

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 530 458

51 Int. Cl.:

H01L 21/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 11.05.2009 E 09747280 (7)
 (97) Fecha y número de publicación de la concesión europea: 12.11.2014 EP 2277192

(54) Título: Células solares y método de fabricación de células solares

(30) Prioridad:

12.05.2008 US 52298

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 03.03.2015

(73) Titular/es:

VILLANOVA UNIVERSITY (100.0%) 800 Lancaster Avenue Villanova, PA 19085-0681, US

(72) Inventor/es:

SINGH, PRITPAL

74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Células solares y método de fabricación de células solares

5 Referencia cruzada a las solicitudes relacionadas

La presente solicitud reivindica prioridad frente a la Solicitud de Patente Provisional de Estados Unidos Nº 61/052.298, titulada "Electrodeposition and Characterization of Very Thin Film II-VI Compounds for Novel Superlattice Solar Cells", presentada el 12 de mayo de 2008, incorporada en su totalidad en la presente memoria por referencia.

Campo de la invención

10

15

20

25

30

35

40

La presente invención se refiere a células solares de película fina y a células solares que utilizan estructuras superreticulares. El documento US 2008/092946 A divulga varias estructuras super-reticulares para células solares.

Antecedentes de la invención

Las células solares son dispositivos que convierten la energía solar en energía eléctrica liberando las cargas eléctricas que se pueden mover en el semiconductor y finalmente fluyen a través de una carga eléctrica. El fenómeno de producción de corriente, de este modo, se denomina efecto fotovoltaico. Los sistemas fotovoltaicos están diseñados alrededor de las células fotovoltaicas. Debido a que una célula fotovoltaica normal produce menos de 3 vatios a aproximadamente 0,5 voltios de DC, se deben conectar las células en configuraciones de serie-paralelo para producir suficiente energía para las aplicaciones de alta energía. Las agrupaciones de células fotovoltaicas forman un módulo fotovoltaico, también conocido como módulo solar.

Una tendencia en los últimos ha consistido en explorar el uso de un pozo cuántico y estructuras puntuales cuánticas para ajustes de ancho de banda más eficaces y control de transporte. La ventaja de usar estructuras de pozo multicuánticos, por ejemplo, en una célula solar es que se puede ajustar el ancho de banda eficaz por medio de la variación del espesor de las capas de material en lugar de mediante la modificación de la composición del material (un parámetro más difícil de controlar). La patente de Estados Unidos número 4.688.068 de Chaffin et al., incorporada en su totalidad en la presente memoria por referencia, describe la estructura general de una célula solar de pozo multi-cuántico y describe aplicaciones específicas que usan compuestos de III-V. Normalmente, las estructuras de pozo cuántico de este tipo se someten a crecimiento por epitaxia de haz molecular (MBE) o deposición de vapor química y metalorgánica (MOCVD). Estas técnicas tienden a ser costosas e implican el uso de sustancias químicas muy tóxicas, al menos en el caso de MOCVD.

Se desea una película fina mejorada y estructuras de pozo cuántico para células solares y métodos de formación de células solares.

Sumario de la invención

Un célula fotovoltaica de multi-unión de acuerdo con la invención incluye al menos dos uniones P-N conectadas eléctricamente como se comenta en la reivindicación 1. La reivindicación 16 divulga un método de fabricación del dispositivo de la reivindicación 1. Realizaciones más ventajosas se citan en las reivindicaciones dependientes.

Las características anteriores y otras de la presente invención se comprenderán mejor a partir de la siguiente descripción detallada de las realizaciones preferidas de la invención que se proporciona junto con los dibujos adjuntos.

Breve descripción de los dibujos

Los dibujos adjuntos ilustran realizaciones preferidas de la invención, así como otra información pertinente para la divulgación, en la que:

La Figura 1 es una vista lateral de una realización ejemplar de una célula solar de multi-unión de acuerdo con la presente invención;

La Figura 2 es un diagrama esquemático de un aparato de electrodeposición para electrodepositar películas finas en la formación de una célula;

La Figura 3 es una vista en corte transversal lateral de una estructura de ZnTe/PbTe/ZnTe electrodepositada;

La Figura 4 es una vista SEM de una película de ZnTe electrodepositada;

La Figura 5 es una vista SEM de una película de PbTE electrodepositada;

Las Figuras 6A-6E son curvas que ilustran la raíz cuadrada del coeficiente de absorción óptica multiplicado por la energía del fotón v. energía del fotón para diversas películas;

65 La Figura 7 es una ilustración esquemática de un módulo de célula solar con fines de ensayo;

La Figura 8 es un diagrama de tiempo de un voltaje pulsado usado en la deposición de una película de ZnTe; y

2

50

45

55

La Figura 9 es un diagrama de tiempo de un voltaje pulsado usado en la deposición de una película de PbTe.

Descripción detallada

20

25

30

35

40

60

65

Se pretende que la presente memoria descriptiva de las realizaciones ejemplares se lea junto con los dibujos adjuntos, que se deben considerar parte de la memoria descriptiva escrita completa. En la memoria descriptiva, los términos relativos tales como "inferior", "superior", "horizontal", "vertical", "encima", "debajo", "arriba", "abajo", "superior" e "inferior", así como sus derivados (por ejemplo, "horizontalmente", "en sentido descendente", "en sentido ascendente", etc.) deberían interpretarse como que se refieren a la orientación como se describe más adelante o como se muestra en el dibujo objeto de discusión. Estos términos relativos son, por motivos de conveniencia, para la descripción y no requieren que el aparato esté construido o se opere con una orientación particular. Los términos que se refieren a las uniones, acoplamientos y similares, tales como "conectado" e "interconectado", se refieren a la relación en la cual las estructuras se fijan o unen unas a otras, de forma directa o bien indirecta, a través de las estructuras que toman parte, así como también a uniones o relaciones móviles o rígidas, a menos que se describa expresamente lo contrario.

Como se describe en la presente memoria, se pueden electrodepositar capas de material II/VI y IV/VI (por ejemplo, ZnTe y PbTe) con espesores de película fina, menores que los espesores brutos, que son suficientemente finos para que el ancho de banda eficaz de la capa de absorbente de la unión P-N resultante se encuentre entre los respectivos anchos de banda del espesor bruto de los materiales II/VI y IV/VI. En realizaciones a modo de ejemplo, las capas II/VI y IV/VI son ZnTe y PbTe, respectivamente, aunque otros materiales tales como ZnSe, ZnS, PbSE y PbS pueden resultar apropiados. En algunas realizaciones a modo de ejemplo, el espesor de las capas de película fina está dentro del orden de 100 nm o menos de modo que las capas alternantes formen una super-reticula composicional. Una estructura a modo de ejemplo tiene capas individuales de espesores dentro del intervalo de 10-100 nm, con un espesor total para la super-retícula composicional dentro del intervalo de 1-5 µm. Métodos a modo de ejemplo para la formación de estas estructuras que usan técnicas de electrodeposición también se describen en la presente memoria.

Los científicos han dividido el desarrollo de células solares en tres generaciones. Las células solares fotovoltaicas de primera generación están formadas sobre obleas de silicio o usan polisilicio. La segunda generación de materiales fotovoltaicos está basada en el uso de depósitos de película fina de semiconductores. Independientemente del semiconductor, las películas finas ofrecen posibilidades de una reducción principal en los costes de materias primas por medio de la eliminación de la oblea de silicio usada en las células solares de primera generación. Las películas finas también ofrecen otras ventajas, en particular aumentos en la unidad de fabricación a partir de una oblea de silicio (~100 cm²) hasta una lámina de vidrio (~ 1 m²), que es de aproximadamente 100 veces más grande. En términos de eficacia de conversión energética, esta tecnología de segunda generación con el tiempo debería enlazar en gran medida con el hueco actual existente entre la misma y los productos de primera generación. Para avanzar más, resulta necesario aumentar sustancialmente la eficacia de conversión. El límite de Carnot de conversión de luz solar en electricidad es de aproximadamente un 95 %, mientras que el límite superior teórico es de un 33 % para una célula solar de ancho de banda individual convencional. Esto sugiere que el rendimiento de las células solares se puede mejorar 2-3 veces si se usan conceptos diferentes para producir una tercera generación de productos fotovoltaicos de bajo coste y elevado rendimiento.

Una fuente clave de pérdida en las células solares de primera y segunda generación es cuando el par foto-excitado pierde energía de forma rápida en exceso del ancho de banda. Un fotón rojo de baja energía es justo tan eficaz como un fotón azul de energía mucho mayor. El equilibrado de esta pérdida con la pérdida de fotones de baja energía que pasan rectos a través del dispositivo únicamente limita la eficacia de conversión de una célula individual de ancho de banda hasta aproximadamente un 44 %.

Otro proceso de pérdida importante se debe a la recombinación de los pares electrón-carga positiva libre fotoexcitados. Esta pérdida puede mantenerse en un mínimo, por medio del uso de materiales con vidas largas de portadores minoritarios para los portadores foto-generados. El concepto de células en tándem, en el que se usan células múltiples, cada una con anchos de banda diferentes y cada una convirtiendo un intervalo estrecho de energías de fotón próximo a su ancho de banda, puede abordar estas pérdidas de recombinación. Otras pérdidas incluyen las pérdidas por voltaje de unión y contacto.

Las células solares de tercera generación pretenden reducir las pérdidas anteriormente descritas por medio de la fabricación de estructuras diferentes de célula solar. Se pueden eliminar en gran medida las pérdidas debidas a recombinación de pares electrón-carga positiva libre foto-excitados si la energía del fotón absorbido es justo un poco más elevada que el ancho de banda de la célula.

Un enfoque de células solares de tercera generación que permite la variación del ancho de banda del material sin que tenga lugar la variación de la composición del material es una estructura super-reticular en la que se someten a crecimiento los dos materiales de espesor variable. En una estructura de pozo multi-cuántico (también conocida como una super-retícula composicional), se someten a crecimiento capas alternantes de dos materiales de espesores suficientemente pequeños para invocar efectos cuánticos (aproximadamente unos pocos cientos de

angstroms). Cuando se fabrica una super-retícula de dos semiconductores A y B disimilares de anchos de banda Eg₁ y Eg₂, el solapamiento y la interacción de las funciones de onda de electrón y carga positiva libre entre los pozos cuánticos establecido por medio de la modulación de la conducción y los bordes de banda de valencia tiene como resultado la formación de cualquier super-retícula de tipo I o tipo II, dependiendo de las desviaciones de conducción y banda de valencia. Si las desviaciones de banda de valencia y banda de conducción del material de ancho de banda pequeño se encuentran por completo dentro del material de ancho de banda grande (super-retícula de tipo I), se forman mini-bandas en los pozos cuánticos. Se pueden determinar las posiciones de estas mini-bandas resolviendo el modelo de Kronig-Penney (hasta una primera aproximación) para cada banda individual, asumiendo valores para las masas eficaces de los portadores de carga. La foto absorción tiene lugar entre las mini-bandas ocupadas en la banda de valencia y las mini-bandas no ocupadas en la banda de conducción. Se puede decir, por tanto, que la colocación alterna de las capas proporciona un aumento del carácter alternativo periódico del potencial eléctrico. Dentro de cada pozo de potencial, únicamente se encuentran disponibles determinados estados de energía para los electrones de conducción-banda. Cada estado se divide en un espectro cuasi-continuo o minibanda. Debido a que se ajusta el espesor relativo de las capas A y B, las posiciones de estas mini-bandas cambian, dando como resultado un ancho de banda eficaz diferente. El intervalo en el cual se puede modificar el ancho de banda eficaz se encuentra gobernado por los anchos de banda de los semiconductores A y B constitutivos, y no requiere ningún cambio composicional en los semiconductores. Debido a resulta difícil controlar de forma precisa la composición de los semiconductores de aleación, este enfoque es muy potente ya que únicamente requiere el control de la composición de los semiconductores compuestos y sus espesores, una tarea relativamente sencilla.

10

15

20

25

45

50

55

60

65

En la práctica típica, el semiconductor con el ancho de banda pequeño puede ser un material tal como arseniuro de galio (GaAs) y el otro con ancho de banda grande puede ser arseniuro de galio y aluminio (AlGaAs). Los cálculos para una super-retícula composicional que consiste en capas de dichos materiales muestran que las minibandas son mucho más estrechas que las bandas de cualquier semiconductor bruto y también que las minibandas están separadas unas de otras en la banda de conducción por mini huecos relativamente grandes. El único requisito es que el espesor de los tipos de capas sea menor de aproximadamente 100 nm, y del modo más preferido esté dentro del intervalo de cuatro a 10 nm, en el que los efectos cuánticos alcanzan su máxima pronunciación.

Normalmente, las estructuras de pozo cuántico (tales como las estructuras de GaAs/AlGaAs) se someten a crecimiento por medio de epitaxia de haz molecular (MBE) o deposición de vapor química y metalorgánica (MOCVD). Estas técnicas tienden a ser costosas e implican el uso de sustancias muy tóxicas en el caso de MOCVD. Estas desventajas se pueden solucionar por medio de la fabricación de una película fina o estructuras de pozo cuántico por medio del método de electrodeposición de bajo coste. De manera más específica, una realización de estructura de absorbente de célula solar de base propuesta en la presente memoria comprende capas alternantes de telururo de cinc (ZnTe) y telururo de plomo (PbTe) depositadas por medio de electrodeposición. Hasta la fecha, este tipo de super-retícula de ZnTe/PbTe para células solares no se ha llevado a la práctica. Se puede formar una super-retícula de ZnTe/PbTe de tipo I bien a través de películas depositadas de ese modo o bien a través de la inducción de deformación mecánica en las capas a través de cambios apropiados en los parámetros de deposición del material (y espesores de capa), como se comenta en la presente memoria.

En forma bruta, ZnTe tiene un ancho de banda de 2,4 eV, mientras que PbTe tiene un ancho de banda de 0,29 eV. Por medio de la modificación de los espesores relativos de ZnTe y PbTe, se pueden fabricar super-retículas de tipo I con anchos de banda que abarcan el intervalo deseable de longitud de onda de 0,5 μm a 4,0 μm (aunque el espectro óptico de interés caiga dentro del intervalo de longitud de onda de 0,4-2,0 μm). La Figura 1 muestra una realización de una estructura de célula solar. Como se describe con más detalle a continuación, la estructura es una célula solar de multi-unión que comprende películas finas de ZnTe/PbTe como capa de absorbente o películas ultrafinas que forman super-retículas de ZnTe/PbTe como capa de absorbente. Se ajustan los anchos de banda eficaces de esta pila de película fina o super-retícula, por medio de la variación de los espesores relativos de las capas de ZnTe y PbTe. ZnTe es un semiconductor de tipo-p y PbTe puede ser de tipo-p o de tipo-n, dependiendo de su dosificación.

En determinadas realizaciones, una capa de CdS de tipo-n sirve como emisor para la presente estructura de célula solar, aunque materiales alternativos tales como ZnO pueden también resultar apropiados para la capa de emisor. Haciendo referencia específica a la Figura 1, en una realización a modo de ejemplo, la estructura propuesta comprende un conjunto de células solares de hetero-unión super-reticulares de diferentes anchos de banda eficaces, conectadas en una configuración en serie. El módulo de célula solar 100 incluye un sustrato de vidrio 105. Se forma una capa de contacto inferior 110 conductora sobre el sustrato de vidrio 105. En realizaciones a modo de ejemplo, la capa de contacto inferior 110 conductora es una capa de óxido de estaño e indio (ITO). El módulo de célula solar incluye una primera unión P-N 120 dispuesta sobre el sustrato 105. La primera unión P-N incluye una capa de emisor de tipo-N, 121 tal como una capa de CdS. La capa de absorbente de tipo-P 122 de la unión P-N 120 preferentemente incluye una estructura super-reticular, que comprende capas alternantes de capas II-VI y IV-VI muy finas. Preferentemente, la capa de absorbente 122 está formada a partir de capas alternantes de ZnTe y PbTe. En determinadas realizaciones, las capas son una película fina que, aunque todavía exhibe un ancho de banda eficaz entre los respectivos anchos de banda de los materiales de espesor bruto, no son de espesor super-reticular (es decir, no son suficientemente finas para exhibir efectos cuánticos).

Debería comprenderse que la corriente recogida por cada unión P-N se puede controlar por medio de la variación de espesor de la capa de absorbente 122 y/o el número de capas de un espesor dado que forman la capa de absorbente 122. Asumiendo que cada capa de la estructura super-reticular tiene un espesor de aproximadamente 300 angstroms, un espesor de absorción eficaz de aproximadamente 1 µm requeriría aproximadamente 30 capas.

5

10

15

20

25

55

60

El módulo de célula solar incluye al menos una segunda unión P-N, tal como una unión P-N 120A. La unión P-N 120A, igual que la unión P-N 120, incluye una capa de emisor de CdS de tipo-N y una capa de absorbente de tipo-p formada por una super-retícula de ZnTe/PbTe. Una capa de interconexión 130 conecta eléctricamente la primera unión P-N 120 con la segunda unión P-N 120A. En una realización, la capa de interconexión incluye islas conductoras 135, tal como islas de HgTe o CuTe, para producir la interconexión eléctrica. Estas islas se pueden formar en una distribución de retícula, dejando áreas transparentes 137 (es decir, áreas de anchura de banda amplia) entre las mismas, para hacer pasar la luz incidente hasta la(s) unión(es) P-N. En una realización alternativa, se forma una capa de película semi-metálica continua conductora (por ejemplo, HgTe o CuTe), pero es suficientemente fina como para que no sea opaca, es decir, que permita el paso de la luz incidente. En realizaciones, se forman las islas 135 por medio de un proceso de litografía/ataque químico que resulta familiar en la materia. Se puede usar un material traslúcido tal como ZnO_x o SiO_x para rellenar los huecos 137. Si se tiene que realizar una conexión mecánica entre las capas, se puede usar un material epoxi transparente en los huecos 137. En otras realizaciones, se puede usar una capa transparente conductora tal como ITO. Las uniones de túnel, tal como se describe por parte de Chaffin et al., también pueden resultar apropiadas en determinadas realizaciones.

Como se muestra en la Figura 1, la estructura de célula solar incluye un número "n" de uniones P-N descritas anteriormente conectadas en serie. La unión P-N más superior está marcada en la Figura 1 como "120B" y está conectada a una unión P-N inmediatamente por debajo de la capa de interconexión 130A. Se forma una capa 140 conductora fina, tal como una capa de HgTe o CuTe, sobre la unión de P-N final y se usa para producir un contacto bueno con el contacto trasero entre la capa de absorbente más trasera y la capa 150. En realizaciones, la capa de contacto trasera 150 es una capa más gruesa de HgTe o CuTe o pasta de grafito.

Una ventaja significativa de la célula solar de multi-unión que se muestra en la Figura 1 es que el espectro resultante 30 de anchos de banda de unión P-N se puede adaptar para que se amolde al espectro de la luz incidente, por ejemplo, el espectro solar. Se ajustan los anchos de banda eficaces de estas super-retículas de la Figura 1 por medio de la variación de los espesores relativos de las capas de ZnTe y PbTe. Asumiendo que la estructura de célula solar 100 es una célula solar en tándem de dos células, los anchos de banda óptimos para una célula solar en tándem de dos células son de 1.0 v 1.8 eV. En la presente realización, la primera unión P-N 120 (es decir, la unión más próxima al 35 sustrato de vidrio 105 y la primera unión P-N que se expone a la fuente de luz) se diseñan de forma que tengan un ancho de banda más amplio de 1,8 eV y la segunda unión P-N se diseña de forma que tenga un ancho de banda más estrecho de 1.0 eV. Para una estructura de células en tándem de tres células, los anchos de banda óptimos son 0,8 eV, 1,4 eV y 2,3 eV. Independientemente de la memoria descriptiva anterior, debería comprenderse que el número de uniones p-n que se puede incluir en una célula solar de la presente invención no se encuentra 40 básicamente limitado y puede ser suficientemente grande con el fin de mejorar la eficacia de la célula solar por medio del ajuste de los anchos de banda diferentes del espectro solar. En realizaciones, se puede seleccionar el número de uniones P-N y sus respectivos anchos de banda de forma que se absorba esencialmente toda la radiación solar incidente en el intervalo de U.V. hasta el infrarrojo próximo.

En realizaciones alternativas, en lugar de formar una estructura apilada como se muestra en la Figura 1, se puede utilizar una configuración de cuatro (o más) terminales, en la que cada célula está formada sobre su propio sustrato de vidrio y diseñada para que tenga un respectivo ancho de banda. En un ejemplo, se ensartan dos células individuales de anchos de banda diferentes juntas en una configuración de cuatro terminales de forma que el ajuste célula a célula y la interfaz entre células no sean un problema.

El enfoque usado para someter a crecimiento las películas de las uniones P-N anteriormente descritas es una combinación de deposición de baño químico para la capa de emisor de CdS y electrodeposición para las capas de ZnTe y PbTe. Ambas técnicas son métodos de bajo coste. La deposición de baño químico es una técnica bien establecida para el crecimiento de películas muy finas de alta calidad (aproximadamente 1.000 angstroms) de CdS. Hasta la fecha, no se ha desarrollado trabajo alguno sobre el uso de estructuras de pozo cuántico o películas finas electrodepositadas para preparar y optimizar estructuras de dispositivos de células solares. Una cuestión importante para la electrodeposición en el pasado ha sido el escalado de la técnica hasta áreas grandes, debido a la disminución de voltaje a través de la superficie del sustrato y la dependencia crítica de la composición de aleación con respecto al potencial de electrometalizado. Esto es donde la estructura de pozo multi-cuántico ofrece una ventaja significativa ya que se usan los compuestos para ajustar el ancho de banda del dispositivo, en lugar de las aleaciones ternarias de los elementos constitutivos. Se puede mantener constante la composición de los compuestos y esto garantiza la reproducibilidad de las propiedades de película.

En la electrodeposición de las diversas películas comentadas en la presente memoria, se prepara un baño que contiene iones de los metales constitutivos que son objeto de deposición, disueltos en solución. Por ejemplo, en el caso de depositar ZnTe, se disuelven iones Zn²⁺ y HTeO₂⁺ en solución. El electrodo de trabajo comprende un sustrato conductor sobre el cual se deposita la película fina. Se puede usar un potenciostato/galvanostato para aplicar la polarización deseada entre el electrodo de trabajo y el contra electrodo.

Los iones, que se disuelven en el baño, dependen del pH del electrolito. Pourbaix desarrolló un conjunto de diagramas de fase que proporcionan esta información para diferentes sistemas electroquímicos acuosos. Dados los iones en la solución, el potencial aplicado, E, necesario para depositar iones particulares está gobernado por la ecuación de Nerst:

10

15

20

25

30

35

40

45

50

55

$$E = E^0 - \frac{RT}{nF} \ln \left(\frac{a_{ox}}{a_{red}} \right)$$
 (1)

en la que E⁰ es un potencial de referencia convencional, R es la constante universal de los gases (8,314510 J K¹ mol⁻¹), T es la temperatura absoluta, n es el número de electrones transferidos en la reacción de semi-célula, F es la constante de Faraday (9,6485309*10⁴ C mol⁻¹) y a_{ox} y a_{red} son las actividades de las especies oxidante y reductora del baño. Las actividades del baño, hasta primer orden, son iguales a las concentraciones de las especies en el baño. Las variables del baño que se pueden usar para controlar la composición de las películas son la temperatura del baño, el pH del baño, la velocidad de agitación, y las concentraciones de los iones en el baño. También se puede usar la corriente de deposición y el voltaje aplicado para controlar la composición de las películas. También se puede mejorar la calidad de las películas por medio del uso de concentraciones muy pequeñas de tensioactivos.

Se pueden electrodepositar películas de PbTe y ZnTe a partir de baños ácidos a un pH similar de aproximadamente 3 o menos. Los contactos hasta ZnTe que tienen comportamiento óhmico incluyen Cu₂Te y HgTe, pudiéndose ambos electrodepositar.

Se puede lograr la electrodeposición de super-retículas de dos formas diferentes. En la primera, el sustrato se cambia entre baños para producir el crecimiento de las capas individuales. El segundo enfoque usa un electrolito que fluye que se cambia entre las capas de deposición. Se ha desarrollado el enfoque último hasta el punto en el que se pueden someter a crecimiento capas atómicas individuales de los elementos individuales de los semiconductores compuestos por medio del empleo de reacciones limitadas superficiales. Se puede controlar mejor la morfología del depósito en el último enfoque y es la técnica preferida para el crecimiento de las estructuras de super-retícula divulgadas en la presente memoria.

Otra consideración importante en el crecimiento de película para aplicaciones de células solares es el tamaño de grano de las películas microcristalinas. Se piensa que se pueden usar tratamientos térmicos de pos-formación para optimizar el rendimiento de las células. Se debería tratar térmicamente la capa de emisor de CdS al aire con o sin tratamiento de CdCl₂ para favorecer el tamaño de grano grande. Esto contribuye a favorecer la formación de películas de PbTe y ZnTe de grano grande sobre la capa de CdS, aunque también puede ser necesario el tratamiento térmico de pos-deposición adicional. Se desea un tamaño de grano grande para maximizar la eficacia de recogida de los portadores foto-generados.

Se llevaron a cabo varios experimentos para garantizar la viabilidad de la electrodeposición de película fina de PbTe/ZnTe y estructuras super-reticulares para la formación de la capa de absorbente de tipo-p de la unión P-N de la célula solar 100 mostrada en la Figura 1. Estos experimentos se describen a continuación. Estos experimentos implicaron el rastreo detallado y preciso de cinco parámetros principales que afectan a la deposición de película. El primer parámetro es la concentración de sustancias químicas. Se calcularon estas concentraciones usando la fórmula de molaridad básica. Entonces, se midieron las masas usando una escala sensible. El segundo parámetro que se controló fue la temperatura. La temperatura juega un papel importante en la velocidad del cambio químico y, de este modo, en la velocidad de deposición de película. Se midió la temperatura usando un termómetro. El tercer parámetro es el pH, que se controló usando un medidor de pH. Los dos últimos parámetros fueron la corriente de deposición y el voltaje aplicado.

Se depositaron películas finas sobre sustratos de vidrio revestidos con vidrio de óxido de estaño e indio (ITO). Los sustratos de este tipo se encuentran disponibles en PPG Industries de Pittsburgh, PA. La lámina de vidrio tenía un área de 1 pie² (12"x12" (30,48 cm x 30,48 cm)) y un espesor de aproximadamente 0,5 cm. La Tabla 1,0 siguiente muestras las propiedades del vidrio. Posteriormente, se corta la lámina grande en láminas de 1,5"x1" (3,81 cm x 2,54 cm). La resistencia de las láminas pequeñas fue de aproximadamente 25 Ω.

Tabla 1.0: Propiedades del sustrato de vidrio

Table 1101 1 opioudado do cuotado do trano					
Coeficiente de Sombreado	Luz Visible	Valor-U Invierno	Valor-U Verano		
0,71	74 %	0,35	0,35		

Los sustratos de vidrio pequeños presentaron suciedad debido a los diversos tratamientos que tuvieron que experimentar. La presencia de suciedad, aceites procedentes de la manipulación y pequeños arañazos puede afectar de manera negativa a la deposición de la película fina. Un arañazo, por ejemplo, puede provocar el alabeo de la película. La suciedad o el aceite pueden provocar una adhesión pobre entre la película depositada y el sustrato de vidrio. Por tanto, antes de la deposición, se limpió cada sustrato como se ha descrito anteriormente:

Se colocó el sustrato en un baño de ultrasonidos en una solución de 2 % de detergente Micro 8790 durante veinte minutos. La solución de detergente Micro 8790 recomienda 75 ml de detergente por cada galón (3,79 l) de agua. De este modo, el baño incluyó aproximadamente 2 ml de detergente por cada 100 ml de agua desionizada.

A continuación, se colocó el sustrato en un baño de ultrasonidos de agua desionizada de lavado durante 20 minutos, seguido de un baño de acetona de 5 minutos y un baño de metanol de 5 minutos. Posteriormente, se secó por soplado el sustrato con gas de N_2 . Con el fin de garantizar la limpieza óptima de las láminas, se dejó caer agua sobre la capa. La formación de gotas indica la presencia de suciedad/aceite y, de este modo, un sustrato insuficiente limpio. No obstante, si el agua cae en cascada de forma libre fuera de la lámina, se garantiza la limpieza.

Tras la limpieza del sustrato, se colocó en un aparato de baño para la deposición química de la película de CdS. Como se ha comentado anteriormente, el pH es uno de los parámetros importantes que controla la deposición de las películas y, de este modo, debería controlarse de forma precisa y detallada. Se usó un medidor de pH calibrado y altamente fiable para controlar el pH del baño.

Deposición por Baño Químico de CdS:

Se depositó sulfuro de cadmio sobre el sustrato de vidrio revestido con ITO usando deposición por baño químico. Este proceso depende de la mezcla cuidadosa de determinados reaccionantes químicos y su interacción con una superficie de vidrio. Es importante controlar la velocidad de estas reacciones de manera que tengan lugar de forma suficientemente lenta, con el fin de permitir que se forme CdS gradualmente sobre el sustrato o difunda y se adhiera bien al propio sustrato o bien a la película en crecimiento, en lugar de formar un agregado para dar lugar a partículas grandes en disolución y precipitación. Se puede controlar esta velocidad por medio de la temperatura, pH y/o concentración de precursores que forman sulfuro en el baño.

Cuando se añade en primer lugar acetato de cadmio a la solución, se disuelve para dar lugar a Cd²+. El Cd²+ reacciona con los iones OH⁻ y precipita (ecuación (2)). Para evitar esta precipitación, se añade amoníaco. El amoníaco reacciona con Cd²+ como se muestra en la ecuación (3) y evita su precipitación en Cd(OH)₂. Los iones OH⁻ posteriormente reaccionan con tiourea y liberan los iones sulfuro en la solución (ecuación (4)). A medida que transcurre la reacción, el amoníaco libera los iones Cd²+ (ecuación (5)), que reaccionan con los iones S²⁻ disponibles en la solución (ecuación (6)).

$$Cd^{+2} + 2OH^{-} \rightarrow Cd(OH)_{2}$$
 (2)

$$Cd^{+2} + 4NH_{3} \rightarrow Cd(NH_{3})_{4}^{2+}$$
 (3)

$$(NH_{2})_{2} + 2OH^{-} \rightarrow S^{2-} + CN_{2}H_{2} + 2H_{2}O$$
 (4)

$$Cd(NH_{3})_{4}^{2+} \rightarrow Cd^{+2} + 4NH_{3}$$
 (5)

$$Cd^{+2} + S^{2-} \rightarrow CdS$$
 (6)

40

45

50

55

5

10

15

20

25

30

35

Los mecanismos precisos de deposición química de CdS no se conocen. Se piensa que el mecanismo más probable de deposición de película es por medio de crecimiento ión a ión. Este modelo requiere la super saturación de los iones objeto de deposición. En presencia de una superficie añadida, en este caso el sustrato de vidrio revestido con ITO, se observó la posterior adición de heterogeneidad que, a su vez, contribuye a la nucleación. La fuerza molecular más importante en la presente deposición son fuerzas de Van der Waals, que son suficientemente fuertes para garantizar la adhesión de los cristales CdS unos a otros. Una vez que ha dado comienzo la nucleación, el proceso alcanza su velocidad de deposición óptima. En otras palabras, es mucho más sencillo que los cristales del semiconductor formen una capa encima de otros cristales similares, en lugar de sobre una superficie limpia. No obstante, se piensa que existe más implicación de la reacción que del mecanismo ión a ión simple, ya que los reaccionantes intermedios no son simplemente iones metálicos.

Se llevaron a cabo diversos experimentos para determinar los parámetros de deposición para depositar la capa deseada de CdS sobre el sustrato revestido con ITO. Se preparó un baño de agua desionizada y se calentó. Posteriormente, se añadieron acetato de cadmio, acetato de amonio, tiourea y amoníaco al baño. Se encendió el agitador magnético. Se ajustó el pH dejando caer lentamente NaOH. Se añadió amoníaco para regular el pH de la

solución cuando disminuye a medida que transcurre el experimento. Se añadió agua desionizada para hacer que el volumen del baño recuperara los niveles que había perdido debido a la evaporación. Se mantuvo la temperatura de los experimentos casi constante ajustando el calor según fue necesario durante el experimento. La temperatura constante permitió únicamente las fluctuaciones de pH de forma mínima y, de este modo, la solución resultó muy homogénea.

Los parámetros listados a continuación de la tabla 2.0 son un sumario de los parámetros de deposición que producen un película amarilla luminosa uniforme.

Tabla 2.0: Parámetros de deposición CdS

Materiales/Condiciones	Intervalo
Baño de Agua desionizada	200 ml
Acetato de amonio	308 mg
Acetato de cadmio	23 mg
NH ₄ OH	4-6 ml
SC(NH ₂) ₂ (Tiourea)	45,6 mg
NaOH	2-4 ml
PH	11
Temp.	70(+/- 2) °C
Tiempo	50 minutos

Se analizó la composición de una película de CdS depositada usando un microscopio de barrido electrónico. Se observó que Cd y S se depositaron en proporciones estequiométricas iguales sobre el sustrato de vidrio revestido con ITO. Con el fin de confirmar el tipo de material depositado, también se llevaron a cabo ensayos de caracterización óptica. Los datos obtenidos mostraron que el material presentó un ancho de banda de 2,41 eV, que está muy próximo al ancho de banda de CdS esperado de 2,4 eV.

El orden de adición de los materiales que proporcionó la máxima estabilidad en pH y temperatura y, con ello, considerado el orden preferido, fue acetato de amonio, acetato de cadmio, amoníaco, tiourea y posteriormente amoníaco.

Electrodeposición de ZnTe:

5

10

15

20

35

40

La Figura 2 muestra un diagrama de esquema de una preparación 200 de electrodeposición básica usada para electrodeposita una película de ZnTe. Se preparó un baño 240 que contenía iones de los metales constitutivos objeto de deposición, disueltos en solución. Por ejemplo, en el caso de depositar ZnTe, se disolvieron iones Zn²+ y HTeO₂+ en solución. El electrodo de trabajo 210 es el sustrato conductor sobre el cual se deposita la película. En los experimentos, el sustrato conductor era un sustrato de vidrio revestido con óxido de estaño e indio (ITO). Se usó un potenciostato/galvanostado 220 para aplicar polarización entre el electrodo de trabajo 210 y un contra electrodo 230. El contra electrodo 230 fue un papel metalizado de Zn.

Como se ha descrito anteriormente, una película de ZnTe sobre la capa de CdS en la estructura de célula solar propuesta sirve como la primera capa de la super-retícula de la capa de absorbente de tipo-p de la unión P-N 120. ZnTe, en espesores de forma bruta, tiene un ancho de banda de 2,29 eV. Se puede depositar ZnTe como película tipo-p o tipo-n dependiendo del voltaje aplicado en el proceso de electrodeposición. En la estructura preferida mostrada en la Figura 1, la película es tipo-p.

Se usaron los siguientes cálculos estequiométricos para determinar las cantidades correctas de cloruro de cinc y dióxido de teluro para su uso en el proceso:

Cloruro de cinc:

$$\frac{136,3g}{mol} \cdot \frac{0,1_mol}{L} \cdot 0,1L = 1,36g$$

45 Dióxido de teluro:

$$\frac{15g}{mol} \cdot \frac{10^{-3}}{L} \cdot 0.1L = 15.9 \, mg$$

Se llevaron a cabo experimentos para determinar los parámetros de electrodeposición para electrodepositar la película de ZnTe por medio de deposición catódica. Se sometió TeO₂ a especiación en NaOH. También, se disolvió ZnCl₂ en agua desionizada. Se añadió TeO₂ a un baño caliente de agua desionizada. Se ajustó el pH al nivel

deseado por medio de la adición de gotas de HCI concentrado. Se añadió ZnCI₂ lentamente a la solución. El método de deposición usó una electrodeposición de corto circuito en la que el cátodo está conectado directamente al ánodo para facilitar la transferencia de electrones. Se usó una configuración de células de dos electrodos [cátodo de alambre- solución-ánodo-alambre-vidrio]. Se colocó el cátodo revestido con ITO 2 cm fuera del ánodo de papel metalizado de cinc, ambos sumergidos en el baño. Se cortocircuitó el papel metalizado de cinc y el sustrato por medio de soldadura de un alambre de indio sobre el vidrio-ITO y se fijó con cinta Kapton. El alambre se soldó por puntos o se unió al ánodo con una pinza de conexión.

Aunque los experimentos se llevaron a cabo usando voltaje directo, se usaron voltajes pulsados para depositar películas finas en los intervalos de espesor desde aproximadamente 0,2-0,4 µm. La Figura 8 es un diagrama de tiempo de voltaje pulsado usado en el experimento. En la Figura 8, "contra electrodo v/s" significa que se aplica 0 V entre el contra electrodo y el electrodo de trabajo. De igual forma, "circuito abierto v/s" significa que el potencial sobre el electrodo de trabajo es con respecto a la solución/baño, y no el contra electrodo. Pero este voltaje todavía es entre los mismos dos electrodos. Es decir, el voltaje pulsado es entre el electrodo de trabajo y el contra electrodo, en todo momento, pero su valor/amplitud es diferente. Y esa diferencia en el voltaje aplicado es la que se representa, y no el cambio que se produce en las conexiones. La conexión es entre el electrodo de trabajo y el contra electrodo.

Los mejores resultados tienen lugar cuando se deposita lentamente la película sobre el sustrato. La Tabla 3,0 muestra un sumario de los parámetros preferidos para depositar la película de ZnTe de aproximadamente 0,2-0,4 µm de espesor. Inicialmente, la película fue de color ámbar/dorado claro y se volvió más oscura con el tiempo. La película no se perdió al lavar con agua y, de este modo, mostró una buena adherencia al vidrio.

Tabla 3.0: Parámetros de Electrodeposición de ZnTe

rabia 3.0.1 arametros de Electrodeposición de Zirre	
Materiales/Condiciones	Valor
Baño de agua desionizada	100 ml
TeO ₂ (10 ⁻³ M)	13 mg
ZnCl ₂ (0,1 M)	1,2 gm
HCI (conc)	0,5-1 ml
NaOH	2-4 ml
рН	1,85-2,2
Temp	55-60 °C
Agitador	no
Tiempo	15-20 segundos
Voltaje pulsado/corriente	Figura 8/1,0-1,2 mA/cm ²

Electrodeposición PbTe:

Como se ha descrito anteriormente, se deposita una película de PbTe sobre la capa de ZnTe en la estructura de célula solar 100 propuesta y sirve como segunda capa de la película fina o estructura super-reticular de la capa de absorbente de tipo-p de la unión P-N 120. En los espesores de forma bruta, PbTe tiene un ancho de banda de 0,29 eV. Se puede depositar PbTe como película de tipo-p o tipo-n dependiendo del voltaje aplicado en el experimento. En la estructura de la Figura 1, se deposita PbTe como película de tipo-p.

Se usaron los siguientes cálculos estequiométricos en la determinación de las cantidades correctas de cloruro de cinc y dióxido de teluro para su uso en el proceso.

Nitrato de plomo:

$$\frac{207,2g}{mol} \cdot \frac{0.05 \text{ mol}}{L} \cdot 0.1L = 1.036 \text{ mg}$$

Dióxido de teluro:

$$\frac{159g}{mol} \cdot \frac{0.5 \cdot 10^{-3}}{L} \cdot 0.1L = 7.95 mg$$

Aunque los experimentos se llevaron a cabo usando voltaje directo, se usaron voltajes pulsados para depositar películas finas en los intervalos de espesor desde aproximadamente 0,2-0,4 μm. La Figura 9 es un diagrama de tiempo de voltaje pulsado usado en el experimento. Se usó la configuración de electrodeposición 200 de la Figura 2. Se preparó el baño 240 que contenía iones de los metales constitutivos objeto de deposición, disueltos en solución. De nuevo, el electrodo de trabajo/cátodo 210 sobre el cual se tenía que depositar la película fina fue un sustrato de vidrio revestido con ITO. El contra electrodo 230 fue carbono grafito. Se usó un potenciostato/galvanostato 220A

30

35

40

5

10

15

para aplicar polarización entre el electrodo de trabajo 210 y el contra electrodo 230.

Se sometió TeO_2 a especiación con NaOH y posteriormente se añadió agua desionizada. Se disolvió $Pb(NO_3)_2$ en agua desionizada. Se añadieron gotas de HNO_3 para ajustar el pH de la solución. Tras la adición de $Pb(NO_3)_2$ a la solución, se observaron pequeñas partículas y la solución se volvió heterogénea. Se calentó el baño. Tras la estabilización del baño, se insertó la célula de electrodo como se muestra en la Figura 2, y se aplicó un voltaje pulsado como se muestra en la Figura 9. La película se depositó de forma inmediata y rápida. La película tuvo un crecimiento homogéneo. Aparecieron orificios muy pequeños sobre la película que desaparecieron posteriormente. La película tuvo una buena adherencia y reflectividad. Fue de color gris claro. La Tabla 4.0 siguiente lista un sumario de los parámetros que produjeron la mejor película.

Tabla 4.0: Parámetros de Flectrodeposición	n de Ph	·Τρ
--	---------	-----

Materiales/Condiciones	Valor
Baño de agua desionizada	100 ml
TeO ₂ (0,01 M)	7 mg
Pb(NO ₃) ₂ (0,05 mM)	1,28 gm
HNO₃	0,5-1 ml
NaOH	2-4 ml
рН	1,85-2,2
Temp	55-60 ºC
Agitador	no
Tiempo	15-20 segundos
Voltaje pulsado/corriente	Figura 9/2,0-2,2 mA/cm ²

Los ensayos confirmaron que las capas de absorbente formadas usando las capas de película fina de ZnTe/PbTE pueden tener anchos de banda entre los respectivos anchos de banda de espesor bruto de ZnTe y PbTe. Sorprendentemente, esto muestra que incluso en una película fina (pero sin todavía espesores de super-retícula), se pueden usar los espesores de las capas para controlar el ancho de banda eficaz de una estructura apilada. No obstante, se requiere proporcionar películas de ZnTe y PbTe del orden de nanómetros para obtener los efectos de pozo cuántico. Estas estructuras super-reticulares permiten un control incluso mayor del ancho de banda eficaz resultante de la estructura apilada así como una absorción más eficaz de la luz incidente. Uno de los parámetros que se puede usar para controlar el espesor de la deposición de película fina es la corriente. La corriente de deposición baja provoca que la película se deposite de forma muy lenta. Por tanto, por medio de deposición de las películas durante un tiempo reducido se puede obtener un espesor reducido. La corriente de deposición se puede regular por medio del pH y la temperatura del baño.

Se analizó la morfología de estas películas usando microscopio de barrido electrónico (SEM). La película de CdS fue muy uniforme, lo que indica que la deposición del baño químico resultó eficaz para depositar películas de CdS. Se observaron algunos granos moleculares de NaOH. Se piensa que el atemperado de la estructura a temperatura elevada eliminaría los residuos de NaOH.

La película de ZnTe observada bajo SEM mostró que la película crece de forma agregada, de manera que un grano se deposita sobre el sustrato y posteriormente los otros átomos de Zn y Te se unen al mismo hasta que se forma la película total. Las imágenes muestran partículas blancas y negras, que indican la presencia de dos tipos de moléculas. La Figura 4 muestra una vista SEM de esta película de ZnTe con un aumento de 100.000 veces. Las moléculas pesadas vienen indicadas en negro y las moléculas ligeras se representan en blanco. Debido a que el peso atómico de Pb (127) es casi el doble que el de Zn (66), se piensa que Pb está representado en negro y Zn está representado en blanco. Se determinó que el tamaño medio de grano de la película era de alrededor de 120 nm.

La película de PbTe observada usando SEM mostró que la película electrodepositada fue altamente compacta. Esto significa que la película es altamente uniforme. El tamaño medio de grano de la película fue de aproximadamente 100 nm. La Figura 5 muestra una vista SEM de la película de PbTe con un aumento de 100.000 veces.

La Espectrometría de Dispersión de Energía (EDS) es una herramienta construida en SEM que permite la identificación y caracterización de materiales por medio de la detección de señales de rayos-X que se emiten desde la muestra cuando se produce el impacto por el haz de electrones. Se usó esta herramienta para llevar a cabo la caracterización química de películas de CdS, PbTe y ZnTe.

Las mediciones EDS mostraron que la película de CdS consistió en un 52 % en peso de Cd y un 48 % en peso de S. Los porcentajes atómicos calculados de Cd y S fueron de un 56 % y un 44 %, respectivamente.

Las mediciones EDS mostraron que la película de ZnTe consistió en un 48 % en peso de Zn y un 52 % en peso de Te. El porcentaje atómico calculado de Zn fue de un 62 % y el porcentaje atómico de Tc fue de un 38 %.

Finalmente, las mediciones EDS mostraron que la película de PbTe tenía un 58 % en peso de Pb y un 42 % en peso

10

30

15

20

25

5

10

35

40

45

de Tc. El porcentaje atómico calculado basado en estos porcentajes en peso de película depositada fue de un 57 % en peso de Pb y un 43 % de Te.

También se llevaron a cabo mediciones de absorción óptica con el fin de determinar la energía de ancho de banda de las películas depositadas. Se determinaron los coeficientes de absorción por medio del uso de las relaciones siguientes:

$$T = \frac{(1-r_1)(1-r_2)(1-r_3)\exp(\alpha d)}{1-r_2r_3-r_1\exp(-2\alpha d)(r_2+r_3-2r_2r_3)}$$

10 en la que, r_1 , r_2 , r_3 son coeficientes de reflexión en las interfaces aire/película, película/sustrato y sustrato/aire, respectivamente, α es el coeficiente de absorción óptica de la película, y d es el espesor de película. T se ha calculado usando la siguiente ecuación:

$$A = -log_{10} T$$

15

30

35

40

5

en la que A es la absorbancia. Se midió la absorbancia usando un espectrofotómetro denominado espectrofotómetro UV-Vis Perkin Elmen Lambda 35.

Tras obtener los valores de absorbancia (A) usando el espectrofotómetro, es posible resolver la ecuación y obtener α. El coeficiente de absorción α está relacionado con el ancho de banda por medio de la siguiente ecuación de semiconductor de ancho de banda para el semiconductor de ancho de banda directo:

$$\alpha = A(h\gamma - E_g)^2$$

25 en la que γ es la frecuencia del fotón, A es una constante, h es la constante de Plank (6,63*10⁻³⁴ J·s) y E_g es el ancho de banda del semiconductor.

La representación gráfica $(\alpha h \ v)^{1/2}$ frente a la energía de fotón proporcionó las curvas que se muestran en las Figuras 6A-6E. Posteriormente, la extrapolación de la parte lineal de la figura en $\alpha = 0$ determina el ancho de banda del material. El valor hy representa la energía del fotón. La representación gráfica de $(\alpha h v)^{1/2}$ frente a la energía del fotón revela si el material es un material de ancho de banda directa y indirecta. También permite la determinación de la eficacia de la absorción de luz.

Como se muestra en la Figura 6A, el ancho de banda medido de la película de ZnTe es de 2,1 eV, que está muy próximo a 2,25 eV.

Con el fin de obtener el valor de la película de PbTe depositada, la curva se extrapoló más allá de la región de 1,13 a 3,68 eV que se proporcionó por medio de las mediciones. PbTe tiene un ancho de banda de 0,29 eV, que se encuentra dentro de la región de infrarrojos. El espectrofotómetro no proporcionó las mediciones en esa región. Por eso, con el fin de obtener una estimación del ancho de banda de PbTe, se extrapoló la curva hasta que se produjo la intersección con el eje-X. El valor obtenido como resultado de la extrapolación fue de 0,5 eV como se muestra en la Figura 6B.

La película de CdS tuvo un ancho de banda de 2,41 eV como se muestra en la Figura 6C.

45

50

55

60

El ancho de banda del material compuesto ZnTe/PbTe fue de 1,26 eV como se muestra en la Figura 6D y el de la estructura ZnTe/PbTe/ZnTe fue de 1,13 eV como se muestra en la Figura 6E. Aunque parezca que existe un cambio en el ancho de banda entre las dos estructuras, este cambio no se debe al efecto cuántico, sino más bien es una media del ancho de banda de los dos materiales. El efecto cuántico únicamente se observa si el espesor de la película es del orden de unos pocos nanómetros.

También se llevaron a cabo ensayos para confirmar la conductividad de las películas. El ensayo de termoenergía es una técnica sencilla usada para determinar el tipo de conductividad del material depositado, basada en la comparación del potencial de un tipo de película conocido con respecto a otro desconocido. Se ha comprobado en la bibliografía que CdS se deposita como material de tipo-n. Con el fin de medir el potencial a través de la película de CdS depositada de este modo, se usó un voltímetro y se aplicó un gradiente de temperatura. Se creó el gradiente de temperatura por medio de calentamiento de un terminal del voltímetro con hierro de soldadura y colocándolo sobre el vidrio y manteniendo el otro terminal sobre la película. Tras unos pocos segundos el voltímetro marcó -6 mV. Se aplicó el mismo procedimiento sobre la película de ZnTe. El voltímetro marcó 2 mV, lo que indica que la película de ZnTe depositada es de tipo-p. También se usó la misma técnica para determinar el tipo de conductividad de la película de PbTe. El voltímetro marcó 4 mV, lo que indicó que la película de PbTe depositada es de tipo-p.

Con los parámetros aceptables y los criterios guía para la electrodeposición de películas ultra finas de ZnTe y PbTe determinadas de este modo, se formó una estructura de ZnTe/PbTe con fines de ensayo. La primera película depositada fue telururo de cinc seguido de una película de telururo de plomo. El procedimiento de deposición se describe a continuación.

5

10

15

20

25

50

Se usaron los procedimientos descritos anteriormente para formar una estructura de retícula de ZnTe/PbTe. Se depositó una película de ZnTe durante 5 minutos. Sobre la película de ZnTe, se depositó una película de PbTe siguiendo el mismo procedimiento comentado anteriormente. Se ajustó el voltaje a -620 mV con respecto a SCE para tener en cuenta la resistencia introducida por la película de ZnTe. El tiempo de deposición fue de 5 minutos. Se obtuvo un película gris ligeramente uniforme.

También se usaron los procedimientos generales descritos para formar una estructura de ZnTe/PbTe/ZnTe. Se depositó la película de ZnTe siguiendo los procedimientos comentados anteriormente. El pH, la temperatura y el tiempo de deposición del baño fueron 2,8, 58 °C y 10 minutos, respectivamente. Sobre la película de ZnTe, se depositó la película de PbTe siguiendo el procedimiento comentado anteriormente. Se ajustó el voltaje hasta -620 mV frente a un tercer electrodo (un electrodo de calomelanos saturado de referencia (SCE) usado en los experimentos que deposita la película de PbTe usando un voltaje directo) para tener en cuenta la resistencia introducida por la película de ZnTe. El tiempo de deposición fue de 10 minutos. Sobre la película de PbTe se depositó otra película de ZnTe durante 20 minutos. Se aumentó el tiempo de deposición en estos experimentos debido a que no se observó una estructura uniforme de tres capas con tiempos de deposición de 2-5 minutos. La Figura 3 muestra una vista lateral de la estructura.

También se usaron los parámetros de deposición descritos anteriormente para la formación de estructuras reticulares que tienen capas de ZnTe y PbTe en el intervalo de espesor de 0,2-0,4 µm para formar las estructuras de ZnTe/PbTe apiladas, cuyas pruebas de ensayo se encuentran en curso. Se usó voltaje pulsado en lugar de directo, con el fin de obtener películas más finas.

También se fabricó una célula solar para ensayo depositando capas de CdS sobre vidrio revestido con ITO como se ha descrito anteriormente. La película mostró propiedades químicas y ópticas como se ha descrito anteriormente.

Posteriormente, se depositó la estructura de ZnTe/PbTE/ZnTe sobre la parte superior del CdS. Finalmente, se cubrieron las capas con pintura de plata que actuaría como contacto como se muestra en la Figura 7. Se sometió la célula a un haz de luz procedente de un proyector de luz y se conectó a un medidor múltiple. Se conectó el medidor múltiple como amperímetro a la célula solar con el fin de medir la corriente de corto circuito. Tras aproximadamente 3 minutos, se hizo pasar la corriente del orden de unos pocos µA a través del amperímetro. A continuación, se conectó el medidor múltiple como voltímetro a la célula para registrar el voltaje de circuito abierto. El voltaje de circuito abierto fue de 0,05 mV. Estos resultados muestran que la célula solar se encuentra en funcionamiento. Los ajustes de las composiciones de película y la uniformidad conducen a un rendimiento más elevado para esta célula básica.

Como se ha descrito en la presente memoria, se depositaron por vía electroquímica películas finas de telururo de plomo y telururo de cinc a partir de disoluciones acuosas. Se depositaron capas de sulfuro de cadmio usando deposición por baño químico. Se analizó la composición química de las películas usando microscopia de barrido electrónico (SEM). Se determinó el ancho de banda óptica por medio de espectroscopia de absorción óptica. Se descubrió que las películas de PbTe y ZnTe tenían proporciones estequiométricas iguales de Pb y Te, y de Zn y Te. Se analizó la composición química usando espectroscopia de dispersión de energía (EDS). Se descubrió que el ancho de banda de PbTe y ZnTe era de 0,5 y 2,1 eV, respectivamente. Las películas desarrolladas tenían una estructura policristalina orientada de forma aleatoria. El tamaño medio de grano de los materiales tenía alrededor de 100-120 nm de diámetro. También se desarrolló una estructura reticular que consistía en ZnTe/PbTe y ZnTe/PbTe/ZnTe y exhibió anchos de banda de 1,26 eV y 1,13 eV, respectivamente. También se desarrolló una

célula de solar de trabajo a partir de las películas finas depositadas. Se pueden usar las modificaciones de los espesores de película de las capas de PbTe y ZnTe para modificar el ancho de banda de la estructura con el fin de escoger las uniones P-N de una estructura de célula solar de multi-unión para proporcionar la conversión eficaz de un espectro incidente en energía eléctrica.

REIVINDICACIONES

1. Una célula fotovoltaica de multi-unión (100), que comprende:

20

30

35

40

- al menos dos uniones P-N (120, 120A, 120B) conectadas eléctricamente una a la otra en serie, incluyendo cada unión P-N (120, 120A, 120B) una capa de absorbente de tipo-P (122) y una capa de emisor de tipo-N (121), comprendiendo cada capa de absorbente de tipo-P (122) una pluralidad de capas de película fina alternantes de materiales II-VI y IV-VI, en donde los materiales II-VI y IV-VI tienen anchos de banda respectivos cuando el espesor bruto y el ancho de banda eficaz de cada capa de absorbente de tipo-P se encuentra entre los respectivos anchos de banda.
 - en la que el ancho de banda eficaz de la capa de absorbente (122) de la primera de las al menos dos uniones P-N (120, 120A, 120B) es diferente de la capa de absorbente (122) de la segunda de las al menos dos uniones P-N (120, 120A, 120B).
- 15 2. La célula fotovoltaica de multi-unión de la reivindicación 1, en la que la capa de emisor de tipo-N (121) es una capa de sulfuro de cadmio.
 - 3. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-2, que además comprende un sustrato de vidrio (105) revestido con una capa conductora (110).
 - 4. La célula fotovoltaica de multi-unión de la reivindicación 3, en la que la capa conductora (110) comprende una capa de óxido de estaño e indio.
- 5. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-4, que además comprende un capa de interconexión (130, 130A) dispuesta entre, y que conecta eléctricamente, las uniones P-N (120, 120A, 120B) juntas, en donde la capa de interconexión (130, 130A) comprende una pluralidad de islas conductoras (135).
 - 6. La célula fotovoltaica de multi-unión de la reivindicación 5, en la que las islas conductoras (135) comprenden islas de telururo de mercurio o telururo de cobre.
 - 7. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-6, en la que la célula fotovoltaica de multi-unión es una célula solar en tándem de dos células, en la que el ancho de banda eficaz de la capa de absorbente (122) de la primera de las uniones P-N (120, 120A, 120B) es de aproximadamente 1,0 eV y el ancho de banda eficaz de la capa de absorbente (122) de la segunda de las uniones P-N (120, 120A, 120B) es de aproximadamente 1,8 eV, o
 - en la que la célula fotovoltaica de multi-unión es una célula solar en tándem de tres células, en la que el ancho de banda eficaz de la capa de absorbente (122) de la primera de las uniones P-N (120, 120A, 120B) es de aproximadamente 0,8 eV, el ancho de banda eficaz de la capa de absorbente (122) de la segunda de las uniones P-N (120, 120A, 120B) es de aproximadamente 1,4 eV, y el ancho de banda eficaz de la capa de absorbente (122) de una tercera de las uniones P-N (120, 120A, 120B) es de aproximadamente 2,3 eV.
 - 8. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-7, en la que las capas de película fina alternantes forman una super-retícula composicional.
- 45 9. La célula fotovoltaica de multi-unión de la reivindicación 8, en la que la super-retícula composicional incluye entre 30-40 capas alternantes de telururo de cinc y telururo de plomo, y en la que cada super-retícula composicional tiene un espesor de absorción eficaz de entre aproximadamente 1 y aproximadamente 5 μm y cada una de las capas alternantes de telururo de cinc y telururo de plomo tiene un espesor de entre aproximadamente 100 y aproximadamente 1000 angstroms.
 - 10. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-9, en la que los anchos de banda de las capas de absorbente (122) dependen de los espesores de las capas alternantes de materiales II-VI y IV-VI en las uniones P-N.
- 11. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-10, en la que el ancho de banda eficaz de la capa de absorbente de la primera de las al menos dos uniones P-N está seleccionado para capturar las longitudes de onda de la luz incidente de aproximadamente 0,5 μm, y en la que el ancho de banda eficaz de la capa de absorbente de la segunda de las al menos dos uniones P-N está seleccionado para capturar las longitudes de onda de la luz incidente de aproximadamente 4,0 μm.
 - 12. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-11, que además comprende contactos eléctricos (110, 150) para conducir corriente fuera de dicha células tras su irradiación con radiación que genera un potencial a través de al menos una de dichas uniones P-N.
- 13. La célula fotovoltaica de multi-unión de cualquiera de las reivindicaciones 1-8, 10-12, en la que los materiales II-VI y IV-VI son telururo de cinc y telururo de plomo, respectivamente.

- 14. Un método para generar electricidad, que comprende exponer la célula fotovoltaica de multi-unión (100) de cualquiera de las reivindicaciones 1-13 a radiación solar.
- 15. Un método de formación de una célula fotovoltaica (100), que comprende las etapas de:

5

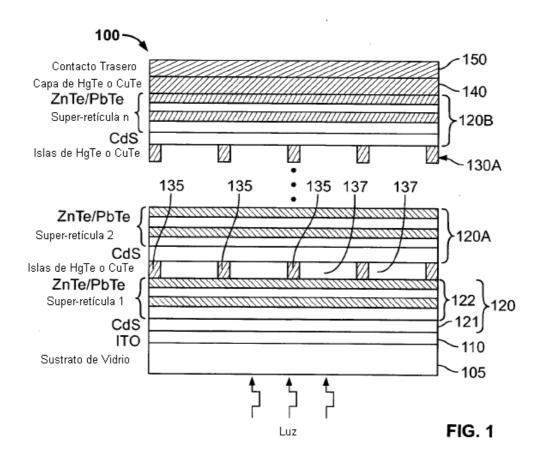
proporcionar un sustrato de vidrio (105);

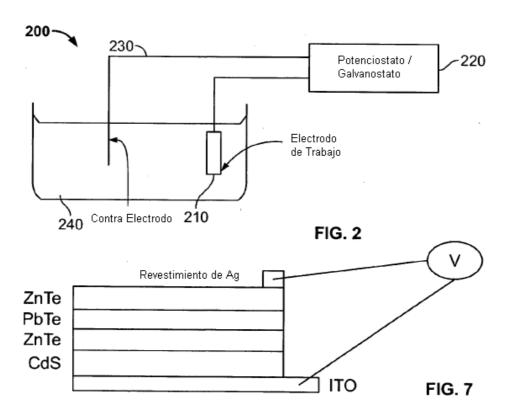
formar una capa de contacto frontal sobre el sustrato de vidrio (110);

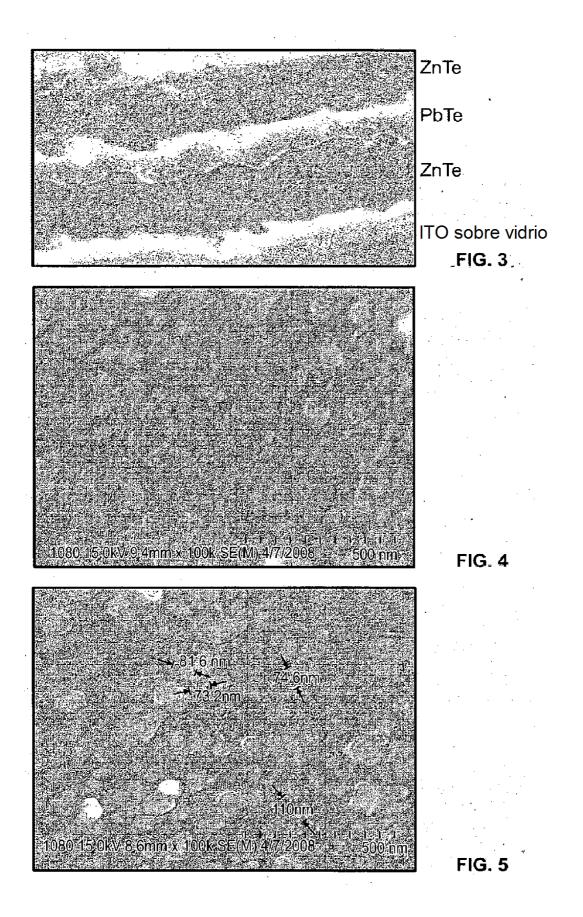
formar una primera unión P-N (120) que comprende una capa de emisor de tipo-N (121) y una capa de absorbente de tipo-P (122) que comprende una super-retícula composicional, en la que la primera etapa que forma la unión P-N incluye:

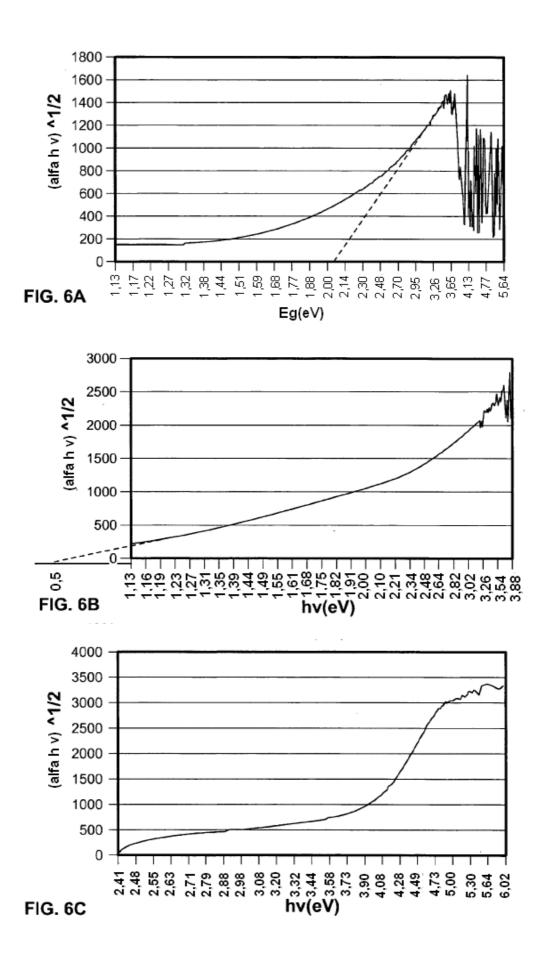
15

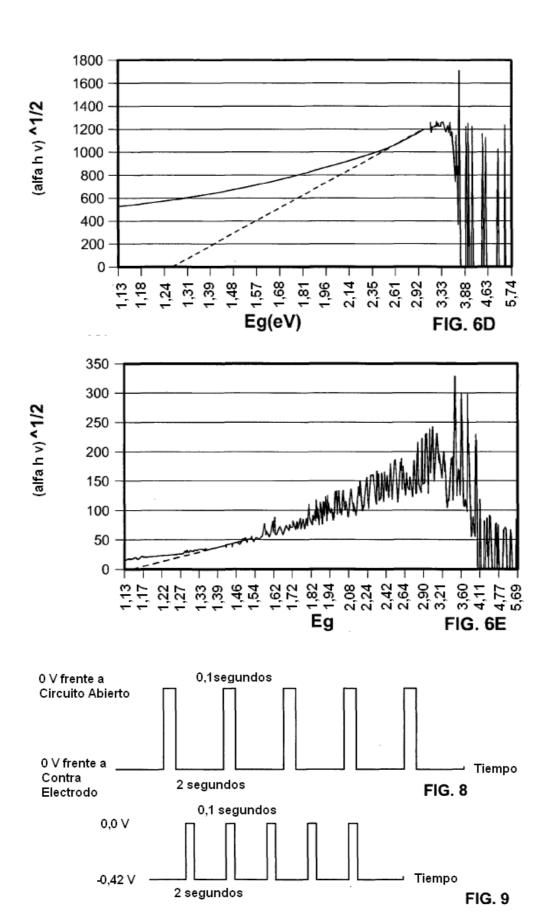
10


electrodepositar una capa de emisor de tipo-N (121) sobre la capa conductora (110); y electrodepositar una pluralidad de capas alternantes de materiales II-VI y IV-VI,


en la que los materiales II-VI y IV-VI tienen anchos de banda respectivos cuando el espesor bruto y el ancho de banda eficaz de la capa de absorbente de tipo-P (122) está entre los respectivos anchos de banda; y


formar una capa de contacto trasera (150) sobre la primera unión P-N.


20


16. El método de formación de una célula fotovoltaica (100) de la reivindicación 15, en el que la célula fotovoltaica (100) es una célula fotovoltaica de multi-unión (100), comprendiendo el método la etapa de formación de al menos una segunda unión P-N (120A, 120B) en serie con la primera unión P-N (120), en donde el ancho de banda eficaz de la capa de absorbente (122) de la primera unión P-N (120) es diferente de la capa de absorbente (122) de la segunda unión P-N (120A, 120B).

