

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 527 980

51 Int. Cl.:

C12N 15/09 (2006.01) C12N 1/21 (2006.01) C12P 7/40 (2006.01) C12P 7/56 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 04.09.2006 E 09013960 (1)
 (97) Fecha y número de publicación de la concesión europea: 23.07.2014 EP 2147976

(54) Título: Levadura y procedimiento de producción de ácido L-láctico

(30) Prioridad:

14.10.2005 JP 2005300415

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **02.02.2015**

73) Titular/es:

TORAY INDUSTRIES, INC. (100.0%) 1-1, NIHONBASHI-MUROMACHI 2-CHOME CHUO-KU TOKYO, 103-8666, JP

(72) Inventor/es:

SAWAI, HIDEKI; SAWAI, KENJI; SONOKI, TOMONORI y HATAHIRA, SATOKO

(74) Agente/Representante:

DURÁN MOYA, Carlos

DESCRIPCIÓN

Levadura y procedimiento de producción de ácido L-láctico

5 SECTOR TÉCNICO

10

25

40

45

55

60

65

La presente invención se refiere a un procedimiento de producción de ácido L-láctico. La presente invención se refiere además a una levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa. La presente invención se refiere además a un procedimiento de producción de ácido L-láctico que comprende cultivar la levadura que tiene un gen introducido que codifica una L-lactato deshidrogenasa.

TÉCNICA ANTERIOR

Dentro del actual creciente interés de la sociedad por la utilización y la reutilización eficaz de los recursos, están atrayendo especialmente la atención los polímeros producidos a partir de materias primas vegetales. En particular, se ha conocido recientemente que el ácido poliláctico, un producto de una materia prima de origen vegetal, tiene unas propiedades excelentes.

El ácido láctico, la materia prima para el ácido poliláctico, se ha producido mediante el cultivo de un microorganismo, denominado generalmente como bacteria láctica. Entre los ejemplos típicos de las bacterias lácticas se incluyen especies de Lactobacillus y Lactococcus. Debido a que estas bacterias lácticas generalmente muestran un excelente rendimiento respecto al azúcar, pero son menos resistentes a los ácidos, para la acumulación de una sustancia ácida tal como ácido láctico en una gran cantidad, debe llevarse a cabo el cultivo a la vez que la solución de cultivo se neutraliza, por ejemplo, con un álcali tal como carbonato cálcico, hidróxido amónico o hidróxido sódico.

Sin embargo, un proceso de este tipo da una sal de lactato, tal como lactato sódico o lactato cálcico por el proceso de neutralización con un álcali, lo que hace necesario un tratamiento para convertir la sal de lactato de nuevo en ácido láctico en la etapa de purificación posterior y, de este modo, provoca un coste adicional.

De este modo, para la reducción del coste de neutralización, se ha propuesto la producción de ácido láctico mediante levadura resistente a los ácidos (véase los documentos de patente 1 a 5 y los documentos que no son patentes 1 a 3). Las levaduras no producen naturalmente ácido láctico y, por lo tanto, para la producción de ácido láctico por la levadura, se deben introducir un gen de codificación de una L-lactato deshidrogenasa, y una enzima de conversión de ácido pirúvico en ácido L-láctico, (a continuación, abreviado como gen L-ldh) en la levadura por una técnica de recombinación genética.

Se han estudiado genes L-ldh bovinos, tal como el gen L-ldh para su introducción en la levadura (véase los documentos de patente 3 y 5, y los documentos que no son patentes 1 a 3), y se ha descrito que son más favorables que los genes L-ldh derivados de bacterias lácticas. Los genes L-ldh derivados de bovino tienen un rendimiento menor respecto al azúcar de ácido L-láctico y, de este modo, existía una necesidad de nuevas mejoras de rendimiento con respecto al azúcar (véase el documento no patente 3). Además, se ha estudiado también la mejora de la productividad de ácido L-láctico mediante mutación del gen derivado de la levadura. Sin embargo, la mutación del gen derivado de levadura dio lugar frecuentemente a desventajas tales como el alargamiento del periodo de fermentación y la disminución de la velocidad de consumo de azúcar (véase los documentos de patente 3 y 6).

Tal como se ha descrito anteriormente, la producción de ácido L-láctico mediante levadura es un procedimiento útil. Sin embargo, existe una necesidad de una mejora adicional de la productividad.

Documento de Patente 1: Solicitud de patente japonesa abierta a inspección pública (JP-A) Nº 2001-204.464
50 Documento de Patente 2: JP-A N º 2001 - 204.468

Documento de Patente 3: Solicitud de Patente Japonesa de Publicación Nacional (abierta a inspección pública) N^0 2001 - 516584

Documento de Patente 4: JP-A N º 2003-93060

Documento de Patente 5: JP-A N º 2003-259878

Documento de Patente 6: JP-A N º 2.006-006.271

Documentos no de patente 1: Danilo Porro y otros, Biotechnol. Prog, 11: págs. 294-298 (1955)

Documento no de patente 2: Danilo Porro y otros, Applied and Environmental Microbiology, 65 (9): p. 4211-4211 (1999)

Documento no de patente 3: Satoshi Saitoh y otros, Applied and Environmental Microbiology, 71 (5): p. 2789-2792 (2005)

Secuencias de ARNm de la lactato deshidrogenasa A1 de Xenopus laevis (ldha2) secuencia completa (1999-06-30), cadena M de lactato deshidrogenasa A1 de Xenopus laevis (LDH-A) secuencia completa (1999-07-01) y el clon de ADNc de lactato deshidrogenasa MGC:53139 IMAGE:5542650, secuencia completa (2003-01-30) son extraíbles de la base de datos EMBL. Se hace referencia además a H. Mannen y otros, *Evidencia molecular para un clado de tortugas* ("Molecular evidence for a clade in turtles") Molecular Phylogenetic and evolution, volumen 13, 1999, págs.

144-148, y a S. L. Klein y otros, Herramientas genéticas y genómicas para la investigación en Xenopus: La iniciativa NIH Xenopus ("Genetic and genomic tools for Xenopus research: the NIH Xenopus initiative"), Developmental Dynamics 2002, volumen 225, págs. 384-391.

Los siguientes documentos describen la producción de levadura recombinante mediante la inserción de ldh exógena (lactato deshidrogenasa) dentro de las células de levadura: documentos WO03/102152 A2, US 2003/0228671 A1, US 6429006 B1, US 2003/016611479 A1, US 6485947 B1.

CARACTERÍSTICAS DE LA INVENCIÓN

10

La presente invención es una levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1.

Otra realización preferente de la presente invención es

15

20

- (1) una levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1, que tiene una alcohol deshidrogenasa variante tal como se define en la reivindicación 5, o
- (2) una levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1, que carece del gen que codifica la piruvato descarboxilasa 1 y tiene un gen de piruvato descarboxilasa 5 variante en el que parte de la secuencia de ADN del gen que codifica la piruvato descarboxilasa 5 de tipo salvaje se ha eliminado, insertado, sustituido y/o agregado.

DESCRIPCIÓN BREVE DE LOS DIBUJOS

25

La figura 1 es un gráfico esquemático que muestra un ejemplo del procedimiento para la preparación de un fragmento de PCR para la introducción del gen L-ldh en el cromosoma para su utilización en la presente invención.

La figura 2 es un gráfico que muestra el plásmido pTRS11, un ejemplo del plásmido de expresión para su utilización en la presente invención.

La figura 3 es un gráfico que muestra el plásmido pTRS57, un ejemplo del plásmido de expresión para su utilización en la presente invención.

35 EXPLICACIÓN DE LOS NUMERALES

- 1: Secuencia homóloga corriente arriba del lugar de introducción deseado (lugar de adición)
- 2: Secuencia común
- 3: gen marcador de selección de levadura
- 40 4: Secuencia homóloga corriente arriba del lugar de introducción deseado (lugar de adición)
 - 5: Fragmento de PCR para la introducción del gen L-ldh en el cromosoma

MEJOR MODO DE LLEVAR A CABO LA INVENCIÓN

- En la presente invención, el gen de L-ldh representa un gen que codifica la proteína que tiene una actividad de conversión de nicotinamida adenina dinucleótido reducida (NADH) y el ácido pirúvico en nicotinamida adenina dinucleótido (NAD+) oxidada y ácido L-láctico. El gen que codifica una L-lactato deshidrogenasa (gen L-ldh) para su utilización en la presente invención es un gen L-ldh de Xenopus laevis tal como se define en la reivindicación 1.
- Los tres tipos de isoformas del gen de codificación de L-lactato deshidrogenasa de Xenopus laevis (gen L-ldh), ldhA, ldhB, y ldhC, son conocidos, y cualquiera de ellos se pueden utilizar en la presente invención, pero preferentemente es el gen ldhA.
- Específicamente, el gen de codificación de L-lactato deshidrogenasa de Xenopus laevis (gen L-ldh) según la presente invención es preferentemente el gen L-ldh que tiene la secuencia de nucleótidos mostrada en la ld. Sec. Nº 2

Los genes que codifican L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención incluyen polimorfismo genético generado mediante mutagénesis. En la presente descripción, el polimorfismo genético significa un cambio parcial en la secuencia de ADN de un gen causado por mutación natural. La mutagénesis es la introducción artificial de la mutación en un gen. La mutagénesis se lleva a cabo, por ejemplo, mediante un procedimiento de utilización de un kit de mutagénesis específica de lugar (Mutan-K, fabricado por Takara Bio Inc.) o un procedimiento de utilización de un kit de mutagénesis aleatoria (BD Diversify PCR Random Mutagenesis (fabricado por Clontech)).

La levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención, produce ácido L-láctico con un rendimiento elevado con respecto al azúcar.

Preferentemente, el gen PDR13 de tipo salvaje usado en la presente invención es un gen que tiene la secuencia de ADN mostrada en la Id. Sec. Nº 64. Preferentemente, el gen PDR13 variante es una levadura que tiene el gen que tiene la secuencia de ADN mostrada en la Id. Sec. Nº 22. Además, parte de la proteína codificada en el gen PDR13 de tipo salvaje o variante tiene preferentemente la secuencia primaria de aminoácidos mostrada en la Id. Sec. Nº 23.

La levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención es preferentemente levadura que produce parcialmente la proteína PDR13. Las levaduras que producen parcialmente la proteína PDR13 tienen un gen PDR13 variante, es decir, un gen que codifica una proteína PDR13 variante. Entre los ejemplos de las mutaciones se incluyen la mutación (supresión) de una parte del ADN cromosómico de la levadura de codificación de la proteína PDR13, la mutación (supresión o sustitución) de uno o más aminoácidos en la secuencia de aminoácidos de la proteína, y similares.

15

20

25

30

35

50

65

Un ejemplo de la "supresión de parte del ADN cromosómico que codifica la proteína PDR13" en la presente invención es un ADN variante que tiene una mutación que prohíbe traducción de, como mínimo, 39 residuos de aminoácidos del extremo C-terminal en la secuencia de ADN del ADN cromosómico. La mutación de, como mínimo, 39 aminoácidos del extremo C-terminal eliminados de la secuencia de aminoácidos de la proteína PDR13 se prepara mediante la introducción de la mutación en el ADN cromosómico que codifica la proteína PDR13 por el procedimiento de mutagénesis específica de lugar.

La mutagénesis específica de lugar se puede realizar, por ejemplo, mediante la utilización del método de mutagénesis de un kit de mutagénesis específica de lugar (Mutan-K, fabricado por Takara Bio Inc.), pero el procedimiento de mutagénesis de la presente invención no se limita al mismo.

La levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención tiene preferentemente una alcohol deshidrogenasa variante que tiene una secuencia de aminoácidos en la que parte de la secuencia de aminoácidos de la alcohol deshidrogenasa de tipo salvaje está sustituida, suprimida, insertada y/o añadida.

La levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención es preferentemente una levadura que tiene una sensibilidad a la temperatura tal que la actividad intercelular de la alcohol deshidrogenasa de la alcohol deshidrogenasa de tipo salvaje desaparece o se reduce por el cambio en la temperatura de cultivo.

En la presente invención, la alcohol deshidrogenasa es una proteína que tiene una actividad de conversión de acetaldehído en etanol.

Una levadura tiene múltiples isogenes como genes que codifican una alcohol deshidrogenasa. En la presente invención, es preferente utilizar un gen de la alcohol deshidrogenasa que tiene la actividad más elevada de alcohol deshidrogenasa en las células de levadura para su utilización en la producción.

Específicamente, entre los isogenes de alcohol deshidrogenasa de Saccharomyces cerevisiae conocidos, registrados en la Base de Datos del Genoma Saccharomyces se incluyen ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, y otros. Entre ellos, es preferente la utilización del gen ADH1.

La levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención es preferentemente una levadura que carece del gen que codifica la piruvato descarboxilasa 1 y que tiene un gen variante de la piruvato descarboxilasa 5, que tiene una secuencia de ADN en la que parte de la secuencia de ADN del gen que codifica la piruvato descarboxilasa 5 de tipo salvaje está eliminada insertada, sustituida y/o añadida.

La levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención es preferentemente una levadura que carece de su gen PDC1. La supresión del gen PDC1 conduce a un deterioro en la actividad de la piruvato descarboxilasa, en comparación con el gen PDC1 de tipo salvaje. Es conocido que la supresión de ambos genes PDC1 y PDC5 conduce a un mayor deterioro en la actividad de la piruvato descarboxilasa y, además, a un crecimiento extremadamente lento en un medio que contiene glucosa. De este modo, en la presente invención, preferentemente, se hace posible reducir favorablemente la actividad de la piruvato descarboxilasa derivada del gen PDC5 y controlar la ruta metabólica de la levadura a etanol mediante la introducción de mutación en el gen PDC5.

Específicamente, la levadura según la presente invención es preferentemente una levadura que, preferentemente, tiene una actividad específica de su piruvato descarboxilasa intercelular de un tercio de la actividad específica en la célula de levadura de tipo salvaje o menos. La supresión del gen PDC1 permite la reducción de la actividad específica de la piruvato descarboxilasa en células de levadura a un tercio de la actividad específica de la levadura

de tipo salvaje o menos. La actividad específica de la piruvato descarboxilasa en la célula de levadura puede ser determinada utilizando el procedimiento descrito a continuación.

La levadura para utilización en la presente invención no está particularmente limitada, en tanto sea una levadura que permita la introducción del gen L-Idh de Xenopus laevis, y entre los ejemplos de la misma se incluyen levaduras que pertenecen a las especies Saccharomyces, Schizosaccharomyces y de Kluyveromyces. Preferentemente, es Saccharomyces cerevisiae, y específicamente, es preferente NBRC10505 o NBRC10506.

5

15

40

- A continuación, se describirá más específicamente el procedimiento de producción de la levadura según la presente invención, aunque la levadura según la presente invención se puede producir mediante una variedad de procedimientos. En primer lugar, se describirán varios procedimientos de producción de la levadura.
 - Utilizado en la clonación de un gen deseado, existe un procedimiento de obtención de una región del gen deseado mediante el procedimiento de PCR (Reacción en Cadena de la Polimerasa) sobre la base de la información genética conocida, un procedimiento de clonación a partir de bibliotecas genómicas y de ADNc utilizando su homología o la actividad enzimática como indicador, y similares. Otros procedimientos incluyen procedimientos de preparación del clon por síntesis guímica o ingeniería genética sobre la base de la información conocida de la proteína.
- El plásmido en el que se introduce el gen clonado deseado puede ser uno cualquiera de los plásmidos utilizados generalmente en levaduras. Los plásmidos utilizados generalmente en levaduras tienen una secuencia necesaria para la replicación autónoma en células de E. Coli, un marcador de selección de levadura y un marcador de selección de E. Coli. Alternativamente, el plásmido de expresión para la expresión del gen deseado introducido tiene preferentemente las denominadas secuencias reguladoras, que regulan la expresión del gen deseado, tal como operador, promotor, terminador y potenciador. La secuencia necesaria para la replicación autónoma en células de levadura es, por ejemplo, un conjunto de origen de replicación autónoma de levadura (ARS1) y secuencia de centrómero o un origen de replicación de plásmido de 2 µm de levadura, mientras que la secuencia necesaria para la replicación autónoma en E. coli es, por ejemplo, origen de replicación ColE1 de E. coli.
- 30 El marcador de selección de levadura es, por ejemplo, un gen auxótrofo complementario tal como URA3, LEU2, TRP1 o HIS3 o un gen resistente a fármacos tal como gen resistente a G418 o gen resistente a la neomicina. El marcador de selección de E. coli es, por ejemplo, un gen resistente a los antibióticos tal como el gen resistente a la ampicilina o el gen resistente a la kanamicina.
- La secuencia reguladora no está particularmente limitada, en tanto sea una secuencia que permita la expresión de un gen deseado, y entre los ejemplos de la misma se incluyen las regiones promotora y terminadora de los genes que codifican las proteínas altamente expresadas en la levadura, tales como alcohol deshidrogenasa (ADH), triosa fosfato deshidrogenasa (TDH), piruvato descarboxilasa (PDC), y citocromo C1 (CYC1). Sin embargo, el plásmido de expresión no está limitado a los mismos.
 - Entre los procedimientos de introducción de un ADN tal como un plásmido, plásmido de expresión, plásmido linealizado, plásmido de expresión linealizado, o fragmento de PCR en levadura se incluyen la transformación, transducción, transfección, co-transfección y electroporación y similares y, específicamente, por ejemplo, se puede realizar por un procedimiento de transformación tal como un procedimiento de utilización de acetato de litio (Journal of Bacteriology, 1983, vol. 153, págs. 163-168) o un procedimiento de protoplastos (Satoshi Harashima y otros, Molecular Cell Biology, 1984, vol. 4, págs. 771-778). Alternativamente, se puede realizar mediante, por ejemplo, el KIT DE TRANSFORMACIÓN DE LEVADURA DE CATIÓN ALCALINO disponible de BIO101. Entre ellos, en la presente invención es preferente el procedimiento que utiliza de acetato de litio, pero sin que constituya limitación.
- Cualquiera de los procedimientos conocidos descritos, por ejemplo, en "Métodos en Genética de Levaduras" ("Methods in Yeast Genetics", 1990, M. D. Rose y otros, puede ser utilizado como el procedimiento de cultivo de la levadura transformada obtenida por el procedimiento de transformación. La selección del medio es arbitraria, en tanto se trate de un medio mínimo que no contenga nutrientes para el gen marcador utilizado como indicador de la introducción del plásmido, el plásmido de expresión, o fragmento de PCR. Es favorable en la presente invención un medio que tiene la siguiente composición: base de levadura nitrogenada sin aminoácidos (fabricada por Difco) 0,67%, glucosa 2,0%, mezcla deficiente con el nutriente para el gen marcador eliminado (medio descrito en "Métodos en Genética de Levaduras", citado), pero el medio no queda limitado por éste.
- La supresión del gen deseado puede llevarse a cabo por recombinación homóloga del locus del gen deseado con un marcador de selección, tal como un gen marcador auxótrofo o un gen resistente a los fármacos utilizado en levaduras de forma habitual. Entre los ejemplos de los mismos se incluyen, pero sin que constituyan limitación, genes marcadores auxótrofos tales como URA3, LEU2, TRP1, y HIS3 (Methods in Enzymology, vol. 101, págs. 202-211, G-418) y genes resistentes a medicamentos (Gene, 1083, vol. 26, págs. 243-253).
- El procedimiento de introducción en la levadura del gen L-ldh de Xenopus laevis según la presente invención es, por ejemplo, un procedimiento de clonación del gen L-ldh de Xenopus laevis y la transformación de la levadura con un

plásmido de expresión que tiene el gen clonado incorporado, un procedimiento de inserción del gen clonado en una posición deseada del cromosoma por recombinación homóloga, o similares, pero sin que constituyan limitación.

Un plásmido capaz de expresar el gen se obtiene mediante la introducción del gen L-ldh de Xenopus laevis en el plásmido de expresión descrito anteriormente en una posición corriente abajo del promotor. Es posible introducir el gen L-ldh de Xenopus laevis en la levadura mediante la transformación de la levadura con el plásmido que expresa el gen L-ldh de Xenopus laevis obtenido por el procedimiento descrito a continuación.

Preferentemente, la levadura según la presente invención es una levadura que comprende el gen introducido que codifica una L-lactato deshidrogenasa para su expresión en una posición corriente abajo del promotor del gen de la piruvato descarboxilasa 1 en el cromosoma.

15

20

25

30

35

50

55

60

El procedimiento de inserción del gen L-Idh de Xenopus laevis en una posición deseada en el cromosoma, preferentemente corriente abajo del promotor del gen de la piruvato descarboxilasa 1 (gen PDC1), mediante recombinación homóloga es, por ejemplo, un procedimiento de realización de PCR (Reacción en Cadena de la Polimerasa) utilizando un cebador diseñado para añadir regiones homólogas en las posiciones deseadas corriente arriba y corriente abajo del gen L-Idh de Xenopus laevis y transformación de los fragmentos de PCR obtenidos en la levadura por el procedimiento descrito a continuación, sin que constituya limitación. El fragmento de PCR tiene preferentemente un marcador de selección de levadura para facilitar la selección de la levadura transformada.

El procedimiento de preparación del fragmento de PCR para su utilización se lleva a cabo, por ejemplo, en las siguientes tres etapas (1) a (3). Estas etapas se muestran en la figura 1.

(1) Etapa 1: El fragmento que contiene un gen L-Idh de Xenopus laevis y un terminador corriente abajo del mismo se amplifica por PCR, utilizando un plásmido que tiene el gen L-Idh de Xenopus laevis y el terminador (utilizado como plantilla) y un conjunto de cebadores -1- y -2-. El cebador -1- está diseñado para añadir una secuencia homóloga de 40 pares de bases o más a una posición corriente arriba de la posición deseada, mientras que el cebador -2- está diseñado en base a la secuencia derivada del plásmido corriente abajo del terminador. Preferentemente, la secuencia homóloga añadida al cebador que es homóloga a la de corriente arriba de la posición deseada, es preferentemente una secuencia homóloga a la secuencia corriente arriba del gen PDC1.

(2) Etapa 2: Un fragmento que contiene un marcador de selección de levadura se amplifica mediante PCR, utilizando un plásmido que contiene un marcador de selección de levadura tal como pRS424 o pRS426 como plantilla y un conjunto de cebadores -3- y -4-. El cebador -3- está diseñado para añadir una secuencia de 30 pares de bases o más, que es homóloga a la secuencia corriente abajo del terminador del fragmento de PCR en la etapa 1, mientras que el cebador -4- está diseñado para añadir una secuencia de 40 pares de bases o más, que es homóloga corriente abajo a la posición deseada. Preferentemente, la secuencia añadida al cebador -4- que es homóloga a la secuencia corriente abajo de la posición deseada, es una secuencia homóloga corriente abajo al gen PDC1.

40 (3) Etapa 3: La PCR de la mezcla de los fragmentos de PCR obtenidos en las etapas 1 y 2 como plantillas y un conjunto de cebadores -1- y -4- dieron fragmentos de PCR que contienen genes L-ldh de Xenopus laevis que contienen las secuencias homólogas corriente arriba y corriente abajo de la posición deseada añadidas en ambos extremos, terminadores y marcadores de selección de levadura. Preferentemente, los fragmentos de PCR son fragmentos de PCR que contienen genes L-ldh de Xenopus laevis que contienen secuencias homólogas corriente arriba y corriente abajo del gen PDC1 añadidas en ambos extremos, un terminador y un gen marcador.

Cuando un marcador de selección de levadura se introduce mediante la introducción de un plásmido que expresa genes L-Idh de Xenopus laevis obtenidos de este modo o los fragmentos de PCR en levadura, es posible obtener la levadura transformada con el marcador como indicador.

Es posible producir ácido L-láctico en el medio mediante el cultivo de la levadura que tiene un gen L-ldh de Xenopus laevis según la presente invención. Si el plásmido de expresión introducido es retenido en la levadura, es posible producir ácido L-láctico en el medio mediante el cultivo de la levadura transformada. En la presente invención, la actividad de la L-lactato deshidrogenasa es una actividad de conversión del ácido pirúvico y el NADH en ácido L-láctico y NAD+. Las actividades de la L-lactato deshidrogenasa se comparan a menudo en sus actividades específicas como indicador. Específicamente, las levaduras con el mismo procedimiento de introducción del gen L-ldh y mismos antecedentes genéticos son cultivadas bajo las mismas condiciones, y se determina el cambio en la absorbancia a 340 nm asociada con la disminución de NADH utilizando la proteína extraída del microorganismo de cultivo. Cuando una cantidad de enzima que reduce 1 μmol de NADH por minuto a temperatura ambiente se define como 1 unidad, la actividad específica de L-lactato deshidrogenasa se expresa por la Fórmula 1, en la que, Δ340 representa la disminución en la absorbancia a 340 nm por minuto, y 6,22 es el coeficiente de absorción milimolar del NADH.

[Fórmula 1]

15

60

Actividad específica de LDH (unid/mg) =

Δ340 x Volumen total de solución de reacción (ml)

[concentración de la solución de enzima (mg/ml)×volumen de la solución de enzima (ml)]×6,22×longitud paso óptico (cm)

5 (Fórmula 1)

A continuación, se describirá el procedimiento de preparación de la levadura que contiene un gen que codifica la proteína PDR13 parcialmente variante.

- 10 Entre los ejemplos de los procedimientos de preparación se incluyen:
 - [1] Un procedimiento de selección de una levadura que tiene una eficiencia de producción de ácido láctico mayor que la de la cepa parental de una biblioteca de levadura recombinante preparada mediante la inserción de un transposón en el ADN cromosómico de la levadura;
 - [2] Un procedimiento de preparación de una levadura que contiene un gen de codificación de la proteína PDR13 parcialmente deficiente, por ejemplo, por un procedimiento de recombinación homóloga; y
- [3] Un procedimiento de preparación de un microorganismo que tiene, en el cromosoma, un ADN que codifica una secuencia de aminoácidos variante que tiene una mutación tal como una supresión, sustitución o inserción, que impide la traducción de, como mínimo, 39 residuos de aminoácidos del extremo C-terminal de la secuencia de aminoácidos de la proteína PDR13, por ejemplo, mediante un procedimiento de recombinación homóloga u otros.
- La cepa parental que se describe en el procedimiento [1] es una cepa parental suministrada al proceso de mutagénesis, y la cepa parental puede ser levadura de tipo salvaje, una variante modificada de levadura industrialmente útil, levadura de fusión celular o una levadura de recombinación preparada mediante un procedimiento de ingeniería genética.
- La biblioteca de mutaciones del gen que se describe en [1] se prepara, por ejemplo, mediante un procedimiento de preparación de fragmentos de ADN con secuencias transposón insertadas por digestión con enzimas de restricción de la biblioteca de genomas de secuencias transposón insertadas proporcionada como Colección de Plásmidos de levadura mTn (fabricada por Open Biosystems) y la introducción de los fragmentos de ADN en el ADN cromosómico en dos procesos de recombinación homóloga.
- Es posible observar la influencia de la mutación de inserción en una región del gen claramente limitada en la eficiencia de producción de ácido láctico, mediante la identificación del lugar de inserción de la secuencia de transposón utilizando la biblioteca mutación genética como fuente de cribado.
- El procedimiento de selección de una levadura que tiene una eficiencia mejorada de producción de ácido láctico a partir de la biblioteca es, por ejemplo, un procedimiento de introducción de un plásmido de expresión del gen de codificación de la enzima productora de ácido láctico para cada cepa de la biblioteca, el cultivo de la levadura transformante obtenida, y la medición cuantitativa del ácido láctico generado. Un aumento en el ácido láctico acumulado a lo largo del período de cultivo indica una mayor producción de ácido láctico.
- La selección de la levadura con una eficiencia de producción de ácido láctico más elevada de la biblioteca se puede llevar a cabo mediante la utilización de una levadura con el gen L-ldh introducido como la cepa parental. El tipo introducido de L-ldh utilizado es un gen L-ldh de origen Xenopus laevis o de origen bovino (no forma parte de la presente invención) que tiene la secuencia de nucleótidos mostrada en las Id. Sec. Nº 2 ó 3.
- La figura 3 es un gráfico que muestra la estructura de un plásmido pTRS57 que expresa L-ldh de origen bovino que no forma parte de la presente invención, mientras que la figura 2 es un gráfico que muestra la estructura de un plásmido pTRS11 para su utilización en la presente invención.
- La forma de expresión del gen L-ldh, por ejemplo si éste se expresa tal como se introduce en el cromosoma o plásmido, no está particularmente limitada, en tanto el gen esté conectado bajo el control de un promotor que permita la expresión del gen. Entre los ejemplos de plásmidos de expresión se incluyen un plásmido pTRS57 de expresión multicopia preparado mediante la unión a una estructura del gen que contiene un gen de L-Ldh de origen bovino bajo el control del promotor del gen de alcohol deshidrogenasa 1 unido a pRS426, y un plásmido pTRS48 de expresión multicopia preparado mediante la inserción de un gen L-ldh derivado de homo sapiens a pTRS11.
 - Es posible seleccionar una levadura que tiene una eficiencia mejorada de producción ácido láctico respecto a la cepa parental, mediante la preparación de levaduras transformadas mediante la introducción de pTRS57 en las

cepas en la biblioteca por un procedimiento ordinario, el cultivo de las levaduras transformadas y la cepa parental utilizada para la transformación, respectivamente, y la determinación de la cantidad de ácido láctico producido durante el cultivo.

- 5 El procedimiento de cultivo de las levaduras transformadas que contienen pTRS57 no está particularmente limitado, en tanto sea un cultivo que permita la expresión de L-lactato deshidrogenasa, y se pueda llevar a cabo mediante un procedimiento de cultivo de la levadura transformada.
- La concentración de ácido láctico en la solución de cultivo se puede determinar cuantitativamente mediante un procedimiento que utiliza HPLC. Por ejemplo, el sobrenadante de la solución de cultivo se separa por centrifugación de la solución de cultivo; la concentración de ácido láctico en la solución de cultivo se determina utilizando el sobrenadante como una muestra analítica y la medición de la conductividad eléctrica del eluyente de la columna de intercambio aniónico para el ensayo de ácido láctico.
- Es posible obtener levaduras que tienen una eficiencia de producción de ácido láctico mayor que la de la cepa parental, mediante la selección de la levadura que muestra la productividad de ácido láctico más elevada que la cepa parental después de cultivo durante el mismo período.
- Un ejemplo de levadura obtenida por el procedimiento, con eficiencia de producción de ácido láctico más elevada es, por ejemplo, Saccharomyces cerevisiae que tiene un fragmento de ADN transposón insertado en el gen de codificación de la proteína PDR13 (A continuación, denominado simplemente como gen PDR13) en el ADN cromosómico.
- [2] El procedimiento de producción de levadura que contiene un gen de codificación de la proteína PDR13 parcialmente deficiente mediante un procedimiento de recombinación homóloga es, por ejemplo, un procedimiento de utilización de la levadura que permite la recombinación homóloga en el ADN cromosómico con un ADN de cadena lineal. Un ejemplo del ADN de cadena lineal es un ADN de cadena lineal emparejado con el ADN homólogo a la secuencia del gen PDR13 o similar a la secuencia del mismo en ambos extremos terminales del gen TRP1.
- 30 Es posible preparar una levadura con el gen PDR13 parcialmente deficiente mediante la introducción del ADN de cadena lineal en una levadura que permite la recombinación homóloga del cromosoma con un ADN de cadena lineal por el procedimiento ordinario y la selección de una cepa que requiere triptófano.
- [3] El procedimiento de preparación de un microorganismo que tiene un ADN que codifica la secuencia de aminoácidos que tiene la mutación, tal como supresión, sustitución o inserción, que impide la traducción de, como mínimo, 39 residuos de aminoácidos del extremo C-terminal en la secuencia de aminoácidos de la proteína PDR13 en el cromosoma, por ejemplo, mediante un procedimiento de recombinación homóloga es, por ejemplo, un procedimiento de preparación de un gen variante que codifica la secuencia de aminoácidos que tiene la mutación, tales como supresión, sustitución o inserción, que impide la traducción de, como mínimo, 39 residuos de aminoácidos en el extremo C-terminal en la secuencia de aminoácidos codificada en el gen mediante la introducción de la mutación específica de lugar en el gen PDR13 y la preparación de una levadura que tiene un ADN cromosómico con su gen PDR13 sustituido con un gen PDR13 variante mediante un procedimiento de recombinación homóloga.
- Mediante el procedimiento dado a conocer en [1], [2] o [3], es posible preparar una levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1, que contiene un gen PDR13 variante, en el que parte del gen PDR13 de tipo salvaje se modifica por supresión, inserción o sustitución lo que permite la traducción de una parte de la proteína codificada en el gen.
- La levadura según la presente invención (es), preferentemente, una levadura que comprende una alcohol deshidrogenasa variante que tiene una secuencia de aminoácidos en la que parte de la secuencia de aminoácidos de la alcohol deshidrogenasa de tipo salvaje se modifica por sustitución, supresión, inserción y/o adición, en la que la alcohol deshidrogenasa variante muestra sensibilidad a la temperatura de modo que la actividad de la alcohol deshidrogenasa intercelular desaparece o se reduce de acuerdo con el cambio en la temperatura de cultivo.

60

65

Más preferentemente, la levadura según la presente invención tiene una alcohol deshidrogenasa variante que tiene una secuencia de aminoácidos en la que uno o más aminoácidos en la parte de la secuencia de aminoácidos del alcohol deshidrogenasa de tipo salvaje están modificados por sustitución, supresión, inserción y/o adición. En la presente memoria descriptiva, la mutación por sustitución, supresión, inserción o adición puede ser una única mutación o una combinación de múltiples mutaciones.

La alcohol deshidrogenasa variante es preferentemente una variante de la alcohol deshidrogenasa de tipo salvaje codificada en el gen ADH1, más preferentemente, una variante de la alcohol deshidrogenasa 1 de tipo salvaje que comprende la secuencia de aminoácidos primaria mostrada en la Id. Sec. Nº 39. La variante de alcohol deshidrogenasa es más preferentemente una alcohol deshidrogenasa variante que comprende una secuencia de

aminoácidos en la que uno o más aminoácidos en la secuencia de aminoácidos de la alcohol deshidrogenasa de tipo salvaje 1 que se muestra en la Id. Sec. Nº 39 están modificados por sustitución, supresión, inserción y/o adición.

La alcohol deshidrogenasa variante favorable para la levadura según la presente invención es una alcohol deshidrogenasa variante que comprende una secuencia de aminoácidos mostrada en la Id. Sec. Nº 40, 41 o 42.

5

10

15

20

25

30

35

40

45

50

55

60

65

La sensibilidad a la temperatura de la alcohol deshidrogenasa variante favorable para la levadura según la presente invención es tal que la levadura que contiene la alcohol deshidrogenasa variante, en comparación con una levadura que contiene la alcohol deshidrogenasa de tipo salvaje, tiene una actividad de alcohol deshidrogenasa similar a una temperatura de cultivo, pero pierde o tiene una reducción de la actividad de alcohol deshidrogenasa a una temperatura particular de cultivo o superior, cuando se cambia la temperatura de cultivo. La disminución de la actividad de la alcohol deshidrogenasa da como resultado el deterioro de la eficiencia de consumo de azúcar en las células de levadura y el retraso drástico en el crecimiento en medios que contienen azúcar y, de este modo, es posible determinar la presencia de sensibilidad mediante la observación de la velocidad de crecimiento en medios que contienen azúcar. La levadura según la presente invención, preferentemente la alcohol deshidrogenasa variante, se muestra sensible a la temperatura a una temperatura de cultivo de 30°C o superior, más preferentemente, de 32°C o superior y, aún más preferentemente, de 34°C o superior.

A continuación, se describirá el procedimiento de producción de una levadura que contiene la alcohol deshidrogenasa variante sensible a la temperatura, tomando una levadura que tiene un gen ADH1 variante sensible a la temperatura como ejemplo, pero esto no significa que el gen variante quede limitado al gen ADH1 y, por lo tanto, el procedimiento de producción de la levadura tampoco queda limitado por el siguiente procedimiento.

En primer lugar, se prepara la levadura que carece del gen ADH1 de tipo salvaje. La supresión se puede realizar mediante el procedimiento de supresión de un gen deseado que se ha descrito anteriormente. La supresión del gen ADH1, que es el responsable principal de la actividad de la alcohol deshidrogenasa en células de levadura, da como resultado el deterioro en la eficiencia de consumo de azúcar (incluyendo la glucosa) y la disminución drástica de la velocidad de crecimiento en medios que contienen azúcar. Es posible detectar el gen ADH1 sensible a la temperatura variante de entre los genes ADH1 mutados al azar mediante la utilización de las propiedades descritas anteriormente. Cuando se cultivan levaduras transformadas con genes ADH1 variantes introducidos al azar en un medio que contiene glucosa a la temperatura normal de cultivo (temperatura ambiente a 30°C), las levaduras que tienen un gen ADH1 inactivado mediante mutagénesis no crecen y, de este modo, es posible seleccionar solamente las levaduras que portan el gen ADH1, que retiene su actividad con la temperatura, mediante la observación de su crecimiento. Entonces, cuando levaduras seleccionadas se cultivan en un medio que contiene glucosa a una temperatura distinta de la temperatura de cultivo normal (30°C o superior, o temperatura ambiente o inferior), las levaduras que portan el gen ADH1 variante sensible a la temperatura no crecen y, de este modo, es posible llevar a cabo el cribado negativo de las levaduras que tienen introducido un gen ADH1 variante sensible a la temperatura. Específicamente, por ejemplo, es posible preparar levadura que muestra sensibilidad a cada temperatura mediante la observación del crecimiento de las levaduras transformadas que crecen mediante cultivo a 25°C en un medio que contiene glucosa a 30°C, 34°C y 37°C, pero la temperatura de cultivo no queda limitada por las mismas.

Entre los procedimientos de preparación de una levadura variante sensible a la temperatura se incluyen la detección en la naturaleza, procedimientos mutacionales tales como tratamiento químico, por ejemplo, con nitroso-guanidina o metanosulfonato de etilo y la irradiación con UV, y la ingeniería genética, por ejemplo, por reacción de PCR.

Entre los procedimientos de introducción de mutaciones en un gen particular por ingeniería genética se incluyen procedimientos de mutagénesis al azar y los procedimientos de mutagénesis específica de lugar. En el caso del procedimiento anterior de mutagénesis al azar, se prepara un gen variante, por ejemplo, utilizando un kit de mutagénesis aleatoria (BD Diversify PCR Random Mutagenesis (fabricado por Clontech)), y en el caso del procedimiento de mutagénesis específica de lugar, se prepara, por ejemplo, utilizando un kit de mutagénesis específica de lugar (Mutan-K (Takara Bio Inc.)). Entre los procedimientos anteriores, es preferente un procedimiento de preparación mediante ingeniería genética, pero el procedimiento de preparación no queda limitado por el mismo.

El gen ADH1 variante obtenido de este modo se introduce por un procedimiento de reparación de hueco ("Experimentos en Genética Molecular de Levaduras" ("Experiments in Yeast Molecular Genetics"), Editorial de las Sociedades Científicas de Japón, 1996), y específicamente. Cuando plásmidos de replicación autónoma que contienen los fragmentos de ADN del gen ADH1 variante y el gen ADH1 clonado que tiene la supresión en el gen ADH1 se linealizan y se introducen en células de levadura de forma simultánea, sigue la recombinación homóloga de los fragmentos de ADN del gen ADH1 variante con las secuencias de homología en ambos extremos terminales de la región suprimida, realizando la reparación de la región borrada y al mismo tiempo la restauración de la capacidad de replicación autónoma por el cierre del anillo de los plásmidos. Más específicamente, es posible obtener un plásmido cíclico que contiene un gen ADH1 variante clonado que tiene la mutación al azar en la región de mutagénesis dirigida, mediante la introducción de un plásmido sin una región de ADN de mutagénesis dirigida obtenido por escisión de un plásmido con el gen ADH1 clonado con un enzima de restricción adecuado y fragmentos amplificados con un cebador adecuado, a la vez que se introduce mutagénesis aleatoria en la región del gen ADH1, simultáneamente en una levadura con el ADH1 suprimido.

El plásmido para la mutagénesis por el procedimiento de reparación de hueco puede ser uno cualquiera de los plásmidos utilizados generalmente en levaduras. Preferentemente, se puede utilizar por ejemplo, un plásmido tal como YCp50, pRS315, pRS316, pAUR112 o pAUR123, que tiene un número limitado de copias en la célula de levadura, pero el plásmido no está limitado a los mismos. La región del gen ADH1 introducido a continuación, incluye preferentemente además las denominadas secuencias reguladoras, que regulan la expresión del gen de la presente invención corriente arriba y corriente abajo del gen tal como un operador, promotor, terminador y potenciador. Por lo tanto, es posible preparar un gen ADH1 clonado variante sensible a la temperatura en el plásmido.

10 A continuación, se describirá el procedimiento de preparación de la levadura que tiene un gen ADH1 variante sensible a la temperatura.

El plásmido que tiene el gen ADH1 clonado variante sensible a la temperatura se obtiene a partir de la levadura transformada. El procedimiento de preparación no está particularmente limitado y, por ejemplo, se puede utilizar un kit de recuperación de plásmidos de levadura disponibles comercialmente, tal como el kit de aislamiento de plásmido de levadura YEASTMAKER (Clontech). La transformación de la levadura con el adh1 suprimido preparado anteriormente con el plásmido obtenido se digiere con una enzima de restricción que no escinde la secuencia del gen ADH1 y los resultados linealizados posteriores en la recombinación de la secuencia de ADN cerca del locus del gen ADH1 y la región homóloga en la secuencia de ADN del plásmido linealizado y la sustitución del gen marcador utilizado durante la supresión del ADH1 con el gen ADH1 variante sensible a la temperatura, dando finalmente una levadura deseable que tiene un gen ADH1 variante sensible a la temperatura. La transformación puede llevarse a cabo según el "procedimiento pop-in/pop-out" (descrito en Methods in Enzymology, 1987, vol. 154, págs. 164-174).

El procedimiento para confirmar la sensibilidad a la temperatura de la alcohol deshidrogenasa es, por ejemplo, un procedimiento de observar la reacción de oxidación de la alcohol deshidrogenasa a partir de etanol a acetaldehído con un homogeneizado de la célula de levadura cultivada a una temperatura sensible y confirmar la sensibilidad a la temperatura utilizando el hecho de que la actividad del homogeneizado de células de levadura que contiene genes variantes es menor en sensibilidad que las células de levadura que contienen el gen de tipo salvaje como un indicador

La actividad de la alcohol deshidrogenasa se puede determinar, teniendo en cuenta las condiciones de medición, tales como la temperatura y el pH, teniendo en cuenta el entorno de cada isoenzima de alcohol deshidrogenasa que cataliza la reacción y la medición de la afinidad por el sustrato en etanol en las condiciones. Por ejemplo, la actividad de la enzima de la alcohol deshidrogenasa codificada por el gen ADH1 de Saccharomyces cerevisiae a una temperatura de cultivo de 34° C se determina utilizando el homogeneizado del cultivo cultivado y recogido a una temperatura de cultivo de 34° C y el etanol sustrato en un entorno a un pH ajustado a 8,8 con una solución tampón de tris-ácido clorhídrico y una temperatura de reacción de 30° C. La actividad puede ser evaluada mediante la observación del cambio de absorbancia a una longitud de onda de 340 nm asociado con la reacción reductora de la nicotinamida dinucleótido oxidada (NAD+) a nicotinamida dinucleótido reducida (NADH), que se produce simultáneamente con la reacción de oxidación de etanol a acetaldehído. Si se define la cantidad de enzima que disminuye 1 µmol de NADH por minuto a temperatura ambiente como una unidad, la actividad específica de la alcohol deshidrogenasa se muestra por la fórmula (2), en la que $\Delta 340$ nm representa la disminución en la absorbancia a 340 nm por minuto, y 6,22 es el coeficiente de absorción milimolar del NADH.

[Fórmula 2]

Actividad específica de alcohol deshidrogenasa (mmol/min/µg) =

 Δ 340 x cantidad de solución de reacción (μ l) x 10⁻⁶

[concentración de proteína en el homogeneizado ($\mu g/\mu l$)×cantidad de homogeneizado (μl)]×6,22×longitud trayectoria óptica (cm)

Es posible evaluar la sensibilidad a la temperatura de la alcohol deshidrogenasa variante a la temperatura de cultivo, mediante la medición de la actividad de la alcohol deshidrogenasa del homogeneizado de la célula de levadura variante según la presente invención y la célula de levadura de tipo salvaje cultivada a cada temperatura de cultivo en las mismas condiciones y efectuar la comparación de las actividades específicas calculadas de la alcohol deshidrogenasa.

Es posible, por los procedimientos descritos anteriormente, preparar una levadura que tiene un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis que tiene una alcohol deshidrogenasa variante que comprende una secuencia de aminoácidos en la que parte de la secuencia de aminoácidos de la alcohol deshidrogenasa de tipo salvaje se modifica por sustitución, supresión, inserción y/o adición, en la que la alcohol deshidrogenasa variante muestra sensibilidad a la temperatura de forma que la actividad de la alcohol deshidrogenasa intercelular desaparece o se reduce de acuerdo con el cambio en la temperatura de cultivo .

10

45

50

55

15

20

25

30

35

Hay tres clases de genes que codifican la piruvato descarboxilasa de levadura (PDC); gen de codificación de la piruvato descarboxilasa 1 (gen PDC1), gen de codificación de la piruvato descarboxilasa 5 (gen PDC5) y gen de codificación de la piruvato descarboxilasa 6 (gen PDC6). Entre ellos, los genes que tienen una función principal como la piruvato descarboxilasa son los genes PDC1 y PDC5.

5

La levadura según la presente invención carece preferentemente del gen suprimido de PDC1, pero tiene un gen PDC5 variante que tiene una secuencia de ADN en la que parte de la secuencia de ADN del gen PDC5 de tipo salvaje se elimina, se inserta, sustituye y/o se añade. La mutación por supresión, inserción, sustitución y/o adición parcial de nucleótidos puede ser una única mutación o una combinación de múltiples mutaciones.

10

Más preferentemente, la levadura según la presente invención es un gen en el que la secuencia de ADN del gen de codificación de la piruvato descarboxilasa 5 de tipo salvaje es el gen que tiene la secuencia de ADN mostrada en la Id. Sec. Nº 51.

15 El gen PDC5 variante contenido en la levadura según la presente invención es preferentemente un mutante del gen PDC5 de tipo salvaje que tiene la secuencia de ADN mostrada en la Id. Sec. Nº 51. Más preferentemente, la levadura según la presente invención es un gen que tiene la secuencia de ADN en el que el gen de codificación de la piruvato descarboxilasa 5 variante es el gen se muestra en las Id. Sec. Nº 52 ó 53.

En la presente memoria descriptiva, la piruvato descarboxilasa 5 variante contenida en la levadura según la presente 20 25

invención es preferentemente sensible a la temperatura. Cuando la piruvato descarboxilasa 5 es sensible a la temperatura, la levadura que tiene la piruvato descarboxilasa 5 variante tiene una actividad de piruvato descarboxilasa similar a la de la levadura que tiene la piruvato descarboxilasa 5 de tipo salvaje a una cierta temperatura de cultivo, pero pierde la actividad de la piruvato descarboxilasa 5 o tiene la misma reducida a una temperatura particular de cultivo o superior, cuando se cambia la temperatura de cultivo. Debido a que la reducción de la actividad de la piruvato descarboxilasa en las células de levadura da como resultado la reducción de la eficiencia de consumo de azúcar y la disminución drástica de la velocidad de crecimiento en medios que contienen azúcar, es posible determinar la presencia o ausencia de sensibilidad mediante la observación de la velocidad de crecimiento en medios que contienen azúcar. En la presente invención, la piruvato descarboxilasa 5 variante es preferentemente una levadura sensible a la temperatura a 34°C o superior.

30

35

La mutagénesis del gen PDC5 se realiza por modificación de la secuencia de ADN del gen PDC5 con un procedimiento que se lleva a cabo de forma habitual. De manera similar al procedimiento de modificación del gen ADH1, es posible obtener además levadura que tiene una actividad reducida de la enzima PDC5 mediante el procedimiento de preparación de variantes sensibles a la temperatura de las cepas que contienen el gen o los genes de PDC5 variantes de la misma. Las levaduras que no tiene actividad detectable de piruvato descarboxilasa crecen muy lentamente, cuando se cultivan en un medio que contiene glucosa como única fuente de carbono. Cuando se prepara una levadura que tiene una actividad reducida de piruvato descarboxilasa utilizando la propiedad anterior, ésta muestra una velocidad de crecimiento similar a la de la levadura de tipo salvaje bajo condiciones de temperatura permisiva, porque se conserva la actividad de la piruvato descarboxilasa. Es posible obtener un gen PDC5 variante sensible a la temperatura deseada mediante la preparación de una variante que tiene una velocidad de crecimiento que se reduce drásticamente en condiciones de temperatura no permisiva debido a la actividad reducida de la enzima.

40

45 A continuación, se describirá más específicamente el procedimiento de preparación de la levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención que carece de su gen PDC1 y tiene un gen PDC5 variante. En primer lugar para la detección del gen PDC5 variante según la presente invención, se prepara levadura ∆pdc1∆pdc5 de doble supresión que carece tanto del gen PDC1 como del de PDC5. En este caso, el símbolo "Δ" significa "supresión".

50

El procedimiento de preparación de la levadura ∆pdc1∆pdc5 de doble supresión se puede llevar a cabo mediante el procedimiento de supresión de un gen deseado que se ha descrito anteriormente, pero sin que constituya limitación. Cuando la levadura utilizada es una levadura que pertenece a la especie Saccharomyces, se puede preparar una cepa de Δ pdc1 de una sola supresión y una cepa de Δ pdc5 de una sola supresión mediante el procedimiento anterior de supresión de un gen deseado y a continuación, la levadura Δpdc1Δpdc5 de doble supresión puede prepararse además a partir de los diploides por el procedimiento de disección tétrada.

55

60

A continuación, se describirá el procedimiento de preparación del gen PDC5 variante. El procedimiento de preparación puede llevarse a cabo mediante el procedimiento de preparación de la variante sensible a la temperatura anterior. Se describe a continuación un procedimiento de preparación mediante ingeniería genética utilizando la reacción de PCR, pero el procedimiento de preparación no queda limitado por la misma. El gen PDC5 variante se puede obtener por un procedimiento de utilización de un kit de mutagénesis aleatoria BD Diversify PCR Random Mutagenesis Kit (fabricado por Clontech).

El gen PDC5 variante obtenido de este modo se puede introducir de manera similar por el procedimiento de reparación de hueco ("Experimentos en Genética Molecular de Levaduras" ("Experiments in Yeast Molecular Genetics"), Editorial de las Sociedades Científicas de Japón, 1996). Específicamente, se obtiene un plásmido cíclico que contiene el gen PDC5 variante que tiene una mutación aleatoria introducida en la región de mutagénesis dirigida, mediante la introducción de fragmentos de ADN del gen PDC5 variante y la replicación autónoma de los plásmidos que contienen el gen clonado PDC5 que carecen del gen PDC5 y se linealizan simultáneamente en la levadura Δpdc1Δpdc5 de doble supresión.

A continuación, se describirá el procedimiento de preparación de una levadura Δpdc1 pdc5 modificado (que tiene un gen PCD5 variante y que carece del gen PDC1). Se cosecha el plásmido que tiene un gen PDC5 variante clonado obtenido de este modo a partir de una levadura transformada. El procedimiento de preparación no está particularmente limitado, y se puede utilizar un kit de recuperación de plásmido de levadura comercialmente disponible, por ejemplo, el Kit de aislamiento de plásmido de levadura YEASTMAKER (Clontech). Posteriormente, es posible obtener la levadura deseable Δpdc1 pdc5 modificado, mediante la transformación de la levadura Δpdc1 Δpdc5 de doble supresión preparada de este modo con el plásmido anterior digerido con una enzima de restricción que no escinde la secuencia del gen PDC5 y su linealización utilizando el "procedimiento de pop-in/pop-out".

10

15

20

25

30

35

40

45

50

55

A continuación, se describirá el procedimiento de selección de la levadura que tiene una actividad piruvato descarboxilasa intercelular cambiada mediante la introducción del gen PDC5 variante.

El cambio en la actividad de la piruvato descarboxilasa puede ser confirmado mediante la medición de la actividad específica de la piruvato descarboxilasa del homogeneizado del cultivo de cada célula transformante obtenida mediante el procedimiento de reparación de hueco y la comparación de la actividad específica con la de la levadura que tiene el gen PDC5 de tipo salvaje.

Células de levadura transformadas con un gen PDC5 variante que tiene una actividad específica de la piruvato descarboxilasa menor que la de la levadura que tiene el gen PDC5 de tipo salvaje se seleccionan mediante la medición de la actividad específica de la piruvato descarboxilasa de las levaduras que tienen el gen PDC5 variante y la selección de las células que tienen una actividad enzimática específica menor que la de la levadura que tiene el gen PDC5 de tipo salvaje. Además es posible seleccionar levaduras más favorables mediante la selección de levaduras transformadas con un gen PDC5 variante que muestra sensibilidad a la temperatura.

A continuación, se describirá el procedimiento de preparación de una levadura Δpdc1 pdc5 modificado que tiene un gen PCD5 variante y que carece del gen PDC1.

Los plásmidos que tienen el gen PDC5 variante clonado obtenido de esta manera se recogen de la levadura transformada. El procedimiento de preparación no está particularmente limitado, y se puede utilizar un kit de recuperación de plásmido de levadura comercialmente disponible, por ejemplo, el Kit de aislamiento de plásmido de levadura YEASTMAKER (Clontech). La transformación de la levadura Δpdc1Δpdc5 de doble supresión preparada anteriormente con el plásmido obtenido que se digiere previamente con una enzima de restricción que no escinde la secuencia del gen PDC5 y se linealiza da como resultado la recombinación de la secuencia de ADN cerca del locus del gen PDC5 con la región homóloga en la secuencia de ADN del plásmido linealizado con sustitución del gen marcador utilizado para la supresión del PDC5 con el gen PDC5 variante, proporcionando una levadura deseada Δpdc1 pdc5 modificado. El procesamiento se puede realizar además mediante el procedimiento de salto dentro/salto fuera ("pop-in/pop-out") (descrito en Methods in Enzymology, 1987, vol. 154, págs. 164-174).

Se describirá el procedimiento de evaluación de la actividad de la piruvato descarboxilasa intercelular en la levadura seleccionada de este modo. La actividad de la enzima se puede determinar según el procedimiento de Pronk y otros, (Yeast, 1996, vol. 12, págs. 1607-1633), que se muestra brevemente a continuación como (1) a (3), con algunas modificaciones tal como es necesario.

- (1): Se genera acetaldehído a partir del sustrato de ácido pirúvico por la piruvato descarboxilasa.
- (2): El acetaldehído generado en (1) se reduce a etanol por la alcohol deshidrogenasa, mediante la utilización de la nicotinamida dinucleótido reducida (NADH) como coenzima.
 - (3): Se mide la disminución de la cantidad de NADH durante la conversión de acetaldehído a etanol por la alcohol deshidrogenasa en (2).
- 60 Si la disminución de la cantidad de acetaldehído en (2) es equivalente a la cantidad de acetaldehído generado en (1), la disminución de la cantidad de NADH medida en (3) es equivalente a la disminución de la cantidad de ácido pirúvico en (1). Por lo tanto, la actividad de la piruvato descarboxilasa en la célula de levadura puede ser determinada mediante la medición de la disminución de la cantidad de NADH en el sistema de reacción.

La actividad de la piruvato descarboxilasa en la célula de levadura se puede comparar mediante la utilización de su actividad específica como indicador. Específicamente, las proteínas se extraen a partir de levaduras cultivadas en las mismas condiciones, y se determina el cambio en la absorbancia a una longitud de onda de 340 nm asociado con la disminución de NADH mediante la utilización de cada extracto. Cuando la cantidad de la enzima que reduce 1 μ mol de NADH por minuto a 30°C se define como 1 unidad, la actividad específica de la piruvato descarboxilasa se puede expresar mediante la siguiente Fórmula 3, en la que, Δ 340 representa la disminución en la absorbancia a 340 nm por minuto, y 6,22 es el coeficiente de absorción milimolar del NADH. La actividad de la enzima se puede comparar mediante la medición de la absorbancia en las mismas condiciones y el cálculo de la actividad específica de la piruvato descarboxilasa.

[Fórmula 3]

10

20

25

30

35

50

Actividad específica de PDC (unid/mg) =

$\Delta 340$ x cantidadde solución de reacción (m1)

[concentración de enzima en la solución (mg/ml) volumen de solución de enzima (ml)] ×6,22 longitud paso óptico (cm)

15 (Fórmula 3)

Es posible, utilizando el procedimiento descrito anteriormente, preparar una levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa de Homo sapiens (no es parte de la presente invención) o Xenopus laevis que tiene una secuencia de ADN en el que se suprime el gen que codifica la piruvato descarboxilasa 1 y se suprime parte de la secuencia de ADN del gen de codificación de la piruvato descarboxilasa 5 de tipo salvaje, se inserta, se sustituye y/o añade a la misma un gen de piruvato descarboxilasa 5 variante.

La presente invención se refiere a una levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1, y entre los ejemplos de la misma se incluyen levaduras que tienen, como mínimo, dos o más de las siguientes características (1) a (3).

- (1) Una levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis, tal como se ha definido en la reivindicación 1, que tiene un gen PDR13 variante, en la que parte de la secuencia de ADN del gen PDR13 de tipo salvaje está modificado por supresión, inserción o sustitución lo que permite la traducción de una parte de la proteína codificada por el gen.
- (2) Una levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1, que tiene una alcohol deshidrogenasa variante que comprende una secuencia de aminoácidos en la que parte de la secuencia de aminoácidos de la alcohol deshidrogenasa de tipo salvaje se sustituye, se suprime, se inserta y/o se añade, en la que la alcohol deshidrogenasa variante muestra sensibilidad a la temperatura de forma que la actividad de la alcohol deshidrogenasa intercelular desaparece o se reduce de acuerdo con el cambio en la temperatura de cultivo, y
- (3) Una levadura que tiene un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1, que carece del gen que codifica la piruvato descarboxilasa 1 y que tiene un gen de descarboxilasa piruvato 5 variante en el que parte de la secuencia de ADN del gen que codifica la piruvato descarboxilasa 5 de tipo salvaje comprende una secuencia de ADN eliminada, insertada, sustituida y/o añadida.
- Se describirá el procedimiento de preparación de la levadura que contiene, como mínimo, dos genes variantes que tienen una de las características (1) a (3).

Específicamente, una levadura de esta complejidad se puede preparar por un procedimiento de utilización de una levadura que tiene un gen variante como la cepa parental y la adición de otro gen variante a la misma. Más específicamente, por ejemplo en la preparación de una levadura que tiene tanto el gen PDR13 variante como el gen ADH1 variante, es posible preparar una levadura que tiene el gen PDR13 variante y el gen ADH1 variante, mediante la preparación de una levadura que tiene adicionalmente un gen ADH1 variante mediante la utilización de una levadura que tiene un gen PDR13 variante como la cepa parental. Las levaduras que contienen otra combinación de genes variantes se pueden preparar de una manera similar.

Cuando la levadura utilizada es una levadura perteneciente a las especies Saccharomyces, se puede preparar a partir de diploides de las levaduras que tienen cada una un gen variante por el procedimiento de disección tétrada. Específicamente, por ejemplo, en la preparación de la levadura que tiene tanto el gen PDR13 variante y el gen ADH1 variante, una levadura que tiene simultáneamente el gen PDR13 variante y el gen ADH1 variante se puede preparar a partir de un diploide en combinación con una levadura que tiene el gen PDR13 variante y una levadura que tiene el gen ADH1 variante mediante el procedimiento de disección tétrada. Además, se pueden preparar de manera similar levaduras con otra combinación de genes variantes.

La presente invención da a conocer adicionalmente un procedimiento eficiente de producción de ácido L-láctico. El procedimiento de producción de ácido L-láctico según la presente invención comprende preferentemente el cultivo de la levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa (gen L-ldh) de Xenopus laevis según la presente invención.

En el procedimiento de producción de ácido L-láctico mediante el cultivo de la levadura según la presente invención, el medio para el cultivo de la levadura puede ser un medio natural o un medio sintético, en tanto se trate de un medio que contenga las fuentes de carbono y nitrógeno y sales inorgánicas para la levadura que permita el cultivo eficiente de la levadura.

La fuente de carbono no está particularmente limitada, en tanto se consuma por la levadura, y entre los ejemplos de la misma se incluyen azúcares tales como glucosa, fructosa y sacarosa; jarabes que contengan estos azúcares y carbohidratos tales como almidón e hidrolizados de almidón. La fuente de carbono puede ser añadida de una vez cuando se inicia el cultivo, o dividida en porciones, o continuamente durante el cultivo, y se utiliza a una concentración de 10 g/l a 200 g/l.

Entre los ejemplos de las fuentes de nitrógeno para su utilización se incluyen amoniaco, sales de amonio inorgánico y orgánico, tales como cloruro de amonio, sulfato de amonio, y acetato de amonio; peptona, extracto de carne, extracto de levadura, licor de maíz, hidrolizado de caseína, soja fermentada, hidrolizado de soja fermentada, digestiones de diversas fermentaciones de microorganismos y similares.

Entre los ejemplos de las sales inorgánicas se incluyen fosfato de magnesio, sulfato de magnesio, cloruro sódico, fosfato monopotásico, fosfato dipotásico, sulfato ferroso, sulfato de manganeso, sulfato de cobre, carbonato cálcico, y similares.

El cultivo puede realizarse, por ejemplo, por cultivo agitado o removido. Las condiciones de suministro de oxígeno no están limitadas particularmente, sino que el cultivo puede llevarse a cabo bajo condiciones aeróbicas o en condiciones microaeróbicas. La temperatura de cultivo es preferentemente de 25 a 35°C, y el período de cultivo es normalmente de 24 horas a 5 días. El pH de la solución de cultivo durante el cultivo se ajusta preferentemente de 2,5 a 5,0, y el ajuste de pH puede llevarse a cabo mediante la utilización de una solución alcalina, amoniaco, carbonato cálcico, o similar.

En la producción de ácido L-láctico, en primer lugar se precultiva la levadura según la presente invención; se produce ácido L-láctico en la solución de cultivo, momento en el que la solución de precultivo se transfiere a un nuevo medio y la mezcla se cultiva. La temperatura de cultivo no está particularmente limitada, en tanto la proliferación de la cepa no se inhiba sustancialmente y la temperatura esté dentro del intervalo que permita la producción de ácido láctico, pero preferentemente, en el intervalo de temperatura de 20 a 40°C, más preferentemente en el intervalo de 25 hasta 37°C, y aún más preferentemente de 30 a 34°C. El cultivo puede llevarse a cabo por cualquier procedimiento, por ejemplo, cultivo estático, agitado o removido.

El cultivo en estas condiciones da ácido láctico en el medio en una cantidad del 1 al 20%. El procedimiento de medición de la concentración de ácido L-láctico obtenido no está limitado de forma particular, pero, por ejemplo, se puede utilizar un procedimiento de utilización de HPLC o un procedimiento de utilización de F-Kit (fabricado por Roche).

El ácido láctico obtenido en la solución de cultivo puede purificarse mediante un procedimiento conocido. Entre los ejemplos de los mismos se incluyen un procedimiento de extracción de la solución de fermentación a un pH de 1 o inferior después de la supresión del microorganismo por centrifugación, por ejemplo, con éter dietílico o acetato de etilo, un procedimiento de adsorción y de limpieza sobre una resina de intercambio iónico y su elución desde la misma, un procedimiento de destilación de su éster después de la reacción con un alcohol en la presencia de un catalizador ácido, un procedimiento de cristalización del mismo como una sal cálcica o de litio, y similares.

Según la presente invención, es posible producir ácido L-láctico por cultivo de la levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis con un rendimiento respecto al azúcar más elevado que por cultivo de una levadura a la que se ha introducido el gen bovino que codifica una L-lactato deshidrogenasa convencional. Además, es posible también mejorar el rendimiento adicionalmente por mutagénesis de la levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis tal como se define en la reivindicación 1 y el cultivo de la cepa variante.

EJEMPLOS

5

10

15

20

25

30

45

50

55

60

65

A continuación, las realizaciones favorables de la presente invención se describirán con referencia a los ejemplos, pero debe entenderse que los siguientes son sólo ejemplos y no constituyen en ningún caso limitación de la presente invención.

Los procedimientos de la genética molecular utilizados en la presente memoria descriptiva en los siguientes ejemplos se llevaron a cabo según los procedimientos descritos en "Clonación molecular" ("Molecular Cloning), 3ª ed., 1991, (EE.UU.), "Métodos en Enzimología" ("Methods in Enzymology"), 1991, (EE.UU.), No. 194, y "Procedimiento de ingeniería genética de levaduras", ("Methods in Yeast Genetics, 2000 Ed."), Ed. 2000", 2000, (EE.UU.), a menos que se especifique de otro modo.

Alternativamente, el procedimiento de PCR se llevó a cabo con KOD-Plus polimerase (fabricado por Toyobo) o LA-Taq (fabricada por Takara Shuzo) según el procedimiento adjunto con el reactivo, a menos que se especifique de otro modo.

(Ejemplo 1: preparación de plásmido que expresa el gen L-ldh de Xenopus laevis)

En la presente invención, se utilizó un gen de L-ldh de Xenopus laevis que tiene la secuencia de nucleótidos mostrada en la ld. Sec. Nº 2. La clonación del gen de L-ldh de Xenopus laevis se realizó mediante el procedimiento de PCR. En la PCR para la preparación de un gen L-ldh de Xenopus laevis, se utilizó como plantilla un ADN fagémido preparado a partir de una biblioteca de ADNc derivada de riñón de Xenopus laevis (fabricado por Stratagene). El ADN fagémido se preparó según el protocolo adjunto.

Los cebadores de amplificación del gen L-Idh de Xenopus laevis (Id. Sec. Nº 6 y 7) se preparan de tal manera que se añade una secuencia de reconocimiento SalI al extremo 5-terminal y una secuencia de reconocimiento NotI al extremo 3-terminal. El fragmento de amplificación de PCR se purifica; el extremo terminal se fosforila mediante la polinucleótido quinasa T4 (fabricada por Takara Bio Inc.) y, a continuación, el fragmento se enlaza con un plásmido pUC118 (previamente escindido con las enzimas de restricción HincII y desfosforilado). El enlace se realizó utilizando el kit de enlace de ADN Ver.2 (fabricado por Takara Bio Inc.). Células competentes de E. coli DH5α (fabricada por Takara Bio Inc.) se transformaron en la solución de enlace, y la solución se inoculó y se cultivó durante toda la noche en un medio de placa LB que contiene 50 μg/ml de una ampicilina antibiótico. El ADN plásmido se recupera de las colonias resultantes y se escinde con las enzimas de restricción XhoI y NotI o SalI y NotI, y se seleccionaron los plásmidos que contienen el gen L-Idh de Xenopus laevis insertado. La serie de operaciones se ejecutaron según el protocolo adjunto.

El plásmido pUC118 que contiene un gen L-ldh derivado de Xenopus laevis se escindió con las enzimas de restricción SalI y NotI; los fragmentos de ADN se separaron mediante electroforesis en gel de agarosa; y el fragmento que contiene el gen L-ldh de Xenopus laevis se purificó por un procedimiento ordinario. El fragmento que contiene el gen L-ldh obtenido de este modo se ligó con el lugar de corte de XhoI/NotI del plásmido de expresión pTRS11 que se muestra en la figura 2; el ADN del plásmido se recuperó de manera similar y se digirió con las enzimas de restricción XhoI y NotI; y se seleccionaron los plásmidos de expresión que contienen un gen insertado L-ldh de Xenopus laevis. A continuación, se hace referencia al plásmido de expresión preparado de este modo que contiene el gen L-ldh de Xenopus laevis, como pTRS102.

40 (Ejemplo Comparativo 1: Preparación del plásmido que expresa el gen L-ldh de origen bovino) Como una muestra comparativa, se preparó de levadura que tiene un gen de L-ldh introducido de origen bovino.

La clonación del gen L-Idh de origen bovino (Id. Sec. Nº 3) se realizó mediante el procedimiento de PCR. En la PCR, se utilizó como plantilla un ADN de fagémido preparado a partir de una biblioteca de ADNc derivado de músculo esquelético bovino (fabricado por Stratagene) de acuerdo con el protocolo que se adjunta, de manera similar al ejemplo 1. Los cebadores de amplificación de genes (Id. Sec. Nº 8 y 9) se prepararon de una manera tal que se añadió una secuencia de reconocimiento de XhoI en el extremo 5-terminal y una secuencia de reconocimiento de NotI en el extremo 3-terminal.

50 Se preparó un plásmido de expresión que tiene un gen L-ldh de origen bovino insertado de una manera similar a la del plásmido de expresión que tiene incorporado un gen L-ldh derivado de homo sapiens del ejemplo 1. Se hará referencia al plásmido de expresión preparado que contiene un gen L-ldh de origen bovino insertado de este modo como pTRS49.

55 (Ejemplo 2: Preparación de una cepa con un gen pdc1 deficiente)

Se preparó Saccharomyces cerevisiae NBRC10505 en el que el gen PDC1 en el ADN genómico está sustituido con el gen TRP1 (A continuación, abreviado como cepa de $\Delta pdc1$) mediante el procedimiento de recombinación homóloga. La cepa de $\Delta pdc1$ se preparó de la siguiente manera: Se amplificó un fragmento de ADN que tiene una secuencia insertada que se muestra en la Id. Sec. Nº 12 en el extremo 5' corriente arriba del gen TRP1 y una secuencia insertada que se muestra en la Id. Sec. Nº 13 en el extremo 3' corriente abajo del mismo, en la PCR utilizando el plásmido pRS424 como plantilla y los ADN mostrados en la Id. Sec. Nº 10 y 11 como un conjunto de cebadores. Los fragmentos de ADN amplificados se purificaron, y la cepa NBRC10505 se transformó con 1 μ g de ADN en una cepa que no requiere triptófano. El transformante obtenido se designó como cepa SW029.

65

60

5

10

15

30

(Ejemplo 3: Introducción del plásmido que expresa el gen L-ldh de Xenopus laevis en levadura)

10

15

30

35

La cepa SW029 se transformó en una cepa que no requiere uracilo con pTRS102 obtenido en el ejemplo 1. Se introdujo el plásmido que expresa el gen L-ldh de Xenopus laevis en el transformante obtenido de este modo, y la introducción se confirmó mediante la extracción del genoma del transformante y por análisis de PCR utilizándolo como plantilla. Los cebadores de confirmación utilizados fueron los cebadores utilizados en la clonación de cada gen L-ldh (gen L-ldh de Xenopus laevis: ld. Sec. Nº 6 y 7). Como resultado, se encontró que el transformante con pTRS102 tenía un gen L-ldh de Xenopus laevis introducido. A continuación, el transformante que tiene el pTRS102 insertado se designó como la cepa SW029/pTRS102.

(Ejemplo Comparativo 2: Introducción del plásmido que expresa el gen L-ldh de origen bovino en levadura)

El SW029 se transformó en una cepa que no requiere uracilo utilizando pTRS49 obtenido en el ejemplo comparativo 1. La introducción del plásmido que expresa el gen L-ldh de origen bovino se confirmó por un procedimiento similar al del ejemplo 3, y los oligonucleótidos mostrados en las Id. Sec. Nos. 8 y 9 se utilizaron como cebadores. A continuación, se hará referencia al transformante que contiene el pTRS49 introducido como cepa SW029/pTRS49.

(Ejemplo 4: Introducción de un gen L-Idh derivado de Xenopus laevis en el cromosoma de levadura)

20 Un fragmento de ADN de aproximadamente 1,3 Kb que incluye el gen L-ldh de Xenops laevis y la secuencia de terminación GAPDH se amplificó en PCR utilizando el pTRS102 obtenido en el ejemplo 1 como plantilla de amplificación y los oligonucleótidos (gen L-ldh derivado de Xenopus laevis: Id. Sec. Nº 15 y 16) como el conjunto de cebadores (correspondiente a la etapa 1 en la figura 1). Los oligonucleótidos de la Id. Sec. Nº 15 se diseñaron de manera que se insertó una secuencia de 60 pares de bases corriente arriba del gen PDC1 que se muestra en la Id. Sec. Nº 17.

A continuación, un fragmento de ADN de aproximadamente 1,2 Kb que incluye el gen TRP1 marcador de selección de levadura se amplificó en PCR utilizando el plásmido pRS424 como plantilla de amplificación y los oligonucleótidos (Id. Sec. Nº 18 y 19) como un conjunto de cebadores, (que corresponde a la etapa 2 en figura 1). El oligonucleótido de Id. Sec. Nº 19 fue diseñado de manera que se añade una secuencia de 60 pares de bases corriente abajo del gen PDC1 que se muestra en la Id. Sec. Nº 20.

En este momento, se purificó cada fragmento de ADN; se mezclaron el fragmento obtenido de 1,3 Kb que incluye el gen L-ldh y el fragmento de 1,2 Kb que incluye el gen TRP1; se amplificó un fragmento de ADN de aproximadamente 2,5 Kb que incluye el gen L-ldh de Xenops laevis, el terminador GAPDH y el gen TRP1 que estaban conectados el uno al otro en PCR utilizando la mezcla como plantilla de amplificación y los oligonucleótidos (gen L-ldh de Xenopus laevis: Id. Sec. Nº 15 y 19) como el conjunto de cebadores (correspondiente a la etapa 3 en la figura 1).

40 Se transformó la cepa NBRC10505 con el fragmento de ADN de aproximadamente 2,5 Kb purificado; el transformante se cultivó en un medio deficiente en triptófano y se seleccionó el transformante que contiene el gen L-ldh de Xenopus laevis introducido corriente abajo del promotor del gen PDC1 en el cromosoma.

El hecho de que el transformante obtenido de este modo fuera una levadura que contiene un gen L-ldh de Xenopus laevis introducido corriente abajo del promotor del gen PDC1 en el cromosoma se confirmó de la siguiente manera: En primer lugar, se confirmó que después de que se extrajera el genoma del transformante, se obtuvo un fragmento de ADN de amplificación de aproximadamente 2,8 Kb, en PCR utilizando el extracto como plantilla de amplificación y oligonucleótidos (gen L-ldh derivado de Xenopus laevis: ld. Sec. Nº 15 y 21) como el conjunto de cebadores. El no transformante da un fragmento de ADN de amplificación de aproximadamente 2,1 Kb mediante la misma PCR. A continuación, se hará referencia al transformante que tiene el gen L-ldh de Xenopus laevis introducido corriente abajo del promotor del gen PDC1 en el cromosoma, como cepa B2.

(Ejemplo 5 y ejemplo comparativo 3: prueba de fermentación de ácido L-láctico 1)

55 Se realizaron pruebas de productividad de ácido L-láctico con la cepa SW029/pTRS102 y la cepa SW029/pTRS49 obtenida tal como en el ejemplo 3 y el ejemplo comparativo 2.

Se colocaron 10 ml del medio con la composición mostrada en la tabla 1 (A continuación, abreviado como medio de fermentación de ácido láctico) con exclusión de uracilo en un tubo de ensayo; se inoculó al mismo una pequeña cantidad de cepa SW029/pTRS102 o cepa SW029/pTRS49, respectivamente, y se cultivaron a 30°C durante toda la noche (precultivo previo). Posteriormente, se colocaron 100 ml del medio de fermentación de ácido láctico fresco con exclusión de uracilo en un matraz erlenmeyer de 500 ml, se inoculó la cantidad total de cada solución de precultivo previo y el medio se cultivó con agitación a 30°C durante 24 horas (precultivo). Posteriormente, se inoculó toda la cantidad de cada una de las soluciones de precultivo después del precultivo durante 24 h en 1 litro del medio de fermentación de ácido láctico con exclusión de uracilo colocado en un fermentador de tipo mini-frasco ("mini-jar") (fabricado por Marubishi, capacidad: 5 l), y la mezcla se cultivó en condiciones de velocidad de agitación de 120

rpm, velocidad de ventilación de 0,1 l/min, temperatura de 30°C, y pH de 5 (cultivo). La solución de cultivo después del cultivo durante 40 horas se centrifugó; el sobrenadante obtenido se filtró a través de una membrana; y la cantidad de ácido L-láctico se determinó por HPLC en las siguientes condiciones.

5 Columna: Shim-pack SPR-H (fabricado por Shimadzu Corporation)

Fase móvil: 5 mM de ácido p-toluenosulfónico (caudal: 0,8 ml/min)

Solución de reacción: 5 mM de ácido p-toluenosulfónico, 20 mM Bis Tris, 0,1 mM de EDTA-2Na (caudal: 0,8 ml/min) Procedimiento de detección: conductividad eléctrica

Temperatura: 45℃.

10 Se utilizó para la medición de la concentración de glucosa el ensayo Glucosa Test Wako C (Wako Pure Chemical Industries).

Los rendimientos de ácido L-láctico con respecto al azúcar, calculados a partir de los resultados de la medición, se resumen en la Tabla 2.

15

[Tabla 1]	
Glucosa	100 g
Base nitrogenada de levadura sin aminoácidos (Difco)	6,7 g
19 aminoácidos estándar excluyendo leucina	152 mg
leucina	760 mg
inositol	152 mg
ácido p-aminobenzoico	16 mg
Adenina	40 mg
Uracilo	152 mg
	Unidad (1/Litro)

[Tabla 2]

[]		
	Cepa de levadura	Rendimiento respecto a azúcar (%)
Ejemplo 5	SW029/pTRS102	40
Ejemplo comparativo 3	29-1B/pTRS49	33

Los resultados de la Tabla 2 mostraron que era posible producir ácido L-láctico mediante cultivo de la levadura que tiene un gen L-ldh introducido de Xenopus laevis con un rendimiento respecto a azúcar superior que mediante el cultivo de la levadura que tiene un gen L-ldh introducido de origen bovino.

(Ejemplo 6: prueba 2 de fermentación del ácido L-láctico)

25

Una prueba de productividad de ácido L-láctico se llevó a cabo de una manera similar a la del ejemplo 5, mediante la utilización de la cepa L5 obtenida, de manera similar al ejemplo 4. El medio utilizado fue el medio de fermentación de ácido láctico que se muestra en la tabla 1.

Se colocaron 10 ml del medio de fermentación de ácido láctico en un tubo de ensayo, y se inoculó al mismo una pequeña cantidad de la cepa L5, y la mezcla se cultivó a 30°C durante toda la noche (precultivo previo). Posteriormente, se colocaron 100 ml del medio de fermentación de ácido láctico fresco con exclusión de uracilo en un matraz erlenmeyer de 500 ml, se inoculó la cantidad total de cada solución de precultivo previo y el medio se cultivó con agitación a 30°C durante 24 horas (precultivo). Posteriormente, se inoculó toda la cantidad de cada una de las soluciones de precultivo después del precultivo durante 24 h en 1 litro del medio de fermentación de ácido láctico con exclusión de uracilo colocado en un fermentador de tipo min-frasco ("mini-jar") (fabricado por Marubishi, capacidad: 5 l), y la mezcla se cultivó en condiciones de velocidad de agitación de 120 rpm, velocidad de ventilación de 0,1 L/min, una temperatura de 30°C, y pH de 5 (cultivo). La solución de cultivo después del cultivo durante 40 horas se centrifugó; el sobrenadante obtenido se filtró a través de una membrana; y la cantidad de ácido L-láctico se determinó por HPLC en condiciones similares a las del ejemplo 5. Los rendimientos de ácido L-láctico al azúcar, calculados a partir de los resultados de la medición, se resumen en la Tabla 3.

[Tabla 3]

	Cepa de levadura	Rendimiento frente a azúcar (%)
Ejemplo 6	L5	34

Los resultados de las Tablas 2 y 3 mostraron que era posible producir ácido L-láctico por cultivo de la levadura que tiene un gen L-ldh introducido de Xenopus laevis con un rendimiento respecto al azúcar no menor que mediante el cultivo de la levadura que tiene un gen L-ldh introducido de origen bovino.

(Ejemplo 7, ejemplo comparativo 4: Actividad de la L-lactato deshidrogenasa)

Se comparó la actividad de la L-lactato deshidrogenasa de Xenops laevis y la actividad de la L-lactato deshidrogenasa de origen bovino a pH 5 a 7 mediante la utilización de la cepa SW029/pTRS102 y la cepa SW029/pTRS49 obtenida en el ejemplo 3 y en el ejemplo comparativo 2.

(a) Extracción de proteína a partir de microorganismo

Se colocaron 10 ml de medio SC-Ura en un tubo de ensayo; se inoculó una pequeña cantidad de cepa SW029/pTRS102 o cepa SW029/pTRS49 y la mezcla se cultivó a 30°C durante toda la noche (precultivo). A continuación, se colocaron 20 ml del medio SC-Ura en un matraz Sakaguchi de 100 ml; la solución de precultivo se inoculó a una concentración de 2% y la mezcla se cultivó con agitación durante 24 horas (cultivo). Se centrifugaron 10 ml de la solución de cultivo; las células recogidas se lavaron con 10 ml de tampón de fosfato y se suspendieron en 1 ml de tampón fosfato. La suspensión de microorganismos se colocó en un tubo Eppendorf; Se añadió una cantidad igual de perlas de vidrio (diámetro de 0,6 mm fabricada por Sigma) y el microorganismo se homogeneizó en un mezclador de microtubos (fabricado por TOMY) a 4°C. Después de la homogeneización del microorganismo tal como se describe anteriormente, la mezcla se centrifugó, y el sobrenadante obtenido se utilizó como una solución de L-lactato deshidrogenasa (a continuación, abreviado como solución de enzima L-ldh).

(b) Medición de la actividad de la L-lactato deshidrogenasa

La concentración de la solución de enzima L-Ldh obtenida en (a) se determinó mediante el utilización del kit BCA de ensayo de proteína (fabricado por PIERCE), con referencia a una curva de calibración preparada mediante la utilización de IgG bovina (1,38 mg/ml, fabricada por BIO-RAD) como un estándar, y la solución de enzima L-Ldh se diluyó con agua estéril a una concentración de 0,5 mg/ml. A continuación, se pipetearon las mezclas líquidas (con exclusión de solución de enzima L-ldh y NADH) a 6 niveles, tal como se muestra en la tabla 4 respectivamente en semi microcubetas, se añadieron una solución de enzima L-ldh y NADH y se mezclaron inmediatamente antes de la iniciación de la medición. El tampón 2xBR es una solución tamponada de 0,08 M de ácido acético, ácido fosfórico, y una solución de ácido bórico que se ajusta con NaOH 5 N a pH 5, 6, 6 7.

 _			
Га	hl	а	41

	Concentración de	Concentración de
	piruvato sódico 0,5 mM	piruvato sódico 1 mM
Solución de enzima L-ldh (0,5 mg/ml)	100 μL	100 μL
2xBR tampón (pH 5.6,7)	250 μL	250 μL
15 mM de NADH	25 μL	25 μL
	(concentración final 0,375 mM)	(concentración final 0,375 mM)
Piruvato sódico 200 mM	2,5 μL	5 μL
Agua purificada	622,5 μL	620 μL
Total	1000 μL	1000 μL

La disminución de la absorbancia a 340 nm en cada nivel se midió mediante un espectrofotómetro (Ultrospec3300Pro, fabricado por Amercham), y la actividad específica se calculó a partir del valor Δ340 obtenido, según la Fórmula (1). La medición se realizó en tres niveles a pH 5, 6, y 7. En la medición anterior, si la actividad específica de L-lactato deshidrogenasa para la comparación es más elevada que la actividad específica de la L-lactato deshidrogenasa derivada de bovino en dos o más niveles entre los tres niveles de pH, la comparativa de L-lactato deshidrogenasa se considera que tiene una actividad mayor que la de la L-lactato deshidrogenasa de origen bovino a pH 5 a 7. Los resultados de cálculo se resumen en la Tabla 5.

[Tabla 5]

[Table 6]						
	Cepa de levadura	На	Concentración de	Concentración de		
	Cepa de levadura	ρΠ	piruvato sódico 0,5 mM	piruvato sódico 1 mM		
Ejemplo 7	SW029/pTRS102	5	5,67	6,56		
Ejemplo 7	7 SW029/pTRS102		8,20	7,73		
Ejemplo 7	SW029/pTRS102	7	7,72	8,74		
Ejemplo Comparativo 4	SW029/pTRS49	5	1,75	2,16		
Ejemplo Comparativo 4	SW029/pTRS49	6	6,52	6,46		
Ejemplo Comparativo 4	SW029/pTRS49	7	5,64	6,6		

Los resultados mostraron que la actividad de la L-lactato deshidrogenasa de Xenopus laevis fue mayor que la actividad de la L-lactato deshidrogenasa de origen bovino a pH 5 a 7. Además, los resultados en la tabla 2 indicaron que era posible producir ácido L-láctico mediante el cultivo de la levadura que tiene el gen L-ldh de Xenopus laevis según la presente invención con un rendimiento respecto al azúcar más elevado que mediante cultivo de la levadura que tiene un gen de L-ldh introducido de origen bovino.

18

45

5

10

15

20

25

30

35

Los resultados de las tablas 2 y 5 indicaron que era posible producir ácido L-láctico mediante el cultivo de la levadura que contiene un gen introducido que codifica una L-lactato deshidrogenasa que tiene una actividad de L-lactato deshidrogenasa a un pH de 5 a 7 con un rendimiento respecto a azúcar mayor que mediante el cultivo de la levadura que contiene un gen de L-ldh introducido de origen bovino.

(Ejemplo 8: Preparación de una levadura que tiene un gen ADH1 variante sensible a la temperatura)

5

10

15

20

25

40

45

50

55

60

Se preparó una cepa de levadura NBRC10505 en la que el gen ADH1 en el ADN genómico está sustituido con el gen URA3 mediante recombinación homóloga. Un fragmento de ADN que tiene una secuencia añadida que se muestra en la Id. Sec. Nº 45 en el extremo 5' corriente arriba y una secuencia añadida que se muestra en la Id. Sec. Nº 46 en el extremo 3' corriente abajo del gen HIS3 se amplificó por PCR utilizando el plásmido pRS313 como la plantilla y ADN que comprendían las secuencias de ADN mostradas en Id. Sec. Nº 43 y 44 como el conjunto de cebadores. El fragmento de ADN amplificado se purificó, y una cepa NBRC10505 se transformó en una cepa que no requiere uracilo con 1 μg del ADN. El transformante obtenido se designó como cepa Δadh1.

A continuación, utilizando el ADN genómico de la cepa NBRC10505 como la plantilla y los cebadores mostrados en las Id. Sec. Nº 47 y 48, se amplificó un fragmento de ADN que incluye de 700 pares de bases corriente arriba de la región del gen ADH1, el gen estructural de ADH1, y 200 pares de bases de la región corriente abajo. Los cebadores de amplificación de gen (Id. Sec. Nº 47 y 48) fueron preparados de manera que se añadió una secuencia de reconocimiento SacI al extremo 5-terminal y una secuencia de reconocimiento SmaI en el extremo 3-terminal. El fragmento amplificado se ligó con el fragmento procesado con BAP/HincII de pUC118. El plásmido deseable pUC118_ADH1 se obtuvo por un procedimiento ordinario.

A continuación, pUC118_ADH1 se digirió con las enzimas de restricción SacI y SmaI, y la solución de reacción se sometió a electroforesis en agarosa. Se separó un fragmento de aproximadamente 2 Kb, y el fragmento de ADN se extrajo del gel separado. El fragmento de ADN extraído se insertó en pRS316 por reacción de enlace, para dar un plásmido pRS316_ADH1 deseado.

A continuación, para la introducción de la mutación en el gen ADH1 en el plásmido mediante el procedimiento de reparación de hueco, se digirió pRS316_ADH1 con las enzimas de restricción Ball y PflFI, para dar un plásmido de anillo abierto que carece del gen estructural ADH1. Se separaron fragmentos de aproximadamente 7 Kb de la solución de reacción de enzima de restricción por electroforesis en agarosa, y el fragmento de ADN deseado se extrajo del gel obtenido. Además, el fragmento de ADN se precipitó con etanol según un procedimiento ordinario.

Posteriormente, se preparó un fragmento del gen ADH1 mutagénico para la mutagénesis mediante el procedimiento de reparación de hueco. El fragmento se preparó utilizando los cebadores mostrados en las Id. Sec. Nº 49 y 50 y un kit de mutagénesis aleatoria Diversify PCR BD Mutagenesis Random Kit (fabricado por Clontech). La operación se realizó según las instrucciones adjuntas. El fragmento obtenido se precipitó con etanol según un procedimiento ordinario y se concentró a 200 ng/μl.

Se transformó la cepa Δadh1 en una cepa que no requiere uracilo con 500 ng del plásmido de anillo abierto obtenidos y 1 micro-g del fragmento del gen ADH1 mutagénico. La cepa anfitrión Δadh1, que es una cepa que tiene una eficiencia más baja en consumo de azúcar, no crece rápidamente en medios que contienen glucosa. Por lo tanto después de la transformación, se eligieron las cepas que forman colonias en el medio SC-Ura en dos días como las cepas en las que el gen ADH1 variante en el ADN pRS316_ADH1 introducido tenía actividad de alcohol deshidrogenasa a la temperatura de cultivo.

El transformante que contiene pRS316_ADH1 elegido se extendió sobre el medio SC-Ura a una concentración de aproximadamente 100 colonias por placa, y se cultivaron en el mismo a 25°C durante 48 horas, las colonias se replican en cuatro nuevos medios de placa SC-Ura, y las placas se cultivaron a 25°C, 30°C, 34°C y 37°C para la comparación del estado de crecimiento. Las colonias que no crecen a una temperatura de cultivo de 30°C, 34°C o 37°C fueron consideradas como las cepas en las que la ADH1 en el plásmido se volvió sensible a la temperatura, y se recolectaron. De entre ellas, se recolectaron las cepas de levadura que se convirtieron en sensibles a la temperatura de 34°C, pADHlts-1, pADHlts-2 y pADHlts-3.

Los plásmidos se extrajeron, respectivamente, de las tres cepas de pADHlts sensibles a la temperatura obtenidas. Se transformó E. coli DH 5α con cada plásmido extraído, y el plásmido se obtuvo a partir de la solución de cultivo según un procedimiento ordinario. Los plásmidos obtenidos se digirieron con las enzimas de restricción SacI y SmaI, y la cepa Δ ADH1 se transformó con la solución de escisión. La solución de cultivo obtenida se extendió sobre una placa de medio YPAD y se cultivó a 25° C durante 48 horas. Debido a que la cepa Δ adh1 no crece sobre una placa que contiene glucosa, se consideró que en las colonias que crecieron el locus génico Δ adh1 se recombina con un gen ADH1 sensible a la temperatura, y se considera como una levadura que tiene el gen ADH1 sensible a la temperatura integrado en el cromosoma (ADH1ts-1, ADH1ts-2, o ADHlts-3).

Se determinaron las secuencias de ADN de los loci de gen ADHlts sensibles a la temperatura contenidos en las levaduras sensibles a la temperatura obtenidas, ADH1ts-1, ADH1ts-2, y ADH1ts-3 y las secuencias de aminoácidos de los mismos se determinaron a partir de las secuencias, que muestran que tenían respectivamente las secuencias de aminoácidos primarias que se muestran en las ld. Sec. Nº 40, 41 y 42.

(Ejemplo 9: Medición de la actividad de la alcohol deshidrogenasa de levaduras que tienen un gen ADH1 variante sensible a la temperatura)

Se determinó la actividad de la alcohol deshidrogenasa de las levaduras que tienen el gen ADH1 variante sensible a la temperatura obtenidas en el ejemplo 8, ADH1ts-1, ADH1ts-2 y ADH1ts-3. Cada cepa se inoculó en 20 ml de un medio líquido YPD y se cultivó a 30°C durante 20 horas. Se recolectaron las colonias, y se añadieron 200 µl de solución tampón de fosfato de potasio 50 mM (pH 7,0) y 0,2 g de perlas de vidrio (fabricadas por Sigma, diámetro: 0,6 mm); y la mezcla se agitó en vórtice a 4°C durante 30 minutos. Después de la agitación en vórtice, la suspensión se centrifugó, y se recogió el sobrenadante. La concentración de proteínas de cada sobrenadante homogeneizado se determinó mediante la utilización del kit BCA de ensayo de proteína (fabricado por Pierce), según una curva de calibración preparada utilizando IgG bovina (1,38 mg/ml, fabricada por Bio-Rad) como estándar.

A continuación, se determinó la actividad de la alcohol deshidrogenasa de cada cepa. La actividad se determinó, al añadir 10 μ l del sobrenadante obtenido a 190 μ l de una solución de reacción que contiene solución tampón de fosfato de potasio 53 mM (pH 7,0), piruvato sódico 20 mM, 0,19 mM de nicotinamida dinucleótido reducida (NADH), 0,21 mM de pirofosfato de tiamina, y cloruro de magnesio 5,3 mM, y se monitorizó el cambio en la absorbancia a una longitud de onda de 340 m después de la adición con un espectrofotómetro (Ultraspec3300Pro, fabricado por Amercham Biosciences). El cambio en la absorbancia obtenida se sustituye en la Δ 340 nm en la fórmula (2) anterior, y se calculó la actividad específica de cada alcohol deshidrogenasa, dividiendo la actividad de la alcohol deshidrogenasa por la concentración de cada proteína. Los resultados se resumen en la Tabla 6.

(Ejemplo Comparativo 5: Medición de la actividad de la alcohol deshidrogenasa de levadura de tipo salvaje) Adicionalmente, se determinó la actividad de la alcohol deshidrogenasa de NBRC10505, de manera similar a la del ejemplo 9. Los resultados se resumen en la Tabla 6.

П	ГаІ	ola	6]

5

10

15

20

25

30

35

40

45

50

55

[
	Cepa	Actividad específica
		de la alcohol deshidrogenasa (mmol/min/μg proteína)
Ejemplo 9	ADH1ts-1	0,0068
Ejemplo 9	ADH1ts-2	0,0294
Ejemplo 9	ADH1ts-3	0,007
Ejemplo comparativo 5	NBRC10505	0,1431

Los resultados del ejemplo 9 y el ejemplo comparativo 5 que se muestran en la Tabla 6 indican que las levaduras que tienen un gen ADH1 variante sensible a la temperatura (ADH1ts-1, ADH1ts-2 o ADH1ts-3 cepas) obtenidos en el ejemplo 13 tienen una actividad de alcohol deshidrogenasa a 30°C más baja que la de la cepa de tipo salvaje (cepa NBRC10505).

(Ejemplo 10: Preparación de Δpdc1 y Δpdc5 doble cepa deficiente)

Se preparó una levadura que carece del gen PDC5 en el ADN genómico de la cepa NBRC10506 de la siguiente manera: Un fragmento de ADN del gen URA3 de 1.3 Kb se amplificó en PCR utilizando el plásmido pRS406 como plantilla de amplificación y los oligonucleótidos (Id. Sec. Nº 54 y 55) como el conjunto de cebadores. El fragmento de ADN amplificado se purificó, y la cepa NBRC10506 se transformó en una cepa que no requiere uracilo con el fragmento de ADN. La célula transformante obtenida debe ser una cepa Δpdc5 deficiente en la que el gen PDC5 en el ADN genómico se sustituyó con el gen URA3. Para la confirmación, los productos de amplificación obtenidos en la PCR utilizando el ADN genómico como plantilla de amplificación y los oligonucleótidos mostrados en las Id. Sec. № 56 y 57 como el conjunto de cebadores se analizaron por electroforesis en agarosa. Cuando el gen PDC5 en el ADN genómico está sustituido con el gen URA3, se obtiene un producto de amplificación de 1,2 Kb. Por otra parte, cuando no está sustituido, se obtiene un producto de amplificación de 1,9 Kb. Debido a que se aisló el producto de 1,2 Kb, el transformante se considera la cepa SW011 es la que carece del gen PDC5. La cepa ∆pdc1∆pdc5 doble deficiente se preparó de la siguiente manera: Se aparearon la cepa SW011 obtenida anteriormente y la cepa SW029 obtenida en el ejemplo 2, para dar una célula diploide. Se formaron asci de la célula diploide en un medio de esporulación. El ascus se diseccionó con un micromanipulador, y cada una de las esporas se cultivó en medio YPAG, para dar cada célula haploide. Se analizó la auxotrofia de la célula haploide obtenida. La cepa ∆pdc1∆pdc5 doble deficiente deseada probablemente no requiere ni uracilo ni triptófano. Después de determinar la auxotrofia, la cepa no requiere ni uracilo ni triptófano. La supresión de los genes de PDC1 y PDC5 se confirmó en la PCR utilizando el ADN genómico de la cepa que no requiere uracilo/triptófano obtenida como la plantilla de amplificación y los oligonucleótidos mostrados en las Id. Sec. № 58 y 59, y los oligonucleótidos que se muestran en Id. Sec. № 56 y 57 como conjunto de cebadores. La cepa Δpdc1Δpdc5 doble deficiente fue designada como la cepa SWO12. Se encontró que la cepa SW012 no crece en glucosa como única fuente de carbono.

Además, se amplificó un fragmento de ADN de gen HIS3 de 1,3 Kb, en la PCR utilizando el plásmido pRS403 como plantilla de amplificación y los oligonucleótidos mostrados en las Id. Sec. Nº 54 y 55 como el conjunto de cebadores. El fragmento de ADN amplificado se purificó, y la cepa NBRC10506 se transformó en una cepa que no requiere histidina con el fragmento de ADN. El transformante obtenido debe ser una cepa deficiente Δpdc5 en la que el gen PDC5 en el ADN genómico está sustituido con el gen HIS3. Para la confirmación, los productos de amplificación obtenidos en la PCR utilizando el ADN genómico como plantilla de amplificación y los oligonucleótidos mostrados en las Id. Sec. № 56 y 57 como el conjunto de cebadores se analizaron por electroforesis en agarosa. Cuando el gen PDC5 en el ADN genómico está sustituido con el gen HIS3, se obtiene un producto de amplificación de 1,3 Kb. Por otra parte, cuando no está sustituido, se obtiene un producto de amplificación de 1,9 Kb. Debido a que se aisló el producto de 1,3 Kb, el transformante se considera que es la cepa SW013 que carece del gen pdc5. La cepa Δpdc1Δpdc5 doble deficiente se preparó de la siguiente manera: Se aparearon la cepa SW011 obtenida anteriormente y la cepa SW029 obtenida en el ejemplo 2, para dar una célula diploide. Se formaron asci de la célula diploide en un medio de esporulación. El ascus se diseccionó con un micromanipulador, y cada una de las esporas se cultivó en medio YPAG, para dar cada célula haploide. Se analizó la auxotrofia de la célula haploide obtenida. La cepa doble deficiente Apdc1Apdc5 deseado probablemente no requiere ni histidina ni triptófano. Después de estudiar la auxotrofia, la supresión de los genes de PDC1 y PDC5 se confirmó en la PCR utilizando el ADN genómico de la cepa que no requiere histidina/triptófano obtenida como plantilla de amplificación y los oligonucleótidos mostrados en las Id. Sec. Nº 58 y 59, y los oligonucleótidos que se muestran en Id. Sec. Nº 56 y 57 como conjunto de cebadores. La cepa doble deficiente Δpdc1Δpdc5 fue designada como la cepa SW014. Se encontró que la cepa SW014 no crece en glucosa como única fuente de carbono

25 (Ejemplo 11: Preparación del gen variante pdc5 sensible a la temperatura)

5

10

15

20

30

35

40

45

50

55

60

Se obtuvo un fragmento de ADN de amplificación de 2,7 Kb que contiene el gen PDC5, en la PCR utilizando el ADN genómico de la cepa BY4741 como plantilla y los oligonucleótidos mostrados en las Id. Sec. Nº 60 y 61 como conjunto de cebadores. El fragmento se digirió con NotI y, a continuación, se insertó en el lugar de escisión NotI del plásmido pRS316 previamente digerido con NotI. La cepa SW013 se transformó en una cepa que no requiere uracilo con el plásmido pRS316-PDC5 obtenido. Se confirmó que el transformante recuperaba el crecimiento en glucosa como única fuente de carbono y una velocidad de crecimiento favorable en 37°C. El plásmido pRS316-PDC5 se recuperó del transformante por un procedimiento ordinario, y la secuencia de ADN de 2,7 Kb insertada en pRS316 se identificó por un procedimiento ordinario, que muestra que el pRS316-PDC5 contenía el gen PDC5.

Posteriormente, se obtuvo un fragmento de ADN de amplificación de 1,7 Kb de codificación de la PDC5, en la PCR utilizando el plásmido pRS316-PDC5 como plantilla de amplificación y el oligonucleótido mostrado en la Id. Sec. № 62 y 63 como el conjunto de cebadores y utilizando un Diversify PCR BD Random Mutagenesis Kit (fabricado por Clontech). La PCR utilizando el kit eleva la probabilidad mutagenética durante la amplificación de ADN y, por lo tanto, el fragmento de 1,7 Kb obtenido es más probable que contenga un fragmento variante, en comparación con el fragmento obtenido por PCR normal. La cepa SW014 se transformó en una cepa que no requiere uracilo con el fragmento de 1,7 Kb obtenido y un fragmento de plásmido obtenido por digestión del plásmido pRS316-PDC5 con enzimas de restricción Van91I y Bpu1102I y posterior linealización, y se seleccionó un transformante que crece en un medio SC-Ura cuando se calienta a 25°C. El fragmento de 1,7 Kb y el plásmido linealizado se conectaron entre sí mediante recombinación homóloga por un procedimiento de reparación de hueco, y sólo crecieron las células que contienen el plásmido ciclado. Los transformantes obtenidos se replicaron en un medio SC-Ura fresco, y se calentaron a 34°C. Entre los transformantes replicados, se seleccionaron dos transformantes que no crecen a 34°C, y se designaron como variantes pdc5 sensibles a la temperatura, pdc5ts-9 y pdc5ts-11. Los plásmidos se recuperaron a partir de los transformantes por un procedimiento ordinario, y las secuencias del fragmento de ADN de amplificación de 1,7 Kb se secuenciaron. Como resultado, el pdc5ts-9 era una mutación de sustitución de un solo nucleótido de C a T en el nucleótido 1397º en el ADN del gen estructural que se muestra en la Id. Sec. Nº 52, y el pdc5ts-11 era una mutación de sustitución de un solo nucleótido de C a T en el nucleótido 701º en el ADN del gen estructural que se muestra en la ld. Sec. Nº 53. Los plásmidos se designaron respectivamente como pRS316-pdc5ts9 y pRS316-pdc5ts11 con un alelo mutación pdc5 sensible a la temperatura.

(Ejemplo 12: Preparación de variante pdc5ts)

Se digirieron plásmidos pRS316-pdc5ts9 y pRS316-pdc5ts11 con NotI, para dar un fragmento de 2,7 Kb que contiene genes variantes pdc5ts9 y pdc5ts11. La cepa SW012 se transformó en una cepa que requiere uracilo con el fragmento, y se seleccionaron los transformantes que crecen en el medio 5-FOA cuando se calientan a 25°C. Los transformantes obtenidos se replicaron en un medio SC fresco y se calentaron a 34°C. Entre los transformantes replicados, se seleccionaron los transformantes que no crecen a 34°C y se designaron como cepa SW015 variante pdc5ts9 sensible a la temperatura y cepa SW016 variante pdc5ts11 sensible a la temperatura.

(Ejemplo 13: Propiedades de la variante pdc5tS)

Se determinó la actividad de PDC de la cepa PDC de tipo salvaje, de la cepa deficiente Δ PDC1 y de la cepa Δ pdc1 pdc5 sensible a la temperatura.

(a) Extracción de proteína a partir de microorganismos,

Se obtuvieron pequeñas cantidades de las cepas NBRC10505, SW029, SW015 y SW016 respectivamente de un medio de agar, y se inocularon en 3 ml de un medio YPD líquido y se cultivaron durante toda la noche (precultivo). La solución de precultivo se inoculó en 20 ml de nuevo medio YPD líquido a una concentración de 1%, y se cultivaron con agitación en un matraz Sakaguchi de 100 ml a una temperatura de 30°C durante 24 horas (cultivo). Se centrifugaron 10 ml de la solución de cultivo para recoger las células, que se lavaron con 10 ml de un tampón de fosfato y se suspendieron en 1 ml del tampón de fosfato. La suspensión de microorganismos se transfirió a un tubo Eppendorf, se añadió la cantidad igual de perlas de vidrio (fabricadas por Sigma, diámetro: 0,6 mm), y el microorganismo se homogeneizó en un mezclador de microtubos (fabricado por Tomy) a 4°C. El microorganismo homogeneizado de este modo se centrifugó, y el sobrenadante obtenido se utilizó como una solución de enzima de PDC.

(B) Medición de la actividad de PDC

La concentración de la solución de enzima de PDC obtenida en (a) se determinó mediante la utilización de un kit BCA de ensayo de proteína (fabricado por Pierce) según una curva de calibración preparada utilizando IgG bovina (1,38 mg/ml, fabricado por Bio-Rad) como estándar, y cada solución de enzima de PDC se diluyó con agua estéril a una concentración de 2 mg/ml. A continuación, se pipeteó una mezcla líquida que excluye la solución de enzima de PDC y NADH en una semi microcubeta en la cantidad mostrada en la tabla 13, se añadieron una solución de enzima de PDC y NADH y se mezclaron inmediatamente antes de la medición.

[Tabla 7]	
Muestra	100 μL (2 mg/ml)
Solución tampón (20 mM Bis-Tris, 50 mM de KCl, pH 6)	425 μL
50 mM MgC ₁₂	200 μL (5 mM final)
2 mM pirofosfato de tiamina	200 μL (0,2 mM final)
10 mM de NADH	30 μL (0,3 mM final)
22 U/μL ADH	20 μL
200 mM piruvato Na	25 μL (5 mM final)

30 Se determinó la disminución de la absorbancia a 340 nm de cada solución de enzima de PDC mediante un espectrofotómetro (Ultrospec3300Pro, fabricado por Amercham), y se calculó la actividad específica de cada PDC en 5 mM de piruvato sódico mediante la aplicación del valor Δ obtenido en la Fórmula (1). Los resultados se resumen en la Tabla 8.

[Tabla 8]				
Cepa de levadura	NBRC10505	SW029	SW015	SW016
Gen PDC1	Tipo salvaje	Ausente	Ausente	Ausente
Gen PDC5	Tipo salvaje	Tipo salvaje	Variante	Variante
Actividad específica de la enzima PDC (mU)	3290	1630	1040	670

Los resultados mostraron que la actividad de PDC específica de la cepa SW015 variante pdc5ts9 sensible a la temperatura y la cepa SW016 variante pdc5ts11 sensible a la temperatura que tiene el gen variante PDC5 fue de 1/3 o menos que la de la cepa NBRC10505 y más baja que la de la cepa SW029, y por lo tanto, era posible obtener una levadura que tiene una actividad de PDC específica más baja mediante la obtención de una levadura con un gen PDC5 variante sensible a la temperatura.

(Ejemplo de referencia 14: prueba de fermentación de ácido láctico con la variante pdc5 sensible a la temperatura (Nº 1))

Se llevó a cabo una prueba de fermentación del ácido láctico utilizando la variante pdc5 sensible a la temperatura obtenido de este modo. El gen L-ldh derivado de Homo sapiens se introdujo en la variante pdc5 sensible a la temperatura, mediante la transformación de las cepas SW015 y SW016 en cepas que no requieren uracilo con el plásmido que expresa el gen L-ldh- pTRS48 derivado de Homo sapiens obtenido en el ejemplo 1. Se utilizó el medio de fermentación de ácido láctico que se muestra en la tabla 1 en la prueba de fermentación de ácido láctico.

La concentración del ácido láctico producto se evaluó mediante el procedimiento de HPLC descrito en el ejemplo 5.

La pureza óptica del ácido L-láctico se determinó por un procedimiento de HPLC en las siguientes condiciones:

10

15

5

20

25

35

45

50

Columna: TSK-gel de enantio L1 (fabricado por Toso Corporation)

Fase móvil: solución de sulfato de cobre acuoso 1 mM

Caudal: 1,0 ml/min

5 Procedimiento de detección: UV 254 nm

Temperatura: 30℃.

La pureza óptica del ácido L-láctico se calcula según la siguiente fórmula:

10 Pureza óptica (%) = 100 x (L-D) / (L+D)

En la que L representa la concentración de ácido L-láctico, y D representa la concentración de ácido D-láctico.

Se utilizó el ensayo Glucosa Test Wako C (Wako Pure Chemical Industries) para la medición de la concentración de glucosa.

Las condiciones para la prueba de la fermentación del ácido láctico se muestran a continuación.

Fermentador: Bioneer-N (fabricado por Marubishi)
Medio: 1 litro de medio de fermentación de ácido láctico

Temperatura de cultivo: 30°C Velocidad de aireación: 100 ml/min Velocidad de agitación: 200 l/min

pH: 5,0

20

30

35

40

45

50

25 Agente neutralizante: solución 1 N de NaOH.

En primer lugar, las cepas SW015 y SW016 transformadas con pTRS48 se cultivaron con agitación, respectivamente, en 5 ml de medio de fermentación de ácido láctico en un tubo de ensayo durante toda la noche (precultivo previo). La solución de precultivo previo se inoculó en 100 ml de medio de fermentación de ácido láctico fresco, y la mezcla se cultivó con agitación en un matraz Sakaguchi de 500 ml durante 24 horas (precultivo). La solución de precultivo se transfirió al fermentador para la prueba de fermentación del ácido láctico. Los resultados se resumen en la tabla 9.

(Ejemplo 15: Prueba de fermentación de ácido láctico con la variante sensible a la temperatura pdc5 (N º 2))

Se llevó a cabo una prueba de fermentación del ácido láctico de la variante pdc5 sensible a la temperatura anterior. El gen L-ldh de Xenopus laevis se introdujo por transformación de las cepas SW015 y SW016 con el plásmido pTRS102 que expresa el gen L-ldh de Xenopus laevis obtenido en el ejemplo 1. El medio de fermentación de ácido láctico que se muestra en la tabla 1 esterilizado bajo vapor a presión elevada (121°C, 15 minutos) se utilizó en la prueba de fermentación de ácido láctico.

La concentración del ácido láctico producto se evaluó mediante el procedimiento de HPLC descrito en el ejemplo 5.

La pureza óptica del ácido L-láctico se determinó mediante el procedimiento de HPLC descrito en el ejemplo 14.

En primer lugar, las cepas SW015 y SW016 transformadas con pTRS102 se cultivaron con agitación, respectivamente, en 5 ml de medio de fermentación de ácido láctico en un tubo de ensayo durante toda la noche (precultivo previo). La solución de precultivo previo se inoculó en 100 ml de medio de fermentación de ácido láctico fresco, y la mezcla se cultivó con agitación en un matraz Sakaguchi de 500 ml durante 24 horas (precultivo). La solución de precultivo se transfirió al fermentador para la prueba de fermentación del ácido láctico. Los resultados se resumen en la Tabla 9.

(Ejemplo comparativo 6: Fermentación del ácido láctico utilizando la cepa PDC5 de tipo salvaje (Nº 1))

- 55 Se llevó a cabo además una prueba de fermentación de la PDC5 cepa de tipo salvaje en un ejemplo comparativo. La prueba de la fermentación se llevó a cabo utilizando SW029/pTRS48 obtenido en el ejemplo 3 en las mismas condiciones que cuando se utilizó la variante pdc5 sensible a la temperatura. Los resultados se resumen en la Tabla 9.
- 60 (Ejemplo comparativo 7: Fermentación del ácido láctico de la cepa PDC5 de tipo salvaje (Nº 2))

Además, se llevó a cabo una prueba de la fermentación de SW029/pTRS102 obtenido en el ejemplo 3 en las mismas condiciones que cuando se utilizó la variante pdc5 sensible a la temperatura. Los resultados se resumen en la Tabla 9.

[Tabla 9]

[Tublu 5]					
	Cepa de levadura	gen ldh	Gen PDC5	Período de fermentación (Horas)	Rendimiento de ácido láctico al azúcar (%)
Ejemplo de referencia 14 (no forma parte de la presente invención)	SW015	Derivado de Homo sapiens	Variante	65	39
Ejemplo de referencia 14 (no forma parte de la presente invención)	SW016	Derivado de Homo sapiens	Variante	66	41
Ejemplo Comparativo 8	SW029	Derivado de Homo sapiens	Tipo salvaje	60	30
Ejemplo 15	SW015	Derivado de Xenopus laevis	Variante	65	48
Ejemplo 15	SW016	Derivado de Xenopus laevis	Variante	66	48
Ejemplo Comparativo 9	SW029	Derivado de Xenopus laevis	Tipo salvaje	60	41

Los resultados mostraron que el rendimiento de ácido láctico respecto al azúcar se mejora cuando la fermentación del ácido láctico se lleva a cabo de una cepa SW015 variante pdc5ts9 sensible a la temperatura o una cepa SW016 variante pdc5ts11 sensible a la temperatura que tienen introducido un gen L-ldh de Xenopus laevis, en comparación a cuando se lleva a cabo con la cepa SW029 con el gen deficiente PDC5. El hecho muestra que es posible producir ácido láctico de manera eficiente mediante la utilización de levadura con menor actividad específica que contiene el gen PDC5 variante según la presente invención.

10 Aplicabilidad industrial

15

20

La levadura según la presente invención y el ácido láctico producido por la levadura tienen múltiples aplicaciones, entre las que se incluyen productos de fermentación tales como sake, miso, salsa de soja, encurtidos, y productos lácteos, acidificantes sustituyendo el ácido cítrico y el ácido tartárico, bebidas frías, productos farmacéuticos y similares. Además, el ácido láctico, que además se utiliza favorablemente como la materia prima para el ácido poliláctico en el sector de las resinas, es una sustancia extremadamente útil.

Es posible producir ácido láctico que tiene esta variedad de aplicaciones de forma eficiente y de forma más económica utilizando la levadura según la presente invención y el procedimiento de producción que utiliza la levadura.

LISTA DE SECUENCIAS

Toray Industries, Inc									
Levaduras y procedimientos de producción de L-lactato									
06042									
<160> 64	64								
<170> Versión de PatentIn 3.1									
<210> 1 <211> 999 <212> ADN <213> Homo sapiens									
<400> 1 atggcaactc taaaggatca gctgatttat aatcttctaa aggaagaaca gacccccag	60								
aataagatta cagttgttgg ggttggtgct gttggcatgg cctgtgccat cagtatctta	120								
atgaaggact tggcagatga acttgctctt gttgatgtca tcgaagacaa attgaaggga	180								
gagatgatgg atctccaaca tggcagcctt ttccttagaa caccaaagat tgtctctggc 2	240								
aaagactata atgtaactgc aaactccaag ctggtcatta tcacggctgg ggcacgtcag	300								
caagagggag aaagccgtct taatttggtc cagcgtaacg tgaacatatt taaattcatc	360								
attcctaatg ttgtaaaata cagcccgaac tgcaagttgc ttattgtttc aaatccagtg	120								
gatatcttga cctacgtggc ttggaagata agtggttttc ccaaaaaccg tgttattgga 4	180								
agtggttgca atctggattc agcccgattc cgttacctga tggggggaaag gctgggagtt	540								
cacccattaa gctgtcatgg gtgggtcctt ggggaacatg gagattccag tgtgcctgta 🥏 6	500								
tggagtggaa tgaatgttgc tggtgtctct ctgaagactc tgcacccaga tttagggact 🥏 🤅	560								
gataaagata aggaacagtg gaaagaggtt cacaagcagg tggttgagag tgcttatgag 7	720								
gtgatcaaac tcaaaggcta cacatcctgg gctattggac tctctgtagc agatttggca 7	780								
gagagtataa tgaagaatct taggcgggtg cacccagttt ccaccatgat taagggtctt 8	340								
tacggaataa aggatgatgt cttccttagt gttccttgca ttttgggaca gaatggaatc	900								
tcagaccttg tgaaggtgac tctgacttct gaggaagagg cccgtttgaa gaagagtgca	960								
gatacacttt gggggatcca aaaggagctg caattttaa 9	99								
<210> 2 <211> 999 <212> ADN <213> Xenopus laevis									
<400> 2 atggcaactg tgaaggataa actcatccac aatgtggtca aggaggagtc gctccccag	60								
aacaaggtca ccattgtggg tgtgggggcc gtgggcatgg cctgtgccat cagtgtcctg 1	20								
cagaaggatt tggcagatga gcttgcactt gttgatgtga tagaagacaa actgaagggg 1	.80								
gaaatgatgg atctccagca tggcagtctg ttccttcgta cccccaagat tgtctcaggg 2	40								
aaagattaca gcgtcactgc aaactccaag ctggtagttg tgacggccgg ggcccgtcag 3	00								

caggagggag	agagtcgcct	gaatctggtt	cagcgcaatg	tcaacatctt	caaattcatc	360
attcccaaca	ttgtcaagta	cagccccaac	tgcaccctgc	tcatcgtctc	caacccagtg	420
gacattctga	catatgtggc	ctggaagatc	agtggattcc	ccaaaaaccg	tgtcattggc	480
agcggctgca	atttggactc	tgcccgtttc	cgttacctca	tggggcagaa	gtttgggatc	540
cacacccaga	gctgccacgg	ttgggtcatt	ggggaacacg	gagactcgag	tgtgccagtg	600
tggagtgggg	tgaatgtggc	tggcgtgtcc	ctgaaaaccc	tgcaccccga	tattgggagt	660
gacgcagaca	aggagaactg	gaaggaggtg	cacaagcagg	ttgtggacag	cgcctatgaa	720
gtgatcaagc	tgaagggcta	cacctcctgg	gctattggcc	tgtccgtagc	tgacctgtct	780
gagagtatcc	tgaagaacct	ccgccgagtc	catcccattt	ccacaatggt	caagggcatg	840
tacggcgtga	ataatgatgt	tttcctcagt	gtcccctgtg	tgttgggcaa	cttgggcatc	900
acagacgtgg	ttaacatgac	gctgaaggca	gatgaagagg	atcgcttacg	caagagcgca	960
gacaccctgt	gggccatcca	gaaggagctg	cagttctag			999
	taurus					
<400> 3 atggcaactc	tcaaggatca	gctgattcag	aatcttctta	aggaagaaca	tgtcccccag	60
aataagatta	caattgttgg	ggttggtgct	gttggcatgg	cctgtgccat	cagtatctta	120
atgaaggact	tggcagatga	agttgctctt	gttgatgtca	tggaagataa	actgaaggga	180
gagatgatgg	atctccaaca	tggcagcctt	ttccttagaa	caccaaaaat	tgtctctggc	240
aaagactata	atgtgacagc	aaactccagg	ctggttatta	tcacagctgg	ggcacgtcag	300
caagagggag	agagccgtct	gaatttggtc	cagcgtaacg	tgaacatctt	taaattcatc	360
attcctaata	ttgtaaaata	cagcccaaat	tgcaagttgc	ttgttgtttc	caatccagtc	420
gatattttga	cctatgtggc	ttggaagata	agtggctttc	ccaaaaaccg	tgttattgga	480
agtggttgca	atctggattc	agctcgcttc	cgttatctca	tgggggagag	gctgggagtt	540
cacccattaa	gctgccatgg	gtggatcctt	ggggagcatg	gtgactctag	tgtgcctgta	600
tggagtggag	tgaatgttgc	tggtgtctcc	ctgaagaatt	tacaccctga	attaggcact	660
gatgcagata	aggaacagtg	gaaagcggtt	cacaaacaag	tggttgacag	tgcttatgag	720
gtgatcaaac	tgaaaggcta	cacatcctgg	gccattggac	tgtcagtggc	cgatttggca	780
gaaagtataa	tgaagaatct	taggcgggtg	catccgattt	ccaccatgat	taagggtctc	840
tatggaataa	aagaggatgt	cttccttagt	gttccttgca	tcttgggaca	gaatggaatc	900
tcagacgttg	tgaaagtgac	tctgactcat	gaagaagagg	cctgtttgaa	gaagagtgca	960
gatacacttt	gggggatcca	gaaagaactg	cagttttaa		,	999

<210> 4

<211> <212> <213>	26 ADN Artificial	
<220> <223>	cebador	
<400> ctcgag	4 patgg caactctaaa ggatca	26
<210> <211> <212> <213>	5 28 ADN Artificial	
<220> <223>	cebador	
	5 gctt aaaattgcag ctcctttt	28
<210> <211> <212> <213>	6 26 ADN Artificial	
<220> <223>	cebador	
	6 atgg caactgtgaa ggataa	26
<210> <211> <212> <213>	7 26 ADN Artificial	
<220> <223>	cebador	
<400> gcggcc	7 gcct agaactgcag ctcctt	26
<210> <211> <212> <213>	8 26 ADN Artificial	
<220> <223>	cebador	
<400> ctcgag	8 atgg caactctcaa ggatca	26
<210> <211> <212> <213>	28	
<220> <223>	cebador	
<400>	9	

gcggccgc	tt aaaactgcag	ttctttct				28
<211> 6 <212> A	0 5 DN rtificial			v		
<220> <223> C6	ebador					
<400> 1 accgtttt	.0 cg gtttgccagg	tgacttcaac	ttgtccttgt	tggacagatt	gtactgagag	60
tgcac						65
<211> 6 <212> A	1 55 DDN krtificial					
<220> <223> C	ebador					
<400> 1 atcgaaga	1 ct ggcaacatga	tttcaatcat	tctgatctta	gagttctgtg	cggtatttca	60
caccg				٠		65
<211> 6 <212> A	.2 55 NDN Artificial					
<220> <223> A	ADN sintético				*	
<400> 1 accgtttt	.2 ccg gtttgccagg	tgacttcaac	ttgtccttgt	tggacagatt	gtactgagag	60
tgcac						65
<211> 6 <212> A	l3 55 DN Artificial					
<220> <223>	ADN sintético					
<400> 1 atcgaaga	l3 act ggcaacatga	tttcaatcat	tctgatctta	gagttctgtg	cggtatttca	60
caccg						65
<211> 8 <212> A	14 35 ADN Artificial					
<220> <223> C	ebador					
<400> 1	14					

tctcaattat tattttctac tcataacctc acgcaaaata acacagtcaa atcaatcaaa	60
atggcaactc taaaggatca gctga	85
<210> 15 <211> 85 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 15 tctcaattat tatttctac tcataacctc acgcaaaata acacagtcaa atcaatcaaa	60
atggcaactg tgaaggataa actca	85
<210> 16 <211> 20 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 16 aggcgtatca cgaggccctt	20
<210> 17 <211> 60 <212> ADN <213> Artificial	
<220> <223> ADN sintético	
<400> 17 tctcaattat tatttctac tcataacctc acgcaaaata acacagtcaa atcaatcaaa	60
<210> 18 <211> 60 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 18 gaattaattc ttgaagacga aagggcctcg tgatacgcct agattgtact gagagtgcac	60
<210> 19 <211> 80 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 19 tatttttcgt tacataaaaa tgcttataaa actttaacta ataattagag attaaatcgc	60
ctgtgcggta tttcacaccg	80

<210> 20 <211> 60 <212> ADN <213> Artificial	
<220> <223> DNA sintético	
<400> 20 tatttttcgt tacataaaaa tgcttataaa actttaacta ataattagag attaaatcgc	60
<210> 21 <211> 25 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 21 caaatatcgt ttgaatattt ttccg	25
<210> 22 <211> 1602 <212> ADN <213> Saccharomyces cerevisiae	
<400> 22 atgaagtaca tggtagtcag ctcgcctata caagaggttt taagattaca taaatatatt	60
gagateteta etaceacaat cacagttaaa attacaaata agatgteete teeagtgatt	120
ggtatcacct ttggtaacac ctcttcttct attgcctaca tcaacccaaa gaacgatgtt	180
gatgtcattg ccaacccaga tggtgagcgt gccattccat ccgctttatc ctatgtcggt	240
gaagatgaat accacggtgg tcaagctttg caacaattaa tcagaaatcc taagaatact	300
atcattaact tccgtgactt cattggtttg ccatttgaca agtgtgatgt cagcaagtgc	360
gctaacggtg ccccagctgt cgaagttgat ggcaaagttg gatttgttat ttcaagaggc	420
gaaggtaagg aagaaaaact tactgtagat gaagtggtct ccagacattt aaacagatta	480
aagttagccg cggaagatta catcggttct gccgtaaagg aagctgtatt gacagttcca	540
acaaacttca gtgaagaaca aaagactgca ctaaaggctt ctgccgccaa aattggtctg	600
caaattgttc aattcatcaa tgaaccttct gctgctttat tagcccacgc tgaacaattc	660
ccatttgaaa aagatgttaa cgttgttgtt gctgacttcg gtggtattag atctgacgct	720
gctgtcattg ccgttcgtaa cggtattttc actattttgg ccactgctca tgacctcagc	780
ttaggtggtg acaatttgga tactgaatta gtcgaatatt ttgctagtga gttccaaaag	840
aagtatcaag ccaatccaag aaagaacgct agatccttgg ccaagttaaa ggctaactct	900
tcaattacca agaagacttt gtccaacgca acttctgcca ctatttccat cgattcctta	960
gctgatggtt tcgactatca cgcttctatc aacagaatga ggtacgaatt ggtagctaac	1020
aaggtetteg eccaattte etettegtt gattetgtea ttgccaagge tgaattagae	1080
coattogaca tegatoctot tettttoact gotgototat cattactce aaaattaace	1140

actaacttgg aatacacttt accagaatca gtcgaaattc ttggtccaca gaacaagaac
gcttctaaca atccaaacga attagctgca tccggtgccg cattacaagc aagattgatt
agcgattacg atgctgacga attggctgaa gctttacaac cagttatcgt caatactcca
catttaaaga agcctattgg tttgattggt gctaagggcg aattccaccc agtattgttg
gctgaaactt cgttccctgt acaaaagaaa ttgactttga aacaagccaa gggtgatttc
ttgattggtg tttacgaagg tgaccatcac atcgaggaaa agactttgga gccaattcca
aaagaagaaa atgctgaaga ggacgatgaa agtgaatggt ccgacgatga acctgaagtc
gtcagagaaa aactatacac tttgggtacc aagttgatgt aa
<210> 23 <211> 533 <212> PRT <213> Saccharomyces cerevisiae <400> 23
Met Lys Tyr Met Val Val Ser Ser Pro Ile Gln Glu Val Leu Arg Leu
1 5 10 15
His Lys Tyr Ile Glu Ile Ser Thr Thr Thr Ile Thr Val Lys Ile Thr 20 25 30
Asn Lys Met Ser Ser Pro Val Ile Gly Ile Thr Phe Gly Asn Thr Ser 35 40 45
Ser Ser Ile Ala Tyr Ile Asn Pro Lys Asn Asp Val Asp Val Ile Ala 50 55 60
Asn Pro Asp Gly Glu Arg Ala Ile Pro Ser Ala Leu Ser Tyr Val Gly 65 70 80
Glu Asp Glu Tyr His Gly Gly Gln Ala Leu Gln Gln Leu Ile Arg Asn 85 90 95
Pro Lys Asn Thr Ile Ile Asn Phe Arg Asp Phe Ile Gly Leu Pro Phe 100 110
Asp Lys Cys Asp Val Ser Lys Cys Ala Asn Gly Ala Pro Ala Val Glu 115 120 125
Val Asp Gly Lys Val Gly Phe Val Ile Ser Arg Gly Glu Gly Lys Glu 130 135 140
Glu Lys Leu Thr Val Asp Glu Val Val Ser Arg His Leu Asn Arg Leu 145 150 160
Lys Leu Ala Ala Glu Asp Tyr Ile Gly Ser Ala Val Lys Glu Ala Val 165 170 175

Leu Thr Val Pro Thr Asn Phe Ser Glu Glu Gln Lys Thr Ala Leu Lys 180 185 190 Ala Ser Ala Ala Lys Ile Gly Leu Gln Ile Val Gln Phe Ile Asn Glu 195 200 205 Pro Ser Ala Ala Leu Leu Ala His Ala Glu Gln Phe Pro Phe Glu Lys 210 225 Asp Val Asn Val Val Val Ala Asp Phe Gly Gly Ile Arg Ser Asp Ala 225 230 235 240 Ala Val Ile Ala Val Arg Asn Gly Ile Phe Thr Ile Leu Ala Thr Ala 245 250 255 His Asp Leu Ser Leu Gly Gly Asp Asn Leu Asp Thr Glu Leu Val Glu 260 265 270 Tyr Phe Ala Ser Glu Phe Gln Lys Lys Tyr Gln Ala Asn Pro Arg Lys 275 280 285 Asn Ala Arg Ser Leu Ala Lys Leu Lys Ala Asn Ser Ser Ile Thr Lys 290 295 300 Lys Thr Leu Ser Asn Ala Thr Ser Ala Thr Ile Ser Ile Asp Ser Leu 305 310 320 Ala Asp Gly Phe Asp Tyr His Ala Ser Ile Asn Arg Met Arg Tyr Glu 325 330 Leu Val Ala Asn Lys Val Phe Ala Gln Phe Ser Ser Phe Val Asp Ser 340 345 Val Ile Ala Lys Ala Glu Leu Asp Pro Leu Asp Ile Asp Ala Val Leu 355 360 365 Leu Thr Gly Gly Val Ser Phe Thr Pro Lys Leu Thr Thr Asn Leu Glu 370 375 380 Tyr Thr Leu Pro Glu Ser Val Glu Ile Leu Gly Pro Gln Asn Lys Asn 385 390 395 400 Ala Ser Asn Asn Pro Asn Glu Leu Ala Ala Ser Gly Ala Ala Leu Gln
405 410 415 Ala Arg Leu Ile Ser Asp Tyr Asp Ala Asp Glu Leu Ala Glu Ala Leu 420 425 430 Gln Pro Val Ile Val Asn Thr Pro His Leu Lys Lys Pro Ile Gly Leu 435 440 445

Ile Gly Ala Lys Gly Glu Phe His Pro Val Leu Leu Ala Glu Thr Ser 450 455 460	
Phe Pro Val Gln Lys Lys Leu Thr Leu Lys Gln Ala Lys Gly Asp Phe 465 470 475 480	
Leu Ile Gly Val Tyr Glu Gly Asp His His Ile Glu Glu Lys Thr Leu 485 490 495	
Glu Pro Ile Pro Lys Glu Glu Asn Ala Glu Glu Asp Asp Glu Ser Glu 500 505 510	
Trp Ser Asp Asp Glu Pro Glu Val Val Arg Glu Lys Leu Tyr Thr Leu 515 520 525	
Gly Thr Lys Leu Met 530	
<210> 24 <211> 30 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 24 atgcggtacc gtgatgaggc tcgtggaaaa	30
<210> 25 <211> 66 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 25 tgcttataaa actttaacta ataattagag attaaatcgc gatatctttg attgatttga	60
ctgtgt	66
<210> 26 <211> 530 <212> ADN <213> Saccharomyces cerevisiae	
<400> 26 atgcggtacc gtgatgaggc tcgtggaaaa aatgaataat ttatgaattt gagaacaatt	60
ttgtgttgtt acggtatttt actatggaat aatcaatcaa ttgaggattt tatgcaaata	120
tcgtttgaat attttccga ccctttgagt acttttcttc ataattgcat aatattgtcc	180
gctgcccctt tttctgttag acggtgtctt gatctacttg ctatcgttca acaccacctt	240
attttctaac tattttttt ttagctcatt tgaatcagct tatggtgatg gcacattttt	300
gcataaacct agctgtcctc gttgaacata ggaaaaaaaa atatataaac aaggctcttt	360

cactctcctt gcaatcagat ttgggtttgt tccctttatt ttcatatttc ttgtcatatt	420
cctttctcaa ttattatttt ctactcataa cctcacgcaa aataacacag tcaaatcaat	480
caaagatatc gcgatttaat ctctaattat tagttaaagt tttataagca	530
<210> 27 <211> 30 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 27 gatatcgcga tttaatctct aattattagt	30
<210> 28 <211> 30 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 28 atgcggtacc gcaccaagtg gcgtagaaat	30
<210> 29 <211> 482 <212> ADN <213> Saccharomyces cerevisiae	
<400> 29 gatatcgcga tttaatctct aattattagt taaagtttta taagcatttt tatgtaacga	60
aaaataaatt ggttcatatt attactgcac tgtcacttac catggaaaga ccagacaaga	120
agttgccgac agtctgttga attggcctgg ttaggcttaa gtctgggtcc gcttctttac	180
aaatttggag aatttctctt aaacgatatg tatattcttt tcgttggaaa agatgtcttc	240
caaaaaaaaa accgatgaat tagtggaacc aaggaaaaaa aaagaggtat ccttgattaa	300
ggaacactgt ttaaacagtg tggtttccaa aaccctgaaa ctgcattagt gtaatagaag	360
actagacacc tcgatacaaa taatggttac tcaattcaaa actgccagcg aattcgactc	420
tgcaattgct caagacaagc tagttgtcgt agatttctac gccacttggt gcggtaccgc	480
at	482
<210> 30 <211> 966 <212> ADN <213> Artificial	
<220> <223> ADN sintético	
<400> 30 atocoptace otgatoagge teotggaaaa aatgaataat ttatgaattt gagaacaatt	60

ttgtgttgtt acggtatttt actatggaat aa	ccaatcaa ttgaggattt tatgcaaata 120
tcgtttgaat atttttccga ccctttgagt act	tttcttc ataattgcat aatattgtcc 180
gctgcccctt tttctgttag acggtgtctt ga	cctacttg ctatcgttca acaccacctt 240
attttctaac tattttttt ttagctcatt tga	atcagct tatggtgatg gcacattttt 300
gcataaacct agctgtcctc gttgaacata gga	aaaaaaa atatataaac aaggctcttt 360
cactctcctt gcaatcagat ttgggtttgt tc	cctttatt ttcatatttc ttgtcatatt 420
cctttctcaa ttattatttt ctactcataa cc	ccacgcaa aataacacag tcaaatcaat 480
caaagatatc gcgatttaat ctctaattat tag	ottaaagt tttataagca tttttatgta 540
acgaaaaata aattggttca tattattact gca	actgtcac ttaccatgga aagaccagac 600
aagaagttgc cgacagtctg ttgaattggc ctg	ggttaggc ttaagtctgg gtccgcttct 660
ttacaaattt ggagaatttc tcttaaacga ta	gtatatt cttttcgttg gaaaagatgt 720
cttccaaaaa aaaaaccgat gaattagtgg aa	ccaaggaa aaaaaaagag gtatccttga 780
ttaaggaaca ctgtttaaac agtgtggttt cca	aaaaccct gaaactgcat tagtgtaata 840
gaagactaga cacctcgata caaataatgg tta	actcaatt caaaactgcc agcgaattcg 900
actctgcaat tgctcaagac aagctagttg tc	gtagattt ctacgccact tggtgcggta 960
ccgcat	966
<210> 31 <211> 20 <212> ADN <213> Artificial <220> <223> cebador	
<400> 31 gaagggacaa ccaggacgta	20
<210> 32 <211> 19 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 32 agcccaactg aaaggttgc	19
<210> 33 <211> 83 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 33	actataca cittogotac caagitgaig 60

tagaga	ttgt actgagagtg	cac				83
<210> <211> <212> <213>	34 80 ADN Artificial					
<220> <223>	cebador					
<400> accgtc	34 tttg ttaatgttaa	agataatttc	aacaccgtta	gcgtttttaa	ttcccaattc	60
.ctgtgc	ggta tttcacaccg					80
<210> <211> <212> <213>	35 63 ADN Artificial			er.		
<220> <223>	ADN sintético				·	
<400> tccgac	35 gatg aacctgaagt	cgtcagagaa	aaactataca	ctttgggtac	caagttgatg	60
tag		*				63
<210> <211> <212> <213>	36 60 ADN Artificial					
<220> <223>	ADN sintético					
<400> gaattgg	36 ggaa ttaaaaacgc	taacggtgtt	gaaattatct	ttaacattaa	caaagacggt	60
<210> <211> <212> <213>	37 80 ADN Artificial					
<220> <223>	cebador					
<400> tagttco	37 catc atgtatgtat	ttttctatat	acgtatacat	accgtttttc	ttagagcgct	60
ctgtgcg	ggta tttcacaccg					80
<210> <211> <212> <213>	38 60 ADN Artificial					
<220> <223>	ADN sintético					
<400> agcgcto	38 taa gaaaaacggt	atgtatacgt	atatagaaaa	atacatacat	gatggaacta	60

```
<210>
       Saccharomyces cerevisiae
<400> 39
Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His
1 5 10 15
Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn
20 25 30
Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu
35 40 45
His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 60
Gly Gly His Glu Gly Ala Gly Val Val Gly Met Gly Glu Asn Val
Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95
Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys
100 105 110
Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120
Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr
130 140
Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr
145 150 155 160
 Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile
165 170 175
 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys
180 185
 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu
195 200 205
 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 220
 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala
225 230 235
```

His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 265 270 Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 320 Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 340

<400> 40

Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 10 15

Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30

Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45

His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 60

Gly Gly His Glu Gly Ala Gly Val Val Gly Met Gly Glu Asn Val

Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95

Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110

Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120 125

Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Thr Pro Gln Gly Thr

<210> <211> 40

³⁴⁸

<212> PRT <213> Saccharomyces cerevisiae

130 135 140

Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 160 Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu 195 200 205 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 220 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 240 His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 265 270 Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Ala Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 320 Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys

<210> <211> <212>

Saccharomyces cerevisiae

<400> 41

Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 10 15

Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30

Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 60 Gly Gly His Glu Gly Ala Gly Val Val Gly Met Gly Glu Asn Val 65 70 75 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln
115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 140 Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Pro Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Gly Lys Glu 195 200 205 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 220 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 240 His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Ala Gly Ala Lys Cys Ser Asp Val Phe Asn Gln Ala Val Lys Ser 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300

Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305

Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325

Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 345

<210> 42

<211> 348

<212> PRT

<213> Saccharomyces cerevisiae

<400> 42

Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 5 10 15

Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30

Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45

His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 60

Gly Gly His Glu Gly Ala Gly Val Val Gly Met Gly Glu Asn Val 65 70 75 80

Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95

Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110

Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120 125

Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140

Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160

Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175

Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190

Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu 195 200 205	
Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 220	
Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 235 240	
His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser	
Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 260 265 270	
Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Ala Val Lys Ser 275 280 285	
Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300	(a)
Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320	
Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335	
Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345	
<210> 43 <211> 70 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 43 gcacaatatt tcaagctata ccaagcatac aatcaactat ctcatataca atgtcgaaag	60
ctacatataa	70
<210> 44 <211> 70 <212> ADN <213> Artificial	
<220> <223> cebador	
<400> 44 attttttta taacttattt aataataaaa atcataaatc ataagaaatt ttagttttgc	60
tggccgcatc	70

<210> <211> <212> <213>	45 50 ADN Saccharomyces cerevisiae	
<400> gcacaat	45 tatt tcaagctata ccaagcatac aatcaactat ctcatataca	50
<210> <211> <212> <213>	53	
<400> taaaati	46 ttct tatgatttat gatttttatt attaaataag ttataaaaaa aat	53
<210> <211> <212> <213>	30	
<400> gggtgta	47 acaa tatggacttc ctcttttctg	30
<210> <211> <212> <213>	30	*
<400> catttg	48 ctcg gcatgccggt agaggtgtgg	30
<210> <211> <212> <213>	25	
<220> <223>	cebador	·
<400> atgtct	49 atcc cagaaactca aaaag	25
<210> <211> <212> <213>	50 27 ADN Artificial	
<220> <223>	cebador	
<400> ttattt	50 agaa gtgtcaacaa cgtatct	27
<210> <211> <212> <213>	51 1692 ADN Saccharomyces cerevisiae	×
<400> atgtct	51 gaaa taaccttagg taaatattta tttgaaagat tgagccaagt caactgtaac	60

accgtcttcg	gtttgccagg	tgactttaac	ttgtctcttt	tggataagct	ttatgaagtc	120
aaaggtatga	gatgggctgg	taacgctaac	gaattgaacg	ctgcctatgc	tgctgatggt	180
tacgctcgta	tcaagggtat	gtcctgtatt	attaccacct	tcggtgttgg	tgaattgtct	240
gctttgaatg	gtattgccgg	ttcttacgct	gaacatgtcg	gtgttttgca	cgttgttggt	300
gttccatcca	tctcttctca	agctaagcaa	ttgttgttgc	atcatacctt	gggtaacggt	360
gacttcactg	ttttccacag	aatgtctgcc	aacatttctg	aaaccactgc	catgatcact	420
gatattgcta	acgctccagc	tgaaattgac	agatgtatca	gaaccaccta	cactacccaa	480
agaccagtct	acttgggttt	gccagctaac	ttggttgact	tgaacgtccc	agccaagtta	540
ttggaaactc	caattgactt	gtctttgaag	ccaaacgacg	ctgaagctga	agctgaagtt	600
gttagaactg	ttgttgaatt	gatcaaggat	gctaagaacc	cagttatctt	ggctgatgct	660
tgtgcttcta	gacatgatgt	caaggctgaa	actaagaagt	tgatggactt	gactcaattc	720
ccagtttacg	tcaccccaat	gggtaagggt	gctattgacg	aacaacaccc	aagatacggt	780
ggtgtttacg	ttggtacctt	gtctagacca	gaagttaaga	aggctgtaga	atctgctgat	840
ttgatattgt	ctatcggtgc	tttgttgtct	gatttcaata	ccggttcttt	ctcttactcc	900
tacaagacca	aaaatatcgt	tgaattccac	tctgaccaca	tcaagatcag	aaacgccacc	960
ttcccaggtg	ttcaaatgaa	atttgccttg	caaaaattgt	tggatgctat	tccagaagtc	1020
gtcaaggact	acaaacctgt	tgctgtccca	gctagagttc	caattaccaa	gtctactcca	1080
gctaacactc	caatgaagca	agaatggatg	tggaaccatt	tgggtaactt	cttgagagaa	1140
ggtgatattg	ttattgctga	aaccggtact	tccgccttcg	gtattaacca	aactactttc	1200
ccaacagatg	tatacgctat	cgtccaagtc	ttgtggggtt	ccattggttt	cacagtcggc	1260
gctctattgg	gtgctactat	ggccgctgaa	gaacttgatc	caaagaagag	agttatttta	1320
ttcattggtg	acggttctct	acaattgact	gttcaagaaa	tctctaccat	gattagatgg	1380
ggtttgaagc	catacatttt	tgtcttgaat	aacaacggtt	acaccattga	aaaattgatt	1440
cacggtcctc	atgccgaata	taatgaaatt	caaggttggg	accacttggc	cttattgcca	1500
acttttggtg	ctagaaacta	cgaaacccac	agagttgcta	ccactggtga	atgggaaaag	1560
ttgactcaag	acaaggactt	ccaagacaac	tctaagatta	gaatgattga	agttatgttg	1620
ccagtctttg	atgctccaca	aaacttggtt	aaacaagctc	aattgactgc	cgctactaac	1680
gctaaacaat	aa					1692
<210> 52 <211> 169: <212> ADN <213> Sace		cerevisiae				
<400> 52 atgtctgaaa	taaccttagg	taaatattta	tttgaaagat	tgagccaagt	caactgtaac	60
accgtcttcg	gtttgccagg	tgactttaac	ttgtctcttt	tggataagct	ttatgaagtc	120

aaaggtatga gatgggctgg taacgctaac gaattgaacg ctg	cctatgc tgctgatggt 180
tacgctcgta tcaagggtat gtcctgtatt attaccacct tcg	gtgttgg tgaattgtct 240
gctttgaatg gtattgccgg ttcttacgct gaacatgtcg gtg	ttttgca cgttgttggt 300
gttccatcca tctcttctca agctaagcaa ttgttgttgc atc	atacctt gggtaacggt 360
gacttcactg ttttccacag aatgtctgcc aacatttctg aaa	ccactgc catgatcact 420
gatattgcta acgctccagc tgaaattgac agatgtatca gaa	ccaccta cactacccaa 480
agaccagtct acttgggttt gccagctaac ttggttgact tga	acgtccc agccaagtta 540
ttggaaactc caattgactt gtctttgaag ccaaacgacg ctg	aagctga agctgaagtt 600
gttagaactg ttgttgaatt gatcaaggat gctaagaacc cag	ttatctt ggctgatgct 660
tgtgcttcta gacatgatgt caaggctgaa actaagaagt tga	tggactt gactcaattc 720
ccagtttacg tcaccccaat gggtaagggt gctattgacg aac	aacaccc aagatacggt 780
ggtgtttacg ttggtacctt gtctagacca gaagttaaga agg	ctgtaga atctgctgat 840
ttgatattgt ctatcggtgc tttgttgtct gatttcaata ccg	gttcttt ctcttactcc 900
tacaagacca aaaatatcgt tgaattccac tctgaccaca tca	agatcag aaacgccacc 960
ttcccaggtg ttcaaatgaa atttgccttg caaaaattgt tgg	atgctat tccagaagtc 1020
gtcaaggact acaaacctgt tgctgtccca gctagagttc caa	ttaccaa gtctactcca 1080
gctaacactc caatgaagca agaatggatg tggaaccatt tgg	gtaactt cttgagagaa 1140
ggtgatattg ttattgctga aaccggtact tccgccttcg gta	ttaacca aactactttc 1200
ccaacagatg tatacgctat cgtccaagtc ttgtggggtt cca	ttggttt cacagtcggc 1260
gctctattgg gtgctactat ggccgctgaa gaacttgatc caa	agaagag agttatttta 1320
ttcattggtg acggttctct acaattgact gttcaagaaa tct	ctaccat gattagatgg 1380
ggtttgaagc catacatttt tgtcttgaat aacaacggtt aca	ccattga aaaattgatt 1440
cacggtcctc atgccgaata taatgaaatt caaggttggg acc	acttggc cttattgcca 1500
acttttggtg ctagaaacta cgaaacccac agagttgcta cca	ctggtga atgggaaaag 1560
ttgactcaag acaaggactt ccaagacaac tctaagatta gaa	tgattga agttatgttg 1620
ccagtctttg atgctccaca aaacttggtt aaacaagctc aat	tgactgc cgctactaac 1680
gctaaacaat aa	1692
<210> 53 <211> 1692 <212> ADN <213> Saccharomyces cerevisiae	
<400> 53 atgtctgaaa taaccttagg taaatattta tttgaaagat tga	gccaagt caactgtaac 60
accgtcttcg gtttgccagg tgactttaac ttgtctcttt tgg	
aaaggtatga gatgggctgg taacgctaac gaattgaacg ctg	
tacgctcgta tcaagggtat gtcctgtatt attaccacct tcg	

gctttgaatg	gtattgccgg	ttcttacgct	gaacatgtcg	gtgttttgca	cgttgttggt	300
gttccatcca	tctcttctca	agctaagcaa	ttgttgttgc	atcatacctt	gggtaacggt	360
gacttcactg	ttttccacag	aatgtctgcc	aacatttctg	aaaccactgc	catgatcact	420
gatattgcta	acgctccagc	tgaaattgac	agatgtatca	gaaccaccta	cactacccaa	480
agaccagtct	acttgggttt	gccagctaac	ttggttgact	tgaacgtccc	agccaagtta	540
ttggaaactc	caattgactt	gtctttgaag	ccaaacgacg	ctgaagctga	agctgaagtt	600
gttagaactg	ttgttgaatt	gatcaaggat	gctaagaacc	cagttatctt	ggctgatgct	660
tgtgcttcta	gacatgatgt	caaggctgaa	actaagaagt	tgatggactt	gactcaattc	720
ccagtttacg	tcaccccaat	gggtaagggt	gctattgacg	aacaacaccc	aagatacggt	780
ggtgtttacg	ttggtacctt	gtctagacca	gaagttaaga	aggctgtaga	atctgctgat	840
ttgatattgt	ctatcggtgc	tttgttgtct	gatttcaata	ccggttcttt	ctcttactcc	900
tacaagacca	aaaatatcgt	tgaattccac	tctgaccaca	tcaagatcag	aaacgccacc	960
ttcccaggtg	ttcaaatgaa	atttgccttg	caaaaattgt	tggatgctat	tccagaagtc	1020
gtcaaggact	acaaacctgt	tgctgtccca	gctagagttc	caattaccaa	gtctactcca	1080
gctaacactc	caatgaagca	agaatggatg	tggaaccatt	tgggtaactt	cttgagagaa	1140
ggtgatattg	ttattgctga	aaccggtact	tccgccttcg	gtattaacca	aactactttc	1200
ccaacagatg	tatacgctat	cgtccaagtc	ttgtggggtt	ccattggttt	cacagtcggc	1260
gctctattgg	gtgctactat	ggccgctgaa	gaacttgatc	caaagaagag	agttatttta	1320
ttcattggtg	acggttctct	acaattgact	gttcaagaaa	tctctaccat	gattagatgg	1380
ggtttgaagc	catacatttt	tgtcttgaat	aacaacggtt	acaccattga	aaaattgatt	1440
cacggtcctc	atgccgaata	taatgaaatt	caaggttggg	accacttggc	cttattgcca	1500
acttttggtg	ctagaaacta	cgaaacccac	agagttgcta	ccactggtga	atgggaaaag	1560
ttgactcaag	acaaggactt	ccaagacaac	tctaagatta	gaatgattga	agttatgttg	1620
ccagtctttg	atgctccaca	aaacttggtt	aaacaagctc	aattgactgc	cgctactaac	1680
gctaaacaat	aa					1692
<210> 54 <211> 70 <212> ADN <213> Art <220>						
<223> ceba	dor					
<400> 54 aatcaatctc	aaagagaaca	acacaataca	ataacaagaa	gaacaaaatg	agattgtact	60
gagagtgcac						70
<210> 55 <211> 70						

<212> <213>	ADN Artificial	
<220> <223>	cebador	
<400> gtaaaa	55 aaat acacaaacgt tgaatcatga gttttatgtt aattagctta ctgtgcggta	60
tttcac	ассд	70
<210> <211> <212> <213>	56 26 ADN	
<220> <223>	çebador	
<400> ctcgate	56 caat atactgtagt aagtcc	26
<210> <211> <212> <213>	57 26 ADN Artificial	T.
<220> <223>	çebador	
<400> caatta	57 ttta cctaaacatc tataac	26
<210> <211> <212> <213>	58 25 ADN Artificial	
<220> <223>	cebador	
<400> caaata	58 tcgt ttgaatattt ttccg	25
<210> <211> <212> <213>	59 25 ADN Artificial	
<220> <223>	çebador	
<400> tacacta	59 aatg cagtttcagg gtttt	25
<210> <211> <212> <213>	60 25 ADN Artificial	
<220> <223>	çebador	

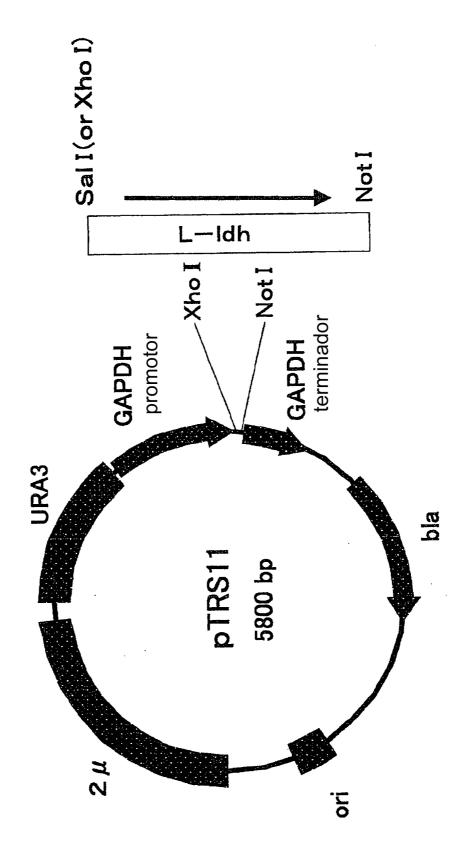
<400> aatgacg	60 gacg a	agcctgaagc 1	tggcg				25
<210> <211> <212> <213>	61 25 ADN Arti	ficial					
<220> <223>	cebado	or					
<400> ggtaage	61 cagc	tgaaagataa	taagg				25
<210> <211> <212> <213>	62 20 ADN Arti	ficial					
<220> <223>	cebac	lor					
<400> atgtct	62 gaaa	taaccttagg					20
<210> <211> <212> <213>	63 20 ADN Arti	ficial					,
<220> <223>	cebac	lor					
<400> ttattg	63 ttta	gcgttagtag	4				20
<210> <211> <212> <213>	64 1716 ADN Saco	s Charomyces c	erevisiae				
<400> atgaag	64 staca	tggtagtcag	ctcgcctata	caagaggttt	taagattaca	taaatatatt	60
				attacaaata			120
ggtato	acct	ttggtaacac	ctcttcttct	attgcctaca	tcaacccaaa	gaacgatgtt	180
gatgto	attg	ccaacccaga	tggtgagcgt	gccattccat	ccgctttatc	ctatgtcggt	240
gaagat	gaat	accacggtgg	tcaagctttg	caacaattaa	tcagaaatcc	taagaatact	300
atcatt	taact	tccgtgactt	cattggtttg	ccatttgaca	agtgtgatgt	cagcaagtgc	360
gctaad	ggtg	ccccagctgt	cgaagttgat	ggcaaagttg	gatttgttat	ttcaagaggc	420
gaaggt	taagg	aagaaaaact	tactgtagat	gaagtggtct	ccagacattt	aaacagatta	480
				gccgtaaagg			540
acaaa	cttca	gtgaagaaca	aaagactgca	ctaaaggctt	ctgccgccaa	aattggtctg	600
caaati	tgttc	aattcatcaa	tgaaccttct	gctgctttat	tagcccacgc	tgaacaattc	660

ccatttgaaa	aagatgttaa	cgttgttgtt	gctgacttcg	gtggtattag	atctgacgct	720
			actattttgg			780
ttaggtggtg	acaatttgga	tactgaatta	gtcgaatatt	ttgctagtga	gttccaaaag	840
aagtatcaag	ccaatccaag	aaagaacgct	agatccttgg	ccaagttaaa	ggctaactct	900
tcaattacca	agaagacttt	gtccaacgca	acttctgcca	ctatttccat	cgattcctta	960
gctgatggtt	tcgactatca	cgcttctatc	aacagaatga	ggtacgaatt	ggtagctaac	1020
aaggtcttcg	cccaattttc	ctctttcgtt	gattctgtca	ttgccaaggc	tgaattagac	1080
ccattggaca	tcgatgctgt	tcttttgact	ggtggtgtat	catttactcc	aaaattaacc	1140
actaacttgg	aatacacttt	accagaatca	gtcgaaattc	ttggtccaca	gaacaagaac	1200
gcttctaaca	atccaaacga	attagctgca	tccggtgccg	cattacaagc	aagattgatt	1260
agcgattacg	atgctgacga	attggctgaa	gctttacaac	cagttatcgt	caatactcca	1320
catttaaaga	agcctattgg	tttgattggt	gctaagggcg	aattccaccc	agtattgttg	1380
gctgaaactt	cgttccctgt	acaaaagaaa	ttgactttga	aacaagccaa	gggtgatttc	1440
ttgattggtg	tttacgaagg	tgaccatcac	atcgaggaaa	agactttgga	gccaattcca	1500
aaagaagaaa	atgctgaaga	ggacgatgaa	agtgaatggt	ccgacgatga	acctgaagtc	1560
gtcagagaaa	aactatacac	tttgggtacc	aagttgatgg	aattgggaat	taaaaacgct	1620
aacggtgttg	aaattatctt	taacattaac	aaagacggtg	ctttaagagt	caccgctaga	1680
gatttgaaaa	ctggtaatgc	tgtaaagggt	gaatta			1716

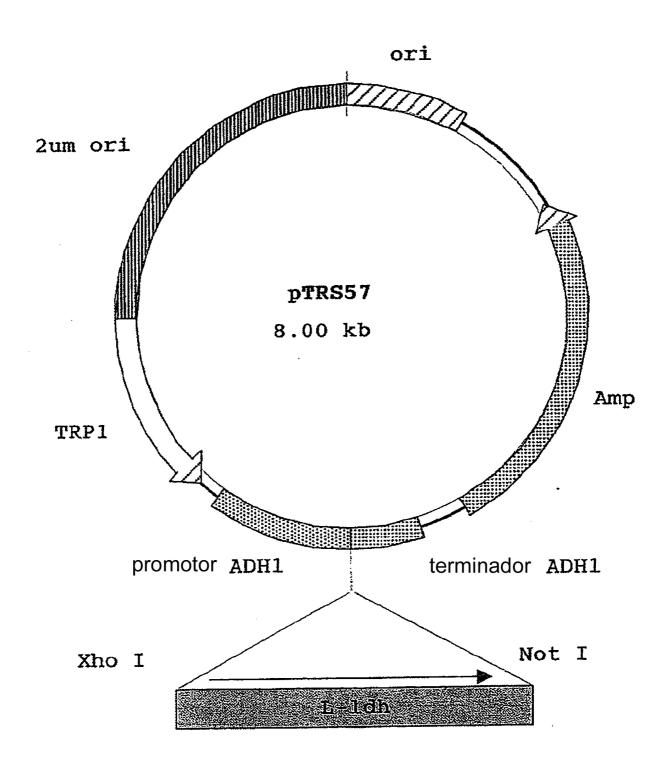
REIVINDICACIONES

1. Levadura que comprende un gen introducido que codifica una L-lactato deshidrogenasa de Xenopus laevis, en la que el gen que codifica la L-lactato deshidrogenasa es un gen que codifica una L-lactato deshidrogenasa de Xenopus laevis IdhA, IdhB o IdhC.

5


35

45


- 2. Levadura según la reivindicación 1, en la que el gen que codifica una L-lactato deshidrogenasa de Xenopus laevis es IdhA y tiene la secuencia de nucleótidos mostrada en la Id. Sec. Nº 2.
- 3. Levadura, según las reivindicaciones 1 ó 2, en la que el gen que codifica una L-lactato deshidrogenasa está introducido en una posición corriente abajo de un promotor que permite la expresión del gen que codifica una L-lactato deshidrogenasa.
- Levadura, según las reivindicaciones 1 ó 2, en la que el gen que codifica una L-lactato deshidrogenasa está
 introducido en el cromosoma para su expresión en una posición corriente abajo del gen promotor de la piruvato descarboxilasa 1.
- Levadura según las reivindicaciones 1 ó 2, que comprende además una alcohol deshidrogenasa variante que tiene una secuencia de aminoácidos en la que parte de la secuencia de aminoácidos de la alcohol deshidrogenasa de tipo salvaje está sustituida, suprimida, insertada y/o añadida, y la alcohol deshidrogenasa variante muestra sensibilidad a la temperatura de forma que la actividad de la alcohol deshidrogenasa intercelular desaparece o se reduce según el cambio en la temperatura de cultivo, en la que la alcohol deshidrogenasa variante es una alcohol deshidrogenasa variante que comprende una secuencia de aminoácidos que se muestra en cualquiera de las Id. Sec. Nº 40, 41 y 42.
 - 6. Levadura, según la reivindicación 5, en la que la alcohol deshidrogenasa variante muestra sensibilidad a una temperatura de cultivo de 34°C o superior.
- 7. Levadura, según la reivindicación 5, en la que la alcohol deshidrogenasa variante muestra sensibilidad a una temperatura de cultivo de 30°C o superior.
 - 8. Levadura, según la reivindicación 5, en la que la alcohol deshidrogenasa variante es una alcohol deshidrogenasa variante que comprende una secuencia de aminoácidos en la que uno o más aminoácidos en la secuencia de aminoácidos de la alcohol deshidrogenasa 1 de tipo salvaje que se muestra en la Id. Sec. Nº 39 están sustituidos, eliminados, insertados y/o añadidos.
 - 9. Levadura, según una cualquiera de las reivindicaciones 1 a 8, en la que la levadura pertenece al género Saccharomyces.
- 40 10. Levadura, según una cualquiera de las reivindicaciones 1 a 9, en la que la levadura pertenece al género Saccharomyces cerevisiae.
 - 11. Procedimiento de producción de ácido L-láctico, que comprende el cultivo de la levadura según cualquiera de las reivindicaciones 1 a 10.
 - 12. Procedimiento de producción de ácido L-láctico, que comprende el cultivo de la levadura, según cualquiera de las reivindicaciones 1 a 10, a 25 hasta 37°C.
- 13. Procedimiento de producción de ácido L-láctico, que comprende el cultivo de la levadura, según cualquiera de las reivindicaciones 1 a 10, a 30 hasta 34°C.

[Figura 1] Cebador 4 Cebador 4 terminador L-Idh Hpl-L-ldh Cebador 3 Cebador 1 Cebador 1 Etapa 3 Etapa 2 Etapa 1

[Figura 2]

[Figura 3]

