

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 529 468

51 Int. Cl.:

H01H 50/14 (2006.01) H01H 1/58 (2006.01) H01H 49/00 (2006.01) H01H 50/60 (2006.01) H01H 50/04 (2006.01) H01H 50/28 (2006.01) H01H 50/54 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 24.07.2009 E 09781035 (2)
- (97) Fecha y número de publicación de la concesión europea: 26.11.2014 EP 2342731
- (54) Título: Disposición de contactos que tiene un cordón conductor doblado, relé que tiene una disposición de contactos y método de montaje de un relé
- (30) Prioridad:

26.08.2008 DE 102008039704

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.02.2015

(73) Titular/es:

TYCO ELECTRONICS AMP GMBH (100.0%) Ampèrestrasse 12-14 64625 Bensheim, DE

(72) Inventor/es:

SCHNEIDER, AXEL; HAEHNEL, THOMAS; MARANKE, CHRISTIAN; SCHULTHEISS, JOERG y KOETTER, ALBERT

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Disposición de contactos que tiene un cordón conductor doblado, relé que tiene una disposición de contactos y método de montaje de un relé

5

10

15

La invención se refiere a una disposición de contactos para un relé para la interrupción de altas corrientes de carga, que tiene al menos una zona de conexión, al menos un contacto de interrupción que se puede mover con relación a la zona de conexión en una dirección de interrupción y un cordón conductor flexible que tiene una forma doblada y que conecta la al menos una zona de conexión con el al menos un contacto de interrupción de modo que conduce la corriente de carga, estando retenido el cordón conductor de un modo inherentemente estable debido a que está formado como una estructura auto-soportada, en la que el cordón conductor se pretensa de modo elástico y produce una fuerza de reposición, que conforma al cordón conductor en la forma inherentemente estable. Adicionalmente, la invención se refiere a un relé para la interrupción de altas corrientes de carga. Finalmente, la invención se refiere a un método para el montaje de un relé para la interrupción de altas corrientes de carga que tiene al menos una zona de conexión y al menos un contacto de interrupción, en el que está conformado al menos un cordón conductor con la al menos una zona de conexión, se conecta con el al menos un contacto de interrupción de modo que conduce la corriente de carga, y se dobla y retiene de un modo inherentemente estable debido que está conformado como una estructura auto-soportada, en el que el cordón conductor se pretensa elásticamente y produce una fuerza de retención, que conforma al cordón conductor de un modo inherentemente estable.

20

25

Disposiciones de contactos para relé para la interrupción de altas corrientes de carga y relés para la interrupción de altas corrientes de carga que tienen la disposición de contactos mencionada anteriormente están ampliamente disponibles y se describen, por ejemplo, en los documentos US 5.587.693, DE 195 22 931 A1, US 4.647.743, US 5.324.901 y EP 0 281 950 A1. Generalmente, el relé está provisto con un actuador que convierte las señales de control en movimientos. El actuador se puede construir en la forma de una bobina que, dependiendo de la señal de control eléctrica, genera un campo magnético que puede actuar de un modo de atracción o repulsión sobre una armadura del relé. La armadura que se mueve en consecuencia de acuerdo con las señales de control se conecta al contacto de interrupción de modo que transmita el movimiento y que pueda mover el contacto de interrupción en una dirección de interrupción al menos desde una primera posición a una segunda posición. En la primera o segunda posición, el contacto de interrupción puede estar en contacto con un contacto fijo de modo que conduzca la corriente de carga. En muchos relés, el contacto de interrupción permanece en una posición en vacío en la primera o segunda posición si no hay una señal de control correspondiente en el actuador. Por ejemplo, la posición en vacío del contacto de interrupción se predetermina por medio de un resorte de armadura que está integrado en el relé de un modo pretensado y retiene el contacto de interrupción en la primera o segunda posición, si no hay una señal de control. Sin embargo, si hay una señal de control correspondiente en el actuador, el contacto de interrupción se mueve contra la fuerza elástica efectiva del resorte de armadura a la otra posición en cada caso. Sin ninguna señal de control correspondiente, el contacto de interrupción puede volver a la posición inicial de nuevo de acuerdo con la fuerza elástica.

35

30

En particular cuando se pretende la interrupción de altas corrientes de carga, por ejemplo, de más de 30 A, se requieren líneas con una sección grande que dirijan la alta corriente de carga desde el contacto fijo al contacto de interrupción. En el caso de relés de corriente, se usan los denominados cordones conductores, es decir, trenzas que comprenden una pluralidad de hilos delgados, en una línea entre una conexión fija del relé conectado a la zona de conexión y el contacto de interrupción. Estos cordones conductores son flexibles y en consecuencia no impiden

significativamente el movimiento del contacto de interrupción con respecto a la zona de conexión.

45

Si el cordón conductor se extiende de un modo curvado, como mucho solo pequeñas fuerzas producidas por el cordón conductor contrarrestan el movimiento del contacto de interrupción. Sin embargo, un relé que tenga dicho cordón conductor no puede montarse fácilmente de un modo automatizado debido a la flexibilidad del cordón conductor, dado que la zona de conexión del cordón conductor no se puede situar y conectar a la conexión fija del relé sin intervención manual.

50

El objetivo de la presente invención es por lo tanto proporcionar una disposición de contacto para un relé, un relé y un método para el montaje de un relé, en el que el relé se pueda montar con un alto grado de automatización.

55

El objetivo se consigue de acuerdo con la invención mediante una disposición de contacto de acuerdo con la reivindicación 1, un relé de acuerdo con la reivindicación 7 y un método de montaje de un relé de acuerdo con la reivindicación 9. Las realizaciones adicionales se describen mediante las reivindicaciones dependientes.

60

Debido a la estructura auto-soportada del cordón conductor, la disposición de contacto se puede situar en el relé como un conjunto manejable integralmente y auto-soportado de tal manera que asuma una posición predeterminada al menos con respecto a la conexión fija y lo retenga de un modo auto-soportado. No es necesaria una retención por separado del cordón conductor con respecto a su colocación con relación a la conexión fija del relé, que puede ser llevada a cabo opcionalmente manualmente.

ES 2 529 468 T3

La solución de acuerdo con la invención se puede mejorar adicionalmente por medio de varias configuraciones que son ventajosas y pueden combinarse entre sí según se desee. Estas configuraciones y las ventajas que están unidas con ellas se exponen a continuación.

- De acuerdo con una primera configuración, el cordón conductor puede producir una fuerza de reposición que actúe contra la acción de doblado y el cordón conductor puede pretensarse de modo elástico. En particular, el cordón conductor se puede doblar de un modo curvado solo en una dirección. La fuerza de reposición puede formar el cordón conductor de un modo inherentemente estable, ser dependiente del radio de curvatura del cordón conductor y ser más grande según el radio de curvatura se hace más pequeño. En particular en las zonas del cordón conductor que se doblan de un modo curvado, el pretensado elástico se puede producir por el cordón conductor en sí. En particular cuando el cordón conductor tiene una sección transversal sustancialmente circular, el cordón conductor puede retener su forma de un modo auto-soportado incluso en el caso de cargas que actúen en diferentes direcciones. Una sección transversal sustancialmente circular es particularmente ventajosa para esta finalidad.
- El cordón conductor se puede asegurar a al menos un contacto de interrupción de un modo doblado, contra la fuerza de reposición que produce. En consecuencia, la fuerza de reposición puede absorberse al menos por el al menos un contacto de interrupción del modo que el cordón conductor sea recibido y retenido en el conjunto de contactos de un modo pretensado en forma elástico.
- 20 El cordón conductor puede tener dos extremos y puede formar una hendidura o bucle que se dirija al exterior desde los extremos del mismo y que se expanda. Debido a la forma claramente no angular y en particular al menos parcialmente doblada, la forma de la hendidura o bucle distribuye las fuerzas de reposición de un modo uniforme sobre el cordón conductor y permite al cordón conductor ser inherentemente estable.
- En el caso de un cordón conductor que se doble en una forma de bucle, los dos extremos del mismo pueden estar próximos entre sí. Si el cordón conductor se dobla en la forma de una hendidura, los extremos del cordón conductor se pueden disponer de modo que estén mutuamente separados. Tanto con la configuración con forma de bucle, como con forma de hendidura del cordón conductor, los extremos del cordón conductor se pueden extender en paralelo y en la misma dirección o en direcciones opuestas. En particular, los extremos del cordón conductor que se conforman en una forma de hendidura o forma de bucle pueden disponerse también en un modo no paralelo y pueden disponerse posiblemente de modo sustancialmente con forma de V. Los extremos pueden estar próximos entre sí o separados en la zona de la punta de la forma de V.
- Para ser capaces de producir la disposición de contacto como un conjunto auto-soportado, los extremos del cordón conductor se pueden conectar a al menos un contacto de interrupción que se proporciona en la disposición de contactos. El contacto de interrupción, en particular en direcciones que no son la dirección de interrupción, puede integrarse de modo sustancialmente no desplazable en la disposición de contacto. La fuerza de reposición puede dirigirse sustancialmente de modo perpendicular con relación a la dirección de interrupción y el al menos un contacto de interrupción se puede disponer en la disposición de contactos de modo que actúe contra la fuerza de reposición o de tensión del cordón conductor. El cordón conductor, entre los extremos o las zonas a través de las que el cordón conductor transmite la fuerza de tensión al resto de la disposición de contacto, puede extenderse al menos parcialmente en una dirección de modo que se doble de un modo curvado. El cordón conductor puede tener en consecuencia la forma de curva y puede retenerse en un modo inherentemente estable como una estructura autosoportada, sin estar conectado a la conexión fija del relé.

45

50

55

- La zona de conexión se puede conectar a la conexión fija de modo que conduzca la corriente de carga solamente cuando la disposición de contacto se monta en un relé. El cordón conductor que se construye en un modo con forma de bucle o forma de hendidura puede tener en consecuencia la forma que conforme la estructura auto-soportada, incluso cuando la disposición de contacto aún no está montada en el relé.
- La zona de conexión del cordón conductor se puede disponer sustancialmente de modo central entre los extremos del cordón conductor y pueden configurarse para la conexión a una conexión fija del relé. El cordón conductor puede conectarse por ello con seguridad a la conexión fija del relé directamente sin tener que conectar componentes adicionales al cordón conductor. Adicionalmente, las dos partes del cordón conductor que se extienden entre la zona de conexión y el al menos un contacto de interrupción son de igual longitud y en consecuencia tienen sustancialmente el mismo nivel de resistencia eléctrica.
- La zona de conexión se puede construir como una parte del elemento rígido del cordón conductor. Una zona de conexión que se construye con un elemento rígido tiene, por ejemplo, la ventaja de que puede adaptarse mejor a la geometría de la conexión fija que el cordón conductor sin conformar en solitario, por lo que se puede producir una conexión con una conductividad eléctrica mejorada entre la zona de conexión y la conexión fija.
 - La zona de conexión se puede extender en una parte del cordón conductor doblado que esté a la máxima distancia desde al menos un contacto de interrupción. Esto permite la ventaja de que los contactos de interrupción pueden moverse más fácilmente con relación a la zona de conexión y la zona de conexión es más fácilmente accesible para herramientas.

En la zona de los extremos del mismo, el cordón conductor puede doblarse de modo diferente y en particular en una dirección opuesta al resto del cordón conductor. En particular con la configuración en forma de hendidura, los extremos del cordón conductor pueden conectarse a los contactos de interrupción y, por ejemplo, guiarse alrededor de dos pasadores de retención, que tienen una distancia relativa entre sí más pequeña que los dos contactos de interrupción, lo que produce una fuerza de reposición incluso mayor.

5

10

15

40

45

50

55

60

65

En la zona de la al menos una zona de conexión y/o en la zona del al menos un contacto de interrupción, el cordón conductor puede extenderse sustancialmente de modo lineal y las partes lineales del cordón conductor se pueden conectar por medio de partes intermedias dobladas. En particular un recorrido lineal del cordón conductor en la zona de los contactos de interrupción permite una orientación bien definida del cordón conductor. El recorrido lineal en la región de la zona de conexión limita la altura del mismo en una dirección vertical. En el caso de un cordón conductor con zonas que se construyen de un modo lineal e inherentemente estable, en particular las partes intermedias dobladas del cordón conductor o las curvas el cordón conductor pueden producir la fuerza de reposición y conducir a un movimiento relativo entre la al menos una zona de conexión y el al menos un contacto fijo.

Dado que el cordón conductor es inherentemente estable en las partes que se extienden linealmente, el cordón conductor puede construirse también parcialmente como un elemento rígido en la zona del al menos un contacto de interrupción.

Para volver a dar forma parcialmente al cordón conductor como un elemento rígido, el cordón conductor puede calentarse, por ejemplo, usando altas corrientes eléctricas que se dirigen a través de al menos una parte del cordón conductor, y comprimirse durante o incluso después de una fase de calentamiento. Las fibras individuales del cordón conductor pueden conectarse por ello entre sí de un modo materialmente integral de modo que la flexibilidad del cordón conductor se reduce en este caso y el cordón conductor se convierte al menos parcialmente en rígido.
Debido al nuevo conformado, las partes del elemento rígidas se pueden construir de tal manera que se puedan situar para ser sustancialmente planas en los elementos de conexión, tal como la conexión fija y pueden en consecuencia soldarse a los mismos de modo efectivo.

En particular la zona de conexión puede, como elemento rígido, tener una cara que se dirige hacia afuera desde la disposición de contactos y que se puede construir como una cara de conexión para la conexión a la conexión fija del relé de modo que conduzca la corriente de carga. Los elementos rígidos en los extremos del cordón conductor pueden construirse como una pieza de contacto que se dirige afuera desde el extremo del cordón conductor y a través de la que los cordones conductores o extremos del cordón conductor se pueden conectar al contacto de interrupción de modo que conduzca la corriente de carga.

Los extremos del cordón conductor en los contactos de interrupción pueden conectarse entre sí de modo que conduzcan la corriente de carga por medio de una pieza de conexión en cada caso. La pieza de conexión puede tener una parte de contacto que se conecta con seguridad al contacto de interrupción respectivo y puede, por ejemplo, soldarse o remacharse al mismo. Adicionalmente, la pieza de conexión puede tener una pletina de conexión que se puede extender de modo inclinado con relación a la parte de contacto y sustancialmente afuera desde el contacto de interrupción. En particular, las pletinas de conexión de dos piezas de conexión se pueden dirigir separándose entre sí y paralelas con el recorrido de los extremos del cordón conductor que están conectados a las mismas. El ángulo entre la pletina de conexión y la parte de contacto puede predeterminar el ángulo de inclinación al que el cordón conductor doblado se dirige separándose de la armadura en la dirección de la dirección de interrupción. Alternativamente, la pieza de conexión puede formarse con dos pletinas de conexión y puede conformarse sustancialmente en Y.

Debido a la diferente orientación de la pletina de conexión y la parte de contacto, las piezas de conexión entre la pletina de conexión y la parte de contacto deben estar formadas con un borde doblado. Los bordes doblados de dos piezas de conexión se pueden extender de un modo simétrico especular y/o en particular en alineación mutua y en paralelo con una de las líneas rectas que conectan los contactos de interrupción.

El resorte de armadura, entre la zona en la que el elemento del interruptor del resorte de armadura se conecta a la armadura y al contacto de interrupción, puede formarse de un modo sustancialmente lineal, similar a una brida como una viga de doblado fijo en un único lado, a cuyo extremo libre que mira al exterior desde la disposición de contactos se puede asegurar el contacto de interrupción de modo que sea capaz de ser flexionado de modo elástico en la dirección de interrupción. Debido a esta suspensión elástica del contacto de interrupción, se pueden reducir al menos los daños al contacto de interrupción por las operaciones de interrupción dado que el contacto de interrupción no golpea de un modo guiado limitado un contacto de interrupción contrario durante una operación de interrupción. Si la separación del contacto de interrupción y el contacto de interrupción contrario en el estado no conectado no cumple, por ejemplo, con una previsión, esta discrepancia dimensional se puede absorber por la suspensión elástica del contacto de interrupción. Además, debido a la disposición elásticamente flexible del contacto de interrupción, el denominado rebote se puede al menos reducir. Finalmente, el uso de resortes con fin de carrera permite la supervisión automática de los contactos de interrupción si la distancia medida entre los contactos de interrupción y los contactos fijos en la dirección de interrupción debiera incrementarse, por ejemplo, debido a la erosión de los contactos.

Si hay una pluralidad de contactos de interrupción, se pueden conectar a un resorte de fin de carrera común o separado en cada caso. Entre los contactos de interrupción y el resorte de fin de carrera, la parte de contacto de la pieza de conexión se puede disponer y conectar al contacto de interrupción y al resorte de fin de carrera en un modo no desplazable.

5

10

15

20

25

30

35

El plano del cordón conductor en el que se extiende el cordón conductor puede inclinarse con relación a la armadura. Debido a la inclinación del plano del cordón conductor, en particular en la dirección de interrupción con respecto a la armadura, la zona de conexión está separada del resto de la disposición de contacto y puede ser en consecuencia fácilmente accesible para herramientas de conexión. Adicionalmente, la longitud del cordón conductor medida en paralelo al plano del cordón conductor desde al menos un contacto de interrupción a la zona de conexión puede ser mayor que con un cordón conductor que no esté inclinado, sin que el cordón conductor sobresalga en una dirección vertical sobre el resto de la disposición de contacto. En consecuencia, la zona de conexión se puede construir de modo que sea mayor y montarse con un nivel de automatización más alto. Adicionalmente, la cara de conexión de la zona de conexión se puede extender en paralelo al plano del cordón conductor lo que simplifica adicionalmente el montaje.

La disposición de contacto puede formar un canal de herramientas ininterrumpido que se puede extender en ambos lados de la zona de conexión de modo sustancialmente perpendicular con relación a la cara de conexión de la zona de conexión o al plano del cordón conductor y puede comprender un rebaje que se forma mediante el resorte del contacto. El rebaje puede, por ejemplo, disponerse en una zona de conexión del resorte de armadura que se sitúa entre el elemento de soporte y el elemento del interruptor, siendo capaz la zona de conexión de conectar juntos el elemento de soporte y el elemento del interruptor de modo que transmitan la fuerza elástica. En el recorrido del mismo que se extiende en una dirección transversal perpendicularmente con relación a la dirección de interrupción y en la dirección vertical, la zona de conexión puede interrumpirse por el rebaje y el rebaje puede extenderse tanto en la dirección del elemento de soporte como en la dirección del elemento del interruptor. La zona de conexión puede formar el ángulo del resorte de armadura en ambos lados del rebaje y transmitir la fuerza elástica.

La armadura puede tener un espacio libre para la zona de conexión de modo que el resorte de armadura no sobresalga más allá de la armadura en la dirección vertical. En cada uno de los dos lados del espacio libre de la armadura, los lados de la armadura pueden tener una ranura de retención que está abierta en la dirección transversal y por medio de la que la armadura se puede colocar en el relé.

Debido a la orientación inclinada del cordón conductor, el canal de herramientas se puede extender en particular de un modo inclinado con relación a la dirección de interrupción y sustancialmente en diagonal con relación a la disposición de contacto. El canal de herramientas se puede extender al menos parcialmente a través del rebaje del resorte de armadura y a través del espacio libre de la armadura. En consecuencia, el canal de herramientas proporciona suficiente espacio para herramientas de conexión para conectar la zona de conexión del cordón conductor a la conexión fija del relé, incluso cuando la disposición de contacto está insertada en el relé.

- Si la disposición de contacto tiene dos contactos de interrupción, se pueden disponer en una separación mutua en la dirección transversal. El lado del plano del cordón conductor, que es sustancialmente trapezoidal en este caso, situado entre los contactos de interrupción se amplía de ese modo, por lo que la estabilidad inherente del cordón conductor se puede incluso mejorar. Cada uno de los contactos de interrupción se puede conectar a un resorte de fin de carrera separado o se puede conectar una pluralidad de contactos de interrupción a un resorte de fin de carrera común. Algunos o todos los contactos de interrupción se pueden configurar con más de una superficie o superficie del interruptor que esté sustancialmente orientada de modo perpendicular con relación a la dirección de interrupción. Las superficies del interruptor se pueden disponer en ambos lados de la pieza de conexión y en particular cada uno de los contactos de interrupción se puede construir como un contacto de conmutación.
- Si la disposición de contacto se inserta en el relé en una posición de operación, la conexión fija que se pretende que se conecte con seguridad a la cara de conexión de la zona de conexión puede sobresalir dentro del canal de herramientas. El relé con la disposición de contacto descrita anteriormente puede montarse por ello más fácilmente dado que la disposición de contacto se puede insertar dentro del relé como un conjunto sustancialmente autosoportado. En particular después de que la armadura se haya colocado en el relé a través de ranuras de retención y retenida por medio de las bridas de retención que enganchan en las ranuras de retención, la disposición de contacto se puede colocar en el relé en una posición de operación. El cordón conductor y/o el resorte de armadura pueden estar al menos ligeramente flexionados y conectar las ranuras de retención a las bridas de retención con un modo de bloqueo no positivo.
- Ahora la zona de conexión se puede situar previamente de modo automático con relación a la conexión fija debido a la estructura auto-soportada del cordón conductor y la zona de conexión y la conexión fija pueden ser fácilmente accesibles para herramientas de conexión, sin que el cordón conductor requiera otro elemento de retención. Una conexión particularmente segura entre la zona de conexión y la conexión fija se produce cuando las herramientas de conexión se construyen como electrodos de soldadura y la zona de conexión se suelda a la conexión fija. Para la soldadura, se puede guiar al menos parcialmente un primer electrodo de soldadura a través de la parte del canal de herramientas que se extiende a través del espacio libre y el rebaje en un lateral de la zona de conexión que mira al

exterior desde la conexión fija y se puede guiar a un segundo electrodo de soldadura en un lateral de la conexión fija que mira al exterior desde la zona de conexión, siendo capaces los electrodos de soldadura de formarse de un modo simple y lineal o en un modo similar a una pinza.

La conexión de la zona de conexión y la conexión fija se pueden llevar a cabo como una etapa final de operaciones cuando el conjunto del contacto se monta en el relé.

10

15

20

25

30

35

45

50

55

60

65

La armadura puede estar al menos parcialmente retenida en forma móvil por medio de las bridas de retención del relé y moverse de acuerdo con las señales de control y en particular inclinarse o pivotar alrededor de un eje del interruptor que conecta las ranuras de retención.

El elemento de soporte del resorte de armadura puede estar flexionado a tope de modo elástico contra un soporte que está orientado sustancialmente en paralelo a la dirección de interrupción, siendo el tope capaz de ser, por ejemplo, un componente integral de un yugo con forma de L para la recepción y retención de la bobina. Al menos un lateral del yugo que se extiende sustancialmente en perpendicular a la dirección de interrupción puede retener la bobina en el extremo de la misma que mira al exterior desde la armadura.

La flexión elástica del elemento de soporte produce la fuerza elástica que se puede transmitir al elemento del interruptor a través de la zona de conexión del resorte de armadura. El elemento del interruptor que se conecta a la armadura de modo que transmita el movimiento puede transmitir la fuerza elástica a la armadura que flexiona en consecuencia y se inclina en particular a una posición en vacío predefinida. La posición de la armadura se puede cambiar de acuerdo con las señales de control. Parte de la fuerza elástica puede mover la armadura de tal manera que pueda conectarse al yugo con un modo de bloqueo no positivo por medio de ranuras de retención. El elemento de soporte se puede situar de modo desplazable sobre el tope o se puede conectar al mismo en un modo no desplazable.

Si el elemento de soporte se asegura al tope y, por ejemplo, se suelda mismo, el elemento de soporte se puede retener durante la operación de soldadura por medio de una fuerza de tensión que se dirige al exterior desde la zona de conexión del resorte de armadura. La fuerza de tensión puede ser variable por medio de la fuerza con la que los contactos de interrupción se retienen en la posición en vacío de los mismos por el resorte de armadura.

El relé puede comprender la conexión fija que, después de que la disposición de contacto se haya montado en el relé, puede sobresalir al interior del canal de herramientas y puede conectarse a la cara de conexión de la zona de conexión.

Se explica a continuación la invención a modo de ejemplo con referencia a las realizaciones y con referencia a los dibujos. Las diferentes características de las realizaciones se pueden combinar independientemente entre sí, como ya se ha pretendido en las realizaciones ventajosas individuales.

La Figura 1 es una vista en perspectiva de una primera realización de la disposición de contacto de acuerdo con la invención;

la Figura 2 es una vista lateral esquemática de la disposición de contacto de la realización de la Figura 1;

la Figura 3 es una vista en perspectiva de una segunda realización de la invención que difiere de las realizaciones previas en que la disposición de contacto se monta previamente en un relé;

la Figura 4 es una vista en perspectiva de una tercera realización de la invención;

la Figura 5 es una vista en perspectiva de una cuarta realización de la invención que difiere de la realización de la Figura 3 debido a las herramientas de fijación.

En primer lugar se describe la construcción y función de una disposición de contacto de acuerdo con la invención con referencia a la realización de la Figura 1. En este caso, se ilustran esquemáticamente la disposición de contacto 1 de acuerdo con la invención que tiene un resorte de armadura 2, una armadura 3 y un cordón conductor 4. El resorte de armadura 2 comprende un elemento de soporte 5 y un elemento del interruptor 7 que se conecta al elemento de soporte 5 por medio de una zona de conexión doblada 6. El elemento de soporte 5 se ilustra de modo que se oriente en paralelo a la dirección de interrupción S. Orientado sustancialmente en perpendicular con relación al elemento de soporte 5, el elemento del interruptor 7 se extiende en paralelo a una dirección vertical H. La zona de conexión 6 tiene, en el recorrido de la misma que se extiende en paralelo a la dirección transversal Q, un rebaje 8 que se extiende al menos parcialmente en la dirección del elemento de soporte 5 y en la dirección del elemento del interruptor 7. El extremo de la armadura 3 dirigido en la dirección vertical H tiene, en el recorrido del mismo dirigido de la dirección transversal Q, un espacio libre B para el resorte de armadura 2 y en particular la zona de conexión 6 del mismo que sobresale dentro del espacio libre B.

El elemento del interruptor 7 tiene extremos libres 9, 10 que se dirigen en contra de la dirección vertical H y entre ellos y la zona de conexión 6 se proporcionan cuatro puntos de conexión 11 a 14 que se disponen sustancialmente a lo largo de la dirección transversal Q. A través de los puntos de conexión 11 a 14, el elemento del interruptor 7 se remacha a la armadura 3. Entre los puntos de conexión 11 a 14 y los extremos libres 9, 10 del elemento del interruptor 7, el resorte de armadura 2 se construye con dos resortes de fin de carrera 15, 16 de tipo brida. Los

resortes de fin de carrera de tipo brida 15, 16 se extienden sustancialmente en contra de la dirección vertical H, siendo capaces los extremos libres 9, 10 de los mismos de flexionar elásticamente en la dirección de interrupción S.

5

10

15

20

25

30

35

40

45

50

55

Se aseguran dos contactos de interrupción 17, 18 a los extremos libres 9, 10, estando construidas al menos las superficies 19, 20 de los contactos de interrupción 17, 18 que se dirigen en la dirección de interrupción S de modo que conduzcan la corriente de carga y que soporten las altas corrientes de interrupción. Los contactos de interrupción 17, 18 se construyen en este caso en una forma sustancialmente circular-cilíndrica. Sin embargo, la forma de los contactos de interrupción 17, 18 puede ser también diferente de la forma circular-cilíndrica y en particular las superficies 19, 20 de los contactos de interrupción 17, 18 dirigidos en la dirección de interrupción se pueden extender también de una forma curvada. Los contactos de interrupción 17, 18 pueden formarse en particular como un remache de conexión y se pueden remacharse al elemento del interruptor 7 del resorte de armadura 2. Entre los contactos de interrupción 17, 18 y los extremos 9, 10 de los resortes de fin de carrera 15, 16, se disponen piezas de conexión 21, 22. Las piezas de conexión 21, 22 conectan los contactos de interrupción 17, 18 a extremos 23. 24 del cordón conductor 4 que se dirigen sustancialmente en contra de la dirección vertical H de modo que conduzcan la corriente de carga. Las piezas de conexión 21, 22 tienen en particular una pletina de conexión 25, 26 que se asegura en cada caso al cordón conductor 4 de modo que conduzca la corriente de carga y una parte de contacto 27, 28 que hace contacto directamente con uno de los contactos de interrupción 17, 18 de modo que conduzca la corriente de carga. Las pletinas de conexión 25, 26 que se dirigen sustancialmente en la dirección vertical H se dirigen al menos parcialmente separándose entre sí y se inclinan hacia afuera desde el elemento del interruptor 7 y desde la armadura 3, respectivamente.

Los extremos 23, 24 del cordón conductor 4 se construyen al menos parcialmente como elementos rígidos 33, 34 y se conectan a las pletinas de conexión 25, 26 de las piezas de conexión 21, 22. Los elementos rígidos 33, 34 están soportados contra las caras 35, 36 de las pletinas de conexión 25, 26 que miran al exterior desde la armadura 3 y se aseguran a la misma de modo que conduzcan la corriente de carga. Por ejemplo, los elementos rígidos 33, 34 se pueden soldar a las caras 35, 36.

Los extremos del cordón conductor 23, 24, en particular en la zona de los elementos rígidos 33, 34, se forman de un modo sustancialmente lineal y rígido.

Debido a la orientación predeterminada de los elementos rígidos 33, 34 que está sustancialmente en alineación con las pletinas de conexión 25, 26, el cordón conductor 4 queda deformado en la forma de una hendidura. Si los elementos rígidos 33, 34 se extienden no de modo que se dirijan separándose entre sí, sino en su lugar paralelos y en particular de modo que se dirijan en la misma dirección, el cordón conductor 4 puede doblarse en forma de un bucle y el bucle puede expandirse, en la misma forma que la hendidura, separándose de los extremos 23, 24 del cordón conductor 4. En la zona de los elementos rígidos 33, 34, los extremos del cordón conductor 23, 24 tienen una separación mutua mínima predeterminada. En el recorrido del mismo que se extiende en la dirección vertical H, la distancia entre partes laterales 31, 32 del cordón conductor doblado 4 se incrementa y alcanza un valor máximo en la dirección vertical H en la proximidad de la zona de conexión 6. En la dirección vertical H por encima de los elementos rígidos 33, 34, el cordón conductor 4 se extiende al menos parcialmente de un modo curvado y tiene curvas del cordón conductor 39, 40 que se forman como partes intermedias dobladas y que se extienden una hacia la otra de un modo curvado.

Entre las curvas del cordón conductor 39, 40, el cordón conductor 4 se construye como una zona de conexión 41. La zona de conexión 41 se construye de modo que conduzca la corriente de carga y al menos parcialmente como un elemento rígido 42 que se extiende entre las curvas del cordón conductor 39, 40. En la zona del elemento rígido 42, el cordón conductor 4 también se extiende sustancialmente de un modo lineal. El ancho, que se extiende en la dirección transversal Q del elemento rígido 42 corresponde sustancialmente a la expansión del rebaje 8 que se extiende en paralelo a la dirección transversal Q.

Con respecto al elemento del interruptor 7 y la armadura 3, el cordón conductor 4 se orienta de modo que se incline al menos parcialmente en la dirección de interrupción S y define un plano de cordón conductor L. Las caras del elemento rígido 42 que se dirigen en, y en contra de, la dirección de interrupción S se construyen en este caso sustancialmente de un modo plano y se extienden en paralelo con el plano del cordón conductor L. En particular, la cara del elemento rígido 42 que mira al exterior desde la disposición de contacto 1 en la dirección de interrupción S se construye como una cara de conexión 40 para la conexión de la zona de conexión 41 a una conexión fija de un relé de modo que conduzca la corriente de carga.

Las curvas del cordón conductor 39, 40 se doblan sustancialmente contra una fuerza elástica que se produce por el cordón conductor 4 y que es absorbida por los elementos rígidos 33, 34 de los extremos del cordón conductor 23, 24 y el elemento rígido 42 de la zona de conexión 41. La fuerza elástica se dirige a las piezas de conexión 21, 22 en particular mediante los elementos rígidos 33, 34 de los extremos del cordón conductor 23, 24, las fuerzas elásticas F1, F2 actúan en las piezas de conexión 21, 22 que se extienden paralelas a la dirección transversal Q y separadas entre sí. Las fuerzas de retención iguales y opuestas que se producen por el elemento del interruptor 7 actúan contra las fuerzas elásticas F1, F2.

ES 2 529 468 T3

Las fuerzas elásticas F1, F2 que se producen en las curvas del cordón conductor 39, 40 debido a la forma doblada del cordón conductor 4 conforman el cordón conductor 4 en una estructura auto-soportada que retiene al cordón conductor 4 en un modo inherentemente estable.

- 5 La Figura 2 ilustra otra realización, siendo usados los mismos números de referencia para elementos que corresponden a los elementos de la realización de la Figura 1 en términos de función y construcción. Por razones de brevedad, solo se explicarán las diferencias con respecto a la realización de la Figura 1.
- La disposición de contacto 1 se ilustra en este caso como una vista lateral esquemática. En esta vista, se puede ver que el resorte de armadura 2 forma un ángulo, estando orientados el elemento de soporte 5 y el elemento del interruptor 7 de modo que se extienden sustancialmente perpendicularmente entre sí. Sin embargo, el elemento del interruptor 7 y el elemento de soporte 5 pueden orientarse también relativamente entre sí en un ángulo agudo u obtuso. La armadura 3 se orienta sustancialmente en paralelo al elemento del interruptor 7 y se asegura al mismo por medio de puntos de conexión 11 a 14 que en este caso están en la forma de remaches. En la zona de los resortes de fin de carrera 15, 16, la armadura 3 se construye con una hendidura de contacto K que también permite una flexión de los resortes de fin de carrera 15, 16 contra la dirección de interrupción S. El plano del cordón conductor L que se define por el cordón conductor 4 se ilustra en esta vista lateral como una línea de punto y raya.
- El rebaje 8 en el resorte de armadura 2 o el espacio libre B de la armadura 3 delimitan un canal de herramientas W que se extiende perpendicularmente con relación al plano del cordón conductor L y que se indica por los bordes del canal R1, R2. En particular la posición del borde del canal R2 no está limitada por componentes de la disposición de contacto 1. En su lugar, el diámetro d del canal de herramientas W, en particular entre la zona de conexión 6 y la zona de conexión 41, define el espacio predeterminado para una herramienta para la conexión del elemento rígido 42 a la conexión fija 44 del relé que se ilustra además de la disposición de contacto 1 en este caso.

25

- En esta ilustración, se puede ver que, debido al cordón conductor 4 que se extiende en un modo auto-soportado en el ángulo de inclinación N con relación al elemento del interruptor 7 del resorte de armadura 2, incluso sin el rebaje 8 o el espacio libre B, el canal de herramientas W tiene un diámetro d que es suficientemente grande para guiar a una herramienta para la conexión de la zona de conexión 41 a la conexión fija 44 a lo largo del canal de herramientas W con relación al elemento rígido 42 y a la conexión fija 44. Sin embargo, debido al rebaje 8 y el espacio libre B, las herramientas de conexión pueden situarse más fácilmente o se pueden usar herramientas mayores. Ni el cordón conductor 4 ni la conexión fija 44 sobresalen en la dirección vertical H sustancialmente más allá del elemento de soporte 5 del resorte de armadura 2.
- El ángulo de inclinación N es en esta realización de aproximadamente 30º. Sin embargo, puede ser también mayor o menor de 30º y en particular al menos 10º y hasta 90º o más.
- En las siguiente realizaciones, queda claro que el conjunto del contacto 1 se puede montar en un relé en un modo simple y al menos parcialmente automatizado debido a la estructura de auto-retención y de auto-soportado inherentemente estable del cordón conductor 4, no siendo la altura del relé en la dirección vertical H innecesariamente incrementada por el cordón conductor 4 o la conexión fija 44.
- La Figura 3 ilustra una primera realización de un relé que tiene la disposición de contacto 1 de acuerdo con la invención, siendo usados los mismos números de referencia para elementos que corresponden a los elementos de las realizaciones de las Figuras 1 o 2 en términos de función y construcción. Por razones de brevedad, solo se explicarán las diferencias con respecto a las realizaciones de las Figuras 1 y 2.
- La Figura 3 ilustra la disposición de contacto 1 situada en un relé 45. El relé 45 comprende un actuador 46 que se construye como una bobina y que convierte las señales de control en movimientos de la armadura 3. La armadura 3 transmite estos movimientos al elemento del interruptor 7 del resorte de armadura 2 y en particular a los resortes de fin de carrera 15, 16 y los contactos de interrupción 17, 18 que se conectan con seguridad al mismo. Los contactos de interrupción 17, 18 flexionan en paralelo a la dirección de interrupción S cuando está presente una señal de control correspondiente en el actuador 46.
- El elemento de soporte 5 está soportado flexionado elásticamente contra un tope 47 de un yugo con forma de L 48 y dirige la fuerza elástica producida por esta flexión a través de la zona de conexión 6 y el elemento del interruptor 7 al interior de la armadura 3. Los contactos de interrupción 17, 18 están apoyados, con la superficie 19, 20 de los mismos dirigida en la dirección de interrupción S, contra los contactos fijos 50, 51 que están retenidos por medio de un soporte de contactos fijos 49 de modo que conduzca la corriente de carga. El relé 45 se puede configurar como un elemento de apertura o cierre. Si los contactos de interrupción 17, 18 tienen cada uno más de una superficie 19, 20, que se puede extender en y contra la dirección de interrupción S, y si se proporciona un número correspondiente de contactos fijos 50, 51 apropiadamente orientados en el relé 45, el relé 45 puede construirse también como un relé de conmutación.
- La armadura 3 tiene, en los laterales de la misma que se extienden en paralelo a la dirección vertical H, ranuras de retención 52, 53 que se abren en la dirección transversal Q. Bridas de retención correspondientemente formadas 54,

ES 2 529 468 T3

55 del yugo 48 enganchan en las ranuras de retención 52, 53 y aseguran la armadura 3 contra movimientos en la dirección transversal Q y en la dirección vertical H, respectivamente.

La cara de conexión 43 del elemento rígido 42 está apoyada, a través del cordón conductor 4 auto-soportado que retiene independientemente la alineación del mismo, contra un lateral de la conexión fija 44 que mira a la zona de conexión 41. La conexión fija 44 se construye como una continuación de un soporte de contactos fijos, continuación que se extiende sustancialmente en la dirección vertical H y que se inclina en la dirección de interrupción S y se extiende parcialmente al plano del cordón conductor L y la cara de conexión 43 de la zona de conexión 41, respectivamente. El soporte de contactos fijos se extiende en la dirección transversal Q y se orienta en paralelo a la dirección vertical H. En una zona doblada que se extiende en paralelo a la dirección vertical H, el soporte de contactos fijos se ilustra en ángulo contra la dirección de interrupción S.

5

10

15

La Figura 4 ilustra otra realización del relé 45, siendo usados los mismos números de referencia para elementos que corresponden a los elementos de las realizaciones de las Figuras previas en términos de función y construcción. Por razones de brevedad, solo se explicarán las diferencias con respecto a las realizaciones de las Figuras que ya se han descrito.

En la Figura 4, el relé 45 se ilustra con la disposición de contacto 1 insertada. El elemento rígido 42 de la zona de conexión 41 está apoyado situado previamente contra la conexión fija 44 debido a la estructura auto-soportada del cordón conductor 4. Dos herramientas de conexión 56, 57 que se guían a través del canal de herramientas W presionan la zona de conexión 41 sobre la conexión fija 44, actuando las herramientas de conexión 56, 57 desde direcciones opuestas sobre el elemento rígido 42 o la conexión fija 44. Las herramientas de conexión 56, 57 pueden, por ejemplo ser electrodos de soldadura que sueldan el elemento rígido 42 a la conexión fija 44.

Dado que el cordón conductor 4 se retiene de un modo inherentemente estable debido a su forma como estructura auto-soportada, y el elemento rígido 42 se sitúa previamente en consecuencia apoyado contra la conexión fija 44 sin ningún medio externo auxiliar, las herramientas de conexión 56, 57 pueden conectar la zona de conexión 41 y la conexión fija 44 juntas de modo que conduzcan la corriente de carga de una forma al menos parcialmente automatizada y, en particular después de que el relé 45 se haya insertado dentro de un dispositivo de soldadura, sin intervención manual en absoluto.

REIVINDICACIONES

1. Disposición de contacto (1) para un relé (45) para la interrupción de altas corrientes de carga, que tenga al menos una zona de conexión (41), al menos un contacto de interrupción (17, 18) que se pueda mover con relación a la zona de conexión (41) en una dirección de interrupción (S) y un cordón conductor flexible (4) que tiene una forma doblada y que conecta la al menos una zona de conexión (41) a al menos un contacto de interrupción (17, 18) de modo que conduzcan la corriente de carga, siendo retenido el cordón conductor (4) de un modo inherentemente estable debido a que está formado como una estructura auto-soportada, en donde el cordón conductor (4) está pretensado elásticamente y produce una fuerza de restitución (F1, F2), que forma el cordón conductor (4) en el modo inherentemente estable, caracterizada por que la disposición de contacto (1) tiene una armadura (3) y un resorte de armadura (2) que forman un ángulo y que tiene al menos un elemento de soporte (5) y al menos un elemento del interruptor (7), asegurándose el al menos un elemento del interruptor (7) a la armadura (3) y estando conectada la armadura (3) a al menos un contacto de interrupción (17, 18) de modo que transmite el movimiento, en donde el al menos un contacto de interrupción (17, 18) está conectado a la armadura (3) por medio de una parte del resorte de armadura (2) que forma un resorte de fin de carrera (15, 16), y en donde la disposición de contacto (1) forma un canal de herramientas ininterrumpido (W) que se extiende en ambos lados de la zona de conexión (41) de modo sustancialmente perpendicular con relación a la cara de conexión (43) de la zona de conexión (41) y comprende un rebaje (8) que está formado por el resorte de fin de carrera (15, 16).

5

10

15

30

45

50

55

- 20 2. Disposición de contacto (1) de acuerdo con la reivindicación 1, **caracterizada por que** el cordón conductor (4) tiene dos extremos (23, 24) y el cordón conductor (4) forma una hendidura o un bucle que se extienden en una dirección orientada al exterior desde los extremos (23, 24) del mismo.
- 3. Disposición de contacto (1) de acuerdo con las reivindicaciones 1 o 2, **caracterizada por que** los extremos (23, 24) del cordón conductor (4) están conectados al por lo menos un contacto de interrupción (17, 18).
 - 4. Disposición de contacto (1) de acuerdo con una cualquiera de las reivindicaciones 1 a 3, **caracterizada por que** la al menos una zona de conexión (41) está dispuesta sobre el cordón conductor (4) sustancialmente de modo central entre los extremos (23, 24).
 - 5. Disposición de contacto (1) de acuerdo con una cualquiera de las reivindicaciones 1 a 4, **caracterizada por que** la zona de conexión (41) se extiende en una parte del cordón conductor (4) que está a una distancia máxima desde al menos un contacto de interrupción (17, 18).
- 6. Disposición de contacto (1) de acuerdo con una cualquiera de las reivindicaciones 1 a 5, **caracterizada por que** el cordón conductor (4) está construido como un elemento rígido (33, 34, 42) en la zona de los extremos (23, 24) del mismo y/o en la zona de la al menos una zona de conexión (41).
- 7. Relé (45) para la interrupción de altas corrientes de carga, caracterizado por una disposición de contacto (1) de acuerdo con cualquiera de las reivindicaciones 1 a 6.
 - 8. Relé (45) de acuerdo con la reivindicación 7, **caracterizado por que** el relé (45) comprende una conexión fija (44) que está conectada de modo seguro a la cara de conexión (43) de la zona de conexión (41) y que sobresale al interior del canal de herramientas (W).
 - 9. Método para montaje de un relé (45) para interrupción de altas corrientes de carga que tenga al menos una zona de conexión (41) y al menos un contacto de interrupción (17, 18), en el que se forma al menos un cordón conductor (4) con la al menos una zona de conexión (41) y se conecta a él al menos un contacto de interrupción (17, 18) de modo que conduzca la corriente de carga, y se dobla y retiene en un modo inherentemente estable debido a que está formado como una estructura auto-soportada, en la que el cordón conductor (4) se pretensa de modo elástico y produce una fuerza de restitución (F1, F2), lo que forma al cordón conductor (4) en el modo inherentemente estable, caracterizado por que el relé (45) tiene adicionalmente una armadura (3) y un resorte de armadura (2) que está formado en un ángulo y que tiene al menos un elemento de soporte (5) y al menos un elemento del interruptor (7), el al menos un elemento del interruptor (7) se asegura a la armadura (3) y la armadura (3) está conectado a al menos un contacto de interrupción (17, 18) de modo que transmiten el movimiento, en donde el al menos un contacto de interrupción (17, 18) está conectado a la armadura (3) por medio de una parte del resorte de armadura (2) que forma un resorte de fin de carrera (15, 16), y en donde la zona de conexión (41) se dispone en un canal de herramientas (W) ininterrumpido y una conexión fija (44) del relé (45) sobresale al interior de éste, estando dirigida la conexión fija (44) a conectarse de modo seguro a la zona de conexión (41) y extendiéndose el canal de herramientas (W) ininterrumpido en ambos lados de la zona de conexión (41) de modo sustancialmente perpendicular con relación a una cara de conexión (43) de la zona de conexión (41) y que comprende un rebaje (8) que se forma mediante el resorte de fin de carrera (15, 16).
- 10. Método de acuerdo con la reivindicación 9 **caracterizado por que** cuando la disposición de contacto (1) se sitúa en el relé (45) en una posición de operación, la zona de conexión (41) se recoloca automáticamente en una posición de conexión con respecto a la conexión fija (44) mediante la estructura auto-soportada del cordón conductor (4).

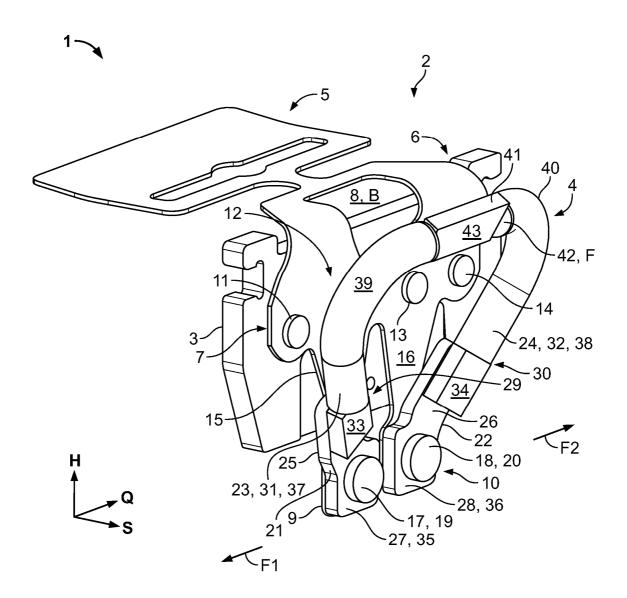
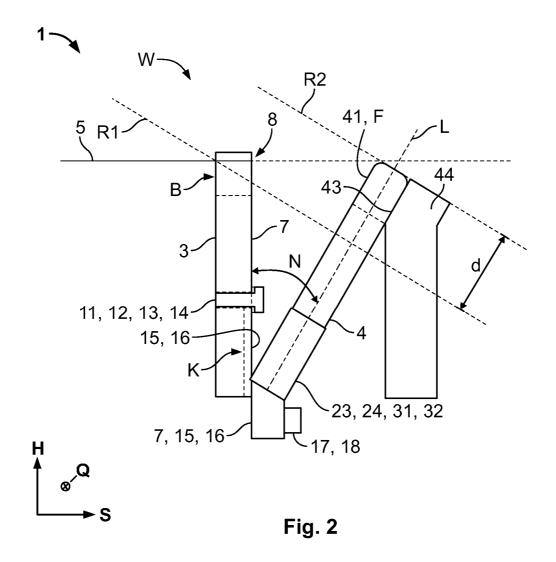
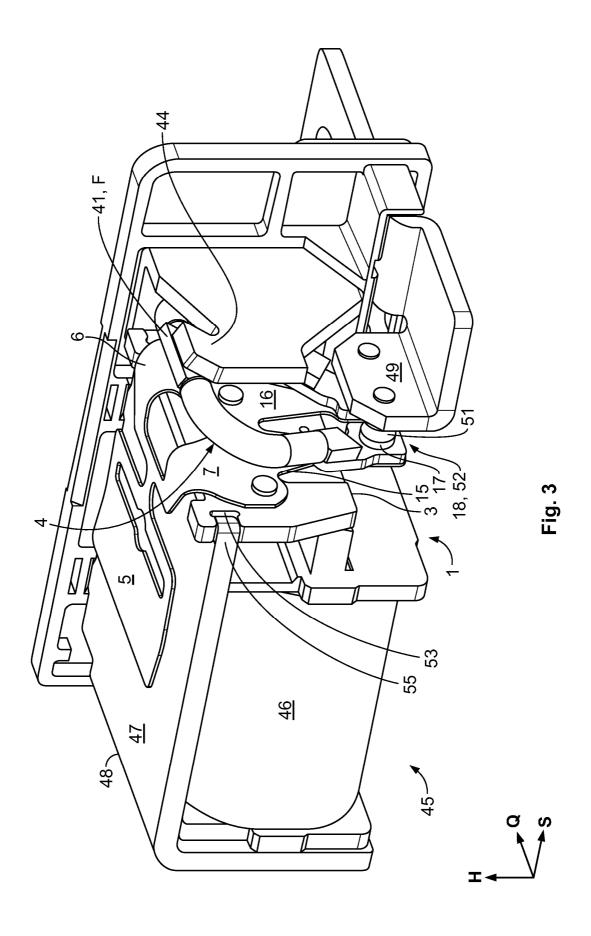
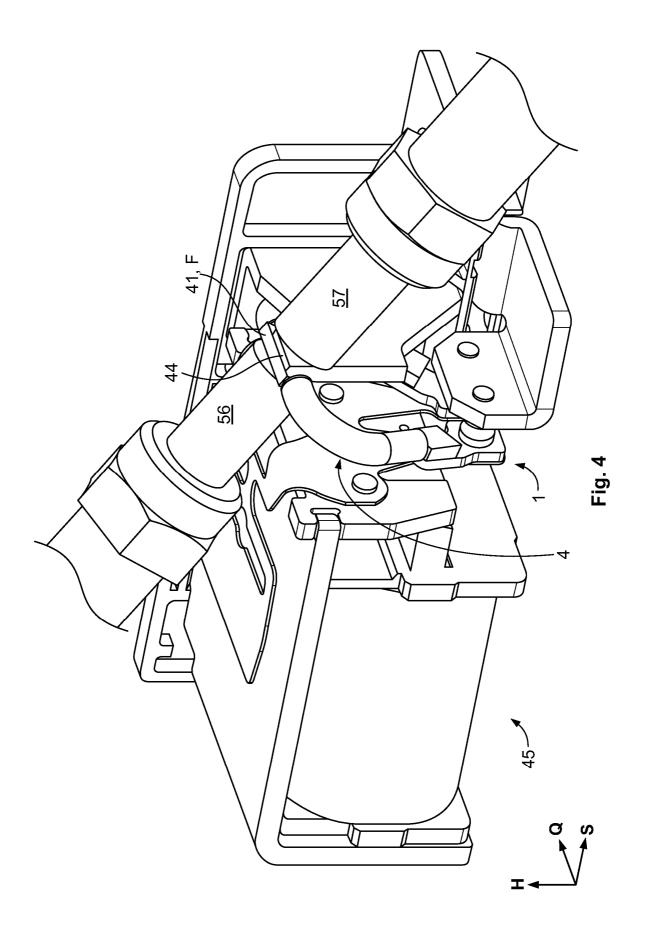





Fig. 1

