

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 531 041

61 Int. Cl.:

A61B 17/70 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 03.11.2004 E 11169372 (7)
Fecha y número de publicación de la concesión europea: 17.12.2014 EP 2371312

(54) Título: Sistema de fijación de hueso con sujetador de perfil bajo

(30) Prioridad:

03.11.2003 US 701349

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 10.03.2015

(73) Titular/es:

SPINAL, LLC (100.0%) 1517 Coining Drive Toledo, OH 43460, US

(72) Inventor/es:

DOUBLER, ROBERT L. y HAMMILL, JOHN E., SR.

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

Sistema de fijación de hueso con sujetador de perfil bajo

Descripción

5 CONTEXTO DE LA INVENCIÓN

Campo de la invención

[0001] Esta invención está relacionada con la cirugía ortopédica y, en particular, con instrumentos y prótesis para estabilizar y fijar los huesos y las articulaciones del cuerpo.

Descripción de creaciones anteriores

- [0002] Solicitud de EE. UU. publicada, US 2003/0149487 A1, publicada el 7 de agosto de 2003, da cuenta del uso de movimiento linear para aplicar fuerzas de compresión a fin de conectar componentes de una articulación artificial de cadera.
- [0003] Patente de EE. UU. N°6.626.906 emitida el 30 de septiembre de 2003 a Young, da cuenta de una barra espinal unida con una abrazadera a un ancla espinal. La abrazadera se encuentra ajustada al ancla por medio de una pinza atornillada a la abrazadera. La barra se sostiene a la abrazadera por medio de un aro escindido que se halla reducido en su tamaño por la pinza. El ancla se posiciona en el hueso por un par de torsión y la pinza se ajusta por un par de torsión adicional.
- [0004] Patente de EE. UU. N° 6.610.063 otorgada el 26 de agosto de 2003 a Kumar et al, Patente de EE. UU. N° 6.610.062 otorgada el 26 de agosto de2003 a Bailey et al, Patente de EE. UU. N° 6.565.565 otorgada el 20 de mayo de 2003 a Yuan et al, Patente de EE. UU. N° RE 37.665 otorgada el 16 de abril de 2002 a Ralph et al, EE. UU.
- [0005] Patente N°6.478.798 otorgada el 12 de noviembre de 2002 a Howland y Patente de EE. UU. N° 5.584.834 otorgada el 17 de diciembre de 1996 a Errico et al, da cuenta de una barra espinal unida a varias anclas óseas por medio de abrazaderas que requieren de un par de torsión adicional para ser aplicadas a la juntura después de que el tornillo óseo haya sido posicionado en el hueso.
- [0006] En la práctica cotidiana, los tornillos óseos se anclan en el hueso con una cantidad específica de torsión que se aproxima a la última fuerza sustentable entre la rosca y el hueso. Luego, se unen los tornillos óseos por medio de una barra con una rigidez suficiente para mantener la orientación esquelética deseada. La unión entre la barra y los tornillos óseos debe ser lo suficientemente fuerte como para ser inamovible.
- [0007] Todas estas creaciones anteriores de instrumentos de fijación espinal resultan en un par de torsión adicional aplicado a la juntura y, de este modo, al tornillo óseo, para ajustar y trabar la barra a cada uno de los tornillos óseos. La carga adicional podría desmontar el anclaje entre el hueso y la rosca del tornillo óseo. Para prevenir esto, se debe utilizar alguna herramienta que evite que el par de torsión trabe la barra y los tornillos. El uso de este tipo de herramienta requiere mayor coordinación del cirujano o cirujanos para prevenir el deslizamiento.
- [0008] Patente de EE. UU. N°6.355.040 revela un sistema de implante por fijación y un mecanismo de traba para asegurar la barra al implante.
 - **[0009]** Lo que se necesita en la creación es un sistema para conectar una barra y un tornillo óseo integrado usando fuerzas de compresión y no par de torsión.

RESUMEN DE LA PRESENTE INVENCIÓN

- [0010] Existen muchas instancias en las cuales es necesario estabilizar y arreglar huesos o fragmentos de huesos en una relación espacial particular para corregir el posicionamiento de los componentes esqueléticos producto de una lesión o enfermedad. Un grupo de instrumentos emplea una serie de clavos, anclas o tornillos óseos posicionados en huesos que atraviesan de manera discontinua el hueso o fragmento de hueso, tal como una fractura o vértebras adyacentes o una articulación, conectada a una barra para mantener la posición de los huesos en un espacio predeterminado. En algunos casos, estos instrumentos pueden ser temporales, con su subsecuente remoción, o permanentes, en la forma de una prótesis. Los instrumentos pueden estar por dentro o por fuera del cuerpo. El dispositivo instantáneo puede ser usado en estas aplicaciones. Sin embargo, lo que se prefiera se relaciona con la fijación espinal y la descripción se dirige a ello por medio del ejemplo y no de la limitación.
- [0011] El invento provee un artefacto ortopédico para estabilizar huesos, incluye un clavo óseo con un mango que cuenta con una rosca externa en forma de hélice para penetrar un hueso con cabeza esférica en un extremo y una abrazadera para trabar el mencionado clavo a una barra conectora alargada, la mencionada cabeza tendrá un hueco para ser incrustado por un herramienta de rotación, la mencionada abrazadera tendrá un cuerpo compuesto por

ES 2 531 041 T3

paredes tubulares exteriores que forman un receptáculo interno en un extremo del cuerpo que se adapta para contener a la mencionada cabeza y toma la forma complementaria de la misma para permitir el enlace giratorio, un anillo de compresión rodeando el exterior de las mencionadas paredes en una posición abierta que permita el movimiento giratorio de la cabeza y el movimiento de deslizamiento de la barra conectora dentro de la abrazadera, una ranura que atraviese las paredes exteriores del cuerpo en el otro extremo del cuerpo opuesto al receptáculo, dicha ranura incluye crestas longitudinales superiores e inferiores adaptadas para agarrar la barra conectora, el anillo de compresión que se mueve linealmente por fuera de las paredes exteriores hacia una segunda posición cerrada en la que el anillo de compresión se posiciona con respecto a las paredes exteriores del receptáculo de modo tal que las paredes exteriores y la ranura ejerzan fuerza de compresión adaptada a trabar de manera segura la abrazadera alrededor de la cabeza y la barra conectora, donde el anillo de compresión contiene un faldón que tiene crestas anulares internas espaciadas que se unen a las protuberancias anulares en las paredes exteriores de la abrazadera cuando el anillo de compresión está en la posición cerrada.

BREVE DESCRIPCIÓN DE LAS FIGURAS

[0012]

5

10

15

20

25

30

40

50

55

60

65

La Fig. 1 es una perspectiva de una porción de la vértebra con el artefacto ortopédico de esta invención posicionado;

La Fig. 2 es una perspectiva de una materialización del artefacto ortopédico de esta invención;

La Fig. 3 es una vista del extremo, parcialmente seccionado, del artefacto ortopédico de esta invención con el anillo de compresión en posición abierta;

La Fig. 4 es una vista del extremo, parcialmente seccionado, del artefacto ortopédico de esta invención con el anillo de compresión en posición cerrada;

La Fig. 5 es una sección transversal de la Fig. 3;

La Fig. 6 es una sección transversal de la Fig. 4;

La Fig. 7 es una vista del plano superior del cuerpo de la abrazadera de esta invención:

La Fig. 8 es una vista lateral, parcialmente seccionada, del cuerpo de la abrazadera de esta invención;

La Fig. 9 es una perspectiva del cuerpo de la abrazadera de esta invención;

La Fig. 10 es una perspectiva del anillo de compresión de esta invención;

La Fig. 11 es una vista superior del anillo de compresión de esta invención;

La Fig. 12 es una sección transversal del anillo de compresión de esta invención;

La Fig. 13 es una perspectiva de otra materialización de esta invención;

La Fig. 14 es una perspectiva de otra materialización de esta invención;

La Fig. 15 es una perspectiva de otra materialización de esta invención;

La Fig. 16 es una sección transversal de la Fig. 15 que muestra el anillo de compresión en posición abierta;

La Fig. 17 es una sección transversal de la Fig. 15 que muestra el anillo de compresión en posición cerrada;

La Fig. 18 es una perspectiva de otra materialización de esta invención con el anillo de compresión en posición abierta;

La Fig. 19 es la vista lateral de la Fig. 18 con el anillo de compresión en posición cerrada;

La Fig. 20 es una perspectiva de otra materialización de esta invención con el anillo de compresión en posición abierta;

La Fig. 21 es la vista lateral de la Fig. 20 con el anillo de compresión en posición cerrada;

La Fig. 22 es una perspectiva de otra abrazadera; y

La Fig. 23 es una sección transversal de la Fig. 22.

DESCRIPCIÓN DETALLADA DEL INVENTO

5

10

35

- [0013] La Fig. 1 muestra una porción de la vértebra lumbar S con un artefacto de fijación ortopédica unilateral 10 posicionado para estabilizar y fijar las vértebras entre sí y el sacro para mantener una curvatura más natural. Si se considera necesario, se puede utilizar una instalación bilateral. Tal como muestra la Fig. 2 en mayor detalle, una barra conectora alargada 11 abarca la discontinuidad entre las vértebras y los tornillos óseos 13. Como se muestra, la barra tiene una sección transversal circular, no obstante, se pueden utilizar otras formas, como la que se muestra en el enlace 29 de la Fig. 13. Las anclas óseas tienen una rosca exterior en forma de hélice 60, expuesta en las Figs. 5-6, por medio de la cual los tornillos óseos 13 se anclan en el hueso esponjoso o trabecular a través de la aplicación de un par de torsión.
- 15 [0014] El cirujano aplica el par de torsión a los tornillos utilizando una herramienta (no se muestra) que une el hueco 61 con la cabeza 15 del tornillo y rota el tornillo en un eje longitudinal. La cantidad de par de torsión es crucial en la instalación y la vida útil de la prótesis, ya que, de no ser suficiente, el tornillo podría aflojarse o sustraerse y, de ser demasiado, causa desgaste en el trayecto de la rosca en el hueso y pérdida de anclaje. El cirujano intenta aplicar el par de torsión óptimo cuando posiciona los tornillos en el hueso y se sugiere evitar el par de torsión adicional sobre el tornillo óseo. Como muestran las Figs. 5 y 6, el hueco 61 es accesible a través del cuerpo de la abrazadera 12 que permite la unión previa del tornillo y la abrazadera, si se desea, antes de posicionarla en el hueso.
- [0015] Durante la fijación vertebral, los tornillos óseos se enroscan en las vértebras conforme a la anatomía de cada vértebra. Esto resulta en una serie de tornillos sin uniformidad en ángulo y alineación. Para compensar estas anomalías, la conexión entre la cabeza de los tornillos y los cuerpos de la abrazadera pivota y gira para capturar la barra conectora. En algunas instancias, la barra debe estar doblada dado que los tornillos están demasiado alejados de la línea o la corrección que se pretende es muy grave. En otros casos, se puede utilizar un enlace para asegurar la barra relativa al tornillo óseo. Para evitar una aplicación de par de torsión demás al tornillo óseo, la barra conectora 11 se asegura al tornillo óseo por un movimiento linear que aplica fuerza de compresión a través de la abrazadera 12 a la barra 11 y a la cabeza 15 del tornillo.
 - [0016] Las paredes exteriores 24 del cuerpo de la abrazadera 12 generalmente se ilustran de forma tubular con un receptáculo 25, que se muestra en la Fig. 8, en un extremo, y una ranura 23 en el otro. El tamaño del receptáculo se acomoda a la cabeza 15 del tornillo óseo. Las ranura 23 tiene crestas longitudinales superiores e inferiores 17 y 18, respectivamente, para agarrar la barra conectora 11. Como se muestra en las Figs. 5 y 6, la cabeza 15 es esférica y la superficie interna 16 del receptáculo se complementa para permitir una conexión universal o giratoria. El artefacto ortopédico tiene un perfil bajo porque la barra conectora se ahueca en la ranura 23 de la abrazadera 12.
- 40 [0017] Las paredes exteriores 24 de la abrazadera 12 se pueden afilar o, de lo contrario, moldear para proveer un cambio en el diámetro externo todo a lo largo. Las paredes 24 también son relevadas con ranuras circunferenciales 27 y 28, mostradas en las Figs. 8-9, para aumentar la flexibilidad radial de la abrazadera. Se encaja un anillo de compresión 14 a las paredes exteriores 24 de la abrazadera 12 doblando las paredes tubulares. El anillo de compresión 14 se mueve a la largo de las paredes exteriores desde una posición abierta a una cerrada. La posición abierta, como muestran las Figs. 5, 18 y 20, permite el movimiento giratorio de la cabeza del tornillo y el movimiento de desplazamiento de la barra conectora dentro de la abrazadera 12. En la posición cerrada, como muestran las Figs. 6, 19 y 21, el anillo de compresión 14 aplica fuerza de compresión entre la abrazadera 12 y la barra 11 y el tornillo 13 que inmoviliza las conexiones. El anillo de compresión 12 tiene un faldón 26 con crestas anulares internas espaciadas 20 y 22 que une las protuberancias anulares 19 y 21, respectivamente, en las paredes exteriores 24 de la abrazadera 12 en la posición cerrada.
 - **[0018]** Un movimiento linear del anillo de compresión relativo a las paredes exteriores de la abrazadera genera la aplicación de la fuerza de compresión que inmoviliza los componentes del artefacto ortopédico. Este movimiento hacia la posición cerrada se logra usando un simple instrumento de pliegue (no se muestra) que una la abrazadera y el anillo de compresión de modo tal que fuerzas iguales y opuestas muevan el anillo sin estresar el tornillo. En el caso de una cirugía correctiva, la abrazadera se puede mover a la posición abierta del mismo modo.
- [0019] El enlace 29, que se muestra en la Fig. 13, extiende el rango del artefacto ortopédico en situaciones en las que la barra conectora no puede contactar directamente con la ranura 23 de la abrazadera 12. El enlace puede ser de diferentes extensiones o ser adaptado al tamaño que un paciente en particular necesite. El enlace 29 tiene un brazo similar, en dimensiones, a la barra conectora, pero su forma es trapezoidal a pesar de que se puedan utilizar otras formas. El brazo tiene un soporte 30 en un extremo. El soporte 30 se muestra como un anillo cerrado, aunque puede ser discontinuo. El soporte tiene una perforación roscada con un tornillo prisionero 31 para asegurar el enlace a la barra conectora. El otro extremo del enlace está asegurado al tornillo óseo por medio de la abrazadera 12 y el anillo de compresión 14. En la Fig. 14, el brazo enlace 29' es igual o similar en forma a la barra conectora. El enlace tiene un soporte 30' con un tornillo prisionero 31' para fijar la conexión con una barra conectora 11.

ES 2 531 041 T3

5	[0020] En las Figs. 15, 16 y 17, se ilustra otro enlace 29" con un soporte 30" en un extremo. El enlace se asemeja a la barra conectora. El soporte 30" es una manga escindida con un anillo de compresión 14' rodeándola. El anillo de compresión 14' tiene un posición abierta, como muestra la Fig. 17, y una posición cerrada, como muestra la Fig. 16. Una vez ajustada la conexión entre el enlace y la barra conectora 11, el anillo de compresión se mueve a la posición cerrada para asegurar el enlace a la barra conectora. El otro extremo del enlace 29" se asegura a la ranura de la abrazadera 12 para completar el ajuste del artefacto ortopédico.
10 15	[0021] Las Figs. 18-23 muestran las materializaciones del artefacto ortopédico 10 en las cuales la abrazadera 12 incluye un retenedor que previene la separación involuntaria de la barra conectora 11 y la abrazadera. El uso de estas abrazaderas y retenedores queda a discrecionalidad del cirujano. En las Figs. 18 y 19, las paredes exteriores de la abrazadera 12 se extienden sobre la ranura 23 como proyecciones semicirculares opuestas. En las proyecciones semicirculares se forma una ranura exterior 41 que resulta en un borde terminal 42. Esta ranura 41 introduce y mantiene en su lugar el anillo retenedor 40.
13	[0022] Las Figs. 20 y 21 muestran otro retenedor en forma de clip 50 que se extiende a través de la ranura abierta 23 y la cubre. Los extremos 53 del clip se pliegan al revés para ajustarse sobre el borde 52 y posicionarse en la ranura 51.
20 25	[0023] Las Figs. 22 y 23 muestran una abrazadera 12', que no concuerda con la presente invención, con una perforación 23' para que pase la barra conectora 11. La perforación 23' se encuentra intersectada por un conducto roscado 60 con un tornillo prisionero retenedor 61 para mantener juntas la barra conectora 11 y la abrazadera 12'. Una vez que la barra 11 atraviesa las abrazaderas del artefacto ortopédico, los anillos de compresión podrían ser movidos a la posición cerrada trabando la orientación de las barras y los tornillos. Los tornillos prisioneros podrían después ser ajustados para fijar la barra a la abrazadera. De esta forma, el par de torsión que ajusta el tornillo prisionero podría ser absorbido por la barra. La abrazadera 12' se traba al tornillo 13 mediante el anillo de compresión 14, mostrado en la posición cerrada.
30	[0024] Se han descripto varias materializaciones de la presente invención. Sin embargo, se entenderá que se podrán hacer varias modificaciones sin despegarse del objetivo del invento. De acuerdo con esto, se debe entender que no se debe limitar el invento a la materialización ilustrada específica sino a los objetivos de las reclamaciones adjuntas.
35	
40	
45	
50	
55	
60	

ES 2 531 041 T3

Reivindicaciones

5

10

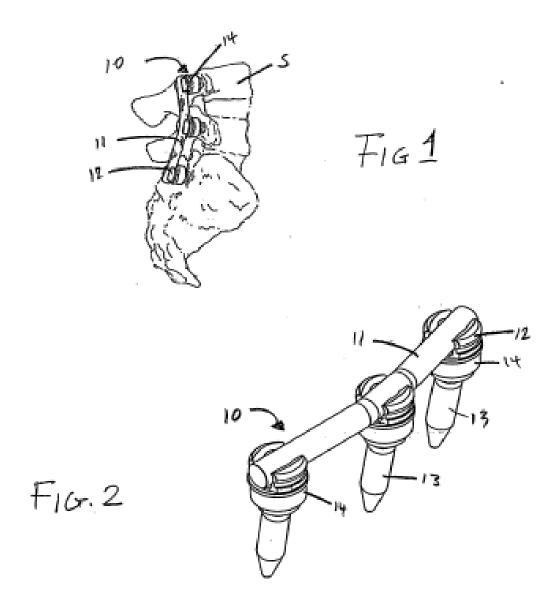
15

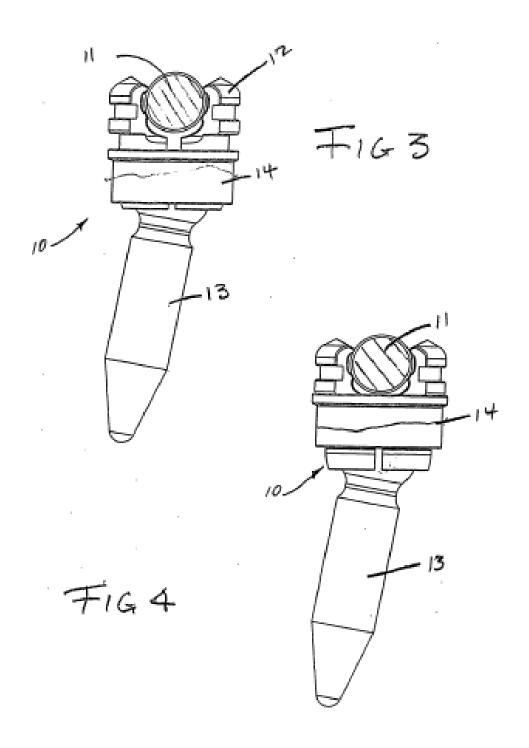
20

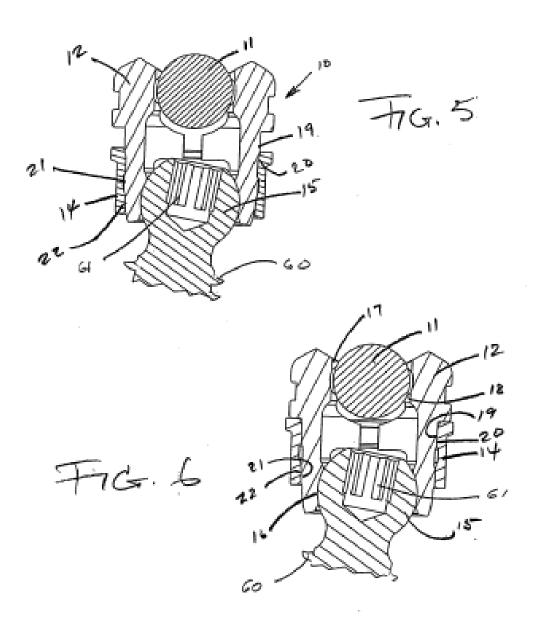
25

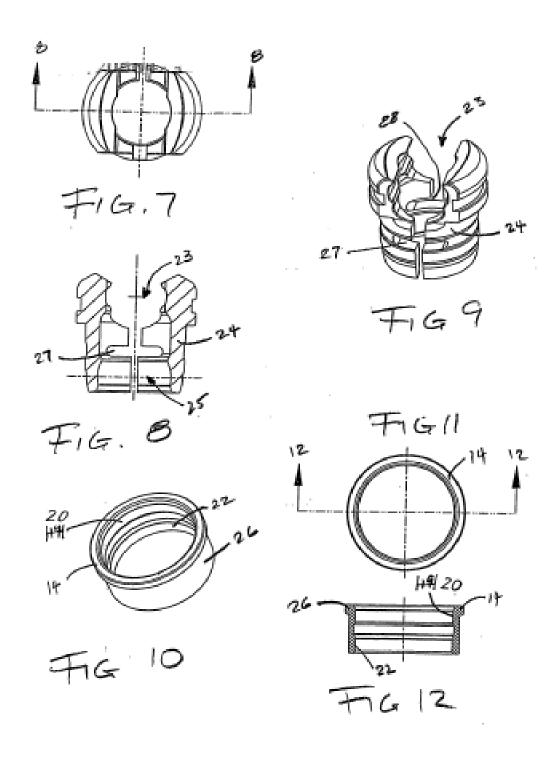
- Un artefacto ortopédico (10) para estabilizar huesos, que comprende un clavo óseo (13) con un mango que cuenta con una rosca externa en forma de hélice (60) para penetrar un hueso con cabeza esférica (15) en un extremo y una abrazadera (12) para trabar el mencionado clavo a una barra conectora alargada (11), la mencionada cabeza tendrá un hueco (61) para ser incrustado por un herramienta de rotación, la mencionada abrazadera tendrá un cuerpo compuesto por paredes tubulares exteriores (24) que forman un receptáculo interno (25) en un extremo del cuerpo que se adapta para contener a la mencionada cabeza y toma la forma complementaria de la misma para permitir el enlace giratorio, un anillo de compresión (14) rodeando el exterior de las mencionadas paredes en una posición abierta que permita el movimiento giratorio de la cabeza y el movimiento de deslizamiento de la barra conectora dentro de la abrazadera, una ranura (23) que atraviese las paredes exteriores del cuerpo en el otro extremo del cuerpo opuesto al receptáculo, dicha ranura incluye crestas longitudinales superiores e inferiores (17, 18) adaptadas para agarrar las barra conectora, el anillo de compresión (14) que se mueve linealmente por fuera de las paredes exteriores (24) hacia una segunda posición cerrada en la que el anillo de compresión se posiciona con respecto a las paredes exteriores del receptáculo de modo tal que las paredes exteriores y la ranura eierzan fuerza de compresión adaptada a trabar de manera segura la abrazadera (12) alrededor de la cabeza (15) y la barra conectora (11), donde el anillo de compresión contiene un faldón (26) que tiene crestas anulares internas espaciadas (20, 22) que se unen a las protuberancias anulares (19, 21) en las paredes exteriores de la abrazadera cuando el anillo de compresión está en la posición cerrada.
 - 2. Un artefacto ortopédico en concordancia con la reclamación 1, en el que la abrazadera y el anillo de compresión estén adaptados para unirse con el instrumento de pliegue que mueve el anillo de compresión de la posición abierta a la cerrada sin ejercer presión sobre el clavo óseo.
 - 3. Un artefacto ortopédico en concordancia con la reclamación 1, en el que la abrazadera y el anillo de compresión estén adaptados para unirse con el instrumento de pliegue que mueve el anillo de compresión de la posición cerrada a la abierta sin ejercer presión sobre el clavo óseo.
- Un artefacto ortopédico en concordancia con la reclamación 1, en el que la barra conectora se adapta para ser conectada con diversos enlaces y clavos óseos a lo largo del mismo, tanto la barra conectora como los diversos clavos óseos se adaptan para estabilizar los huesos en la posición fijada.
 - Un artefacto ortopédico en concordancia con la reclamación 1, en el que las paredes exteriores de la abrazadera son relevadas con ranuras circunferenciales (27, 28) para aumentar la flexibilidad radial de la abrazadera.

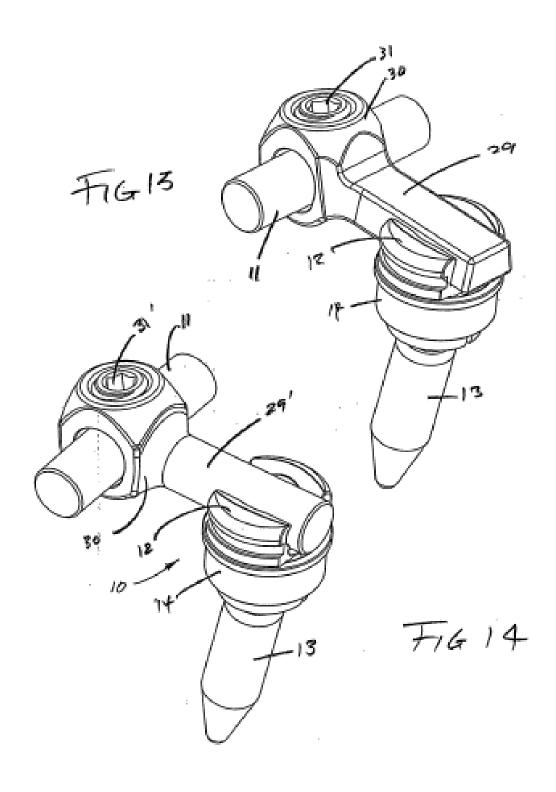
40


35


45


50


55


60

