

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 527 826

51 Int. Cl.:

F28D 20/02 (2006.01) F28F 21/06 (2006.01) F28F 21/08 (2006.01) F28F 3/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 20.01.2012 E 12000365 (2)
 (97) Fecha y número de publicación de la concesión europea: 15.10.2014 EP 2618090
- (54) Título: Elemento de intercambiador de calor y procedimiento para la producción
- (45) Fecha de publicación y mención en BOPI de la traducción de la patente: 30.01.2015

(73) Titular/es:

ZEHNDER VERKAUFS- UND VERWALTUNGS AG (100.0%) Moortalstrasse 1 5722 Gränichen, CH

(72) Inventor/es:

El inventor ha renunciado a ser mencionado

74 Agente/Representante:

TEMIÑO CENICEROS, Ignacio

DESCRIPCIÓN

Elemento de intercambiador de calor y procedimiento para la producción.

30

5 La presente invención se refiere a elementos de intercambiador de calor. Además, la invención desvela un procedimiento para la producción de elementos de intercambiador de calor. Finalmente, la invención se refiere a un intercambiador de calor que incluye los elementos de intercambiador de calor de la invención.

Es un estado de la técnica usar diferentes tipos de intercambiadores de calor para diferentes fines. Normalmente, los intercambiadores de calor se usan para recuperar energía calorífica de un fluido o medio en otro. Este tipo de energía calorífica se denomina energía sensible. La energía calorífica o energía sensible de un fluido, normalmente aire, se recupera en otro que transcurre adyacente, por ejemplo paralelo, flujo inverso o cruzado, al primero en el que el fluido está a temperatura inferior. Invirtiendo los flujos de fluido, el intercambio entre los dos generará un fluido más frío. Los intercambiadores de calor usados para la recuperación de energía sensible están fabricados normalmente de placas de metal o plástico. Existen diferentes tipos como pueden ser configuraciones de flujo cruzado, flujo paralelo o flujo inverso. Las placas definen canales de flujo entre ellas de manera que los fluidos puedan fluir entre las placas. Dichos dispositivos se usan, por ejemplo, en ventilación residencial y comercial (HRV).

Otro tipo de intercambiadores de energía se refiere a los denominados de energía latente, que es la humedad. Para intercambiar la energía latente se conoce usar sustratos o membranas de metal o plástico cubiertos de desecante hechos de celulosa o polímero impregnados en desecante. Entre las placas fabricadas en celulosa o polímero, se definen o se crean pasos de aire para permitir que los fluidos pasen a lo largo de la superficie de las placas, transfiriendo de este modo la humedad de un fluido al otro. Puesto que las membranas normalmente no tienen resistencia estructural, se conoce combinar las membranas con entramados o rejillas que definen de este modo 25 espacios entre las membranas.

En el caso de una combinación de los anteriores, los intercambiadores de energía se denominan intercambiador de entalpía. Los intercambiadores de entalpía permiten el intercambio de de energía sensible y latente, dando como resultado una recuperación energética total.

Los materiales de membrana que están disponibles actualmente se proporcionan mediante un rodillo. El material de membrana es la parte más crítica de un intercambiador de entalpía. La membrana debe fijarse y sellarse a un tipo de rejilla o entramado y disponerse de manera que permita que un fluido fluya entre cada capa de membrana. Así, es obvio que los intercambiadores de entalpía de la técnica conocida son un compromiso. Normalmente, perderán en senergía sensible para ganar en energía latente como resultado del alcance selectivo y las características de las membranas usadas actualmente.

Un intercambiador de calor construido a partir de los elementos respectivos es, por ejemplo, el documento WO 02/072242 A1. En las rejillas se sitúan membranas respectivas fabricadas de fibras. Las rejillas se grapan alterando 40 así la dirección de las placas con el fin de crear diferentes direcciones del flujo de aire.

En vista del estado de la técnica mencionado, es un **objeto** de la invención proporcionar elementos de intercambiador de calor e intercambiadores de calor, así como un procedimiento para la producción de elementos de intercambiador de calor. Los elementos de intercambiador de calor de la invención permiten la creación de 45 intercambiadores de entalpía por lo que la eficiencia del intercambio de energía sensible y el intercambio de energía latente puede variar y controlarse y, especialmente, mejorarse.

Con la invención, la **solución** del objeto que se ha mencionado anteriormente se presenta por un procedimiento para la producción de elementos de intercambiador de calor de acuerdo con la reivindicación 1. Con respecto al 50 elemento de intercambiador de calor, el objeto se resuelve por un elemento con las características de la reivindicación 11. Se reivindica un intercambiador de calor en la reivindicación 18. Se desvelan mejoras y características adicionales en las subreivindicaciones. Se conocen en la técnica intercambiadores de calor que tienen las características del preámbulo de las reivindicaciones 1 y 11. Los documentos US6190624-B1 o US2012/0037342-A1 son ejemplos de dichos intercambiadores de calor. De acuerdo con la invención, se proporciona un nuevo elemento de intercambiador híbrido que, por un lado, tiene suficiente resistencia estructural y densidad para crear canales de flujo de aire para cualquier tipo de intercambiador de energía de flujo cruzado y/o flujo inverso, permitiendo de este modo el uso de un material estructuralmente fuerte que es bueno para el intercambio de energía sensible, por otro lado, por el tamaño y número de perforaciones o aberturas u orificios, es posible definir un área que se rellena con una solución polimérica con características de intercambio de energía

latente. Es evidente que, por un lado, la eficiencia del intercambio de energía sensible, y por otro el intercambio de energía latente, pueden definirse, controlarse y adaptarse a las necesidades respectivas del entorno (aire seco, humedad, temperatura exterior y similares).

- 5 De acuerdo con la invención, un elemento de placa puede fabricarse de aluminio o plástico o combinaciones de los mismos. El elemento puede proporcionarse con corrugaciones. Las corrugaciones pueden diseñarse para optimizar la relación de la eficiencia con respecto a la caída de presión. Las corrugaciones pueden seleccionarse para permitir la creación de canales de flujo entre placas similares cuando se apilan entre sí. Por la definición de la corrugación, una ventaja será la mejora de la superficie que está disponible para la transferencia de energía. Ésta puede 10 construirse lo más grande que sea posible e incluso puede alcanzar un aumento del 100% y más. Además, las corrugaciones pueden diseñarse de manera que permitan la fácil disposición de configuraciones de flujo inverso o flujo cruzado, por ejemplo, escogiendo corrugaciones orientadas y alternando la posición de la placa.
- El borde de la placa define un área donde pueden fijarse juntas placas similares de una manera apropiada. Puede ser por soldadura, por ejemplo, soldadura por láser, soldadura por ultra sonidos y/o plegado, prensado y similares. Esto estabiliza la rigidez del bloque, así como permite construir los canales de flujo deseados. El área del borde puede ser aplanado, un sistema machihembrado, perfilado o bordeado para permitir una conexión hermética entre las placas.
- 20 Las perforaciones pueden realizarse en el momento de la producción de la placa, por ejemplo, integralmente cuando la placa se moldea o se estampa o se graba en relieve o se forma al vacío.
 - El polímero puede ser uno de acuerdo con el estado de la técnica, por ejemplo, como el producto "Aquivion", una marca comercial de Solvay, o "Nexar", una marca comercial de Kraton.
 - El material puede ser, por ejemplo, un ionómero en forma de copolímero producido a partir de tetrafluoroetileno, C_2F_4 , y fluoruro de etanosulfonilo, 1,1,2,2-tetrafluoro-2-[(trifluoroetenil)-oxi], C_2F_3 -O-(CF_2) $_2$ -SO $_2$ F, copolímero de bloque sulfonado.
- 30 Sin embargo, los polímeros pueden adaptarse a las características y funciones deseadas.

25

- De acuerdo con las invenciones, el polímero se suministra en forma de dispersión. La dispersión puede aplicarse en la placa, rellenando o cubriendo de esta manera los orificios o perforaciones con la solución polimérica a modo de pulverización, inmersión, serigrafía o cualquier otro procedimiento de laminación. Es obvio que la cantidad o 35 eficiencia de recuperación de energía latente depende de la superficie proporcionada por los orificios o perforaciones, su forma y su ubicación. De este modo, es posible adaptar las placas del intercambiador de calor a las condiciones ambientales y funcionales.
- Usando los materiales altamente termoconductores como los elementos estructurales para la membrana de entalpía 40 se garantiza una alta eficiencia sensible. Definiendo las perforaciones y escogiendo el polímero, se garantiza una elevada recuperación latente.
 - La corrugación/grabado en relieve de la placa aumenta la superficie de intercambio de forma significativa.
- 45 Las porciones perforadas o abiertas de cada placa pueden alcanzar el 70% o más, del área superficial total, por ejemplo un patrón de mosquitera. En tal caso, la superficie excede la de una membrana plana de acuerdo con el estado de la técnica), con una pérdida mínima de la característica de alta recuperación de energía sensible de las placas del intercambiador. Puede alcanzarse una eficiencia de recuperación energética total de hasta el 85% en el modo calentamiento y el 72% en el modo refrigeración. Varias placas finalizadas pueden apilarse juntas para construir un bloque que, dentro de un bastidor o alojamiento, crea un intercambiador de calor de acuerdo con la invención.
 - La energía sensible y latente combinada con respecto a tal nivel elevado de recuperación energética total podría, en algunas zonas climáticas, eliminar la necesidad de un intercambiador de calor únicamente sensible.
- El polímero puede combinarse con aditivos para multiplicar y magnificar sus atributos. Por ejemplo, puede tener eficacia antibacteriana y cumplir requisitos de resistencia al fuego (UL). Su viscosidad puede ajustarse para conseguir las características de intercambio sintonizable óptimo de la placa que permiten un intercambio de humedad lo más elevado posible.

Es obvio que las capacidades de transferencia de energía sensible y de transferencia de energía latente del intercambiador de calor pueden sintonizarse y ajustarse. Las placas pueden adaptarse a condiciones ambientales por la geometría en mosaico variable de las perforaciones. Por ejemplo, un intercambiador puede estar diseñado 5 para funcionar a una temperatura por debajo del punto de congelación (-10 °C) sin acumulación de hielo seleccionando únicamente la posición correcta de las perforaciones y el tratamiento polimérico de las placas constitutivas.

La rigidez de los elementos estructurales podría hacer que la placa y, de este modo, la membrana, fueran capaces 10 de manejar un diferencial de presión de hasta 1 Kpa en el intercambiador. Esta ventaja abre la puerta a mayores construcciones de intercambiadores para aplicaciones comerciales.

La invención proporciona un procedimiento sencillo para la producción de placas de intercambiador de energía permitiendo un intercambio de energía sensible así como latente. El diseño y la adaptabilidad de las placas permiten 15 la construcción y el diseño de intercambiadores de calor que están optimizados con respecto a los requisitos técnicos y/o las condiciones ambientales.

Pueden fabricarse placas estampadas, corrugadas, grabadas en relieve o de aluminio formado al vacío, de acero inoxidable, basadas en resina y/o placas de plástico usando tecnologías de automatización probadas, incluyendo el 20 montaje, por ejemplo, por adherencia y sellado al vacío, por ejemplo, por soldadura láser, soldadura de ultra sonidos, plegado, prensado, para obtener bloques de placas rígidas superpuestas. Las placas pueden lavarse, son resistentes al fuego, antibacterianas, selladas, por ejemplo, a prueba de fugas. Tienen todas las ventajas valiosas que son necesarias para crear intercambiadores de calor altamente eficientes.

- 25 La perforación selectiva de las placas y el vaciado hermético de las micromembranas poliméricas en mosaico permite la construcción de membranas en mosaico híbridas estructurales. Además, la perforación de las placas puede realizarse mediante procesos láser continuos programados previamente, mediante sistemas mecánicos como corona de agujas y similares, o procesos de ataque químico.
- 30 Características y aspectos adicionales de la invención serán evidentes a partir de la siguiente descripción de los dibujos. Los dibujos muestran:
 - La figura 1 una vista superior de un ejemplo para una realización de una placa de intercambiador de acuerdo con la invención, y
- 35 la figura 2 una vista lateral de la placa de acuerdo con la figura 1.

En los dibujos, los elementos similares se designan por los mismos números de referencia.

- Una placa de intercambiador 1 consiste en una placa rígida estructural 2 fabricada de aluminio, plástico o similares.

 40 La placa 2 tiene un borde 4 que es un borde sellable plano y puede deformarse para su sellado. Las áreas del borde
 4 se abren o se desvían como se muestra por la referencia Nº 5 para definir, por ejemplo, una entrada y salida de un
 canal de flujo.
- Dentro del área de borde, unas corrugaciones 3 se estampan o se graban en relieve en la placa 2. Cuando se sellan 45 juntas placas similares, se definen canales de flujo. En el ejemplo, la referencia Nº 6 designa áreas con perforaciones.
 - Con fines de claridad, sólo se designan algunas de las áreas de perforación 6 y algunas de las áreas corrugadas 3.
- 50 El elemento de intercambiador de calor 1 muestra una gran superficie para el intercambio de calor que aumenta por las corrugaciones 3 que se corrugan en una dirección únicamente y se abren en la otra superficie. Además, las áreas perforadas 6 definen un área de intercambio de energía latente para la transferencia de humedad.
- Estas placas se apilarán para construir un intercambiador de calor, por ejemplo, para sistemas de ventilación, para 55 intercambiar calor del aire saliente al entrante (o viceversa para la refrigeración libre en verano), así como la humedad del aire saliente al entrante en invierno (o viceversa para la reducción de la humedad en verano o todo el año en zonas climáticas cálidas y húmedas).

Los dibujos y la descripción no limitan de ningún modo la invención y únicamente pretenden describir un ejemplo.

ES 2 527 826 T3

Números de referencia:

- elemento de intercambiador de calor
- 2 3 4 5 6 placa
- corrugación borde
- borde abierto
- perforaciones

REIVINDICACIONES

- 1. Procedimiento para la producción de elementos de intercambiador de calor, que incluye
- 5 a) producir un elemento de placa con dimensiones externas definidas y corrugaciones en el área dentro de un borde.
 - b) perforar la placa en áreas predefinidas y en dimensiones predefinidas, caracterizado por
 - c) rellenar las perforaciones con un polímero con capacidad de recuperación de energía latente y
 - d) curar el polímero.

Procedimiento de acuerdo con la reivindicación 1, caracterizado porque para la placa se usa aluminio.

- 3. Procedimiento de acuerdo con la reivindicación 1, **caracterizado porque** para la placa se usa plástico.
 - 4. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, **caracterizado porque** la placa está estampada.
- 5. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, **caracterizado porque** la 20 placa está corrugada.
 - 6. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, **caracterizado porque** la placa está moldeada.
- 25 7. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, **caracterizado porque** la placa se perfora por estampado.
 - 8. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, **caracterizado porque** la perforación se forma durante el moldeo.
- 9. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el polímero es un copolímero sulfonado.
- 10. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, **caracterizado porque** el 35 polímero se aplica en forma de dispersión.
- 11. Elemento de intercambiador de calor que incluye un elemento de placa con dimensiones externas definidas y corrugaciones en el área dentro de un borde, dicho elemento de placa tiene perforaciones en áreas predefinidas y en dimensiones predefinidas, **caracterizado porque** dichas perforaciones se rellenan con un 40 polímero con capacidad de recuperación de energía latente.
 - 12. Elemento de intercambiador de calor de acuerdo con la reivindicación 11, **caracterizado porque** las perforaciones son orificios pequeños.
- 45 13. Elemento de intercambiador de calor de acuerdo con cualquiera de las reivindicaciones anteriores 11 a 12, **caracterizado porque** las áreas perforadas suman hasta el 70% de la superficie total del elemento de placa.
- 14. Elemento de intercambiador de calor de acuerdo con cualquiera de las reivindicaciones anteriores 11 a 13, caracterizado porque el polímero es un copolímero sulfonado.
 50
 - 15. Elemento de intercambiador de calor de acuerdo con cualquiera de las reivindicaciones anteriores 11 a 14, **caracterizado porque** el elemento de placa tiene un borde que permite la conexión hermética a gas a otro elemento de placa similar.
- 55 16. Elemento de intercambiador de calor de acuerdo con cualquiera de las reivindicaciones anteriores 11 a 15, **caracterizado porque** el elemento de placa tiene corrugaciones que aumentan la superficie de intercambio hasta el 100%.
 - 17. Elemento de intercambiador de calor de acuerdo con cualquiera de las reivindicaciones anteriores 11

ES 2 527 826 T3

- a 16, caracterizado porque las corrugaciones están orientadas para guiar un flujo de fluido.
- 18. Intercambiador de calor con al menos tres elementos de intercambiador de calor tipo placa fijados entre sí en una orientación paralela para formar dos trayectorias de fluido que permitan a los fluidos fluir a través de
 5 los mismos, caracterizado porque los elementos de intercambiador de calor tipo placa son elementos de acuerdo con cualquiera de las reivindicaciones 11 a 17.

<u>FIG. 1</u>

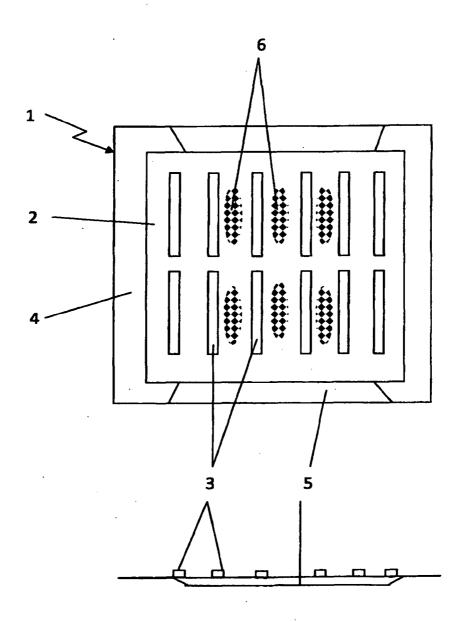


FIG. 2