatttaa	gattatgcgt	ggagaagcgt	atcataaata	aaactaaaaa	ttaggttgtg	180
	tataatttaa	aaatttaatg	agatgtggag	gaattacata	tatgaaatat	tggattatac	240
	cttgcaatat	catacgatgt	ttatagagtg	tttaataaac	catttttcaa	ctattgatga	300
	tctagaatat	ataataactg	tacaaattat	attgattatg	gaactacaat	taaattaaga	360
	aattgatgat	gaaattttaa	atttaaacta	atggaatcaa	gaaagaatga	aaggaaatat	420
	acaatgccta	cgattaataa	aaggaagttt	attagatttt	gtgttagaaa	С	471
30		rlococcus aure	eus				

	<400> 10						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
5	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480
10	<210> 11 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
10	<400> 11						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataca	atgeetaega	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480
15	<210> 12 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
20	<400> 12						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480
25	<210> 13 <211> 478 <212> DNA <213> Staphy	ylococcus aure	eus				

	<400> 13						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgca	g taactacgca	60
5	ctatcattca	gcaaaatgac	attcccacat	caaatgatgo	gggttgtgt:	t aattgaacaa	120
5	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaac	478
10	<210> 14 <211> 479 <212> DNA <213> Staphy	/lococcus aure	eus				
	<400> 14						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
15	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaaca	479
20	<210> 15 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
25	<220> <221> caracte <222> (406) <223> n es a	(406)					
	<400> 15						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
20	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
30	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcncgaa	agaatgaaag	420
	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480

5	<210> 16 <211> 480 <212> DNA <213> Staphy	ylococcus aure	eus				
	<400> 16						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcgtatc	ataaataaaa	ctaaaaatta	180
	ggttgtgtat	aatttaaaaa	tttaatgaga	tgtggaggaa	ttacatatat	gaaatattgg	240
	attatacctt	gcaatatcat	acgatgttta	tagagtgttt	aataaaccat	ttttcaacta	300
	ttgatgatct	agaatatata	ataactgtac	aaattatatt	gattatggaa	ctacaattaa	360
	attaagaaat	tgatgatgaa	attttaaatt	taaactaatg	gaatcaagaa	agaatgaaag	420
10	gaaatataca	atgcctacga	ttaataaaag	gaagtttatt	agattttgtg	ttagaaacag	480
15	<210> 17 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
13	<400> 17						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcatatc	ataaatgatg	cggttttttc	180
	agccgcttca	taaagggatt	ttgaatgtat	cagaacatat	gaggtttatg	tgaattgctg	240
	ttatgttttt	aagaagctta	tcataagtaa	tgaggttcat	gatttttgac	atagttagcc	300
	tccgcagtct	ttcatttcaa	gtaaataata	gcgaaatatt	ctttatactg	aatacttata	360
	gtgaagcaaa	gttctagctt	tgagaaaatt	ctttctgcaa	ctaaatatag	taaattacgg	420
	taaaatataa	ataagtacat	attgaagaaa	atgagacata	atatattta	taataggagg	480
20	<210> 18 <211> 480 <212> DNA <213> Staphy	/lococcus aure	eus				
25	<400> 18						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgagcaa	120
	gtgtatagag	catttaagat	tatgcgtgga	gaagcatatc	ataaatgatg	cggtttttc	180
	agccgcttca	taaagggatt	ttgaatgtat	cagaacatat	gaggtttatg	tgaattgctg	240
	ttatgtttt	aagaagctta	tcataagtaa	tgaggttcat	gatttttgac	atagttagcc	300
	teegeagtet	ttcatttcaa	gtaaataata	gcgaaatatt	ctttatactg	aatacttata	360
	gtgaagcaaa	gttctagctt	tgagaaaatt	ctttctgcaa	ctaaatatag	taaattacgg	420
	taaaatataa	ataagtacat	attgaagaaa	atgagacata	atatattta	taataggagg	480

-	<210> 19 <211> 458 <212> DNA <213> Staphy	/lococcus aure	eus				
5	<400> 19						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacagag	catttaagat	tatgcgtgga	gaagcatatc	ataaatgatg	cggtttttc	180
	agccgcttca	taaagggatt	ttgaatgtat	cagaacatat	gaggtttatg	tgaattgctg	240
	ttatgttttt	aagaagctta	tcataagtaa	tgaggttcat	gatttttgac	atagttagcc	300
	tccgcagtct	ttcatttcaa	gtaaataata	gcgaaatatt	ctttatactg	aatacttata	360
	gtgaagcaaa	gttctagctt	tgagaaaatt	ctttctgcaa	ctaaatatag	taaattacgg	420
	taaaatataa	ataagtacat	attgaagaaa	atgagaca			458
10	<210> 20 <211> 385 <212> DNA <213> Staphy	/lococcus aure	eus				
15	<400> 20						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgagcaa	120
	gtgtatagag	catttaagat	tatgcgtgga	gaagcttatc	ataagtaatg	aggttcatga	180
	tttttgacat	agttagcctc	cgcagtcttt	catttcaagt	aaataatagc	gaaatattct	240
	ttatactgaa	tacttatagt	gaagcaaagt	tctagctttg	agaaaattct	ttctgcaact	300
	aaatatagta	aattacggta	aaatataaat	aagtacatat	tgaagaaaat	gagacataat	360
20	atattttata	ataggaggga	atttc				385
20	<210> 21 <211> 385 <212> DNA <213> Staphy	/lococcus aure	eus				
23	<400> 21						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgagcaa	120
	gtgtatagag	catttaagat	tatgcgtgga	gaagcttatc	ataagtaatg	aggttcatga	180
	tttttgacat	agttagcctc	cgcagtcttt	catttcaagt	aaataatagc	gaaatattct	240
	ttatactgaa	tacttatagt	gaagcaaagt	tctagctttg	agaaaattct	ttctgcaact	300
	aaatatagta	aattacggta	aaatataaat	aagtacatat	tgaagaaaat	gagacataat	360
	atattttata	ataggaggga	atttc				385
30	<210> 22 <211> 385 <212> DNA <213> Staphy	/lococcus aure	eus				

	<400> 22						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct	tacaacgcag	taactacgca	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgagcaa	120
	gtgtatagag	catttaagat	tatgcgtgga	gaagcttatc	ataagtaatg	aggttcatga	180
	tttttgacat	agttagcctc	cgcagtcttt	catttcaagt	aaataatagc	gaaatattct	240
	ttatactgaa	tacttatagt	gaagcaaagt	tctagctttg	agaaaattct	ttctgcaact	300
	aaatatagta	aattacggta	aaatataaat	aagtacatat	tgaagaaaat	gagacataat	360
F	atattttata	ataggaggga	atttc				385
5	<210> 23 <211> 385 <212> DNA <213> Staphy	lococcus aure	us				
10	<400> 23						
	ttcgtcattg	gcggatcaaa	cggcctgcac	aaggacgtct 1	tacaacgcag t	aactacgcg	60
	ctatcattca	gcaaaatgac	attcccacat	caaatgatgc	gggttgtgtt	aattgaacaa	120
	gtgtacaaag	catttaagat	tatgcgagga	gaagcttatc	ataagtaatg	aggttcatga	180
	tttttgacat	agttagcctc	cgcagtcttt	catttcaagt	aaataatagc	gaaatattct	240
	ttatactgaa	tacttatagt	gaagcaaagt	tctagctttg	agaaaattct	ttctgcaact	300
	aaatatagta	aattacggta	aaatataaat	aagtacatat	tgaagaaaat	gagacataat	360
15	atattttata	ataggaggga	atttc				385
20	<210> 24 <211> 340 <212> DNA <213> Staphy	rlococcus aure	us				
	<400> 24						
	cgcagtaact	acgcgctatc	attcagcaaa	atgacattcc	cacatcaaat	gatgcgggtt	60
	gtgttagttg	agcaagtgta	catagcattt	aagattatgc	gaggagaagc	ttatcataag	120
	taatgaggtt	catgattttt	gacatagtta	gcctccgcag	tctttcattt	caagtaaata	180
	atagcgaaat	attctttata	ctgaatactt	atagtgaagc	aaagttctag	ctttgagaaa	240
	attctttctg	caactaaata	tagtaaatta	cggtaaaata	taaataagta	catattgaag	300
25	aaaatgagac	ataatatatt	ttataatagg	agggaatttc			340
	<210> 25 <211> 369 <212> DNA <213> Staphy	lococcus aure	us				
30	<400> 25						

caaacggcct	gcacaaggac	gtcttacaac	gcagtaacta	cgcactatca	ttcagcaaaa	60
tgacattccc	acatcaaatg	atgcgggttg	tgttaattga	acaagtgtac	agagcattta	120
agattatgcg	aggagaagct	tatcataagt	aatgaggttc	atgatttttg	acatagttag	180
cctccgcagt	ctttcatttc	aagtaaataa	tagcgaaata	ttctttatac	tgaatactta	240
tagtgaagca	aagttctagc	tttgagaaaa	ttctttctgc	aactaaatat	agtaaattac	300
ggtaaaatat	aaataagtac	atattgaaga	aaatgagaca	taatatattt	tataatagga	360
gggaatttc						369

<210> 26

<211> 3050 5 <212> DNA

<213> Staphylococcus aureus

<400> 26

aatttggtaa	acctcaaaag	gtaattacag	atcaggcacc	ttcaacgaag	gtagcaatgg	60
ctaaagtaat	taaagctttt	aaacttaaac	ctgactgtca	ttgtacatcg	aaatatctga	120
ataacctcat	tgagcaagat	caccgtcata	ttaaagtaag	aaagacaagg	tatcaaagta	180
tcaatacagc	aaagaatact	ttaaaaggta	ttgaatgtat	tcacgctcta	tataaaaaga	240
accgcaggtc	tcttcagatc	tacggatttt	cgccatgcca	cgaaattagc	atcatgctag	300
caagttaagc	gaacactgac	atgataaatt	agtggttagc	tatattttt	tactttgcaa	360
cagaaccgaa	aataatctct	tcaatttatt	tttatatgaa	tcctgtgact	caatgattgt	420
aatatctaaa	gatttcagtt	catcatagac	aatgttcttt	tcaacatttt	ttatagcaaa	480
ttgattaaat	aaattctcta	atttctcccg	tttgatttca	ctaccataga	ttatattatc	540
attgatatag	tcaatgaata	atgacaaatt	atcactcata	acagtcccaa	cccctttatt	600
ttgatagact	aattatcttc	atcattgtaa	aacaaattac	accctttaaa	tttaactcaa	660
cttaaatatc	gacaaattaa	aaaacaataa	aattacttga	atattattca	taatatatta	720
acaactttat	tatactgctc	tttatatata	aaatcattaa	taattaaaca	agccttaaaa	780
tatttaactt	ttttgtgatt	attacacatt	atcttatctg	ctctttatca	ccataaaaat	840
agaaaaaaca	agattcctaa	agaatatagg	aatcttgttt	cagactgtgg	acaaactgat	900
tttttatcag	ttagcttatt	tagaaagttt	tatttaaatt	acagtttcta	tttttattag	960
atcacaattt	tattttagct	cttgttcaag	taatcatttt	tcgccaaaaa	ctttatactg	1020
aatagcttct	acattaaata	cttgtcaatg	agatcatcta	catctttaaa	ttcagaataa	1080
ttcgcatatg	gatctataaa	ataaaattgt	ggttctttac	cggaaacatt	aaatattctt	1140
aatattaaat	atttctgctt	atattctttc	atagcaaaca	tttcatttag	cgacataaaa	1200
aatggttcct	caatactaga	agatgtagat	gttttaattt	caataaattt	ttctacagct	1260
ttatctgtat	ttgttggatc	aaaagctact	aaatcatagc	catgaccgtg	ttgagagcct	1320
ggattatcat	ttaaaatatt	cctaaactgt	tctttcttat	cttcgtctat	tttattatca	1380
attagctcat	taaagtaatt	tagcgctaat	ttttctccaa	ctttaccggt	taatttattc	1440
tctttatttg	atttttcaat	ttctgaatca	tttttagtag	tctttgatac	accttttta	1500
tattttggaa	ttattccttt	aggtgcttcc	acttccttga	gtgtcttatc	tttttgtgct	1560
gttctaattt	cttcaatttc	actatettee	tatatttcat	ctatoctatt	gaccaageta	1620

tcataggatg	tttttgtaac	ttttgaagct	aattcattaa	atagttctaa	aaatttcttt	1680
aaatcctcta	gcatatcttc	ttctgtgaat	ccttcattca	aatcataata	tttgaatctt	1740
attgatccat	gagaatatcc	tgatggataa	tcatttttta	aatcataaga	tgaatcttta	1800
ttttctgcgt	aataaaatct	tccagtatta	aattcatttg	atgtaatata	tttattgagt	1860
tcggaagata	aagttaatgc	tctttgtttt	gcagcatttt	tatcccgcgg	aaacatatca	1920
cttatctttg	accatccttg	attcaaagat	aagtatatgc	cttctccttc	cggatgaaaa	1980
agatatacca	aataatgtcc	atcctttgtt	tcttttgtta	tattctcatc	atatattgaa	2040
atccaaggaa	ctttactata	gttcccagta	gcaaccttcc	ctacaactga	atatttatct	2100
tcttttatat	gcacttttaa	ctgcttgggt	aacttatcat	ggactaaagt	tttatataga	2160
tcacctttat	cccaatcaga	ttttttaact	acattattgg	tacgtttctc	tttaattaat	2220
ttaaggacct	gcataaagtt	gtctatcatt	tgaaattccc	tcctattata	aaatatatta	2280
tgtctcattt	tcttcaatat	gtacttattt	atattttacc	gtaatttact	atatttagtt	2340
gcagaaagaa	ttttctcaaa	gctagaactt	tgcttcacta	taagtattca	gtataaagaa	2400
tatttcgcta	ttatttactt	gaaatgaaag	actgcggagg	ctaactatgt	caaaaatcat	2460
gaacctcatt	acttatgata	agcttcttaa	aaacataaca	gcaattcaca	taaacctcat	2520
atgttctgat	acattcaaaa	tccctttatg	aagcggctga	aaaaaccgca	tcatttatga	2580
tatgcttctc	ctcgcataat	cttaaatgct	ctgtacactt	gttcaattaa	cacaacccgc	2640
atcatttgat	gtgggaatgt	cattttgctg	aatgatagtg	cgtagttact	gcgttgtaag	2700
acgtccttgt	gcaggccgtt	tgatccgcca	atgacgaaaa	caaagtcgct	ttgcccttgg	2760
gtcatgcgtt	ggttcaattc	ttgggccaat	ccttcggaag	atagcatctt	tccttgtatt	2820
tctaatgtaa	tgactgtgga	ttgtggtttg	attttggcta	gtattcgttg	gccttctttt	2880
tcttttactt	gctcaatttc	tttgtcactc	atattttctg	gtgcttttc	gtctggaact	2940
tctatgatgt	ctatcttggt	gtatgggcct	aaacgttttt	catattctgc	tatggcttgc	3000
ttccaatatt	tctcttttag	tttccctaca	gctaaaatgg	tgattttcat		3050

<210> 27

<211> 657

5 <212> DNA <213> Staphylococcus aureus

<400> 27

10 ccaccttcat atgacgtcta tccatttatg tatggcatga gtaacgaaga atataataaa 60

ttaaccgaag	ataaaaaaga	acctctgctc	aacaagttcc	agattacaac	ttcaccaggt	120
tcaactcaaa	aaatattaac	agcaatgatt	gggttaaata	acaaaacatt	agacgataaa	180
acaagttata	aaatcgatgg	taaaggttgg	caaaaagata	aatcttgggg	tggttacaac	240
gttacaagat	atgaagtggt	aaatggtaat	atcgacttaa	aacaagcaat	agaatcatca	300
gataacattt	tctttgctag	agtagcactc	gaattaggca	gtaagaaatt	tgaaaaaggc	360
atgaaaaaac	taggtgttgg	tgaagatata	ccaagtgatt	atccatttta	taatgctcaa	420
atttcaaaca	aaaatttaga	taatgaaata	ttattagctg	attcaggtta	cggacaaggt	480
gaaatactga	ttaacccagt	acagatcctt	tcaatctata	gcgcattaga	aaataatggc	540
aatattaacg	cacctcactt	attaaaagac	acgaaaaaca	aagtttggaa	gaaaaatatt	600
atttccaaag	aaaatatcaa	tctattaact	gatggtatgc	aacaagtcgt	aaataaa	657

<210> 28

<211> 782

5 <212> DNA

<213> Staphylococcus aureus

<400> 28

caccttcata tgacgtctat ccatttatgt atggcatgag taacgaagaa tataataaat 60 taaccgaaga taaaaaagaa cctctgctca acaagttcca gattacaact tcaccaggtt 120 180 caactcaaaa aatattaaca gcaatgattg ggttaaataa caaaacatta gacgataaaa caagttataa aatcgatggt aaaggttggc aaaaagataa atcttggggt ggttacaacg 240 ttacaagata tgaagtggta aatggtaata tcgacttaaa acaagcaata gaatcatcag 300 ataacatttt ctttgctaga gtagcactcg aattaggcag taagaaattt gaaaaaggca 360 tgaaaaaact aggtgttggt gaagatatac caagtgatta tccattttat aatgctcaaa 420 tttcaaacaa aaatttagat aatgaaatat tattagctga ttcaggttac ggacaaggtg 480 aaatactgat taacccagta cagatccttt caatctatag cgcattagaa aataatggca 540 atattaacgc acctcactta ttaaaagaca cgaaaaacaa agtttggaag aaaaatatta 600 tttccaaaga aaatatcaat ctattaactg atggtatgca acaagtcgta aataaaacac 660 ataaagaaga tatttataga tottatgcaa acttaattgg caaatccggt actgcagaac 720 780 tcaaaatgaa acaaggagaa actggcagac aaattgggtg gtttatatca tatgataaag 782 **10** at

<210> 29

<211> 744

<212> DNA

15 <213> Staphylococcus aureus

<400> 29

tatgacgtct	atccatttat	gtatggcatg	agtaacgaag	aatataataa	attaaccgaa	60
gataaaaaag	aacctctgct	caacaagttc	cagattacaa	cttcaccagg	ttcaactcaa	120
aaaatattaa	cagcaatgat	tgggttaaat	aacaaaacat	tagacgataa	aacaagttat	180
aaaatcgatg	gtaaaggttg	gcaaaaagat	aaatcttggg	gtggttacaa	cgttacaaga	240
tatgaagtgg	taaatggtaa	tatcgactta	aaacaagcaa	tagaatcatc	agataacatt	300
ttctttgcta	gagtagcact	cgaattaggc	agtaagaaat	ttgaaaaagg	catgaaaaaa	360
ctaggtgttg	gtgaagatat	accaagtgat	tatccatttt	ataatgctca	aatttcaaac	420
aaaaatttag	ataatgaaat	attattagct	gattcaggtt	acggacaagg	tgaaatactg	480
attaacccag	tacagatcct	ttcaatctat	agcgcattag	aaaataatgg	caatattaac	540
gcacctcact	tattaaaaga	cacgaaaaac	aaagtttgga	agaaaaatat	tatttccaaa	600
gaaaatatca	atctattaac	tgatggtatg	caacaagtcg	taaataaaac	acataaagaa	660
gatatttata	gatcttatgc	aaacttaatt	ggcaaatccg	gtactgcaga	actcaaaatg	720
aaacaaggag	aaactggcag	acaa				744
	rlococcus aure	eus				
<400> 30						
ccaccttcat	atgacgtcta	tccatttatg	tatggcatga	gtaacgaaga	atataataaa	60
ttaaccgaag	ataaaaaaga	acctctgctc	aacaagttcc	agattacaac	ttcaccaggt	120
tcaactcaaa	aaatattaac	agcaatgatt	gggttaaata	acaaaacatt	agacgataaa	180
acaagttata	aaatcgatgg	taaaggttgg	caaaaagata	aatcttgggg	tggttacaac	240
gttacaagat	atgaagtggt	aaatggtaat	atcgacttaa	aacaagcaat	agaatcatca	300
gataacattt	tctttgctag	agtagcactc	gaattaggca	gtaagaaatt	tgaaaaaggc	360
atgaaaaaac	taggtgttgg	tgaagatata	ccaagtgatt	atccatttta	taatgctcaa	420
atttcaaaca	aaaatttaga	taatgaaata	ttattagctg	attcaggtta	cggacaaggt	480
gaaatactga	ttaacccagt	acagatcctt	tcaatctata	gcgcattaga	aaataatggc	540
aatattaacg	cacctcactt	attaaaagac	acgaaaaaca	aagtttggaa	gaaaaatatt	600
atttccaaag	aaaatatcaa	tctattaact	gatggtatgc	aacaagtcgt	aa	652
<210> 31 <211> 2436 <212> DNA						

<400> 31

ccaccttcat	atgacgtcta	tccatttatg	tatggcatga	gtaacgaaga	atataataaa	60
ttaaccgaag	ataaaaaaga	acctctgctc	aacaagttcc	agattacaac	ttcaccaggt	120
tcaactcaaa	aaatattaac	agcaatgatt	gggttaaata	acaaaacatt	agacgataaa	180
acaagttata	aaatcgatgg	taaaggttgg	caaaaagata	aatcttgggg	tggttacaac	240
gttacaagat	atgaagtggt	aaatggtaat	atcgacttaa	aacaagcaat	agaatcatca	300
gataacattt	tctttgctag	agtagcactc	gaattaggca	gtaagaaatt	tgaaaaaggc	360
atgaaaaaac	taggtgttgg	tgaagatata	ccaagtgatt	atccatttta	taatgctcaa	420
atttcaaaca	aaaatttaga	taatgaaata	ttattagctg	attcaggtta	cggacaaggt	480
gaaatactga	ttaacccagt	acagatcctt	tcaatctata	gcgcattaga	aaataatggc	540
aatattaacg	cacctcactt	attaaaagac	acgaaaaaca	aagtttggaa	gaaaaatatt	600
atttccaaag	aaaatatcaa	tctattaact	gatggtatgc	aacaagtcgt	aaataaaaca	660
cataaagaag	atatttatag	atcttatgca	aacttaattg	gcaaatccgg	tactgcagaa	720
ctcaaaatga	aacaaggaga	aactggcaga	caaattgggt	ggtttatatc	atatgataaa	780
gataatccaa	acatgatgat	ggctattaat	gttaaagatg	tacaagataa	aggaatggct	840
agctacaatg	ccaaaatctc	aggtaaagtg	tatgatgagc	tatatgagaa	cggtaataaa	900
aaatacgata	tagatgaata	acaaaacagt	gaagcaatcc	gtaacgatgg	ttgcttcact	960
gttttattat	gaattattaa	taagtgctgt	tacttctccc	ttaaatacaa	tttcttcatt	1020
ttcattgtat	gttgaaagtg	acactgtaac	gagtccattt	tcttttttta	tggatttctt	1080
atttgtaatt	tcagcgataa	cgtacaatgt	attacctggg	tatacaggtt	taataaattt	1140
aacgttattc	atttgtgttc	ctgctacaac	ttcttctccg	tatttacctt	cttctaccca	1200
taatttaaat	gatattgaaa	gtgtatgcat	gccagatgca	atgatacctt	taaatctact	1260
ttgttctgct	ttttctttat	ctatatgcat	atattgagga	tcaaaagttg	ttgcaaattg	1320
gataatttct	tcttctgtaa	tatgaaggct	ttttgttttg	aatgtttctc	ctactataaa	1380
atcatcgtat	ttcatatatg	tctctcttc	ttattcaaat	taattttta	gtatgtaaca	1440

+a++>>>a+	220+0+2000	+020+02220	at a aga at a a	aatataaatt	+a+a++aaaa	1500	
	aagtctaccg	-	-				
-	attttatctg	2 2	_		2 2	1560	
33 3	cgtgctggtt	3	_		-	1620	
	acttttgctt			-	-	1680	
acagtaatct	aaaagtgttc	tccagtcttc	acgaaacgaa	gttgtatgga	atataactgc	1740	
tctgttatat	tgtggcatga	tttcttctgc	aagtttaaca	agcacaacat	taaagcttga	1800	
aatgagcact	tcttgattct	gatttaagtt	tgttaattgt	tcttccactt	gcttaaccat	1860	
acttttagaa	agtgctagtc	cattcggtcc	agtaatacct	tttaattcta	catttaaatt	1920	
catattatat	tcatttgcta	tttttactac	atcatcgaaa	gttggcaaat	gttcatcttt	1980	
gaatttttca	ccaaaccaag	atcctgcaga	agcatcttta	atttcatcat	aattcaattc	2040	
agttatttcc	ccggacatat	ttgtagtccg	ttctaaataa	tcatcatgaa	tgataatcag	2100	
ttgttcatct	tttgtaattg	caacatctaa	ctccaaccag	tttatacctt	ctacttctga	2160	
agcagcttta	aatgatgcaa	ttgtattttc	cggagcttta	ctaggtaatc	ctctatgtcc	2220	
atatacagtt	agcatattac	ctctccttgc	atttttattt	ttttaattaa	cgtaactgta	2280	
ttatcacatt	aatcgcactt	ttatttccat	taaaaagaga	tgaatatcat	aaataaagaa	2340	
gtcgatagat	tcgtattgat	tatggagtta	atctacgtct	catctcattt	ttaaaaaatc	2400	
atttatgtcc	caagctccat	tttgtaatca	agtcta			2436	
<210> 32 <211> 36 <212> DNA <213> Artificial							
<211> 36 <212> DNA	al						
<211> 36 <212> DNA							
<211> 36 <212> DNA <213> Artificia <220>	para orfX						
<211> 36 <212> DNA <213> Artificia <220> <223> Sonda <220> <221> fuente <222> (1)(36	para orfX						
<211> 36 <212> DNA <213> Artificia <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32	para orfX	gttgtg caagcg		36			
<211> 36 <212> DNA <213> Artificia <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA	para orfX 6) eus			36			
<211> 36 <212> DNA <213> Artificia <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA	para orfX 6) eus caaatgat gcgg			36			
<211> 36 <212> DNA <213> Artificia <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA <213> Staphy <400> 33	para orfX 6) eus caaatgat gcgg	lermidis	ataacagcaa		cctcatatgt	60	
<211> 36 <212> DNA <213> Artificial <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA <213> Staphy <400> 33 ctcattactt	para orfX 6) eus caaatgat gcgg	lermidis tottaaaaac	_	ttcacataaa	_	60 120	
<211> 36 <212> DNA <213> Artificial <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA <213> Staphy <400> 33 ctcattactt tctgatacat	para orfX 6) eus caaatgat gcgg	lermidis tottaaaaac tttatgaago	ggctgaaaaa	ttcacataaa accgcatcat	ttatgatatg		
<211> 36 <212> DNA <213> Artificial <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA <213> Staphy <400> 33 ctcattactt tctgatacat cttcgcctct	para orfX 6) eus caaatgat gcgg /lococcus epid atgataagct tcaaaatccc	lermidis tottaaaaac tttatgaagc aatgogogat	ggctgaaaaa aaatttgttc	ttcacataaa accgcatcat gatcaatatg	ttatgatatg acgcgcatat	120	
<211> 36 <212> DNA <213> Artificial <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA <213> Staphy <400> 33 ctcattactt tctgatacat cttcgcctct ttggtgtggg	para orfX 6) eus caaatgat gcgg /lococcus epid atgataagct tcaaaatccc catgatctta	lermidis tottaaaaac tttatgaagc aatgogogat tgotaaaaga	ggctgaaaaa aaatttgttc taaagcatag	ttcacataaa accgcatcat gatcaatatg ttgctgcgtt	ttatgatatg acgcgcatat gtaagacgtc	120 180	
<211> 36 <212> DNA <213> Artificial <220> <223> Sonda <220> <221> fuente <222> (1)(36 <223> S. aure <400> 32 cgcttgccac ate <210> 33 <211> 336 <212> DNA <213> Staphy <400> 33 ctcattactt tctgatacat cttcgcctct ttggtgtggg ttggtgtaaa	para orfX S) eus caaatgat gcgg /lococcus epid atgataagct tcaaaatccc catgatctta aaggtcatat	lermidis tottaaaaac tttatgaagc aatgogogat tgotaaaaga cacctatgac	ggctgaaaaa aaatttgttc taaagcatag aaatgtaaag	ttcacataaa accgcatcat gatcaatatg ttgctgcgtt	ttatgatatg acgcgcatat gtaagacgtc	120 180 240	

5	<210> 34 <211> 260 <212> DNA <213> Staphylococcus haemolyticus	
	<400> 34	
	ctcattactt atgataagct tettaaaaac ataacagcaa tecacataaa eetcatatgt	60
	tctgatacat tcaaaatccc tttatgaagc ggctgaaaaa accgcatcat ttatgatatg	120
	cttccctcgc atgattttaa atgctctgta tacttgctcg attaagacaa cgcgcatcat	180
	ttgatgtggg aatgtcattt tactgaatga aagtgcgtag ttgctgcgtt gtaagacgtc	240
10	ctcatgcaat ccatttgatc	260
15	<210> 35 <211> 225 <212> DNA <213> Staphylococcus aureus	
13	<400> 35	
	ttcgtcattg gcggatcaaa cggcctgcac aaggacgtct tacaacgcag taactacgca	60
	ctatcattca gcaaaatgac attcccacat caaatgatgc gggttgtgtt aattgaacaa	120
	gtgtacagag catttaagat tatgcgtgga gaggcgtatc acaaataaaa ctaaaaatgg	180
	agtaactatt aatatagtat aaattcaata tggtgataaa aacag	225
20	<210> 36 <211> 225 <212> DNA <213> Staphylococcus aureus	
25	<400> 36	
	ttcgtcattg geggatcaaa eggeetgeae aaggaegtet tacaaegeag taactaegea	60
	ctatcattca gcaaaatgac attcccacat caaatgatgc gggttgtgtt aattgaacaa	120
	gtgtacagag catttaagat tatgcgtgga gaggcgtatc acaaataaaa ctaaaaatgg	180
30	agtaactatt aatatagtat aaattcaata tggtgataaa aacag	225
35	<210> 37 <211> 225 <212> DNA <213> Staphylococcus aureus	
00	<400> 37	
	ttcgtcattg gcggatcaaa cggcctgcac aaggacgtct tacaacgtag taactacgca	60
	ctatcattca gcaaaatgac atttccacat caaatgatgc gggttgtgtt aattgaacaa	120
	gtgtacagag catttaagat tatgcgtgga gaggcgtatc ataagtaatg aggttcatga	180
	tttttgacat agttagcctc cgcagtcttt caagtaaata atatc	225
40	<210> 38 <211> 225 <212> DNA <213> Staphylococcus aureus	

<400> 38

ttegteattg geggateaaa eggeetgeae aaggaegtet tacaaegeag taactaegea 60 ctateattta geaaaatgae atteeeaat caaatgatge gggttgtgtt aattgaacaa 120 gtgtatagag eatttaagat tatgegtgga gaggegtate ataagtgatg ettgttagaa 180 tgattttaa eaatatgaaa tagetgtgga ageteaaaca tttgt 225

5 <210> 39

<211> 1500

<212> DNA

<213> Staphylococcus aureus

10 <400> 39

60 tgagtctggt aaagatacac aaccaattgg taaagagaaa gtgatgaatc cagcgaaaca accagegaca ggtaaagttg tgttgttacc agegeataga ggaactgtta gtageggtac 120 agaaqqttct qatcqcqcat taqaaqqaac tqctqtatca aqtaaqaqtq qqaaacaatt 180 ggctaacatg tcagcgccta aaggtagcgc acatgagaaa cagttaccaa aaactggaac 240 tgatcaaagt tcaagcccag cagcgatgtt tgtattagta acaggtatag gtttaatcgc 300 gactgtacga cgtagaaaag ctagctaaaa tatattgaaa acaatactac tgtatttctt 360 aaataaqagg tacggtagtg tttttttatg gaaaaaagct ataaccgttg ataaatatgg 420 gatataaaaaa cggggataag taataagaca tcaaggtatt tatccacaga aatggggata 480 gttatccaga attgtgtaca atttaaagag aaatacccac aatgcccaca gagttatcca 540 caaatacaca agttatacac tgaaaattgg gcatgaatgt cagaaaaata tcaaaaactg 600 660 caaaaaaact tggtataata agagggaaaa gtgtgaacaa gttaataact tgtggataac 720 tggaaagttg ataacaattt ggaggaccaa acgacatgaa aatcaccatt ttagctgtag 780 ggaaactaaa agagaaatat tggaagcaag ccatagcaga atatgaaaaa cgtttaggcc 840 catacaccaa gatagacatc atagaagtta cagacgaaaa agcaccagaa aatatgagcg acaaagaaat cgagcaagta aaagaaaaag aaggccaacg aatactagcc aaaatcaaac 900 cacaatccac agtcattaca ttagaaatac aaggaaagat gctatcttcc gaaggattgg 960 cccaagaatt gaaccaacgc atgacccaag ggcaaagcga ctttgtattc gtcattggcg 1020 1080 gatcaaacgg cctgcacaag gacgtcttac aacgtagtaa ctacgcacta tcattcagca aaatgacatt tocacatcaa atgatgoggg ttgtgttaat tgaacaagtg tacagagcat 1140 ttaagattat gcgtggagaa gcttatcata aatgatgcgg ttttttcttg aaaaatttaa 1200 1260 ttagatatta gaatccttta atttatttga aaatcagaag tgagtaacaa tggtaagtga aatagttagt gcaataattg gaattatagg gatttattga gatgtatgga gatgcggggc 1320 1380 atttatcgag tagattacaa ttagagcatg taggtgattt gctttttcat gcaagtaaag 1440 ataaactttt aaaaatccta taagaattta gaaactttag aataactaaa tattaaaaaa 1500 atatcgtatg aaagtgaaat taggatgaga gaccatagct aaattaaaaa ttttagcaaa

15

<210> 40 <211> 1501 <212> DNA

<213> Staphylococcus aureus

<400> 40

	ttgcacaacc	aattggtaaa	gacaaagtga	tggatccagc	gaaacaacca	gcgccaagta	60
	aagttgtatt	gttgccagcg	catagaggaa	ctgttagtag	tggtagagaa	ggttctgatc	120
	gcgcattgga	aggaactgct	gtatcaagta	agagcgggaa	acaattggct	agcatgtcag	180
	cgcctaaagg	tagcacacat	gagaagcagt	taccaaaaac	tggaactgat	caaagttcaa	240
	gcccagcagc	gatgtttgta	ttagtagcag	gtataggttt	aattgcgact	gtacgacgta	300
	gaaaagctag	ctaaaatata	ttgaaaacaa	tactactgta	tttcttaaac	aagaggtacg	360
	gtagtgtttt	tttatgaaaa	aaagctataa	ccgttgataa	atatgggata	taaaaacggg	420
5	gataagtaat	aagacatcaa	ggtatttatc	cacagaaatg	gggatagtta	tccagaattg	480
	tgtacaattt	aaagagaaat	acccacaatg	cccacagagt	tatccacaaa	tacacaggtt	540
	atacactaaa	aattgggcat	gaatgtcaga	aaaatatcaa	aaactgcaaa	gaatattggt	600
	ataataagag	ggaacagtgt	gaacaagtta	ataacttgtg	gataactgga	aagttgataa	660
	caatttggag	gaccaaacga	catgaaaatc	accattttag	ctgtagggaa	actaaaagag	720
	aaatattgga	agcaagccat	agcagaatat	gaaaaacgtt	taggcccata	caccaagata	780
	gacatcatag	aagttccaga	cgaaaaagca	ccagaaaata	tgagcgacaa	agaaattgag	840
	caagtaaaag	aaaaagaagg	ccaacgaata	ctagccaaaa	tcaaaccaca	atcaacagtc	900
	attacattag	aaatacaagg	aaagatgcta	tcttccgaag	gattggccca	agaattgaac	960
	caacgcatga	cccaagggca	aagcgacttt	gtattcgtca	ttggcggatc	aaacggcctg	1020
	cacaaggacg	tcttacaacg	cagtaactac	gcactatcat	tcagcaaaat	gacattccca	1080
	catcaaatga	tgcgggttgt	gttaattgaa	caagtgtaca	gagcatttaa	gattatgcgt	1140
	ggagaagcat	atcataaatg	atgcggtttt	ttcagccgct	tcataaaggg	attttgaatg	1200
	tatcagaaca	tatgaggttt	atgtgaattg	ctgttatgtt	tttaagaagc	ttatcataag	1260
	taatgaggtt	catgattttt	gacatagtta	gcctccgcag	tctttcattt	caagtaaata	1320
	atagcgaaat	attctttata	ctgaatactt	atagtgaagc	aaagttctag	ctttgagaaa	1380
	attctttctg	caactaaata	tagtaaatta	cggtaaaata	taaataagta	catattgaag	1440
	aaaatgagac	ataatatatt	ttataatagg	agggaatttc	aaatgataga	caactttatg	1500
	С						1501

<210> 41 10 <211> 2480 <212> DNA <213> Staphylococcus aureus

<400> 41

15

aaaccgtctg	gcaaacgaat	taatgctatt	caaattttaa	a ataaagaga	c aggtaagttt	60
gaaaatattg	atttaaaacg	tgtatatcac	gtaacgatga	a atgacttca	c agcatcaggt	120
ggcgacggat	atagtatgtt	cggtggtcct	agagaagaa	g gtatttcat	t agatcaagta	180
ctagcaagtt	atttaaaaac	agctaactta	gctaagtat	g atacgacag	a accacaacgt	240
atgttattag	gtaaaccagc	agtaagtgaa	caaccagcta	a aaggacaac	a aggtagcaaa	300
ggtagtaagt	ctggtaaaga	tacacaacca	attggtgac	g acaaagtga	t ggatccagcg	360
aaaaaaccag	ctccaggtaa	agttgtattg	ttgctagcg	c atagaggaa	c tgttagtagc	420
ggtacagaag	gttctggtcg	cacaatagaa	ggagctactg	tatcaagcaa	gagtgggaaa	480
caattggcta	gaatgtcagt	gcctaaaggt	agcgcgcatg	agaaacagtt	accaaaaact	540
ggaactaatc	aaagttcaag	cccagaagcg	atgtttgtat	tattagcagg	tataggttta	600
atcgcgactg	tacgacgtag	aaaagctagc	taaaatatat	tgaaaataat	actactgtat	660
ttcttaaata	agaggtacgg	tagtgttttt	ttatgaaaaa	aagcgataac	cgttgataaa	720
tatgggatat	aaaaacgagg	ataagtaata	agacatcaag	gtgtttatcc	acagaaatgg	780
ggatagttat	ccagaattgt	gtacaattta	aagagaaata	cccacaatgc	ccacagagtt	840
acccacaaat	acacaggtta	tacactaaaa	atcgggcata	aatgtcagga	aaatatcaaa	900
aactgcaaaa	aatattggta	taataagagg	gaacagtgtg	aacaagttaa	taacttgtgg	960
ataactggaa	agttgataac	aatttggagg	accaaacgac	atgaaaatca	ccattttagc	1020
tgtagggaaa	ctaaaagaga	aatattggaa	gcaagccata	gcagaatatg	aaaaacgttt	1080
aggcccatac	accaagatag	acatcataga	agttccagac	gaaaaagcac	cagaaaatat	1140
gagtgacaaa	gaaattgagc	aagtaaaaga	aaaagaaggc	caacgaatac	tagccaaaat	1200
caaaccacaa	tccacagtca	ttacattaga	aatacaagga	aagatgctat	cttccgaagg	1260
attggcccaa	gaattgaacc	aacgcatgac	ccaagggcaa	agcgactttg	ttttcgtcat	1320
tggcggatca	aacggcctgc	acaaggacgt	cttacaacgc	agtaactacg	cactatcatt	1380
cagcaaaatg	acattcccac	atcaaatgat	gcgggttgtg	ttaattgaac	aagtgtacag	1440
agcatttaag	attatgcgag	gagaagctta	tcataagtaa	tgaggttcat	gatttttgac	1500
atagttagcc	tccgcagtct	ttcatttcaa	gtaaataata	gcgaaatatt	ctttatactg	1560
aatacttata	gtgaagcaaa	gttctagctt	tgagaaaatt	ctttctgcaa	ctaaatatag	1620
taaattacgg	taaaatataa	ataagtacat	attgaagaaa	atgagacata	atatatttta	1680
taataggagg	gaatttcaaa	tgatagacaa	ctttatgcag	gtccttaaat	taattaaaga	1740
gaaacgtacc	aataatgtag	ttaaaaaatc	tgattgggat	aaaggtgatc	tatataaaac	1800
tttagtccat	gataagttac	ccaagcagtt	aaaagtgcat	ataaaagaag	ataaatattc	1860
agttgtaggg	aaggttgcta	ctgggaacta	tagtaaagtt	ccttggattt	caatatatga	1920
tgagaatata	acaaaagaaa	caaaggatgg	atattatttg	gtatatcttt	ttcatccgga	1980
aggagaaggc	atatacttat	ctttgaatca	aggatggtca	aagataagtg	atatgtttcc	2040
gcgggataaa	aatgctgcaa	aacaaagagc	attaacttta	tcttccgaac	tcaataaata	2100

tattacatca	aatgaattta	atactggaag	attttattac	gcagaaaata	aagattcatc	2160
ttatgattta	aaaaatgatt	atccatcagg	atattctcat	ggatcaataa	gattcaaata	2220
ttatgatttg	aatgaaggat	tcacagaaga	agatatgcta	gaggatttaa	agaaattttt	2280
agaactattt	aatgaattag	cttcaaaagt	tacaaaaaca	tcctatgata	gcttggtcaa	2340
tagcatagac	gaaatacagg	aagacagcga	aattgaagaa	attagaacag	cacaaaaaga	2400
taagacactc	aaggaagtgg	aagcacctaa	aggaataatt	ccaaaatata	aaaaaggtgt	2460
atcaaagact	actaaaaatg					2480

<210> 42

<211> 1045

5 <212> DNA

<213> Staphylococcus aureus

<400> 42

ccagtttttt gtttaatgaa caaggtaaat tacgagataa tatttgaaga aaacaataaa 60 gtagagatgg atttccatat cctctttagt agcggttttt atctgtaagg tttattaata 120 attaaataaa taggcgggat agttatatat agcttattaa tgaaagaata tgattattaa 180 tttagtatta tattttaata ttaaaaagaa gatatgaaat aattattcat accttccacc 240 ttacaataat tagttttcaa tcgaatatta agattattag tagtcttaaa agttaagact 300 tccttatatt aatgacctaa tttattattt gcctcatgaa ttatctttt atttctttga 360 tatgtcccaa accacatcgt gatatacact acaataaata ttatgatgaa actaataata 420 ttctcaaagt tcagatggaa ccaacctgct agaatagcga gtgggaagaa taggattatc 480 atcaatataa agtgaactac agtctgtttt gttatactcc aatcggtatc tgtaaatatc 540 600 aaattaccat aagtaaacaa aattccaatc aatgcccata gtgctacaca tattagcata ataaccgctt cattaaagtt ttcataataa attttaccca taaaagaatc tggatatagt 660 ggtacatatt tatcccttga aaaaaataag tgaagtaatg acagaaatca taagaccagt 720 780 tgtttctaac ttcaagtgat caatgtaatt tagattgata atttctgatt ttgaaatacg 840 cacgaatatt gaaccgacaa gctcttcaat ttggtaaagt cgctgataaa gttttaaagc 900 tttattattc attgttatcg catacctgtt tatcttctac tatgaactgt gcaatttgtt 960 ctagatcaat tgggtaaaca tgatggttct gttgcaaagt aaaaaaatat agctaaccac 1020 10 taatttatca tgtcagtgtt cgctt 1045

<210> 43

<211> 1118

<212> DNA

15 <213> Staphylococcus aureus

<400> 43

	cagagcattt	aagattatgc	gtggagaagc	gtaccacaaa	tgatgcggtt	ttttatccag	60
	ttttttgttt	aatgaacaag	gtaaattacg	agataatatt	tgaagaaaac	aataaagtag	120
	agatggattt	ccatatcctc	tttagtagcg	gtttttatct	gtaaggttta	ttaataatta	180
	aataaatagg	cgggatagtt	atatatagct	tattaatgaa	agaatatgat	tattaattta	240
	gtattatatt	ttaatattaa	aaagaagata	tgaaataatt	attcatacct	tccaccttac	300
	aataattagt	tttcaatcga	atattaagat	tattagtagt	cttaaaagtt	aagacttcct	360
	tatattaatg	acctaattta	ttatttgcct	catgaattat	ctttttattt	ctttgatatg	420
	tcccaaacca	catcgtgata	tacactacaa	taaatattat	gatgaaacta	ataatattct	480
	caaagttcag	atggaaccaa	cctgctagaa	tagcgagtgg	gaagaatagg	attatcatca	540
	atataaagtg	aactacagtc	tgttttgtta	tactccaatc	ggtatctgta	aatatcaaat	600
	taccataagt	aaacaaaatt	ccaatcaatg	cccatagtgc	tacacatatt	agcataataa	660
	ccgcttcatt	aaagttttca	taataaattt	tacccataaa	agaatctgga	tatagtagta	720
	catatttatc	ccttgaaaaa	aataagtgaa	gtaatgacag	aaatcataag	accagtgaac	780
	gcaccttttt	gaacagcgtg	gaataatttt	ttcatagtga	gatggaccat	tccatttgtt	840
	tctaacttca	agtgatcaat	gtaatttaga	ttgataattt	ctgattttga	aatacgcacg	900
	aatattgaac	cgacaagctc	ttcaatttgg	taaagtcgct	gataaagttt	taaagcttta	960
	ttattcattg	ttatcgcata	cctgtttatc	ttctactatg	aactgtgcaa	tttgttctag	1020
	atcaattggg	taaacatgat	ggttctgttg	caaagtaaaa	aaatatagct	aaccactaat	1080
	ttatcatgtc	agtgttcgct	taacttgcta	gcatgatg			1118
5	<210> 44 <211> 1118 <212> DNA <213> Staphy	lococcus aure	us				
	<400> 44						
	cagagcattt	aagattatgc	gtggagaagc	gtaccacaaa	tgatgcggtt	ttttatccag	60
	ttttttgttt	aatgaacaag	gtaaattacg	agataatatt	tgaagaaaac	aataaagtag	120
10	agatggattt	ccatatcctc	tttagtagcg	gtttttatct	gtaaggttta	ttaataatta	180

	aataaatagg	cgggatagtt	atatatagct	tattaatgaa	agaatatgat	tattaattta	240
	gtattatatt	ttaatattaa	aaagaagata	tgaaataatt	attcatacct	tccaccttac	300
	aataattagt	tttcaatcga	atattaagat	tattagtagt	cttaaaagtt	aagacttcct	360
	tatattaatg	acctaattta	ttatttgcct	catgaattat	ctttttattt	ctttgatatg	420
	tcccaaacca	catcgtgata	tacactacaa	taaatattat	gatgaaacta	ataatattct	480
	caaagttcag	atggaaccaa	cctgctagaa	tagcgagtgg	gaagaatagg	attatcatca	540
	atataaagtg	aactacagtc	tgttttgtta	tactccaatc	ggtatctgta	aatatcaaat	600
	taccataagt	aaacaaaatt	ccaatcaatg	cccatagtgc	tacacatatt	agcataataa	660
	ccgcttcatt	aaagttttca	taataaattt	tacccataaa	agaatctgga	tatagtagta	720
	catatttatc	ccttgaaaaa	aataagtgaa	gtaatgacag	aaatcataag	accagtgaac	780
	gcaccttttt	gaacagcgtg	gaataatttt	ttcatagtga	gatggaccat	tccatttgtt	840
	tctaacttca	agtgatcaat	gtaatttaga	ttgataattt	ctgattttga	aatacgcacg	900
	aatattgaac	cgacaagctc	ttcaatttgg	taaagtcgct	gataaagttt	taaagcttta	960
	ttattcattg	ttatcgcata	cctgtttatc	ttctactatg	aactgtgcaa	tttgttctag	1020
	atcaattggg	taaacatgat	ggttctgttg	caaagtaaaa	aaatatagct	aaccactaat	1080
	ttatcatgtc	agtgttcgct	taacttgcta	gcatgatg			1118
5	<210> 45 <211> 1113 <212> DNA <213> Staphy	lococcus aure	us				
	<400> 45						
	agcatttaag	attatgcgtg	gagaagcgta	ccacaaatga	tgcggttttt	tatccagttt	60
	tttgtttaat	gaacaaggta	aattacgaga	taatatttga	agaaaacaat	aaagtagaga	120
	tggatttcca	tatcctcttt	agtagcggtt	tttatctgta	aggtttatta	ataattaaat	180
	aaataggcgg	gatagttata	tatagcttat	taatgaaaga	atatgattat	taatttagta	240
	ttatatttta	atattaaaaa	gaagatatga	aataattatt	cataccttcc	accttacaat	300
	aattagtttt	caatcgaata	ttaagattat	tagtagtctt	aaaagttaag	acttccttat	360

attaatgacc taatttatta tttgcctcat gaattatctt tttatttctt tgatatgtcc

caaaccacat cgtgatatac actacaataa atattatgat gaaactaata atattctcaa

10 agttcagatg gaaccaacct gctagaatag cgagtgggaa gaataggatt atcatcaata

420

480

540

taaagtgaac	tacagtctgt	tttgttatac	tccaatcggt	atctgtaaat	atcaaattac	600
cataagtaaa	caaaattcca	atcaatgccc	atagtgctac	acatattagc	ataataaccg	660
cttcattaaa	gttttcataa	taaattttac	ccataaaaga	atctggatat	agtggtacat	720
atttatccct	tgaaaaaaat	aagtgaagta	atgacagaaa	tcataagacc	agtgaacgca	780
cctttttgaa	cagcgtggaa	taatttttc	atagtgagat	ggaccattcc	atttgtttct	840
aacttcaagt	gatcaatgta	atttagattg	ataatttctg	attttgaaat	acgcacgaat	900
attgaaccga	caagctcttc	aatttggtaa	agtcgctgat	aaagttttaa	agctttatta	960
ttcattgtta	tcgcatacct	gtttatcttc	tactatgaac	tgtgcaattt	gttctagatc	1020
aattgggtaa	acatgatggt	tctgttgcaa	agtaaaaaaa	tatagctaac	cactaattta	1080
tcatgtcagt	gttcgcttaa	cttgctagca	tga			1113

<210> 46

<211> 2153

5 <212> DNA

<213> Staphylococcus aureus

<400> 46

ctgtagggaa actaaaagag aaatactgga agcaagccat agcagaatat gaaaaacgtt 60 taggcccata caccaagata gacatcatag aagttccaga cgaaaaagca ccagaaaata 120 tgagcgacaa agaaatcgag caagtaaaag aaaaagaagg ccaacgaata ctagccaaaa 180 240 tcaaaccaca atccacagtc attacattag aaatacaagg aaagatgcta tcttccgaag 300 gattggccca agaattgaac caacgcatga cccaagggca aagcgacttt gtattcgtca ttggcggatc aaacggcctg cacaaggacg tcttacaacg cagtaactac gcactatcat 360 tcagcaaaat gacattccca catcaaatga tgcgggttgt gttaattgaa caagtgtaca 420 480 gagcatttaa gattatgcgt ggagaagcgt accacaaatg atgcggtttt ttatccagtt 540 ttttgtttaa tgaacaaggt aaattacgag ataatatttg aagaaaacaa taaagtagag 600 atggatttcc atatcctctt tagtagcggt ttttatctgt aaggtttatt aataattaaa taaataggcg ggatagttat atatagctta ttaatgaaag aatatgatta ttaatttagt 660 attatattt aatattaaaa agaagatatg aaataattat tcataccttc caccttacaa 720 taattagttt tcaatcgaat attaagatta ttagtagtct taaaagttaa gacttcctta 780 tattaatgac ctaatttatt atttgcctca tgaattatct ttttatttct ttgatatgtc 840 10 ccaaaccaca togtgatata cactacaata aatattatga tgaaactaat aatattotoa 900

aagttcagat	ggaaccaacc	tgctagaata	gcgagtggga	agaataggat	tatcatcaat	960	
ataaagtgaa	ctacagtctg	ttttgttata	ctccaatcgg	tatctgtaaa	tatcaaatta	1020	
ccataagtaa	acaaaattcc	aatcaatgcc	catagtgcta	cacatattag	cataataacc	1080	
gcttcattaa	agttttcata	ataaatttta	cccataaaag	aatctggata	tagtggtaca	1140	
tatttatccc	ttgaaaaaaa	taagtgaagt	aatgacagaa	atcataagac	cagtgaacgc	1200	
acctttttga	acagcgtgga	ataattttt	catagtgaga	tggaccattc	catttgtttc	1260	
taacttcaag	tgatcaatgt	aatttagatt	gataatttct	gattttgaaa	tacgcacgaa	1320	
tattgaaccg	acaagctctt	caatttggta	aagtcgctga	taaagtttta	aagctttatt	1380	
attcattgtt	atcgcatacc	tgtttatctt	ctactatgaa	ctgtgcaatt	tgttctagat	1440	
caattgggta	aacatgatgg	ttctgttgca	aagtaaaaaa	atatagctaa	ccactaattt	1500	
atcatgtcag	tgttcgctta	acttgctagc	atgatgctaa	tttcgtggca	tggcgaaaat	1560	
ccgtagatct	gatgagacct	gcggttcttt	ttatatagag	cgtaaataca	ttcaatacct	1620	
tttaaagtat	tctttgctgt	attgatactt	tgataccttg	tctttcttac	tttaatatga	1680	
cggtgatctt	gctcaatgag	gttattcaaa	tatttcgatg	tacaatgaca	gtcaggttta	1740	
agtttaaaag	ctttaattac	tttagccatt	gctaccttcg	ttgaaggtgc	ctgatctgta	1800	
attacctttt	gaggtttacc	aaattgttta	atgagacgtt	taataaacgc	atatgctgaa	1860	
tgattatctc	gttgcttacg	caaccaaata	tctaatgtat	gtccctctgc	atcaatggca	1920	
cgatataaat	agctccattt	tccttttatt	ttgatgtacg	tctcatcaat	acgccatttg	1980	
taataagctt	ttttatgctt	tttcttccaa	atttgatata	aaattggggc	atattcttga	2040	
acccaacggt	agaccgttga	atgatgaacg	tttacaccac	gtccccttaa	tatttcagat	2100	
atatcacgat	aactcaatgc	atatcttaga	tagtagccaa	cggctacagt	gat	2153	
<210> 47 <211> 737 <212> DNA <213> Staphylococcus aureus							
<400> 47							
tttaagatta	tgcgtggaga	agcatatcat	aaatgatgcg	gttatttcag	ccgtaatttt	60	
ataatataaa	gcagagttta	ttaaatttta	atgattactt	tttattaaga	attaattcta	120	
gttgatatat	tataatgtga	aacacaaaat	aataatttgt	aattgttagt	ttataggcat	180	

10 ctgtatttgg aattttttgt agactattta aaaaatagtg tatataagta ttgagttcat 240

5

gtattaactg	tctttttca	tcgttcatca	agtataagga	tgtagagatt	tgttggataa	300
tttcttcgga	tgtttttaaa	attatcatta	aattagatgg	tatctgatct	tgagttttgt	360
ttttagtgta	tgtatatttt	aaaaaatttt	tgattgttgt	tatttgactc	tcttttaatt	420
tgacaccctc	atcaataaat	gtgttaaata	tatcttcatt	tgtacttaaa	tcatcaaaat	480
ttgccaacaa	atatttgaac	gtctctaaat	cattatgttt	gagttccgtt	ttgctattcc	540
ataattccaa	accatttggt	agaaagccca	agctgtgatt	ttgatctccc	catatagctg	600
aatttaaatc	agtgagttga	ttaattttt	caacacagaa	atgtaatttt	ggaatgagga	660
atcgaagttg	ttcttctact	tgctgtactt	ttcttttgtt	ttcaataaaa	tttctacacc	720
atactgttat	caaaccg					737

<210> 48

<211> 1592

5 <212> DNA

<213> Staphylococcus aureus

<400> 48

60 aactaaaaga gaaatattgg aagcaagcca tagcagaata tgaaaaacgt ttaggcccat acaccaagat agacatcata gaagttccag acgaaaaagc accagaaaat atgagtgaca 120 aagaaattga gcaagtaaaa gaaaaagaag gccaacgaat actagccaaa atcaaaccac 180 aatccacagt cattacatta gaaatacaag gaaagatgct atcttccgaa ggattggccc 240 aagaattgaa ccaacgcatg acccaagggc aaagcgactt tgttttcgtc attggcggat 300 caaacggcct gcacaaggac gtcttacaac gcagtaacta cgcactatca ttcagcaaaa 360 ${\tt tgacattccc} \ \ {\tt acatcaaatg} \ \ {\tt atgcgggttg} \ \ {\tt tgttaattga} \ \ {\tt acaagtgtac} \ \ {\tt agagcattta}$ 420 agattatgcg aggagaagca tatcataaat gatgcggtta tttcagccgt aattttataa 480 540 tataaagcag agtttattaa attttaatga ttacttttta ttaagaatta attctagttg atatattata atgtgaaaca caaaataata atttgtaatt gttagtttat aggcatctgt 600 atttggaatt ttttgtagac tatttaaaaa atagtgtata taagtattga gttcatgtat 660 taactgtctt ttttcatcgt tcatcaagta taaggatgta gagatttgtt ggataatttc 720 780 ttcggatgtt tttaaaatta tcattaaatt agatggtatc tgatcttgag ttttgtttt 840 agtgtatgta tattttaaaa aatttttgat tgttgttatt tgactctctt ttaatttgac acceteatea ataaatgtgt taaatatate tteatttgta ettaaateat caaaatttge 900 960 10 caacaaatat ttgaacgtct ctaaatcatt atgtttgagt tccgttttgc tattccataa

ttccaaacca	tttggtagaa	agcccaagct	gtgattttga	tctccccata	tagctgaatt	1020
taaatcagtg	agttgattaa	ttttttcaac	acagaaatgt	aattttggaa	tgaggaatcg	1080
aagttgttct	tctacttgct	gtacttttct	tttgttttca	ataaaatttc	tacaccatac	1140
tgttatcaaa	ccgccaatta	ttgtgcacaa	tcctccaatg	attgtagata	aaattgacaa	1200
tatattacac	acctttctta	gaggtttatt	aacatctatt	tttgaattta	aaattattac	1260
tttggtagcg	ttataaccta	tttaacagat	tagagaaaaa	ttgaatgatc	gattgaagaa	1320
tttccaaaat	accgtcccat	atgcgttgaa	ggagatttct	attttcttct	gtattcaaat	1380
ctttggcttt	atcctttgct	ttattcaata	aatcatctga	gtttttttca	atattttta	1440
atacatcttt	ggcattttgt	ttaaatactt	taggatcgga	agttagggca	ttagagtttg	1500
ccacattaat	catattatta	ttaatcattt	gaatttgatt	atctgataat	atctctgata	1560
acctacgctc	atcgaggact	ttattaacag	tg			1592
<210> 49 <211> 730 <212> DNA <213> Staphy	/lococcus aure	eus				
<400> 49						
agcatttaag	attatgcgtg	gagaagcata	tcataaatga	tgcggttatt	tcagccgtaa	60
ttttataata	taaagcagag	tttattaaat	tttaatgatt	actttttatt	aagaattaat	120
tctagttgat	atattataat	gtgaaacaca	aaataataat	ttgtaattgt	tagtttatag	180
gcatctgtat	ttggaatttt	ttgtagacta	tttaaaaaat	agtgtatata	agtattgagt	240
tcatgtatta	actgtctttt	ttcatcgttc	atcaagtata	aggatgtaga	gatttgttgg	300
ataatttctt	cggatgtttt	taaaattatc	attaaattag	atggtatctg	atcttgagtt	360
ttgtttttag	tgtatgtata	ttttaaaaaa	tttttgattg	ttgttatttg	actctctttt	420
aatttgacac	cctcatcaat	aaatgtgtta	aatatatctt	catttgtact	taaatcatca	480
aaatttgcca	acaaatattt	gaacgtctct	aaatcattat	gtttgagttc	cgttttgcta	540
ttccataatt	ccaaaccatt	tggtagaaag	cccaagctgt	gattttgatc	tccccatata	600
gctgaattta	aatcagtgag	ttgattaatt	ttttcaacac	agaaatgtaa	ttttggaatg	660
aggaatcgaa	gttgttcttc	tacttgctgt	acttttcttt	tgttttcaat	aaaatttcta	720
caccatactg						730
<210> 50 <211> 1696 <212> DNA						

<400> 50

15 <213> Staphylococcus aureus

10

5

aaagagaaat attggaagca	agccatagca	gaatatgaaa	aacgtttagg	cccatacacc	60
aagatagaca tcatagaagt	tccagacgaa	aaagcaccag	aaaatatgag	tgacaaagaa	120
attgagcaag taaaagaaaa	agaaggccaa	cgaatactag	ccaaaatcaa	accacaatcc	180
acagtcatta cattagaaat	acaaggaaag	atgctatctt	ccgaaggatt	ggcccaagaa	240
ttgaaccaac gcatgaccca	agggcaaagc	gactttgttt	tcgtcattgg	cggatcaaac	300
ggcctgcaca aggacgtctt	acaacgcagt	aactacgcac	tatcattcag	caaaatgaca	360
ttcccacatc aaatgatgcg	ggttgtgtta	attgaacaag	tgtacagagc	atttaagatt	420
atgcgaggag aagcatatca	taaatgatgc	ggttatttca	gccgtaattt	tataatataa	480
agcagagttt attaaatttt	aatgattact	ttttattaag	aattaattct	agttgatata	540
ttataatgtg aaacacaaaa	taataatttg	taattgttag	tttataggca	tctgtatttg	600
gaattttttg tagactattt	aaaaaatagt	gtatataagt	attgagttca	tgtattaact	660
gtcttttttc atcgttcatc	aagtataagg	atgtagagat	ttgttggata	atttcttcgg	720
atgtttttaa aattatcatt	aaattagatg	gtatctgatc	ttgagttttg	tttttagtgt	780
atgtatattt taaaaaattt	ttgattgttg	ttatttgact	ctcttttaat	ttgacaccct	840
catcaataaa tgtgttaaat	atatcttcat	ttgtacttaa	atcatcaaaa	tttgccaaca	900
aatatttgaa cgtctctaaa	tcattatgtt	tgagttccgt	tttgctattc	cataattcca	960
aaccatttgg tagaaagccc	aagctgtgat	tttgatctcc	ccatatagct	gaatttaaat	1020
cagtgagttg attaattttt	tcaacacaga	aatgtaattt	tggaatgagg	aatcgaagtt	1080
gttcttctac ttgctgtact	tttcttttgt	tttcaataaa	atttctacac	catactgtta	1140
tcaaaccgcc aattattgtg	cacaatcctc	caatgattgt	agataaaatt	gacaatatat	1200
tacacacctt tcttagaggt	ttattaacat	ctatttttga	atttaaaatt	attactttgg	1260
tagcgttata acctatttaa	cagattagag	aaaaattgaa	tgatcgattg	aagaatttcc	1320
aaaataccgt cccatatgcg	ttgaaggaga	tttctatttt	cttctgtatt	caaatctttg	1380
gctttatcct ttgctttatt	caataaatca	tctgagtttt	tttcaatatt	ttttaataca	1440
tctttggcat tttgtttaaa	tactttagga	tcggaagtta	gggcattaga	gtttgccaca	1500
ttaatcatat tattattaat	catttgaatt	tgattatctg	ataatatctc	tgataaccta	1560
cgctcatcga ggactttatt	aacagtgtct	tcaacttgtt	gttgtgtgat	ttgtttatct	1620
tgattttgtt taatatctgc	aagttgttct	ttaatatctg	ctatagaagc	atttaaagct	1680
tcatctgaat acccat					1696

5 <210> 51

<211> 2122

<212> DNA <213> Staphylococcus aureus

10 <400> 51

ggaaactaaa	agagaaatat	tggaagcaag	ccatagcaga	atatgaaaaa	cgtttaggcc	60
catacaccaa	gatagacatc	atagaagttc	cagacgaaaa	agcaccagaa	aatatgagcg	120
acaaagaaat	tgagcaagta	aaagaaaaag	aaggccaacg	aatactagcc	aaaatcaaac	180
cacaatcaac	agtcattaca	ttagaaatac	aaggaaagat	gctatcttcc	gaaggattgg	240
cccaagaatt	gaaccaacgc	atgacccaag	ggcaaagcga	ctttgtattc	gtcattggcg	300
gatcaaacgg	cctgcacaag	gacgtcttac	aacgcagtaa	ctacgcacta	tcattcagca	360
aaatgacatt	cccacatcaa	atgatgcggg	ttgtgttaat	tgaacaagtg	tacagagcat	420
ttaagattat	gcgtggagaa	gcgtaccaca	aatgatgcgg	ttttttatcc	agttttttgt	480
ttaatgaaca	aggtaaatta	cgagataata	tttgaagaaa	acaataaagt	agagatggat	540
ttccatatcc	tctttagtag	cggtttttat	ctgtaaggtt	tattaataat	taaataaata	600
ggcgggatag	ttatatatag	cttattaatg	aaagaatatg	attattaatt	tagtattata	660
ttttaatatt	aaaaagaaga	tatgaaataa	ttattcatac	cttccacctt	acaataatta	720
gttttcaatc	gaatattaag	attattagta	gtcttaaaag	ttaagacttc	cttatattaa	780
tgacctaatt	tattatttgc	ctcatgaatt	atctttttat	ttctttgata	tgtcccaaac	840
cacatcgtga	tatacactac	aataaatatt	atgatgaaac	taataatatt	ctcaaagttc	900
agatggaacc	aacctgctag	aatagcgagt	gggaagaata	ggattatcat	caatataaag	960
tgaactacag	tctgttttgt	tatactccaa	tcggtatctg	taaatatcaa	attaccataa	1020
gtaaacaaaa	ttccaatcaa	tgcccatagt	gctacacata	ttagcataat	aaccgcttca	1080
ttaaagtttt	cataataaat	tttacccata	aaagaatctg	gatatagtgg	tacatattta	1140
tcccttgaaa	aaaataagtg	aagtaatgac	agaaatcata	agaccagtga	acgcaccttt	1200
ttgaacagcg	tggaataatt	ttttcatagt	gagatggacc	attccatttg	tttctaactt	1260
caagtgatca	atgtaattta	gattgataat	ttctgatttt	gaaatacgca	cgaatattga	1320
accgacaagc	tcttcaattt	ggtaaagtcg	g ctgataaag	t tttaaagct	t tattattcat	1380
tgttatcgca	tacctgttta	tcttctacta	tgaactgtg	c aatttgttc	t agatcaattg	1440
ggtaaacatg	atggttctgt	tgcaaagtaa	aaaaatata	g ctaaccact	a atttatcatg	1500
tcagtgttcg	cttaacttgc	tagcatgato	g ctaatttcg	t ggcatggcg	a aaatccgtag	1560
atctgatgag	acctgcggtt	ctttttatat	agagcgtaa	a tacattcaa	t accttttaaa	1620
gtattctttg	ctgtattgat	actttgatac	cttgtcttt	c ttactttaa	t atgacggtga	1680
tcttgctcaa	tgaggttatt	cagatatttc	gatgtacaa	t gacagtcag	g tttaagttta	1740
aaagctttaa	ttactttagc	cattgctacc	ttcgttgaag	g gtgcctgat	c tgtaattacc	1800
ttttgaggtt	taccaaattg	tttaatgaga	cgtttgata	a acgcatatg	c tgaatgatta	1860
tctcgttgct	tacgcaacca	aatatctaat	gtatgtccc	t ctgcatcaa	t ggcacgatat	1920
aaatagctcc	attttccttt	tattttgato	g tacgtctcat	t caatacgcc	a tttgtaataa	1980
gcttttttat	gctttttctt	ccaaatttga	tacaaaatto	g gggcatatt	c ttgaacccaa	2040
_	_	_			c agatatatca	2100
	atgtatatct	-	-		-	2122

```
<210> 52
    <211> 21
    <212> DNA
    <213> Artificial
 5
    <223> cebador PCR para MREP tipos i y ii
    <220>
10 <221> fuente
    <222> (1)..(21)
    <223> S. aureus resistente a meticilina
15
    gatagactaa ttatcttcat c
                                           21
    <210> 53
    <211> 21
20 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipos i y ii
25
    <220>
    <221> fuente
    <222> (1)..(21)
    <223> S. aureus resistente a meticilina
30
    <400> 53
    cagactgtgg acaaactgat t
                                           21
35 <210> 54
    <211> 20
    <212> DNA
    <213> Artificial
40 <220>
    <223> cebador PCR para MREP tipos i y ii
    <220>
    <221> fuente
45 <222> (1)..(20)
    <223> S. aureus resistente a meticilina
    <400> 54
                                     20
50 tgagatcatc tacatcttta
    <210> 55
    <211> 20
    <212> DNA
55 <213> Artificial
    <220>
    <223> cebador PCR para MREP tipos i y ii
60 <220>
    <221> fuente
    <222> (1)..(20)
    <223> S. aureus resistente a meticilina
65 <400> 55
```

	ggatcaaaag ctactaaatc 2	20
5	<210> 56 <211> 20 <212> DNA <213> Artificial	
10	<220> <223> cebador PCR para MREP tipos i y ii	
	<220> <221> fuente <222> (1)(20) <223> S. aureus resistente a meticilina	
15	<400> 56	
	atgctctttg ttttgcagca 20	
20	<210> 57 <211> 23 <212> DNA <213> Artificial	
25	<220> <223> cebador PCR para MREP tipos i y ii	
30	<220> <221> fuente <222> (1)(23) <223> S. aureus resistente a meticilina	
	<400> 57	
35	atgaaagact gcggaggcta act	23
40	<210> 58 <211> 23 <212> DNA <213> Artificial	
	<220> <223> cebador PCR para MREP tipo iii	
45	<220> <221> fuente <222> (1)(23) <223> S. aureus resistente a meticilina	
50	<400> 58	
	atattctaga tcatcaatag ttg	23
55	<210> 59 <211> 21 <212> DNA <213> Artificial	
60	<220> <223> cebador PCR para orfX	
65	<220> <221> fuente <222> (1)(21) <223> S. aureus resistente a meticilina	

	<400> 59	
	aagaattgaa ccaacgcatg a	21
5	<210> 60 <211> 21 <212> DNA <213> Artificial	
10	<220> <223> cebador PCR para orfSA0022	
15	<220> <221> fuente <222> (1)(21) <223> S. aureus	
	<400> 60	
20	gttcaagccc agaagcgatg t	21
25	<210> 61 <211> 23 <212> DNA <213> Artificial	
	<220> <223> cebador PCR para orfSA0022	
30	<220> <221> fuente <222> (1)(23) <223> S. aureus	
35	<400> 61	
	tcgggcataa atgtcaggaa aat	23
40	<210> 62 <211> 21 <212> DNA <213> Artificial	
45	<220> <223> cebador PCR para orfX	
50	<220> <221> fuente <222> (1)(21) <223> S. aureus	
	<400> 62	
55	aaacgacatg aaaatcacca t	21
	<210> 63 <211> 33 <212> DNA <213> Artificial	
60	<220> <223> cebador PCR para orfSA0022	
65	<220> <221> fuente <222> (1)(33)	

```
<223> S. aureus
    <400> 63
 5 ttattaggta aaccagcagt aagtgaacaa cca
                                                        33
    <210> 64
    <211> 19
    <212> DNA
10 <213> Artificial
    <220>
    <223> cebador PCR para orfX
15 <220>
    <221> fuente
    <222> (1)..(19)
    <223> S. aureus
20 <400> 64
    ggatcaaacg gcctgcaca
                                           19
    <210>65
25 <211> 26
    <212> DNA
    <213> Artificial
    <220>
30 <223> cebador PCR para MREP tipo v
    <220>
    <221> fuente
    <222> (1)..(26)
35 <223> S. aureus resistente a meticilina
    <400>65
                                                 26
    cacagaaatg taattttgga atgagg
40
    <210>66
    <211> 29
    <212> DNA
    <213> Artificial
45
    <220>
    <223> cebador PCR para MREP tipos i y ii
    <220>
50 <221> fuente
    <222> (1)..(29)
    <223> S. aureus resistente a meticilina
    <400> 66
55
    gtcaaaaatc atgaacctca ttacttatg
                                                 29
    <210> 67
    <211> 29
60 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo iii
65
    <220>
```

```
<221> fuente
    <222> (1)..(29)
    <223> S. aureus resistente a meticilina
 5 <400> 67
                                                  29
    atttcatata tgtaattcct ccacatctc
    <210> 68
10 <211> 20
    <212> DNA
    <213> Artificial
    <220>
15 <223> cebador PCR para IS431
    <220>
    <221> fuente
    <222> (1)..(20)
20 <223> S. aureus resistente a meticilina
    <400> 68
    tctacggatt ttcgccatgc
                                     20
25
    <210>69
    <211> 27
    <212> DNA
    <213> Artificial
30
    <220>
    <223> cebador PCR para mecA
    <220>
35 <221> fuente
    <222> (1)..(27)
    <223> S. aureus resistente a meticilina
    <400> 69
40
    aacaggtgaa ttattagcac ttgtaag
                                                  27
    <210> 70
    <211> 21
45 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para orfX
50
    <220>
    <221> fuente
    <222> (1)..(21)
    <223> S. aureus
55
    <400> 70
                                           21
    atcaaatgat gcgggttgtg t
60 <210> 71
    <211> 19
    <212> DNA
    <213> Artificial
65 <220>
    <223> cebador PCR para orfX
```

```
<220>
    <221> fuente
    <222> (1)..(19)
 5 <223> S. aureus
    <400> 71
    tcattggcgg atcaaacgg
                                          19
10
    <210> 72
    <211> 22
    <212> DNA
    <213> Artificial
15
    <220>
    <223> cebador PCR para orfX
    <220>
20 <221> fuente
    <222> (1)..(22)
    <223> S. aureus
    <400> 72
25
    acaacgcagt aactacgcac ta
                                          22
    <210> 73
    <211> 22
30 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para orfX
35
    <220>
    <221> fuente
    <222> (1)..(22)
    <223> S. aureus
40
    <400> 73
    taactacgca ctatcattca gc
                                          22
45 <210> 74
    <211> 22
    <212> DNA
    <213> Artificial
50 <220>
    <223> cebador PCR para orfX
    <220>
    <221> fuente
55 <222> (1)..(22)
    <223> S. aureus
    <400> 74
60 acatcaaatg atgcgggttg tg
                                          22
    <210> 75
    <211> 22
    <212> DNA
65 <213> Artificial
```

	<220> <223> cebador PCR para orfX				
5	<220> <221> fuente <222> (1)(22) <223> S. aureus				
10	<400> 75				
10	tcaaatgatg cgggttgtgt ta	22			
15	<210> 76 <211> 24 <212> DNA <213> Artificial				
00	<220> <223> cebador PCR para orfX				
20	<220> <221> fuente <222> (1)(24) <223> S. aureus				
25	<400> 76				
	caaatgatgc gggttgtgtt aatt	24			
30	<210> 77 <211> 26 <212> DNA <213> Artificial				
35	<220> <223> cebador PCR para MREP tipo iv				
40	<220> <221> fuente <222> (1)(26) <223> S. aureus resistente a meticilina				
	<400> 77				
45	ctactatgaa ctgtgcaatt tgttct	26			
50	<210> 78 <211> 2007 <212> DNA <213> Staphylococcus aureus				
	<400> 78				
	atgaaaaaga taaaaattgt tccacttatt	ttaatagttg	tagttgtcgg	gtttggtata	60
	tatttttatg cttcaaaaga taaagaaatt	aataatacta	ttgatgcaat	tgaagataaa	120
	aatttcaaac aagtttataa agatagcagt	tatatttcta a	aaagcgataa	tggtgaagta	180
	gaaatgactg aacgtccgat aaaaatatat	aatagtttag (gcgttaaaga	tataaacatt	240
55	caggatcgta aaataaaaaa agtatctaaa	aataaaaaac	gagtagatgc	tcaatataaa	300

attaaaacaa	actacggtaa	cattgatcgc	aacgttcaat	ttaattttgt	taaagaagat	360
ggtatgtgga	agttagattg	ggatcatagc	gtcattattc	caggaatgca	gaaagaccaa	420
agcatacata	ttgaaaattt	aaaatcagaa	cgtggtaaaa	ttttagaccg	aaacaatgtg	480
gaattggcca	atacaggaac	acatatgaga	ttaggcatcg	ttccaaagaa	tgtatctaaa	540
aaagattata	aagcaatcgc	taaagaacta	agtatttctg	aagactatat	caacaacaaa	600
tggatcaaaa	ttgggtacaa	gatgatacct	tcgttccact	ttaaaaccgt	taaaaaaatg	660
gatgaatatt	taagtgattt	cgcaaaaaaa	tttcatctta	caactaatga	aacagaaagt	720
cgtaactatc	ctctagaaaa	agcgacttca	catctattag	gttatgttgg	tcccattaac	780
tctgaagaat	taaaacaaaa	agaatataaa	ggctataaag	atgatgcagt	tattggtaaa	840
aagggactcg	aaaaacttta	cgataaaaag	ctccaacatg	aagatggcta	tcgtgtcaca	900
atcgttgacg	ataatagcaa	tacaatcgca	catacattaa	tagagaaaaa	gaaaaaagat	960
ggcaaagata	ttcaactaac	tattgatgct	aaagttcaaa	agagtattta	taacaacatg	1020
aaaaatgatt	atggctcagg	tactgctatc	caccctcaaa	caggtgaatt	attagcactt	1080
gtaagcacac	cttcatatga	cgtctatcca	tttatgtatg	gcatgagtaa	cgaagaatat	1140
aataaattaa	ccgaagataa	aaaagaacct	ctgctcaaca	agttccagat	tacaacttca	1200
ccaggttcaa	ctcaaaaaat	attaacagca	atgattgggt	taaataacaa	aacattagac	1260
gataaaacaa	gttataaaat	cgatggtaaa	ggttggcaaa	aagataaatc	ttggggtggt	1320
tacaacgtta	caagatatga	agtggtaaat	ggtaatatcg	acttaaaaca	agcaatagaa	1380
tcatcagata	acattttctt	tgctagagta	gcactcgaat	taggcagtaa	gaaatttgaa	1440
aaaggcatga	aaaaactagg	tgttggtgaa	gatataccaa	gtgattatcc	attttataat	1500
gctcaaattt	caaacaaaaa	tttagataat	gaaatattat	tagctgattc	aggttacgga	1560
caaggtgaaa	tactgattaa	cccagtacag	atcctttcaa	tctatagcgc	attagaaaat	1620
aatggcaata	ttaacgcacc	tcacttatta	aaagacacga	aaaacaaagt	ttggaagaaa	1680
aatattattt	ccaaagaaaa	tatcaatcta	ttaaatgatg	gtatgcaaca	agtcgtaaat	1740
aaaacacata	aagaagatat	ttatagatct	tatgcaaact	taattggcaa	atccggtact	1800
gcagaactca	aaatgaaaca	aggagaaagt	ggcagacaaa	ttgggtggtt	tatatcatat	1860
gataaagata	atccaaacat	gatgatggct	attaatgtta	aagatgtaca	agataaagga	1920
atggctagct	acaatgccaa	aatctcaggt	aaagtgtatg	atgagctata	tgagaacggt	1980
aataaaaaat	acgatataga	tgaataa				2007

```
5 <210> 79
  <211> 29
```

<212> DNA

<213> Artificial

10 <220>

<223> cebador PCR para MREP tipo iv

<220>

<221> fuente

15 <222> (1)..(29) <223> S. aureus resistente a meticilina

	<400> 79		
5	caaatattat ctcgtaattt accttgttc	29	
	<210> 80 <211> 29 <212> DNA <213> Artificial		
10	<220> <223> cebador PCR para MREP tipo V		
15	<220> <221> fuente <222> (1)(29) <223> S. aureus resistente a meticilina		
20	<400> 80		
20	ctctgcttta tattataaaa ttacggctg		29
25	<210> 81 <211> 27 <212> DNA <213> Artificial		
30	<220> <223> cebador PCR para mecA		
00	<220> <221> fuente <222> (1)(27)		
35	<223> S. aureus resistente a meticilina		
	<400> 81		
	attgctgtta atattttttg agttgaa	27	
40	<210> 82 <211> 2007 <212> DNA <213> Staphylococcus aureus		
45	<400> 82		

atgaaaaaga	taaaaattgt	tccacttatt	ttaatagttg	tagttgtcgg	gtttggtata	60
tatttttatg	cttcaaaaga	taaagaaatt	aataatacta	ttgatgcaat	tgaagataaa	120
aatttcaaac	aagtttataa	agatagcagt	tatatttcta	aaagcgataa	tggtgaagta	180
gaaatgactg	aacgtccgat	aaaaatatat	aatagtttag	gcgttaaaga	tataaacatt	240
caggatcgta	aaataaaaaa	agtatctaaa	aataaaaaac	gagtagatgc	tcaatataaa	300
attaaaacaa	actacggtaa	cattgatcgc	aacgttcaat	ttaattttgt	taaagaagat	360
ggtatgtgga	agttagattg	ggatcatagc	gtcattattc	caggaatgca	gaaagaccaa	420
agcatacata	ttgaaaattt	aaaatcagaa	cgtggtaaaa	ttttagaccg	aaacaatgtg	480
gaattggcca	atacaggaac	agcatatgag	ataggcatcg	ttccaaagaa	tgtatctaaa	540
aaagattata	aagcaatcgc	taaagaacta	agtatttctg	aagactatat	caaacaacaa	600
atggatcaaa	attgggtaca	agatgatacc	ttcgttccac	ttaaaaccgt	taaaaaaatg	660
gatgaatatt	taagtgattt	cgcaaaaaaa	tttcatctta	caactaatga	aacagaaagt	720
cgtaactatc	ctctagaaaa	agcgacttca	catctattag	gttatgttgg	tcccattaac	780
tctgaagaat	taaaacaaaa	agaatataaa	ggctataaag	atgatgcagt	tattggtaaa	840
aagggactcg	aaaaacttta	cgataaaaag	ctccaacatg	aagatggcta	tcgtgtcaca	900
atcgttgacg	ataatagcaa	tacaatcgca	catacattaa	tagagaaaaa	gaaaaaagat	960
ggcaaagata	ttcaactaac	tattgatgct	aaagttcaaa	agagtattta	taacaacatg	1020
aaaaatgatt	atggctcagg	tactgctatc	caccctcaaa	caggtgaatt	attagcactt	1080
gtaagcacac	cttcatatga	cgtctatcca	tttatgtatg	gcatgagtaa	cgaagaatat	1140
aataaattaa	ccgaagataa	aaaagaacct	ctgctcaaca	agttccagat	tacaacttca	1200
ccaggttcaa	ctcaaaaaat	attaacagca	atgattgggt	taaataacaa	aacattagac	1260
gataaaacaa	gttataaaat	cgatggtaaa	ggttggcaaa	aagataaatc	ttggggtggt	1320
tacaacgtta	caagatatga	agtggtaaat	ggtaatatcg	acttaaaaca	agcaatagaa	1380
tcatcagata	acattttctt	tgctagagta	gcactcgaat	taggcagtaa	gaaatttgaa	1440
aaaggcatga	aaaaactagg	tgttggtgaa	gatataccaa	gtgattatcc	attttataat	1500
gctcaaattt	caaacaaaaa	tttagataat	gaaatattat	tagctgattc	aggttacgga	1560
caaggtgaaa	tactgattaa	cccagtacag	atcctttcaa	tctatagcgc	attagaaaat	1620
aatggcaata	ttaacgcacc	tcacttatta	aaagacacga	aaaacaaagt	ttggaagaaa	1680
aatattattt	ccaaagaaaa	tatcaatcta	ttaactgatg	gtatgcaaca	agtcgtaaat	1740
aaaacacata	aagaagatat	ttatagatct	tatgcaaact	taattggcaa	atccggtact	1800
gcagaactca	aaatgaaaca	aggagaaact	ggcagacaaa	ttgggtggtt	tatatcatat	1860
gataaagata	atccaaacat	gatgatggct	attaatgtta	aagatgtaca	agataaagga	1920
atggctagct	acaatgccaa	aatctcaggt	aaagtgtatg	atgagctata	tgagaacggt	1980
aataaaaaat	acgatataga	tgaataa				2007

5 <210> 83 <211> 36 <212> DNA

```
<213> Artificial
    <220>
    <223> Sonda para orfX
 5 <220>
    <221> fuente
    <222> (1)..(36)
    <223> S. aureus
10 <400> 83
    cccaccccac atcaaatgat gcgggttgtg ggtggg
                                                        36
    <210> 84
15 <211> 37
    <212> DNA
    <213> Artificial
    <220>
20 <223> Sonda para orfX
    <220>
    <221> fuente
    <222> (1)..(37)
25 <223> S. aureus
    <400> 84
                                                        37
    cccgcgcgta gttactgcgt tgtaagacgt ccgcggg
30
    <210> 85
    <211> 27
    <212> DNA
    <213> Artificial
35
    <223> cebador PCR para cromosoma de S. aureus
    <220>
40 <221> fuente
    <222> (1)..(27)
    <223> S. aureus
    <400> 85
45
    gtttttatca ccatattgaa tttatac
                                          27
    <210> 86
    <211> 25
50 <212> DNA
    <213> Artificial
    <223> cebador PCR para cromosoma de S. aureus
55
    <220>
    <221> fuente
    <222> (1)..(25)
    <223> S. aureus
60
    <400>86
    atttacttga aagactgcgg aggag
                                                 25
65 <210> 87
    <211> 24
```

```
<212> DNA
    <213> Artificial
 5 <223> cebador PCR para cromosoma de S. aureus
    <220>
    <221> fuente
    <222> (1)..(24)
10 <223> S. aureus
    <400> 87
    tgtttgagct tccacagcta tttc
                                           24
15
    <210> 88
    <211> 27
    <212> DNA
    <213> Artificial
20
    <220>
    <223> cebador PCR para cromosoma de S. aureus
    <220>
25 <221> fuente
    <222> (1)..(27)
    <223> S. aureus
    <400> 88
30
                                                 27
    ccctataatt ccaattattg cactaac
    <210>89
    <211> 25
35 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para cromosoma de S. aureus
40
    <220>
    <221> fuente
    <222> (1)..(25)
<223> S. aureus
45
    <400>89
                                                 25
    atgaggagat aataatttgg agggt
50 <210>90
    <211> 2007
    <212> DNA
    <213> Staphylococcus aureus
55 <400> 90
```

atgaaaaaga	taaaaattgt	tccacttatt	ttaatagttg	tagttgtcgg	gtttggtata	60
tatttttatg	cttccaaaga	taaagaaatt	aataatacta	ttgatgcaat	tgaagataaa	120
aatttcaaac	aagtttataa	agatagcagt	tatatttcta	aaagcgataa	tggtgaagta	180
gaaatgactg	aacgtccgat	aaaaatatat	aatagtttag	gcgttaaaga	tataaacatt	240
caggatcgta	aaataaaaaa	agtatctaaa	aataaaaaac	gagtagatgc	tcaatataaa	300
attaaaacaa	actacggtaa	cattgatcgc	aacgttcaat	ttaattttgt	taaagaagat	360
ggtatgtgga	agttagattg	ggatcatagc	gtcattattc	caggaatgca	gaaagaccaa	420
agcatacata	ttgaaaattt	aaaatcagaa	cgtggtaaaa	ttttagaccg	aaacaatgtg	480
gaattggcca	atacaggaac	agcatatgag	ataggcatcg	ttccaaagaa	tgtatctaaa	540
aaagattata	aagcaatcgc	taaagaacta	agtatttctg	aagactatat	caaacaacaa	600
atggatcaaa	attgggtaca	agatgatacc	ttcgttccac	ttaaaaccgt	taaaaaaatg	660
gatgaatatt	taagtgattt	cgcaaaaaaa	tttcatctta	caactaatga	aacagaaagt	720
cgtaactatc	ctctaggaaa	agcgacttca	catctattag	gttatgttgg	tcccattaac	780
tctgaagaat	taaaacaaaa	agaatataaa	ggctataaag	atgatgcagt	tattggtaaa	840
aagggactcg	aaaaacttta	cgataaaaag	ctccaacatg	aagatggcta	tcgtgtcaca	900
atcgttgacg	ataatagcaa	tacaatcgca	catacattaa	tagagaaaaa	gaaaaaagat	960
ggcaaagata	ttcaactaac	tattgatgct	aaagttcaaa	agagtattta	taacaacatg	1020
aaaaatgatt	atggctcagg	tactgctatc	caccctcaaa	caggtgaatt	attagcactt	1080
gtaagcacac	cttcatatga	cgtctatcca	tttatgtatg	gcatgagtaa	cgaagaatat	1140
aataaattaa	ccgaagataa	aaaagaacct	ctgctcaaca	agttccagat	tacaacttca	1200
ccaggttcaa	ctcaaaaaat	attaacagca	atgattgggt	taaataacaa	aacattagac	1260
gataaaacaa	gttataaaat	cgatggtaaa	ggttggcaaa	aagataaatc	ttggggtggt	1320
tacaacgtta	caagatatga	agtggtaaat	ggtaatatcg	acttaaaaca	agcaatagaa	1380
tcatcagata	acattttctt	tgctagagta	gcactcgaat	taggcagtaa	gaaatttgaa	1440
aaaggcatga	aaaaactagg	tgttggtgaa	gatataccaa	gtgattatcc	attttataat	1500
gctcaaattt	caaacaaaaa	tttagataat	gaaatattat	tagctgattc	aggttacgga	1560
caaggtgaaa	tactgattaa	cccagtacag	atcctttcaa	tctatagcgc	attagaaaat	1620
aatggcaata	ttaacgcacc	tcacttatta	aaagacacga	aaaacaaagt	ttggaagaaa	1680
aatattattt	ccaaagaaaa	tatcaatcta	ttaactgatg	gtatgcaaca	agtcgtaaat	1740
aaaacacata	aagaagatat	ttatagatct	tatgcaaact	taattggcaa	atccggtact	1800
gcagaactca	aaatgaaaca	aggagaaact	ggcagacaaa	ttgggtggtt	tatatcatat	1860
gataaagata	atccaaacat	gatgatggct	attaatgtta	aagatgtaca	agataaagga	1920
atggctagct	acaatgccaa	aatctcaggt	aaagtgtatg	atgagctata	tgagaacggt	1980
aataaaaaat	acgatataga	tgaataa				2007

5 <210> 91 <211> 2007

<212> DNA

<213> Staphylococcus aureus

<400> 91

	atgaaaaaga	taaaaattgt	tccacttatt	ttaatagttg	tagttgtcgg c	itttggtata	60
5	tatttttatg	cttcaaaaga	taaagaaatt	aataatacta	ttgatgcaat t	gaagataaa	120
	aatttcaaac	aagtttataa	agatagcagt	tatatttcta	aaagcgataa	tggtgaagta	180
	gaaatgactg	aacgtccgat	aaaaatatat	aatagtttag	gcgttaaaga	tataaacatt	240
	caggatcgta	aaataaaaaa	agtatctaaa	aataaaaaac	gagtagatgc	tcaatataaa	300
	attaaaacaa	actacggtaa	cattgatcgc	aacgttcaat	ttaattttgt	taaagaagat	360
	ggtatgtgga	agttagattg	ggatcatagc	gtcattattc	caggaatgca	gaaagaccaa	420
	agcatacata	ttgaaaattt	aaaatcagaa	cgtggtaaaa	ttttagaccg	aaacaatgtg	480
	gaattggcca	atacaggaac	agcatatgag	ataggcatcg	ttccaaagaa	tgtatctaaa	540
	aaagattata	aagcaatcgc	taaagaacta	agtatttctg	aagactatat	caaacaacaa	600
	atggatcaaa	agtgggtaca	agatgatacc	ttcgttccac	ttaaaaccgt	taaaaaaatg	660
	gatgaatatt	taagtgattt	cgcaaaaaaa	tttcatctta	caactaatga	aacagaaagt	720
	cgtaactatc	ctctagaaaa	agcgacttca	catctattag	gttatgttgg	tcccattaac	780
	tctgaagaat	taaaacaaaa	agaatataaa	ggctataaag	atgatgcagt	tattggtaaa	840
	aagggactcg	aaaaacttta	cgataaaaag	ctccaacatg	aagatggcta	tcgtgtcaca	900
	atcgttgacg	ataatagcaa	tacaatcgca	catacattaa	tagagaaaaa	gaaaaaagat	960
	ggcaaagata	ttcaactaac	tattgatgct	aaagttcaaa	agagtattta	taacaacatg	1020
	aaaaatgatt	atggctcagg	tactgctatc	caccctcaaa	caggtgaatt	attagcactt	1080
	gtaagcacac	cttcatatga	cgtctatcca	tttatgtatg	gcatgagtaa	cgaagaatat	1140
	aataaattaa	ccgaagataa	aaaagaacct	ctgctcaaca	agttccagat	tacaacttca	1200
	ccaggttcaa	ctcaaaaaat	attaacagca	atgattgggt	taaataacaa	aacattagac	1260
	gataaaacaa	gttataaaat	cgatggtaaa	ggttggcaaa	aagataaatc	ttggggtggt	1320
	tacaacgtta	caagatatga	agtggtaaat	ggtaatatcg	acttaaaaca	agcaatagaa	1380
	tcatcagata	acattttctt	tgctagagta	gcactcgaat	taggcagtaa	gaaatttgaa	1440
	aaaggcatga	aaaaactagg	tgttggtgaa	gatataccaa	gtgattatcc	attttataat	1500
	gctcaaattt	caaacaaaaa	tttagataat	gaaatattat	tagctgattc	aggttacgga	1560
	caaggtgaaa	tactgattaa	cccagtacag	atcctttcaa	tctatagcgc	attagaaaat	1620
	aatggcaata	ttaacgcacc	tcacttatta	aaagacacga	aaaacaaagt	ttggaagaaa	1680
	aatattattt	ccaaagaaaa	tatcaatcta	ttaactgatg	gtatgcaaca	agtcgtaaat	1740
	aaaacacata	aagaagatat	ttatagatct	tatqcaaact	taattqqcaa	atccggtact	1800

1860

gcagaactca aaatgaaaca aggagaaact ggcagacaaa ttgggtggtt tatatcatat

	gataaagata	atccaaacat	gatgatggct	attaatgtta	a aagatgtaca	agataaagga	192
	atggctagct	acaatgccaa	aatctcaggt	aaagtgtat	g atgagctata	ı tgagaacggt	198
	aataaaaaat	acgatataga	tgaataa				200
5	<210> 92 <211> 675 <212> DNA <213> Staphy	rlococcus aure	eus				
	<400> 92						
	atgaactatt	tcagatataa	acaatttaac	aaggatgtta	a tcactgtago	cgttggctac	6
	tatctaagat	atacattgag	ttatcgtgat	atatctgaaa	a tattaaggga	acgtggtgta	12
	aacgttcatc	attcaacggt	ctaccgttgg	gttcaagaat	atgececaat	: tttgtatcaa	18
	atttggaaga	aaaagcataa	aaaagcttat	tacaaatgg	c gtattgatga	gacgtacatc	24
	aaaataaaag	gaaaatggag	ctatttatat	cgtgccatt	g atgcagaggg	, acatacatta	30
	gatatttggt	tgcgtaagca	acgagataat	cattcagcat	atgcgtttat	: caaacgtctc	36
	attaaacaat	ttggtaaacc	tcaaaaggta	attacagato	c aggcacctto	aacgaaggta	42
	gcaatggcta	aagtaattaa	agcttttaaa	cttaaacct	g actgtcatto	g tacatcgaaa	48
	tatctgaata	acctcattga	gcaagatcac	cgtcatatta	a aagtaagaaa	gacaaggtat	54
	caaagtatca	atacagcaaa	gaatacttta	aaaggtatto	g aatgtattta	cgctctatat	60
	aaaaagaacc	gcaggtctct	tcagatctac	ggattttcg	c catgccacga	aattagcatc	66
10	atgctagcaa	gttaa					67.
15	<210> 93 <211> 675 <212> DNA <213> Staphy	rlococcus aure	eus				
	<400> 93						
	atgaactatt	tcagatataa	acaatttaac	aaggatgtta	tcactgtagc	cgttggctac	60
	tatctaagat	atacattgag	ttatcgtgat	atatctgaaa	tattaaggga	acgtggtgta	120
	aacgttcatc	attcaacggt	ctaccgttgg	gttcaagaat	atgccccaat	tttgtatcaa	180
	atttggaaga	aaaagcataa	aaaagcttat	tacaaatggc	gtattgatga	gacgtacatc	240
	aaaataaaag	gaaaatggag	ctatttatat	cgtgccattg	atgcagaggg	acatacatta	300
20	gatatttggt	tgcgtaagca	acgagataat	cattcagcat	atgcgtttat	caaacgtctc	360
	attaaacaat	ttggtaaacc	tcaaaaggta	attacagatc	aggcaccttc	aacgaaggta	420
	gcaatggcta	aagtaattaa	agcttttaaa	cttaaacctg	actgtcattg	tacatcgaaa	480
	tatctgaata	acctcattga	gcaagatcac	cgtcatatta	aagtaagaaa	gacaaggtat	540
	caaagtatca	atacagcaaa	gaatacttta	aaaggtattg	aatgtattta	cgctctatat	600
	aaaaagaacc	gcaggtctct	tcagatctac	ggattttcgc	catgccacga	aattagcatc	660
	atgctagcaa	gttaa					675
					Ω1		

<210> 94

<211> 675 <212> DNA 5 <213> Staphylococcus aureus <400> 94 60 atgaactatt tcagatataa acaatttaac aaggatgtta tcactgtagc cgttggctac tatctaagat atacattgag ttatcgtgat atatctgaaa tattaaggga acgtggtgta 120 aacgttcatc attcaacggt ctaccgttgg gttcaagaat atgccccaat tttgtatcaa 180 atttggaaga aaaagcataa aaaagcttat tacaaatggc gtattgatga gacgtacatc 240 aaaataaaag gaaaatggag ctatttatat cgtgccattg atgcagaggg acatacatta 300 gatatttggt tgcgtaagca acgagttaat cattcagcat atgcgtttat caaacgtctc 360 420 attaaacaat ttggtaaacc tcaaaaggta attacagatc aggcaccttc aacgaaggta gcaatggcta aagtaattaa agcttttaaa cttaaacctg actgtcattg tacatcgaaa 480 tatctgaata acctcattga gcaagatcac cgtcatatta aagtaagaaa gacaaggtat 540 caaaqtatca atacaqcaaa qaatacttta aaaqqtattq aatqtattca cqctctatat 600 aaaaaqaacc qcaqqtctct tcaqatctac qqattttcqc catqccacqa aattaqcatc 660 675 atgctagcaa gttaa 10 <210> 95 <211> 675 <212> DNA <213> Staphylococcus aureus 15 <400> 95 60 atgaactatt tcaqatataa acaatttaac aaggatgtta tcactgtagc cgttggctac 120 tatctaagat atacattgag ttatcgtgat atatctgaaa tattaaggga acgtggtgta 180 aacgttcatc attcaacggt ctaccgttgg gttcaagaat atgccccaat tttgtatcaa 240 atttggaaga aaaagcataa aaaagcttat tacaaatggc gtattgatga gacgtacatc 300 aaaataaaag gaaaatggag ctatttatat cgtgccattg atgcagaggg acatacatta 360 gatatttggt tgcgtaagca acgagataat cattcagcat atgcgtttat caaacgtctc attaaacaat ttggtaaacc tcaaaaggta attacagatc aggcaccttc aacgaaggta 420 gcaatggcta aagtaattaa agcttttaaa cttaaacctg actgtcattg tacatcgaaa 480 540 tatctgaata acctcattga gcaagatcac cgtcatatta aagtaagaaa gacaaggtat 600 caaagtatca atacagcaaa gaatacttta aaaggtattg aatgtattta cgctctatat aaaaagaacc gcaggtctct tcagatctac ggattttcgc catgccacga aattagcatc 660 675 20 atgctagcaa gttaa <210> 96 <211> 28 <212> DNA 25 <213> Artificial <220>

	<223> cebador PCR para mecA		
5	<220> <221> fuente <222> (1)(28) <223> S. aureus resistente a meticilina		
	<400> 96		
10	gtaaagtgta tgatgagcta tatgagaa		28
15	<210> 97 <211> 27 <212> DNA <213> Artificial		
	<220> <223> cebador PCR para MREP tipo ii		
20	<220> <221> fuente <222> (1)(27) <223> S. aureus resistente a meticilina		
25	<400> 97		
	gctgaaaaaa ccgcatcatt trtgrta		27
30	<210> 98 <211> 29 <212> DNA <213> Artificial		
35	<220> <223> cebador PCR para MREP tipo iii		
40	<220> <221> fuente <222> (1)(29) <223> S. aureus resistente a meticilina		
	<400> 98		
45	tttagtttta tttatgatac gcttctcca	29	
40	<210> 99 <211> 27 <212> DNA <213> Artificial		
50	<220> <223> cebador PCR para MREP tipo ii		
55	<220> <221> fuente <222> (1)(27) <223> S. aureus resistente a meticilina		
60	<400> 99		
	gctgaaaaaa ccgcatcatt tatgata		27
65	<210> 100 <211> 28 <212> DNA <213> Artificial		

```
<223> cebador PCR para MREP tipos i y ii
 5 <220>
    <221> fuente
    <222> (1)..(28)
    <223> S. aureus resistente a meticilina
10 <400> 100
    ctatgtcaaa aatcatgaac ctcattac
                                                  28
    <210> 101
15 <211> 23
    <212> DNA
    <213> Artificial
    <220>
20 <223> cebador PCR para MREP tipos i y ii
    <220>
    <221> fuente
    <222> (1)..(23)
25 <223> S. aureus resistente a meticilina
    <400> 101
    ggaggctaac tatgtcaaaa atc
                                           23
30
    <210> 102
    <211> 25
    <212> DNA
    <213> Artificial
35
    <220>
    <223> cebador PCR para MREP tipo iii
    <220>
40 <221> fuente
    <222> (1)..(25)
    <223> S. aureus resistente a meticilina
    <400> 102
45
                                           25
    ctctataaac atcgtatgat attgc
    <210> 103
    <211> 20
50 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para orfX
55
    <220>
    <221> fuente
    <222> (1)..(20)
    <223> S. aureus
60
    <400> 103
    accaaacgac atgaaaatca
                                           20
65 <210> 104
    <211> 1256
```

<212> DNA

<213> Staphylococcus aureus

<400> 104 5 60 ttcagaaaaa tgattaatgt gtttcaataa aatctctcct tctttgtgaa catattcatt tttatactaa ttaatataat ttccaaaaaa gtttctgttt aaaagtgaaa aatattattt 120 180 accepttigac tiaaatctic aatatatagg tettiatate tatcattite egecaattie aataaacggg aatcaagtct gtttctgagt ttatttcaac tttcttatag taaacattgt 240 cttaatatga tgaacttcaa taaaactttc cctatgcccc ataaaatttt ctcaaaatca 300 aaaataacat accttacaac ttttaccgtc gatatcaatt gctcttttct taatttagga 360 420 ttgctttcaa attttgtact ataacgtgaa actacttttc cttctttata attaaaattt actaattcac aatcatttt acttccattt acaaaaacat ccactqtttc taacacaaaa 480 tctaataaac ttccttttat taatcgtagg cattgtatat ttcctttcat tctttcttga 540 ttccattagt ttaaatttaa aatttcatcc atcaatttct taatttaatt gtagttccat 600 aatcaatata atttgtacag ttattatata ttctagatca tcaatagttg aaaaatggtt 660 720 tattaaacac totataaaca togtatgata ttgcaaggta taatccaata tttcatatat qtaattcctc cacatctcat taaattttta aattatacac aacctaattt ttaqttttat 780 ttatgatacg cttctccacg cataatctta aatgctctgt acacttgttc aattaacaca 840 accegcatea titigatgtgg gaatgteatt tigetgaatg atagtgegta gitactgegt 900 960 tgtaagacgt ccttgtgcag gccgtttgat ccgccaatga cgaatacaaa gtcgctttgc 1020 ccttgggtca tgcgttggtt caattcttgg gccaatcctt cggaagatag catctttcct tgtatttcta atgtaatgac tgttgattgt ggtttgattt tggctagtat tcgttggcct 1080 tettttett ttaettgete aatttettig tegeteatat tittetggige titttegtet 1140 ggaacttcta tgatgtctat cttggtgtat gggcctaaac gtttttcata ttctgctatg 1200 gcttgcttcc aatatttctc ttttagtttc cctacagcta aaatggtgat tttcat 1256 10 <210> 105 <211> 27 <212> DNA <213> Artificial 15 <220> <223> cebador PCR para MREP tipo I <220> <221> fuente 20 <222> (1)..(27) <223> S. aureus resistente a meticilina <400> 105 25 tcatgaacct cattacttat gataagt 27 <210> 106 <211> 27 <212> DNA 30 <213> Artificial

```
<220>
    <223> cebador PCR para MREP tipo ii
    <220>
 5 <221> fuente
    <222> (1)..(27)
    <223> S. aureus resistente a meticilina
    <400> 106
10
    gaaaaaaccg catcatttat gatatgt
                                                  27
    <210> 107
    <211> 29
15 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo iii
20
    <220>
    <221> fuente
    <222> (1)..(29)
    <223> S. aureus resistente a meticilina
25
    <400> 107
    cctaattttt agttttattt atgatacgt
                                            29
30 <210> 108
    <211> 34
    <212> DNA
    <213> Artificial
35 <220>
    <223> cebador PCR para MREP tipo iii
    <220>
    <221> fuente
40 <222> (1)..(34)
    <223> S. aureus resistente a meticilina
    <400> 108
45 cacaacctaa tttttagttt tatttatgat acgt
                                                  34
    <210> 109
    <211> 24
    <212> DNA
50 <213> Artificial
    <223> cebador PCR para MREP tipo ix
55 <220>
    <221> fuente
    <222> (1)..(24)
    <223> S. aureus resistente a meticilina
60 <400> 109
    tgataagcca ttcattcacc ctaa
                                            24
    <210> 110
65 <211> 27
```

<212> DNA

```
<213> Artificial
    <220>
    <223> cebador PCR
 5 <220>
    <221> fuente
    <222> (1)..(27)
    <223> Desconocida
10 <400> 110
                                                  27
    aaggactcct aatttatgtc taattcc
    <210> 111
15 <211> 24
    <212> DNA
    <213> Artificial
    <220>
20 <223> cebador PCR
    <220>
    <221> fuente
    <222> (1)..(24)
25 <223> Desconocida
    <400> 111
                                           24
    atgggagtcc ttcgctattc tgtg
30
    <210> 112
    <211> 27
    <212> DNA
    <213> Artificial
35
    <220>
    <223> cebador PCR para MREP tipo vii
    <220>
40 <221> fuente
    <222> (1)..(27)
    <223> S. aureus resistente a meticilina
    <400> 112
45
    cactttttat tcttcaaaga tttgagc
                                           27
    <210> 113
    <211> 28
50 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo vii
55
    <220>
    <221> fuente
    <222> (1)..(28)
    <223> S. aureus resistente a meticilina
60
    <400> 113
    atggaaattc ttaatcttta cttgtacc
                                                  28
65 <210> 114
    <211> 24
```

```
<212> DNA
    <213> Artificial
    <220>
 5 <223> cebador PCR para MREP tipo vii
    <220>
    <221> fuente
    <222> (1)..(24)
10 <223> S. aureus resistente a meticilina
    <400> 114
    agcatcttct ttacatcgct tact
                                            24
15
    <210> 115
    <211> 23
    <212> DNA
    <213> Artificial
20
    <220>
    <223> cebador PCR para MREP tipo viii
    <220>
25 <221> fuente
    <222> (1)..(23)
    <223> S. aureus resistente a meticilina
    <400> 115
30
                                           23
    cagcaattcw cataaacctc ata
    <210> 116
    <211> 27
35 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo viii
40
    <220>
    <221> fuente
    <222> (1)..(27)
    <223> S. aureus resistente a meticilina
45
    <400> 116
                                                  27
    acaaactttg aggggatttt tagtaaa
50 <210> 117
    <211> 22
    <212> DNA
    <213> Artificial
55 <220>
    <223> cebador PCR para MREP tipo ii
    <220>
    <221> fuente
60 <222> (1)..(22)
    <223> S. aureus resistente a meticilina
    <400> 117
                                            22
65 tatattgtgg catgatttct tc
```

```
<210> 118
    <211> 23
    <212> DNA
    <213> Artificial
 5
    <223> cebador PCR para MREP tipo ii
    <220>
10 <221> fuente
    <222> (1)..(23)
    <223> S. aureus resistente a meticilina
    <400> 118
15
                                           23
    cgaatggact agcactttct aaa
    <210> 119
    <211> 21
20 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo vii
25
    <220>
    <221> fuente
    <222> (1)..(21)
    <223> S. aureus resistente a meticilina
30
    <400> 119
    ttgaggatca aaagttgttg c
                                           21
35 <210> 120
    <211> 21
    <212> DNA
    <213> Artificial
40 <220>
    <223> cebador PCR para MREP tipo vii
    <220>
    <221> fuente
45 <222> (1)..(21)
    <223> S. aureus resistente a meticilina
    <400> 120
50 cgatgatttt atagtaggag a
                                           21
    <210> 121
    <211> 28
    <212> DNA
55 <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo vii
60 <220>
    <221> fuente
    <222> (1)..(28)
    <223> S. aureus resistente a meticilina
65 <400> 121
```

	ttcaatctct aaatctaaat cagttttg		28
5	<210> 122 <211> 24 <212> DNA <213> Artificial		
10	<220> <223> cebador PCR para MREP tipo vii		
15	<220> <221> fuente <222> (1)(24) <223> S. aureus resistente a meticilina		
13	<400> 122		
	aggcgagaaa atggaacata tcaa		24
20	<210> 123 <211> 26 <212> DNA <213> Artificial		
25	<220> <223> cebador PCR para MREP tipo vii		
30	<220> <221> fuente <222> (1)(26) <223> S. aureus resistente a meticilina		
	<400> 123		
35	ggtacaagta aagattaaga atttcc		26
40	<210> 124 <211> 22 <212> DNA <213> Artificial		
	<220> <223> cebador PCR para MREP tipo ii		
45	<220> <221> fuente <222> (1)(22) <223> S. aureus resistente a meticilina		
50	<400> 124		
	agacaacttt atgcaggtcc tt	22	
55	<210> 125 <211> 22 <212> DNA <213> Artificial		
60	<220> <223> cebador PCR para MREP tipo ii		
65	<220> <221> fuente <222> (1)(22) <223> S. aureus resistente a meticilina		

	<400> 125		
	taactgcttg ggtaacctta tc	22	
5	<210> 126 <211> 21 <212> DNA <213> Artificial		
10	<220> <223> cebador PCR para orfSA0021		
15	<220> <221> fuente <222> (1)(21) <223> S. aureus		
	<400> 126		
20	tattgcaggt ttcgatgttg a	21	
25	<210> 127 <211> 22 <212> DNA <213> Artificial		
	<220> <223> cebador PCR para orfSA0021		
30	<220> <221> fuente <222> (1)(22) <223> S. aureus		
35	<400> 127		
	tgacccatat cgcctaaaat ac	22	
40	<210> 128 <211> 22 <212> DNA <213> Artificial		
45	<220> <223> cebador PCR para orfSA0022		
50	<220> <221> fuente <222> (1)(22) <223> S. aureus		
	<400> 128		
55	aaaggacaac aaggtagcaa ag		22
	<210> 129 <211> 22 <212> DNA <213> Artificial		
60	<220> <223> cebador PCR para orfSA0022		
65	<220> <221> fuente <222> (1)(22)		

```
<223> S. aureus
    <400> 129
 5 tctgtggata aacaccttga tg
                                          22
    <210> 130
    <211> 18
    <212> DNA
10 <213> Artificial
    <220>
    <223> cebador PCR para orfX
15 <220>
    <221> fuente
    <222> (1)..(18)
    <223> S. aureus
20 <400> 130
                                   18
    gtttgatccg ccaatgac
    <210> 131
25 <211> 23
    <212> DNA
    <213> Artificial
    <220>
30 <223> cebador PCR para region between orfSA0022 and orfSA0023
    <220>
    <221> fuente
    <222> (1)..(23)
35 <223> S. aureus
    <400> 131
                                          23
    ggcataaatg tcaggaaaat atc
40
    <210> 132
    <211> 23
    <212> DNA
    <213> Artificial
45
    <220>
    <223> cebador PCR para orfX
    <220>
50 <221> fuente
    <222> (1)..(23)
    <223> S. aureus
    <400> 132
55
    gaggaccaaa cgacatgaaa atc
                                                23
    <210> 133
    <211> 20
60 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para merB
65
    <220>
```

```
<221> fuente
    <222> (1)..(20)
    <223> plásmido pl258
 5 <400> 133
                                          20
    ttcgaggttg atgggaagca
    <210> 134
10 <211> 18
    <212> DNA
    <213> Artificial
    <220>
15 <223> cebador PCR para merB
    <220>
    <221> fuente
    <222> (1)..(18)
20 <223> plásmido pl258
    <400> 134
    cgctcgactc agggtgtt
                                    18
25
    <210> 135
    <211> 18
    <212> DNA
    <213> Artificial
30
    <220>
    <223> cebador PCR para merB
    <220>
35 <221> fuente
    <222> (1)..(18)
    <223> plásmido pl258
    <400> 135
40
    cgttgaagat gcctttga
                                    18
   <210> 136
<211> 18
45 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para merB
50
    <220>
    <221> fuente
    <222> (1)..(18)
    <223> plásmido pl258
55
    <400> 136
                                    18
    ttttgcaaca gccattcg
60 <210> 137
    <211> 21
    <212> DNA
    <213> Artificial
65 <220>
    <223> cebador PCR para merB
```

```
<220>
    <221> fuente
    <222> (1)..(21)
 5 <223> plásmido pl258
    <400> 137
    gcacacatgt tgtaagtttg c
                                          21
10
    <210> 138
    <211> 22
    <212> DNA
    <213> Artificial
15
    <220>
    <223> cebador PCR para merB
    <220>
20 <221> fuente
    <222> (1)..(22)
    <223> plásmido pl258
    <400> 138
25
    acgcaaactt acaacatgtg tg
                                          22
    <210> 139
    <211> 22
30 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para rep
35
    <220>
    <221> fuente
    <222> (1)..(22)
    <223> pÚB110
40
    <400> 139
    cgtttgtctg atttggagga ag
                                          22
45 <210> 140
    <211> 24
    <212> DNA
    <213> Artificial
50 <220>
    <223> cebador PCR para rep
    <220>
    <221> fuente
55 <222> (1)..(24)
    <223> pUB110
    <400> 140
60 tttcttcatc atcggtcata aaat
                                          24
    <210> 141
    <211> 23
    <212> DNA
65 <213> Artificial
```

```
<220>
    <223> cebador PCR para rep
    <220>
 5 <221> fuente
    <222> (1)..(23)
    <223> pUB110
    <400> 141
10
    ctacgtgaat caaaaacaat gga
                                         23
    <210> 142
    <211> 22
15 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para aadD
20
    <220>
    <221> fuente
    <222> (1)..(22)
    <223> pUB110
25
    <400> 142
                                         22
    tactgcaaag tctcgttcat cc
30 <210> 143
    <211> 24
    <212> DNA
    <213> Artificial
35 <220>
    <223> cebador PCR para aadD
    <220>
    <221> fuente
40 <222> (1)..(24)
    <223> pUB110
    <400> 143
                                         24
45 cataccattt tgaacgatga cctc
    <210> 144
    <211> 23
    <212> DNA
50 <213> Artificial
    <220>
    <223> cebador PCR para aadD
55 <220>
    <221> fuente
    <222> (1)..(23)
    <223> pÚB110
60 <400> 144
    atgtctggtc aactttccga ctc
                                         23
    <210> 145
65 <211> 25
```

<212> DNA

	<213> Artificial	
5	<220> <223> cebador PCR para MREP tipo iv	
	<220> <221> fuente <222> (1)(25) <223> S. aureus resistente a meticilina	
10	<400> 145	
	caatcggtat ctgtaaatat caaat	25
15	<210> 146 <211> 24 <212> DNA <213> Artificial	
20	<220> <223> cebador PCR para MREP tipo V	
25	<220> <221> fuente <222> (1)(24) <223> S. aureus resistente a meticilina	
	<400> 146	
30	tcgcatacct gtttatcttc tact	24
35	<210> 147 <211> 22 <212> DNA <213> Artificial	
	<220> <223> cebador PCR para MREP tipo iv	
40	<220> <221> fuente <222> (1)(22) <223> S. aureus resistente a meticilina	
45	<400> 147	
	ttggttccat ctgaactttg ag	22
50	<210> 148 <211> 24 <212> DNA <213> Artificial	
55	<220> <223> cebador PCR para MREP tipo ix	
60	<220> <221> fuente <222> (1)(24) <223> S. aureus resistente a meticilina	
	<400> 148	
65	aatggcttat caaagtgaat atgc	24
	<210> 149	

	<211> 24 <212> DNA <213> Artificial		
5	<220> <223> cebador PCR para MREP tipo ix		
10	<220> <221> fuente <222> (1)(24) <223> S. aureus resistente a meticilina		
	<400> 149		
15	taatttcctt tttttccatt cctc	24	
20	<210> 150 <211> 25 <212> DNA <213> Artificial		
	<220> <223> cebador PCR para MREP tipo vii		
25	<220> <221> fuente <222> (1)(25) <223> S. aureus resistente a meticilina		
30	<400> 150		
	actagaatct ccaaatgaat ccagt		25
35	<210> 151 <211> 24 <212> DNA <213> Artificial		
40	<220> <223> cebador PCR para MREP tipo vii		
45	<220> <221> fuente <222> (1)(24) <223> S. aureus resistente a meticilina		
	<400> 151		
	tggagttaat ctacgtctca tctc	24	
50	<210> 152 <211> 24 <212> DNA <213> Artificial		
55	<220> <223> cebador PCR para IS431mec		
60	<220> <221> fuente <222> (1)(24) <223> S. aureus resistente a meticilina		
0-	<400> 152		
65	gttcatacag aagactcctt tttg	24	

```
<210> 153
    <211> 25
    <212> DNA
 5 <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo vii
10 <220>
    <221> fuente
    <222> (1)..(25)
    <223> S. aureus resistente a meticilina
15 <400> 153
    agttttgatt atccgaataa atgct
                                                 25
    <210> 154
20 <211> 24
    <212> DNA
    <213> Artificial
    <220>
25 <223> cebador PCR para MREP tipo V
    <220>
    <221> fuente
    <222> (1)..(24)
30 <223> S. aureus resistente a meticilina
    <400> 154
    tttaaattca gctatatggg gaga
                                           24
35
    <210> 155
    <211> 22
    <212> DNA
    <213> Artificial
40
    <220>
    <223> cebador PCR para MREP tipo V
    <220>
45 <221> fuente
    <222> (1)..(22)
    <223> S. aureus resistente a meticilina
    <400> 155
50
                                           22
    ttccgttttg ctattccata at
    <210> 156
    <211> 24
55 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para tetk
60
    <220>
    <221> fuente
    <222> (1)..(24)
    <223> plásmido pT181
65
    <400> 156
```

	cctctgataa aaaacttgtg aaat	24
5	<210> 157 <211> 24 <212> DNA <213> Artificial	
10	<220> <223> cebador PCR para tetk	
15	<220> <221> fuente <222> (1)(24) <223> plásmido pT181	
	<400> 157	
20	actactcctg gaattacaaa ctgg	24
20	<210> 158 <211> 23 <212> DNA <213> Artificial	
25	<220> <223> cebador PCR para orfX	
30	<220> <221> fuente <222> (1)(23) <223> S. aureus	
	<400> 158	
35	gccaaaatta aaccacaatc cac	23
40	<210> 159 <211> 24 <212> DNA <213> Artificial	
45	<220> <223> cebador PCR para orfX	
	<220> <221> fuente <222> (1)(24) <223> S. aureus	
50	<400> 159	
	cattttgctg aatgatagtg cgta	24
55	<210> 160 <211> 48 <212> DNA <213> Artificial	
60	<220> <223> Sonda para orfX	
65	<220> <221> fuente <222> (1)(48) <223> S. aureus	

```
<400> 160
                                                                    48
    cgaccggatt cccacatcaa atgatgcggg ttgtgttaat tccggtcg
 5
    <210> 161
    <211> 37
    <212> DNA
    <213> Artificial
10
    <220>
    <223> Sonda para orfX
    <220>
15 <221> fuente
    <222> (1)..(37)
    <223> S. aureus
    <400> 161
20
    cccgcgcrta gttactrcgt tgtaagacgt ccgcggg
                                                       37
    <210> 162
    <211> 29
25 <212> DNA
    <213> Artificial
    <220>
    <223> Sonda para orfX
30
    <220>
    <221> fuente
    <222> (1)..(29)
    <223> S. aureus
35
    <400> 162
    ccccgtagtt actgcgttgt aagacgggg
                                                 29
40 <210> 163
    <211> 37
    <212> DNA
    <213> Artificial
45 <220>
    <223> Sonda para orfX
    <220>
    <221> fuente
50 <222> (1)..(37)
    <223> S. aureus
    <400> 163
                                                       37
55 cccgcgcata gttactgcgt tgtaagacgt ccgcggg
    <210> 164
    <211> 37
    <212> DNA
60 <213> Artificial
    <223> Sonda para orfX
65 <220>
    <221> fuente
```

<222> (1)..(37) <223> S. aureus <400> 164 5 37 cccgcgcgta gttactacgt tgtaagacgt ccgcggg <210> 165 <211> 1282 10 <212> DNA <213> Staphylococcus aureus <400> 165 accattttag ctgtagggaa actaaaagag aaatattgga agcaagccat agcagaatat 60 gaaaaacgtt taggcccata caccaagata gacatcatag aagttccaga cgaaaaagca 120 ccagaaaata tgagcgacaa agaaattgag caagtaaaag aaaaagaagg ccaacgaata 180 ctagccaaaa tcaaaccaca atccacagtc attacattag aaatacaagg aaagatgcta 240 tetteeqaaq qattqqeeca aqaattqaac caacqeatqa eecaaqqqea aaqeqaettt 300 gtattcgtca ttggcggatc aaacggcctg cacaaggacg tcttacaacg cagtaactat 360 15 gcactatcat ttagcaaaat gacattccca catcaaatga tgcgggttgt gttaattgaa 420 480 caagtgtata gagcatttaa gattatgcgt ggagaagcgt accacaaata aaactaaaaa 540 atatgagaaa attattaaat tagctcaaat ctttgaagaa taaaaagtga atattaagtt 600 tgataattta ggtacaagta aagattaaga atttccatta tttaatacat ggtgtgtaaa togacttott tttgtattag atgtttgcag taagcgatgt aaagaagatg ctaataaata 660 720 tgtgaggaat gattacgata ctagataagc ggctaatgaa attttttaaa gtacatatat 780 agacatattt ttcatttagt aaaattttga atttcacttt gctaagacta gtgtctagaa 840 atttataatg atttattaac acctatttga aacttaagta taataaatga ttcggatttt atttttaata aagacaaact tgaacgtagc aaagtagttt ttatgataaa taataagttt 900 taataatgtg acgcttttat ataagcacat tattatgaac aatgtgaatt gagcatctac 960 1020 aattacatta ataaatatat aaatgatgat ttaaattcac atatatttat aatacacata 1080 catacttatt atacgtatac gtttagctac tgaactactg gattcatttg gagattctag 1140 tagttctttt tcaatctcta aatctaaatc agttttgtaa taaccattaa ttcctaatct 1200 1260 ttcatctagc tctgtacttt tttcatcatt tttatctttg ttgatatgtt ccattttctc 1282 gcctcttttt aatcaagtag aa <210> 166 20 <211> 1108 <212> DNA <213> Staphylococcus aureus <400> 166 25

accatttag	etgtagggaa	actaaaagag	aaatattgga	agcaagccat	agcagaatat	60
gaaaaacgtt	taggcccata	caccaagata	gacatcatag	aagttccaga	cgaaaaagca	120
ccagaaaata	tgagcgacaa	agaaattgag	caagtaaaag	aaaaagaagg	ccaacgaata	180
ctagccaaaa	tcaaaccaca	atccacagtc	attacattag	aaatacaagg	aaagatgcta	240
tcttccgaag	gattggccca	agaattgaac	caacgcatga	cccaagggca	aagcgacttt	300
gtattcgtca	ttggcggatc	aaacggcctg	cacaaggacg	tcttacaacg	cagtaactat	360
gcactatcat	ttagcaaaat	gacattccca	catcaaatga	tgcgggttgt	gttaattgaa	420
caagtgtata	gagcatttaa	gattatgcgt	ggagaagcgt	accacaaata	aaactaaaaa	480
atatgagaaa	attattaaat	tagctcaaat	ctttgaagaa	taaaaagtga	atattaagtt	540
tgataattta	ggtacaagta	aagattaaga	atttccatta	tttaatacat	ggtgtgtaaa	600
tcgacttctt	tttgtattag	atgtttgcag	taagcgatgt	t aaagaagat	g ctaataaata	660
tgtgaggaat	gattacgata	ctagataagc	ggctaatgaa	a atttttaa	a gtacatatat	720
agacatattt	ttcatttagt	aaaattttga	atttcactt	t gctaagact	a gtgtctagaa	780
atttataatg	atttattaac	acctatttga	aacttaagta	a taataaatg	a ttcggatttt	840
atttttaata	aagacaaact	tgaacgtagc	: aaagtagtt	t ttatgataa	a taataagttt	900
taataatgtg	acgcttttat	ataagcacat	tattatgaad	c aatgtgaat	t gagcatctac	960
aattacatta	ataaatatat	aaatgatgat	ttaaattcad	c atatattta	t aatacacata	1020
ctatatgaaa	gttttgatta	tccgaataaa	ı tgctaaaatt	t aataaaata	a ttaaaggaat	1080
catacttatt	atacgtatac	gtttagct				1108

5 <210> 167 <211> 1530 <212> DNA

<213> Staphylococcus aureus

ttagctgtag ggaaac	taaa agagaaatat	tggaagcaag	ccatagcaga	atatgaaaaa	60
cgtttaggcc cataca	ccaa gatagacatc	atagaagttc	cagacgaaaa	agcaccagaa	120
aatatgagcg acaaag	aaat tgagcaagta	aaagaaaaag	aaggccaacg	aatactagcc	180
aaaatcaaac cacaat	ccac agtcattaca	ttagaaatac	aaggaaagat	gctatcttcc	240
gaaggattgg cccaaga	aatt gaaccaacgc	atgacccaag	ggcaaagcga	ctttgtattc	300
gtcattggcg gatcaa	acgg cctgcacaag	gacgtcttac	aacgcagtaa	ctatgcacta	360
tcatttagca aaatga	catt cccacatcaa	atgatgcggg	ttgtgttaat	tgaacaagtg	420
tatagagcat ttaaga	ttat gcgtggagaa	gcatatcata	aatgatgcgg	ttttttcagc	480
cgcttcataa aggggg	gtga tcatatcgga	acgtatgagg	tttatgagaa	ttgctgctat	540
gtttttatga agcgta	tcat aaatgatgca	gtttttgata	attttttctt	tatcagagat	600
tttactaaaa atcccc	tcaa agtttgtttt	tttcaacttc	aactttgaag	ggaataaata	660
aggaacttat ttatat	ttat cctttatctc	attaatatct	attttttat	taataatatt	720
ataaatatta aattot	ttag aaaagtcact	atcactctta	ttcttcatac	taaacgttat	780
taatctaata atatca	gcta ctatttcttt	aaattctatt	gcatcttctt	ttttataagt	840
agcgcctgta tgaaca	attt tatttctcat	accatagtaa	tctttcatat	atttttttac	900
acaatttta atttca	ttag aattatccaa	atctagatta	tcaattgtct	ttaataaatg	960
atcattaaca acattag	cat acccacatcc	aagcttcttt t	ttatctctt c	atcacttaa	1020
attttcatct aatttat	aat atctttctaa	aaaatttgtg a	ataaaaactt c	taatgcagt	1080
ctgaatttgt acaattg	gcta aattatagtc	agatttataa a	aaagaacgtt c	accttttct	1140
catagccaaa acataaa	tat tgctaggatg	attattgaaa a	atattataat t	ttttttaat	1200
atttaataaa tcacttt	ttt tgatagatga	atactgatct t	ccttctatct t	tccaggcat	1260
gtcaatcatg aaaatac	tca tctctttat	atttccatct a	atagtatata t	tatataata	1320
tggaatactt aatatat	ccc ctaatgatag	ctggtatata t	tatgatact g	ratatttaac	1380
gctaataatt ttaataa	agat tatttagaca	attaaattgc t	tattaaaaa t	tttcgttag	1440
actattactt ttctttg	gatt ccctagaagt	agaatttgat t	tcaattttt t	aaactgatt	1500
gtgcttgatt attgaag	gtta tttcaacata				1530

5 <210> 168

<211> 1256

<212> DNA

<213> Staphylococcus aureus

gctgtaggga	aactaaaaga	gaaatattgg	aagcaagcca	tagcagaata	tgaaaaacgt	60
ttaggcccat	acaccaagat	agacatcata	gaagttccag	acgaaaaagc	accagaaaat	120
atgagcgaca	aagaaattga	gcaagtaaaa	gaaaaagaag	gccaacgaat	actagccaaa	180
attaaaccac	aatccacagt	cattacatta	gaaatacaag	gaaagatgct	atcttccgaa	240
ggattggccc	aagaattgaa	ccaacgcatg	acccaagggc	aaagcgactt	tgtattcgtc	300
attggcggat	caaacggcct	gcacaaggac	gtcttacaac	gcagtaacta	cgcactatca	360
ttcagcaaaa	tgacattccc	acatcaaatg	atgcgggttg	tgttaattga	gcaagtgtat	420
agagcattta	agattatgcg	tggagaagca	tatcataaat	gatgcggttt	tttcagccgc	480
ttcataaagg	gattttgaat	gtatcagaac	atatgaggtt	tatgtgaatt	gctgttatgt	540
ttttaagaag	catatcataa	gtgatgcggt	ttttattaat	tagttgctaa	aaaatgaagt	600
atgcaatatt	aattattatt	aaattttgat	atatttaaag	aaagattaag	tttagggtga	660
atgaatggct	tatcaaagtg	aatatgcatt	agaaaatgaa	gtacttcaac	aacttgagga	720
attgaactat	gaaagagtaa	atatacataa	tattaaatta	gaaattaatg	aatatctcaa	780
agaactagga	gtgttgaaaa	atgaataagc	agacaaatac	tccagaacta	agatttccag	840
agtttgatga	ggaatggaaa	aaaaggaaat	taggtgaagt	agtaaattat	aaaaatggtg	900
gttcatttga	aagtttagtg	aaaaaccatg	gtgtatataa	actcataact	cttaaatctg	960
ttaatacaga	aggaaagttg	tgtaattctg	gaaaatatat	cgatgataaa	tgtgttgaaa	1020
cattgtgtaa	tgatacttta	gtaatgatac	tgagcgagca	agcaccagga	ctagttggaa	1080
tgactgcaat	tatacctaat	aataatgagt	atgtactaaa	tcaacgagta	gcagcactag	1140
tgcctaaaca	atttatagat	agtcaatttc	tatctaagtt	aattaataga	aaccagaaat	1200
atttcagtgt	gagatctgct	ggaacaaaag	tgaaaaatat	ttctaaagga	catgta	1256

5 <210> 169 <211> 846 <212> DNA

<213> Staphylococcus aureus

ttacattaga	aatacaagga	aagatgctat	cttccgaagg	attggcccaa	gaattgaacc	60
aacgcatgac	ccaagggcaa	agcgactttg	ttttcgtcat	tggcggatca	aacggcctgc	120
acaaggacgt	cttacaacgc	agtaactacg	cactatcatt	cagcaaaatg	acattcccac	180
atcaaatgat	gcgggttgtg	ttaattgaac	aagtgtacag	agcatttaag	attatgcgag	240
gagaagctta	tcataagtaa	tgaggttcat	gatttttgac	atagttagcc	tccgcagtct	300
ttcatttcaa	gtaaataata	gcgaaatatt	ctttatactg	aatacttata	gtgaagcaaa	360
gttctagctt	tgagaaaatt	ctttctgcaa	ctaaatatag	taaattacgg	taaaatataa	420
ataagtacat	attgaagaaa	atgagacata	atatattta	taataggagg	gaatttcaaa	480
tgatagacaa	ctttatgcag	gtccttaaat	taattaaaga	gaaacgtacc	aataatgtag	540
ttaaaaaaatc	tgattgggat	aaaggtgatc	tatataaaac	tttagtccat	gataagttac	600
ccaagcagtt	aaaagtgcat	ataaaagaag	ataaatattc	agttgtaggg	aaggttgcta	660
ctgggaacta	tagtaaagtt	ccttggattt	caatatatga	tgagaatata	acaaaagaaa	720
caaaggatgg	atattatttg	gtatatcttt	ttcatccgga	aggagaaggc	atatacttat	780
ctttgaatca	aggatggtca	aagataagtg	atatgtttcc	gcgggataaa	aatgctgcaa	840
aacaaa						846

<210> 170

<211> 1270 5 <212> DNA <213> Staphylococcus aureus

	cattagaaat	acaaggaaag	atgctatctt	ccgaaggatt	ggcccaagaa	ttgaaccaac	60
	gcatgaccca	agggcaaagc	gactttgtat	tcgtcattgg	g cggatcaaad	ggcctgcaca	120
	aggacgtctt	acaacgcagt	aactatgcac	tatcatttaç	g caaaatgaca	ttcccacatc	180
	aaatgatgcg	ggttgtgtta	attgaacaag	tgtatagago	c atttaagatt	atgcgtggag	240
	aagcatatca	taaatgatgc	ggttttttca	gccgcttcat	aaagggattt	tgaatgtatc	300
	agaacatatg	aggtttatgt	gaattgctgt	tatgttttta	a agaagcttat	cataagtaat	360
	gaggttcatg	atttttgaca	tagttagcct	ccgcagtctt	tcatttcaag	g taaataatag	420
	cgaaatattc	tttatactga	atacttatag	tgaagcaaag	g ttctagcttt	gagaaaattc	480
	tttctgcaac	taaatatagt	aaattacggt	aaaatataaa	a taagtacata	ı ttgaagaaaa	540
	tgagacataa	tatattttat	aataggaggg	aatttcaaat	gatagacaad	tttatgcagg	600
	tccttaaatt	aattaaagag	aaacgtacca	ataatgtagt	taaaaaatct	gattgggata	660
	aaggtgatct	atataaaact	ttagtccatg	ataagttaco	c caagcagtta	aaagtgcata	720
	taaaagaaga	taaatattca	gttgtaggga	aggttgctad	c tgggaactat	agtaaagttc	780
	cttggatttc	aatatatgat	gagaatataa	caaaagaaac	c aaaggatgga	tattatttgg	840
	tatatctttt	tcatccggaa	ggagaaggca	tatacttato	c tttgaatcaa	n ggatggtcaa	900
	agataagtga	tatgtttccg	cgggataaaa	atgctgcaaa	acaaagagca	ttaactttat	960
	cttccgaact	caataaatat	attacatcaa	atgaatttaa	ı tactggaaga	ttttattacg	1020
	cagaaaataa	agattcatct	tatgatttaa	aaaatgatta	a tccatcagga	tattctcatg	1080
	gatcaataag	attcaaatat	tatgatttga	atgaaggatt	cacagaagaa	gatatgctag	1140
	aggatttaaa	gaaatttta	gaactattta	atgaattago	ttcaaaagtt	acaaaaacat	1200
	cctatgatag	cttggtcaat	agcatagacg	aaatacagga	a agacagcgaa	attgaagaaa	1260
	ttagaacagc						1270
5	<210> 171 <211> 991 <212> DNA <213> Staphy	rlococcus aure	us				
	<400> 171						
	accattttag	ctgtagggaa	actaaaagag	aaatactgga	agcaagccat	agcagaatat	60
	gaaaaacgtt	taggcccata	caccaagata	gacatcatag	aagttccaga	cgaaaaagca	120
10	ccagaaaata	tgaactacaa	agaaattgag	caagtaaaag	aaaaagaagg	ccaacgaata	180

ctagccaaaa	tcaaaccaca	atcaacagtc	attacattag	aaatacaagg	aaagatgcta	240
tcttccgaag	gattggccca	agaattgaac	caacgcatga	cccaagggca	aagcgacttt	300
gtattcgtca	ttggcggatc	aaacggcctg	cacaaggacg	tcttacaacg	cagtaactac	360
gcactatcat	tcagcaaaat	gacattccca	catcaaatga	tgcgggttgt	gttaattgaa	420
caagtgtaca	gagcatttaa	gattatgcga	ggagaagcgt	atcataagtg	atggtaaaaa	480
atatgagtaa	gtagatgaag	agtgaaaatc	agattaatta	ataataatgt	atcaaattta	540
aataaagggg	tttttaagta	tgaatttaag	aggtcatgaa	aatagactta	aatttcatgc	600
gaaatatgat	gtgacaccta	tatcacattt	aaaattatta	gaaggtcaaa	agaaagacgg	660
tgaaggcggc	atactgacag	atagctatta	ctgtttttca	tacagcttaa	aaggtaattc	720
taaaaaagtt	ttaggtacgt	ttaattgtgg	ttatcatatt	gctgaagatt	tactaaaatt	780
atcaaatcaa	gataaattac	ctttatttaa	cccgtttaaa	gtaattaatg	aaggtaatca	840
attgcagggc	gtaacgaata	aaggtaattt	aaatattaat	aggcaaagaa	aacagtataa	900
tgaagtggct	ttacagcttt	caaatgctat	taatttaatc	ataatttgtt	atgaggataa	960
tattaaagaa	ccactttcaa	cgataaaata	С			991
<210> 172 <211> 748 <212> DNA <213> Staphy	ylococcus aure	eus				
<400> 172						
atcgtttaac	gtgtcacatg	atgcgataga	tccgcaattt	tatattttcc	ataataacta	60
taagaagttt	acgattttaa	cagatacggg	ttacgtgtct	gatcgtatga	aaggtatgat	120
acgtggcagc	gatgcattta	tttttgagag	taatcatgac	gtcgatatgt	tgagaatgtg	180
tcgttatcca	tggaagacga	aacaacgcat	tttaggcgat	atgggtcatg	tatctaatga	240
ggatgcgggt	catgcgatga	cagacgtgat	tacaggtaac	acgaaacgta	tttacttatc	300
gcatttatca	caagataata	atatgaaaga	tttggcgcgt	atgagtgttg	gccaagtatt	360
gaacgaacac	gatattgata	cggaaaaaga	agtattgcta	tgtgatacgg	ataaagctat	420
tccaacacca	atatatacaa	tataaatgag	agtcatccga	taaagttccg	cactgctgtg	480
aaacgacttt	atcgggtgct	tttttatgtt	gttggtggga	aatggctgtt	gttgagttga	540
atcggattga	ttgaaatgtg	taaaataatt	cgatattaaa	tgtaatttat	aaataattta	600
cataaaatca	aacattttaa	tataaggatt	atgataatat	attggtgtat	gacagttaat	660
ggagggaacg	aaatgaaagc	tttattactt	aaaacaagt	g tatggctcg	t tttgcttttt	720
agtgtgatgg	gattatggca	tgtctcga				748
<210> 173						

15 <211> 917

<212> DNA <213> Staphylococcus aureus

<400> 173

20

10

	aaatacaagg	aaagatgcta	tcttccgaag	gattggccca	agaattgaac	caacgcatga	60
	cccaagggca	aagcgacttt	gtattcgtca	ttggcggatc	aaacggcctg	cacaaggacg	120
	tcttacaacg	tagtaactac	gcactatcat	tcagcaaaat	gacattccca	catcaaatga	180
	tgcgggttgt	gttaattgag	caagtgtata	gagcatttaa	gattatgcgt	ggagaagcat	240
	atcataaatg	atgcggtttt	ttcagccgct	tcataaaggg	attttgaatg	tatcagaaca	300
	tatgaggttt	atgtgaattg	ctgttatgtt	tttaagaagc	ttatcataag	taatgaggtt	360
	catgattttt	gacatagtta	gcctccgcag	tctttcattt	caagtaaata	atagcgaaat	420
	attctttata	ctgaatactt	atagtgaagc	aaagttctag	ctttgagaaa	attctttctg	480
	caactaaata	tagtaaatta	cggtaaaata	taaataagta	catattgaag	aaaatgagac	540
	ataatatatt	ttataatagg	agggaatttc	aaatgataga	caactttatg	caggtcctta	600
	aattaattaa	agagaaacgt	accaataatg	tagttaaaaa	atctgattgg	gataaaggtg	660
	atctatataa	aactttagtc	catgataagt	tacccaagca	gttaaaagtg	catataaaag	720
	aagataaata	ttcagttgta	gggaaggttg	ctactgggaa	ctatagtaaa	gttccttgga	780
	tttcaatata	tgatgagaat	ataacaaaag	aaacaaagga	tggatattat	ttggtatatc	840
	tttttcatcc	ggaaggagaa	ggcatatact	tatctttgaa	tcaaggatgg	tcaaagataa	900
	gtgatatgtt	tccgcgg					917
5	<210> 174 <211> 1132 <212> DNA <213> Staphy	/lococcus aure	eus				
	<400> 174						
	gctgtaggga	aactaaaaga	gaaatattgg	aagcaagcca	tagcagaata	tgaaaaacgt	60
	ttaggcccat	acaccaagat	agacatcata	gaagttccag	acgaaaaagc	accagaaaat	120
	atgagcgaca	aagaaattga	gcaagtaaaa	gaaaaagaag	gccaacgaat	actagccaaa	180
10	atcaaaccac	aatcaacagt	cattacatta	gaaatacaag	gaaagatgct	atcttccgaa	240

ggattggccc	aagaattgaa	ccaacgcatg	acccaagggc	aaagcgactt	tgtattcgtc	300
attggcggat	caaacggcct	gcacaaggac	gtcttacaac	gtagtaacta	cgcactatca	360
ttcagcaaaa	tgacattccc	acatcaaatg	atgcgggttg	tgttaattga	gcaagtgtat	420
agagcattta	agattatgcg	tggagaagca	tatcataaat	gatgcggttt	tttcagccgc	480
ttcataaagg	gattttgaat	gtatcagaac	atatgaggtt	tatgtgaatt	gctgttatgt	540
ttttaagaag	cttatcataa	gtaatgaggt	tcatgatttt	tgacatagtt	agcctccgca	600
gtctttcatt	tcaagtaaat	aatagcgaaa	tattctttat	actgaatact	tatagtgaag	660
caaagttcta	gctttgagaa	aattctttct	gcaactaaat	atagtaaatt	acggtaaaat	720
ataaataagt	acatattgaa	gaaaatgaga	cataatatat	tttataatag	gagggaattt	780
caaatgatag	acaactttat	gcaggtcctt	aaattaatta	aagagaaacg	taccaataat	840
gtagttaaaa	aatctgattg	ggataaaggt	gatctatata	aaactttagt	ccatgataag	900
ttacccaagc	agttaaaagt	gcatataaaa	gaagataaat	attcagttgt	agggaaggtt	960
gctactggga	actatagtaa	agttccttgg	atttcaatat	atgatgagaa	tataacaaaa	1020
gaaacaaagg	atggatatta	tttggtatat	ctttttcatc	cggaaggaga	aggcatatac	1080
ttatctttga	atcaaggatg	gtcaaagata	agtgatatgt	ttccgcggga	ta	1132

<210> 175

<211> 1133

5 <212> DNA

<213> Staphylococcus aureus

<400> 175

agctgtaggg aaactaaaag agaaatattg gaagcaagcc atagcagaat atgaaaaacg 60 tttaggccca tacaccaaga tagacatcat agaagttcca gacgaaaaag caccagaaaa 120 180 tatgagcgac aaagaaattg agcaagtaaa agaaaaagaa ggccaacgaa tactagccaa aatcaaacca caatcaacag tcattacatt agaaatacaa ggaaagatgc tatcttccga 240 aggattggcc caagaattga accaacgcat gacccaaggg caaagcgact ttgtattcgt 300 cattggcgga tcaaacggcc tgcacaagga cgtcttacaa cgtagtaact acgcactatc 360 attcagcaaa atgacattcc cacatcaaat gatgcgggtt gtgttaattg agcaagtgta 420 tagagcattt aagattatgc gtggagaagc atatcataaa tgatgcggtt ttttcagccg 480 cttcataaag ggattttgaa tgtatcagaa catatgaggt ttatgtgaat tgctgttatg 540 10 tttttaagaa gcttatcata agtaatgagg ttcatgattt ttgacatagt tagcctccgc 600

agtettteat tteaagtaaa taatagegaa atattettta taetgaatae ttatagtgaa 660 gcaaagttct agctttgaga aaattctttc tgcaactaaa tatagtaaat tacggtaaaa 720 tataaataag tacatattga agaaaatgag acataatata ttttataata ggagggaatt 780 tcaaatgata gacaacttta tgcaggtcct taaattaatt aaagagaaac gtaccaataa 840 tgtagttaaa aaatctgatt gggataaagg tgatctatat aaaactttag tccatgataa 900 gttacccaag cagttaaaag tgcatataaa agaagataaa tattcagttg tagggaaggt 960 tgctactggg aactatagta aagttccttg gatttcaata tatgatgaga atataacaaa 1020 agaaacaaag gatggatatt atttggtata tctttttcat ccggaaggag aaggcatata 1080 cttatctttg aatcaaggat ggtcaaagat aagtgatatg tttccgcggg ata 1133

<210> 176

<211> 1087

5 <212> DNA

<213> Staphylococcus aureus

<400> 176

60 actaaaagag aaatattgga agcaagccat agcagaatat gaaaaacgtt taggcccata 120 caccaagata gacatcatag aagttccaga cgaaaaagca ccagaaaata tgagcgacaa agaaattgag caagtaaaag aaaaagaagg ccaacgaata ctagccaaaa tcaaaccaca 180 atcaacagtc attacattag aaatacaagg aaagatgcta tcttccgaag gattggcaca 240 300 agaattgaac caacgcatga cccaagggca aagcgacttt gtattcgtca ttggcggatc 360 aaacggcctg cacaaggacg tcttacaacg tagtaactac gcactatcat tcagcaaaat 420 qacattccca catcaaatqa tqcqqqttqt qttaattqaq caaqtqtata qaqcqtttaa gattatgcgt ggagaagcat atcataaatg atgcggtttt ttcagccgct tcataaaggg 480 attttgaatg tatcagaaca tatgaggttt atgtgaattg ctgttatgtt tttaagaagc 540 ttatcataag taatgaggtt catgattttt gacatagtta gcctccgcag tctttcattt 600 caagtaaata atagcgaaat attctttata ctgaatactt atagtgaagc aaagttctag 660 ctttgagaaa attctttctg caactaaata tagtaaatta cggtaaaata taaataagta 720 780 catattgaag aaaatgagac ataatatatt ttataatagg agggaatttc aaatgataga caactttatg caggtcctta aattaattaa agagaaacgt accaataatg tagttaaaaa 840 900 atctgattgg gataaaggtg atctatataa aactttagtc catgataagt tacccaagca 960 10 gttaaaagtg catataaaag aagataaata ttcagttgta gggaaggttg ctactgggaa 1020 ctatagtaaa gttccttgga tttcaatata tgatgagaat ataacaaaag aaacaaagga 1080 tggatattat ttggtatatc tttttcatcc ggaaggagaa ggcatatact tatctttgaa 1087 tcaagga

<210> 177

15 <211> 903

<212> DNA

<213> Staphylococcus aureus

<400> 177

	caaggaaaga	tgctatcttc	cgaaggattg	gcccaagaat	tgaaccaacg	catgacccaa	60
	gggcaaagcg	actttgtatt	cgtcattggc	ggatcaaacg	gcctgcacaa	ggacgtctta	120
	caacgtagta	actacgcact	atcattcagc	aaaatgacat	tcccacatca	aatgatgcgg	180
	gttgtgttaa	ttgagcaagt	gtatagagca	tttaagatta	tgcgtggaga	agcatatcat	240
	aaatgatgcg	gttttttcag	ccgcttcata	aagggatttt	gaatgtatca	gaacatatga	300
	ggtttatgtg	aattgctgtt	atgtttttaa	gaagettate	ataagtaatg	aggttcatga	360
	tttttgacat	agttagcctc	cgcagtcttt	catttcaagt	aaataatagc	gaaatattct	420
	ttatactgaa	tacttatagt	gaagcaaagt	tctagctttg	agaaaattct	ttctgcaact	480
	aaatatagta	aattacggta	aaatataaat	aagtacatat	tgaagaaaat	gagacataat	540
	atattttata	ataggaggga	atttcaaatg	atagacaact	ttatgcaggt	ccttaaatta	600
	attaaagaga	aacgtaccaa	taatgtagtt	aaaaaatctg	attgggataa	aggtgatcta	660
	tataaaactt	tagtccatga	taagttaccc	aagcagttaa	aagtgcatat	aaaagaagat	720
	aaatattcag	ttgtagggaa	ggttgctact	gggaactata	gtaaagttcc	ttggatttca	780
	atatatgatg	agaatataac	aaaagaaaca	aaggatggat	attatttggt	atatcttttt	840
	catccggaag	gagaaggcat	atacttatct	ttgaatcaag	gatggtcaaa	gataagtgat	900
	atg						903
5	<210> 178 <211> 1114 <212> DNA <213> Staphy	/lococcus aure	eus				
	<400> 178						
	ggaaactaaa	agagaaatat	tggaagcaag	ccatagcaga	atatgaaaaa	cgtttaggcc	60
10	catacaccaa	gatagacatc	atagaagttc	cagacgaaaa	agcaccagaa	aatatgagcg	120

acaaagaaat tgagcaagta aaagaaaa	ag aaggccaacg	aatactagcc	aaaatcaaac	180
cacaatcaac agtcattaca ttagaaat	ac aaggaaagat	gctatcttcc	gaaggattgg	240
cccaagaatt gaaccaacgc atgaccca	ag ggcaaagcga	ctttgtattc	gtcattggcg	300
gatcaaacgg cctgcacaag gacgtctt	ac aacgtagtaa	ctacgcacta	tcattcagca	360
aaatgacatt cccacatcaa atgatgcg	gg ttgtgttaat	tgagcaagtg	tatagagcat	420
ttaagattat gcgtggagaa gcatatca	ta aatgatgcgg	ttttttcagc	cgcttcataa	480
agggattttg aatgtatcag aacatatg	ag gtttatgtga	attgctgtta	tgtttttaag	540
aagcttatca taagtaatga ggttcatg	at ttttgacata	gttagcctcc	gcagtctttc	600
atttcaagta aataatagcg aaatattc	tt tatactgaat	acttatagtg	aagcaaagtt	660
ctagctttga gaaaattctt tctgcaac	ta aatatagtaa	attacggtaa	aatataaata	720
agtacatatt gaagaaaatg agacataa	ta tattttataa	taggagggaa	tttcaaatga	780
tagacaactt tatgcaggtc cttaaatt	aa ttaaagagaa	acgtaccaat	aatgtagtta	840
aaaaatctga ttgggataaa ggtgatct	at ataaaacttt	agtccatgat	aagttaccca	900
agcagttaaa agtgcatata aaagaaga	ta aatattcagt	tgtagggaag	gttgctactg	960
ggaactatag taaagtteet tggattte	aa tatatgatga	gaatataaca	aaagaaacaa	1020
aggatggata ttatttggta tatctttt	tc atccggaagg	agaaggcata	tacttatctt	1080
tgaatcaagg atggtcaaag ataagtga	ta tgtt			1114

<210> 179

<211> 1121

5 <212> DNA

<213> Staphylococcus aureus

<400> 179

60 ggaaactaaa agagaaatat tggaagcaag ccatagcaga atatgaaaaa cgtttaggcc catacaccaa gatagacatc atagaagttc cagacgaaaa agcaccagaa aatatgagcg 120 acaaagaaat tgagcaagta aaagaaaaag aaggccaacg aatactagcc aaaatcaaac 180 cacaatccac agtcattaca ttagaaatac aaggaaagat gctatcttcc gaaggattgg 240 300 cccaagaatt gaaccaacgc atgacccaag ggcaaagcga ctttgtattc gtcattggcg 360 gatcaaacgg cctgcacaag gacgtcttac aacgcagtaa ctatgcacta tcatttagca 420 aaatgacatt cccacatcaa atgatgcggg ttgtgttaat tgaacaagtg tatagagcat 480 10 ttaagattat gegtggagaa geatateata aatgatgegg tttttteage egetteataa

agggattttg aatgtatcag aacatatgag gtttatgtga attgctgtta tgtttttaag 540 aagettatea taagtaatga ggtteatgat ttttgacata gttageetee geagtettte 600 atttcaagta aataatagcg aaatattctt tatactgaat acttatagtg aagcaaagtt 660 720 ctagctttga gaaaattctt tctgcaacta aatatagtaa attacggtaa aatataaata agtacatatt gaagaaaatg agacataata tattttataa taggagggaa tttcaaatga 780 840 tagacaactt tatgcaggtc cttaaattaa ttaaagagaa acgtaccaat aatgtagtta aaaaatctga ttgggataaa ggtgatctat ataaaacttt agtccatgat aagttaccca 900 960 agcagttaaa agtgcatata aaagaagata aatattcagt tgtagggaag gttgctactg ggaactatag taaagttcct tggatttcaa tatatgatga gaatataaca aaagaaacaa 1020 1080 aggatggata ttatttggta tatctttttc atccggaagg agaaggcata tacttatctt tgaatcaagg atggtcaaag ataagtgata tgtttccgcg g 1121

<210> 180

<211> 1121

5 <212> DNA

<213> Staphylococcus aureus

<400> 180

tagctgtagg gaaactaaaa gagaaatatt ggaagcaagc catagcagaa tatgaaaaac 60 120 gtttaggccc atacaccaag atagacatca tagaagttcc agacgaaaaa gcaccagaaa atatgagcga caaagaaatt gagcaagtaa aagaaaaaga aggccaacga atactagcca 180 aaatcaaacc acaatccaca gtcattacat tagaaataca aggaaagatg ctatcttccg 240 aaggattggc ccaagaattg aaccaacgca tgacccaagg gcaaagcgac tttgtattcg 300 tcattggcgg atcaaacggc ctgcacaagg acgtcttaca acgcagtaac tatgcactat 360 catttagcaa aatgacattc ccacatcaaa tgatgcgggt tgtgttaatt gaacaagtgt 420 atagagcatt taagattatg cgtggagaag catatcataa atgatgcggt tttttcagcc 480 gcttcataaa gggattttga atgtatcaga acatatgagg tttatgtgaa ttgctgttat 540 gtttttaaga agcttatcat aagtaatgag gttcatgatt tttgacatag ttagcctccg 600 660 cagtetttea ttteaagtaa ataatagega aatattettt ataetgaata ettatagtga agcaaagttc tagctttgag aaaattcttt ctgcaactaa atatagtaaa ttacggtaaa 720 atataaataa gtacatattg aagaaaatga gacataatat attttataat aggagggaat 780 10 ttcaaatgat agacaacttt atgcaggtcc ttaaattaat taaagagaaa cgtaccaata 840 900 atgtagttaa aaaatctgat tgggataaag gtgatctata taaaacttta gtccatgata 960 agttacccaa gcagttaaaa gtgcatataa aagaagataa atattcagtt gtagggaagg ttgctactgg gaactatagt aaagttcctt ggatttcaat atatgatgag aatataacaa 1020 aagaaacaaa ggatggatat tatttggtat atctttttca tccggaagga gaaggcatat 1080 acttatcttt qaatcaagga tggtcaaaga taagtgatat g 1121

<210> 181 15 <211> 1131 <212> DNA

<213> Staphylococcus aureus

<400> 181

ctgtagggaa	actaaaagag	aaatattgga	agcaagccat	agcagaatat	gaaaaacgtt	60
taggcccata	caccaagata	gacatcatag	aagttccaga	cgaaaaagca	ccagaaaata	120
tgagcgacaa	agaaattgag	caagtaaaag	aaaaagaagg	ccaacgaata	ctagccaaaa	180
tcaaaccaca	atccacagtc	attacattag	aaatacaagg	aaagatgcta	tcttccgaag	240
gattggccca	agaattgaac	caacgcatga	cccaagggca	aagcgacttt	gtattcgtca	300
ttggcggatc	aaacggcctg	cacaaggacg	tcttacaacg	cagtaactat	gcactatcat	360
ttagcaaaat	gacattccca	catcaaatga	tgcgggttgt	gttaattgaa	caagtgtata	420
gagcatttaa	gattatgcgt	ggagaagcat	atcataaatg	atgcggtttt	ttcagccgct	480
tcataaaggg	attttgaatg	tatcagaaca	tatgaggttt	atgtgaattg	ctgttatgtt	540
tttaagaagc	ttatcataag	taatgaggtt	catgattttt	gacatagtta	gcctccgcag	600
tctttcattt	caagtaaata	atagcgaaat	attctttata	ctgaatactt	atagtgaagc	660
aaagttctag	ctttgagaaa	attctttctg	caactaaata	tagtaaatta	cggtaaaata	720
taaataagta	catattgaag	aaaatgagac	ataatatatt	ttataatagg	agggaatttc	780
aaatgataga	caactttatg	caggtcctta	aattaattaa	agagaaacgt	accaataatg	840
tagttaaaaa	atctgattgg	gataaaggtg	atctatataa	aactttagtc	catgataagt	900
tacccaagca	gttaaaagtg	catataaaag	aagataaata	ttcagttgta	gggaaggttg	960
ctactgggaa	ctatagtaaa	gttccttgga	tttcaatata	tgatgagaat	ataacaaaag	1020
aaacaaagga	tggatattat	ttggtatatc	tttttcatcc	ggaaggagaa	ggcatatact	1080
tatctttgaa	tcaaggatgg	tcaaagataa	gtgatatgtt	tccgcgggat	a	1131

5

<210> 182 <211> 896 <212> DNA 10 <213> Staphylococcus aureus

cattagaaat	acaaggaaag	atgctatctt	ccgaaggatt	ggcccaagaa	ttgaaccaac	60		
gcatgaccca	agggcaaagc	gactttgtat	tcgtcattgg	cggatcaaac	ggcctgcaca	120		
aggacgtctt	acaacgcagt	aactatgcac	tatcatttag	caaaatgaca	ttcccacatc	180		
aaatgatgcg	ggttgtgtta	attgaacaag	tgtatagagc	atttaagatt	atgcgtggag	240		
aagcatatca	taaatgatgc	ggttttttca	gccgcttcat	aaagggattt	tgaatgtatc	300		
agaacatatg	aggtttatgt	gaattgctgt	tatgtttta	agaagcttat	cataagtaat	360		
gaggttcatg	atttttgaca	tagttagcct	ccgcagtctt	tcatttcaag	taaataatag	420		
cgaaatattc	tttatactga	atacttatag	tgaagcaaag	ttctagcttt	gagaaaattc	480		
tttctgcaac	taaatatagt	aaattacggt	aaaatataaa	taagtacata	ttgaagaaaa	540		
tgagacataa	tatattttat	aataggaggg	aatttcaaat	gatagacaac	tttatgcagg	600		
tccttaaatt	aattaaagag	aaacgtacca	ataatgtagt	taaaaaatct	gattgggata	660		
aaggtgatct	atataaaact	ttagtccatg	ataagttacc	caagcagtta	aaagtgcata	720		
taaaagaaga	taaatattca	gttgtaggga	aggttgctac	tgggaactat	agtaaagttc	780		
cttggatttc	aatatatgat	gagaatataa	caaaagaaac	aaaggatgga	tattatttgg	840		
tatatctttt	tcatccggaa	ggagaaggca	tatacttatc	tttgaatcaa	ggatgg	896		
<210> 183 <211> 1125 <212> DNA <213> Staphylococcus aureus								
<400> 183								
ggaaactaaa	agagaaatat	tggaagcaag	ccatatcaga	atatgaaaaa	cgtttaggcc	60		
catacaccaa	gatagacatc	atagaagttc	cagacgaaaa	agcaccagaa	aatatgagcg	120		
acaaagaaat	cgagcaagta	aaagaaaaag	aaggccaacg	aatactagcc	aaaatcaaac	180		
cacaatcaac	agtcattaca	ttagaaatac	aaggaaagat	gctatcttcc	gaaggattgg	240		

ctcaagaatt gaaccaacgc atgacccaag ggcaaagcga ctttgtattc gttattggcg gatcaaacgg cctgcacaag gacgtcttac aacgcagtaa ctatgcacta tcattcagca

aaatgacatt tccacatcag atgatgcggg ttgtgttaat tgagcaagtg tatagagcat

10 ttaagattat gcgtggggaa gcatatcata aatgatgcgg ttttttcagc cgcttcataa

300

360

420

agggattttg	aatgtatcag	aacatatgag	gtttatgtga	attgctgtta	tgtttttaag	540
aagcttatca	taagtaatga	ggttcatgat	ttttgacata	gttagcctcc	gcagtctttc	600
atttcaagta	aataatagcg	aaatattctt	tatactgaat	acttatagtg	aagcaaagtt	660
ctagctttga	gaaaattctt	tctgcaacta	aatatagtaa	attacggtaa	aatataaata	720
agtacatatt	gaagaaaatg	agacataata	tattttataa	taggagggaa	tttcaaatga	780
tagacaactt	tatgcaggtc	cttaaattaa	ttaaagagaa	acgtaccaat	aatgtagtta	840
aaaaatctga	ttgggataaa	ggtgatctat	ataaaacttt	agtccatgat	aagttaccca	900
agcagttaaa	agtgcatata	aaagaagata	aatattcagt	tgtagggaag	gttgctactg	960
ggaactatag	taaagttcct	tggatttcaa	tatatgatga	gaatataaca	aaagaaacaa	1020
aggatggata	ttatttggta	tatcttttc	atccggaagg	agaaggcata	tacttatctt	1080
tgaatcaagg	atggtcaaag	ataagtgata	tgtttccgcg	ggata		1125
040 404						

<210> 184

<211> 679

5 <212> DNA

<213> Staphylococcus aureus

<400> 184

60 ataagaggga acagtgtgaa caagttaata acttgtggat aactggaaag ttgataacaa tttggaggac caaacgacat gaaaatcacc attttagctg tagggaaact aaaagagaaa 120 tattggaagc aagccatagc agaatatgaa aaacgtttag gcccatacac caagatagac 180 240 atcatagaag ttccagacga aaaagcacca gaaaatatga gcgacaaaga aattgagcaa gtaaaagaaa aagaaggcca acgaatacta gccaaaatca aaccacaatc cacagtcatt 300 acattagaaa tacaaggaaa gatgctatct tccgaaggat tggcccaaga attgaaccaa 360 cgcatgaccc aagggcaaag cgactttgta ttcgtcattg gcggatcaaa cggcctgcac 420 aaggacgtct tacaacgcag taactatgca ctatcattta gcaaaatgac attcccacat 480 caaatgatgc gggttgtgtt aattgaacaa gtgtatagag catttaagat tatgcgtgga 540 gaggettate ataaataaaa etaaaaatta gattgtgtat aatttaaaaa tttaatgaga 600 tgtggaggaa ttacatatat gaaatattgg agtatacctt gcaatatcat acgatgttta 660 679 10 tagagtgttt aataaacca

<210> 185

<211> 1125

<212> DNA

15 <213> Staphylococcus aureus

	ggaaactaaa	agagaaatat	tggaagcaag	ccatagcaga	ı atatgaaaaa	cgtttaggcc	60
	catacaccaa	gatagacatc	atagaagttc	cagacgaaaa	ı agcaccagaa	aatatgagcg	120
	acaaagaaat	tgagcaagta	aaagaaaaag	aaggccaacg	, aatactagcc	aaaatcaaac	180
	cacaatcaac	agtcattaca	ttagaaatac	aaggaaagat	gctatcttcc	gaaggattgg	240
	cacaagaatt	gaaccaacgc	atgacccaag	ggcaaagcga	ctttgtattc	gtcattggcg	300
	gatcaaacgg	cctgcacaag	gacgtcttac	aacgtagtaa	ı ctacgcacta	tcattcagca	360
	aaatgacatt	cccacatcaa	atgatgcggg	ttgtgttaat	tgagcaagtg	tatagagcgt	420
	ttaagattat	gcgtggagaa	gcatatcata	aatgatgcgg	, ttttttcagc	cgcttcataa	480
	agggattttg	aatgtatcag	aacatatgag	gtttatgtga	attgctgtta	tgtttttaag	540
	aagcttatca	taagtaatga	ggttcatgat	ttttgacata	gttagcctcc	gcagtctttc	600
	atttcaagta	aataatagcg	aaatattctt	tatactgaat	acttatagtg	aagcaaagtt	660
	ctagctttga	gaaaattctt	tctgcaacta	aatatagtaa	ı attacggtaa	aatataaata	720
	agtacatatt	gaagaaaatg	agacataata	tattttataa	ı taggagggaa	tttcaaatga	780
	tagacaactt	tatgcaggtc	cttaaattaa	ttaaagagaa	acgtaccaat	aatgtagtta	840
	aaaaatctga	ttgggataaa	ggtgatctat	ataaaacttt	agtccatgat	aagttaccca	900
	agcagttaaa	agtgcatata	aaagaagata	aatattcagt	tgtagggaag	gttgctactg	960
	ggaactatag	taaagttcct	tggatttcaa	tatatgatga	gaatataaca	aaagaaacaa	1020
	aggatggata	ttatttggta	tatcttttc	atccggaagg	g agaaggcata	tacttatctt	1080
	tgaatcaagg	atggtcaaag	ataagtgata	tgtttccgcg	ggata		1125
5	<210> 186 <211> 926 <212> DNA <213> Staphy	rlococcus aure	us				
	<400> 186						
	tacattagaa	atacaaggaa	agatgctatc	ttccgaagga	ttggcccaag a	aattgaacca	60
	acgcatgacc	caagggcaaa	gcgactttgt	attcgtcatt	ggcggatcaa a	acggcctgca	120
	caaggacgtc	ttacaacgca	gtaactatgc	actatcattt	agcaaaatga (catteccaca	180
10	tcaaatgatg	cgggttgtgt	taattgaaca	agtgtataga	gcatttaaga ·	tatgcgtgg	240

```
agaagcatat cataaatgat gcggtttttt cagccgcttc ataaagggat tttgaatgta
                                                                            300
    tcagaacata tgaggtttat gtgaattgct gttatgtttt taagaagctt atcataagta
                                                                            360
    420
   agcgaaatat tctttatact gaatacttat agtgaagcaa agttctagct ttgagaaaat
                                                                            480
    tctttctqca actaaatata qtaaattacq qtaaaatata aataaqtaca tattqaaqaa
                                                                            540
    aatgagacat aatatattt ataataggag ggaatttcaa atgatagaca actttatgca
                                                                            600
    ggtccttaaa ttaattaaag agaaacgtac caataatgta gttaaaaaaat ctgattggga
                                                                            660
    taaaggtgat ctatataaaa ctttagtcca tgataagtta cccaagcagt taaaagtgca
                                                                            720
    tataaaagaa gataaatatt cagttgtagg gaaggttgct actgggaact atagtaaagt
                                                                            780
    tccttggatt tcaatatatg atgagaatat aacaaaagaa acaaaggatg gatattattt
                                                                            840
   ggtatatctt tttcatccgg aaggagaagg catatactta tctttgaatc aaggatggtc
                                                                            900
                                                                            926
   aaagataagt gatatgtttc cgcggg
   <210> 187
   <211> 24
 5 <212> DNA
   <213> Artificial
   <220>
   <223> cebador PCR para MREP tipo viii
   <220>
   <221> fuente
   <222> (1)..(24)
   <223> S. aureus resistente a meticilina
   <400> 187
   ggatgtgggt atgctaatgt tgtt
                                     24
20 <210> 188
   <211> 27
   <212> DNA
   <213> Artificial
25 <220>
   <223> cebador PCR para MREP tipo viii
   <220>
   <221> fuente
30 <222> (1)..(27)
   <223> S. aureus resistente a meticilina
   <400> 188
35 tgaacaattt tatttctcat accatag
                                     27
   <210> 189
   <211> 2154
   <212> DNA
40 <213> Staphylococcus aureus
   <400> 189
```

10

cggtaataaa	aaatacgata	tagatgaata	acaaaacagt	gaagcaatcc	gtaacgatgg	60
ttgcttcact	gttttattat	gaattattaa	taagtgctgt	tacttctccc	ttaaatacaa	120
tttcttcatt	ttcattgtat	gttgaaagtg	acactgtaac	gagtccattt	tcttttttta	180
tggatttctt	atttgtaatt	tcagcgataa	cgtacaatgt	attacctggg	tatacaggtt	240
taataaattt	aacgttattc	atttgtgttc	ctgctacaac	ttcttctccg	tatttacctt	300
cttctaccca	taatttaaat	gatattgaaa	gtgtatgcat	gccagatgca	atgatacctt	360
taaatctact	ttgttctgct	ttttctttat	ctatatgcat	atattgagga	tcaaaagttg	420
ttgcaaattg	gataatttct	tcttctgtaa	tatgaaggct	ttttgttttg	aatgtttctc	480
ctactataaa	atcatcgtat	ttcatatatg	tetetette	ttattcaaat	taatttttta	540
gtatgtaaca	tgttaaaggt	aagtctaccg	tcactgaaac	gtaagactca	cctctaactt	600
tctattgaga	caaatgcacc	attttatctg	cattgtctgt	aaagatacca	tcaactcccc	660
aattagcaag	ttggtttgca	cgtgctggtt	tgtttacagt	ccatacgttc	aattcataac	720
ccgcttcttt	taccattttt	acttttgctt	tagtaagttt	ggcatcttca	gtgtttacta	780
ttttagcatt	acagtaatct	aaaagtgttc	tccagtcttc	acgaaacgaa	gttgtatgga	840
atataactgc	tctgttatat	tgtggcatga	tttcttctgc	aagtttaaca	agcacaacat	900
taaagcttga	aatgagcact	tcttgattct	gatttaagtt	tgttaattgt	tcttccactt	960
gcttaaccat	acttttagaa	agtgctagtc	cattcggtcc	agtaatacct	tttaattcta	1020
catttaaatt	catattatat	tcatttgcta	tttttactac	atcatcgaaa	gttggcaaat	1080
gttcatcttt	gaatttttca	ccaaaccaag	atcctgcaga	agcatcttta	atttcatcat	1140
aattcaattc	agttatttcc	ccggacatat	ttgtagtccg	ttctaaataa	tcatcatgaa	1200
tgataatcag	ttgttcatct	tttgtaattg	caacatctaa	ctccaaccag	tttatacctt	1260
ctacttctga	agcagcttta	aatgatgcaa	ttgtattttc	cggagcttta	ctaggtaatc	1320
ctctatgtcc	atatacagtt	agcatattac	ctctccttgc	atttttattt	ttttaattaa	1380
cgtaactgta	ttatcacatt	aatcgcactt	ttatttccat	taaaaagaga	tgaatatcat	1440

aaataaagaa	gtcgatagat	tcgtattgat	tatggagtta	atctacgtct	catctcattt	1500
ttaaaaaatc	atttatgtcc	caagctccat	tttgtaatca	agtctagttt	ttcggttctg	1560
ttgcaaagtt	gaatttatag	tataatttta	acaaaaagga	gtcttctgta	tgaactattt	1620
cagatataaa	caatttaaca	aggatgttat	cactgtagcc	gttggctact	atctaagata	1680
tacattgagt	tatcgtgata	tatctgaaat	attaagggaa	cgtggtgtaa	acgttcatca	1740
ttcaacggtc	taccgttggg	ttcaagaata	tgccccaatt	ttgtatcaaa	tttggaagaa	1800
aaagcataaa	aaagcttatt	acaaatggcg	tattgatgag	acgtacatca	aaataaaagg	1860
aaaatggagc	tatttatatc	gtgccattga	tgcagaggga	catacattag	atatttggtt	1920
gcgtaagcaa	cgagataatc	attcagcata	tgcgtttatc	aaacgtctca	ttaaacaatt	1980
tggtaaacct	caaaaggtaa	ttacagatca	ggcaccttca	acgaaggtag	caatggctaa	2040
agtaattaaa	gcttttaaac	ttaaacctga	ctgtcattgt	acatcgaaat	atctgaataa	2100
cctcattgag	caagatcacc	gtcatattaa	agtaagaaag	acaaggtatc	aaaq	2154

<210> 190

<211> 2410

5 <212> DNA

<213> Staphylococcus aureus

<400> 190

ccaccttcat atgacgtcta tccatttatg tatggcatga gtaacgaaga atataataaa 60 ttaaccgaag ataaaaaaga acctctgctc aacaagttcc agattacaac ttcaccaggt 120 tcaactcaaa aaatattaac agcaatgatt gggttaaata acaaaacatt agacgataaa 180 acaagttata aaatcgatgg taaaggttgg caaaaagata aatcttgggg tggttacaac 240 300 gttacaagat atgaagtggt aaatggtaat atcgacttaa aacaagcaat agaatcatca gataacattt tctttgctag agtagcactc gaattaggca gtaagaaatt tgaaaaaggc 360 atgaaaaaac taggtgttgg tgaagatata ccaagtgatt atccatttta taatgctcaa 420 480 atttcaaaca aaaatttaga taatgaaata ttattagctg attcaggtta cggacaaggt gaaatactga ttaacccagt acagatcctt tcaatctata gcgcattaga aaataatggc 540 aatattaacg cacctcactt attaaaagac acgaaaaaca aagtttggaa gaaaaatatt 600 atttccaaag aaaatatcaa tctattaact gatggtatgc aacaagtcgt aaataaaaca 660 720 cataaagaag atatttatag atcttatgca aacttaattg gcaaatccgg tactgcagaa 780 10 ctcaaaatga aacaaggaga aactggcaga caaattgggt ggtttatatc atatgataaa

```
gataatccaa acatgatgat ggctattaat gttaaagatg tacaagataa aggaatggct
                                                                840
agctacaatg ccaaaatctc aggtaaagtg tatgatgagc tatatgagaa cggtaataaa
                                                                900
                                                                960
aaatacgata tagatgaata acaaaacagt gaagcaatcc gtaacgatgg ttgcttcact
                                                               1020
gttttattat gaattattaa taagtgctgt tacttctccc ttaaatacaa tttcttcatt
                                                               1080
ttcattgtat gttgaaagtg acactgtaac gagtccattt tctttttta tggatttctt
atttgtaatt tcagcgataa cgtacaatgt attacctggg tatacaggtt taataaattt
                                                               1140
                                                               1200
aacgttattc atttgtgttc ctgctacaac ttcttctccg tatttacctt cttctaccca
taatttaaat gatattgaaa gtgtatgcat gccagatgca atgatacctt taaatctact
                                                               1260
ttqttctqct ttttctttat ctatatqcat atattqaqqa tcaaaaqttq ttqcaaattq
                                                               1320
1380
atcatcqtat ttcatatatq tctctctttc ttattcaaat taatttttta qtatqtaaca
                                                               1440
tgttaaaggt aagtetaccg teactgaaac gtaagactca cetetaactt tetattgaga
                                                               1500
caaatgcacc attttatctg cattgtctgt aaagatacca tcaactcccc aattagcaag
                                                               1560
ttggtttgca cgtgctggtt tgtttacagt ccatacgttc aattcataac ccgcttcttt
                                                               1620
taccattttt acttttgctt tagtaagttt ggcatcttca gtgtttacta ttttagcatt
                                                               1680
                                                               1740
1800
tctgttatat tgtggcatga tttcttctgc aagtttaaca agcacaacat taaagcttga
aatgagcact tettgattet gatttaagtt tgttaattgt tetteeactt gettaaceat
                                                               1860
acttttagaa agtgctagtc cattcggtcc agtaatacct tttaattcta catttaaatt
                                                               1920
                                                               1980
catattatat tcatttgcta tttttactac atcatcgaaa gttggcaaat gttcatcttt
2040
agttatttcc ccggacatat ttgtagtccg ttctaaataa tcatcatgaa tgataatcag
                                                               2100
ttgttcatct tttgtaattg caacatctaa ctccaaccag tttatacctt ctacttctga
                                                               2160
agcagcttta aatgatgcaa ttgtattttc cggagcttta ctaggtaatc ctctatgtcc
                                                               2220
atatacagtt agcatattac ctctccttgc atttttattt ttttaattaa cgtaactgta
                                                               2280
ttatcacatt aatcgcactt ttatttccat taaaaagaga tgaatatcat aaataaagaa
                                                               2340
qtcqataqat tcqtattqat tatqqaqtta atctacqtct catctcattt ttaaaaaaatc
                                                               2400
                                                               2410
atttatgtcc
```

<210> 191

<211> 1858

^{5 &}lt;212> DNA

<213> Staphylococcus aureus

<400> 191

caccttcata	tgacgtctat	ccatttatgt	atggcatgag	taacgaagaa	tataataaat	60
taaccgaaga	taaaaaagaa	cctctgctca	acaagttcca	gattacaact	tcaccaggtt	120
caactcaaaa	aatattaaca	gcaatgattg	ggttaaataa	caaaacatta	gacgataaaa	180
caagttataa	aatcgatggt	aaaggttggc	aaaaagataa	atcttggggt	ggttacaacg	240
ttacaagata	tgaagtggta	aatggtaata	tcgacttaaa	acaagcaata	gaatcatcag	300
ataacatttt	ctttgctaga	gtagcactcg	aattaggcag	taagaaattt	gaaaaaggca	360
tgaaaaaact	aggtgttggt	gaagatatac	caagtgatta	tccattttat	aatgctcaaa	420
tttcaaacaa	aaatttagat	aatgaaatat	tattagctga	ttcaggttac	ggacaaggtg	480
aaatactgat	taacccagta	cagatccttt	caatctatag	cgcattagaa	aataatggca	540
atattaacgc	acctcactta	ttaaaagaca	cgaaaaacaa	agtttggaag	aaaaatatta	600
tttccaaaga	aaatatcaat	ctattaactg	atggtatgca	acaagtcgta	aataaaacac	660
ataaagaaga	tatttataga	tcttatgcaa	acttaattgg	caaatccggt	actgcagaac	720
tcaaaatgaa	acaaggagaa	actggcagac	aaattgggtg	gtttatatca	tatgataaag	780
ataatccaaa	catgatgatg	gctattaatg	ttaaagatgt	acaagataaa	ggaatggcta	840
gctacaatgc	caaaatctca	ggtaaagtgt	atgatgagct	atatgagaac	ggtaataaaa	900
aatacgatat	agatgaataa	caaaacagtg	aagcaatccg	taacgatggt	tgcttcactg	960
ttttattatg	aattattaat	aagtgctgtt	acttctccct	taaatacaat	ttcttcattt	1020
tcattgtatg	ttgaaagtga	cactgtaacg	agtccatttt	cttttttat	ggatttctta	1080
tttgtaattt	cagcgataac	gtacaatgta	ttacctgggt	atacaggttt	aataaattta	1140
acgttattca	tttgtgttcc	tgctacaact	tcttctccgt	atttaccttc	ttctacccat	1200
aatttaaatg	atattgaaag	tgtatgcatg	ccagatgcaa	tgataccttt	aaatctactt	1260
tgttctgctt	tttctttatc	tatatgcata	tattgaggat	caaaagttgt	tgcaaattgg	1320
ataatttctt	cttctgtaat	atgaaggctt	tttgttttga	atgtttctcc	tactataaaa	1380
tcatcgtatt	tcatatatgt	ctctcttct	tattcaaatt	aattttttag	tatgtaacat	1440
gttaaaggta	agtctaccgt	cactgaaacg	taagactcac	ctctaacttt	ctattgagac	1500
aaatgcacca	ttttatctgc	attgtctgta	aagataccat	caactcccca	attagcaagt	1560
tggtttgcac	gtgctggttt	gtttacagtc	catacgttca	attcataacc	cgcttctttt	1620
accatttta	cttttgcttt	agtaagtttg	gcatcttcag	tgtttactat	tttagcatta	1680
cagtaatcta	aaagtgttct	ccagtcttca	cgaaacgaag	ttgtatggaa	tataactgct	1740
ctgttatatt	gtggcatgat	ttcttctgca	agtttaacaa	gcacaacatt	aaagcttgaa	1800
atgagcactt	cttgattctg	atttaagttt	gttaattgtt	cttccacttg	cttaacca	1858

^{5 &}lt;210> 192 <211> 1861 <212> DNA

<213> Staphylococcus aureus

^{10 &}lt;400> 192

ccaccttcat atgacgtcta tccatttatg tatggcatga gtaacgaaga atataataaa	60
ttaaccgaag ataaaaaaga acctctgctc aacaagttcc agattacaac ttcaccaggt	120
tcaactcaaa aaatattaac agcaatgatt gggttaaata acaaaacatt agacgataaa	180
acaagttata aaatcgatgg taaaggttgg caaaaagata aatcttgggg tggttacaac	240
gttacaagat atgaagtggt aaatggtaat atcgacttaa aacaagcaat agaatcatca	300
gataacattt tctttgctag agtagcactc gaattaggca gtaagaaatt tgaaaaaggc	360
atgaaaaaac taggtgttgg tgaagatata ccaagtgatt atccatttta taatgctcaa	420
atttcaaaca aaaatttaga taatgaaata ttattagctg attcaggtta cggacaaggt	480
gaaatactga ttaacccagt acagateett teaatetata gegeattaga aaataatgge	540
aatattaacg cacctcactt attaaaagac acgaaaaaca aagtttggaa gaaaaatatt	600
atttccaaag aaaatatcaa tctattaact gatggtatgc aacaagtcgt aaataaaaca	660
cataaagaag atatttatag atcttatgca aacttaattg gcaaatccgg tactgcagaa	720
ctcaaaatga aacaaggaga aactggcaga caaattgggt ggtttatatc atatgataaa	780
gataatccaa acatgatgat ggctattaat gttaaagatg tacaagataa aggaatggct	840
agctacaatg ccaaaatctc aggtaaagtg tatgatgagc tatatgagaa cggtaataaa	900
aaatacgata tagatgaata acaaaacagt gaagcaatcc gtaacgatgg ttgcttcact	960
gttttattat gaattattaa taagtgctgt tacttctccc ttaaatacaa tttcttcatt	1020
ttcattgtat gttgaaagtg acactgtaac gagtccattt tcttttttta tggatttctt	1080
atttgtaatt tcagcgataa cgtacaatgt attacctggg tatacaggtt taataaattt	1140
aacgttattc atttgtgttc ctgctacaac ttcttctccg tatttacctt cttctaccca	1200
taatttaaat gatattgaaa gtgtatgcat gccagatgca atgatacctt taaatctact	1260
ttgttctgct ttttctttat ctatatgcat atattgagga tcaaaagttg ttgcaaattg	1320
gataatttct tcttctgtaa tatgaaggct ttttgttttg	1380
atcatcgtat ttcatatatg tctctctttc ttattcaaat taattttta gtatgtaaca	1440
tgttaaaggt aagtctaccg tcactgaaac gtaagactca cctctaactt tctattgaga	1500
caaatgcacc attttatctg cattgtctgt aaagatacca tcaactcccc aattagcaag	1560
ttggtttgca cgtgctggtt tgtttacagt ccatacgttc aattcataac ccgcttcttt	1620
taccattttt acttttgctt tagtaagttt ggcatcttca gtgtttacta ttttagcatt	1680
acagtaatct aaaagtgttc tccagtcttc acgaaacgaa	1740
tctgttatat tgtggcatga tttcttctgc aagtttaaca agcacaacat taaagcttga	1800
aatgagcact tettgattet gatttaagtt tgttaattgt tetteeactt gettaaceat	1860
a	1861
u-	1001

5 <210> 193 <211> 1861

<212> DNA

<213> Staphylococcus aureus

ccaccttcat a	atgacgtcta	tccatttatg	tatggcatga	gtaacgaaga	atataataaa	60
ttaaccgaag a	ataaaaaaga	acctctgctc	aacaagttcc	agattacaac	ttcaccaggt	120
tcaactcaaa a	aaatattaac	agcaatgatt	gggttaaata	acaaaacatt	agacgataaa	180
acaagttata a	aaatcgatgg	taaaggttgg	caaaaagata	aatcttgggg	tggttacaac	240
gttacaagat a	atgaagtggt	aaatggtaat	atcgacttaa	aacaagcaat	agaatcatca	300
gataacattt †	tctttgctag	agtagcactc	gaattaggca	gtaagaaatt	tgaaaaaggc	360
atgaaaaaac 1	taggtgttgg	tgaagatata	ccaagtgatt	atccatttta	taatgctcaa	420
atttcaaaca a	aaaatttaga	taatgaaata	ttattagctg	attcaggtta	cggacaaggt	480
gaaatactga †	ttaacccagt	acagatcctt	tcaatctata	gcgcattaga	aaataatggc	540
aatattaacg (cacctcactt	attaaaagac	acgaaaaaca	aagtttggaa	gaaaaatatt	600
atttccaaag a						660
cataaagaag a						720
ctcaaaatga a						780
gataatccaa a					-	840
agctacaatg (_		900
aaatacgata						960
gttttattat		_			_	1020
ttcattgtat	_					1080
atttgtaatt						1140
aacgttattc a						1200
taatttaaat (_				1260
ttgttctgct 1	_			_		1320
gataatttct		_				1380
atcatcgtat	_			_		1440
tgttaaaggt a	_					1500
caaatqcacc		_				1560
ttggtttgca (-	3 3	J		, , , , , , , , , , , , , , , , , , ,	1620
taccattttt a		-	-		-	1680
acagtaatct a	_				_	1740
tctgttatat		_			_	1800
_	3 33 3	-	_	-		1860
aatgagcact	colligatitet	yaııladgtt	igilaattgt	tetteeaett	gurtaaddat	
a						1861

<210> 194

<211> 1052

<212> DNA <213> Staphylococcus aureus

<400> 194

cggtaataaa aaatacgata tagatgaata acaaaacagt gaagcaatcc gtaacgatgg 60 ttgcttcact gttttattat gaattattaa taagtgctgt tacttctccc ttaaatacaa 120 tttcttcatt ttcattgtat gttgaaagtg acactgtaac gagtccattt tctttttta 180 tggatttctt atttgtaatt tcaqcqataa cgtacaatgt attacctggg tatacaggtt 240 taataaattt aacgttattc atttgtgttc ctgctacaac ttcttctccg tatttacctt 300 360 cttctaccca taatttaaat gatattgaaa gtgtatgcat gccagatgca atgatacctt taaatctact ttgttctgct ttttctttat ctatatgcat atattgagga tcaaaagttg 420 480 ctactataaa atcatcgtat ttcatatatg tctctctttc ttattcaaat taattttta 540 gtatgtaaca tgttaaaggt aagtctaccg tcactgaaac gtaagactca cctctaactt 600 totattgaga caaatgcacc attttatctg cattgtctgt aaagatacca tcaactcccc 660 720 aattagcaag ttggtttgca cgtgctggtt tgtttacagt ccatacgttc aattcataac 780 ccgcttcttt taccattttt acttttgctt tagtaagttt ggcatcttca gtgtttacta 840 atataactgc tctgttatat tgtggcatga tttcttctgc aagtttaaca agcacaacat 900 taaaqcttqa aatqaqcact tcttqattct qatttaaqtt tqttaattqt tcttccactt 960 gettaaccat acttttagaa agtgetagte catteggtee agtaatacet tttaatteta 1020 1052 5 catttaaatt catattatat tcatttgcta tt

<210> 195

<211> 3101

<212> DNA

10 <213> Staphylococcus aureus

<400> 195

60 cttcatatga cgtctatcca tttatgtatg gcatgagtaa cgaagaatat aataaattaa ccgaagataa aaaagaacct ctgctcaaca agttccagat tacaacttca ccaggttcaa 120 ctcaaaaaat attaacagca atgattgggt taaataacaa aacattagac gataaaacaa 180 gttataaaat cgatggtaaa ggttggcaaa aagataaatc ttggggtggt tacaacgtta 240 300 caagatatga agtggtaaat ggtaatatcg acttaaaaca agcaatagaa tcatcagata 360 acattttctt tgctagagta gcactcgaat taggcagtaa gaaatttgaa aaaggcatga 420 aaaaactagg tgttggtgaa gatataccaa gtgattatcc attttataat gctcaaattt caaacaaaaa tttagataat gaaatattat tagctgattc aggttacgga caaggtgaaa 480 540 tactgattaa cccagtacag atcctttcaa tctatagcgc attagaaaat aatggcaata ttaacgcacc tcacttatta aaagacacga aaaacaaagt ttggaagaaa aatattattt 600 ccaaagaaaa tatcaatcta ttaactgatg gtatgcaaca agtcgtaaat aaaacacata 660 720 aagaagatat ttatagatct tatgcaaact taattggcaa atccggtact gcagaactca

aaatgaaaca	aggagaaact	ggcagacaaa	ttgggtggtt	tatatcatat	gataaagata	780
atccaaacat	gatgatggct	attaatgtta	aagatgtaca	agataaagga	atggctagct	840
acaatgccaa	aatctcaggt	aaagtgtatg	atgagctata	tgagaacggt	aataaaaaat	900
acgatataga	tgaataacaa	aacagtgaag	caatccgtaa	cgatggttgc	ttcactgttt	960
tattatgaat	tattaataag	tgctgttact	tctcccttaa	atacaatttc	ttcattttca	1020
ttgtatgttg	aaagtgacac	tgtaacgagt	ccattttctt	tttttatgga	tttcttattt	1080
gtaatttcag	cgataacgta	caatgtatta	cctgggtata	caggtttaat	aaatttaacg	1140
ttattcattt	gtgttcctgc	tacaacttct	tctccgtatt	taccttcttc	tacccataat	1200
ttaaatgata	ttgaaagtgt	atgcatgcca	gatgcaatga	tacctttaaa	tctactttgt	1260
tctgcttttt	ctttatctat	atgcatatat	tgaggatcaa	aagttgttgc	aaattggata	1320
atttcttctt	ctgtaatatg	aaggcttttt	gttttgaatg	tttctcctac	tataaaatca	1380
tcgtatttca	tatatgtctc	tctttcttat	tcaaattaat	tttttagtat	gtaacatgtt	1440
aaaggtaagt	ctaccgtcac	tgaaacgtaa	gactcacctc	taactttcta	ttgagacaaa	1500
tgcaccattt	tatctgcatt	gtctgtaaag	ataccatcaa	ctccccaatt	agcaagttgg	1560
tttgcacgtg	ctggtttgtt	tacagtccat	acgttcaatt	cataacccgc	ttcttttacc	1620
atttttactt	ttgctttagt	aagtttggca	tcttcagtgt	ttactatttt	agcattacag	1680
taatctaaaa	gtgttctcca	gtcttcacga	aacgaagttg	tatggaatat	aactgctctg	1740
ttatattgtg	gcatgatttc	ttctgcaagt	ttaacaagca	caacattaaa	gcttgaaatg	1800
agcacttctt	gattctgatt	taagtttgtt	aattgttctt	ccacttgctt	aaccatactt	1860
ttagaaagtg	ctagtccatt	cggtccagta	atacctttta	attctacatt	taaattcata	1920
ttatattcat	ttgctatttt	tactacatca	tcgaaagttg	gcaaatgttc	atctttgaat	1980
ttttcaccaa	accaagatcc	tgcagaagca	tctttaattt	catcataatt	caattcagtt	2040
atttccccgg	acatatttgt	agtccgttct	aaataatcat	catgaatgat	aatcagttgt	2100
tcatcttttg	taattgcaac	atctaactcc	aaccagttta	taccttctac	ttctgaagca	2160
gctttaaatg	atgcaattgt	attttccgga	gctttactag	gtaatcctct	atgtccatat	2220
acagttagca	tattacctct	ccttgcattt	ttatttttt	aattaacgta	actgtattat	2280
cacattaatc	gcacttttat	ttccattaaa	aagagatgaa	tatcataaat	aaagaagtcg	2340
atagattcgt	attgattatg	gagttaatct	acgtctcatc	tcatttttaa	aaaatcattt	2400
atgtcccaag	ctccattttg	taatcaagtc	tagtttttcg	gttctgttgc	aaagttgaat	2460

ttatagtata attttaacaa aaaggagtct tctgtatgaa ctatttcaga tataaacaat 2520 ttaacaagga tgttatcact gtagccgttg gctactatct aagatataca ttgagttatc 2580 gtgatatatc tgaaatatta agggaacgtg gtgtaaacgt tcatcattca acggtctacc 2640 gttgggttca agaatatgcc ccaattttgt atcaaatttg gaagaaaaag cataaaaaag 2700 cttattacaa atggcgtatt gatgagacgt acatcaaaat aaaaggaaaa tggagctatt 2760 tatatcgtgc cattgatgca gagggacata cattagatat ttggttgcgt aagcaacgag 2820 ataatcattc agcatatgcg tttatcaaac gtctcattaa acaatttggt aaacctcaaa 2880 2940 aggtaattac agatcaggca ccttcaacga aggtagcaat ggctaaagta attaaagctt 3000 ttaaacttaa acctgactgt cattgtacat cgaaatatct gaataacctc attgagcaag 3060 atcaccgtca tattaaagta agaaagacaa ggtatcaaag tatcaataca gcaaagaata 3101 ctttaaaagg tattgaatgt atttacgctc tatataaaaa g

<210> 196

<211> 3506

5 <212> DNA

<213> Staphylococcus aureus

<400> 196

ccaccttcat atgacgtcta tccatttatg tatggcatga gtaacgaaga atataataaa 60 ttaaccgaag ataaaaaaga acctctgctc aacaagttcc agattacaac ttcaccaggt 120 tcaactcaaa aaatattaac agcaatgatt gggttaaata acaaaacatt agacgataaa 180 240 acaagttata aaatcgatgg taaaggttgg caaaaagata aatcttgggg tggttacaac 300 gttacaagat atgaagtggt aaatggtaat atcgacttaa aacaagcaat agaatcatca gataacattt tctttgctag agtagcactc gaattaggca gtaagaaatt tgaaaaaggc 360 atgaaaaaac taggtgttgg tgaagatata ccaagtgatt atccatttta taatgctcaa 420 atttcaaaca aaaatttaga taatgaaata ttattagctg attcaggtta cggacaaggt 480 540 gaaatactga ttaacccagt acagatcctt tcaatctata gcgcattaga aaataatggc aatattaacg cacctcactt attaaaagac acgaaaaaca aagtttggaa gaaaaatatt 600 660 atttccaaag aaaatatcaa tctattaact gatggtatgc aacaagtcgt aaataaaaca 720 cataaagaag atatttatag atcttatgca aacttaattg gcaaatccgg tactgcagaa ctcaaaatga aacaaggaga aactggcaga caaattgggt ggtttatatc atatgataaa 780 10 gataatccaa acatgatgat ggctattaat gttaaagatg tacaagataa aggaatggct 840

agctacaatg	ccaaaatctc	aggtaaagtg	tatgatgagc	tatatgagaa	cggtaataaa	900
aaatacgata	tagatgaata	acaaaacagt	gaagcaatcc	gtaacgatgg	ttgcttcact	960
gttttattat	gaattattaa	taagtgctgt	tacttctccc	ttaaatacaa	tttcttcatt	1020
ttcattgtat	gttgaaagtg	acactgtaac	gagtccattt	tcttttttta	tggatttctt	1080
atttgtaatt	tcagcgataa	cgtacaatgt	attacctggg	tatacaggtt	taataaattt	1140
aacgttattc	atttgtgttc	ctgctacaac	ttcttctccg	tatttacctt	cttctaccca	1200
taatttaaat	gatattgaaa	gtgtatgcat	gccagatgca	atgatacctt	taaatctact	1260
ttgttctgct	ttttctttat	ctatatgcat	atattgagga	tcaaaagttg	ttgcaaattg	1320
gataatttct	tcttctgtaa	tatgaaggct	ttttgttttg	aatgtttctc	ctactataaa	1380
atcatcgtat	ttcatatatg	tctctcttc	ttattcaaat	taattttta	gtatgtaaca	1440
tgttaaaggt	aagtctaccg	tcactgaaac	gtaagactca	cctctaactt	tctattgaga	1500
caaatgcacc	attttatctg	cattgtctgt	aaagatacca	tcaactcccc	aattagcaag	1560
ttggtttgca	cgtgctggtt	tgtttacagt	ccatacgttc	aattcataac	ccgcttcttt	1620
taccattttt	acttttgctt	tagtaagttt	ggcatcttca	gtgtttacta	ttttagcatt	1680
acagtaatct	aaaagtgttc	tccagtcttc	acgaaacgaa	gttgtatgga	atataactgc	1740
tctgttatat	tgtggcatga	tttcttctgc	aagtttaaca	agcacaacat	taaagcttga	1800
aatgagcact	tcttgattct	gatttaagtt	tgttaattgt	tcttccactt	gcttaaccat	1860
acttttagaa	agtgctagtc	cattcggtcc	agtaatacct	tttaattcta	catttaaatt	1920
catattatat	tcatttgcta	tttttactac	atcatcgaaa	gttggcaaat	gttcatcttt	1980
gaatttttca	ccaaaccaag	atcctgcaga	agcatcttta	atttcatcat	aattcaattc	2040
agttatttcc	ccggacatat	ttgtagtccg	ttctaaataa	tcatcatgaa	tgataatcag	2100
ttgttcatct	tttgtaattg	caacatctaa	ctccaaccag	tttatacctt	ctacttctga	2160
agcagcttta	aatgatgcaa	ttgtattttc	cggagcttta	ctaggtaatc	ctctatgtcc	2220
atatacagtt	agcatattac	ctctccttgc	atttttattt	ttttaattaa	cgtaactgta	2280
ttatcacatt	aatcgcactt	ttatttccat	taaaaagaga	tgaatatcat	aaataaagaa	2340
gtcgatagat	tcgtattgat	tatggagtta	atctacgtct	catctcattt	ttaaaaaatc	2400
atttatgtcc	caagctccat	tttgtaatca	agtctagttt	ttctgtaccc	cttatctgca	2460
attttactta	ggattgcttt	taacttaccc	cttatcagca	attttactga	gaactgcttt	2520

	taacgcacct	cttatctgca	attttgccta	gaactgcttt	taacgtacct	cttatctgca	2580
	attttactga	gaactgcttt	taacttaccc	cttatcagca	attttgcatg	gaattgcttt	2640
	taacgtacct	cttatctgca	attttactta	gaactgcttt	taacaaacct	cttatctgca	2700
	attttactta	gaactgcttt	taacgtacct	cttatctgta	attttactga	gaactgcttt	2760
	taacaaacct	cttatctgca	attttactta	gaactgcttt	taacaaacct	cttatctgca	2820
	attttactta	gaattgcttt	tactattcct	cttattagta	taatctcagt	aagaatgcgt	2880
	ataaaaatga	aaattacaac	cgattttgta	agtgctgacg	cctgagggaa	tagtatgtgc	2940
	gagagactaa	tggctcgagc	cataccccta	ggcaagcatg	cacgtacaaa	atcgtaagat	3000
	aaaaaaataa	gcatatcact	gtaaacttta	aaaaatcagt	ttagtgatat	gcttatttat	3060
	ttcgagttag	gatttatgtc	ccaagctcat	caagcacaat	cggccactag	tttatttctc	3120
	tatcttatat	gttctgatat	ggtcttctat	actgtataag	tatacttttg	aatatggatc	3180
	ttgtgtcaat	tcacgttcga	aatcaaattc	ttgattatca	aatctgttaa	agaatgtttc	3240
	gtattcttcg	actgataatt	gctctctaga	ttctagcata	tttaagtgtt	tctctttatc	3300
	taatgctttg	tcatatcctt	taacgattga	accactaaag	atttctccta	ctgctcctga	3360
	accataacta	aatagacata	ctttctcttc	tggttggaat	gtgtggttct	gtaataacga	3420
	aattaaactt	aagtataatg	atcctgtata	aatgttacca	acatctctat	tccataatac	3480
	ggttctgttg	caaagttgaa	tttata				3506
5		rlococcus aure	us				
	<400> 197						
	tacattagaa	atacaaggaa	agatgctatc	ttccgaagga [.]	ttggcccaag a	attgaacca	60
	acccatcacc	caadddcaaa	acaactttat	attenteatt (accadaticaa a	caacetaca	120

acgcatgacc caagggcaaa gcgactttgt attcgtcatt ggcggatcaa acggcctgca 120 caaggacgtc ttacaacgca gtaactacgc actatcattc agcaaaatga cattcccaca 180 tcaaatgatg cgggttgtgt taattgaaca agtgtacaga gcatttaaga ttatgcgtgg 240 300 agaagcatat cataaatgat geggtttttt cageegette ataaagggat tttgaatgta tcagaacata tgaggtttat gtgaattgct gttatgtttt taagaagctt atcataagta 360 420 480 10 agcgaaatat tetttataet gaataettat agtgaageaa agttetaget ttgagaaaat

tctttctgca	actaaatata	gtaaattacg	gtaaaatata	a aataagtac	a tattgaagaa	540
aatgagacat	aatatatttt	ataataggag	ggaatttcaa	atgatagaca	a actttatgca	600
ggtccttaaa	ttaattaaag	agaaacgtac	caataatgta	a gttaaaaaa	t ctgattggga	660
taaaggtgat	ctatataaaa	ctttagtcca	tgataagtta	a cccaagcag	t taaaagtgca	720
tataaaagaa	gataaatatt	cagttgtagg	gaaggttgct	actgggaac	t atagtaaagt	780
tccttggatt	tcaatatatg	atgagaatat	aacaaaagaa	acaaaggat	g gatattattt	840
ggtatatctt	tttcatccgg	aaggagaagg	catatactta	tctttgaat	c aaggatggtc	900
aaagataagt	gatatgtttc	cgcgggat				928
<210> 198 <211> 782 <212> DNA <213> Staphy	rlococcus aure	us				
<400> 198						
caatgcccac	agagttatcc	acaaatacac	aggttataca	ctaaaaattg	ggcatgaatg	60
tcagaaaaat	atcaaaaact	gcaaagaata	ttggtataat	aagagggaac	agtgtgaaca	120
agttaataac	ttgtggataa	ctggaaagtt	gataacaatt	tggaggacca	aacgacatga	180
aaatcaccat	tttagctgta	gggaaactaa	aagagaaata	ttggaagcaa	gccatagcag	240
aatatgaaaa	acgtttaggc	ccatacacca	agatagacat	catagaagtt	ccagacgaaa	300

aagcaccaga aaatatgagc gacaaagaaa ttgagcaagt aaaagaaaaa gaaggccaac

gaatactagc caaaatcaaa ccacaatcaa cagtcattac attagaaata caaggaaaga

tgctatcttc cgaaggattg gcccaagaat tgaaccaacg catgacccaa gggcaaagcg actttgtatt cgtcattggc ggatcaaacg gcctgcacaa ggacgtctta caacgcagta

actacgcact atcattcagc aaaatgacat tcccacatca aatgatgcgg gttgtgttaa

ttgaacaagt gtacagagca tttaagatta tgcgtggaga agcgtatcat aaataaaact

aaaaattagg ttgtgtataa tttaaaaaatt taatgagatg tggaggaatt acatatatga

aatattggat tataccttgc aatatcatac gatgtttata gagtgtttaa taaaccattt

360

420 480

540

600

660

720 780

782

<210> 199

10 tt

5

<211> 709

<212> DNA

15 <213> Staphylococcus aureus

```
tacattagaa atacaaggaa agatgctatc ttccgaagga ttggcccaag aattgaacca
                                                                                60
    acgcatgacc caagggcaaa gcgactttgt tttcgtcatt ggcggatcaa acggcctgca
                                                                               120
    caaggacgtc ttacaacgca gtaactacgc actatcattc agcaaaatga cattcccaca
                                                                               180
    tcaaatgatg cgggttgtgt taattgaaca agtgtacaga gcatttaaga ttatgcgagg
                                                                               240
    agaagcttat cataagtaat gaggttcatg atttttgaca tagttagcct ccgcagtctt
                                                                               300
    tcatttcaag taaataatag cgaaatattc tttatactga atacttatag tgaagcaaag
                                                                               360
    ttctagcttt gagaaaattc tttctgcaac taaatatagt aaattacggt aaaatataaa
                                                                               420
                                                                               480
    taagtacata ttgaagaaaa tgagacataa tatattttat aataggaggg aatttcaaat
    gatagacaac tttatgcagg tccttaaatt aattaaagag aaacgtacca ataatgtagt
                                                                               540
    taaaaaaatct gattgggata aaggtgatct atataaaact ttagtccatg ataagttacc
                                                                               600
    caagcagtta aaagtgcata taaaagaaga taaatattca gttgtaggga aggttgctac
                                                                               660
    tgggaactat agtaaagttc cttggatttc aatatatgat gagaatata
                                                                               709
   <210> 200
   <211> 22
 5 <212> DNA
   <213> Artificial
   <220>
   <223> cebador PCR para orfSA0022
   <220>
   <221> fuente
   <222> (1)..(22)
   <223> S. aureus
   <400> 200
                                       22
   gtgggaaatg gctgttgttg ag
20 <210> 201
   <211> 22
   <212> DNA
   <213> Artificial
25 <220>
   <223> cebador PCR para orfSA0022
   <220>
   <221> fuente
30 <222> (1)..(22)
   <223> S. aureus
   <400> 201
35 ttcgttccct ccattaactg tc
                                       22
   <210> 202
   <211> 20
   <212> DNA
40 <213> Artificial
   <223> cebador PCR para MREP tipo vi
45 <220>
```

10

15

<221> fuente

```
<222> (1)..(20)
    <223> S. aureus resistente a meticilina
    <400> 202
 5
    aaaagaaaga cggtgaaggc
                                            20
    <210> 203
    <211> 25
10 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo vi
15
    <220>
    <221> fuente
    <222> (1)..(25)
<223> S. aureus resistente a meticilina
20
    <400> 203
    cacttcatta tactgttttc tttgc
                                            25
25 <210> 204
    <211> 22
    <212> DNA
    <213> Artificial
30 <220>
    <223> cebador PCR para MREP tipo vi
    <220>
    <221> fuente
35 <222> (1)..(22)
    <223> S. aureus resistente a meticilina
    <400> 204
40 tcaccgtctt tcttttgacc tt
                                            22
    <210> 205
    <211> 25
    <212> DNA
45 <213> Artificial
    <220>
    <223> cebador PCR para MREP tipo ix
50 <220>
    <221> fuente
    <222> (1)..(25)
    <223> S. aureus resistente a meticilina
55 <400> 205
                                                   25
    tgagatctgc tggaacaaaa gtgaa
    <210> 206
60 <211> 20
    <212> DNA
    <213> Artificial
    <220>
65 <223> cebador PCR para MREP tipo ix
```

5	<220> <221> fuente <222> (1)(20) <223> S. aureus resistente a meticilina		
	<400> 206		
	cggtcgagtt tgctgaagaa	20	
10	<210> 207 <211> 26 <212> DNA <213> Artificial		
15	<220> <223> cebador PCR para MREP tipo viii		
20	<220> <221> fuente <222> (1)(26) <223> S. aureus resistente a meticilina		
	<400> 207		
25	tcccctaatg atagctggta tatatt	26	
30	<210> 208 <211> 27 <212> DNA <213> Artificial		
	<220> <223> cebador PCR para MREP tipo viii		
35	<220> <221> fuente <222> (1)(27) <223> S. aureus resistente a meticilina		
40	<400> 208		
	tctagggaat caaagaaaag taatagt		27
45	<210> 209 <211> 32 <212> DNA <213> Artificial		
50	<220> <223> cebador PCR para ccrA		
55	<220> <221> fuente <222> (1)(32) <223> S. aureus resistente a meticilina		
	<400> 209		
60	caacaargrc aatgtgayrt attatgytgt ta		32
65	<210> 210 <211> 29 <212> DNA <213> Artificial		

<220>

	<223> cebador PCR para ccrA		
5	<220> <221> fuente <222> (1)(29) <223> S. aureus resistente a meticilina		
	<400> 210		
10	gataayatwg gmgaacaagt caraaatgg		29
15	<210> 211 <211> 35 <212> DNA <213> Artificial		
	<220> <223> cebador PCR para ccrA		
20	<220> <221> fuente <222> (1)(35) <223> S. aureus resistente a meticilina		
25	<400> 211		
	ccrtattgat tgwtracacg rccacartaa ttwgg		35
30	<210> 212 <211> 31 <212> DNA <213> Artificial		
35	<220> <223> cebador PCR para ccrA		
40	<220> <221> fuente <222> (1)(31) <223> S. aureus resistente a meticilina		
	<400> 212		
45	atrttsartg gttcattttt gaaatagatc c	31	
	<210> 213 <211> 32 <212> DNA <213> Artificial		
50	<220> <223> cebador PCR para ccrB		
55	<220> <221> fuente <222> (1)(32) <223> S. aureus resistente a meticilina		
60	<400> 213		
	acgtgtcggt atctatgtwc gtgtatcaac rg		32
65	<210> 214 <211> 30 <212> DNA <213> Artificial		

```
<220>
    <223> cebador PCR para ccrB
 5 <220>
    <221> fuente
    <222> (1)..(30)
    <223> S. aureus resistente a meticilina
10 <400> 214
                                                  30
    tgttatgrtc tacaaaacaa accgaytagc
    <210> 215
15 <211> 34
    <212> DNA
    <213> Artificial
    <220>
20 <223> cebador PCR para ccrB
    <220>
    <221> fuente
    <222> (1)..(34)
25 <223> S. aureus resistente a meticilina
    <400> 215
    gawtaataat rggggaatgc ttaccttcag ctat
                                                         34
30
    <210> 216
    <211> 26
    <212> DNA
    <213> Artificial
35
    <220>
    <223> cebador PCR para ccrB
    <220>
40 <221> fuente
    <222> (1)..(26)
    <223> S. aureus resistente a meticilina
    <400> 216
45
                                            26
    ggtttttgac tgacttgttt tttacg
    <210> 217
    <211> 29
50 <212> DNA
    <213> Artificial
    <220>
    <223> cebador PCR para ccrB
55
    <220>
    <221> fuente
    <222> (1)..(29)
    <223> S. aureus resistente a meticilina
60
    <400> 217
    tagaaytgtt ttttatgatt accrtcttt
                                           29
65 <210> 218
```

<211> 26

_	<212> DNA <213> Artificial <220> <223> cebador PCR para ccrB						
	<220> <221> fuente <222> (1)(26) <223> S. aureus resistente a meticilina						
10	<400> 218						
	ggcaaaaaya a	agacgaagt gct	gag	26			
15	5 <210> 219 <211> 721 <212> DNA <213> Staphylococcus aureus						
20	<400> 219						
	tgtagcttta	ggtgaagggt	taggtccttc	aataggggga	ataatagcac	attatattca	60
	ttggtcttac	ctacttatac	ttcctatgat	tacaatagta	actatacctt	ttcttattaa	120
	agtaatggta	cctggtaaat	caacaaaaaa	tacattagat	atcgtaggta	ttgttttaat	180
	gtctataagt	attatatgtt	ttatgttatt	tacgacaaat	tataattgga	cttttttaat	240
	actcttcaca	atcttttttg	tgatttttat	taaacatatt	tcaagagttt	ctaacccttt	300
	tattaatcct	aaactaggga	aaaacattcc	gtttatgctt	ggtttgtttt	ctggtgggct	360
	aatattttct	atagtagctg	gttttatatc	aatggtgcct	tatatgatga	aaactattta	420
	tcatgtaaat	gtagcgacaa	taggtaatag	tgttattttt	cctggaacca	tgagtgttat	480
	tgtttttggt	tattttggtg	gttttttagt	ggatagaaaa	ggatcattat	ttgtttttat	540
	tttaggatca	ttgtctatct	ctataagttt	tttaactatt	gcattttttg	ttgagtttag	600
	tatgtggttg	actactttta	tgtttatatt	tgttatgggc	ggattatctt	ttactaaaac	660
	agttatatca	aaaatagtat	caagtagtct	ttctgaagaa	gaagttgctt	ctggaagagt	720
	t						721
25	<210> 220 <211> 1791 <212> DNA <213> Staphy	rlococcus aure	us				
	<400> 220						

atccggtact	gcagaactca	aaatgaaaca	aggagaaact	ggcagacaaa	ttgggtggtt	60
tatatcatat	gataaagata	atccaaacat	gatgatggct	attaatgtta	aagatgtaca	120
agataaagga	atggctagct	acaatgccaa	aatctcaggt	aaagtgtatg	atgagctata	180
tgagaacggt	aataaaaaat	acgatataga	tgaataacaa	aacagtgaag	caatccgtaa	240
cgatggttgc	ttcactgttt	tattatgaat	tattaataag	tgctgttact	tctcccttaa	300
atacaatttc	ttcattttca	ttgtatgttg	aaagtgacac	tgtaacgagt	ccattttctt	360
tttttatgga	tttcttattt	gtaatttcag	cgataacgta	caatgtatta	cctgggtata	420
caggtttaat	aaatttaacg	ttattcattt	gtgttcctgc	tacaacttct	tctccgtatt	480
taccttcttc	tacccataat	ttaaatgata	ttgaaagtgt	atgcatgcca	gatgcaatga	540
tacctttaaa	tctactttgt	tctgcttttt	ctttatctat	atgcatatat	tgaggatcaa	600
aagttgttgc	aaattggata	atttcttctt	ctgtaatatg	aaggcttttt	gttttgaatg	660
tttctcctac	tataaaatca	tcgtatttca	tatatgtctc	tctttcttat	tcaaattaat	720
tttttagtat	gtaacatgtt	aaaggtaagt	ctaccgtcac	tgaaacgtaa	gactcacctc	780
taactttcta	ttgagacaaa	tgcaccattt	tatctgcatt	gtctgtaaag	ataccatcaa	840
ctccccaatt	agcaagttgg	tttgcacgtg	ctggtttgtt	tacagtccat	acgttcaatt	900
cataacccgc	ttcttttacc	atttttactt	ttgctttagt	aagtttggca	tcttcagtgt	960
ttactatttt	agcattacag	taatctaaaa	gtgttctcca	gtcttcacga	aacgaagttg	1020
tatggaatat	aactgctctg	ttatattgtg	gcatgatttc	ttctgcaagt	ttaacaagca	1080
caacattaaa	gcttgaaatg	agcacttctt	gattctgatt	taagtttgtt	aattgttctt	1140
ccacttgctt	aaccatactt	ttagaaagtg	ctagtccatt	cggtccagta	atacctttta	1200
attctacatt	taaattcata	ttatattcat	ttgctatttt	tactacatca	tcgaaagttg	1260
gcaaatgttc	atctttgaat	ttttcaccaa	accaagatcc	tgcagaagca	tctttaattt	1320
catcataatt	caattcagtt	atttccccgg	acatatttgt	agtccgttct	aaataatcat	1380
catgaatgat	aatcagttgt	tcatcttttg	taattgcaac	atctaactcc	aaccagttta	1440
taccttctac	ttctgaagca	gctttaaatg	atgcaattgt	attttccgga	gctttactag	1500
gtaatcctct	atgtccatat	acagttagca	tattacctct (ccttgcattt t	tatttttt	1560
aattaacgta	actgtattat	cacattaatc	gcacttttat t	tccattaaa a	agagatgaa	1620
tatcataaat	aaagaagtcg	atagattcgt	attgattatg o	gagttaatct a	cgtctcatc	1680
tcatttttaa	aaaatcattt	atgtcccaag	ctccattttg t	taatcaagtc t	agtttttct	1740
gtacccctta	tctgcaattt	tacttaggat	tgcttttaac t	tacccctta t	:	1791

5 <210> 221

<211> 600 <212> DNA <213> Staphylococcus aureus

10 <400> 221

	aagtgctgac	gcctgaggga	atagtatgtg	cgagagacta	atggctcgag	ccatacccct	60
	aggcaagcat	gcacgtacaa	aatcgtaaga	taaaaaaata	agcatatcac	tgtaaacttt	120
	aaaaaatcag	tttagtgata	tgcttattta	tttcgagtta	ggatttatgt	cccaagctca	180
	tcaagcacaa	tcggccacta	gtttatttct	ctatcttata	tgttctgata	tggtcttcta	240
	tactgtataa	gtatactttt	gaatatggat	cttgtgtcaa	ttcacgttcg	aaatcaaatt	300
	cttgattatc	aaatctgtta	aagaatgttt	cgtattcttc	gactgataat	tgctctctag	360
	attctagcat	atttaagtgt	ttctctttat	ctaatgcttt	gtcatatcct	ttaacgattg	420
	aaccactaaa	gatttctcct	actgctcctg	aaccataact	aaatagacat	actttctctt	480
	ctggttggaa	tgtgtggttc	tgtaataacg	aaattaaact	taagtataat	gatcctgtat	540
	aaatgttacc	aacatctcta	ttccataata	cggttctgtt	gcaaagttga	atttatagta	600
5	<210> 222 <211> 1640 <212> DNA <213> Staphy	rlococcus aure	eus				
	<400> 222						
	gggtggttta	tatcatatga	taaagataat	ccaaacatga	a tgatggcta	t taatgttaaa	60
	gatgtacaag	ataaaggaat	ggctagctac	aatgccaaaa	a tctcaggta	a agtgtatgat	120
	gagctatatg	agaacggtaa	taaaaaatac	gatatagato	g aataacaaa	a cagtgaagca	180

atccgtaacg atggttgctt cactgtttta ttatgaatta ttaataagtg ctgttacttc

tcccttaaat acaatttctt cattttcatt gtatgttgaa agtgacactg taacgagtcc

10 attttcttt tttatggatt tcttatttgt aatttcagcg ataacgtaca atgtattacc

240

tgggtataca	ggtttaataa	atttaacgtt	attcatttgt	gttcctgcta	caacttcttc	420
tccgtattta	ccttcttcta	cccataattt	aaatgatatt	gaaagtgtat	gcatgccaga	480
tgcaatgata	cctttaaatc	tactttgttc	tgctttttct	ttatctatat	gcatatattg	540
aggatcaaaa	gttgttgcaa	attggataat	ttcttcttct	gtaatatgaa	ggctttttgt	600
tttgaatgtt	tctcctacta	taaaatcatc	gtatttcata	tatgtctctc	tttcttattc	660
aaattaattt	tttagtatgt	aacatgttaa	aggtaagtct	accgtcactg	aaacgtaaga	720
ctcacctcta	actttctatt	gagacaaatg	caccatttta	tctgcattgt	ctgtaaagat	780
accatcaact	ccccaattag	caagttggtt	tgcacgtgct	ggtttgttta	cagtccatac	840
gttcaattca	taacccgctt	cttttaccat	ttttactttt	gctttagtaa	gtttggcatc	900
ttcagtgttt	actattttag	cattacagta	atctaaaagt	gttctccagt	cttcacgaaa	960
cgaagttgta	tggaatataa	ctgctctgtt	atattgtggc	atgatttctt	ctgcaagttt	1020
aacaagcaca	acattaaagc	ttgaaatgag	cacttcttga	ttctgattta	agtttgttaa	1080
ttgttcttcc	acttgcttaa	ccatactttt	agaaagtgct	agtccattcg	gtccagtaat	1140
accttttaat	tctacattta	aattcatatt	atattcattt	gctattttta	ctacatcatc	1200
gaaagttggc	aaatgttcat	ctttgaattt	ttcaccaaac	caagatcctg	cagaagcatc	1260
tttaatttca	tcataattca	attcagttat	ttccccggac	atatttgtag	tccgttctaa	1320
ataatcatca	tgaatgataa	tcagttgttc	atcttttgta	attgcaacat	ctaactccaa	1380
ccagtttata	ccttctactt	ctgaagcagc	tttaaatgat	gcaattgtat	tttccggagc	1440
tttactaggt	aatcctctat	gtccatatac	agttagcata	ttacctctcc	ttgcattttt	1500
attttttaa	ttaacgtaac	tgtattatca	cattaatcgc	acttttattt	ccattaaaaa	1560
gagatgaata	tcataaataa	agaagtcgat	agattcgtat	tgattatgga	gttaatctac	1620
gtctcatctc	atttttaaaa					1640
<210> 223						

<210> 223

<211> 592

5 <212> DNA

<213> Staphylococcus aureus

60 aattcaactt tgcaacagaa ccgtattatg gaatagagat gttggtaaca tttatacagg atcattatac ttaagtttaa tttcgttatt acagaaccac acattccaac cagaagagaa 120 10 agtatgtcta tttagttatg gttcaggagc agtaggagaa atctttagtg gttcaatcgt 180 240 taaaggatat gacaaagcat tagataaaga gaaacactta aatatgctag aatctagaga gcaattatca gtcgaagaat acgaaacatt ctttaacaga tttgataatc aagaatttga 300 tttcgaacgt gaattgacac aagatccata ttcaaaagta tacttataca gtatagaaga 360 ccatatcaga acatataaga tagagaaata aactagtggc cgattgtgct tgatgagctt 420 gggacataaa tcctaactcg aaataaataa gcatatcact aaactgattt tttaaagttt 480 540 acagtgatat gcttatttt ttatcttacg attttgtacg tgcatgcttg cctaggggta 592 tggctcgagc cattagtctc tcgcacatac tattccctca ggcgtcagca ct

<210> 224

<211> 2386

<212> DNA

5 <213> Staphylococcus aureus

<400> 224

60 caccttcata tgacgtctat ccatttatgt atggcatgag taacgaagaa tataataaat taaccqaaqa taaaaaaqaa cctctqctca acaaqttcca gattacaact tcaccaqqtt 120 caactcaaaa aatattaaca gcaatgattg ggttaaataa caaaacatta gacgataaaa 180 caagttataa aatcgatggt aaaggttggc aaaaagataa atcttggggt ggttacaacg 240 300 ttacaagata tgaagtggta aatggtaata tcgacttaaa acaagcaata gaatcatcag 360 ataacatttt ctttgctaga gtagcactcg aattaggcag taagaaattt gaaaaaggca tgaaaaaact aggtgttggt gaagatatac caagtgatta tccattttat aatgctcaaa 420 tttcaaacaa aaatttagat aatgaaatat tattagctga ttcaggttac ggacaaggtg 480 aaatactgat taacccagta cagatccttt caatctatag cgcattagaa aataatggca 540 600 atattaacgc acctcactta ttaaaagaca cgaaaaacaa agtttggaag aaaaatatta 660 tttccaaaga aaatatcaat ctattaactg atggtatgca acaagtcgta aataaaacac ataaagaaga tatttataga tottatgcaa acttaattgg caaatccggt actgcagaac 720 tcaaaatgaa acaaggagaa actggcagac aaattgggtg gtttatatca tatgataaag 780 ataatccaaa catgatgatg gctattaatg ttaaagatgt acaagataaa ggaatggcta 840 900 gctacaatgc caaaatctca ggtaaagtgt atgatgagct atatgagaac ggtaataaaa aatacgatat agatgaataa caaaacagtg aagcaatccg taacgatggt tgcttcactg 960 ttttattatg aattattaat aagtgctgtt acttctccct taaatacaat ttcttcattt 1020 1080 tcattgtatg ttgaaagtga cactgtaacg agtccatttt ctttttttat ggatttctta

tttgtaattt	cagcgataac	gtacaatgta	ttacctgggt	atacaggttt	aataaattta	1140
acgttattca	tttgtgttcc	tgctacaact	tcttctccgt	atttaccttc	ttctacccat	1200
aatttaaatg	atattgaaag	tgtatgcatg	ccagatgcaa	tgataccttt	aaatctactt	1260
tgttctgctt	tttctttatc	tatatgcata	tattgaggat	caaaagttgt	tgcaaattgg	1320
ataatttctt	cttctgtaat	atgaaggctt	tttgttttga	atgtttctcc	tactataaaa	1380
tcatcgtatt	tcatatatgt	ctctcttct	tattcaaatt	aattttttag	tatgtaacat	1440
gttaaaggta	agtctaccgt	cactgaaacg	taagactcac	ctctaacttt	ctattgagac	1500
aaatgcacca	ttttatctgc	attgtctgta	aagataccat	caactcccca	attagcaagt	1560
tggtttgcac	gtgctggttt	gtttacagtc	catacgttca	attcataacc	cgcttctttt	1620
accattttta	cttttgcttt	agtaagtttg	gcatcttcag	tgtttactat	tttagcatta	1680
cagtaatcta	aaagtgttct	ccagtcttca	cgaaacgaag	ttgtatggaa	tataactgct	1740
ctgttatatt	gtggcatgat	ttcttctgca	agtttaacaa	gcacaacatt	aaagcttgaa	1800
atgagcactt	cttgattctg	atttaagttt	gttaattgtt	cttccacttg	cttaaccata	1860
cttttagaaa	gtgctagtcc	attcggtcca	gtaatacctt	ttaattctac	atttaaattc	1920
atattatatt	catttgctat	ttttactaca	tcatcgaaag	ttggcaaatg	ttcatctttg	1980
aatttttcac	caaaccaaga	tcctgcagaa	gcatctttaa	tttcatcata	attcaattca	2040
gttatttccc	cggacatatt	tgtagtccgt	tctaaataat	catcatgaat	gataatcagt	2100
tgttcatctt	ttgtaattgc	aacatctaac	tccaaccagt	ttataccttc	tacttctgaa	2160
gcagctttaa	atgatgcaat	tgtattttcc	ggagctttac	taggtaatcc	tctatgtcca	2220
tatacagtta	gcatattacc	tctccttgca	ttttatttt	tttaattaac	gtaactgtat	2280
tatcacatta	atcgcacttt	tatttccatt	aaaaagagat	gaatatcata	aataaagaag	2340
tcgatagatt	cgtattgatt	atggagttaa	tctacgtctc	atctca		2386
<210> 225 <211> 623 <212> DNA <213> Staphy	rlococcus aure	eus				
<400> 225						
tgaaaattac	aaccgatttt	gtaagtgctg	acgcctgagg	gaatagtatg	tgcgagagac	60

taatggctcg agccataccc ctaggcaagc atgcacgtac aaaatcgtaa gataaaaaaa

10 taagcatatc actgtaaact ttaaaaaaatc agtttagtga tatgcttatt tatttcgagt

5

120

taggatttat gtcccaagct catcaagcac aatcggccac tagtttattt ctctatctta	240
tatgttctga tatggtcttc tatactgtat aagtatactt ttgaatatgg atcttgtgtc	300
aattcacgtt cgaaatcaaa ttcttgatta tcaaatctgt taaagaatgt ttcgtattct	360
togactgata attgetetet agattetage atatttaagt gtttetettt atetaatget	420
ttgtcatatc ctttaacgat tgaaccacta aagatttctc ctactgctcc tgaaccataa	480
ctaaatagac atactttctc ttctggttgg aatgtgtggt tctgtaataa cgaaattaaa	540
cttaagtata atgatcctgt ataaatgtta ccaacatctc tattccataa tacggttctg	600
ttgcaaagtt gaatttatag tat	623
<210> 226 <211> 651 <212> DNA <213> Staphylococcus aureus	
<400> 226	
atgaaaaata tttcagaatt ctcagcccaa cttgatcaaa cttttgatca aggggaagc	c 60
gtctctatgg agtggttatt ccgtccgttg ctaaaaatgc tggcggaggg cgatccagt	c 120
cccgttgagg acatcgcggc ggagaccggg aagcccgtcg aggaagttaa gcaagtcct	a 180
cagactctac ctagtgtgga acttgatgag cagggccgtg tcgtcggtta tggcctcac	a 240
ctgttcccta ccccccatcg cttcgaggtt gatgggaagc aactatatgc atggtgcgc	c 300
cttgacacac ttatgttccc agcactcatc ggccggacgg tccacatcgc ttcgccttg	t 360
cacggcaccg gtaagtccgt ccggttgacg gtggaaccgg accgcgttgt aagcgtcga	g 420
ccttcaacag ccgttgtctc gattgttaca ccagatgaaa tggcctcggt tcggtcggc	c 480
ttctgtaacg acgttcactt tttcagttca ccgagtgcag cccaagactg gcttaacca	a 540
caccctgagt cgagcgtttt gcccgttgaa gatgcctttg aactgggtcg ccatttggg.	a 600
gcgcgttatg aggagtcagg acctactaat gggtcctgtt gtaacattta a	651
<210> 227 <211> 563 <212> DNA <213> Staphylococcus aureus	
<400> 227	
atgaatcttg aaaaagggaa tatagaaagg aaaaaacatg gtgtccatgt taatgagtat	60
ttgcaaagtg taagtaaccc gaatgtctat gcagctggag atgctgcagc aacggatggc	120
ttgcccctca cacctgtagc cagtgcagat tctcatgtcg tagcatctaa tttattgaaa	180

gggaacagca aaaaaattga atatcccgtg attccatctg ctgtatttac cgtacctaaa 240 atggcatcgg taggtatgag cgaggaggaa gccaaaaact ctggccggaa tattaaagta 300 aagcagaaaa acatctccga ctggtttacg tataaacgga caaatgagga ctttgctgcg 360 tttaaagtgc tgattgacga agatcatgat caaattgttg gtgctcattt gattagtaat 420 gaagccgatg aactgattaa tcattttgca acagccattc gttttgggat ttcaaccaaa 480 gaattgaaac aaatgatatt tgcctatcca acggcagctt cggacattgc acacatgttg 540 taagtttgcg ttttgtgaga tgt

<210> 228

<211> 1380

5 <212> DNA

<213> Staphylococcus aureus

<400> 228

60 ttgtttagtt tatataaaaa atttaaaggt ttgttttata gcgttttatt ttggctttgt 120 attettteat tttttagtgt attaaatgaa atggttttaa atgtttettt acctgatatt gcaaatcatt ttaatactac tcctggaatt acaaactggg taaacactgc atatatgtta 180 actttttcqa taqqaacaqc aqtatatqqa aaattatctq attatataaa tataaaaaaa 240 ttgttaatta ttggtattag tttgagctgt cttggttcat tgattgcttt tattggtcac 300 360 aatcactttt ttattttgat ttttggtagg ttagtacaag gagtaggatc tgctgcattc 420 ccttcactga ttatggtggt tgtagctaga aatattacaa gaaaaaaaca aggcaaagcc tttggtttta taggatcaat tgtagcttta ggtgaagggt taggtccttc aataggggga 480 540 ataatagcac attatattca ttggtcttac ctacttatac ttcctatgat tacaatagta actatacctt ttcttattaa agtaatggta cctggtaaat caacaaaaaa tacattagat 600 atcgtaggta ttgttttaat gtctataagt attatatgtt ttatgttatt tacgacaaat 660 720 tataattgga cttttttaat actcttcaca atcttttttg tgatttttat taaacatatt tcaagagttt ctaaccettt tattaateet aaactaggga aaaacattee gtttatgett 780 ggtttgtttt ctggtgggct aatattttct atagtagctg gttttatatc aatggtgcct 840 tatatgatga aaactattta tcatgtaaat gtagcgacaa taggtaatag tgttattttt 900 960 cctggaacca tgagtgttat tgtttttggt tattttggtg gttttttagt ggatagaaaa 1020 ggatcattat ttgtttttat tttaggatca ttgtctatct ctataagttt tttaactatt 10 gcattttttg ttgagtttag tatgtggttg actactttta tgtttatatt tgttatgggc 1080 qqattatctt ttactaaaac aqttatatca aaaataqtat caaqtaqtct ttctqaaqaa 1140 qaaqttqctt ctqqaatqaq tttqctaaat ttcacaaqtt ttttatcaqa qqqaacaqqt 1200 atagcaattg taggaggttt attgtcacta caattgatta atcgtaaact agttctggaa 1260 1320 tttataaatt attettetgg agtgtatagt aatattettg tagecatgge tateettatt attttatgtt gtcttttgac gattattgta tttaaacgtt ctgaaaagca gtttgaatag 1380

<210> 229 15 <211> 1365

<212> DNA

<213> Staphylococcus aureus

<400> 229

atgagaatag	tgaatggacc	aataataatg	actagagaag	aaagaatgaa	gattgttcat	60
gaaattaagg	aacgaatatt	ggataaatat	ggggatgatg	ttaaggctat	tggtgtttat	120
ggctctcttg	gtcgtcagac	tgatgggccc	tattcggata	ttgagatgat	gtgtgtcatg	180
tcaacagaag	aagcagagtt	cagccatgaa	tggacaaccg	gtgagtggaa	ggtggaagtg	240
aattttgata	gcgaagagat	tctactagat	tatgcatctc	aggtggaatc	agattggcct	300
cttacacatg	gtcaattttt	ctctattttg	ccgatttatg	attcaggtgg	atacttagag	360
aaagtgtatc	aaactgctaa	atcggtagaa	gcccaaacgt	tccacgatgc	gatttgtgcc	420
cttatcgtag	aagagctgtt	tgaatatgca	ggcaaatggc	gtaatattcg	tgtgcaagga	480
ccgacaacat	ttctaccatc	cttgactgta	caggtagcaa	tggcaggtgc	catgttgatt	540
ggtctgcatc	atcgcatctg	ttatacgacg	agcgcttcgg	tcttaactga	agcagttaag	600
caatcagatc	ttccttcagg	ttatgaccat	ctgtgccagt	tcgtaatgtc	tggtcaactt	660
tccgactctg	agaaacttct	ggaatcgcta	gagaatttct	ggaatgggat	tcaggagtgg	720
acagaacgac	acggatatat	agtggatgtg	tcaaaacgca	taccattttg	aacgatgacc	780
tctaataatt	gttaatcatg	ttggttacgt	atttattaac	ttctcctagt	attagtaatt	840
atcatggctg	tcatggcgca	ttaacggaat	aaagggtgtg	cttaaatcgg	gccattttgc	900
gtaataagaa	aaaggattaa	ttatgagcga	attgaattaa	taataaggta	atagatttac	960
attagaaaat	gaaaggggat	tttatgcgtg	agaatgttac	agtctatccc	ggcattgcca	1020
gtcggggata	ttaaaaagag	tataggtttt	tattgcgata	aactaggttt	cactttggtt	1080
caccatgaag	atggattcgc	agttctaatg	tgtaatgagg	ttcggattca	tctatgggag	1140
gcaagtgatg	aaggctggcg	ctctcgtagt	aatgattcac	cggtttgtac	aggtgcggag	1200
tcgtttattg	ctggtactgc	tagttgccgc a	attgaagtag a	ngggaattga t	gaattatat	1260
caacatatta	agcctttggg	cattttgcac (cccaatacat c	cattaaaaga t	cagtggtgg	1320
gatgaacgag	actttgcagt	aattgatccc (gacaacaatt t	gatt		1365

<210> 230

10 <211>831

<212> DNA

<213> Staphylococcus aureus

<400> 230

15

atgggggttt	cttttaatat	tatgtgtcct	aatagtagca	tttattcaga	tgaaaaatca	60
agggttttag	tggacaagac	aaagagtgga	aaagtgagac	catggagaga	aaagaaaatc	120
gctaatgttg	attactttga	acttctgcat	attcttgaat	ttaaaaaggc	tgaaagagta	180
aaagattgtg	ctgaaatatt	agagtataaa	caaaatcgtg	aaacaggcga	aagaaagttg	240
tatcgagtgt	ggttttgtaa	atccaggctt	tgtccaatgt	gcaactggag	gagagcaatg	300
aaacatggca	ttcagtcaca	aaaggttgtt	gctgaagtta	ttaaacaaaa	gccaacagtt	360
cgttggttgt	ttctcacatt	aacagttaaa	aatgtttatg	atggcgaaga	attaaataag	420
agtttgtcag	atatggctca	aggatttcgc	cgaatgacgc	aatataaaaa	aattaataaa	480
aatcttgttg	gttttatgcg	tgcaacggaa	gtgacaataa	ataataaaga	taattcttat	540
aatcagcaca	tgcatgtatt	ggtatgtgtg	gaaccaactt	attttaagaa	tacagaaaac	600
tacgtgaatc	aaaaacaatg	gattcaattt	tggaaaaagg	caatgaaatt	agactatgat	660
ccaaatgtaa	aagttcaaat	gattcgaccg	aaaaataaat	ataaatcgga	tatacaatcg	720
gcaattgacg	aaactgcaaa	atatcctgta	aaggatacgg	attttatgac	cgatgatgaa	780
gaaaagaatt	tgtaacgttt	gtctgatttg	gaggaaggtt	tacaccgtaa	a	831
<210> 231 <211> 4193 <212> DNA <213> Staphy	/lococcus aure	eus				
<400> 231						
atgagccgct	tgatacgcat	gagtgtatta	gcaagtggta (gtacaggtaa c	gccactttt	60
gtagaaaatg	aaaaaggtag	tctattagtt	gatgttggtt ·	tgactggcaa ç	gaaaatggaa	120
gaattgttta	gtcaaattga	ccgtaatatt	caagatttaa a	atggtatttt a	gtaacccat	180
gaagatattg	atoatattaa	aggattaggt	attttaaaaa .	ataaatataa a	ttaaaaatt	240

tatgcgaatg	aaaagacttg	gcaggcaatt	gaaaagaaag	atagtcgcat	ccctatggat	300
cagaaattca	tttttaatcc	ttatgaaaca	aaatctattg	caggtttcga	tgttgaatcg	360
tttaacgtgt	cacatgatgc	aatagatccg	caattttata	ttttccataa	taactataag	420
aagtttacga	ttttaacgga	tacgggttac	gtgtctgatc	gtatgaaagg	tatgatacgt	480
ggcagcgatg	cgtttatttt	tgagagtaat	catgacgtcg	atatgttgag	aatgtgtcgt	540
tatccatgga	agacgaaaca	acgtatttta	ggcgatatgg	gtcatgtatc	taatgaggat	600
gcgggtcatg	cgatgacaga	tgtgattaca	ggtaacacga	aacgtattta	cctatcgcat	660
ttatcacaag	acaataacat	gaaagatttg	gcgcgtatga	gtgttggcca	agtattgaac	720
gaacacgata	ttgatacgga	aaaagaagta	ttgctatgtg	atacggataa	agctattcca	780
acgccaatat	atacaatata	aatgagagtc	accctataaa	gttcggcact	gctgtgagac	840
gactttatcg	ggtgcttttt	tatgttattg	gtgggaaatg	gctgttgttg	gaattaaggt	900
tctatttgaa	atgtaaaaaa	taattcgata	ttaaatgtaa	tttataaata	atttacataa	960
aatcaatcat	tttaatataa	ggattatgat	aatatattgg	tgtatgacag	ttaatggagg	1020
gaacgaaatg	aaagctttat	tacttaaaac	aagtgtatgg	ctcgttttgc	tttttagtgt	1080
gatgggatta	tggcaagtct	cgaacgcggc	tgagcagtat	acaccaatca	aagcacatgt	1140
agtaacaacg	atagacaaag	caacaacaga	taagcaacaa	gtaacgccaa	caaaggaagc	1200
ggctcatcaa	tttggtgaag	aagcggcaac	caacgtatca	gcatcagcac	agggaacagc	1260
tgatgaaata	aacaataaag	taacatccaa	cgcattttct	aacaaaccat	ctacagcagt	1320
ttcaacaaaa	gtaaacgaaa	cgcacgatgt	agatacacaa	caagcctcaa	cacaaaaacc	1380
aactcaatca	gcaacattca	cattatcaaa	tgctaaaaca	gcatcacttt	caccacgaat	1440
gtttgctgcc	aatgtaccac	aaacaacaac	acataaaata	ttacatacaa	atgatatcca	1500
tggccgacta	gccgaagaaa	aagggcgtgt	catcggtatg	gctaaattaa	aaacaataaa	1560
agaacaagaa	aagcctgatt	taatgttaga	cgcaggagac	gccttccaag	gtttaccact	1620
ttcaaaccag	tctaaaggtg	aagaaatggc	taaagcaatg	aatgcagtag	gttatgatgc	1680
tatggcagtg	ggtaaccatg	aatttgactt	tggatacgat	cagttgaaaa	agttagaggg	1740
tatgttagac	ttcccgatgc	taagtactaa	cgtttacaaa	gatgggaaac	gcgcgtttaa	1800
gccttcaaca	attgtaacga	aaaatggtat	tcgttatgga	attattggcg	taacgacacc	1860
agaaacaaag	acgaaaacaa	gacctgaggg	cattaaaggt	gttgaattta	gagatccatt	1920
acaaagtgtg	acagcagaaa	tgatgcgtat	ttataaagac	gtagatacat	ttgttgttat	1980

atcacattta	gggattgatc	cttcaacaca	agaaacatgg	cgtggtgatt	acttagtgaa	2040
acaattaagt	caaaatccac	aattgaagaa	acgtattaca	gtcattgatg	gtcattcaca	2100
taccgtactt	caaaatggtc	aaatttataa	caatgatgca	ttagcacaaa	caggtacagc	2160
acttgcgaat	atcggtaagg	ttacatttaa	ttaccgcaat	ggagaggtat	caaatattaa	2220
accgtcattg	attaatgtta	aagacgttga	aaatgtaaca	ccgaacaaag	cattagctga	2280
acaaattaat	caagctgatc	aaacatttag	agcacaaaca	gcagaggtta	ttattccaaa	2340
taataccatt	gatttcaaag	gagaaagaga	tgacgttaga	acgcgtgaaa	caaatttagg	2400
aaacgcgatt	gcagatgcta	tggaagcgta	tggcgttaag	aatttctcta	aaaagactga	2460
ctttgccgtg	acaaatggtg	gaggtattcg	tgcctctatc	gcaaaaggta	aggtgacacg	2520
ctatgattta	atctcagtat	taccatttgg	aaatacgatt	gcgcaaattg	atgtaaaagg	2580
ttcagacgtc	tggacagctt	tcgaacatag	tttaggtgca	ccaacaacac	aaaaagacgg	2640
taagacagta	ttaacagcga	atggcggttt	actacatatc	tctgattcaa	ttcgtgttta	2700
ctatgatatg	aataaaccgt	ctggcaaacg	aattaacgct	attcaaattt	taaataaaga	2760
gacaggtaag	tttgaaaata	ttgatttaaa	acgtgtatat	catgtaacga	tgaatgactt	2820
cacagcatca	ggtggcgacg	gatatagtat	gttcggtggc	cctagagaag	aaggtatttc	2880
attagatcaa	gtactagcaa	gttatttaaa	aacagctaac	atagctaagt	atgatacgac	2940
agaaccacaa	cgtatgttat	taggtaaacc	agcagtaagt	gaacaaccag	ctaaaggaca	3000
acaaggtagc	aaaggtagtg	agtctggtaa	agatgtacaa	ccaattggtg	acgacaaagc	3060
gatgaatcca	gcgaaacaac	cagcgacagg	taaagttgta	ttgttaccaa	cgcatagagg	3120
aactgttagt	agcggtacag	aaggttctgg	tcgcacatta	gaaggagcta	ctgtatcaag	3180
caagagtggg	aaccaattgg	ttagaatgtc	agtgcctaaa	ggtagcgcgc	atgagaaaca	3240
gttaccaaaa	actggaacta	atcaaagctc	aagcccagca	gcgatgtttg	tattagtagc	3300
aggtataggt	ttaatcgcga	ctgtacgacg	tagaaaagct	agttaaaata	tattgaaaac	3360
aatactactg	tatttcttaa	ataagaggta	cggtagtgtt	tttttatgga	aaaaagctat	3420
aaacgttgat	aaacatggga	tataaaaacg	gggataagta	ataagacatc	aaggtgttta	3480
tccacagaaa	tggggatagt	tatccagaat	tgtgtacaat	ttaaagagaa	atacccacaa	3540
tgcccacaga	gttatccaca	aatacacaag	ttatacacta	aaaattgggc	ataaatgtca	3600
ggaaaatatc	aaaaactgca	aaaaatattg	gtataataag	agggaacagt	gtgaacaagt	3660

taataacttg tggataactg gaaagttgat aacaatttgg aggaccaaac gacatgaaaa 3720 tcaccatttt agctgtaggg aaactaaaag agaaatattg gaagcaagcc atagcagaat 3780 atgaaaaacg tttaggccca tacaccaaga tagacatcat agaagttcca gacgaaaaag 3840 caccagaaaa tatgagcgac aaagaaattg agcaagtaaa agaaaaagaa ggccaacgaa 3900 tactagccaa aattaaacca caatccacag tcattacatt agaaatacaa ggaaagatgc 3960 tatcttccga aggattggcc caagaattga accaacgcat gacccaaggg caaagcgact 4020 ttgtattcgt cattggcgga tcaaacggcc tgcacaagga cgtcttacaa cgcagtaact 4080 acgcactatc attcagcaaa atgacattcc cacatcaaat gatgcgggtt gtgttaattg 4140 agcaagtgta tagagcattt aagattatgc gtggagaagc atatcataaa tga 4193

<210> 232

<211> 2996

5 <212> DNA

<213> Staphylococcus aureus

<400> 232

60 atgaaacgag ccattggtta tttgcgccaa agtacaacga aacaacaatc actcccagct caaaagcaag caatagaatt attagctcca aagcacaata ttcaaaatat ccaatacatt 120 agtgataagc aatcaggcag aacagataat cgaacaggct atcaacaagt caccgaacgc 180 atccaacaaa gacaatgtga cgtattatgt tgttatcgct tgaatcgact tcatcgcaac 240 ttgaaaaatg cattaaaact catgaaactc tgtcaaaaat atcatgttca tattctaagt 300 360 gttcatgatg gctattttga tatggataaa gcgtttgatc gcctaaaact caatatattc 420 atgagtctgg ctgaacttga atccgataat attggagaac aagtcaaaaa tggacttaga 480 gaaaaggcaa aacaaggtaa actcataacg acccatgcgc ctttcggtta tcactatcaa aatggtactt tcatcattaa taatgatgaa tcacctaccg tcaaagctgt attcaattat 540 tatcttcaag gatatggcta caagaagatt gcacaatatt tagaagacga taataaactt 600 attaccegca ageettatca ggtacgaaat ataattatga acceaaatta ttgtggtegt 660 gtcatcaatc aatatggtca atataacaat atggtaccac ctattgtttc ggcaacgaaa 720 780 tatgaacatg ctcaagcaat ccgtaataag aagcaacttc actgtatacc ttcagagaat cagctgaaac aaaagatcaa atgtccttgt tgtgactcaa cactgacaaa tatgacaata 840 agaaaaaaac atacattgcg atattatatt tgtcctaaaa atatgaatga atctcgcttt 900 10 gtctgttcat tcaaaggaat aaatgcacaa aaattagaag ttcaagtctt agctacatgt 960

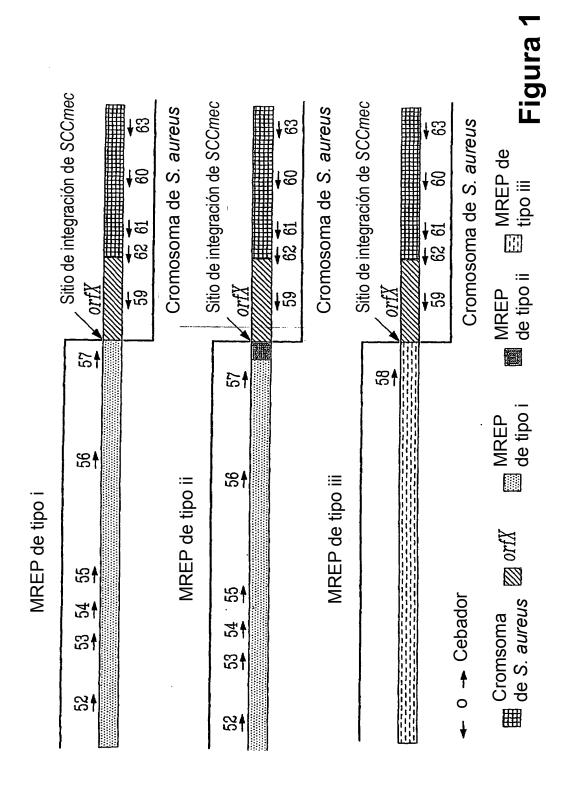
						1000
cagaacttct	ttcaaaacca	acagctctat	tcaaaaatta	ataatgcaat	tcatcaacgc	1020
ctcaaaaaac	aaagagtgat	agaagctaaa	agtacgctaa	ctcaagaaca	actgatagat	1080
aaacttgcca	aaggtatgat	tgatgctgaa	tcattcagaa	aacagactca	tttgatgaat	1140
caaaagcaca	aaaccatatc	ctccataagt	gataatcagt	tacaaacatc	actacaaaag	1200
gttatacaga	aaagtttcac	gttaaacatg	ctgcatccct	atattgatga	aattcgcatt	1260
acaaaaaata	aagcccttgt	tgggatctat	ttcaaaaatg	aaccattgaa	cattgtgaac	1320
caaacctcgc	aatcatcgat	tgcttaatca	gaaaggatga	aaaaatcatg	caacaactca	1380
aacaaaaacg	tgtcggtatc	tatgttcgtg	tatcaacgga	aatccaaagt	actgaaggct	1440
atagtatcga	tggacaaatc	aatcaaattc	gagaatattg	tgatttcaat	aactttgttg	1500
ttgtagatgt	atacgcggat	agaggtatct	ctggaaaatc	tatgaaccga	ccagaactac	1560
aacgtttgtt	aaaagatgcg	aacgaaggtc	agattgattc	tgttatggtc	tacaaaacaa	1620
accgactagc	acgtaacact	tctgacttac	tcaaaattgt	tgaagacctt	catcgtcaaa	1680
atgtcgaatt	cttcagctta	tctgagcgta	tggaagtcaa	tacaagcagt	ggtaaattga	1740
tgctacaaat	tctagcgagt	ttttcagaat	ttgaaagaaa	taatattgtc	gaaaatgtat	1800
tcatgggtca	aacccgacgc	gctcaagaag	gctattatca	aggcaatttg	ccgctgggct	1860
atgacaaaat	accggatagc	aagcatgaac	tcatgataaa	ccaacatgaa	gcgaatattg	1920
tcaaatatat	atttgagtca	tatgctaaag	gccacggata	tcgtaaaatt	gcgaatgcac	1980
tcaatcacaa	aggatacgtg	actaaaaaag	gaaagccttt	cagtattggt	tcagtgacct	2040
atatcttatc	taatccattc	tatgttggta	aaattcaatt	cgcaaagtac	aaagattgga	2100
atgaaaagcg	tcgtaaaggg	ctgaatgata	aaccaataat	agctgaaggt	aagcattccc	2160
ctattattat	tcaagactta	tgggataaag	tccaattacg	taaaaaacaa	gtcagtcaaa	2220
aacctcaagt	ccacggtaaa	ggaactaatc	tattaacagg	tatcgttcat	tgtccacaat	2280
gtggtgcacc	aatggcagct	agtaacacaa	cgaacacatt	gaaagatggt	accaagaagc	2340
gaatacgtta	ttattcttgc	agtaacttcc	gaaacaaagg	ctcaaaagta	tgttctgcga	2400
atagcgttag	agctgatgtg	attgagaaat	acgtcatgga	tcaaatactc	gaaattgtca	2460
aaagtgataa	agtcattaac	caagtcttag	aacgtgtcaa	tcaagaaaat	aaagtcgata	2520
ttggtgcatt	gaaccacgat	atcgcttata	aacaacaaca	atacgatgaa	gtcagcggga	2580
aactccataa	tttagttaaa	accattgaag	ataatccgga	cctaacatct	gcattgaaag	2640
caactattca	tcaatatgaa	acacaactca	atgacattac	aaatcaaatg	aatcaactca	2700
aacagcaaca	aaatcaagag	aaactatctt	atgatacgaa	acaaatcgct	gccctattac	2760
-	tcaaaatata			_		2820
-	ccgtattgat		-	_		2880
	caataatgaa			-	-	2940
	_					
igelecteag	cacttcgtct	ilalitttgC	cicaaacgct	cttcttcaa	alCldd	2996

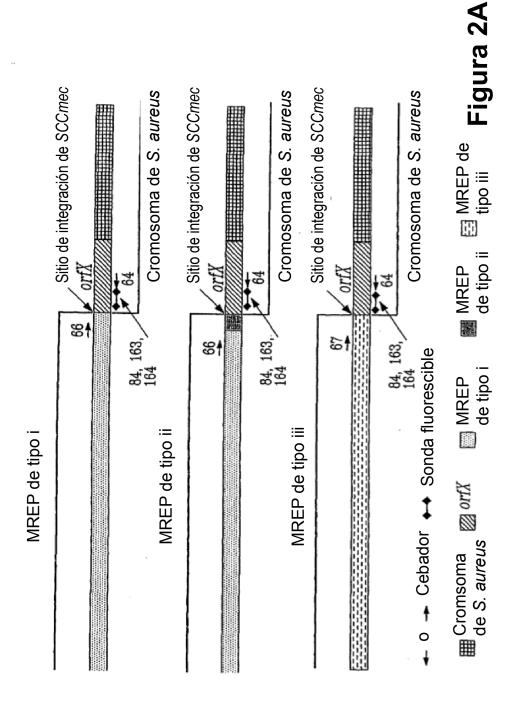
<212> DNA <213> Staphylococcus aureus

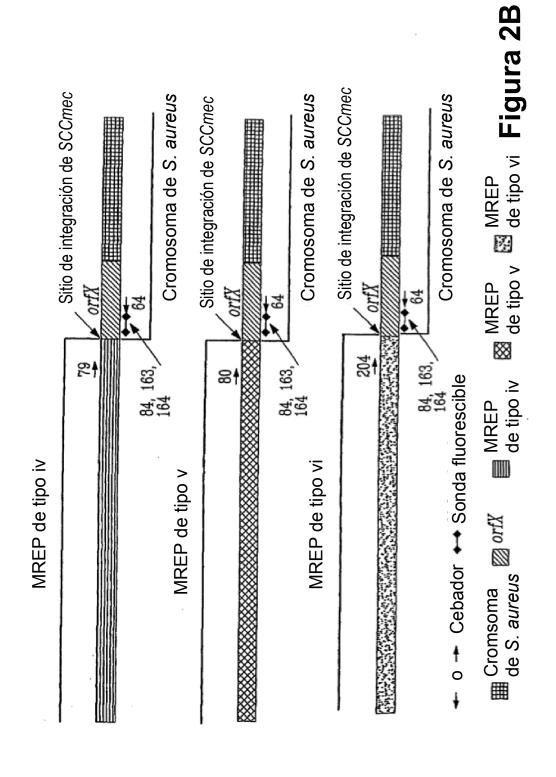
<400> 233

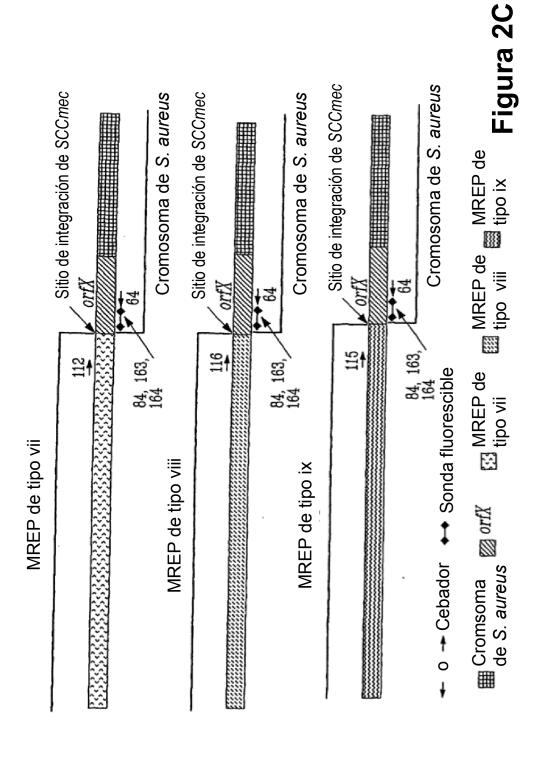
5

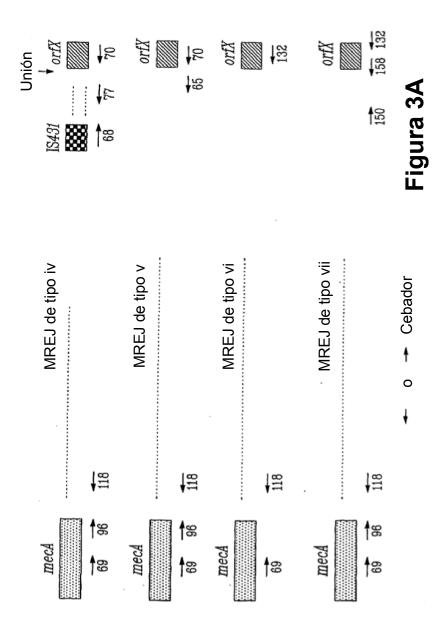
60	tgaaaaacgt	tagcagaata	aagcaagcca	gaaatattgg	aactaaaaga	gctgtaggga
120	accagaaaat	acgaaaaagc	gaagttccag	agacatcata	acaccaagat	ttaggcccat
180	actagccaaa	gccaacgaat	gaaaaagaag	gcaagtaaaa	aagaaattga	atgagcgaca
240	atcttccgaa	gaaagatgct	gaaatacaag	cattacatta	aatccacagt	attaaaccac
300	tgtattcgtc	aaagcgactt	acccaagggc	ccaacgcatg	aagaattgaa	ggattggccc
360	cgcactatca	gcagtaacta	gtcttacaac	gcacaaggac	caaacggcct	attggcggat
420	gcaagtgtat	tgttaattga	atgcgggttg	acatcaaatg	tgacattccc	ttcagcaaaa
480	tttcagccgc	gatgcggttt	tatcataaat	tggagaagca	agattatgcg	agagcattta
540	gctgttatgt	tatgtgaatt	atatgaggtt	gtatcagaac	gattttgaat	ttcataaagg
600	aaaatgaagt	tagttgctaa	ttttattaat	gtgatgcggt	catatcataa	ttttaagaag
660	tttagggtga	aaagattaag	atatttaaag	aaattttgat	aattattatt	atgcaatatt
720	aacttgagga	gtacttcaac	agaaaatgaa	aatatgcatt	tatcaaagtg	atgaatggct
780	aatatctcaa	gaaattaatg	tattaaatta	atatacataa	gaaagagtaa	attgaactat
840	agatttccag	tccagaacta	agacaaatac	atgaataagc	gtgttgaaaa	agaactagga
900	aaaaatggtg	agtaaattat	taggtgaagt	aaaaggaaat	ggaatggaaa	agtttgatga
960	cttaaatctg	actcataact	gtgtatataa	aaaaaccatg	aagtttagtg	gttcatttga
1020	tgtgttgaaa	cgatgataaa	gaaaatatat	tgtaattctg	aggaaagttg	ttaatacaga
1080	ctagttggaa	agcaccagga	tgagcgagca	gtaatgatac	tgatacttta	cattgtgtaa
1140	gcagcactag	tcaacgagta	atgtactaaa	aataatgagt	tatacctaat	tgactgcaat
1200	aaccagaaat	aattaataga	tatctaagtt	agtcaatttc	atttatagat	tgcctaaaca
1260	catgtagaaa	ttctaaagga	tgaaaaatat	ggaacaaaag	gagatctgct	atttcagtgt
1320	ttcttcagca	aataggtaat	aacaacaaaa	aattacactg	tttatctcct	actttaattt
1380	caacaaaagc	actcttatag	agaaacttga	ttagaagaag	ccagattgag	aactcgaccg
1410				ttttctcaag	ttcagaagat	gtggatatat

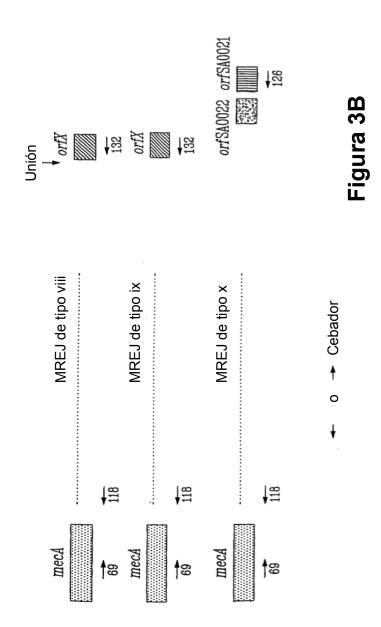

REIVINDICACIONES

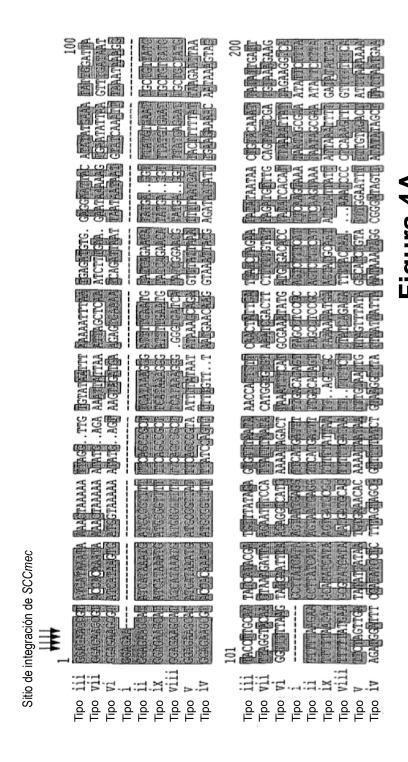

- 1. Método para detectar la presencia de cepas de *Staphylococcus aureus* resistente a la meticilina (SARM) con MREJ de tipos i, ii, iii y ix, que comprende:
- a) poner en contacto una muestra en la que hay que analizar la presencia de dichas cepas de SARM con MREJ de tipos i, ii, iii y ix, en donde cada una de dichas cepas de SARM incluyen un elemento de casete cromosómico estafilocócico de *mec* (SCC*mec*) que contiene un gen *mecA* insertado en el ADN cromosómico, mediante lo cual se genera una unión en el extremo derecho (MREJ, por su nombre en inglés) polimórfica de tipos i, ii, iii o ix que comprende secuencias procedentes del extremo derecho del elemento SCC*mec* y del ADN cromosómico adjunto a dicho extremo derecho del elemento SCC*mec*, con un primer y un segundo cebador para cada una de dichas MREJ
 de tipos i, ii, iii y ix,

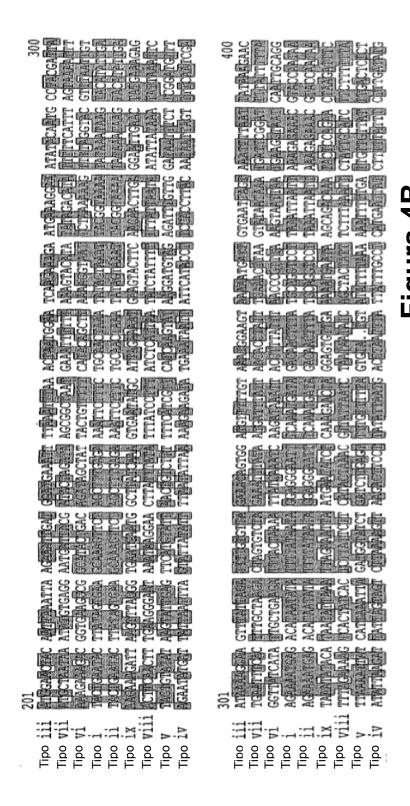

en donde dicho primer cebador se hibrida con dicho extremo derecho del elemento SCC*mec* de una secuencia de MREJ de tipos i, ii, iii o ix seleccionado del grupo que consiste en: SEQ ID n.º 1, 20 a 25, 41 y 199, y complementos de las mismas, para la MREJ de tipo i, SEQ ID n.º 2, 17 a 19, 26, 40, 173 a 183, 185, 186 y 197, y complementos de las mismas, para la MREJ de tipo ii, SEQ ID n.º 4 a 16, 104, 184 y 198, y complementos de las mismas, para la MREJ de tipo iii y SEQ ID n.º 168, y el complemento de la misma, para la MREJ de tipo ix; y en donde cada dicho segundo cebador se hibrida con una secuencia cromosómica de *S. aureus* para generar específicamente uno o varios amplicones si tal cepa de SARM con MREJ de tipos i, ii, iii o ix está presente en dicha muestra; y

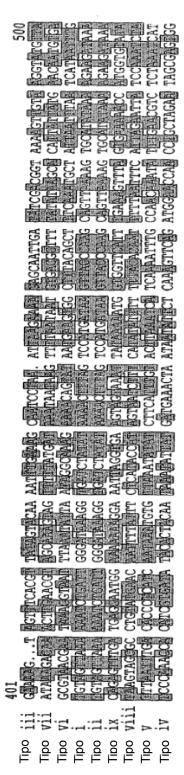

- b) detectar la presencia de dicho uno o varios amplicones.
- 2. Método de acuerdo con la reivindicación 1, en el que dicha secuencia cromosómica de S. aureus es orfX.
- 20 3. Método de acuerdo con la reivindicación 1 o 2, en donde dicho método comprende el uso de al menos un cebador y/o sonda seleccionado entre las siguientes SEQ ID n.º: 109, 148, 149, 205, 206, 64, 71, 72, 73, 74, 75, 76, 70, 103, 130, 132, 158, 159, 59, 62, 126, 127, 128, 129, 131, 200, 201, 60, 61, 63, 32, 83, 84, 160, 161, 162, 163 y 164 para la detección de MREJ de tipo ix.
- 4. Método de acuerdo con la reivindicación 3, que comprende el uso de una pareja de cebadores que consiste 25 en las SEQ ID n.º 64 y 109 o 64 y 149 o 64 y 206.
 - 5. Método de acuerdo con la reivindicación 4, que además comprende el uso de al menos una sonda que tiene una secuencia seleccionada entre el grupo que consiste en SEQ ID n.º 32, 83, 84, 160, 161, 162, 163 y 164.
 - 6. Método de acuerdo con la reivindicación 5, en el que dichos cebadores y sondas tienen las siguientes secuencias nucleotídicas: SEQ ID n.º 64, 109, 84, 163 y 164 para detectar la MREJ de tipo ix.
- 30 7. Método de acuerdo con cualquiera de las reivindicaciones 1 a 6, en el que se utilizan juntos varios cebadores y/o sondas en el mismo confinamiento físico.
 - 8. Kit para detectar la presencia de las cepas de SARM con MREJ de tipos i, ii, iii y ix en una muestra, que comprende:
- a) un primer conjunto de oligonucleótidos que se hibridan con el extremo derecho del elemento SCC*mec* de las secuencias de MREJ de tipos i, ii, iii y ix seleccionadas del grupo que consiste en: SEQ ID n.º 1, 20 a 25, 41 y 199, y complementos de las mismas, para la MREJ de tipo i, SEQ ID n.º 2, 17 a 19, 26, 40, 173 a 183, 185, 186 y 197, y complementos de las mismas, para la MREJ de tipo ii, SEQ ID n.º 4 a 16, 104, 184 y 198, y complementos de las mismas, para la MREJ de tipo iii, y SEQ ID n.º 168, y el complemento de la misma, para la MREJ de tipo ix; y
 - b) un segundo oligonucleótido que se hibrida con una secuencia cromosómica de S. aureus;
- 40 en donde dichos oligonucleótidos de a) y b) permiten generar selectivamente uno o varios amplicones que comprende secuencias del extremo derecho del elemento SCC*mec* y del ADN cromosómico adjunto a dicho extremo derecho de dichas cepas de SARM con MREJ de tipos i, ii, iii y ix.
 - 9. Kit de acuerdo con la reivindicación 8, en el que dicha secuencia específica del ADN cromosómico de S. aureus es orfX.
- 45 10. Kit de acuerdo con la reivindicación 8 o 9, en el que dicho segundo oligonucleótido en b) comprende una secuencia seleccionada entre el grupo que consiste en las SEQ ID n.º: 32, 59, 60 a 64, 70 a 76, 83, 84, 103, 126 a 132, 160 a 164, 200 y 201.
 - 11. Kit de acuerdo con las reivindicaciones 8 o 9, que comprende una pareja de oligonucleótidos que consiste en las SEQ ID n.º 64 y 109 o 64 y 149 o 64 y 206.
- 50 12. Kit de acuerdo con una de las reivindicaciones 8 a 11, que además comprende al menos una sonda seleccionada entre el grupo que consiste en las SEQ ID n.º 32, 83, 84, 160, 161, 162, 163 y 164.


- 13. Método de acuerdo con cualquiera de las reivindicaciones 1 a 7 o kit de acuerdo con cualquiera de las reivindicaciones 8 a 12, en donde dicho segundo cebador tiene una secuencia como la presentada en la SEQ ID n.º 64.
- 14. Kit de acuerdo con cualquiera de las reivindicaciones 8 a 13, que comprende cebadores y sondas que tienen 5 las secuencias que se presentan en las SEQ ID n.º 64, 109, 84, 163 y 164.









169

170

Figura 4C