



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



①Número de publicación: 2 528 198

51 Int. Cl.:

C07D 495/04 (2006.01) A61K 31/4365 (2006.01) A61P 7/02 (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 09.09.2004 E 06124851 (4)
  (97) Fecha y número de publicación de la concesión europea: 29.10.2014 EP 1772456
- (54) Título: Nuevos polimorfos cristalinos de clopidogrel
- (30) Prioridad:

11.09.2003 GB 0321256

Fecha de publicación y mención en BOPI de la traducción de la patente: **05.02.2015** 

(73) Titular/es:

GENERICS (UK) LIMITED (100.0%) ALBANY GATE, DARKES LANE POTTERS BAR, HERTFORDSHIRE EN6 1AG, GB

(72) Inventor/es:

ARUL, RAMAKRISHNAN; RAWAT, AJAY SINGH; GADAKAR, MAHESHKUMAR; RAO, RAJESH; PISE, ABHINAY y GRAY, JASON

(74) Agente/Representante:

**CARPINTERO LÓPEZ, Mario** 

#### Observaciones:

Véase nota informativa (Remarks) en el folleto original publicado por la Oficina Europea de Patentes

#### **DESCRIPCIÓN**

Nuevos polimorfos cristalinos de clopidogrel

#### 5 **Técnica anterior**

10

15

25

45

50

55

La presente invención se refiere a una nueva forma cristalina del inhibidor de la agregación plaquetaria (+)-(S)-metil-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetato de clopidogrel (1) en la forma de una sal con bromuro de hidrógeno. La presente invención se refiere además a un proceso para preparación de dicha forma, una composición farmacéutica que comprende dicha forma, y un uso para dichas forma y composición.

Las composiciones farmacéuticas pueden utilizarse, en particular, para inhibir la agregación plaquetaria o para terapia, prevención o tratamiento de trombosis, aterotrombosis, un evento aterotrombótico, derrame cerebral isquémico, infarto de miocardio, infarto de miocardio de onda distinta de la Q, ateroesclerosis, enfermedad arterial periférica, o angina inestable.

#### Campo técnico

El proceso de fabricación para muchos productos farmacéuticos se ve dificultado por hecho de que el compuesto orgánico, que es la sustancia fármaco activa, adolece de dificultades de manipulación durante el proceso de fabricación y se imparten propiedades indeseables al fármaco o forma de dosificación final. Además, puede ser difícil controlar la forma polimórfica de la sustancia fármaco activa a lo largo del proceso de fabricación.

Preparaciones previas de clopidogrel (1) se consignan en las Solicitudes de Patente EP 0 420 706, EP 0 099 802, WO 98/51689, WO 98/51682, WO 98/51681, EP 0 466 569 y EP 0 281 459.

La sal de clopidogrel con bromuro de hidrógeno ha sido reseñada en EP 0 281 459. Sin embargo, el clopidogrel está comercializado actualmente como la sal hidrogenosulfato y formas polimórficas de esta sal hidrogenosulfato han sido consignadas en WO 99/65915.

#### Sumario de la invención

35 Es un objeto de la presente invención proporcionar clopidogrel en una forma sólida cristalina que confiere al compuesto propiedades mejoradas de manipulación y/o propiedades mejoradas como agente farmacéutico y permite el control de la forma polimórfica durante la fabricación.

Conforme a ello, un primer aspecto de la presente invención proporciona hidrobromuro de clopidogrel en la forma polimórfica 3 (anhidrato), que tiene una traza de DSC sustancialmente como se muestra en la Figura 1, y un espectro XRPD sustancialmente como se muestra en la Figura 2 y datos de TGA sustancialmente como se muestran en la Figura 3.

Preferiblemente, el hidrobromuro de clopidogrel en la forma polimórfica 3 se encuentra en forma de partículas. Preferiblemente, el hidrobromuro de clopidogrel en la forma polimórfica 3 es sustancialmente puro.

En el contexto de la presente solicitud, el término hidrobromuro de clopidogrel "sustancialmente puro" en la forma polimórfica 3 significa que el hidrobromuro de clopidogrel en la forma polimórfica 3 comprende menos de 20% de otras formas cristalinas o amorfas de hidrobromuro de clopidogrel, preferiblemente menos de 15%, más preferiblemente menos de 10%, más preferiblemente menos de 5%, más preferiblemente menos de 2%, más preferiblemente menos de 1%, y aún más preferiblemente menos de 0,5%. El término "sustancialmente puro" significa también que el hidrobromuro de clopidogrel en la forma polimórfica 3 comprende menos de 3% de otras impurezas, preferiblemente menos de 2%, más preferiblemente menos de 1%, y aún más preferiblemente menos de 0,5%.

Preferiblemente, el hidrobromuro de clopidogrel en la forma polimórfica 3 está destinado a ser utilizado como medicamento. Preferiblemente, el medicamento tiene por objeto la inhibición de la agregación plaquetaria o la terapia, prevención o tratamiento de la trombosis, aterotrombosis, un evento aterotrombótico, derrame cerebral

# ES 2 528 198 T3

isquémico, infarto de miocardio, infarto de miocardio de onda distinta de la Q, ateroesclerosis, enfermedad arterial periférica, o angina inestable.

Un segundo aspecto de la invención proporciona un proceso para la preparación del hidrobromuro de clopidogrel del primer aspecto de la invención.

El compuesto de la invención se puede preparar preferiblemente o se prepara por un proceso que comprende cristalización a partir de una solución en un disolvente o disolventes orgánicos. En una realización, dicho proceso comprende también el paso de secado del precipitado para proporcionar una forma cristalina conforme al primer aspecto de la invención. El compuesto puede secarse en condiciones convencionales de secado a vacío, por ejemplo, a un vacío de hasta 50, 40, 35, 30, 25, ó 20 mm Hg, preferiblemente 30 mm Hg, y a una temperatura de hasta 20, 25, 30, 35, 40, 45, 50, 55 ó 60°C, preferiblemente 45°C. Con preferencia, el disolvente orgánico es polar, miscible con el agua, dipolar, y/o aprótico. Opcionalmente, el disolvente orgánico comprende una pluralidad o mezcla de compuestos disolventes. El disolvente orgánico puede ser 2-propanol, diisopropil-éter, t-butilmetil-éter, diclorometano, metanol, y/o etanol.

El hidrobromuro de clopidogrel en la forma polimórfica 3 se prepara preferiblemente por recristalización de una mezcla de metanol o etanol con agua, preferiblemente en una ratio alcohol:agua de 5:95 a 20:80, con preferencia aproximadamente 10:90. Preferiblemente, la recristalización se lleva a cabo a 2-10°C durante 8-20 horas; más preferiblemente, la recristalización se lleva a cabo a 3-8°C durante 10-15 horas.

Un compuesto conforme al primer aspecto de la invención puede utilizarse ventajosamente en la preparación de dosificaciones farmacéuticas o formas de fármaco. Conforme a ello, en un aspecto adicional, la presente invención proporciona un método de preparación de una forma de dosificación farmacéutica que utiliza un compuesto de acuerdo con el primer aspecto de la invención.

La presente invención proporciona también una composición farmacéutica preparada o que puede prepararse por un método de esta clase. La composición farmacéutica de la presente invención puede estar destinada, por ejemplo, a liberación sostenida o retardada. La composición es preferiblemente sólida y comprende un compuesto conforme al primer aspecto de la invención, además de uno o más portadores, excipiente(s) o diluyente(s) convencionales farmacéuticamente aceptables. Composiciones farmacéuticas preferidas conforme a la invención incluyen tabletas, cápsulas y análogas.

La composición farmacéutica de la presente invención se puede administrar por vía oral, parenteral (con inclusión de las vías intravenosa, subcutánea, intramuscular, intradérmica, intratraqueal, intraperitoneal, intraarticular, intracraneal y epidural), transdérmica, por vía aérea (aerosol), rectal, vaginal o tópica (con inclusión de la administración bucal, mucosal y sublingual). Preferiblemente, la composición es para administración oral.

Para administración oral, la composición farmacéutica de la invención se proporcionará generalmente en forma de tabletas, cápsulas, cápsulas de gelatina dura o blanda, minicápsulas, trociscos o pastillas, como un polvo o gránulos, o como una solución, dispersión o dispersión acuosa. Las soluciones, suspensiones y dispersiones pueden prepararse a partir de polvo o gránulos de hidrobromuro de clopidogrel en la forma polimórfica 3. Preferiblemente, la composición se encuentra en la forma de tabletas o cápsulas.

Las tabletas para uso oral pueden incluir hidrobromuro de clopidogrel en la forma polimórfica 3 mezclado con excipientes farmacéuticamente aceptables tales como diluyentes inertes, agentes desintegrantes, agentes ligantes, agentes lubricantes, agentes edulcorantes, agentes saborizantes, agentes colorantes y conservantes. Excipientes adecuados son manitol, macrogol, celulosa microcristalina, aceite de ricino hidrogenado, e hidroxipropilcelulosa poco sustituida. Las tabletas se pueden preparar por técnicas convencionales, con inclusión de compresión directa, granulación húmeda y granulación seca. Si se desea, las tabletas pueden recubrirse con materiales tales como hipromelosa, lactosa, triacetina, y/o cera carnauba.

Las cápsulas para uso oral incluyen cápsulas de gelatina dura en las cuales se mezcla hidrobromuro de clopidogrel en la forma polimórfica 3 con un diluyente sólido, y cápsulas de gelatina blanda en las cuales el hidrobromuro de clopidogrel en forma polimórfica 3 se mezcla con agua o con un aceite tal como aceite de cacahuete, aceite de parafina o aceite de oliva.

Las formulaciones para administración rectal se pueden presentar como un supositorio con una base adecuada que comprende, por ejemplo, manteca de cacao o un salicilato.

Las formulaciones adecuadas para administración vaginal se pueden presentar como pesarios, tampones, cremas, geles, lechadas, espumas o formulaciones de pulverización que contienen además del componente activo portadores tales como se conocen por ser apropiadas en la técnica.

3

60

55

10

15

20

25

30

Para uso parenteral, el compuesto de la presente invención se proporcionará generalmente en una solución o lechada acuosa estéril, tamponada a un pH e isotonicidad apropiados. Tales soluciones y suspensiones se pueden preparar a partir de polvo o gránulos de hidrobromuro de clopidogrel en la forma polimórfica 3. Vehículos acuosos adecuados incluyen solución de Ringer y cloruro de sodio o glucosa isotónicos. Las suspensiones acuosas conforme a la invención puede incluir agentes de lechada tales como derivados de celulosa, alginato de sodio, polivinilpirrolidona y goma tragacanto; y un agente humectante tal como lecitina. Conservantes adecuados para suspensiones acuosas incluyen p-hidroxibenzoato de etilo y n-propilo. El compuesto de la invención se puede presentar también como formulaciones de liposomas.

Para administración tópica y transdérmica, el compuesto de la invención se proporcionará generalmente en forma de ungüentos, cataplasmas (emplastos), lechadas, polvos, apósitos, cremas, plastificantes o parches.

Las suspensiones y soluciones adecuadas se pueden utilizar en inhaladores para administración a las vías aéreas (aerosol). Tales suspensiones y soluciones se pueden preparar a partir de polvo o gránulos de hidrobromuro de clopidogrel en la forma polimórfica 3.

Preferiblemente, la composición farmacéutica se encuentra en forma de dosis unitaria que comprende hidrobromuro de clopidogrel en la forma polimórfica 3 en una cantidad comprendida entre 1 mg y 300 mg con respecto a la base libre, con preferencia en una cantidad de 5 mg a 200 mg, más preferiblemente en una cantidad de 10 mg a 125 mg, y más preferiblemente en una cantidad de 50 mg a 100 mg.

El hidrobromuro de clopidogrel de la presente invención es eficaz en un amplio intervalo de dosificación, dependiendo la dosis real administrada de la condición de que se trate. Por ejemplo, en la terapia de adultos humanos pueden utilizarse dosis desde 1 mg a 300 mg, preferiblemente desde 10 mg a 125 mg, más preferiblemente desde 50 mg a 100 mg con respecto a la base libre por día. La dosis deseada se presenta normalmente una vez al día, pero puede dosificarse como 2, 3, 4 o más sub-dosis administradas a intervalos apropiados a lo largo del día.

Preferiblemente, la composición farmacéutica de la presente invención está destinada a la inhibición de la agregación plaquetaria o para terapia, prevención o tratamiento de trombosis, aterotrombosis, un evento aterotrombótico, derrame cerebral isquémico, infarto de miocardio, infarto de miocardio de onda distinta de la Q, ateroesclerosis, enfermedad arterial periférica, o angina inestable.

En un aspecto adicional de la invención, se proporciona el uso de un compuesto conforme al primer aspecto de la invención para la fabricación de un medicamento para la inhibición de la agregación plaquetaria y consiguientemente para terapia, prevención y/o tratamiento de enfermedades tales como trombosis, aterotrombosis, un evento aterotrombótico, derrame cerebral isquémico, infarto de miocardio, infarto de miocardio de onda distinta de la Q, ateroesclerosis, enfermedad arterial periférica, o angina inestable.

El compuesto conforme al primer aspecto de la invención puede ser útil también como precursor para otras formas polimórficas nuevas o conocidas de clopidogrel que pueden ser útiles en la preparación de productos farmacéuticos. Alternativamente, el compuesto conforme al primer aspecto de la invención puede utilizarse para preparar otras formas polimórficas deseadas de hidrogenosulfato de clopidogrel de una manera más controlable. La presente invención proporciona por tanto un proceso para preparar una forma polimórfica de hidrogenosulfato de clopidogrel, que comprende el paso de utilizar hidrobromuro de clopidogrel en la forma polimórfica 3.

La presente invención se ilustra, pero sin carácter limitante en absoluto, por los ejemplos y figuras que siguen.

#### Breve descripción de las figuras

15

20

25

50

60

65

La Figura 1 es una traza DSC de hidrobromuro de clopidogrel en forma polimórfica 3.

La Figura 2 es un espectro XRPD de hidrobromuro de clopidogrel en forma polimórfica 3.

La Figura 3 muestra datos TGA para hidrobromuro de clopidogrel en forma polimórfica 3.

#### Descripción detallada de la invención/Ejemplos

#### (±)-2-(2-Clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetonitrilo

A una mezcla de metanol (2,50 L) y agua (250 mL) se añadió 4,5,6,7-tetrahidrotieno[3,2-c]piridina hidrocloruro (500 g, 2,85 moles) con agitación. Después de agitar durante 10 minutos, se añadió cianuro de sodio (153,0 g; 3,12 moles) y se agitó ulteriormente durante 40 minutos. Se añadió lentamente 2-clorobenzaldehído (392,1 g; 2,79 moles) a esta mezcla de reacción entre 23 y 28°C a lo largo de un periodo de 1,5 horas. Después de terminada la adición, se calentó el matraz en un baño de aceite entre 40-50°C y se mantuvo a esta temperatura durante 4,5 horas.

Después de enfriar la mezcla de reacción a 25-30°C, se añadió solución de metabisulfito de sodio al 5% (250 mL) y se agitó durante 1 hora en este intervalo de temperatura. Se añadió agua (7,5 L) a la lechada resultante, y se agitó durante 1 hora a 25-30°C. El sólido blanquecido así formado se filtró, se lavó con una mezcla 1:1 de metanol:agua (2,5 L) y la torta húmeda se secó a vacío a 75°C (presión: -0,8 kg/cm²) durante 10 horas para obtener el producto como un sólido blanquecino. Rendimiento: 719,0 g, (87,4%), p.f.: 124-126,5°C. El producto se identificó por espectro IR, e investigación NMR <sup>1</sup>H y <sup>13</sup>C.

#### (±)-2-(2-Clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida

20

25

30

35

40

45

50

60

Se añadió (±)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetonitrilo (713 g; 2,46 moles) a metanol (3,505 L) a 23-28°C con agitación. Se añadió a esta lechada carbonato de potasio (170 g; 1,23 moles) seguido por dimetil-sulfóxido (263 ml; 3,7 moles). El contenido se calentó entre 30 y 40°C y se añadió lentamente solución acuosa de peróxido de hidrógeno al 30,0% (382 ml; 3,70 moles) entre 40 y 50°C durante un periodo de 3 horas. Después de terminada la adición, la mezcla de reacción se mantuvo a esta temperatura durante 2 horas más, después de lo cual se llevó la reacción a 20-30°C. Se añadió lentamente ácido clorhídrico al 35% (213,0 mL) en agua (10,7 L) a la mezcla de reacción durante un periodo de 1 hora y 15 minutos. Después de agitar durante 1 hora, el sólido formado se filtró y se lavó con una mezcla 1:1 metanol:agua (3,565 L). El sólido aislado se secó en un horno de vacío a 75-80°C durante un periodo de 12 horas. Rendimiento: 716 g (94,72%); pf: 124-126°C. El producto se identificó por espectro IR e investigación NMR <sup>1</sup>H y <sup>13</sup>C.

# Sal del ácido (+)-(1S)-canfo-10-sulfónico de (S)-2-(2-clorofenil-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida

- (a) A una lechada agitada de (±)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida (710 g; 2,315 moles) en acetona (3,56 L) y metanol (0,355 L) mantenida a 23-28°C se añadió una solución de ácido (+)-(1S)-canfo-10-sulfónico (270 g; 1,16 moles) disuelto en acetona (1,44 L) durante un periodo de 1 hora. Después de agitar durante una hora más, se añadió ácido fórmico (98-100%; 53,8 g; 1,16 moles) en una sola vez y se agitó durante 1 hora, después de lo cual la mezcla de reacción se enfrió a 0-10°C y se mantuvo a esta temperatura durante 1 hora y 30 minutos más. El sólido así formado se filtró y se lavó con acetona (1,44 L) y se secó en un horno de vacío entre 60 y 65°C durante un periodo de 6 horas. Rendimiento: 470,0 g (38 % teórico, basado en el contenido de enantiómero). P.f.: 194-208°C. [α]<sub>D</sub><sup>25</sup>: + 41,5 (c = 1,0 g/100 mL; metanol).
- (b) Aislamiento de (±)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida a partir de las aguas madres obtenidas en el paso (a). A las aguas madres obtenidas en el paso (a) se añadió una solución acuosa al 20% de hidróxido de sodio (710 mL), a 26-27°C con agitación. La mezcla de reacción se calentó a 45-50°C y se mantuvo a esta temperatura durante 5 horas. La mezcla de reacción se concentró a vacío a la décima parte de su volumen. La lechada resultante se enfrió a 30°C y se añadió lentamente metanol (710 mL) seguido por agua (4,9 L) a la mezcla de reacción durante un periodo de 30 minutos. El pH de la masa de reacción se ajustó a 7-7,5 por adición de solución de ácido clorhídrico al 15% (1,2 L). Después de agitar durante una hora, el sólido formado se filtró y se lavó con agua (3,5 L). El sólido aislado se secó en un horno de vacío (presión: -0,8 kg/cm²) entre 75 y 80°C durante un periodo de 14 horas. Rendimiento: 393 g. p.f.: 128-134°C.
- (c) La ( $\pm$ )-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida obtenida en el paso (b) se convirtió en la sal del ácido (+)-(1S)-canfo-10-sulfónico de (S)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida siguiendo el procedimiento mencionado en el paso (a). Rendimiento: 240,0 g (36% teórico, basado en el contenido de enantiómero). P.f.: 202-210°C. [ $\alpha$ ]<sub>D</sub><sup>25</sup>: + 47,5 (c = 1,0 g/100 ml; metanol).
- (d) La sal del ácido (+)-(1S)-canfo-10-sulfónico de (S)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida (700 g; 1,298 moles) obtenida se cargó en metanol (1,75 L) con agitación a 23-28°C. El contenido se calentó a 60°C y se mantuvo a dicha temperatura durante 2 horas. Se añadió acetona (7,0 L) a esta solución clara, y se mantuvo a esta temperatura durante 1 hora. La mezcla de reacción se enfrió entre 0 y 5°C y se agitó durante 1 hora y 30 minutos más. El sólido así precipitado se filtró, se lavó con cetona (1,4 L) y se secó entre 60 y 65°C a vacío (-0,8 kg/cm²) durante 7 horas. Rendimiento: 545,0 g (77,85% teórico). P.f.: 210-218°C. [α]<sub>D</sub><sup>25</sup>: + 51,69 (c = 1,0 g/100 ml; metanol).

# 55 (+)-(S)-2-(2-Clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida

La sal cristalizada del ácido (+)-(1S)-canfo-10-sulfónico de (S)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida (521,0 g; 0,966 moles) se cargó en metanol (2,605 L) con agitación a 23-28°C seguido por agua (1,042 L). Se añadió carbono activado (10,42 g) a esta solución clara y el contenido se agitó durante 1,5 horas a esta temperatura. El carbono activado se separó por filtración haciendo pasar el contenido del matraz a través de un lecho de Celita en un embudo Buchner y el residuo que quedaba en el embudo se lavó con una mezcla agua:metanol (3:7; 0,521 L). Al filtrado combinado, se añadió solución acuosa de bicarbonato de sodio al 2% (p/v) (4,168 L) durante un periodo de 30 minutos y se agitó durante 1 hora y 30 minutos. El sólido precipitado se filtró, se lavó con metanol:agua (2,084 L; 1:1 v/v) y se secó a vacío (-0,8 kg/cm²) durante un periodo de 8 horas entre 70 y

### ES 2 528 198 T3

75°C. Rendimiento: 284,0 g (95,8% teórico). P.f.: 154-156°C.  $[\alpha]_D^{25}$ : + 39,5 (c = 1,0 g/100 ml; metanol). El producto se identificó por el espectro IR, e investigación NMR  $^1$ H y  $^{13}$ C.

# (+)-(S)-Metil-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetato (clopidogrel)

5

10

15

20

30

Se cargó ácido sulfúrico concentrado (~ 98%; 496 ml; 9,30 moles) en etanol (1,75 L) con agitación entre 25 y 38°C seguido por sulfato de dimetilo (250 mL; 2,636 moles). El contenido se calentó a reflujo durante 3 horas, después de lo cual la mezcla de reacción se enfrió a 40-50°C y se añadió (+)-(S)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetamida (500 g; 1,55 moles). La mezcla de reacción se calentó a 65°C y se mantuvo entre 65 y 66°C durante un periodo de 60 horas. La mezcla de reacción se enfrió a 25-30°C y se vertió en agua (10,0 L) con agitación. Se añadió diclorometano (5,0 L), y se agitó durante 1 hora, después de lo cual se separó la capa orgánica. Se añadió diclorometano (2,5 L) a la capa acuosa y se agitó durante 1 hora, y la capa orgánica separada se combinó con la capa separada anteriormente y se lavó con agua (2,5 L). Se añadió solución acuosa de bicarbonato de sodio al 5% (p/v) (2,5 L) a esta capa orgánica y se agitó durante un periodo de 1 hora, después de lo cual la capa orgánica separada se lavó con ácido sulfúrico a 0,25% (2,5 L) seguido por agua (2,5 L) y se trató con carbono activado (40,0 g) durante un periodo de 3 horas con agitación. El carbono activado se separó por filtración a través de un lecho de Celita y se lavó el lecho de Celita con diclorometano (1,0 L). Este lavado se acopló con el filtrado y el disolvente se eliminó a vacío para dar éster metílico del ácido (+)-(S)-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acético como un aceite amarillo pálido. Rendimiento: 380 g (73,0% teórico). El producto se identificó por el espectro IR, e investigación NMR <sup>1</sup>H y <sup>13</sup>C.

# (+)-(S)-Metil-2-(2-clorofenil)-(6,7-dihidro-4H-tieno[3,2-c]pirid-5-il)acetato (clopidogrel)-bromuro de hidrógeno, forma polimórfica 3

Se preparó hidrobromuro de clopidogrel, forma polimórfica 3 por disolución de hidrobromuro de clopidogrel, forma polimórfica 1 (5 g) en 5 mL de metanol o etanol. Una vez disuelto a la temperatura ambiente (~ 22°C), se añadió agua (40 mL) a la solución y se agitó. El precipitado inicial formado era un sólido espeso. Este sólido se separó por filtración y la solución remanente se guardó en un frigorífico durante una noche. Los cristales blancos formados en esta solución enfriada se filtraron luego utilizando un embudo con filtro Buchner y se secaron a 50°C durante 1 hora.

Los cristales se caracterizaron luego utilizando DSC, TGA y XRPD (véanse las Figuras 1, 2 y 3).

#### **REIVINDICACIONES**

- 1. Un proceso para preparación de anhidrato de hidrobromuro de clopidogrel, que comprende el paso de recristalizar hidrobromuro de clopidogrel a partir de una mezcla de metanol o etanol con agua.
- 2. Un proceso conforme a la reivindicación 1, en el que la mezcla de metanol o etanol con agua tiene una ratio alcohol:agua de 5:95 a 20:80.
- 3. Un proceso conforme a la reivindicación 2, en el que la mezcla de metanol o etanol con agua tiene una ratio alcohol: agua de aproximadamente 10:90.
  - 4. Un proceso conforme a una cualquiera de las reivindicaciones 1 a 3, en el que la recristalización se lleva a cabo a 2-10°C durante 8-20 horas.
- 15 5. Un proceso conforme a la reivindicación 4, en el que la recristalización se lleva a cabo a 3-8°C durante 10-15 horas.
  - 6. Un proceso conforme a una cualquiera de las reivindicaciones 1 a 5, que comprende adicionalmente el paso de secado del precipitado.
  - 7. Preparación de anhidrato de hidrobromuro de clopidogrel por un proceso conforme a una cualquiera de las reivindicaciones 1 a 6.
- 8. Anhidrato de hidrobromuro de clopidogrel conforme a la reivindicación 7, en el que el anhidrato de hidrobromuro de clopidogrel comprende menos de 20% de otras formas cristalinas o amorfas de hidrobromuro de clopidogrel, y/o en el que el anhidrato de hidrobromuro de clopidogrel comprende menos de 3% de otras impurezas.
  - 9. Anhidrato de hidrobromuro de clopidogrel conforme a la reivindicación 7 o la reivindicación 8, para uso como medicamento.
  - 10. Una composición farmacéutica, que comprende anhidrato de hidrobromuro de clopidogrel conforme a una cualquiera de las reivindicaciones 7 a 9, que comprende opcionalmente además un portador, excipiente o diluyente farmacéuticamente aceptable.
- 35 11. Una composición farmacéutica conforme a la reivindicación 10, en la que la composición es para administración oral.
- 12. Una composición farmacéutica conforme a la reivindicación 10 o la reivindicación 11, en la que la composición se encuentra en forma de una tableta y comprende adicionalmente manitol, macrogol, celulosa microcristalina, aceite de ricino hidrogenado, y/o hidroxipropilcelulosa poco sustituida.
  - 13. Una composición farmacéutica conforme a la reivindicación 12, en la que la tableta está recubierta con hipromelosa, lactosa, triacetina y/o cera carnauba.
- 45 14. Una composición farmacéutica conforme a una cualquiera de las reivindicaciones 10 a 13, en la que la composición se encuentra en forma de dosis unitaria que comprende anhidrato de hidrobromuro de clopidogrel en una cantidad de 10 mg a 125 mg con respecto a la base libre.
- 15. Uso de anhidrato de hidrobromuro de clopidogrel conforme a una cualquiera de las reivindicaciones 7 a 9 para la preparación de un medicamento para inhibición de la agregación plaquetaria o para terapia, prevención o tratamiento de trombosis, aterotrombosis, un evento aterotrombótico, derrame cerebral isquémico, infarto de miocardio, infarto de miocardio de onda distinta de la Q, ateroesclerosis, enfermedad arterial periférica o angina inestable.
- 55 16. Un proceso para preparación de una forma polimórfica de hidrogenosulfato de clopidogrel, que comprende el paso de utilización de anhidrato de hidrobromuro de clopidogrel conforme a la reivindicación 7 o la reivindicación 8.
  - 17. Uso de anhidrato de hidrobromuro de clopidogrel conforme a la reivindicación 7 o la reivindicación 8 como precursor para otras formas polimórficas de clopidogrel.

5

20

30

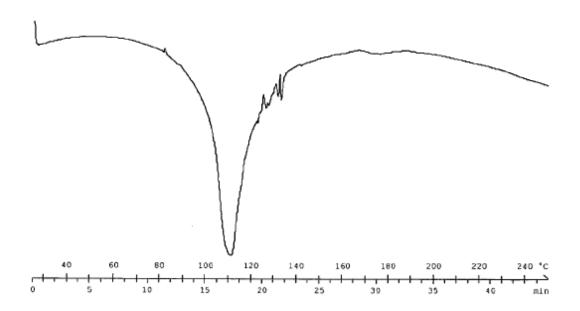
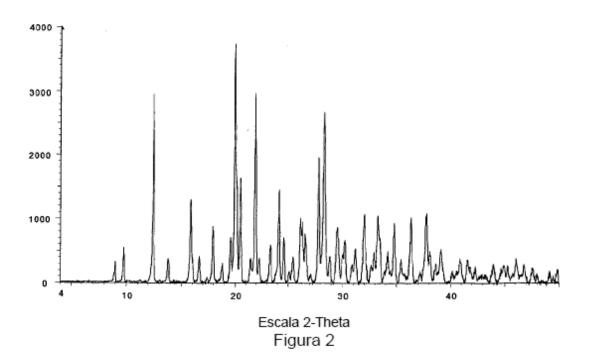




Figura 1



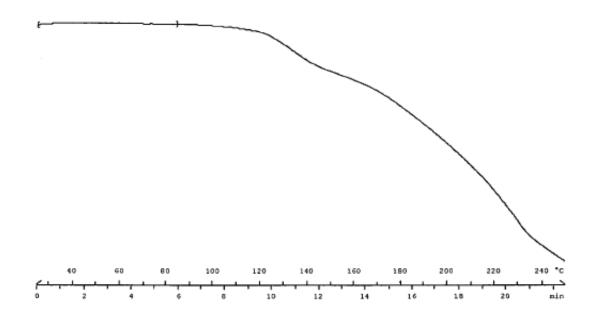



Figura 3