

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 528 040

51 Int. Cl.:

A61K 31/435 (2006.01) A61P 25/14 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 18.06.2008 E 08761161 (2)
 (97) Fecha y número de publicación de la concesión europea: 22.10.2014 EP 2170327

(54) Título: Uso de estabilizadores de dopamina

(30) Prioridad:

18.06.2007 EP 07110478 09.11.2007 EP 07120413

Fecha de publicación y mención en BOPI de la traducción de la patente: 03.02.2015

(73) Titular/es:

A.CARLSSON RESEARCH AB (100.0%) THORILD WULFFSGATAN 50 413 19 GOTEBORG, SE

(72) Inventor/es:

CARLSSON, ARVID; TAMMINGA, CAROL A.; CARLSSON, MARIA L.; RUNG, JOHAN y NILSSON, MARIE

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Uso de estabilizadores de dopamina

<u>Antecedentes</u>

5

Los estabilizadores de dopamina son una clase de compuestos que tienen la capacidad para invertir tanto la hipocomo la hiperdopaminergia in vivo. Esta clase puede ilustrarse con las fenilpiperidinas (-)-OSU6162 y ACR₁6.

El compuesto (-)-OSU6162 (S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina) pertenece a un grupo de fenilpiperidinas 10 desarrolladas en el Departamento de Farmacología, Universidad de Gothenburg, Suecia, en colaboración con The Upjohn Company, Kalamazoo, Michigan, Estados Unidos (Sonesson et al. 1994). Cuando se caracterizó en modelos animales in vivo, este grupo de agentes exhibía un perfil similar al agonista parcial de los receptores D2/D3 de dopamina (-)-PPP-(S-(-)-3-[3-hidroxifenil]-1-propilpiperidinina). Esto era especialmente cierto en lo que respecta al comportamiento, en el sentido de que no sólo pudieron demostrarse acciones inhibidoras sino también débilmente estimulantes, dependiendo del nivel de actividad basal. Claramente, la tendencia a la inmovilidad ("catalepsia") 15 incluso después de dosis altas es débil (Natesan et al. 2006), y no se presentaban efectos secundarios extrapiramidales en estudios clínicos que demostraran una acción antipsicótica (Gefvert et al 2000, L. Lindström, datos no publicados, Carlsson y Carlsson 2006). Estos aspectos, dichos agentes son similares a (-)-3-PPP. Además, exhiben una afinidad aunque moderada para los receptores D₂ de dopamina, cuando se estudiaron in vitro, y su fijación a estos receptores está claramente documentada en experimentos con animales ex vivo. Sin embargo, (-)-20 OSU6162 y sus congéneres no exhibían signo alguno de actividad intrínseca sobre los receptores de dopamina en modelos in-vivo o ex vivo (Sonesson et al, 1994). Estos compuestos, al igual que (-)-3-PPP, son fenilpiperidinas, pero difieren de este agente por tener sustituyentes sustractores de electrones en la posición 3 del anillo fenilo en lugar del grupo OH de (-)-3-PPP. Se ha supuesto que el grupo OH es importante para las propiedades agonistas parciales y cuasi-totales del receptor D2/D3 de dopamina (-)-3-PPP y (+)-3-PPP, respectivamente. 25

En ausencia de agonismo parcial, el perfil de comportamiento algo similar de (-)-OSU6162 y sus congéneres a (-)-3-PPP requiere una explicación. Hasta ahora, los intentos para aclarar esta cuestión se han basado en la suposición de heterogeneidad de los receptores D2 de dopamina (véase Carlsson et al 2004, Carlsson y Carlsson 2006).

30

La sustancia (-)-OSU6162, o S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina, ha sido utilizada hasta ahora en dosis clínicas de al menos 25 mg por día, y a menudo mayores. Una desventaja importante es que se ha encontrado que dichas dosis altas pueden estar asociadas a valores QTc más altos que los normales, arritmia cardiaca, o anormalidades de la frecuencia cardiaca, tales como torsadas de puntas.

35

40

Sumario de la Invención

La presente invención está basada en el descubrimiento de los efectos estimulantes e inhibidores del "estabilizador" de dopamina (-)-OSU6162 sobre la función del receptor D₂ de dopamina in vitro. La presente invención se define en las características de la invención al final de la descripción y en las reivindicaciones anexas.

Descripción Breve de los Dibujos

45

Figura 1. Incorporación de GTPgammaS³⁵ en membranas CHO-hD₂₁ en presencia de diversas concentraciones de dopamina y (-)-OSU6162. Resumen del experimento completo. Para estadísticas, véase las leyendas a las Figuras 2

Figura 2. Incorporación de GTPgammaS³⁵ en membranas CHO-hD₂₁ después de exposición a diversas concentraciones de (-)-OSU6162 en ausencia de dopamina.

50

Los datos son valores medios y SD, expresados como cpm (valores cero N = 6, otros grupos N = 3). ANOVA muestra diferencias significativas entre los grupos de tratamiento ($F_{(4,12)} = 4,76$, P = 0,0156). Los valores cero difieren de 100 (P = 0,0361), 1,000 (P = 0,0067), y 10.000 nM (P = 0,0032) concentraciones de (-)-OSU6162. Las diferencias entre otros grupos no son significativas.

55

Figura 3. Incorporación de GTPgammaS³⁵ en membranas CHO-hD₂₁ en presencia de dos concentraciones de dopamina (10 nM, Fig. 3a, y 100 nM, Fig. 3b) y diversas concentraciones de (-)-OSU6162.

60

Los datos son valores y SD de muestras triplicadas. Los mismos se obtuvieron después de sustracción de valores en blanco, registrados en ausencia de dopamina y (-)-OSU6162. Los valores en blanco eran 8,291 ± 281 cpm (valores medios \pm SD, n = 6).

Para cualquier concentración de dopamina (10 nM, en Fig. 3a; 100 nM, en Fig. 3b) ANOVA exhibía diferencias significativas entre los grupos de tratamiento, $F_{(4,10)} = 4,36$ y 16,05, respectivamente. En la concentración de dopamina 10 nM, la serie 10 nM (-)-OSU6162 difería de cero (P = 0,0246) y 10 nM (-)-OSU6162 difería de 1000 nM 65

(p = 0,0176) y 10.000 nM (p = 0,0033) (Fig. 3a). En la concentración de dopamina 100 nM, la serie 100 nM (-)-OSU6162 producía valores significativamente mayores que la totalidad de los otros cuatro grupos de tratamiento (P = < 0,003 en cada caso) (Fig. 3b), confirmando una curva bifásica concentración-respuesta.

- Figura 4. Efectos de (a) OSU6162 (intraperitoneal, N=5; s.c. N=5), (b) ACR₁6 (intraperitoneal, N=5), (c) haloperidol (intraperitoneal, N=5-21; s.c., N=4), (d) amisulprida (intraperitoneal, N=4-9), (e) aripiprazol (intraperitoneal, N=4-5) y (f) (-)-3-PPP (s.c., N=5-6) sobre la actividad motora de ratas activas. La actividad se midió como velocidad en el escenario de seguimiento por vídeo. Los fármacos se administraron 30 minutos antes del periodo de seguimiento de 30 minutos. Se realizaron comparaciones estadísticas frente al control con modelo lineal general univariante, seguido por el test post hoc de Dunnet. *p < 0,05; **p < 0,01; ***p < 0,001 (inyecciones intraperitoneales). ### p < 0,001 (inyecciones subcutáneas).</p>
- Figura 5. Efectos de los fármacos de test sobre la actividad motora de ratas habituadas en jaulas de actividad durante t = 0-30 minutos y t = 30-60 minutos después de inyección subcutánea. La actividad se midió como roturas de haz acumuladas sin repetición. Se dejó que las ratas se habituaran durante 65 minutos y se inyectaron luego con los fármacos de test. Esto fue seguido por 60 minutos de registro. Se establecieron efectos estadísticamente significativos con el análisis de la varianza Kruskal-Wallis de una vía por rangos, y se realizaron comparaciones frente al control como ha sido descrito por Siegel y Castellan (1988). *p < 0,05; ** p<0,01; *** p<0,001 (t=0-30 min), *p<0,05, *# p<0,01, *** p<0,001 (t=30-60 min).
 - Figura 6. Efectos de dosis bajas de apomorfina (subcutánea) sobre la actividad motora de ratas activas en los intervalos de dosificación (a) 0,04-0,16 μmol/kg (N = 5) y (b) 0,16-0,64 μmol/kg (N = 5). La actividad motora se midió como velocidad en el escenario de seguimiento por vídeo. Se administró apomorfina 5 minutos antes del registro y se estudiaron las ratas durante 30 minutos. Se hicieron comparaciones estadísticas frente al control con el modelo general lineal univariante, seguido por el test post hoc de Dunnet. **p < 0,01; ***p < 0,001.
 - Figura 7. Efectos de (a) OSU6162 (intraperitoneal, N=5-15), (b) ACR₁6 (intraperitoneal, N=10), (c) ACR₁6 (intraperitoneal, N=5), (d) haloperidol (intraperitoneal, N=5-15) y (e) amisulprida (intraperitoneal, N=5 sobre la hipomotilidad inducida por apomorfina en las ratas. Se administró apomorfina subcutánea 5 minutos antes del registro a la dosis de 0,16 μmol/kg (a-b, d-e) o 0,08 μmol/kg (c). Se administraron los fármacos de test 30 minutos antes del registro. La actividad motora se midió durante 30 minutos como velocidad en el escenario de seguimiento por vídeo. Se hicieron comparaciones estadísticas frente al grupo de apomorfina con el modelo lineal general univariante, seguido por el test post hoc de Dunnet. *p < 0,05, **p < 0,01; ***p < 0,001.
- Figura 8. Efecto de OSU6162 en un modelo de Parkinsonismo en el ratón. Los animales se pretrataron con reserpina (10 mg/kg intraperitoneal) y alfa-metil-para-tirosina (500 mg/kg intraperitoneal) 18 y 4 horas antes del experimento, respectivamente, y se trataron luego con diversas dosis intraperitoneales de OSU6162, expresadas en μmol/kg, o solución salina ("ctr"). Inmediatamente después de la inyección, los animales se colocaron en jaulas individuales y se grabaron en vídeo desde arriba durante 60 minutos. Se muestran las distancias recorridas, los valores medios y S.E.M. N = 5-6 por grupo de tratamiento. Estadísticas: *P < 0,05, **p < 0,01, comparadas con los controles.

Descripción detallada de la invención

- Como ya se ha explicado arriba, los intentos para esclarecer el perfil de comportamiento algo similar de (-)-OSU6162 y sus congéneres con (-)-3-PPP en ausencia de agonismo parcial han estado basados hasta ahora en la suposición de heterogeneidad de los receptores D₂ de dopamina. Los autores de la presente invención han encontrado ahora una explicación adicional, pero no necesariamente alternativa. Esto se explica con mayor detalle más adelante, entre otras cosas por los experimentos in-vitro sobre receptores D₂ de dopamina clonados.
- Los inventores han encontrado que concentraciones bajas de un compuesto estabilizador de dopamina tal como (-)-OSU6162 mejoran la acción estimulante de la dopamina, lo que sugiere un agonismo débil parcial. Sin embargo, este efecto mejorador es invertido por concentraciones mayores del compuesto estabilizador de dopamina tal como (-)-OSU6162 de una manera bifásica compleja. Se propone que la acción mejoradora de la dopamina está mediada por fijación a un sitio alostérico con afinidad alta y el componente inhibidor por una fijación de afinidad baja al sitio ostostérico del receptor de dopamina.
 - La presente invención se refiere al uso medicinal de una sustancia estabilizadora de dopamina, llamado también estabilizador dopaminérgico o estabilizador de dopamina, en una dosis baja, tal como 1-20 mg.
 - El compuesto de fórmula I es S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina).
 - Las implicaciones clínicas de la invención son al menos dobles.

60

25

30

En primer lugar, el descubrimiento de que los estabilizadores de dopamina descritos en la invención pueden fijarse con afinidad alta a un sitio alostérico supuesto en el receptor D2 de dopamina, conduciendo a una estimulación de la fijación de la dopamina, abre nuevas posibilidades para tratamiento de una diversidad de trastornos neurológicos y psiquiátricos caracterizados por una hipofunción del sistema de la dopamina. En tales casos, la dosis del estabilizador debería mantenerse baja para coincidir con las concentraciones aproximadamente 50 nanomolares necesarias para una respuesta adecuada, como se muestra adicionalmente más adelante. Aunque no es posible traducir con exactitud los datos in-vitro a las dosificaciones in-vivo, es razonable suponer que las dosis utilizadas hasta ahora, que estaban destinadas a hacer coincidir las afinidades micromolares de los estabilizadores al sitio ortostérico del mismo receptor, son varias veces mayores que las necesarias para estimular la función de la dopamina por fijación al sitio alostérico. Las dosis orales empleadas hasta ahora han sido del orden de 25 a 150 mg por día. Las dosis necesarias para una estimulación del sistema de la dopamina por fijación al sitio alostérico podrían ser por tanto al menos 10 veces menores, es decir 2,5 a 15 mg por día. Una dosificación oral general apropiada conforme a la invención es de 1 a 20 mg por día, administrada una sola vez al día o dividida en dos dosis iguales. Las dosis subcutáneas o intramusculares adecuadas son sólo ligeramente menores, mientras que las dosis intravenosas son aproximadamente 10 veces menores que la dosis oral.

Ejemplos de trastornos tratables conforme a la invención son:

10

15

20

25

35

40

45

55

60

65

Enfermedad de Parkinson en etapas iniciales, antes de introducir L-dopa o agonistas de los receptores de dopamina de acción directa, o junto con dosis bajas de los mismos. Fatiga mental asociada con edad avanzada, derrame cerebral, y condiciones posencefalíticas y postraumáticas.

Sin embargo, la presente invención tiene implicaciones clínicas adicionales importantes. Además de los trastornos arriba mencionados, que se caracterizan por una hipofunción de la dopamina, un gran número de trastornos parecen ser debidos más bien a la falta de estabilidad de los circuitos neurales complejos controlados por las neuronas de dopamina. En tales circuitos, un estabilizador de dopamina parece ser capaz de restablecer la estabilidad incluso en casos en que la causa primaria de inestabilidad está localizada fuera del sistema de la dopamina. Un ejemplo típico es la enfermedad de Huntington, que es debida fundamentalmente a degeneración de neuronas gabaérgicas en los ganglios basales. No obstante, como se muestra en pruebas clínicas utilizando a la vez (-)-OSU6162 y ACR₁6, estos estabilizadores pueden mejorar ambos signos de superactividad, v.g. la corea, y subfunciones, v.g. insuficiencia cognitiva y depresión. Una acción estabilizadora de este tipo se supone que es debida al bloqueo de subpoblaciones mutuamente antagonistas del receptor D2 de dopamina, tales como los autorreceptores y el heterorreceptor postsináptico. Se ha supuesto que el autorreceptor es bloqueado más fácilmente por un estabilizador de dopamina que el receptor postsináptico, y existen algunas pruebas de ello. Sin embargo, la presente invención introduce un nuevo factor, que es el sitio alostérico, sobre el cual los estabilizadores pueden actuar en concentraciones mucho menores que en el caso de los sitios ortostéricos para contrarrestar la hipofunción causada por el bloqueo del heterorreceptor postsináptico. Obviamente, esto conduciría a la existencia de una ventana terapéutica, en la que la dosis óptima debería estar comprendida entre las necesarias para un grado de fijación funcionalmente relevante a los sitios alostérico y ortostérico, respectivamente. La consecuencia sería entonces que la dosis óptima para estabilización estaría comprendida entre las necesarias para la fijación a los dos sitios, y por tanto menor que las supuestas anteriormente, que estaban basadas sólo en los datos obtenidos de estudios de los sitios ortostéricos. Así, no parece improbable que las dosis probadas hasta ahora hayan sido demasiado altas en relación con la ventana terapéutica, y por tanto que el beneficio del tratamiento haya sido subestimado. Así, la invención conduce a la conclusión de que las pruebas clínicas futuras en los trastornos caracterizados por inestabilidad de los circuitos neurales deban evitar dosis demasiado altas teniendo en cuenta la probable existencia de una ventana terapéutica. Una dosis media propuesta destinada a estabilización podría ser 25-50 mg por día, administrada una sola vez o dividida preferiblemente en dos dosis iguales.

Ejemplos de trastornos, en los que una inestabilidad de los circuitos neurales parece ser de importancia crucial y en los que podría esperarse que los estabilizadores de dopamina en dosis adecuada fueran beneficiosos, son:

Esquizofrenia, con síntomas de déficit cognitivo positivos o negativos, o ambos. Otras psicosis y condiciones paranoides. Trastorno maniaco-depresivo. Enfermedad de Huntington (tanto corea como síntomas mentales, v.g. déficits cognitivos). Tics, enfermedad de Tourette, hipo. Discinesias inducidas por L-dopa y otros agonistas de los receptores de dopamina. Discinesias tardías, inducidas por tratamiento de larga duración con antagonistas de los receptores de dopamina. Abuso de drogas y adición a las mismas (estimulantes centrales, depresores centrales, alcohol, cannabis, opiáceos, nicotina). Adicción al juego, ciertos alimentos etc. Trastornos emocionales, agresividad, impulsividad patológica. Alteraciones emocionales inducidas por dolor intenso (tratamiento combinado con analgésicos). Trastornos de ansiedad, trastornos de pánico, trastorno de ansiedad generalizada, trastorno obsesivo-compulsivo. Tratamiento combinado con fármacos antipsicóticos, que sirve para aliviar sus efectos adversos (extrapiramidales, ejecutivos, cognitivos, emocionales).

Podría considerarse una tercera categoría de trastornos, que se caracterizarían por una hiperfunción pura del sistema de dopamina. Sin embargo, la existencia de tales condiciones puede cuestionarse. Aun cuando si, por

ejemplo, el abuso de estimulantes centrales conduce inicialmente a hiperfunción de la dopamina, los adictos en el momento de la consulta para ayuda médica sufren también inestabilidad y/o debilidad manifiesta del sistema de dopamina. En cuanto a trastornos espontáneos, la esquizofrenia con síntomas predominantemente positivos, indicativos de hiperfunción de la dopamina estará casi invariablemente acompañada por signos de hipofunción de dopamina (síntomas negativos y déficits cognitivos). Lo mismo puede decirse de la manía, etcétera.

La composición farmacéutica conforme a la invención, utilizada conforme a la invención o producida conforme a la invención puede comprender también otras sustancias, tales como un vehículo inerte, o adyuvantes farmacéuticamente aceptables, portadores, conservantes etc., que son bien conocidos por las personas expertas en la técnica.

Ejemplos

10

35

40

45

50

55

60

65

Se investigó el efecto de (-)-OSU6162 sobre la incorporación de GTPgammaS³⁵ en las membranas de células CHO transfectadas con hD₂₁. En ausencia de dopamina, el compuesto ejercía una acción estimulante ligera pero significativa, lo que sugería un agonismo parcial débil. En presencia de dopamina, concentraciones bajas (10 a 100 nM) mejoraban la acción estimulante de la dopamina. Este efecto mejorador era invertido por concentraciones mayores de (-)-OSU6162 de una manera bifásica compleja. Se propone que la acción mejoradora de la dopamina está mediada por fijación a un sitio alostérico con afinidad alta y el componente inhibidor por una fijación de afinidad baja al sitio ortostérico del receptor de dopamina.

Métodos

Materiales. (-)-OSU6162 se obtuvo del Dr. Clas Sonesson (Universidad de Gothenburg, Gothenburg, Suecia).

Dopamina y GDP se adquirieron de Sigma Chemical Co. (St. Louis, MO). GTPgammaS sin marcar se adquirió de Roche (Indianapolis, IN). Todos los fármacos se disolvieron en agua desionizada y se prepararon diariamente. GTPgammaS³⁵ (1250 Ci/milimol) fue adquirido de NEN Life Science Products (Boston, MA).

Las células CHO-hD₂₁ se dejaron crecer hasta cerca de la confluencia en matraces T-150, se cosecharon las células, y se prepararon las membranas como se ha descrito previamente (Lahti et al, 1992). Las membranas se guardaron a -80°C a una concentración de 1 mg proteína/ml tampón.

La incorporación de GTPgammaS³⁵ estimulada por dopamina se determinó utilizando el procedimiento siguiente: en un tampón que contenía HEPES 20 mM, MgCl₂ 5 mM, NaCl 100 mM, a pH 7,5, las membranas (60 μg/ml) se incubaron con vehículo, fármacos y GDP 3 μM durante 30 min a 30°C, siendo el volumen total 1,1 ml. Después de ello se añadieron 30 microlitros de GTPgammaS³⁵ (160 pM) y se continuó la incubación durante 30 min más como anteriormente. La reacción se paró por filtración de las muestras con un cosechador Brandel en filtros Whatman FG/B. Los filtros se introdujeron en viales de centelleo de líquido que contenían 10 ml de fluido de centelleo BCS y se contaron al día siguiente. Todas las muestras se pasaron por triplicado.

Resultados

La Figura 1 presenta un resumen del efecto de diversas concentraciones de dopamina y (-)-OSU6162 sobre la incorporación de GTPgammaS³⁵. Después de la adición de dopamina sola, se evidencia una curva de forma sigmoidal, con un efecto de techo entre concentraciones de dopamina 1000 y 10.000 nM. Se obtuvo un resultado similar en otro experimento en las mismas condiciones experimentales.

En ausencia de dopamina, las concentraciones 100 a 10.000 nM de (-)-OSU6162 aumentaban la incorporación de GTPgammaS³⁵ en un 8 a 11% (Figura 2, datos extraídos de la Figura 1).

Cuando las concentraciones de dopamina y (-)-OSU6162 se variaron simultáneamente, los dos agentes exhibían una interacción compleja sobre la incorporación de GTPgammaS³⁵ (Figura 3, datos extraídos de la Figura 1). A concentraciones de dopamina bajas (10 a 100 nM) las concentraciones bajas de (-)-OSU6162 (10 a 100 nM) causaban una incorporación incrementada de GTPgammaS³⁵. Sin embargo, este aumento no se observaba ya después de concentraciones mayores de (-)-OSU6162 (1000 y 10.000 nM). Para concentraciones mayores de dopamina (1000 y 10.000 nM) las variaciones en los niveles de (-)-OSU6162 producían curvas similares, aunque con actividad más plana.

Discusión

Los datos anteriores demuestran los efectos tanto estimulantes como inhibidores de (-)-OSU6162 sobre la actividad de los receptores D_2 de dopamina, expresada como incorporación de GTPgammaS 35 . Cuando se administró solo, se encontró que (-)-OSU6162 ejercía un efecto estimulante débil sobre la incorporación de GTPgammaS 35 , lo que sugería que este agente es un agonista parcial de los receptores D_2 de dopamina. En respaldo de esta hipótesis, este compuesto guarda una relación química muy estrecha con 3PPP, cuyos enantiómeros poseen propiedades

agonistas sobre los receptores D₂/D₃ de dopamina. Adicionalmente, (-)-OSU6162 tiene un perfil de comportamiento que concuerda con un agonismo parcial débil sobre los receptores D₂ de dopamina. Seeman y Guan (2006) demostraron también el efecto agonista moderado de (-)-OSU6162 sobre la incorporación de GTPgammaS³⁵ en células CHO clonadas con el receptor D2 largo de dopamina, pero no lograron demostrar la interacción compleja de concentraciones variadas de (-)-OSU6162 sobre los efectos agonistas. Hasta ahora, sin embargo, el ensayo directo in-vivo de (-)-OSU6162 no ha conseguido demostrar ningún agonismo de los receptores de dopamina (Natesan et al. 2006). La explicación más probable de los datos disponibles parece ser que (-)-OSU6162 es un agonista parcial aunque débil de los receptores D₂ de dopamina. Probablemente, dicho agonismo débil es más fácilmente detectable en condiciones in-vitro, dado que una ausencia completa de dopamina puede alcanzarse difícilmente en condiciones in-vivo.

Cuando se estudiaron diversas concentraciones de dopamina y (-)-OSU6162 en combinación, se encontró que (-)-OSU6162 tiene un efecto bifásico sobre la actividad del receptor D_2 de dopamina. Una acción estimulante, que aumentaba el efecto de la dopamina, se apreciaba después de concentraciones bajas de (-)-OSU6162, pero este efecto de mejora era invertido por concentraciones mayores, lo que parecía por tanto antagonizar el efecto de la dopamina.

La interpretación siguiente podría concordar mejor probablemente con el conocimiento previo de (-)-OSU6162. Datos de fijación in vitro y datos in vivo soportan la opinión de que (-)-OSU6162 es un antagonista de los receptores D₂ de dopamina, aunque con una actividad intrínseca débil, detectable hasta ahora únicamente en condiciones in vitro. El componente antidopaminérgico inducido por concentraciones altas de (-)-OSU6162 en las condiciones presentes puede explicarse de acuerdo con ello. Esto concuerda con el Ki bastante alto del compuesto (en la región micromolar) en los experimentos previos de fijación in-vitro (Sonesson et al. 1994).

La estimulación inducida por concentraciones bajas de (-)-OSU6162 podría ser debida por tanto a fijación a un sitio alostérico, conducente a una acción aumentada de la dopamina, y posiblemente a la estimulación débil del receptor observada incluso en ausencia de dopamina. La fijación de este compuesto a un sitio alostérico podría conducir a un cambio conformacional de la molécula del receptor, y esto podría tener a su vez varias consecuencias diferentes: a) una afinidad incrementada a la dopamina, b) una sensibilidad incrementada a la dopamina por algún otro mecanismo, c) una actividad constitutiva incrementada del receptor, o d) cualquier combinación entre estas posibilidades. Puede ser necesario considerar explicaciones alternativas, que implican por ejemplo, la fijación a alguna proteína adyacente que, de un modo u otro, pudiera influir en el receptor de dopamina.

Los mecanismos complejos arriba propuestos podrían ser considerados quizás como modelo para estabilización de los receptores: ocupaciones simultáneas por uno y el mismo agente en sitios alostéricos y ortostéricos, contrarrestándose unos a otros sin alterar necesariamente la actividad basal del receptor, conducirían a una acción estabilizadora, puesto que la amplitud de respuestas a la liberación de dopamina endógena podría amortiguarse debido a una disponibilidad reducida de sitios de fijación. Sin embargo, la extrapolación de los datos obtenidos en un sistema artificial in-vitro a las condiciones in-vivo tiene que considerarse como tentativa solamente.

Los presentes experimentos se realizaron sobre la variante larga de corte y empalme del receptor D₂ humano. Queda por ver de qué modo se comportará la variante corta en este modelo experimental. Existe una diferencia fundamental entre las dos variantes al menos en lo que respecta a los auto- frente a los hetero-receptores: los primeros parecen pertenecer predominantemente a la variante corta, mientras que los últimos son mixtos (Khan et al 1998, Centonze et al 2002). Los heterorreceptores son sinápticos o extrasinápticos. Una hipótesis atractiva podría ser que la variante corta es predominantemente extrasináptica, con indiferencia de si se trata de un auto- o hetero-receptor, mientras que la variante larga estaría localizada fundamentalmente en la hendidura sináptica. Las dos variantes podrían estar luego relacionadas con concentraciones diferentes de neurotransmisores. Existen evidencias satisfactorias de que los autorreceptores son más sensibles a concentraciones bajas de los transmisores que el heterorreceptor (Carlsson y Carlsson, 2006). Además, los receptores de dopamina postsinápticos se volvían extrasinápticos después que la degeneración de las neuronas dopamínicas se hicieran supersensibles. Sería interesante comparar las dos variantes de corte y empalme en el presente modelo experimental. En general, los experimentos de fijación in-vitro han demostrado hasta ahora que las mismas se comportan igualmente, utilizando un gran número de agentes antidopaminérgicos (Leysen et al 1993). Sin embargo, un estudio ha registrado afinidades algo mayores de antipsicóticos atípicos para la variante corta (Malmberg et al 1993).

La posible existencia de un ligando endógeno para el sitio alostérico propuesto podría ser un tema de especulación. Un ligando de este tipo podría liberarse junto con dopamina como co-transmisor o desde una célula adyacente. El mismo podría intensificar o amortiguar la función de la dopamina y servir por tanto como amplificador o estabilizador. La existencia simultánea de ligandos alostéricos tanto amplificadores como estabilizadores puede considerarse también.

Datos in-vivo que respaldan la invención

65 Sumario

10

15

35

40

45

50

55

Los estabilizadores dopaminérgicos pueden definirse como fármacos que estimulan o inhiben la señalización dopaminérgica dependiendo del tono dopaminérgico. (-)-OSU6162 y ACR₁6 parecen poseer un perfil de este tipo. Se ha propuesto que los mismos actúan como agonistas parciales de los receptores de dopamina o como antagonistas con acción preferencial sobre los autorreceptores dopaminérgicos. Estudios previos han demostrado estimulación o inhibición del comportamiento en respuesta a OSU-6162 y ACR₁6, habiéndose sugerido que esto refleja sus efectos duales sobre la señalización dopaminérgica. Los objetivos del presente trabajo son (1) examinar la relación entre la respuesta de comportamiento a estos fármacos y la actividad basal, y (2) testar los mecanismos de acción sugeridos por medio de comparaciones estrechas con los agonistas parciales de los receptores D2 conocidos (-)-3-PPP y aripiprazol, y el antagonista preferente del autorreceptor D2 amilsulprida con respecto a efectos sobre el comportamiento. A partir de los resultados de estos experimentos puede llegarse a la conclusión de que: 1) La dirección de la respuesta a (-)-OSU6162 y ACR16 depende de la actividad basal que, a su vez, en condiciones fisiológicas, está determinada fundamentalmente por el tamaño de la arena de test y el grado de habituación al entorno. 2) Los efectos de (-)-OSU6162 y ACR₁6 no pueden explicarse sobre la base de agonismo parcial del receptor de dopamina o antagonismo preferencial del autorreceptor de dopamina. Sin embargo, los datos actuales sugieren al menos dos dianas asociadas con el receptor D2 diferentes que median efectos opuestos sobre la actividad. Este resultado concuerda con un mecanismo propuesto a partir de un estudio reciente in-vitro, conforme al cual (-)-OSU6162 tiene una acción dual sobre los receptores D2 de dopamina, a) un efecto alostérico que causa una respuesta intensificada a dopamina, y b) el efecto ortostérico propuesto previamente que antagoniza la acción de la dopamina. La dosis requerida para inducir el primer efecto es claramente inferior a la requerida para el último.

Introducción

10

15

20

25

30

35

40

45

50

55

60

65

Los estabilizadores dopaminérgicos constituyen un nuevo principio para tratamiento de la esquizofrenia y otros trastornos que implican los circuitos dopaminérgicos del cerebro. Conceptualmente, estos fármacos actúan normalizando la señalización dopaminérgica con dependencia del tono dopaminérgico. En el caso de una función de dopamina elevada, aquéllos intensifican la señalización dopaminérgica. Así pues, estos fármacos constituyen tratamientos potenciales para una diversidad de condiciones que implican los caminos dopaminérgicos. Enfocándose en la esquizofrenia, un grado apropiado de inhibición dopaminérgica puede aliviar síntomas positivos sin inducir los efectos secundarios extrapiramidales y mentales asociados con un bloqueo excesivo del receptor D2. Cualesquiera síntomas negativos causados por un tono dopaminérgico bajo podrían mejorar también, debido al efecto estimulante de estos fármacos.

Un tipo de estabilizadores dopaminérgicos son los agonistas parciales del receptor D2 e incluyen compuestos como aripiprazol (Jordan et al, 2002a; Jordan et al, 2002b) y (-)-3-PPP (Carlsson, 1983). Un agonista parcial es, por definición, estabilizador de la transmisión al nivel del receptor, actuando hacia un grado de activación menor que el del agonista endógeno. El mismo estabilizará la actividad media del receptor hacia un nivel que refleja su actividad intrínseca, es decir, la preferencia relativa para los estados activos e inactivos del receptor (véase Buxton 2005). Aripiprazol se encuentra entre los agonistas parciales del receptor D2 con la actividad intrínseca más baja conocida (Jordan et al, 2007; Jordan et al, 2006; Tadori et al, 2005). Entre los agonistas parciales del receptor D2 establecidos, únicamente aripiprazol se encuentra en el mercado y se utiliza en el tratamiento de la psicosis y la manía

Otro tipo de estabilizadores dopaminérgicos parecen ser antagonistas puros del receptor D2 e incluyen las moléculas estructuralmente afines (-)-OSU6162 (OSU6162) (compuesto no. 16, Sonesson et al, 1994) y ACR₁6 (Pontén et al, 2002; Waters et al, 2002). Se ha sugerido que OSU6162 y ACR₁6 son antagonistas del receptor D2 con acción preferencial sobre los autorreceptores (Carlsson et al, 2004) (véase Carlsson et al, 2004). Sin embargo, se ha reivindicado recientemente que OSU6162 es un agonista parcial de los receptores de dopamina con menor actividad intrínseca (Seeman y Guan, 2006). OSU6162 y ACR₁6 han sido investigados en estudios clínicos iniciales y se ha encontrado que son terapéuticamente activos en esquizofrenia, enfermedad de Parkinson con discinesias inducidas por L-dopa, y en la enfermedad de Huntington (Gefvert et al, 2000; Lundberg et al, 2002; Tedroff et al, 1999, datos no publicados; Information from Neurosearch A/S, Dinamarca, publicado en una Circular de Oferta Internacional de 22 de septiembre de 2006). En este contexto debería mencionarse el antipsicótico atípico amisulprida; el mismo se ha caracterizado como antagonista preferencial de autorreceptores dopaminérgicos (Perrault et al, 1997; Schoemaker et al, 1997) pero usualmente no está etiquetado como estabilizador dopaminérgico.

Con anterioridad, en un test para interacciones sociales, se observó inhibición de la actividad motora en respuesta a OSU6162 y ACR₁6 en ratas tratadas con MK-801, pero también en ratas no tratadas previamente (Rung et al, 2005a). El último resultado contrasta con otros estudios, en los cuales OSU6162 y ACR₁6 causaban poca o ninguna activación en las ratas naíf de fármacos situadas en un entorno nuevo, o una activación de corte claro en animales habituados al mismo entorno (Natesan et al, 2006; Sonesson et al, 1994). Se sugiere la hipótesis de que la causa principal de estos resultados dispares es una diferencia en la actividad basal. La inhibición del comportamiento era inducida en ratas con un nivel de actividad alto; la alta actividad había sido inducida por un entorno nuevo que las ratas encontraban estimulante (Rung et al, 2005) o por tratamiento con mejoradores dopaminérgicos, en tanto que

se observaba activación en las ratas inactivas, habituadas previamente a un entorno poco estimulante (Sonesson et al, 1994; Natesan et al, 2006). Presumiblemente, las variaciones ambientales inducidas en el nivel de actividad motora y en el tono dopaminérgico están estrechamente interrelacionadas. Se ha demostrado que OSU6162 y ACR₁6 invierten la hiperactividad inducida por anfetamina en las ratas (Natesan et al, 2006), indicativa de la inhibición dopaminérgica en un estado hiperdopaminérgico.

Los objetivos del presente estudio fueron (1) examinar la influencia de la actividad basal sobre la respuesta conductual a OSU6162 y ACR₁6, y (2) testar las hipótesis presentadas anteriormente concernientes al modo de acción de estos fármacos por comparaciones estrechas con los compuestos bien caracterizados aripiprazol, (-)-3-PPP y amisulprida en diferentes escenarios de comportamiento.

Materiales y Métodos

Animales

15

10

20

60

En estos experimentos se utilizaron ratas macho Sprague-Dawley (Scanbur BK AB, Sollentuna, Suecia), que pesaban 255-340 g. Con anterioridad a los ensayos, las ratas se alojaron durante aproximadamente una semana con acceso libre a comida y agua, en grupos de 4 ó 5 en jaulas Macrolon tipo III en la instalación de animales de la Academia Sahlgrenska de la Universidad de Göteborg. Los experimentos fueron aprobados por el comité de ética animal en Göteborg.

Fármacos

- El hidrocloruro de (-)-OSU6162 (MW = 317 g), bajo el sinónimo MWU-96391A, era un obsequio de Pfizer Inc. (Groton, Connecticut, EE.UU.) Amisulprida (MW = 369,5) era un obsequio de Sanofi-Aventis (Bagneaux, Francia). El tartrato de ACR₁6, (MW = 431,5) y aripiprazol (MW = 448,4) fueron proporcionados por Lilly Research Laboratories (Indianapolis, EE.UU.). RE-(-)-Apomorfina hidrocloruro semihidrato (MW = 312,8), haloperidol (MW = 375,9) y (-)-3-PPP-hidrodloruro (MW = 255,8) se adquirieron de Sigma-Aldrich-Sweden AB (Estocolmo, Suecia).
- OSU6162, ACR₁6, apomorfina y (-)-3-PPP se disolvieron en solución salina al 0,9%. Se añadieron unos cuantos granos de ácido ascórbico a las soluciones de apomorfina para prevenir la oxidación del fármaco. Haloperidol y amisulprida se disolvieron en una cantidad mínima de ácido acético y se diluyeron con glucosa al 5,5%. Las soluciones se ajustaron a pH 5-7 con bicarbonato de sodio. El aripiprazol se disolvió en una cantidad mínima de ácido acético caliente, se diluyó en glucosa caliente al 5,5% y se ajustó a pH 4-5. Todos los fármacos se administraron por vía intraperitoneal (i.p.) o subcutánea (s.c.) en volúmenes de 5 ml/kg. Los tratamientos de control consistían en el vehículo apropiado administrado conforme al tratamiento de fármaco en cuestión.

Seguimiento por vídeo

- 40 Este método se modificó respecto a un escenario utilizado previamente para experimentos de interacción social (Rung et al, 2005b). Las ratas se alojaron en ciclo inverso de luz diurna y toda la manipulación de los animales se realizó en luz tenue. Se administró apomorfina por vía subcutánea 5 minutos antes del ensayo, mientras que todos los restantes fármacos se inyectaron por vía intraperitoneal o subcutánea, 30 minutos antes del ensayo. Las ratas individuales se introdujeron en arenas rectangulares (I/w/h: 150 x 100 x 40 cm) iluminadas indirectamente por una 45 lámpara infrarroja (Neocom, Corea del Sur). Los movimientos de las ratas se registraron en archivos digitales de vídeo (MPEG2) utilizando una cámara de vídeo IR sensible (Panasonic WV-CPR480, lente: Panasonic LA-408C3) conectada a un equipo PC con un codificador MPEG (MWR₁000^{SX}, Canopus Co.). Los archivos de vídeo se analizaron luego con el software de seguimiento de vídeo EthoVision 3.1 Color Pro (Noldus Information Technology, Wageningen, Países Bajos) utilizando una frecuencia de muestra de 12,5 muestras por segundo. Las variables de 50 comportamiento se extrajeron de los seguimientos en MatLab (The Mathworks, Inc., Estados Unidos) con funciones desarrolladas en este laboratorio. Se utilizó la velocidad media para medir la actividad motora. Antes del cálculo de la velocidad, los seguimientos se sometieron a un filtro de ejecución media, es decir, cada muestra se reemplazó por el valor medio de 15 muestras consecutivas.
- 55 Actividad motora en jaulas de actividad

Estos experimentos se diseñaron para asemejarse a los de Sonesson et al (1994). Las ratas se alojaron en un ciclo de luz diurna normal y el ensayo se realizó durante las horas diurnas. Los animales se introdujeron en jaulas de actividad iluminadas, con sonido atenuado (l/w/h: 40 x 40 x 20 cm) y se dejó que se habituaran al nuevo entorno durante 65 minutos. Durante los 5 minutos siguientes se inyectaron los fármacos de test por vía subcutánea, después de lo cual se devolvieron las ratas a las jaulas durante 60 minutos más. Filas de haces de fotocélulas de 5 x 5 al nivel del suelo permitían que un sistema basado en computadora registrara la actividad horizontal. La actividad motora se presenta como número acumulado de roturas de haz no repetidas, es decir varias roturas consecutivas de un haz se cuentan como una sola rotura de haz. El software se ajustó para registrar el comportamiento desde la

primera introducción de la rata en la arena hasta que la misma se retiró finalmente de la jaula, es decir durante 130 minutos. La actividad se presenta por separado para t = 0-30 min y t = 30-60 min después de la inyección.

Estadísticas

5

10

15

45

En varios casos se han agrupado datos de dos o más experimentos. Los resultados aberrantes se evaluaron uno cada vez con el test de Grubbs para resultados aberrantes (De Muth, 1999; Grubbs, 1969). Los valores aberrantes confirmados (N = 0-3 por experimento) se excluyeron de los análisis estadísticos y las presentaciones gráficas. Los datos del escenario de seguimiento por video se analizaron con el modelo lineal general univariante (GLM). A continuación del análisis GLM, se realizaron comparaciones frente a los grupos de control apropiados con el test post-hoc de Dunnet. Los análisis GLM no demostraron diferencias estadísticamente significativas interexperimento en datos agrupados con respecto a efectos del fármaco sobre la actividad motora. El "experimento" no se incluyó por tanto como factor en los análisis GLM. Los datos obtenidos a partir de las jaulas de actividad se analizaron con el análisis de una sola vía Kruskal-Wallis de varianza por rangos. Se realizaron comparaciones frente al control como ha sido descrito por Siegel y Castellan (1988). Todos los tests estadísticos eran de dos lados y p < 0,05 se consideró estadísticamente significativo.

Resultados

20 Efectos sobre la actividad motora en ratas activas

En el escenario de seguimiento por video, las ratas de control tenían un nivel de actividad inicial alto, y la actividad disminuía acusadamente, pero no se nivelaba, durante los 30 minutos del test de comportamiento.

Tanto OSU6162 como ACR16 (30-120 µmol/kg, intraperitoneal) causaban una reducción de la actividad motora 25 dependiente de la dosis y estadísticamente significativa (Figura 4a-b). Cuando se administró por vía subcutánea OSU6162 (50-200 µmol, subcutánea) inducía una inhibición similar del comportamiento dependiente de la dosis (Figura 4a). El neuroléptico clásico haloperidol (0,067-0,53 µmol/kg) causaba una inhibición estadísticamente significativa a la dosis máxima (Figura 4c). Sin embargo, las ratas que recibieron la dosis máxima de haloperidol 30 pueden dividirse en un grupo (N = 4) que no respondía al tratamiento y un grupo (N = 6) con una reducción acusada de la actividad motora. Esto indica que esta dosis puede estar situada en el umbral entre respuesta y carencia de respuesta con respecto a actividad. Cuando se administró por vía subcutánea a una dosis mayor, haloperidol (0,8 umol/kg, subcutáneo) inhibía la actividad motora aproximadamente al 7% del nivel de control (Figura 4c). Amisulprida (4-270 µmol/kg, intraperitoneal), un antagonista de los receptores D2/D3 con preferencia por los autorreceptores, inhibía la actividad motora ligeramente a la dosis máxima testada (Figura 4d). Los agonistas 35 parciales del receptor D2 aripiprazol (0,4-10 µmol/kg, intraperitoneal) (Figura 4a) y (-)-3-PPP (2,5 y 10 µmol/kg, subcutáneo) (Figura 4f) inducían inhibición acusada y dependiente de la dosis de la actividad motora, lo que era estadísticamente significativo para todas las dosis testadas.

40 Efectos sobre la actividad motora en ratas inactivas

Se dejó que las ratas se habituaran en las jaulas durante 65 minutos antes de las inyecciones de los fármacos de test. Durante el periodo de habituación, se producía una disminución acusada en la actividad motora. Después de aproximadamente 30 minutos, la actividad motora había alcanzado una línea base que estaba próxima a cero. Después de la inyección, las ratas exhibían una activación motora moderada pero inconfundible. Los animales de control se volvían típicamente estacionarios dentro de 10 minutos después de las inyecciones, y se mantenían así hasta que se retiraron de las jaulas.

Todas las dosis de OSU6162 (25-200 µmol/kg, subcutáneas) inducían una activación locomotora acusada durante los primeros 30 minutos después de la inyección del fármaco. Durante los 30 minutos de registro finales, las 3 dosis 50 más altas estimulaban significativamente la locomoción (Figura 5a). ACR₁6 (25-200 µmol/kg, subcutánea) causaba también activación, aunque menor que la de OSU6162. Durante los primeros 30 minutos después de la invección, este efecto aumentaba de manera dependiente de la dosis. Durante los 30 minutos de observación finales, el efecto parecía alcanzar un pico a la dosis de 50 μmol/kg (Figura 5b). Aunque OSU6162 y ACR₁6 estimulaban claramente la actividad de las ratas habituadas, el nivel de actividad resultante era bajo comparado con la actividad antes de la 55 habituación. Ni haloperidol (0,1-0,8 µmol/kg) ni amisulprida (33-300 µmol/kg) tenían efectos significativos sobre la actividad motora (Figura 5c-d). Aripiprazol (0,4-10 µmol/kg, subcutánea) causaba una inhibición dependiente de la dosis durante los primeros 30 minutos después de la inyección, que era estadísticamente significativa a la dosis máxima, pero no afectaba a la actividad locomotora durante los 30 minutos de registro finales (Figura 5e). (-)-3-PPP no producía efecto alguno estadísticamente significativo sobre la actividad motora en ninguno de los intervalos de 60 tiempo (Figura 5f).

En un experimento final, los datos presentados en la Figura 5a se extendieron para incluir dos dosis más bajas de OSU6162, a saber 6,25 y 12,5 µmol/kg, subcutáneas (véase la Figura 5a ampliada, que muestra datos de todas las

dosis). Un efecto significativo se observa ya a una dosis de 12,5 µmol/kg, es decir una dosis varias veces menor que la requerida para inducir inhibición de la conducta (véase Fig. 4a).

Efectos sobre la hipoactividad inducida por apomorfina

La apomorfina tenía un efecto inhibidor dependiente de la dosis sobre la actividad locomotora a las dosis de 0,04-0,16 µmol/kg (subcutáneas), cuando se testó en el escenario de seguimiento por vídeo (Figura 6a). Cuando se testó un intervalo de dosis mayor (0,16-64 µmol/kg) era evidente que la actividad motora comenzaba a disminuir hacia un nivel similar al observado en los controles (Figura 6b). La inhibición máxima de la apomorfina ocurría a la dosis de 0,16 µmol/kg, que parece ser también una dosis estándar para este tipo de experimentos (v.g. Ståhle y Ungerstedt, 1986; Svensson et al, 1986).

Se testaron varios fármacos en lo que respecta a sus efectos sobre la hipomotilidad inducida por apomorfina (0,16 µmol/kg, subcutánea). OSU6162 (30-120 µmol/kg, intraperitoneal) causaba una inversión modesta pero aparentemente dependiente de la dosis de hipomotilidad inducida por apomorfina hasta una dosis de 60 µmol/kg. Sin embargo, una dosis mayor (120 µmol/kg), parecía causar un descenso acusado en la actividad motora (Figura 7a). ACR₁6 (30, 60 µmol/kg, intraperitoneal) no tenía efecto apreciable alguno sobre la hipoactividad inducida por apomorfina (Figura 7b). Cuando se testó con una dosis menor de apomorfina (0,08 µmol/kg, subcutánea), la dosis mayor de ACR₁6 tendía a inhibir adicionalmente la actividad (Figura 7c). Haloperidol (0,13-0,53 µmol/kg, intraperitoneal) no tenía efectos estadísticamente significativos sobre la actividad motora cuando se añadía a apomorfina (0,16 µmol/kg, subcutánea) (Figura 7d). Amisulprida (20-100 µmol/kg, intraperitoneal) contrarrestaba eficazmente la hipoactividad inducida por apomorfina (Figura 7e). Cuando se testó a una dosis mayor (270 µmol/kg, subcutánea), amisulprida inducia una simple tendencia hacia la inversión de la hipoactividad inducida por apomorfina (datos no presentados).

Discusión

5

10

15

20

25

30

35

40

45

50

55

Este estudio demuestra que los estabilizadores dopaminérgicos OSU6162 y ACR₁6 inhiben la actividad motora en ratas naíf de fármacos con un nivel de actividad alto, pero producen el efecto opuesto en ratas con un nivel de actividad bajo, es decir, existe una estabilización hacia un nivel intermedio de actividad conductual. Conforme al conocimiento de los autores de la invención, esto no ha sido demostrado con anterioridad en el mismo estudio.

Ya en un estudio anterior, los inventores observaron inhibición conductual en respuesta a OSU6162 y ACR₁6 en ratas naíf de fármacos (Rung et al, 2005a). La inhibición en respuesta a estos fármacos se ha observado también en ratas tratadas con anfetamina y apomorfina (datos no publicados, Dept. of Pharmacology, Universidad de Götebor, gráfico de resumen publicado en Carlsson, 2001; Natesan et al, 2006). En estudios previos sobre ratas naíf de fármacos se informó que estos fármacos influyen diferentemente en el comportamiento dependiendo de la actividad basal. En animales activados después de ser introducidos en un entorno nuevo, el efecto era ligero y variable (Sonesson et al, 1994), mientras que el efecto era claramente estimulante en animales con actividad baja después de habituación al entorno (Natesan et al, 2006; Sonesson et al, 1994). La última respuesta se observó también en la investigación actual utilizando un escenario similar.

Surge la cuestión de por qué no se observaba un efecto inhibidor en los estudios anteriores en ratas naíf de fármacos, aparte del observado por Rung et al (2005a). En este contexto, deberían considerarse muchos factores, v.g. el área de la arena de ensayo, el grado de habituación, el tiempo de pretratamiento con el fármaco, la ruta de administración del fármaco, el ciclo de luz diurna y la iluminación. Se llega a la conclusión de que el tamaño de la arena de ensayo y el grado de habituación al entorno son muy importantes en la determinación de las respuestas conductuales a OSU6162 y ACR₁6. La superficie externa de las arenas era casi un orden de magnitud mayor en los experimentos de Rung et al, con inclusión del presente estudio. Es razonable suponer que las arenas mayores son más estimulantes. En los estudios en que OSU6162 y ACR₁6 no logran reducir la actividad, se estudian las ratas en jaulas de actividad pequeñas y las inyecciones se practican inmediatamente antes de introducir las ratas en el equipo. Por observación de los registros desde el periodo de habituación en el estudio presente, se encuentra que las ratas se habitúan casi totalmente a estas pequeñas jaulas de actividad dentro de los primeros 15 minutos de registro. Así, cuando los fármacos se administran inmediatamente antes del registro del comportamiento, las ratas se habituarán parcialmente antes que los fármacos havan alcanzado el efecto total. En un experimento preliminar ACR₁6 causaba de hecho una reducción acusada en la actividad motora en jaulas de actividad pequeñas; en este experimento, se usó un tiempo de pre-tratamiento de 30 minutos, y las ratas se estudiaron durante las horas de oscuridad, después de apagar la luz en el interior de las jaulas.

A menudo, las rutas de administración no eran las mismas en los diferentes procedimientos y estudios. Por tanto, se realizaron dos experimentos adicionales para estudiar la importancia de la ruta de administración. Se seleccionaron OSU6162 y haloperidol para administración subcutánea en el escenario de seguimiento por vídeo. El resultado después de la administración subcutánea se correspondía bien con la respuesta a las inyecciones intraperitoneales de los fármacos. Así, al menos para estos dos compuestos, la ruta de administración no parece ser de mayor importancia para la respuesta conductual.

En cuanto a las cuestiones de iluminación y ciclo de luz diurna, se ha observado inhibición del comportamiento en luz ultravioleta (Rung et al, 2005b) o infrarroja (presente estudio) durante las horas de oscuridad del ritmo diurno de las ratas. Basándose en el modo en que es percibida la luz por los humanos, se supone que la luz ultravioleta e infrarroja utilizada en estos estudios es percibida por las ratas como luz tenue y oscuridad respectivamente. En un experimento preliminar, las ratas estudiadas durante el tiempo de día en arenas iluminadas grandes respondían a OSU6162 con una inhibición conductual similar a la observada en la oscuridad. Los datos preliminares demostraban también que las ratas habituadas a este entorno no respondían con cambio alguno de actividad después de tratamiento con OSU6162.

En resumen, nuestras observaciones demuestran que la disyuntiva de que OSU6162 y ACR₁6 tengan efectos estimulantes o inhibidores sobre el comportamiento depende de la actividad de las ratas y el nivel de excitación. A su vez, esto depende de las condiciones fisiológicas, determinadas en primer lugar por (1) el tamaño de la arena y (2) el grado de habituación al entorno. Estos dos están fuertemente interconectados, dado que la tasa de habituación se ve afectada notablemente por el tamaño de la arena. La ruta de administración, las condiciones de luz y el ciclo de luz diurna parecen en general ser factores de menor importancia. La observación por los inventores de que puede demostrarse una influencia inhibidora de OSU6162 y ACR₁6 sobre el comportamiento sin pretratamiento con estimulante alguno, es decir en condiciones fisiológicas, es por supuesto importante y recalca además el perfil estabilizador del comportamiento de estos agentes.

Los datos registrados en la presente invención, en los que se han hecho comparaciones estrechas entre OSU6162 y ACR₁6 por una parte y los agonistas parciales de dopamina establecidos y un antagonista selectivo del autorreceptor D2 por la otra, permiten deducir ciertas conclusiones con relación a los mecanismos que subyacen en el perfil estabilizador de los primeros fármacos:

Como se ha mencionado en la introducción, los agonistas parciales de dopamina pueden caracterizarse como estabilizadores, dado que los mismos pueden servir como agonistas/antagonistas mixtos. Un agonista parcial es más probable que se comporte como agonista cuando el ligando endógeno es poco abundante, mientras que se exhiben más fácilmente las propiedades antagonistas cuando las concentraciones endógenas de agonista son altas. Al nivel del receptor, un agonista dopaminérgico parcial afecta a la transmisión dopaminérgica hacia un nivel que refleja su actividad intrínseca; esto se ve influenciado por la sensibilidad del receptor, que es afectada a su vez por el grado de estimulación previa de larga duración del receptor (véase Carlsson, 1983). Recientemente se ha informado que OSU6162 tiene un efecto agonista menor en los receptores D₂ *in vitro* (Lahti et al, 2007; Seeman y Guan, 2006). Conforme a otro estudio, ACR₁6 no parece tener este efecto (Tadori et al, 2007). A pesar de su mayor actividad intrínseca en los receptores D₂, ni aripiprazol ni (-)-3-PPP inducían activación en ratas inactivas. Así pues, los presentes datos demuestran de modo convincente que la acción conductualmente estimulante de OSU6162 y ACR₁6 no puede explicarse por agonismo parcial de los receptores de dopamina en el sentido clásico. Evidencia adicional convincente de la ausencia de agonismo siquiera parcial por OSU6162 o ACR₁6 en el sentido clásico en condiciones in-vivo ha sido resumida por Natesan et al, (2006; véase página 816).

En el presente estudio, ratas con nivel de actividad alto como resultado de la introducción en un entorno estimulante nuevo reaccionan al tratamiento con OSU6162 y ACR₁6 con inhibición acusada del comportamiento. Esto es debido probablemente a una actividad elevada de dopamina. En respaldo de esta hipótesis, se ha demostrado que, cuando las ratas se introducen en un entorno nuevo, los niveles extracelulares de dopamina aumentan en el nucleus accumbens (Rebec, 1998). Los presentes inventores están analizando actualmente cerebros de ratas activas e inactivas en lo que respecta a cualesquiera diferencias bioquímicas relacionadas con dopamina. Los datos preliminares indican que las ratas activas, comparadas con las inactivas, tienen concentraciones mayores de ácido homovaníllico en el cuerpo estriado, lo que indica una mayor actividad dopaminérgica. Adicionalmente, se ha demostrado que OSU6162 y ACR₁6 invierten el efecto activador de la anfetamina en las ratas (Natesan et al, 2006) y en primates sub-humanos (Brandt-Christensen et al, 2006). Es razonable suponer que el efecto inhibidor observado en este estudio es debido a una inversión de un aumento inducido fisiológicamente en el tono dopaminérgico y debido al bloqueo de receptores postsinápticos. Así, parece ser que OSU6162 y ACR₁6 actúan sobre al menos dos dianas diferentes con efectos opuestos sobre la actividad y la señalización dopaminérgica.

El nivel de actividad conductual de los animales puede verse influido por los receptores de dopamina en ambas direcciones: la estimulación de los autorreceptores y heterorreceptores conduce a inhibición y activación del comportamiento, respectivamente y el bloqueo de cualquiera de estos receptores tiene el efecto opuesto. Como se ha mencionado, OSU6162, ACR₁6 y sus congéneres están considerados para todos propósitos prácticos como antagonistas de los receptores D2/D3 de dopamina, dado que en la situación in vivo es posible despreciar las actividades intrínsecas mínimas que pueden exhibirse *in vitro* (Lahti et al, 2007; Seeman y Guan, 2006; Sonesson et al, 1994). Se ha considerado previamente la posibilidad de que la aptitud de estos agentes para estimular o inhibir la conducta podría ser el resultado de cambio del equilibrio entre las dos acciones opuestas, a saber el bloqueo de autorreceptores y heterorreceptores respectivamente. Dicho de otro modo, su acción estimulante podría ser debida a un antagonismo preferencial de autorreceptores.

Para detectar la preferencia de autorreceptores de OSU6162 y ACR₁6, se testaron estos fármacos respecto a inversión de la hipoactividad inducida por apomorfina. Se utilizó la dosis de 0,16 µmol/kg (0,05 mg/kg) de apomorfina, dado que se demostró que es la más eficaz para inhibir la actividad en este escenario. OSU6162 inducía una inversión parcial de la hipoactividad inducida por apomorfina, lo que indica una preferencia modesta para los autorreceptores D2 frente a los receptores sinápticos. En cambio, ACR₁6, no tenía dicho efecto en este modelo. Dado que ACR₁6 tiene una afinidad menor que OSU6162 para los receptores D2, puede argumentarse que este fármaco puede no ser capaz de competir con apomorfina para los sitios de fijación de los autorreceptores D2. Por tanto, se testó también ACR₁6 junto con una dosis menor (0,08 µmol/kg) de apomorfina. En estas condiciones, ACR₁6 no contrarrestaba una vez más la hipomotilidad inducida por apomorfina, sino que más bien tendía a inhibir ulteriormente el comportamiento, un efecto que era debido probablemente al bloqueo de los heterorreceptores D2.

10

15

20

25

30

55

60

65

Con anterioridad se ha caracterizado convincentemente la amisulprida como un antagonista preferencial de los autorreceptores de dopamina (Perrault et al, 1997). Por tanto, los presentes inventores consideran esto de gran importancia para comparar estrechamente la acción conductual de este agente con OSU6162 y ACR₁6. El resultado de esta comparación fue muy claro. La acción preferencial de amisulprida sobre los autorreceptores dopaminérgicos podría confirmarse fácilmente demostrando su inversión de la hipomotilidad inducida por apomorfina. A pesar de la superioridad de amisulprida sobre OSU6162 y ACR₁6 en este modelo de preferencia de autorreceptores, resultó imposible estimular el comportamiento de los animales habituados. Así pues, puede excluirse la clase de acción antagonista preferencial de autorreceptores causada por amisulprida como el único mecanismo o incluso como un mecanismo principal subyacente en la activación del comportamiento inducida por OSU6162 y ACR₁6. Esto podría ser cierto para ambos autorreceptores D2 y D3, debido a que la amisulprida parece actuar con la misma intensidad sobre estos dos subtipos de receptores (Schoemaker et al, 1997).

La incapacidad de amisulprida para inhibir el comportamiento en ratas activas a lo largo de un amplio intervalo de dosis, como se muestra en el presente estudio (compárese Perrault et al, 1997) es notable y puede sugerir una capacidad baja de este compuesto para alcanzar los receptores sinápticos. Esto concordaría con las observaciones de que la amisulprida exhibe una penetración deficiente en las membranas biológicas (Hartter et al, 2003). Se ha demostrado previamente que la amisulprida invierte la activación del comportamiento inducida por anfetamina y apomorfina (Perrault et al. 1997), lo que indica que la excitación incrementada en respuesta a los fármacos estimulantes es cualitativamente diferente de la que ocurre en condiciones fisiológicas y puede ser resultado del bloqueo de receptores extrasinápticos (véase Carlsson et al, 2004). Dado que también los autorreceptores son extrasinápticos, parecería por tanto que la amisulprida es un compuesto con selectividad para los receptores extrasinápticos, debido posiblemente a factores farmacocinéticos.

En resumen, los resultados presentados aquí por los inventores han demostrado que ni el agonismo parcial de los receptores de dopamina ni el antagonismo preferencial de los autorreceptores de dopamina puede ser el mecanismo principal subyacente en los perfiles de comportamiento singulares de OSU6162 y ACR₁6, y, por tanto, fue necesario investigar acerca de un tercer mecanismo:

En un estudio reciente, se encontró que OSU6162 posee efectos a la vez estimulantes e inhibidores sobre la actividad del receptor D2 en un ensayo *in vitro* que mide la incorporación de GTPγS en las membranas de células CHO transfectadas con los receptores humanos D21. Concentraciones bajas de OSU6162 potenciaban el efecto de dopamina, mientras que concentraciones mayores inhibían la actividad del receptor, dando como resultado una curva concentración-respuesta bifásica. En ausencia de dopamina, OSU6162 tenía un efecto estimulante menor, lo que sugería que el compuesto tiene actividad intrínseca débil. La interpretación de estos datos es que OSU6162 aumenta la activación del receptor D2 por la vía de un sitio alostérico en el receptor, mientras que la inhibición se atribuye al bloqueo del sitio de fijación para dopamina, es decir el sitio "ostostérico" (Lahti et al, 2007, véase anteriormente, páginas 12-16). Estos mecanismos proporcionan candidatos fuertes y bienvenidos para las dos dianas de OSU6162 y ACR₁6 sugeridas por los datos actuales. Los sitios alostérico y ortostérico del receptor D2 podrían ser entonces responsables de la activación e inhibición conductual, respectivamente.

Los derivados de fenilpiperidina OSU6162 y ACR₁6 con propiedades estabilizadoras de la dopamina expuestos en este documento tienen en general una mayor afinidad para los receptores D3 de dopamina que para los receptores D2, a juzgar por datos in-vitro (Sonesson et al, 1994). Surge la cuestión de si los efectos inhibidores de estos fármacos podrían ser debidos a una fijación preferencial a los receptores D3. Durante cierto tiempo se creyó que el último subtipo era conductualmente inhibidor y por tanto antagonista para el subtipo primero (Waters et al, 1994). Más recientemente, sin embargo, el peso de la evidencia indica que ambos heterorreceptores D2 y D3 (es decir, los receptores postsinápticos) son conductualmente activadores (véase Sokoloff et al, 2003). Cuando se consideran los agonistas parciales, se ha encontrado que (-)-3-PPP es un agonista parcial también sobre los receptores D3 de dopamina (Malmberg et al, 1998), y por tanto el argumento propuesto anteriormente contra el agonismo parcial subyacente en la activación conductual por OSU6162 y sus congéneres podría ser igualmente válido también para los receptores D3. En el caso del antagonismo de los autorreceptores que implica los receptores D3, puede aplicarse el mismo argumento, dado que amisulprida tiene aproximadamente la misma afinidad para los receptores D2 y D3, como se ha observado *in vitro* (Schoemaker et al, 1997).

En este contexto, es interesante mencionar el compuesto U99194A, que exhibe una preferencia muy acusada para D3 frente a D2, y que condujo a la sugestión de que los receptores postsinápticos D3 tenían una función conductualmente inhibidora. Se demostró que este fármaco induce una activación conductual anormalmente fuerte, pero potencia también los efectos estimulantes de anfetamina y apomorfina sobre el comportamiento (Waters et al, 1994; Waters et al, 1993). Estos son efectos que podrían esperarse para un fármaco con preferencia acusada para el sitio alostérico propuesto en el receptor D2. A la vista de observaciones recientes, y los resultados de la presente investigación, parecería que los datos presentados en estos documentos concuerdan mejor con la hipótesis de que este compuesto se fija a ambos sitios alostérico y ortostérico de los receptores D2 de dopamina. Esto puede considerarse como un ejemplo de la necesidad de reconsiderar datos farmacológicos anteriores a la vista de los descubrimientos recientes.

En conclusión, este estudio ha demostrado que los estabilizadores dopaminérgicos OSU6162 y ACR₁6 inhiben la actividad motora en las ratas naíf de fármacos con un nivel de actividad alto, pero tienen el efecto opuesto en ratas con nivel de actividad bajo. Esto sugiere que estos fármacos estabilizan la señalización dopaminérgica incluso en condiciones fisiológicas. Los efectos de (-)-OSU6162 y ACR₁6 no pueden explicarse sobre la base de agonismo parcial de los receptores de dopamina o antagonismo preferencial de los autorreceptores de dopamina. Sin embargo, los resultados presentados aquí por los inventores sugieren que (-)-OSU6162 y ACR₁6 actúan por la vía de al menos dos dianas asociadas al receptor D2 que tienen acciones opuestas sobre la transmisión dopaminérgica. Esto concordaría con un mecanismo propuesto a partir del estudio in vitro a que se ha hecho referencia arriba, conforme al cual (-)-OSU6162 tiene una acción dual sobre los receptores D2 de dopamina, a), un efecto alostérico causante de una respuesta aumentada a la dopamina, y b) el efecto ortostérico propuesto anteriormente antagonista de la acción de dopamina.

El presente estudio hace posible, por primera vez, comparar las exigencias de dosis para las dos acciones mutuamente antagonistas de un estabilizador de dopamina tal como OSU6162. La dosis requerida para inducir un efecto estimulante sobre el comportamiento se encontró que es claramente inferior de la requerida para inducir inhibición (compárese la Figura 4a con la Figura 5a, ampliada).

30 Datos adicionales, utilizando un modelo de parkinsonismo en el ratón.

10

15

20

35

45

En estos experimentos se utilizaron ratones macho NMRI que pesaban 25-30 g en el momento del ensayo. Los ratones se pretrataron con reserpina, 10 mg/kg intraperitoneal, 18 horas, y alfa-metil-para-tirosina.HCI, 500 mg/kg intraperitoneal 2 horas, respectivamente, antes del experimento. Se ha encontrado que este tratamiento induce inmovilidad virtualmente completa y bloquea también la acción estimulante de los agentes liberadores de dopamina tales como anfetamina.

El experimento real se inició inyectando OSU6162 en dosis de 5, 25 ó 125 µmol/kg intraperitoneal o placebo (una solución salina fisiológica). Cada grupo de dosis estaba constituido por 5-6 ratones. Inmediatamente después de la inyección, los ratones se pusieron en jaulas individuales y se grabaron por vídeo desde arriba durante 60 min. Se analizaron diversos aspectos de la motilidad en las cintas de video.

Como se muestra en la Figura 8, los controles así como los animales tratados con la dosis mínima de OSU6162 (5 µmol/kg), exhibían únicamente signos mínimos de motilidad. Las dos dosis mayores exhibían un aumento significativo y dependiente de la dosis en cuanto a motilidad, con un patrón difícilmente distinguible del normal.

Se analizaron cálculos estadísticos con el test U de Mann-Whitney no paramétrico, y los asteriscos en el gráfico indican diferencias significativas comparadas con el grupo de control (*p < 0,05; **p < 0,01).

Es sorprendente que esta acción impresionante y potencialmente "terapéutica" de OSU6162 en un modelo animal de Parkinson no ha sido detectado previamente. Datos similares procedentes de experimentos con ratas han sido publicados (Sonesson et al, 1994), y los mismos han sido interpretados generalmente como indicadores de la falta de actividad. Sin embargo, un examen más detallado de estos datos, a la vista de las presentes observaciones, requiere cierto cuidado en lo referente a la interpretación. Evidentemente, son necesarios más estudios a fin de llegar a conclusiones definitivas en lo que respecta a la actividad anti-Parkinson de OSU6162 en los modelos de rata.

Sumario de los datos in-vitro e in-vivo que respaldan la invención.

60 En los experimentos in-vitro, OSU6162, un estabilizador de dopamina prototípico perteneciente a una clase de fenilpiperidinas, se encontró que ejerce una acción bifásica sobre la actividad de los receptores D21 humanos, con un componente estimulador en concentraciones inferiores (10 a 100 nM) y un componente inhibidor en concentraciones superiores.

En los experimentos in-vivo con ratas, se encontró que tanto OSU6162 como ACR₁6 estimulan la actividad baja de los animales con insomnio bajo, inducido por habituación a un entorno en jaulas pequeñas. Esta estimulación ocurría ya en dosis baja, un descubrimiento consignado por primera vez en la presente invención. Por el contrario, estos fármacos ejercían un efecto inhibidor sobre los animales con insomnio alto, inducido por la novedad de un entorno estimulante. Esta inhibición requería dosis claramente mayores que la estimulación de los animales habituados.

Este patrón de comportamiento era diferente de los encontrados en los agonistas parciales de los receptores de dopamina establecidos (-)-3-PPP y aripiprazol, que demostraron ser incapaces para estimular el comportamiento de los animales habituados. El mismo difería también del antagonista preferencial de los autorreceptores de dopamina amisulprida, que demostró análogamente ser incapaz de estimular el comportamiento de los animales habituados.

Los datos in-vitro e in-vivo arriba resumidos argumentan a favor de un mecanismo de acción único de OSU6162, ACR₁6 y sus congéneres, con un componente estimulante en concentraciones/dosis menores y un componente inhibidor después de concentraciones/dosis mayores. Se sugiere que el mecanismo implicado es más complicado que el de los agonistas típicos parciales de los receptores de dopamina, en el sentido de que no sólo toma parte en el efecto el sitio ortostérico sino también un sitio alostérico en el receptor D2 de dopamina.

Finalmente, los estudios de los autores de la presente invención revelaron una propiedad previamente desconocida y sorprendente de OSU6162, a saber, una acción estimulante de corte claro en un modelo animal de Parkinson clásico (ratones pretratados con reserpina y alfa-metil-para-tirosina).

Todos en su conjunto, estos datos indican un perfil estabilizador singular de las fenilpiperidinas de la presente invención, es decir, un efecto activador en hipofunción dopaminérgica tanto moderada como severa, demostrando ya dosis baja, y al mismo tiempo una capacidad para amortiguar un grado fisiológico o inapropiado de hiperactividad dopaminérgica. Un perfil de este tipo se muestra como muy prometedor en una diversidad de trastornos neurológicos y psiquiátricos, en los cuales una estabilización de la función dopamina hacia un nivel normal puede resultar beneficiosa.

Características de la solicitud

10

15

20

25

30

35

40

45

50

 Uso de una sustancia estabilizadora de dopamina seleccionada del grupo constituido por: compuestos de fórmula I

$$\mathbb{R}^1$$
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

en donde:

R₁ y R₂ se seleccionan independientemente del grupo constituido por H (con la condición de que no más de uno de R₁ y R₂ es H), CONH₂, OH, CN, CH₂CN, OSO₂CH₃, OSO₂CF₃, SSO₂CF₃, COR, SO_xCH₃ (donde x es 0-2), SO_xCF₃, O(CH₂)_xCF₃, OSO₂N(R)₂, CH=NOR, COCOOR, CO-COON(R)₂, C₃₋₈ cicloalquilo, NRSO₂CF₃, fenilo en la posición 2, 3 ó 4, tienilo, furilo, pirrolilo, oxazolilo, tiazolilo, N-pirrolinilo, triazolilo, tetrazolilo o piridinilo;

R₃ es hidrógeno, CF₃, CH₂CF₃, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉ cicloalquil-metilo, C₂-C₈ alquenilo, C₂-C₈ alquinilo, 3,3,3-trifluoropropilo, 4,4,4-trifluorobutilo, o CH₂SCH₃,

 R_4 y R se seleccionan independientemente de hidrógeno, $CF_3CH_2CF_3$, C_1 - C_8 alquilo, C_3 - C_8 cicloalquilo, C_4 - C_9 cicloalquil-metilo, C_2 - C_8 alquenilo, C_2 - C_8 alquinilo, C_3 - C_8 alquinilo, C_4 - C_9 cicloalquil-metilo, C_4 - C_9 donde m es 1-8;

R₅ es fenilo, fenilo sustituido con sustituyente CN, CF₃, CH₂CF₃, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉ cicloalquil-metilo, C₂-C₈ alquenilo o C₂-C₈ alquinilo, 2-tiofenilo, 3-tiofenilo, -NR₆CONR₆R₇ o -CONR₆R₇; y

R₆ y R₇ son independientemente H, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉ cicloalquil-metilo, C₂-C₈ alquenilo o C₂-C₈ alquinilo; compuestos de fórmula II

en donde:

R_1	se	selecciona	del	grupo	constituido	por	OSO_2CF_3 ,	OSO ₂ CH ₃ ,	SOR₃,	SO ₂ R ₃ ,	COCH ₃ , y	y
	\sim	CII CII an	ما مام	مام ال		£:	امر مامام مکمم					

COCH₂CH₃, en donde R₃ es como se define más adelante;

 R_2 se selecciona del grupo constituido por alquilos C_2 – C_4 ramificados o no ramificados, alilo termi-

nal, CH₂CH₂OCH₃, CH₂CH₂CH₂F, CH₂CF₃, 3,3,3-trifluoropropilo, y 4,4,4-trifluorobutilo,

 R_3 se selecciona del grupo constituido por alquilos C_1 - C_3 , CF_3 , y $N(CH_3)_2$;

en donde el compuesto de fórmula II no tiene una afinidad de fijación alta para los receptores sigma; y compuestos de fórmula III

$$R_1$$
 R_3
 R_4
 R_2
(III)

10 en donde:

5

15

25

30

35

40

X se selecciona del grupo constituido por N, CH, y C; pero X puede ser solamente C cuando el

compuesto comprende un enlace doble en la línea de puntos;

R₁ se selecciona del grupo constituido por OSO₂CF₃, OSO₂CH₃, SOR₅, SO₂R₅, COR₅, CN, NO₂,

CONHR₅, CF₃, 3-tiofeno, 2-tiofeno, 3-furano, 2-furano, F, CI, Br e I, en donde R₅ es como se

define más adelante;

 $R_2 \hspace{1cm} \text{se selecciona del grupo constituido por alquilos C_1-C_4, alilos, CH_2SCH_3, $CH_2CH_2OCH_3$,} \\$

 $CH_2CH_2CH_2F,\ CH_2C\breve{F}_3,\ 3,3,3-trifluoropropilo,\ 4,4,4-trifluorobutilo,\ y\ -(CH_2)-R_6,\ en\ donde\ R_6\ es$

como se define más adelante;

20 R₃ y R₄ se seleccionan independientemente del grupo constituido por H y alquilos C₁-C₄, pero R₃ y R₄ no

pueden ser H al mismo tiempo:

 R_5 se selecciona del grupo constituido por alquilos C_1 - C_3 , CF_3 , y $N(R_2)_2$, en donde R_2 es como se

define arriba; y

R₆ se seleccióna del grupo constituido por cicloalquilo C₃-C₆, 2-tetrahidrofurano, y 3-

tetrahidrofurano

y sales farmacéuticamente aceptables de los mismos

para la fabricación de un medicamento o una composición farmacéutica para tratamiento de un trastorno neurológico o psiquiátrico caracterizado por una hipofunción del sistema de la dopamina, en donde dicha sustancia debe administrarse en una dosis oral, subcutánea o intramuscular diaria de 1-20 mg o en una dosis intravenosa diaria de 0,1-2 mg.

- 2. Uso conforme a la característica 1, en donde dicho trastorno neurológico o psiquiátrico caracterizado por una hipofunción del sistema de la dopamina se selecciona del grupo constituido por enfermedad de Parkinson en etapas iniciales; piernas inquietas; acatisia; distonías; fatiga mental asociada con edad avanzada, derrame cerebral, condiciones posencefálicas o postraumáticas; trastornos de déficit de atención (ADHD); trastornos de espectro autista; lapsos de consciencia que incluyen narcolepsia, epilepsia de pequeño mal y síncope; trastornos del sueño con inclusión de hipersomnia, apnea del sueño, y ataques de sueño inducidos por agonistas de los receptores de dopamina; emesis y náusea; hipofunción de dopamina inducida por fármacos antipsicóticos.
- 3. Uso conforme a la característica 1 ó 2, en donde la dosis diaria oral, subcutánea o intramuscular es 2,5 a 15 mg.
- 4. Uso de una sustancia estabilizadora de dopamina seleccionada del grupo constituido por: compuestos de fórmula I

$$\mathbb{R}^1$$
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^3

45 en donde:

50

R₁ y R₂ se seleccionan independientemente del grupo constituido por H (con la condición de que no más de uno de R₁ y R₂ es H), CONH₂, OH, CN, CH₂CN, OSO₂CH₃, OSO₂CF₃, SSO₂CF₃, COR, SO_xCH₃

pirrolinilo, triazolilo, tetrazolilo o piridinilo;

R₃ es hidrógeno, CF₃, NH₂, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉ cicloalquil-metilo, C₂-C₈ alquenilo, C₂-C₈ alquinilo, 3,3,3-trifluoropropilo, 4,4,4-trifluorobutilo, o CH₂SCH₃,

 $R_4 y R$ se seleccionan independientemente de hidrógeno, CF₃CH₂CF₃, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉

cicloalquil-metilo, C2-C8 alquenilo, C2-C8 alquinilo, 3,3,3-trifluoropropilo, 4,4,4-trifluorobutilo o

(CH₂)_m- R₅ donde m es 1-8;

es fenilo, fenilo sustituido con sustituyente CN, CF₃, CH₂CF₃, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉ R_5 5

cicloalquil-metilo, C₂-C₈ alguenilo o C₂-C₈ alguinilo, 2-tiofenilo, 3-tiofenilo, -N R₆CONR₆R₇ o -CONR₆R₇;

son independientemente H, C₁-C₈ alquilo, C₃-C₈ cicloalquilo, C₄-C₉ cicloalquil-metilo, C₂-C₈ alquenilo o $R_6 y R_7$

C₂-C₈ alquinilo;

10 compuestos de fórmula II

en donde:

 R_1 se selecciona del grupo constituido por OSO₂CF₃, OSO₂CH₃, SOR₃, SO₂R₃, COCH₃, y COCH₂CH₃, en donde 15 R₃ es como se define más adelante;

se selecciona del grupo constituido por alquilos C2-C74 ramificados o no ramificados, alilo terminal, R_2 CH₂CH₂OCH₃, CH₂CH₂CH₂F, CH₂CF₃, 3,3,3-trifluoropropilo, y 4,4,4-trifluorobutilo,

 R_3 se selecciona del grupo constituido por alquilos C₁-C₃, CF₃, y N(CH₃)₂;

20 en donde el compuesto de fórmula II no tiene una afinidad de fijación alta para los receptores sigma; y compuestos de fórmula III

$$R_3$$
 R_4
 R_2
(III)

en donde:

30

35

45

50

 R_5

se selecciona del grupo constituido por N, CH, y C; pero X puede ser solamente C cuando el Х

25 compuesto comprende un enlace doble en la línea de puntos;

 R_1 se selecciona del grupo constituido por OSO₂CF₃, OSO₂CH₃, SOR₅, SO₂R₅, COR₅, CN, NO₂,

CONHR₅, CF₃, 3-tiofeno, 2-tiofeno, 3-furano, 2-furano, F, CI, Br e I, en donde R₅ es como se define

más adelante:

se selecciona del grupo constituido por alquilos C₁-C₄, alilos, CH₂SCH₃, CH₂CH₂OCH₃, CH₂CH₂CH₂F, R_2

CH₂CF₃, 3,3,3-trifluoropropilo, 4,4,4-trifluorobutilo, y -(CH₂)-R₆, en donde R₆ es como se define más

adelante:

se seleccionan independientemente del grupo constituido por H y alquilos C₁-C₄, pero R₃ y R₄ no $R_3 y R_4$

pueden ser H al mismo tiempo;

se selecciona del grupo constituido por alquilos C₁-C₃, CF₃, y N(R₂)₂, en donde R₂ es como se define

arriba; v

 R_6 se selecciona del grupo constituido por cicloalquilo C₃-C₆, 2-tetrahidrofurano, y 3-tetrahidrofurano

y sales farmacéuticamente aceptables de los mismos

para la fabricación de un medicamento o una composición farmacéutica para tratamiento de un trastorno causado por inestabilidad de los circuitos neurales, en donde dicha sustancia debe administrarse en una dosis diaria oral, 40 subcutánea o intramuscular de 25-50 mg.

5. Uso conforme a la característica 4, en donde dicho trastorno causado por inestabilidad de los circuitos neurales se seleccionan del grupo constituido por esquizofrenia; otras psicosis y condiciones paranoides; trastorno maniacodepresivo; enfermedad de Huntington; tics; enfermedad de Tourette; hipo; discinesias inducidas por L-dopa y otros agonistas de los receptores de dopamina; discinesias tardías inducidas por tratamiento de larga duración con antagonistas de los receptores de dopamina; abuso de drogas y adicción a las mismas; adicción al juego; adicción a ciertos alimentos, etc.: trastornos emocionales que incluyen agresividad e impulsividad patológicas; trastornos emocionales inducidos por dolor intenso; trastornos de ansiedad con inclusión de trastornos de pánico, trastorno de ansiedad generalizado y trastorno obsesivo-compulsivo; y efectos adversos, con inclusión de efectos extrapiramidales, ejecutivos, cognitivos y emocionales causados por fármacos antipsicóticos.

- 6. Uso conforme a una cualquiera de las características precedentes, en donde un compuesto de fórmula I o una sal farmacéuticamente aceptable del mismo se utiliza en la forma de un enantiómero puro.
- 7. Uso conforme a una cualquiera de las características anteriores, en el que se utiliza un compuesto de fórmula I o una sal farmacéuticamente aceptable del mismo, en donde R₁ es CN, OSO₂F₃, o SO₂CH₃.
 - 8. Uso conforme a una cualquiera de las características precedentes, en donde R2 es H y R3 es alquilo C1-8.
 - 9. Uso conforme a una cualquiera de las características precedentes, en donde R₂ es H y R₃ es n-propilo.
 - 10. Uso conforme a una cualquiera de las características precedentes, en donde R₄ es H.
 - 11. Uso conforme a una cualquiera de las características precedentes, en donde se utiliza un compuesto de fórmula I o una sal farmacéuticamente aceptable del mismo, en donde R_1 es 3-OH, R_2 es H, R_3 es n-propio y R_4 es alquilo C_{2-8} .
 - 12. Uso conforme a una cualquiera de las características precedentes, en donde dicha sustancia es S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina).
- 20 13. Uso conforme a una cualquiera de las características 1-5, en donde se utiliza un compuesto de fórmula II o una sal farmacéuticamente aceptable del mismo, en donde R₁ se selecciona del grupo constituido por OSO₂CF₃, OSO₂CH₃, SO₂CH₃, COCH₃, y SO₂N(CH₃)₂.
 - 14. Uso conforme a la característica 13, en donde R₁ se selecciona del grupo constituido por SO₂CF₃, y COCH₃.
 - 15. Uso conforme a una cualquiera de las características 1-5, 13 ó 14, en donde se utiliza un compuesto de fórmula II o una sal farmacéuticamente aceptable del mismo, en donde R₂ se selecciona del grupo constituido por n-propilo y etilo.
- 30 16. Uso de acuerdo con una cualquiera de las características 1-5 ó 13-15, en donde se utiliza un compuesto de fórmula II o una sal farmacéuticamente aceptable del mismo y dicho compuesto es 4-(3-metanosulfonilfenil)-1-propil-piperidina.
- 17. Uso conforme a una cualquiera de las características 1-5, en donde se utiliza un compuesto de fórmula III o una sal farmacéuticamente aceptable del mismo, en donde X es CH o C.
 - 18. Uso conforme a la característica de una cualquiera de las características 1-5 ó 17, en donde se utiliza un compuesto de fórmula III o una sal farmacéuticamente aceptable del mismo, en donde R₁ se selecciona del grupo constituido por OSO₂CF₃, OSO₂CH₃, SO₂Me, SO₂CF₃, COCH₃, CN, CF₃, CON(CH₃)₂ y SO₂N(CH₃)₂.
 - 19. Uso conforme a una cualquiera de las características 1-5, 17 ó 18, en donde se utiliza un compuesto de fórmula III o una sal farmacéuticamente aceptable del mismo, en donde R_3 y R_4 son ambos CH_3 .
- 20. Uso conforme a una cualquiera de las características 1-5 ó 17-19, en donde se utiliza un compuesto de fórmula III o una sal farmacéuticamente aceptable del mismo, en donde R₁ se selecciona del grupo constituido por SO₂CF₃, SO₂CH₃, COCH₃, CF₃, y CN, y X es CH.
- 21. Uso conforme a una cualquiera de las características 1-5 ó 17-20, en donde se utiliza un compuesto de fórmula III o una sal farmacéuticamente aceptable del mismo, en donde R₂ se selecciona del grupo constituido por n-propilo y etilo.
 - 22. Uso conforme a una cualquiera de las características precedentes, en donde la dosis diaria se administra como una sola dosis al día.
- 55 23. Uso conforme a una cualquiera de las características 1-21, en donde la dosis diaria se divide en dos dosis iguales.

Referencias

10

15

25

40

- Brandt-Christensen M, Andersen MB, Fink-Jensen A, Werge T, Gerlach J (2006) The substituted (S)-3-60 phenylpiperidine (-)-OSU6162 reduces apomorphine- and amphetamine-induced behaviour in Cebus apella monkeys. J Neural Transm 113(1): 11-19
 - Buxton ILO (2005) Pharmacokinetics and pharmacodynamics: the dynamics of drug absorption, distribution, action, and elimination. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman & Gilman's the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 1-39

- Carlsson A (1983) Dopamine receptor agonists: intrinsic activity vs. state of receptor. J Neural Transm 57(4): 309-315
- Carlsson A (2001) A half-century of neurotransmitter research: impact on neurology and psychiatry (Nobel lecture).

 Chembiochem 2(7-8): 484-493
 - Carlsson ML, Carlsson A, Nilsson M (2004) Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 11 (3): 267-277
- 10 Carlsson A, Carlsson ML (2006) A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues Clin Neurosci 8(1):137-42
- Centonze D, Usiello A, Gubellini P, Pisani A, Borrelli E, Bernardi G, Calabresi P (2002) Dopamine D2 receptormediated inhibition of dopaminergic neurons in mice lacking D2, receptors. Neuropsychopharmacology 15 Nov;27(5):723-6
 - De Muth JE (1999) Basic statistics and pharmaceutical statistical applications, 1 st Marcel Dekker, Inc., New York, Pages
- Gefvert O, Lindström LH, Dahlbäck O, Sonesson C, Waters N, Carlsson A, Tedroff J (2000) (-)-OSU6162 induces a rapid onset of antipsychotic effect after a single dose. A double-blind placebo-controlled pilot study. In: von Knorring L (ed) Scandinavian Society for Psychopharmacology, 41 st annual meeting. Nord J Psychiat, Copenhagen, Denmark, p 93-94
- 25 Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11 (1): 1-21
 - Hartter S, Huwel S, Lohmann T, Abou El Ela A, Langguth P, Hiemke C, Galla HJ (2003) How does the benzamide antipsychotic amisulpride get into the brain?--An in vitro approach comparing amisulpride with clozapine. Neuropsychopharmacology 28(11): 1916-1922
- Jordan S, Chen R, Johnson J, Regardie K, Tadori Y, Kikuchi T (2002a) Aripiprazole is a potent, partial agonist at cloned human D2L and native rat 5-HT1A receptors. European Neuropsychopharmacology 12(Suppl. 3): 293-294
- Jordan S, Johnson JL, Regardie K, Chen R, Koprivica V, Tadori Y, Kambayashi J, Kitagawa H, Kikuchi T (2007)

 Dopamine D2 receptor partial agonists display differential or contrasting characteristics in membrane and cell-based assays of dopamine D2 receptor signaling. Prog Neuropsychopharmacol Biol Psychiatry 31(2): 348-356
 - Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002b) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441(3): 137-140
 - Jordan S, Regardie K, Johnson JL, Chen R, Kambayashi J, McQuade R, Kitagawa H, Tadori Y, Kikuchi T (2006) In vitro functional characteristics of dopamine D2 receptor partial agonists in second and third messenger-based assays of cloned human dopamine D2Long receptor signalling. J Psycho-pharmacol
- Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA. Jun 23;95(13):7731-6
- Lahti RA, Figur LM, Piercey MF, Ruppel PL, Evans DL (1992) Intrinsic activity determinations at the dopamine D2 guanine nucleotide-binding protein-coupled receptor: utilization of receptor state binding affinities. Mol Pharmacol Sep;42(3):432-8
 - Lahti RA, Tamminga CA, Carlsson A (2007) Stimulating and inhibitory effects of the dopamine "stabilizer" (-)-OSU6162 on dopamine D(2) receptor function in vitro. J Neural Transm
- Leysen JE, Gommeren W, Mertens J, Luyten WH, Pauwels PJ, Ewert M, Seeburg P (1993) Comparison of in vitro binding properties of a series of dopamine antagonists and agonists for cloned human dopamine D2S and D2L receptors and for D2 receptors in rat striatal and mesolimbic tissues, using [125I] 2'-iodospiperone. Psychopharmacology (Berl) 110(1-2):27-36
- 60 Lundberg T, Tedroff J, Waters N, Sonesson C, Carlsson A, Hagström P, Lindström LH, Gefvert O (2002) Safety of early clinical experience with (-)-OSU6162, a dopaminergic stabilizer with antipsychotic properties
 - Malmberg A, Jackson DM, Eriksson A, Mohell N (1993) Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol May;43(5):749-54

65

- Malmberg, Mikaels, Mohell N (1998) Agonist and inverse agonist activity at the dopamine D3 receptor measured by guanosine 5'--gamma-thio-triphosphate--35S- binding. J Pharmacol Exp Ther 285(1): 119-126
- Natesan S, Svensson KA, Reckless GE, Nobrega JN, Barlow KB, Johansson AM, Kapur S (2006) The dopamine stabilizers (S)-(-)-(3-methanesulfonylphenyl)-1-propyl-piperidine [(-)-OSU6162] and 4-(3-methanesulfonylphenyl)-1-propyl-piperidine (ACR16) show high in vivo D2 receptor occupancy, antipsychotic-like efficacy, and low potential for motor side effects in the rat. J Pharmacol Exp Ther 318(2): 810-818
- Neu H, Hartvig P, Torstenson R, Fasth KJ, Sonesson C, Waters N, Carlsson A, Tedroff J, Langstrom B (1997)

 Synthesis of [11C-methyl]-(-)-OSU6162, its regional brain distribution and some pharmacological effects of (-)-OSU6162 on the dopaminergic system studied in the rhesus monkey by positron emission tomography. Nucl Med Biol Aug;24(6):507-11
- Perrault G, Depoortere R, Morel E, Sanger DJ, Scatton B (1997) Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 280(1): 73-82
- Pontén H, Carlsson A, Kullingsjö J, Sonesson C, Waters ES, Waters N, Tedroff J (2002) The dopamine stabilizer ACR16 prevents L-DOPA induced sensitization in the 6-OHDA-lesioned rat. 32nd Annual Meeting, Society for neuroscience. Soc Neurosci, Orlando Program No. 787.6
 - Rebec GV (1998) Real-time assessments of dopamine function during behavior: single-unit recording, iontophoresis, and fast-scan cyclic voltammetry in awake, unrestrained rats. Alcohol Clin Exp Res 22(1): 32-40
- 25 Rung JP, Carlsson A, Rydén Markinhuhta K, Carlsson ML (2005a) The dopaminergic stabilizers (-)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats. Prog Neuropsychopharmacol Biol Psychiatry 29(5): 833-839
- Rung JP, Carlsson A, Rydén Markinhuhta K, Carlsson ML (2005b) (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29(5): 827-832 Schoemaker H, Claustre Y, Fage D, Rouquier L, Chergui K, Curet O, Oblin A, Gonon F, Carter C, Benavides J, Scatton B (1997) Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 280(1): 83-97
- 35 Seeman P, Guan HC (2006) Dopamine partial agonist action of (-)OSU6162 is consistent with dopamine hyperactivity in psychosis. Eur J Pharmacol

40

- Siegel S, Castellan NJ (1988) The Kruskal-Wallis one-way analysis of variance by ranks Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York, pp 206-216
- Sokoloff P, Griffon N, Gullin O, Diaz J, Pilon C, Schwartz J-C (2003) The dopamine D3 receptor in the pathophysiology and treatment of neuropsychiatric disorders. In: Sidhu A, Laruelle M, Vernier P (eds) Dopamine receptors and transporters. Marcel Dekker, New York, pp 211-253
- 45 Sonesson C, Lin CH, Hansson L, Waters N, Svensson K, Carlsson A, Smith MW, Wikstrom H (1994) Substituted (S)-phenylpiperidines and rigid congeners as preferential dopamine autoreceptor antagonists: synthesis and structure-activity relationships. J Med Chem 37(17): 2735-2753
- Ståhle L, Ungerstedt U (1986) Effects of neuroleptic drugs on the inhibition of exploratory behaviour induced by a low dose of apomorphine: implications for the identity of dopamine receptors. Pharmacol Biochem Behav 25(2): 473-480
 - Svensson K, Johansson AM, Magnusson T, Carlsson A (1986) (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 334(3): 234-245
- Tadori Y, Kitagawa H, Forbes RA, McQuade RD, Stark A, Kikuchi T (2007) Differences in agonist/antagonist properties at human dopamine D(2) receptors between aripiprazole, bifeprunox and SDZ 208-912. Eur J Pharmacol Tadori Y, Miwa T, Tottori K, Burris KD, Stark A, Mori T, Kikuchi T (2005) Aripiprazole's low intrinsic activities at human dopamine D2L and D2S receptors render it a unique antipsychotic. Eur J Pharmacol 515(1-3): 10-19
- Tedroff J, Ekesbo A, Sonesson C, Waters N, Carlsson A (1999) Long-lasting improvement following (-)-OSU6162 in a patient with Huntington's disease. Neurology 53(7): 1605-1606
 - Waters N, Carlsson A, Carlsson M, Martin P, Tedroff J, Kullingsjö J, Pettersson F, Sonesson C, Waters ES (2002) Pharmacology of ACR16, a dopamine stabilizer. 32nd Annual Meeting, Society for neuroscience. Soc Neurosci, Orlando Program No. 894.13

Waters N, Lofberg L, Haadsma Svensson S, Svensson K, Sonesson C, Carlsson A (1994) Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J Neural Transm Gen Sect 98(1): 39-55

Waters N, Svensson K, Haadsma Svensson SR, Smith MW, Carlsson A (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm Gen Sect 94(1): 11-19.

REIVINDICACIONES

1. Uso de S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma

5

10

- para la fabricación de un medicamento o una composición farmacéutica para tratamiento de la enfermedad de Parkinson en etapas iniciales o para tratamiento de la fatiga mental asociada con edad avanzada, derrame cerebral, condición posencefálicas o postraumáticas, en donde S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina puede administrarse en una dosis diaria oral, subcutánea o intramuscular de 1-20 mg o en una dosis diaria intravenosa de 0,1-2 mg.
- 2. Uso conforme a la reivindicación 1, en donde dicho medicamento o composición farmacéutica es para tratamiento de la enfermedad de Parkinson en etapas iniciales.
- 15 3. Uso conforme a la reivindicación 1, en donde dicho medicamento o composición farmacéutica es para tratamiento de la fatiga mental asociada con edad avanzada, derrame cerebral, o condiciones posencefálicas o postraumáticas.
- 4. Uso conforme a una cualquiera de las reivindicaciones 1-3, en donde la dosis diaria oral, subcutánea o intramuscular es 2,5 a 15 mg.
 - 5. Uso conforme a una cualquiera de las reivindicaciones 1-4, en donde la dosis diaria se administra como una sola dosis al día.
- 25 6. Uso conforme a una cualquiera de las reivindicaciones 1-4, en donde la dosis diaria se administra en dos dosis iguales.
- 7. S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma para uso en el tratamiento de la enfermedad de Parkinson en etapas iniciales o en el tratamiento de la fatiga mental asociada con edad avanzada, derrame cerebral, condiciones posencefálicas o postraumáticas, en donde la S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina debe administrarse en una dosis diaria oral, subcutánea o intramuscular de 1-20 mg o en una dosis diaria intravenosa de 0,1-2 mg.
- 8. S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma para uso conforme a la reivindicación 7 para el tratamiento de la enfermedad de Parkinson en etapas iniciales.
 - 9. S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma para uso conforme a la reivindicación 7 para el tratamiento de la fatiga mental asociada con edad avanzada, derrame cerebral, condiciones posencefálicas o postraumáticas.

- 10. S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma para uso conforme a una cualquiera de las reivindicaciones 1-9, en donde la dosis diaria oral, subcutánea o intramuscular es 2,5 a 15 mg.
- 45 11. S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma para uso conforme a una cualquiera de las reivindicaciones 7-11, en donde la dosis diaria se administra como una sola dosis al día.
- 12. S-(-)-3-[3-metilsulfonilfenil]-1-propilpiperidina o una sal farmacéuticamente aceptable de la misma para uso conforme a una cualquiera de las reivindicaciones 7-11, en donde la dosis diaria se administra en dos dosis iguales.

Incorporación de GTPrS-35 en hD21 Estimulada por Dopamina

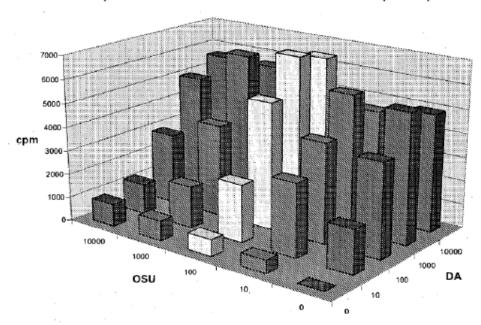


Fig. 1

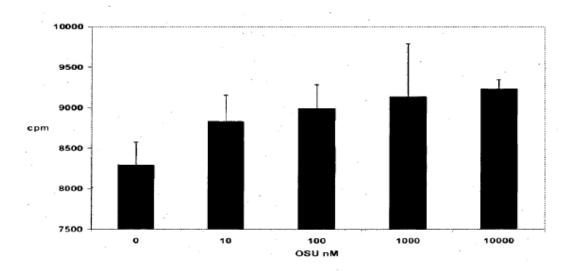


Fig. 2

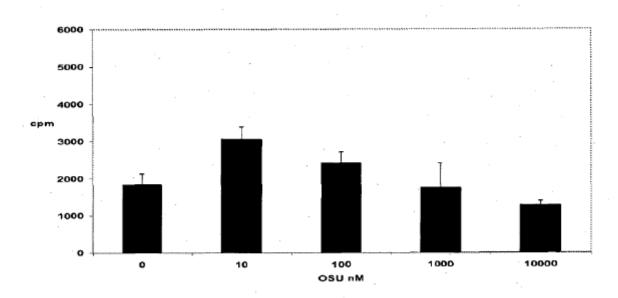


Fig. 3a

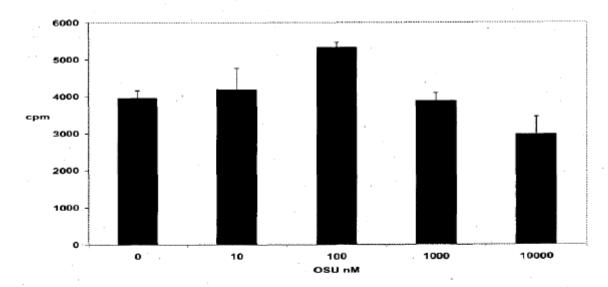
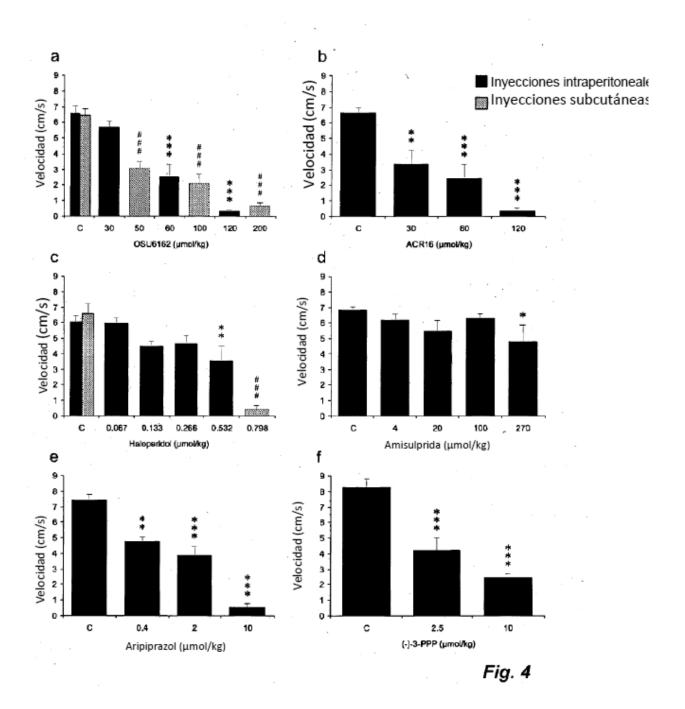
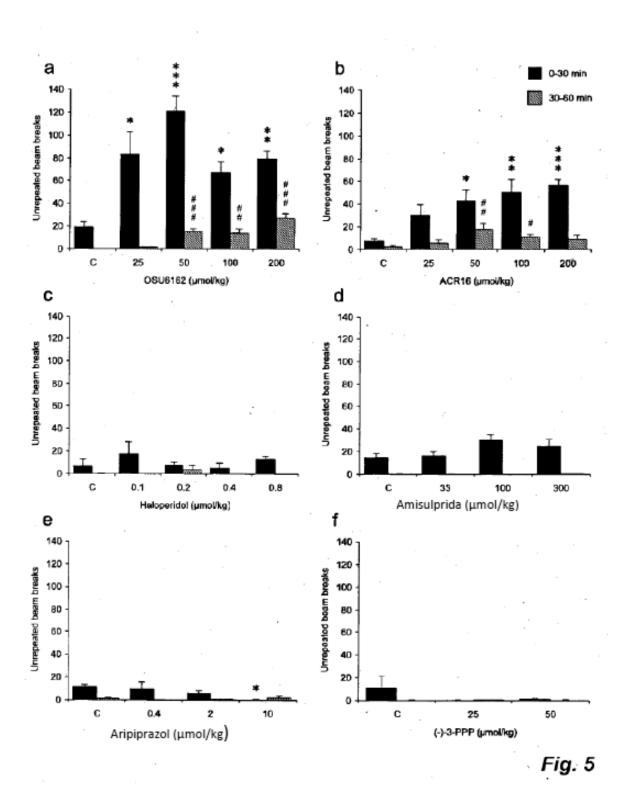




Fig. 3b

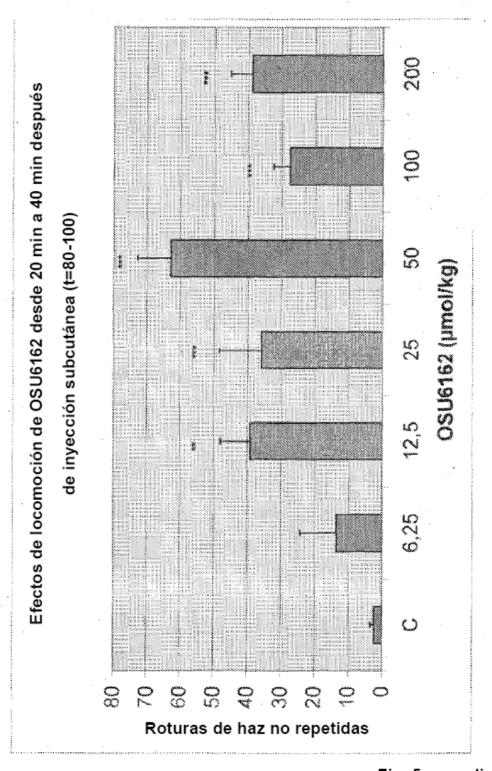
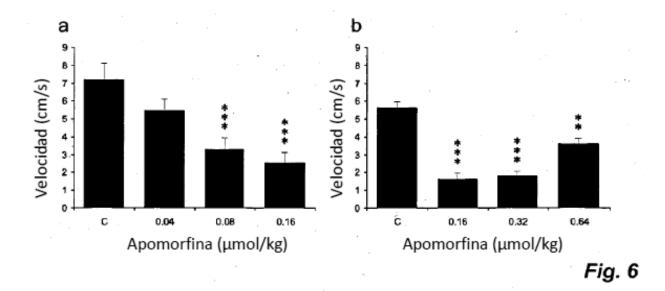



Fig. 5a, ampliada

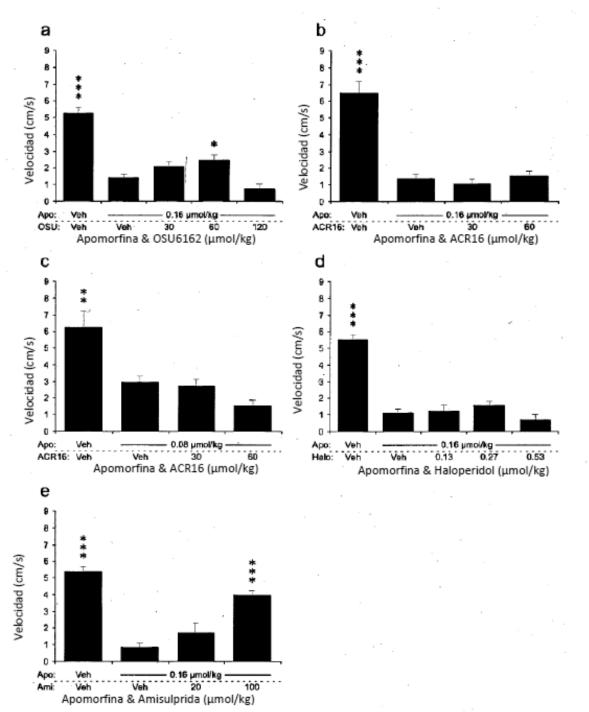


Fig. 7

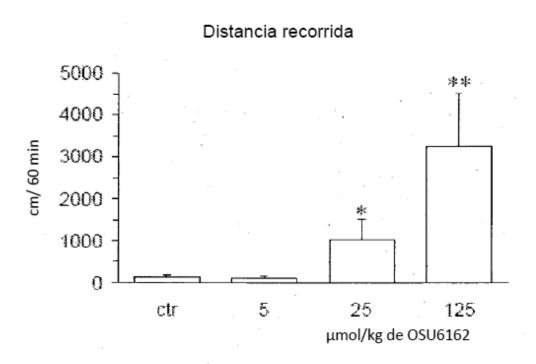


Fig. 8